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Resumo

Dados estatísticos têm mostrado que o diagnóstico em fase avançada representa um dos mais
importantes fatores responsáveis pela elevada taxa de mortalidade associada a pacientes de cancro
do pulmão, e avanços tem sido mostrados na eficácia de um tratamento personalizado com base no
perfil genético de cada paciente, sendo possível obter um maior controlo na resposta ao tratamento.
A biópsia tem sido o método mais utilizado para obter a caracterização do tumor, e embora seja
um método capaz de obter informação útil nesse sentido é uma abordagem que pode levantar
inúmeros problemas clínicos e que pode não ser capaz de obter uma caracterização completa
devido à heterogeneidade espacial do tumor.

A imagiologia médica oferece a possibilidade de obter um grande conjunto de informação
útil, abrindo oportunidades para investigar a relação entre manifestações visuais presentes numa
imagem médica e o perfil genético do tumor, usando uma abordagem não-invasiva. Especialistas
têm trabalhado para fornecer anotações semânticas relativas a inúmeras patologias associadas a
tecidos do pulmão. No entanto, tendo em conta que este é um processo lento e complexo, têm
sido exploradas outras abordagens capazes de extrair informação relevante de forma direta, sendo
o número de exemplos disponível para desenvolver estes modelos uma limitação comum.

Este trabalho investigou a capacidade de usar uma abordagem de Transfer Learning baseada
em um Convolutional Autoencoder treinado para trabalhar como extrator de características de
Tomografias Computadorizadas (TAC), com foco na caracterização do cancro do pulmão numa
perspetiva local, onde a área analisada apenas engloba o nódulo, e numa perspectiva que abrange
toda a secção do pulmão no plano axial. A malignidade do nódulo foi avaliada numa classificação
binária, atingindo uma AUC média de 0.936, e usando a mesma área analisada foi explorada a
existência de padrões relevantes para a previsão do estado de mutação do EGFR (AUC = 0.540).
Alargando a área de análise para a secção axial do pulmão, foi implementado um modelo de
segmentação do pulmão avaliado usando duas bases de dados distintas (DSC = 0.948). O estado
de mutação do EGFR foi também explorado nesta análise, monstrando uma melhoria na deteção
de manifestações relevantes deste gene (AUC = 0.645) comparativamente aos resultados obtidos
usando apenas informação contida no nódulo.
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Abstract

Statistics have shown that one of the main factors responsible for the high death rate related to lung
cancer is the late diagnosis, and precision medicine practices have shown advances in the direction
of an individualized treatment according to the genetic profile of each patient, providing a better
control on tumor response. The biopsy has been the traditional method to obtain the tumor charac-
terisation and despite being able to provide useful information, different clinical problems might
be caused by this invasive procedure and the tumor heterogeneity may not be clearly captured.

Medical imaging offers valuable information with a full state perspective of the tumor, opening
opportunities to explore the imaging manifestations associated with the tumor genotype in a non-
invasive way. Radiology experts have been putting effort into providing qualitative annotations
regarding different lesions; however, being such a complex and time-consuming process, other
approaches have been explored to achieve a tumor characterisation in an end-to-end process, being
often limited by the size of the available datasets.

This work investigated the ability to use a Transfer Learning approach based on a trained
Convolutional Autoencoder to work as feature extractor of Computed Tomography (CT) images,
focusing on lung cancer characterisation in a local nodule and in an axial lung slice perspec-
tives. The nodule malignancy was assessed in a binary classification with a mean AUC of 0.936
achieved, and using the same ROI was attempted to predict the EGFR mutation status, evaluated
by a mean AUC of 0.540. Extending the ROI to a lung axial slice, a 2D lung segmentation model
was developed, achieving a mean Dice-Coefficient value of 0.948 in a multi-dataset evaluation,
and a classification model achieved an AUC of 0.645 in the EGFR mutation status prediction.
This work investigated the hypothesis that it might be possible to find relevant phenotype manifes-
tations in lung structures outside the tumor region, achieving results that suggest the presence of
useful biomarkers using a ROI that included an entire lung section, with a performance increase
in comparison with the local nodule analysis.

iii



iv



Acknowledgements

The work accomplished in this dissertation would not be possible without the contribution of many
persons.

I would like to express my gratitude to my advisor Tânia Pereira for constantly being available
to provide the guidance and support needed, always allowing me to discuss my own thoughts on
the work done.

I would also like to thank Professor Hélder P. Oliveira and Professor António Cunha for their
eagerness to help me at any moment, motivating me with challenging and valuable advice.

Last but not least, a special acknowledgement to my family, girlfriend and closest friends, by
unconditionally encouraging me throughout this journey.

Francisco Silva

This work is financed by the ERDF – European Regional Development Fund through the
Operational Programme for Competitiveness and Internationalisation - COMPETE 2020
Programme and by National Funds through the Portuguese funding agency, FCT - Fundação para
a Ciência e a Tecnologia within project POCI-01-0145-FEDER-030263.

v



vi



Contents

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Lung Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Precision Medicine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Medical Diagnostic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 Biopsy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.2 CT Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Imaging Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Interstitial Lung Diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Literature Review 9
3.1 Classification of lung structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Pre-trained neural networks used in biomedical images . . . . . . . . . . . . . . 13
3.3 Public Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Data Description 23
4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 LIDC-IDRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2 NSCLC-Radiogenomics . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.3 UHC of São João Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.4 Lung CT Segmentation Challenge 2017 . . . . . . . . . . . . . . . . . . 24
4.1.5 ILD Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.6 Inclusion Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.1 DICOM Objects to Image Data Conversion . . . . . . . . . . . . . . . . 26
4.2.2 Resampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.3 HU Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

vii



viii CONTENTS

5 Lung Nodule Characterisation 29
5.1 Unsupervised Feature Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.1 Convolutional Autoencoder (CAE) . . . . . . . . . . . . . . . . . . . . . 29
5.1.2 Proposed CAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Nodule malignancy classification . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.1 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.3 Model fine-tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 EGFR Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.1 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Lung Characterisation 43
6.1 Lung Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1.1 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.1.2 Segmentation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 CAE for Lung Feature Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2.1 CAE architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.3 EGFR Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3.1 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7 Conclusions 55

