
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Learn to Fly: Cloning the Behavior of a
Pilot

César Manuel Nobre Medeiros

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Daniel Castro Silva

Second Supervisor: Rui Camacho

July 31, 2021





Learn to Fly: Cloning the Behavior of a Pilot

César Manuel Nobre Medeiros

Mestrado Integrado em Engenharia Informática e Computação

July 31, 2021





Abstract

Autonomous vehicles are increasingly becoming more relevant in the last years, from autonomous
driving to autopilot systems on aircraft. With the recent growth of the UAV market and its use
in the most diverse areas, there is often a need for a system that can navigate autonomously to
perform the intended task.

To simulate these systems’ dynamics, LIACC developed a platform based on Microsoft Flight
Simulator X (FSX). This platform already includes an autopilot system for controlling aircraft.
However, this system is quite limited, and similarly to real autopilot systems, it does not replace
an expert pilot. It rather assists them in slow changes in the aircraft’s altitude and heading.

Thus, this dissertation aims to create an automatic pilot capable of imitating a real pilot behav-
ior by creating a model that performs aerobatic maneuvers that only experienced pilots can do. As
an example, it is used the Immelmann turn maneuver with a parameterized target height to test the
learned model capabilities.

In order to solve this problem, a behavior cloning approach is used, in which the model learns
from the pilot’s movements. Initially, relevant data about the pilot, aircraft, and environment is
collected through a plugin developed for Microsoft Flight Simulator (FSX). Later, two different
approaches, one with an end-to-end long short term memory (LSTM) and another with an end-to-
end artificial neural network (ANN) are used to train two models from the human demonstrations.
One to control the aircraft elevator and another to control the aircraft aileron.

Finally, both models’ performance is evaluated by comparing the models’ behavior with a hu-
man pilot in a well-determined experiment. The experiment consists of describing an Immelmann
turn to a final height of 11000 feet with a Boeing F/A-18 in the same environmental conditions. It
is compared the models performed trajectory with the average trajectory performed by a human.
Other features like trajectory smoothness and distance to the target altitude are also evaluated. The
elevator and aileron position predictions are also compared with human demonstrations.

The results show that the LSTM model is capable of performing the Immelmann turn to any
reasonable desired altitude. The trajectory performed by the model is smooth and does not contain
oscillations common with human operators.

Keywords: imitation learning, behavioural cloning, flight simulator, autonomous aircraft, UAV,
LSTM, ANN
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Resumo

Os veículos autónomos estão a tornar-se cada vez mais relevantes nos últimos anos, desde a con-
dução autónoma em automóveis até aos sistemas de piloto automático em aeronaves. Com o
recente crescimento do mercado de UAVs e a sua utilização nas mais diversas áreas, há frequente-
mente necessidade de um sistema que possa navegar autonomamente para realizar a tarefa pre-
tendida.

Para simular a dinâmica destes sistemas, o LIACC desenvolveu uma plataforma baseada no
Microsoft Flight Simulator X (FSX). Esta plataforma já inclui um sistema de piloto automático
para o controlo de aeronaves. Contudo, este sistema é bastante limitado e, à semelhança dos
sistemas de piloto automático reais, não substitui um piloto especializado. Pelo contrário, assiste-
os em mudanças lentas na altitude e direção da aeronave.

Assim, esta dissertação visa criar um piloto automático capaz de imitar o comportamento de
um piloto real, criando um modelo de controlo que executa manobras acrobáticas que só pilotos
experientes podem fazer. Como exemplo, é utilizada a manobra de Immelmann com uma altura
alvo parametrizada para testar as capacidades do modelo aprendido.

A fim de resolver este problema, é utilizada uma abordagem de behavioral cloning, na qual
o modelo aprende com os movimentos do piloto. Inicialmente, são recolhidos dados relevantes
sobre a aeronave e ambiente através de um plugin desenvolvido para o Microsoft Flight Simulator
(FSX). Mais tarde, duas abordagens diferentes, uma com Long Short Term Memory (LSTM) e
outra com Artificial Neural Network (ANN), são utilizadas para treinar dois modelos a partir das
demonstrações humanas. Um modelo para controlar o elevator da aeronave e outro para controlar
o aileron da aeronave.

Finalmente, o desempenho de ambos os modelos é avaliado comparando o comportamento
dos modelos com um piloto humano, numa experiência bem defininda. A experiência consiste
em descrever uma manobra de Immelmann a uma altura final de 11000 pés com um Boeing F/A-
18 nas mesmas condições de ambiente. Compara-se a trajectória dos modelos realizados com a
trajectória média realizada por um humano. Outras características como a suavidade da trajectória
e a distância até à altitude alvo são também avaliadas. As previsões de posição do elevator e do
aileron são também comparadas com demonstrações humanas.

Os resultados mostram que o modelo LSTM é capaz de executar a manobra de Immelmann
para qualquer altitude desejada desde que acima da altura inicial. A trajectória executada pelo
modelo é suave e não contém oscilações que são comuns com os operadores humanos.

Keywords: imitation learning, behavioural cloning, simulador de voo, aeronave autónoma, UAV,
LSTM, ANN
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Chapter 1

Introduction

This chapter introduces the dissertation topic, starting by describing the context, motivation, and

objectives of this dissertation as well as the methodology used.

1.1 Context and Motivation

In recent years we have witnessed the automation of several processes with the application of

robots in different areas, from commercial, business, and military. The challenge, at the moment,

is related to intelligent autonomous robotics that performs complex tasks without the need for a

human operator.

Autonomous vehicles are among the most attractive areas as they bring several advantages

in carrying out civilian and military missions [Bouabdallah and Siegwart, 2007]. Among other

things, it allows access to places that would be difficult for humans [Flint et al., 2002], perform

long-term missions [Kanistras et al., 2013], and reduce operational costs [Koh and Wich, 2012].

To simulate the execution of a vast set of missions by diverse heterogeneous autonomous

vehicles, the Artificial Intelligence and Computer Science Laboratory (LIACC) developed a multi-

agent platform on top of the Microsoft Flight Simulator (FSX) [Silva, 2011].

In order to autonomously control vehicles in the simulator, LIACC developed a vehicle control

agent. This agent has as its basis the AI autopilot build in FSX that allows the control of various

vehicle types on the platform.

This agent contains two modules of particular interest for this dissertation. The first is the

Planning and High-Level Reasoning Module responsible for generating high-level maneuvers,

such as go-to point or making a circle. The latter is the Vehicle Maneuvering Control Module

that transforms high-level maneuvers into low-level maneuvers that can be interpreted through the

communication interface that Microsoft provides to connect the client application with FSX.

The AI autopilot approach to the present problem features some limitations. The rigidity of

the autopilot is one of them. The autopilot is not capable of performing steep maneuverings. The

1



2 Introduction

movements are composed of small increments that keep the plane stable throughout the journey.

Although this behavior is desirable for commercial flights, it does not always apply to all types of

missions. In military missions where completion time is crucial or even when necessary to cope

with unusual or unforeseen circumstances occasionally encountered in routine flight, the ability to

execute performance maneuvers can be decisive in its success.

1.2 Objectives and Methodology

This dissertation aims to extend the Vehicle Control Agent capabilities to take full advantage of

each aircraft’s capabilities. This results in more realistic mission strategies, approximating what

real human pilots would do. Better mission time, as it can "shortcut" way-points instead of per-

forming a stable trajectory and also supporting future missions that were not possible until now,

like air combat and other military tasks.

In order to do this, there needs to be support for rapid changes in the aircraft’s velocity vector

and the aircraft’s angular rates. One way to push the aircraft’s capabilities to their limits is to use

aerobatic maneuvers. These types of maneuvers put the aircraft in very unstable states, suitable

for the rapid changes mentioned before. However, it presents a real challenge to perform them

without losing control.

Creating a flight dynamics model that describes aircraft behavior in the simulator can be very

difficult, mainly if the approach taken calculates the physical forces acting on a simulated air-

craft. This method requires expert knowledge on each maneuver, aircraft, environment conditions,

physics engine, among others, which would be infeasible in this case.

To work around this problem, the autopilot will learn the aerobatic maneuvers from human

demonstration. First, all relevant data needs to be collected, including human control input data,

aircraft state variables, and environment condition variables.

All data collected will then be combined and fed to an imitation learning module to learn the

policies that will perform the desired behavior.

Another essential part of this process is performance evaluation, not only at the end but also

during the learning process.

1.3 Document structure

The rest of the document consists of 6 chapters. Chapter 2 presents concepts and terms specific

to the flight dynamics that will be used throughout the document. Chapter 3 reviews the literature

and analyzes state of the art. Chapter 4 specifies the approach that is taken to solve the problem of

this dissertation. Chapter 5 presents more in-depth the implementation of the several approaches

and reasoning, how they work, and the reason behind the decisions taken. Chapter 6 contains the

experiment done to evaluate the final solution presenting several metrics. Chapter 7 ends the report

by presenting a summary of what has been accomplished and an outline for future work.



Chapter 2

Contextualization

This chapter presents some concepts and terms that will be used throughout the rest of the dis-

sertation. It will serve to introduce the reader to concepts related to aircraft aerodynamics, ’The

Platform’ developed by LIACC, and the Microsoft Flight Simulator.

2.1 Aircraft flight dynamics

An aircraft is any vehicle, with or without an engine, that can fly by gaining support from the air.

Flying can be achieved in different ways, thus emerging different aircraft with varying aerodynam-

ics. Some examples are fixed-wing and rotary-wing aircraft. This dissertation, given its objective,

will focus on the first.

To comprehend how they fly, first, we need to know the forces involved. There are four main

forces applied to the aircraft: lift, thrust, drag, and weight (Fig. 2.1).

Figure 2.1: The Four Forces of Flight1

In a fixed-wing aircraft, the engine produces thrust that creates movement by pushing air in

and then out in the opposite direction. Due to the airfoil shape wings, when there is a movement

1Retrieved from https://www.aeros.co.uk/latest-news/intro-principles-flight

3
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4 Contextualization

relative to the air, a lift force is generated that makes the aircraft ascend if this force is greater than

the weight. The drag represents the resultant of forces that act opposite the direction of motion

and slow down the aircraft. To change the plane’s direction the forces must be unbalanced in a

specific way.

The main control surfaces of a fixed-wing aircraft are the ailerons, the elevators, and the rudder

(Fig. 2.2).

Figure 2.2: Primary Flight Controls2

The ailerons control the rotation around the longitudinal axis, also referred to as roll. They

move in the opposite direction to increase the lift force difference on each wing and thus rotate to

the side where the aileron is up.

The elevators control the rotation around the lateral axis, also known as pitch. Unlike the

previous case, both elevators move in the same direction. When down, the lift force in the tail

is more significant than in the nose, so the plane pitches down. The opposite occurs when the

elevators are up.

The rudder controls the rotation around the vertical axis, commonly known as yaw. It is located

on the tail and can move to the left or right. When positioned left, it creates a side force on the tail

to the right, thus yawing the plane to the left. The opposite occurs when the rudder is to the right.

.

2.2 Aerobatic maneuvers

The majority of known aerobatic maneuvers are composed by three basic maneuvers or parts of

them. There is the roll (Fig. 2.3) where the aircraft performs a full 360 degrees turn about its

longitudinal axis by changing the deflection angle of the ailerons.

2Retrieved from https://www.lavionnaire.fr/VocableFlightControl.php

https://www.lavionnaire.fr/VocableFlightControl.php


2.2 Aerobatic maneuvers 5

Figure 2.3: Roll3

The loop (Fig. 2.4) is another basic maneuver where the aircraft performs a full 360 degrees

turn in the vertical plane by changing the deflection angle of the elevators.

Figure 2.4: Loop4

Finally, the knife-edge turn (Fig. 2.5) pushes the bank angle limit, that is, the angle that the

vehicle’s longitudinal axis makes with respect to the horizontal. To perform this maneuver, the

bank angle will need to be above 45º and can reach 180º in the case of a knife-edge turn.

3Retrieved from https://laptrinhx.com/perfecting-the-4-point-roll-1612734735/
4Retrieved from https://www.modelairplanenews.com/fly-scale-maneuvers/#outer-popup

https://laptrinhx.com/perfecting-the-4-point-roll-1612734735/
https://www.modelairplanenews.com/fly-scale-maneuvers/##outer-popup
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Figure 2.5: Steep turn5

By combining different basic maneuvers, we can achieve more complex ones such as the half

cuban eight, canopy roll, split, and Immelmann turn.

The Half Cuban Eight (Fig. 2.6), is widely used in Red Bull Air Race competitions. This

maneuver consists of reversing the direction of movement with the minimum horizontal displace-

ment. During this maneuver, the center of mass remains in the same vertical plane in an ideal

case.

Figure 2.6: Half Cuban eight6

The Immelmann Turn (Fig. 2.7) consists in reversing the direction of movement increasing

the altitude. It is used in air combat for repositioning after an attack. When the aircraft is parallel

to the ground plane with the top facing up (0 degree bank angle and 0 degree pitch angle) the

maneuver can be described in two part. An initial half-loop with the aircraft with diameter equal

5Retrieved from https://www.aopa.org/news-and-media/all-news/2012/march/flight-train
ing-magazine/technique--the-steep-turn

6Retrieved from https://www.researchgate.net/figure/Half-Cuban-Eight-without-blue-an
d-with-wind-grey_fig4_269255066

https://www.aopa.org/news-and-media/all-news/2012/march/flight-training-magazine/technique--the-steep-turn
https://www.aopa.org/news-and-media/all-news/2012/march/flight-training-magazine/technique--the-steep-turn
https://www.researchgate.net/figure/Half-Cuban-Eight-without-blue-and-with-wind-grey_fig4_269255066
https://www.researchgate.net/figure/Half-Cuban-Eight-without-blue-and-with-wind-grey_fig4_269255066


2.2 Aerobatic maneuvers 7

to the difference between the desired altitude and current altitude. At the end the aircraft should

be parallel to the ground, but this time the aircraft top should be facing down. After that a 180

degree roll is applied in order to the aircraft end up in a up right position.

Figure 2.7: Immelmann turn7

The Split S(Fig. 2.8), on the other hand, is used to disengage from combat. It can be seen as

an inverted immelmann turn. With the same initial state, aircraft parallel to the ground with the

top facing up, it start by performing a 180 degree roll followed by a half loop with the top facing

the center of the circumference described.

7Retrieved from http://steampunkaviatrix.blogspot.com/2010/05/history-of-immelmann-
turn.html

http://steampunkaviatrix.blogspot.com/2010/05/history-of-immelmann-turn.html
http://steampunkaviatrix.blogspot.com/2010/05/history-of-immelmann-turn.html
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Figure 2.8: Split S8

2.3 Simconnect API

Simconnect is a software development kit (SDK) developed by Microsoft that connects the FSX

simulator to an external application. It allows communication between the two programs, which

makes it possible to control and track the simulator variables.

The Simconnect API supports both Key Events and Variables.

The Key Events allow control of all aircraft systems similar to a user using a joystick to control

the simulation. These systems include Engine, Flight Controls, Fuel System, Instruments, Lights,

and many others.

Variables, on the other hand, allow a more flexible communication allowing not only to change

aircraft system variables but also reading all kinds of information related to the simulation. This

includes environment variables like wind velocity and barometric pressure, aircraft control vari-

ables, like throttle level, control surfaces, and also aircraft state variables that allow reading and

writing the velocity, acceleration, angle position, and angle rates.

SimConnnect is a software development kit (SDK) that contains all low-level methods capable

of establishing communication between the user program and the FSX. It uses a client/server asyn-

chronous format. This way, it triggers an event on the client each time the request is completed.

Then to pull the desired variables, they must be previously added to a data definition struct.

This allows reading "simultaneously" instead of one by one, which maintains variable time coher-

ence and allows for much faster processing.

Simconnect gives four options for the variable pulling rate. Only one time, every visual frame

(every time it’s rendered), every simulator frame (event if not rendered), and every second.