References 57



List of Figures

2.1 Examples of patterns from three different subjects represented in CT images. . . 7

3.1 DCAE architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Comparison of the results for Emphysema. . . . . . . . . . . . . . . . . . . . . . 12
3.3 Transfer Learning concept overview. . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Model structure overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Block workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 Visual aspect of the most common lung tissue patterns. . . . . . . . . . . . . . . 19
3.7 Example patches from each of the 28 texture classes. . . . . . . . . . . . . . . . 20

4.1 Lung segmentation challenge examples. . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Proposed lung nodule CAE architecture. . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Examples of lung nodule patch extraction. . . . . . . . . . . . . . . . . . . . . . 31
5.3 Lung nodule reconstruction examples. . . . . . . . . . . . . . . . . . . . . . . . 32
5.4 5-Fold Cross-validation overall scheme. . . . . . . . . . . . . . . . . . . . . . . 33
5.5 Nodule malignancy model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.6 Nodule malignancy classification fine-tuning strategy applied. . . . . . . . . . . 35
5.7 Averaged ROC curve for lung nodule malignancy classification using the Transfer

Learning approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.8 Averaged ROC curve for EGFR mutation status prediction with a nodule analysis. 40

6.1 Comparison on two distinct axial lung slices. . . . . . . . . . . . . . . . . . . . 44
6.2 Lung segmentation architecture implemented. . . . . . . . . . . . . . . . . . . . 45
6.3 Lung segmentation example comparison. . . . . . . . . . . . . . . . . . . . . . 47
6.4 Lung segmentation example comparison. . . . . . . . . . . . . . . . . . . . . . 49
6.5 Lung CAE data acquisiton pipeline. . . . . . . . . . . . . . . . . . . . . . . . . 49
6.6 Lung axial slice CAE reconstuctions. . . . . . . . . . . . . . . . . . . . . . . . . 50
6.7 Selection of the lung with nodule. Slices from NSCLC-Radiogenomics database

patients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.8 Averaged ROC curve for EGFR mutation status prediction with a lung axial slice

analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

ix



x LIST OF FIGURES



List of Tables

3.1 Overview of published studies regarding the classification of lung tissue patterns. 10
3.2 ILD classifications using F-score evaluation metric. . . . . . . . . . . . . . . . . 13
3.3 Overview of collected publications regarding the use of pre-trained neural net-

works in medical imaging applications . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Distribution of the lung tissue patterns. . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Properties for the dataset version with rotated patches. . . . . . . . . . . . . . . 19

4.1 Number of patients from each dataset used considering each proposed task. . . . 27

5.1 Manual-search for CAE hyper-parameters . . . . . . . . . . . . . . . . . . . . . 31
5.2 Manual search for malignancy classification hyper-parameters . . . . . . . . . . 34
5.3 Best hyper-parameters for lung nodule malignancy classification. . . . . . . . . . 36
5.4 Lung nodule malignancy classification results. . . . . . . . . . . . . . . . . . . . 36
5.5 Manual-search for EGFR classification hyper-parameters . . . . . . . . . . . . . 38
5.6 Best hyper-parameters for lung nodule malignancy classification. . . . . . . . . . 39
5.7 EGFR mutation status prediction results with nodule level analysis. . . . . . . . . 39

6.1 Manual-search for lung segmentation model hyper-parameters . . . . . . . . . . 44
6.2 Set of hyper-parameters that achieved highest performance. . . . . . . . . . . . . 46
6.3 Lung segmentation results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.4 Manual-search for Lung CAE hyper-parameters . . . . . . . . . . . . . . . . . . 50
6.5 Set of hyper-parameters values used in manual-search for EGFR mutation status

assessment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.6 Best hyper-parameters found for lung slice EGFR mutation status classification. . 52
6.7 Lung with nodule: classification results for lung axial slice EGFR mutation status

prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.8 Both lungs: classification results for lung axial slice EGFR mutation status pre-

diction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

xi



xii LIST OF TABLES



xiii



xiv Abbreviations

Abbreviations

2D Two Dimensional
3D Three Dimensional
ALK Anaplastic Lymphoma Kinase
AUC Area Under The Curve
CNN Convolutional Neural Network
CT Computed Tomography
ctDNA Circulating Tumour DNA
DBT Digital Breast Tomosynthesis
DCAE Deep Convolutional Autoencoder
DL Deep Learning
DNA Deoxyribonucleic Acid
DSC Sørensen–Dice Coefficient
EGFR Epidermal Growth Factor Receptor
FC Fully-Connected
FN False-Negative
FP False Positive
HRCT High Resolution Computed Tomography
HU Hounsfield Unit
HUG University Hospitals of Geneva
ILD Interstitial Lung Diseases
ILSVRC ImageNet Large Scale Visual Recognition Competition
K-NN K-Nearest Neighbours
KRAS Kirsten Rat Sarcoma Viral Oncogene Homolog
KTD Kyleberg Texture Dataset
LR Logistic Regression
LTRC Lung Tissue Research Consortium
MLP Multi-Layer Perceptron
MRI Magnetic Ressonance Imaging
MT Mutated Type
NB Naive Bayes
NSCLC Non-small cell lungcancer
OAR Organs At Risk
pMCI Progressive Mild Cognitive Impairment
RBF Radius Basus Function
RF Random Forest
RGB Red, Green and Blue
ROC Receiver Operating Characteristics
ROI Region Of Interest
RTOG Radiation Therapy Oncology Group
SCLC Small cell lung cancer
sMCI Stable Mild Cognitive Impairment
SVM Support Vector Machines
TL Transfer Learning
TKI Tyrosine-kinase Inhibitor
WT Wildtype



Chapter 1

Introduction

1.1 Context

Around the world, lung cancer is on the top of cancer-related mortality numbers [1, 2]. In the

United States, 230,000 new cases were estimated in 2019, accounting for about 13% of all new

cancer cases [1]. In Europe, 470,000 new cases and 388,000 deaths caused by lung cancer were

estimated in 2018. Although below breast and colorectal cancers in the number of new estimated

cases, lung cancer led in the number of estimated deaths [3]. Between 2000 and 2010, 9767

new lung cancer patients were registered in 12 hospitals from the north of Portugal. During this

period, the incidence was significantly higher in males, about 80%; however, the number of female

patients increased by 30%. According to this study, 77.8% of the patients were diagnosed with

advanced-stage lung cancer [4].

Tobacco is undoubtedly considered the most significant risk factor, responsible for about 80%

of lung cancer-related deaths. However, records show that from 2012 to 2016 there was a decrease

in mortality rate of 4% and 3% per year in men and women, respectively, possibly associated with

a decrease in tobacco use [1].

In clinical terms, lung cancer can be classified into three major categories: non-small cell lung

cancer (NSCLC) which covers about 85% of all lung cancer cases [5], small cell lung cancer

(SCLC), and lung carcinoid tumor. The 5-year survival rate after diagnosis in lung cancer patients

is 19% (16% for men and 22% for women) and is higher in NSCLC (23%) than in SCLC (6%),

since the tumor in this latter type is characterized by a quicker spread. Only 16% of cases are

diagnosed in a local state, and in these cases the 5-year survival rate increases to 56% [1].

1.2 Motivations

Since a large percentage of the patients are diagnosed in advanced stage [1, 6], working on the

ability to tailor the treatment regarding each patient’s needs and tumor state is an important step

to decrease lung cancer mortality rate.
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2 Introduction

Currently, the biopsy is the main method to characterise lung tumors, using a sample of ex-

tracted tumor tissue for molecular analysis. Although it provides essential information for charac-

terisation, being an invasive procedure can lead to some associated side effects, as it can be painful

and risky for the patient. In some cases, the tumor location may not allow the usage of this method

[7]. Also, given the tumor spatial heterogeneity, the extracted sample analysis may not provide a

complete and clear understanding of the tumor [8, 9]. With the growing need for a more realistic

perspective of the tumor status to support decision-making on selecting each patient’s treatment, it

is important to find methods that respond to this problem in a non-invasive way. Medical images

analysis can provide valuable information to contribute to a better tumor characterisation, being an

active research point where different approaches have been investigated showing promise results

[9–12].

In lung cancer, the most frequently mutated genes are Epidermal Growth Factor Receptor

(EGFR) and Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS), constituting critical genomic

biomarkers due to their importance in targeted treatment response [13]. About 50% of never-

smokers patients with NSCLC exhibit mutant EGFR, while KRAS mutations are more frequent

in NSCLC patients with smoking history [14, 15]. Being a research focal point, assessing these

driver oncogenes might provide essential information for precision medicine practices.

Imaging qualitative features annotated by radiology experts in Computed Tomography (CT)

scans have shown high correlation with some genes mutation status, and their ability to feed pre-

dictive models have shown promising results [9,16]. Besides the majority of research made by far

have focused on features related to the nodule in these type of prediction tasks, previous work con-

sidered an analysis where not only were used features related to the nodule but also from patterns

outside the nodule, showing better results when both were used to develop the predictive model

[9], supporting the idea that it might be possible to find important patterns related to lung cancer

in structures outside the nodule region of interest (ROI) [9]. Since the visual assessment of these

qualitative data is a time-consuming and highly subjective task [17], the idea of building models

capable of learning these relevant patterns is raised. Deep learning techniques, namely Convo-

lutional Neural Networks (CNN), are not only able to self-learn representative features from raw

data, but also carry the advantage of preserving the original spatial representation by convolutional

operations. However, these type of implementations need a large amount of data to perform well,

which can be a problem in medical imaging related tasks, where publicly available data is often

scarce. To overcome this problem, exploring Transfer Learning techniques might be an useful

approach, given recent promising performances on classification tasks in this field [11, 18, 19].

1.3 Objectives

This dissertation aims to provide a lung cancer characterisation considering imaging phenotypes

identified in CT images, in order to improve support on decision-making in the field of precision

medicine. Thus, two distinct characterisations are intended to be conducted: (1) only considering
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the local tumor information, and (2) extending the ROI to include lung patterns outside the tumor

region.

Taking advantage of Transfer Learning techniques, this work’s approach consists of pre-training

a Deep Learning architecture - Convolutional Autoencoder (CAE) - on a similar dataset, being in-

tended to learn generic features that enable the knowledge transfer into the target classification

task. With this approach is expected to significantly reduce the necessary trainable parameters,

allowing to develop classification models with a reduced amount of training data.