To write values to the variables, we simply need to initialize the data definition struct men-

tioned before and send it as an object to Simconnect. Every variable would be substituted by the

new values. Officially it supports C/C++/.NET programs or DLLs.

8Retrieved from https://commons.wikimedia.org/wiki/File:Split_S.png

https://commons.wikimedia.org/wiki/File:Split_S.png


Chapter 3

Literature review

This chapter analyses the state of the art of autonomous vehicles and the different processes re-

quired to build and learn a controller model.

There are currently many distinct ways to autonomously control an aircraft, from traditional

systems to systems based on neural networks. Each model offers a varying set of features like

robustness, adaptability, optimality, simplicity, tracking ability, fast response, and disturbance re-

jection, and as such, there is no perfect solution for every application [Zulu and John, 2014].

Automating an aerial vehicle’s navigation is a complex task given the nonlinear, high-dimensional

(6DoF) properties of the system [McConley et al., 2000]. This is even more evident when we de-

viate from simple tasks such as maintaining altitude and enter a more complex tasks that require

sudden changes of position and orientation.

3.1 Traditional controllers

It is prevalent in autonomous aerial vehicles to use a traditional approach to control the aircraft’s

position and orientation. This type of approach is strongly physics-based and depends significantly

on the accuracy of the aircraft dynamics model.

For primitive tasks such as maintaining altitude or level flight, a simple model is enough.

However, when the objective is performing aerobatic maneuvers, the accuracy needed for the

model quickly rises.

In [Bulka and Nahon, 2017] and [Bulka and Nahon, 2019] the authors develop a fixed-wing

aircraft control system that is able to follow a given trajectory by controlling the aircraft actuators,

such as thrust, aileron, rudder, and elevator deflection.

This nonlinear system is physical-based, which means it was necessary to hand-specify aero-

dynamic equations of fixed-wing aircraft. These equations describe the aircraft’s behavior and are

used to change its position and orientation by changing the actuator’s deflection.

9



10 Literature review

This control is divided into three separate modules: an attitude controller, a position controller,

and a thrust controller working together to follow a trajectory.

The paper also specifies a maneuver generator responsible for generating a time history of

reference motion variables. This is done by applying constraints to the motion variables. The

results show that even in trajectories that are not feasible, it was enough for the controller to

follow a similar trajectory.

The maneuvers used in this paper were knife-edge, rolling Harrier, hover, and aggressive

turnaround. They were tested both in a conventional simulator and a Hardware-In-The-Loop

(HIL) simulator to further evaluate the model response in a more realistic scenario. The latter

used X-Plane, a flight simulator similar to FSX, as a physics engine.

To compare the obtained trajectory with the ideal one, it was used the cross-track error(XTE),

which is determined by the minimum distance between the actual position and the desired track

measured at a 90 degrees angle from it. The aggressive turnaround has a 0,5m cross-track error.

The knife-edge and rolling harrier have both a 1m.

A similar approach was used in [Levin et al., 2017] for performing a knife-edge maneuver.

Only that in this paper, the trajectory is generated by a rapidly-exploring random trees (RRT)

algorithm, which results in a smooth, collision-free overall trajectory. This also allows the integra-

tion of such maneuvers in a conventional path. To evaluate the proposed methodology of motion

planning and control results, the author used Simulink with their dynamics model.

[McConley et al., 2000] use a different approach to maneuver an aircraft autonomously. It uses

a hybrid method that combines off-line generation of primitive trajectories easily defined with on-

line motion planning that choose when and which primitive trajectory to choose. This method

consists of dividing the maneuvers’ trajectory into time-parameterized curves. Instead of generat-

ing optimal control for a high-dimensional problem, it is only necessary to connect the primitives,

thus reducing computational complexity. Some more complex maneuvers integrated into the prim-

itives were loops, barrel rolls, and split-S. However, such maneuvers need to be hand-engineered

and consequently not very dynamic. The motion planning is done by using rapidly exploring

random trees (RRT’s) to compute the optimal path. Despite being able to perform the intended

maneuvers in simulation, this method would hardly yield good results in real-life scenarios where

disturbances and errors would destabilize the primitive trajectories.

[Silva et al., 2009] uses the same platform as this dissertation to control an aircraft autonomously.

In this paper, one of the approaches used is a PID controller. This approach noted some drawbacks

since it is necessary to be continuously making adjustments to the aircraft’s control surfaces. It

would be necessary to send information at high rate, which wasted computational power, in ad-

dition to the fact that the latency of sending data would affect the accuracy of the movements

performed. Furthermore, with different aircrafts and different environments, adjustments to pro-

portional integral and derivative gains would be necessary.



3.2 Reinforcement Learning 11

3.2 Reinforcement Learning

In the previous section, we saw that in order to perform specific maneuvers, a traditional controller

needs to have high detail a priori knowledge about the aircraft aerodynamic model and physics.

This, as we can imagine, is not an easy task and certainly demands a profound knowledge about

the aircraft and physical world. Reinforcement learning (RL) alleviates the need for a well-known

dynamical model (model-based RL) or even discard it completely (model-free RL).

3.2.1 Model-free RL

Model-free reinforcement learning has a notable advantage over traditional methods given that it

does not require an aircraft dynamical model. This dramatically reduces the expertise needed for

the particular problem dynamics, and as a result, the learned model is more flexible to variances.

In [Abouheaf et al., 2018] is applied a model-free gradient-based solution to control an Un-

manned Flexible Wing Aircraft autonomously in two directions, lateral and longitudinal. Also,

Artificial neural networks were used to approximate the optimal policy of control. Several sim-

ulation scenarios were used to extensible test the learned model stabilization performance under

a wide range of uncertainties and disturbances. A flexible wing hang glider was chosen since its

characteristics are greatly affected by disturbances in the environmental dynamics. The results

show a fast response to disturbances. However, this paper only presents the capacity to stabilize

the glider and not aerobatic maneuvers, which would increase the problem complexity.

[Hwangbo et al., 2017] propose another way to stabilize an aircraft, in this case, a quadrotor.

The authors used a neural-network deterministic on-policy that could directly map the state to an

action that controls the rotors’ thrust. The deterministic part allows for a more simple training

model and more predictable actions by the agent. The training was done in a simulator platform to

generate data faster and in great quantity without the need for trial-and-error in the real robot that

would consume not only time but also resources. Both simulation and real hardware results show

that the model is capable of waypoint tracking and stabilization even with harsh disturbances.

A more aggressive maneuver was introduced in [Lin et al., 2019] with a quadrotor flying

through a narrow passage. The approach used an end-to-end neural network approach, and con-

trary to the article above, two neural networks were used — one for motion planning the trajectory

and the other for controlling the quadrotor actuators. The performance is then optimized in a sim-

ulator with reinforcement learning. This process’s necessary data was obtained through trial sets

and consisted of 20000 trajectories with 1000 sample points each. Ultimately the agent was able

to perform well in real hardware, similar to imitation learning, with the disadvantage of not having

such a smooth trajectory.

3.2.2 Model-based RL

Model-based reinforcement learning techniques try to overcome the problem of lack of previous

knowledge by allowing the agent to represent its environment [Janner et al., 2019]. This has great
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impact on learning efficiency, as it requires less data and time to learn a policy when compared to

Model-free techniques.

[Yoo et al., 2021] use a hybrid approach to control a micro quadrotor UAV. It consists in com-

bining reinforcement learning to define the policy and trajectory and a Linear Quadratic regulator

(LQR) to apply the correct actions to the UAV actuator. In the experiments, using ROS for learning

and control the real quadrotor, the agent is capable of tracking a spline and circular reference tra-

jectory. By using LQR as a control algorithm instead of relying entirely on reinforcement learning

the authors were able to improve the convergence rate.

Also using a quadrotor as UAV, [Liang et al., 2018] propose a model-based algorithm that is

able to increase training efficiency by combining data from different UAVs running in parallel.

This time the trajectories pose a more difficult challenge with sharp turns and sudden altitude

changes. The experiments were carried out in a simulator where it was possible to compare the

proposed approach with traditional reinforcement learning. The performance obtained was similar

in both situations, namely the tracking accuracy of the reference trajectory.

[Becker-Ehmck et al., 2020], different from what we have seen until now, without using any

hand-engineered physics and aerodynamics equations the authors were able to create a dynamical

model for a UAV quadrotor based on sensor observations. The method is composed by two parts,

learn dynamical model and learn control model. For both tasks were used deep leaning methods.

The experiments carried out in real hardware have proved to be successful in flying to predefined

position by a marker.

3.3 Imitation Learning

Sometimes the best way to learn something is by watching someone else do it and then improve it.

Imitation learning consists of learning to perform a specific task from expert demonstrations [Ho

and Ermon, 2016].

In complex high-dimensional problems, it would be unfeasible to train a model from scratch,

as it would require an enormous amount of time and computational resources for the model to

begin converging on a solution.

The idea behind imitation learning is to learn a good base model from the several demonstra-

tions given by an expert, usually a human. The learned policy should be enough to successfully

complete the given task even though it can be later optimized to account for human inaccuracies,

errors, and deviations. In some cases, the resultant model is even better than the human demon-

strations.

The learning method can be direct if it learns the policy directly from the demonstration in a

process similar to supervised learning, or it can be indirect if it learns first a reward function and

then derives the policy from it [Hussein et al., 2017].
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3.3.1 Trajectory definition

Imitation learning needs expert demonstrations, which in the case of this dissertation are the aero-

batic maneuvers trajectories performed by a human in the simulator.

The closest the demonstrations are to the intended trajectory, the better, but we can assume

that they will not be perfect. There needs to be a way of combining all the demonstrations into

one that comes close to the target.

In [Coates et al., 2008] the authors recognize that expert demonstrations may be optimal for a

small portion of the trajectory (sub-optimal), and with a large number of sub-optimal demonstra-

tions is possible to infer the ideal trajectory.

They propose an algorithm (EM algorithm) to generate the intended target trajectory from the

expert demonstrations. The method is based on considering the demonstration a noisy observation

of intended trajectory dislocated in time. So the algorithm performs a time-alignment of all the

demonstrations, allowing an inference of the ideal trajectory.

The proposed algorithms also incorporate prior knowledge that improves the learning trajec-

tory quality and decreases the convergence time. Position drift that can result from input impreci-

sion is also accounted for in the algorithm.

In [Abbeel et al., 2010], a similar approach was used to extract the ideal trajectory but applied

in helicopter aerobatic maneuvers. This paper compares the performance of the trajectory learned

from demonstration, and a hand-specified trajectory [Abbeel et al., 2007] for the same maneuver.

This new method obtained better results in flips and rolls and was able to perform a new maneuver,

tic-toc, that the previous approach could not achieve.

3.3.2 Direct policy learning

Direct policy learning consists of directly mapping the states visited in the trajectory demonstra-

tions to actions. Behavioral cloning is the simplest form of imitation learning as it is similar to

supervised learning, which uses the demonstrations as ground truth.

[Rodríguez-Hernandez et al., 2019] were able to use behavioral cloning to make a micro aerial

vehicles (MAV) quadrotor fly through a gate. Data was collected through a camera and had more

than 2000 desired states to train the agent. This approach has, however, a significant drawback,

which is a lack of robustness. This occurs because the agent only knows what to do when it sees

a previously visited state. In variable scenarios, like real-life, where new situations can arise, this

method does not know which action to perform.

A different way to implement behaviour cloning is by using neural networks that are able to

map the high non-linear relation between the current aircraft state to the values for the actuators

(control surfaces and thrust).

3.3.2.1 Artificial Neural Networks

There are several types of Neural Networks. An Artificial Neural Network (ANN) is a feed-

forward multi-layer Neural Network. It consists of several nodes (Fig. 3.1), each one analogous
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to biological neurons and that are connected to each other. This connection mimics the brain

synapses in a way that each input connection has a variable weight that determines the changes

during learning according to its importance for the final result. The node then combines all inputs

and using a known activation function calculates the output.

Figure 3.1: Artificial Neuron1

These nodes are arranged into layers that represent an abstraction of the input data. The nodes

in each layer are connected to the nodes of the following layer (Fig. 3.2).

Figure 3.2: Artificial Neural Network2

In [Baomar and Bentley, 2016b] the authors present a method to perform tasks such as take-

off, climb, and slow ascent using ANN’s. The method consists of using four ANN’s, that outputs

values for the elevator, aileron, rudder and throttle. Given that the control system will be used to

perform tasks in situations proximal to the aircraft’s stability state and thus the mapping function

more easily linearizable, the authors decided to use a single hidden layer for each ANN. The

obtained results shows that the control method was able to imitate human behaviour both in calm

and stormy weather conditions and generalizing for unseen conditions even though there were

used limited examples (one for each ANN). It is also worth noting that despite the human pilot
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demonstrations in thrust control presenting some oscillations, the control system was able to learn

how to control the thrust smoothly.

A similar approach was used in [Baomar and Bentley, 2016a] but this time each ANN encodes

a model for a different flight behavior. A meta-scheduling program is used to decide which model

to used at a given condition. The model is trained for situations such as engine failure, rejected

take off (RTO), and emergency landing. The topology for the ANN’s used were composed by only

one hidden layer based on the fact that the problems that require more than one are scarce [Heaton,

2008]. Also as a rule-of-thumb the number of nodes in the hidden layer must be less than or equal

to twice the size of the input layer. During training the output values of each ANN were compared

to the human pilot demonstration by calculating the mean squared error (MSE) stopping when a

achieving an error below 0.001.

The experiments show the ability of Supervised Learning with Artificial Neural Networks to

learn low-level control tasks and even performing better where fine control is needed.

[Shukla et al., 2020] includes a new technique to train an ANN model in order to increase its

robustness. One problem that behavior cloning has is that in the presence of a unvisited states

the model accuracy decreases. To address this problem the authors use the Dataset Aggregation

(DAgger) algorithm which consists in introducing perturbed data to the training process.

In this case the authors already had a Guidance Navigation Control (GNC) system that acted

as expert. This allows for a much faster data generation. The output from the ANN is fed to the

aircraft simulator that outputs its new state. This new state include some small deviations from the

desired behavior. So it is labeled by the GNC policy and added to the training dataset.

This article proposes a way to control a fixed-wing aircraft to follow a path defined by four

waypoints by directly mapping the aircraft state to control surface values.

The inputs used a ANN with one hidden layer with 35 neurons and as inputs the North-East-

Down (NED) distances for each waypoint, the velocity, roll angle and pitch angle outputting the

throttle, elevator, aileron and rudder values.

In the article results show that standard supervised learning techniques are not able to train an

end-to-end ANN autopilot to fly a fixed-wing aircraft through a path defined by waypoints, having

only the GNC McDAgger approach yield good results.

3.3.2.2 Recurrent Neural Networks

We can see maneuvers as changes in position over to time. It doesn’t only depends on the current

state but also on previous states.

Feed-forward neural networks like ANNs are not ideal for sequential data or time series since

it’s output is independent from previous inputs. To address this problem a new type of neural

networks emerged, the recurrent neural networks (RNN) (Fig. 3.3). Each RNN node includes its

output in its input and thus being capable of acting as a memory cell. This class of neural networks

are considered the state of the art in time sequential data being used by Apple’s Siri and Google’s

voice search [Kumar et al., 2020].
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Figure 3.3: Recurrent Neural Network3

Long short-term memory (LSTM) originally proposed by Hochreiter & Schmidhuber is a spe-

cific type of RNN that can learn long-term dependence information of sequential data. A LSTM

neuron has three different gates: the input gate, the forget gate and the output gate that controls the

flow information and cell state. In classic RNN during training the gradients are back-propagated

can easily tend to zero or infinity due the repeated computations involving the gradient called

vanishing gradient problem. LSTM tries to solve this problem by allowing the gradient to flow

unchanged [Pascanu et al., 2013].

[Li et al., 2019] use LSTM to develop a flight attitude control model in an air combat situation.