1.4 Contributions

This dissertation presents the following contributions:

• An investigation regarding the viability of using a Transfer Learning based approach by

pre-training a Convolutional Autoencoder to develop a classification model;

• Lung nodule malignancy classification model in a Transfer Learning based approach;

• Assessment of EGFR mutation status using the same Transfer Learning technique, consid-

ering a local nodule and an axial lung slice analysis;

• Lung segmentation model implementation with a multi-dataset development.

1.5 Document Structure

This dissertation comprises 7 Chapters. The present Chapter presented an introduction considering

statistical data related to lung cancer, explaining the urgency behind improving practices in order

to decrease mortality rate, as well as exploring some general ideas about the investigation intended

to be conducted. Chapter 2 details some important clinical concepts regarding current diagnostic

methods and the relevance of some imaging manifestations in CT scans. Chapter 3 provides a

detailed review on recent works regarding the classification of lung diseases and the use of Transfer

Learning techniques in the biomedical imaging field. It is also detailed relevant publicly available

databases found in the reviewed works. Chapter 4 explains the required steps in data preparation,

characterising each dataset and for which task it was included, with a final summary mentioning

the number of relevant samples included from each data collection. Chapter 5 and Chapter 6 details

model implementations regarding a lung nodule and an axial lung slice characterisation. Each of

these two last chapters includes an introduction explaining its content, followed by dataset and

implementation details, and finishing with the presentation of the achieved results with discussion.

Chapter 7 provides a final conclusion regarding the work done in this dissertation alongside some

future work considerations.
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Chapter 2

Background

2.1 Lung Cancer

In lung cancer cases, the main factor that highly contributes to the nearly 1.6 million deaths annu-

ally is the late diagnosis. Once diagnosed, a patient with a lung tumour that has spread to other

organs and tissues has a 6% chance of a 5-year-survival [20], so treating a patient with different

methods until a positive response to be noticed leads, in most cases, to minimal chances of survival.

However, advances in genomics have driven to perceive that lung tumors can be sorted by their

genetic causes and the treatment response can be different for each patient, rising opportunities to

explore treatment strategies that rely on the individual’s genetic profile [13].

2.2 Precision Medicine

Precision medicine consists of a genomic-based approach, at treatment level, that focus on tar-

geted therapies development based on the tumor genotype characterisation. Thus, it is possible

to predict the outcome for a specific treatment tailored for the individual. Standard procedures

include mutational test of some target genes like EGFR, KRAS, and ALK [13].

One of the most well-known anti-cancer treatments are the Tyrosine-kinase inhibitors (TKIs),

developed to prevent cell survival and uncontrolled proliferation processes, caused by mutated

EGFR activation. However, since the co-occurrence of other mutated genes might change the

treatment response by conferring resistance to the targeted gene, the treatment success depends on

multiple factors that must be studied [13].

2.3 Medical Diagnostic Methods

2.3.1 Biopsy

As mentioned before, the biopsy is the currently employed diagnostic strategy to assess specific

bio-markers status, supporting precision medicine by providing extracted tissue to molecular anal-

ysis. Although providing valuable information, a complete tumor characterisation often requires

5
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several biopsies due to spatial heterogeneity, and multiple clinical risks might arise from these

procedures.

The liquid biopsy has been used as an alternative and non-invasive approach, consisting of the

analysis of circulating tumor DNA (ctDNA), which involves tests on body fluids samples (typically

blood is used, but saliva and urine might be other possibilities) [21]. This approach overcomes

the tumor heterogeneity problem, and as its study is increasing, it might replace tissue biopsy in

the future. However, the main limitation relies on the fact that the number of ctDNA molecules

present in a blood sample is much lower than the non-cancer-related DNA molecules, resulting in

an abundance of ctDNA lower than the necessary for an accurate characterisation [22].

2.3.2 CT Images

Imaging information found in radiographic medical images have shown the potential to obtain

a reliable tumor characterisation, offering a faster and less invasive approach compared with the

traditional tissue biopsy.

The CT scan enables the tissue 3D reconstruction by using multiple X-ray projections from

multiple angles. By passing through tissues with different density values, the absorbed radiation

provide different contrast imaging of these tissues, changing the level of energy that reaches the

detector. These density values are expressed using the Hounsfield (HU) scale values. As shown in

Equation 2.1, the formula to compute the HU values depends on the linear attenuation coefficient

of water µwater, the linear attenuation coefficient of air µair, and the linear attenuation coefficient

of the substance µ [23].

HU = 1000× µ−µwater

µwater−µair
(2.1)

The computed values are based on a scale where the radio density of water, at standard pressure

and temperature conditions, is equal to 0 HU, and the radio density of air, at the same conditions, is

equal to −1000 HU. Therefore, a higher HU value corresponds to a denser tissue region, resulting

in a brighter region on the image [23].

2.4 Imaging Features

Progress in the computation ability to process medical images transformed these images into a

large set of data that provide useful information to help in tumor characterisation.

Besides clinical features, which describe general information including patient’s gender, age

and smoking status, imaging features can be obtained by visual assessment, resulting in semantic

annotations in a controlled vocabulary made by an expert; by a radiomic approach, which refers to

extracting large amounts of quantitative features directly from the image or by taking advantage

of Deep Learning (DL) methods. All of these strategies have shown to be able to successfully

provide information to help in lung cancer diagnostic and prognostic.
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2.5 Interstitial Lung Diseases

Interstitial lung diseases (ILD) refers to a group of more than 150 inflammations of lung tissues

that largely affect the lung parenchyma, comprising the structures involved in gas transfer [24,25].

Although many of these ILD causes still remain unknown, the most common symptoms are related

to breathing dysfunction [24], and these similarities in clinical manifestations often leads to an

ambiguous diagnostic.