To do that, they collected 200 demonstrations, each with 47 variables describing the aircraft state

and battlefield situation. The data was then normalized to prevent influence of the data dimension

on the model’s prediction accuracy. In the experiments the authors used the Mean Squared Error

(MSE) and Mean Absolute Error (MAE) between the output value and the real value to measure

the performance evaluation index for the model. The LSTM model used also has only one hidden

layer, like in many other papers, with the number of node determined experimentally given that

it is a determinant parameter for the model accuracy. The proposed model has better prediction

accuracy and convergence performance than traditional recurrent neural network.

3.3.3 Indirect policy learning

Contrary to the previous type, indirect policy learning tries to learn "why" the demonstrator is

performing a specific action when seeing a specific state. This is done by understanding the reward

function behind the demonstrated behavior and thus achieving the objective.

[Abbeel et al., 2010] apply this method to perform aerobatics autonomously in a Radio Control

(RC) helicopter. They were the only ones to perform highly complex maneuvers in real hardware

from all the literature reviewed. The successfully performed maneuvers were "flips, in-place rolls,

loops and hurricanes, and even auto-rotation landings, chaos, and tic-tocs".

They start by building a dynamic model that describes the helicopter behavior. This is done by

defining some physical constraints and using the demonstrations to tune the parameters to develop

an accurate model. Each maneuver has a specific set of demonstrations used to create a target

trajectory from its suboptimal portions.

3Retrieved from https://en.wikipedia.org/wiki/Recurrent_neural_network

https://en.wikipedia.org/wiki/Recurrent_neural_network
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All this data was then fed to a learning algorithm that outputs the rewards function for that

maneuver. From that, it was only needed to apply an optimal control method to find the optimal

policy that maximizes the reward.

This method proved to be more robust and provided better results than the direct approach.
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Chapter 4

Proposed solution

This chapter presents some relevant decisions in the problem definition, specifically chosen aero-

batic maneuver, input state variables, and output control variables. It also describes the approach

used to solve the problem that we propose to solve at a high level. Includes methods used, data

collected, and many other components that ultimately compose the final solution.

4.1 Aerobatic maneuvers selection

During section 2.2 it was presented several aerobatic maneuvers that are common in air races

and air combat. From all the options presented, the Immelmann turn was the chosen one. It is a

complex maneuver composed of three simple portions. First, at a pitch angle and bank angle of 0

degrees, the aircraft starts to perform a half loop to the desired altitude. The elevators must deflect

upwards to create more lift force in the front of the aircraft than the back, causing it to rotate in

the lateral axis and thus increasing the pitch until it reaches 180 degrees. After this maneuver, the

aircraft should be at the desired altitude with a bank angle of 180 degrees, that is, upside down. To

return to a normal position, a 180 degree roll is done.

This maneuver is very similar to other common aerobatic maneuvers like the half-cuban eight

and the split. As such, it is a good starting point to extend the model’s capabilities later. In the

half-cuban eight, instead of maintaining the altitude after the half-loop, it continues descending

until it reaches the starting altitude. In this case, the roll maneuver is done during the descending

part of the maneuver. The split is an upside-down Immelmann turn, whose final altitude is below

the initial altitude. From the same initial state, it performs the 180 degree roll first and then the

half loop.

4.2 Learning method

Before deciding on which method to choose so that an agent learns to perform aggressive aerobatic

maneuvers, it is advisable to remember the problem’s characteristics in question.

19
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Firstly, the agent will act on fixed-wing aircraft in the FSX simulator. The fact that the aim is

to control an aircraft in a simulator and not in the real world makes data acquisition much more

convenient, faster, and with greater volume.

In a simulator, it is also easier to carry out trial and error experiments, and as such, the learning

process becomes more efficient. However, it is worth noting that the FSX has a maximum simu-

lation speed limited to 16x real-time and that the higher this rate is, the lower the accuracy of the

simulation, which can add other types of unexpected disturbances.

Furthermore, the aircraft will be subject to different environmental conditions. FSX can simu-

late different weather conditions, as well as atmospheric pressure, temperature, and variable wind.

All of this can affect the system’s dynamics, and as such, the agent must be immune to these

disturbances.

This simulator has several aircraft models, from fighter jets to aerobatic aircraft that, of course,

behave differently. The agent should be able to generalize to various aircraft types without having

to start the learning process again.

It would also need to allow to add maneuvers intuitively without requiring expert knowledge

of physics and aerodynamics.

There is no perfect solution, but in this case, behavior cloning using a neural network (ANN

OR LSTM) seems to be the best approach due to several factors. First, it is simple to train. Be-

havior cloning is similar to supervised learning, so to train the neural network that maps the input

states to output control only needs the state and action from the human expert demonstrations.

There is no need for mathematical aircraft dynamical models that increase the complexity and

change considerably with the aircraft type in question. All this being said, we can also predict

some problems. The robustness to new circumstances is very dependent on the neural network ca-

pability of generalizing, and it is usually a problem with this method. We know from the literature

that we need large quantities of demonstration data in several different conditions to minimize this

problem.

4.3 Architecture

The solution architecture is divided in three main applications. The first one, a data collector, that

is responsible for collecting the human demonstrations for the immelmann turn 4.1. The second

one that takes the demonstrations, prepossesses them and trains a model with them as input.

Figure 4.1: Data collector architecture

Finally, a third application that uses the model from the previous one to predict the best posi-

tion for the elevator and aileron for a given state 4.2.
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Figure 4.2: End-to-end neural control architecture

4.4 Collected variables

As mentioned before, FSX makes available several variables and events through Simconnect.

However, only a small subset is of interest for our purposes.

The following tables do not list, exhaustively, all variables existent but rather only the ones that

influence substantially the dynamic behaviour of the aircraft. Whether they are related to control

aircraft control or environment conditions.

In this list are also pinpoints the variables later used as features input for the behavior cloning

model. All information presented in these tables were retrieved from the Microsoft references 1 2.

4.4.1 Environment

Table 4.1 shows FSX ambient variables that might affect the aircraft dynamic during flight. All

the variables listed are read-only.

1Event listing provided in https://docs.microsoft.com/en-us/previous-versions/microsoft-e
sp/cc526980(v=msdn.10)

2Variable listing provided in https://docs.microsoft.com/en-us/previous-versions/microsoft
-esp/cc526981(v=msdn.10)

https://docs.microsoft.com/en-us/previous-versions/microsoft-esp/cc526980(v=msdn.10)
https://docs.microsoft.com/en-us/previous-versions/microsoft-esp/cc526980(v=msdn.10)
https://docs.microsoft.com/en-us/previous-versions/microsoft-esp/cc526981(v=msdn.10)
https://docs.microsoft.com/en-us/previous-versions/microsoft-esp/cc526981(v=msdn.10)
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Table 4.1: FSX environment state variables

Variable Description Settable Use

AMBIENT

DENSITY
Ambient density N

AMBIENT

TEMPERATURE
Ambient temperature N

AMBIENT

PRESSURE
Ambient pressure N

BAROMETER

PRESSURE
Barometric pressure N

SEA LEVEL

PRESSURE
Barometric pressure at sea level N

STRUCT

AMBIENT WIND

X (latitude), Y (vertical) and Z (longitude) compo-

nents of the wind.
N

4.4.2 Aircraft engine control

Table 4.2 shows thrust controls via events which are write-only operations. Table 4.3 presents a

variable used to read/write the throttle position.

Table 4.2: FSX engine control events

Event Description Use

KEY_THROTTLE_FULL Set throttles max

KEY_THROTTLE_CUT Set throttles to idle

KEY_THROTTLE_SET Set throttles exactly (0- 16383)

Table 4.3: FSX engine control variables

Variable Description Settable

GENERAL ENG THROTTLE

LEVER POSITION:index
Percent of max throttle position Y

4.4.3 Aircraft control surfaces

Table 4.4 list events capable of controlling the most relevant control surfaces on an aircraft.
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Table 4.4: FSX events for aircraft control surfaces

Event Description

KEY_FLAPS_UP Sets flap handle to full retract position

KEY_FLAPS_1 Sets flap handle to first extension position

KEY_FLAPS_2 Sets flap handle to second extension position

KEY_FLAPS_3 Sets flap handle to third extension position

KEY_FLAPS_DOWN Sets flap handle to full extension position

KEY_ELEV_UP Increments elevator up

KEY_ELEV_DOWN Increments elevator down

KEY_ELEVATOR_SET Sets elevator position (-16383 - +16383)

KEY_AILERONS_LEFT Increments ailerons left

KEY_AILERONS_RIGHT Increments ailerons right

KEY_AILERON_SET Sets aileron position (-16383 - +16383)

KEY_RUDDER_LEFT Increments rudder left

KEY_RUDDER_CENTER Increments rudder left

KEY_RUDDER_RIGHT Increments rudder left

KEY_RUDDER_SET Sets rudder position (-16383 - +16383)

KEY_SPOILERS_ON Sets spoiler handle to full extend position

KEY_SPOILERS_OFF Sets spoiler handle to full retract position

KEY_SPOILERS_SET Sets spoiler handle position (0 to 16383)

4.4.4 Aircraft state

In order to learn how to control a plane is essential to know the aircraft state over time. Table 4.5

list relevant variables about its position, orientation, velocity and control surface deflection.
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Table 4.5: FSX aircraft state variables

Variable Description Settable Use

PLANE PITCH

DEGREES
Pitch angle Y Y

PLANE BANK

DEGREES
Bank angle Y Y

PLANE HEADING

DEGREES

MAGNETIC

Heading relative to magnetic north Y

VELOCITY BODY

X/Y/Z

True lateral, vertical and longitudinal speed respec-

tively relative to aircraft axis
Y Y

ROTATION

VELOCITY BODY

X/Y/Z

Rotation relative to aircraft axis Y Y

ACCELERATION

BODY X/Y/Z

Acceleration relative to aircraft axis, in east/west,

vertical and north/south direction respectively
Y

PLANE

ALTITUDE
Altitude of aircraft Y Y

GROUND

ALTITUDE
Altitude of surface N

RUDDER

POSITION
Percent rudder input deflection Y

ELEVATOR

POSITION
Percent elevator input deflection Y Y

AILERON

POSITION
Percent aileron input left/right Y Y

FLAPS

AVAILABLE
True if flaps available N

FLAPS HANDLE

INDEX
Index of current flap position Y

SPOILERS

HANDLE

POSITION

Spoiler handle position Y
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4.4.4.1 Miscellaneous

Table 4.6 and 4.7 present the events and variables respectively that control and track brake engage-

ment, gear position and fuel consumption.

Table 4.6: FSX events for miscellaneous tasks

Event Description Use

KEY_BRAKES Increment brake pressure

KEY_GEAR_UP Sets gear handle in UP position

KEY_GEAR_DOWN Sets gear handle in DOWN position

Table 4.7: FSX aircraft state variables

Variable Description Settable Use

GEAR POSITION Position of landing gear Y

FUEL TOTAL

QUANTITY

WEIGHT

Current total fuel weight of the aircraft N

ESTIMATED

FUEL FLOW
Estimated fuel flow at cruise N
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Chapter 5

Implementation

This chapter describes the implementation process. It talks about all parts involved in autonomously

maneuvering an aircraft and the reasoning behind each one. It also presents several other attempts

that ended up not being as successful.

5.1 Demonstration data collector tool

In the previous chapter, we saw that the best approach to this thesis problem is using behavior

cloning. However, one drawback that we saw during the literature review is that this method

requires a significant amount of data to generalize complex control tasks.

Having this in mind, we need a tool to easily and quickly collect human pilot demonstrations.

It also needs to output data that is easily processed by the learning method. This tool would then

be shared with the community to get diverse and large amounts of data.

Similar to what was done on the platform developed by LIACC (mentioned in section 1.1) for

uniformity, ease of integration, and documentation availability, this tool will be developed in C#

using the SimConnect library to communicate with FSX.

This tool was developed using the graphical interface Windows Forms for .Net framework due

to its simplicity to develop.

The process starts with the struct definition with the variables chosen in section 4.4 to be

relevant for our case. This data already represents the input state, in the case of the environment

and aircraft state variable, and the ground Truth represented by the control surfaces and thrust

position. There are several rates at which Simconnect can pull data. Initially, the pulling was made

at each sim frame which provided a more or less constant time interval between each collection.

However, later we will see that predicting and sending control data takes up to double the time it

takes to collect data. Because of this incoherence, the practical results were not good even though,

during learning, the MSE has small.

The approach that ended up being used consists of an infinite loop where the data collector

method is called only once. This allows more fine control when the data is collected and allows

to within the loop create a random sleep time between calls of the same order of magnitude. The

27
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delta time between calls is also stored and will be used as input to our neural network. Because

now the delta time is not constant, the neural network will be able to generalize and take into

account this parameter.

The struct data is then saved in a list, not on a file, to prevent i/o delay during the data col-

lection. In the end, all data is written to a CSV file using the CsvHelper library. This format

was chosen because it is widespread in all programming languages and therefore offered more

flexibility when choosing where to train the neural network.

5.2 Learning model

Before going into detail on the final model used to train our neural network, it is worth noting

several other attempts used to create a functional maneuver controller.

5.2.1 Sparse Identification of Nonlinear Dynamics (SINDy)

In the first attempt to create a controller for the aircraft, a data-driven system identification algo-

rithm was used in combination with a model predictive controller.

SINDy is an algorithm that identifies a non-linear system based on measured data. The values

and variable selection are made with the idea that few terms characterize a system behavior in most

systems. So, terms that do not contribute significantly to the model accuracy will not be considered

in this method [Kaiser et al., 2018]. The value of how much accuracy gain is significant is asked

to the user to specify.

This makes the model more robust to noise in the training data and even more general even

when trained with few data compared to Neural Networks.

In this method, the user also needs to specify candidate unitary non-linear functions that he

thinks will describe the system better.

The implementation starts by identifying the dynamic system. For that PySINDy, a python

package for system identification was used. Given a list of state variables, PySINDy tries to

infer governing equations in the form of a dynamical system. The threshold parameter defines the

minimum threshold of the variable importance to be included in the final equations. The final result

is a set of equations, one for each input variable determines how that variable changes according to

the other state variables. Unfortunately, all the learning history data is encapsulated by PySINDy,

so there is no way to analyze metrics like loss per batch which are essential to see if a model is

making progress during learning.

Having the previous governing equations, we can calculate the displacement of the control

surfaces using model predictive control (MPC). MPC is an online optimization method and, unlike

Linear Quadradic regulator (LQR), can optimize non-linear system dynamics.

After testing, the SINDy-MPC method was revealed to be more suitable for smooth slow dy-

namics but not aerobatic maneuvers, which is the focus of this thesis. SINDy cannot fully capture

the aircraft behavior in unstable states, and defining objectives in MPC to define an aerobatic

maneuver trajectory is not trivial and requires manual definition.
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5.2.2 End-to-end linear model

The second method involves using a linear model to describe the plane behavior. Initially, we were

only interested in testing the capabilities of this approach. That is why we only try to control the

elevator position.

So, to start, we collected several minutes of flight data using the Demonstration data collector

tool containing all the relevant flight data, as seen in section 4.4. We use Keras with TensorFlow

backed to create an optimized linear regression model. It consists of two layers. The first one

is a Normalization layer used to transform the input data to approximate a standard normally

distributed function (Gaussian with zero mean and unit variance). This is especially useful in data

with very different orders of magnitude as it can significantly improve the performance of several

machine learning algorithms.

The second layer is a regular densely connected neural network layer with one node. For the

optimizer, we use Adam with a learning rate of 0.001, and the mean squared error gives the loss

value.

In the end, we can extract the equation that gives the elevator value from the input state by

reading the Dense layer kernel values.

Despite during training, the loss value decreased, it was still high for this application, which

became apparent when implemented in the aircraft controller.

5.2.3 ANN and LSTM

All the previous attempts had a common problem, the model was not complex enough to describe

the aircraft behavior correctly. This time, the idea is to use neural networks to directly predict the

control surfaces’ position from the aircraft and environment state. In other words, an end-to-end

controller.

Two different types of neural networks were tested, a simple Feed-forward neural network

ANN and a recurrent neural network LSTM. This decision is strongly influenced by previous

work in aircraft control reviewed in section 3.3.2.