Giving the visual variability of these tissue patterns and their co-occurrence in different lung

diseases, the identification of a disease might become a challenging and subjective task. The most

typically studied tissue inflammations include emphysema, ground glass, fibrosis and micronod-

ules, due to large variations between subjects, as presented in Figure 2.1.

Figure 2.1: Examples of three different subjects. Patterns represented in CT images from left to
right: healthy tissue, emphysema, ground glass, fibrosis, micronodules. From [26].
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Chapter 3

Literature Review

The present Chapter provides a detailed description covering a selection of relevant studies in

the classification of lung diseases field (Section 3.1), and in Section 3.2 is covered a collection of

relevant investigations regarding Transfer Learning based approaches in different medical imaging

applications.

3.1 Classification of lung structures

In lung cancer diagnosis, the visual identification of important chronic tissue inflammations has

been a widely used procedure, due to their valuable correlation with lung cancer and impact on

individualized treatment planning [9, 16]. However, even for experts, this task has shown to be

complex, time-consuming due to the large quantity of radiological data to analyse, and often leads

to high inter-observer variability [27].

Recent advances in image pattern recognition field allowed achieving promising results on the

automatic classification of these features. In particular, Deep Learning techniques have proven

to achieve successful results in this type of tasks. Table 3.1 describes some of the most relevant

investigations found related to this research topic.

9
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Huang et al. [28] proposed a CNN, which architecture consists of 6 convolutional layers

followed by a fully-connected layer. Also, a Deep Convolutional Autoencoder (DCAE) was de-

veloped based on the proposed network, using a mirror deconvolution process as decoder for

attempting the inputs reconstruction. The DCAE architecture is illustrated in Figure 3.1, where

the convolutional part is equal to the proposed CNN architecture, as referred. It was also explored

a different approach on Transfer Learning, consisting of an intermediate unsupervised fine-tuning

using extracted non-labelled patches from the target dataset due to useful similarities with the

target domain. The input patches size was 32× 32 pixels, using 3 channels corresponding to 3

different CT attenuation channels used to highlight different patterns. This “two-stage transfer

learning” approach was applied using the proposed CNN and the DCAE.

Figure 3.1: DCAE architecture. From [28].

The source and target databases used were the Kyleberg Texture Dataset (KTD) [29] and

the ILD dataset, from the University Hospitals of Geneva [24], respectively. The ILD patterns

classified were ground glass, emphysema, micronodules, fibrosis, and healthy tissue for compar-

ison. The better classification performances were achieved using the two-stage transfer learning

approach on both the CNN and the DCAE models proposed (0.9791 and 0.9810, respectively)

using the average F1-score as evaluation metric.

Using the same target database, Joyseeree et al. [30] proposes an approach that complements

the lack of invariance to local rotations in CNN models with multi-directional properties of Riesz

wavelets. This feature-fusion approach intends to classify the same 5 tissue disorders: healthy,

ground glass, emphysema, micronodules and fibrosis. Considering the lack of annotated data to

train the model, the InceptionV3 architecture was the pre-trained model selected for learning the

high-level pattern features using all annotated classes from the target dataset. Figure 3.2 show

the results obtained for the emphysema pattern, and the results were very similar between all

classes. The best average performance was achieved with the late fusion implementation. Given

the fact that the DL feature vector dimension was approximately 4 times larger than the Riesz

representation, the early-fusion approach did not show a significant impact in performance when

compared with the use of DL features only.
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Figure 3.2: Comparison of the results for Emphysema using the receiver operating characteristic
(ROC). Adapted from [30].

Negahdar et al. [31] evaluated the existence and proportion of emphysematous lung tissue,

with co-occurrence of other lung diseases with an end-to-end pipeline based on CNNs. The pro-

posed pipeline includes lung segmentation, patch generation, classification architecture, training

and testing, and emphysema quantification. The patch generation process consists of dividing

each slice into patches of 32x32 pixels, and the CNN architecture was based on AlexNet, re-

placing the softmax single-label with a multi-label loss function to allow class differentiation. The

ILD database was employed for training, and for the test set was used the LTRC dataset (Lung Tis-

sue Research Consortium) [32]. An average evaluation value of 0.96 was achieved considering

precision, recall and F-score regarding all classes.

A holistic approach is presented by Gao et al. [33], where the proposed model receives as

input an entire lung CT image. According to this study, the traditional image patch sizes are

relatively small, raising the hypothesis that there are some details that may be overlooked in the

patch-based representation. A CNN-based method was formulated to classify 6 lung tissue classes,

adding the consolidation class to the previous studies classified patterns. The CNN architecture

is identical to AlexNet’s [34], containing 5 convolutional layers followed by 3 fully-connected

layers, and the final softmax classification layer (changed to 6 classes in this specific application).

Here, were selected 3 CT attenuation ranges, not only because it offers a better visual separation

between the 6 classes, but also to accommodate the selected pre-trained network that uses RGB

values from natural images. From the 120 patients contained in the ILD database, the random split

into training (100 patients) and test (20 patients) sets was made with the concern that different

slices, resulted from the data augmentation process, from the same patient would not appear in

both sets. In Table 3.2 are represented the F-scores regarding all ILD patterns considered, noting

that emphysema was perfectly classified.



3.2 Pre-trained neural networks used in biomedical images 13

Table 3.2: ILD classifications using F-score evaluation metric. Adapted from [33].