Before even starting applying the new learning methods, it is necessary to aggregate a quality

dataset. Using Demonstration data collector tool there are collected 30 human demonstrations

of an Immelmann turn in different environments and with different aircraft. Unfortunately, the

number of demonstrations is meager when we consider that the problem in question is high di-

mensional and non-linear. All demonstrations in the dataset need to be close to perfect so that the

model learns correct maneuver patterns instead of noise. This is also the reason behind collecting

data in a different condition to help the model generalize. With a limited number of human demon-

strators none of them being an expert it becomes challenging to generate an extensive dataset. This

constitutes a significant disadvantage of using this approach. The input features in the dataset are

then normalized using the scikit-learn MinMaxScaler. It takes each feature and maps it to a value

between [0,1] if positive and between [-1, 1] if negative, preserving the value distribution.



30 Implementation

Even though the dataset is now normalized, it cannot be used directly as input to any neural

network. Using the dataset as is, the model becomes incapable of doing any type of maneuvers.

This behavior can be attributed to one of the following reasons. First, some collected variables

are not independent, being the world velocity vector and the body velocity vector are examples of

this. The other reason is that, in this configuration, the problem in question is a high-dimensional

small dataset problem. Professor Yaser Abu-Mostafa says in one of his lectures 1that the sample

size should be at least about ten times the dataset dimension. Otherwise, the network will overfit

as it has no sufficient data to correlate the feature impact on the output.

With 14 input features, there need to be at least 140 samples in the dataset, which are 4.6

bigger than ours. The solution is to reduce the number of input features and use only those that

impact the model performance. Based on generic aerodynamic equations reviewed in section 3.1

and experimentation, the final feature selection was the following.

For controlling the elevator position the features used where angle of attack, pitch angle, bank

angle, vertical speed, longitudinal speed, and distance to target altitude.

To control the aileron position the features used where angle of attack, pitch angle, bank angle,

elevator position, roll speed, and distance to target altitude.

Finally, the dataset was divided into two groups, training set (80%) and testing set (20%).

Later from the training set is extracted validation data that provides feedback on each epoch’s

changes. Validation set and testing serve entirely different purposes. The validation set is used as

feedback during training, while the testing set is only used as a performance evaluation and never

during training.

The implementation of both ANN and LSTM models was done using Keras with the Ten-

sorFlow backend. Because Keras provides a high-level abstraction, both networks structure were

very similar except for the hidden layer.

As a starting point for the simulation state, there is the input layer. It is composed by 6 nodes,

the same number as the input features. The hidden layer has the same number of nodes as the

input layer. It was determined experimentally that this configuration offers the best performance.

In the ANN, the hidden layer is just a conventional, deeply connected neural network layer. It

multiplies the node’s input with the kernel weight, shifts its value with a bias, and uses an activation

function to transform the obtained value into an output. The kernel and bias values are learned

throughout the NN training. For the activation function, it was used the Rectified Linear Unit

(ReLU) that prevent the gradient saturation problem in which, after several training iterations, the

neuron output value tends to the low or high extremes. Using this activation function significantly

accelerates the convergence of stochastic gradient descent compared to other activation functions

like sigmoid and tanh [Krizhevsky et al., 2012].

In the LSTM, the hidden layer also has 6 nodes. It was determined experimentally that this

configuration is able to capture the pretended behavior without over-fitting.

During training, the loss is evaluated using the Mean Squared Error (MSE) of the difference

between the elevator/aileron predictions and the elevator/aileron values from demonstrations.

1Retrieved from https://www.youtube.com/watch?v=Dc0sr0kdBVI

https://www.youtube.com/watch?v=Dc0sr0kdBVI


5.3 AI Maneuver control tool 31

The adaptive moment estimation (ADAM) is used as the optimizer to reduce the value of the

loss to its minimum.

The number of batch size, hidden layer nodes, and learning rate were determined experimen-

tally during training using hyper-parameter scanning and optimization. For the number of epochs,

an early stopping method monitors the validation set loss, and if there is no improvement, the

training stops preventing over-fitting.

From the learning process, for each neural network trained, it outputs two Hierarchical Data

Format (.H5) files containing the model, one to control the elevator and another to control the

aileron. It also outputs the normalization weight used to normalize the input data. This information

is posteriorly loaded by another tool responsible for controlling the aircraft.

5.3 AI Maneuver control tool

There are several ways to implement the AI Maneuver control tool based on performance, homo-

geneity, and complexity.

One way is to have a single python program that does all the main three functions.

Collect state data using Simconnect from FSX, serving as input to the predictive neural net-

work model, which produces the control data that is later sent via Simconnect to the FSX.

This approach, however, has some implementation problems. First, the Simconnect library is

compiled to a 32 bits architecture, whereas the TensorFlow framework uses a 64 bits architecture.

Therefore, these two modules cannot run on the same python instance. This problem can be solved

by using two python instances: one 32 bits tool that collects the flight data and writes the control

data to the FSX, and another 64 bits tool that uses the trained model to predict the control data.

These two tools communicate via sockets with the ZeroMQ implementation.

Another problem that became apparent later was that the Simconnect library in python, unlike

in C# and C, cannot pull the variables of interest "simultaneously". Instead, it pulls the variables

one by one. As a result, it takes a lot more time, up to 10 times slower than the C# equivalent.

Furthermore, as if it were not enough, the variables are often from different instants rather than

representing a snapshot from that specific moment.

To solve all these problems, we end up using two programs C# and python, for FSX commu-

nication and model prediction, respectively. The following subsections describe in more detail the

final implementation.

5.3.1 Aircraft control tool

The Aircraft control tool is very similar to the Demonstration data collector tool. It uses the same

principle to collect the flight state data from FSX. This data is then pre-processed to the correct

shape, order, and data structure determined by the predictive model (section 5.2.3). To send and

receive data, ZeroMQ is used, which is an asynchronous messaging library that provides a message

queue to concurrent processes. The predictive model, whose function is described in the following
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subsection, receives the input features and sends back the output array with the aileron, elevator,

rudder, and throttle values.

Immediacy after receiving the response, the Aircraft control tool sends to FSX the control

surfaces position absolute values and throttle level again using Simconnect.

One complete iteration takes around 60ms, resulting in a rate of 16 new controls every second.

5.3.2 Predictive tool

The predictive tool is a straightforward tool that uses the learned model and the normalization input

weights in section 5.2.3 to predict the actuator’s values from the aircraft state. First, it opens a TCP

socket in the localhost using the Pyzmq package, a python implementation of ZeroMQ. During

the communication, this tool will act as a server and the Aircraft control tool as a client. After

loading the trained models and normalization input weights, it starts waiting for requests. When it

receives a new request, it normalized the input and sent back the output from the prediction.

To keep it simple, we use python to run Keras with Tensorflow backend the same way it was

done during the model training despite exiting an unofficial implementation of the Tensorflow API

in C# called TensorFlow.NET (TF.NET) that would allow us to unify the control and prediction

in one C# application. The reasoning behind this is because the platform on which this thesis is

being developed is constantly being extended with new features every year. Therefore, it becomes

necessary to implement a stable solution that will not be discontinued in the near future.

The model prediction is the task that takes the most time during the aircraft control process.

So, to have a more fluid motion and better response, we need to optimize the TensorFlow the best

we can. Tensorflow can run on CPU or GPU, with the latter offering the performance. Neural

networks, at low-level, can be represented by operations between matrices that can run in parallel

in multiple cores. So it comes as no surprise that a GPU with a number of cores around 500 - 1000

offers better performance than a CPU with 4-8 cores.

Unfortunately, not all GPUs are supported. Tensorflow requires GPUs with Compute Unified

Device Architecture(CUDA), an API created by Nvidia to facilitate parallel computations.

The machine used during this thesis did not support CUDA, which will undoubtedly affect our

controller’s performance. So, from now on, we will focus on how to improve CPU performance.

Tensorflow offers a compiler option to activate Advanced Vector Extensions(AVX), which uses

new floating point registers called YMM to perform a Single Instruction on Multiple pieces of

Data (SIMD) operations. AVX is not enabled by default because not every processor supports it.