Pattern Emphysema Fibrosis Ground
glass

Normal
tissue

Micronodules Consolidation

F-score 1.00 0.80 0.75 0.40 0.56 0.50

Using 6 publicly available texture benchmark databases, Christodoulidis et al. [35] explored

the performance impact of using a multi-source transfer learning approach for lung pattern classi-

fication. The CNN architecture used was the same as proposed in [36], using as input an image

patch of 32x32 pixels. In this work, the knowledge is transferred from each source to a different

CNN, which are aggregated and the fused knowledge is then used in a random initialized CNN

with the same architecture. According to this study, this ensemble technique allows the system

to capture different characteristics and usually achieves better performances than with each of

the predictors alone. The test set used was provided by the Bern University Hospital, containing

26 CT scans of ILD cases with annotations for 7 different classes: healthy tissue, ground glass,

reticulation, consolidation, micronodules, honeycombing, and a combination of ground glass and

reticulation. The best performance (F-score = 0.8817) was achieved with the proposed multi-

source approach.

3.2 Pre-trained neural networks used in biomedical images

Deep learning techniques have been demonstrating their value in several medical applications,

mostly related to image recognition and classification tasks, including detection and classification

of pulmonary nodes [37], diagnosis of skin cancer [38] and diagnosis of Alzheimer’s disease

[39]. However, the lack of publicly available data for most medical applications limits the model’s

ability to generalize on unseen data, due to training in smaller datasets. Transfer Learning refers

to a technique that seeks to overcome this overfitting problem, using models pre-trained on a

larger set of images and then fine-tuned using the target dataset, as represented in the TL concept

overview in Figure 3.3.

Figure 3.3: Transfer Learning concept overview. From [37].
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The main problem that affects TL effectiveness lies in the similarities between the source and

target domains. For image recognition problems, most of the methods based on Transfer Learning

are pre-trained on ImageNet dataset [40]. The gap between the characteristics of those natural

images and the medical images from the specific problem should be minimized [41].

To answer this problem, different neural networks’ architectures have been explored using

a variety of implementation strategies to investigate the ability of using pre-trained models in

detection and classification problems. Table 3.3 includes a compilation of the most relevant works

regarding the use of Transfer Learning based approaches in different medical imaging applications.
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Xiong et al. [11] proposed a model based on the ResNet-101 architecture to predict the

EGFR mutation status in CT images. This work presents a comparison between different im-

plementation strategies of the CNN model, considering dimension filters (2D/3D), input sizes

(small/medium/large and fusion), slicing methods (transverse/multi-view plane) and training ap-

proach (transfer learning/training from scratch). The dataset used in all experiments include a

cohort of 1010 patients from the Shanghai Chest Hospital, with a balance number of both mutated

and wildtype classes: 510 and 500, respectively. The performance of each developed model was

evaluated by the area under receiver operating characteristic (ROC) curve (AUC). The best perfor-

mance was achieved by the 2D fine-tuned model with fusion input sizes and multi-view slicing,

showing an AUC value of 0.838. Since there are no pre-trained 3D CNN available, all the 3D

models were trained from scratch, noting the fact that these models performed better than all the

2D models when Transfer Learning was not used.

In a different medical field, Samala et al. [18] proposed a multi-stage Transfer Learning ap-

proach for the classification of malignant and benign masses in Digital Breast Tomosynthesis

(DBT). The AlexNet architecture was adapted for a 2 class classification task, by adding to the

last fully connected layer (FC), with 1000 outputs, two layers with 100 and 2 nodes, respectively,

as shown in the structure overview represented in Figure 3.4. In the first-stage Transfer Learning

approach, only the mammography data [44] was used to fine-tune the pre-trained AlexNet, adding

the DBT data in the multi-stage strategy. Besides the freezing alternatives addressed, the effects of

the sample size, regarding each one of the datasets used, were also studied. The best AUC value

was of 0.91±0.03 and was achieved in the model scheme with stage 1 training followed by stage

2 training using the DBT data. In both stages, the first convolutional layer, C1, was freezed.

Figure 3.4: Model structure overview. Adapted from [18].

Oh et al. [42] proposed a TL approach to identify progressive or stable mild cognitive im-

pairment (pMCI and sMCI, respectively) on MRI data from the publicly available Alzheimer’s

Disease Neuroimaging Initiative (ADNI) dataset [45]. A Convolutional Autoencoder (CAE) was

developed for unsupervised pre-training with unlabelled data, transforming the input images into

a lower dimension feature space on the encoding phase, and then decoding the compressed repre-

sentation into the original image. Was developed another CAE, on which was applied an inception
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module based on GoogLeNet inception version 2 [46], allowing the extraction of multilevel rep-

resentations in a parallel way from the same input tensor. The encoding weights were used for

knowledge transfer to build a classifier to differentiate between Alzheimer’s Disease (AD) and

Normal Control (NC) classes, and the fine-tuned weights from this task were then applied to the

learning model which aimed to distinguish between pMCI and sMCI, given the increased com-

plexity and the lower amount of labelled data available for the latter task. Results showed that

the learning models based on CAE and ICAE (Inception CAE) improved the performances by

5−12% and 7−14%, respectively, over already implemented baseline CNN-based models. Ad-

ditionally, as described before, the pre-trained weights used on the MCI classification task were

transferred from the AD/NC fine-tuned model as it was found to better improve pMCI complex

patterns detection when compared with the weights from the initial ICAE.

To attempt the classification of lung nodules malignancy, Da Nóbrega et al. [43] explored

several ImageNet pre-trained CNN, such as VGG-16-19 [47], MobileNet [48], Xception [49],

InceptionV3 [50], ResNet50 [51], Inception-ResNet-V2 [52], DenseNet169, DeseNet201 [53],

NASNetMobile and NASNetLarge [54] as deep features extraction from the Lung Image Database

Consortium image collection dataset (LIDC-IDRI) [55]. This work also investigates the perfor-

mance of 5 different classifiers, including Naive Bayes (NB) [56], Multilayer Perceptron (MLP),

Support Vector Machines (SVM) [57], K-Nearest Neighbours (K-NN) [58], and Random Forest

(RF) [59]. The model using the ResNet50 architecture with the SVM-RBF (Radius Basis Func-

tion kernel) classifier was the selected model, achieving an AUC value of ≈ 0.932. Figure 3.5

shows the framework overview of this study.

Figure 3.5: Block workflow. Bocks X, Y and Z refers to pre-processing the LIDC/IDRI data and
blocks A, B and C represent the processes to build the feature extractor. From [43].

The central question “can the use of pre-trained deep CNNs with sufficient fine-tuning elimi-

nate the need for training a deep CNN from scratch?” was addressed by Tajbakhsh et al. [19], by

conducting experiments in 4 distinct medical imaging applications: poly detection in colonoscopy

videos, colonoscopy frame classification, pulmonary embolism detection in CT, and intima-media

boundary segmentation in ultrasonographic image. Using a model based on the AlexNet architec-

ture, this work proposes a fine-tuning scheme, which consists of starting from the last layer and
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then incrementally including more layers until the desired performance is achieved. The obser-

vations allowed to conclude that when the size of the training data was large, shallow fine-tuning

was most often outperformed by CNNs trained from scratch, whereas using deeper fine-tuning the

performance was identical or even superior; nevertheless, when training with a smaller dataset, a

Transfer Learning approach always achieved best performances.

3.3 Public Datasets

Regarding the published works previously described, there are some publicly available datasets

that should be detailed.

The ILD datset [24], used in all presented works for classification of ILD patterns, contains

108 High Resolution CT (HRCT) scans with 512×512 pixels per axial slice, and 1946 regions of

interest (ROI) were delineated and annotated for the specific tissue pattern. Table 3.4 represents the

distribution of the lung tissue patterns included in the database. Although this database contains

scans for 128 patients, only 108 have an annotated HRCT.

Table 3.4: Distribution of the lung tissue patterns. Adapted from [24].

Class Annotated HRCTs

Healthy 7

Fibrosis 38

Ground glass 37

Micronodules 16

Consolidation 14

Reticulation 10

Emphysema 5

Bronchiectasis 8

Macronodules 7

Bronchial wall thickening 1

Cysts 3

Others 14

Total 108
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(a) Healthy tissue

(b) Emphysema

(c) Ground glass

(d) Fibrosis

(e) Micronodules

(f) Consolidation

Figure 3.6: Visual aspect of the most common lung tissue patterns in HRCT of patients with ILDs.
From [24].

From the public texture benchmark databases used by Christodoulidis et al. [35], the Kyleberg

Texture Database (KTD) [29] should be detailed. This dataset includes two versions: without

rotated texture patches, and with rotated texture patches. The properties of the latter version

are depicted in Table 3.5. As one can see, the patches were rotated with θ degrees, where θ ∈
[0,30,60, ...,330], and then cropped to the same size of the non-rotated patches.

Table 3.5: Properties for the dataset version with rotated patches. Adapted from [29].

Number of texture classes 28

Number of rotations 12

Rotation increment 30 degrees

Number of samples/class 1,920

Total number of samples 53,760

Texture patch size 576×576 pixels
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Figure 3.7: Example patches from each of the 28 texture classes. Several distinct objects are
included, from rice and sugar to woven on chair. From [29].

Finally, the ImageNet dataset [60], on which the majority of the classification models de-

scribed were pre-trained before the fine-tuning process, is a public large-scale collection of 2D

natural images according to the WordNet [61] hierarchy. There are more than 80,000 nouns in

WordNet and ImageNet offers an average of 1,000 images to illustrate each one.

Regarding classification tasks, there are other datasets with a large number of labeled natural

images, for instance the CIFAR-10 and CIFAR-100 datasets [62], which contain 10 and 100

classes, respectively. The number of images included is the same, but the first dataset contains

6,000 images per class and the second only has 600.

3.4 Summary

The studies described in this Chapter were selected considering two main subjects: the classifi-

cation of lung structures, and the use of pre-trained networks in medical imaging applications.

Considering the analysis made and the wide variety of methodologies included, it is possible to

identify some common conclusions based on the presented description:

• Deep learning techniques offer a successful approach in the classification of lung patterns,

whether using CNNs trained from scratch as well as pre-trained networks;

• When using Transfer learning in medical imaging problems, considering different fine-

tuning strategies might be an useful approach given the similarity gap between the source

and target datasets;

• Given a medical imaging classification task, using a pre-trained model developed to per-

form a similar, less complex and with more data available task have shown to increase the

performance of the more complex task.

In addition, looking at the whole process of Transfer Learning, it is possible to identify and

describe two critical processes with a large impact on the resulting performance:

1. Selection of a pre-trained model. There are a variety of pre-trained models available, and

one can evaluate which one would fit best for the specific problem to solve.
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2. Evaluation of fine-tuning options. Considering aspects like the similarity between the

data used to pre-train the model and the specific training dataset available, one can explore

multiple fine-tuning approaches and find which one achieves the best performance.

The ImageNet Large Scale Visual Recognition Competition (ILSVRC) [63] consists of a

classification challenge where different models are recognized due to promising performances.

Since 2012, when the neural network “AlexNet” [34] achieved first place in the competition, CNN

have been related to even more significant research as new models with more layers and innovative

frameworks have emerged, including “VGG-Net” [47], “ResNet” [64] and “Inception” [65].

Direct comparison between all these models may not be the most realistic representation of each

one’s performance, due to different sampling techniques. However, considering parameters like

inference time, power and memory consumption is important to help to choose the most suitable

model for a specific task [66].