Luckily our machine does, and after making these changes, we saw a reduction in each iteration

from around 100ms to 60ms, an improvement of 40%.
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Results

This chapter compares the results between the two most promising approaches, the ANN and

LSTM models, with the demonstration data. It presents information regarding model loss, eleva-

tor/aileron position, and trajectory path.

The dataset for training both models is the same, and its characteristics are specified in the

section 4.4. It consists of a sample of 30 demonstrations of an Immelmann Turn using the Boeing

F/A-18 aircraft in different weather conditions, different airports, and different target altitudes,

which is the final altitude after the maneuver. This parameter can have any value as long as it is

above the initial altitude, a constrain from the maneuver itself.

6.1 Model training

The figure 6.1 indicates that in both ANN and LSTM models, there are no signs of underfitting

when the validation loss is smaller than the training loss, nor overfitting, that happens when the

validation loss starts to climb and becomes significantly higher than training loss. In both cases,

the validation and training loss is very similar and decreases over time, indicating that the models

can capture patterns from the dataset.

(a) ANN (b) LSTM

Figure 6.1: Elevator model train and validation loss
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The comparison between the validation loss of each model is presented in the figure 6.2. The

validation loss for both cases is very small due to the elevator position domain being also very

small from -1 to 1. Anyway, we can see that LSTM loss is 0.01 where the ANN loss is 0.03,

providing a decrease in loss of around 66%.

Figure 6.2: ANN vs LSTM: Elevator validation loss

The figure 6.3 shows how the loss evolves during the aileron model training. In the ANN

model, we can see that validation loss is lower than the training loss indicating a small underfitting.

This model would probably benefit from more epochs. The LSTM aileron model loss history is

similar to the LSTM elevator model. We can see a consistent decrease with the training and

validation loss converging to the same point.

(a) ANN (b) LSTM

Figure 6.3: Aileron model train and validation loss

Once again we see that LSTM is able to get lower validation loss that the ANN, 0.00205

against 0.00308 providing a 33% decrease in loss (Fig. 6.4).
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Figure 6.4: ANN vs LSTM: Aileron validation loss

6.2 Model testing

The original dataset was divided into two parts, 80% for training and 20% for testing. The figure

6.5 shows how the elevator position varies thought time on the test set. We can see that the LSTM

model does a much better job imitating the ground truth than the ANN, which is expected due to

lower validation loss during training. It is worth noticing that in the last portion, LSTM reaches

negative values for the elevator to compensate for the higher peak.

Figure 6.5: Demonstration vs ANN vs LSTM: Elevator position

Similar to what happened in the elevator model, the LSTM model does a better job of imitat-

ing the human demonstration than the ANN model. We can see that in the lowest valley, ANN

overshoots without compensating later with a positive aileron value.
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Figure 6.6: Demonstration vs ANN vs LSTM: Aileron position

6.3 Experiment

In order to test in practice the models’ behaviour and how they compare to a human, an experiment

was designed. It consists of performing an Immelmann Turn with a target altitude of 11000 feet

(the choice of this value was arbitrary with the condition that it needs to be superior than the initial

altitude). It was used the Boeing F/A-18 aircraft in the airport Lisbon Portugal, in fair weather,

which is characterized by high-level clouds and light winds. For consistency, these conditions will

be used for the human demonstrator and for the ANN and LSTM models.

For comparison purposes, five new human demonstrations were collected with the target al-

titude of 11000 feet in mind. It is worth noting that these new demonstrations were not used by

the models as input. Otherwise, it would significantly change the models’ behavior to that specific

altitude which is not intended. The idea of this experiment is to show how the models behave with

any target altitude without further tuning.

Figure 6.7 shows the side projection of the Immelmann turn. This view is particularly influ-

enced by the elevator position. In the left figure is noticeable that human demonstrations are very

inconsistent even though all reach the 11000 feet mark.

On the right side, the first thing to notice is that the ANN elevator model is incapable of

performing the half-loop portion of the maneuver correctly. It ends the half loop at an altitude of

8000 feet, following a steep climb that overshoots the desired 11000 feet.

Despite using the same dataset and input features, the LSTM elevator model outperforms the

ANN model, performing an almost perfectly smooth half loop to a height of 12000 feet. After the

half-loop, the LSTM model slowly starts to descent to the target 11000 feet altitude.
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(a) Demonstration average (b) Method comparison

Figure 6.7: Side view caparison

One characteristic of the immelmann turn is that all points from the maneuver should describe

a vertical plane, that viewed from the top should describe a straight line. If it does not happen it

means that the roll portion of the maneuver is not being done correctly either because it is not fast

enough and thus during the roll the lift on the wings causes the aircraft to dislocate laterally, or the

final bank angle after the roll is not zero.

The figure 6.8 left shows that the human demonstrator is able maintain straight line when

performing the maneuver. On the right however we see that the LSTM trajectory goes straight

until the roll then deviates a little and goes straight again, meaning that the roll maneuver should

be performed faster. This time the ANN trajectory is more similar to the ideal trajectory indicating

that the ANN aileron model performed better that the LSTM aileron model.

(a) Demonstration average (b) Method comparison

Figure 6.8: Top view caparison

The figure ?? shows, in 3D, on the left, the trajectory described by the aircraft using the

LSTM model and on the right the immelmann turn trajectory. As we can see the LSTM model

was capable of capturing the immelmann turn characteristics making both trajectories are very

similar. The initial smooth half loop with a 180 degree roll on the top maintaining then the same

altitude.
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(a) LSTM trajectory (b) Immelmann turn trajectory

Figure 6.9: Trajectory comparison

0Retrieved from http://steampunkaviatrix.blogspot.com/2010/05/history-of-immelmann-
turn.html

http://steampunkaviatrix.blogspot.com/2010/05/history-of-immelmann-turn.html
http://steampunkaviatrix.blogspot.com/2010/05/history-of-immelmann-turn.html


Chapter 7

Conclusions and Future Work

Performing complex maneuvers on a high-dimensional non-linear system as an aircraft is not an

easy task. The traditional approaches use mathematical modulation of the aircraft dynamics and

are not flexible enough to easily extend to another aircraft and maneuvers. There are several alter-

native approaches to this problem presented in the literature. In the state of the art are analyzed the

strengths and weaknesses of methods of reinforcement learning, inverse reinforcement learning,

system identification with non-linear optimizers, and behavioral cloning. In a context where the

autonomous model needs to be versatile enough to cope with changes in the environment condition

and various aircraft models, behavioral cloning is chosen as the best approach. The model used

in this dissertation has a comparable performance with a traditional approach in an Immelmann

turn, without the need of specifying the aircraft aerodynamic equations or objective equations, and

thus become easier to add new capabilities to the autopilot. Regarding non traditional methods,

it demonstrates its potential by performing a complex maneuver instead of simpler tasks such as

level flight, take off and land.

Using an end-to-end long short-term memory (LSTM) neural network, it was able to perform

an Immelmann turn to the desired altitude in a smooth trajectory with only 30 samples, with an

error in the final altitude of 7%. The end-to-end artificial neural network (ANN) was not capable

to perform such maneuvers with the demonstrations available.

Both these models follow a behavior cloning approach, and, as such, have well-known limi-

tations. One of them is the lack of robustness in non-visited states during training. And the other

is the poor explainability of the neural network decisions, and, because of that, is not ideal for

sensitive operations in the real world.

Compared with other approaches in the literature this method is able to

More extensions can be done on top of this work. The Immelmann turn can be extended to

other aircraft using a broader dataset. Some experiments were done in the Extra 300S aircraft

revealing that the same LSTM model can control more than one aircraft.

39
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The model could also be extended to similar aerobatic maneuvers like half-cuban eight, and

split using transfer learning techniques. More distinct aerobatic maneuvers, like knife-edge turns

and canopy rolls, would probably require a new feature selection and model tuning.

After these extensions, it would be interesting to have a meta scheduler responsible for mon-

itoring the simulation state and, depending on the objective invoking different maneuvers models

with adequate parameters.
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