As presented above, fine-tuning is a process that offers multiple implementation strategies.

The gap between the source and target domains should be minimized, and one can choose how

much the pre-trained weights should be adjusted in fine-tuning by freezing the layers that are not

supposed to change during training with the target dataset. Here should be considered that the

first layers of the network are related to general features learning, and as the network goes deeper,

more complex and abstract representations are learned [67].
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Chapter 4

Data Description

This chapter focuses on presenting a detailed description of all data collections used in this work,

as well as the required steps to convert the medical images to the correct data type to enable model

development. Thus, it includes a first section with a description of the datasets used in model

implementation (Section 4.1), and a second Section, where are detailed the steps for converting

from the original DICOM to an image array format, with a briefly explanation of some essential

pre-processing steps, necessary to transform the data to improve model implementation as well as

final results (Section 4.2).

4.1 Datasets

4.1.1 LIDC-IDRI

The Lung Image Database Consortium image collection (LIDC-IDRI) [55] is a lung cancer screen-

ing dataset which comprises thoracic CT scans for a total of 1010 patients, alongside with anno-

tated lesions belonging to one of three classes: (1) nodule > 3mm, (2) nodule < 3mm or (3)

non-nodule > 3mm, made during a two-phase annotation process by four experienced radiolo-

gists. Despite including 7371 segmented nodules, only 2669 were labelled as > 3mm.

Retrospectively, was noticed that 2 scans of 8 different subjects were included in the dataset

increasing the number of available scans to 1018. However, these extra data were retained in the

database due to time already invested in the annotation process. Regarding data acquisition, slice

thickness ranged from 0.6 to 5.0 mm, with X-ray current from 40 to 627 mA (mean: 222.1 mA)

at 120-140 kVp [68].

4.1.2 NSCLC-Radiogenomics

The NSCLC-Radiogenomics dataset [69] is a publicly available collection with CT and PET/CT

images for a cohort of 211 patients with NSCLC, being the only public dataset which comprises

paired information on lung cancer-related gene mutation status for EGFR (mutant: 43, wildtype:

129), KRAS (mutant: 38, wildtype: 133) and ALK (translocated: 2, wildtype: 155). Additionally,

23
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semantic tumor annotations are included in a controlled vocabulary as well as binary tumor masks,

although not available for the entire set of subjects. This dataset includes CT scans obtained

using different scanner models and scanning protocols, presenting variations in slice thickness

from 0.625 to 3 mm (median: 1.5 mm) and X-ray tube current from 124 to 699 mA (mean 220

mA) at 80–140 kVp (mean 120 kVp) [69]. Tumor segmentation masks are stored as DICOM

Segmentation Objects [70], representing 3D binary arrays where voxels belonging to the tumor

ROI contain the value 1 and voxels outside are represented by the value 0.

4.1.3 UHC of São João Dataset

In collaboration with the University Hospital Center of São João (UHCSJ), a dataset of 141 pa-

tients with lung cancer was developed, including qualitative annotations for 18 semantic features

by three radiologists and tumor mask coordinates for 26 patients. Additionally, this collection

comprises paired information related to mutation status for an extensive list of genes. Regarding

data acquisition protocol, slice thickness ranges from 3.0 to 5.0 mm, with pixel spacing in (x, y)

directions of 0.455-0.808 mm.

4.1.4 Lung CT Segmentation Challenge 2017

The Lung CT Segmentation Challenge 2017 [71] is a data collection provided in association with

a thoracic segmentation competition and the related conference session conducted at the AAPM

2017 Anual Meeting [72]. The competition provided a benchmark dataset for auto-segmentation

algorithms of thoracic organs at risk (OAR): esophagus, heart, lungs and spinal cord, as shown in

Figure 4.1. This data collection comprises 60 patients from 3 different institutions with different

clinical practices. Thus, CT slice thickness took values of 1mm, 2.5mm and 3mm, depending on

the institution, with number of slices ranging from 103 to 279.

The quality of the clinical contours provided by each insitution was checked before made

available and major inconsistencies were eliminated based on the Radiation Therapy Oncology

Group (RTOG) 1106 contouring guidelines [73]. All necessary data was available for download

in The Cancer Imaging Archive (TCIA) [74], enabling post-competition data access for thoracic

OAR segmentation models development.
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Figure 4.1: Example of CT slice with correspondent appended contour (left) and visualization of
all contours for the OAR considered (right). Images obtained with Aliza Medical Imaging DICOM
Viewer [75].

4.1.5 ILD Dataset

The ILD database [24] is a collection of lung pathologies built at the University Hospitals of

Geneva (HUG), including examples for 13 of the most frequently diagnosed lung parenchyma

disorders. Besides providing CT scans for 128 subjects who suffer from different lung diseases,

this dataset also made available binary lung segmentation masks for a total of 112 cases. Regarding

image acquisition protocol, CT scans present a slice thickness value ranging from 1mm to 2mm

and a space between slices of 10-15mm. The axial plane is a 512×512 matrix and pixel spacing

in (x, y) directions ranges from 0.4-1mm [24].

Considering the space between slices values previously mentioned, the 3D images available

in this collection present a significantly lower number of slices along z axis when comparing with

the rest of the databases used in this work.

4.1.6 Inclusion Criteria

Regarding different tasks, not all available patients suited the criteria to be used.

Considering the NSCLC-Radiogenomics dataset [69], despite providing information for a co-

hort of 211 patients, only 172 have a result for EGFR mutation test of either Mutant or Wildtype,

and from those, 163 matched for CT modality. When the tumor segmentation mask was required,

the number of useful patients decreased to 116. When multiple exams were available for the same

patient, the selected CT scan was the one with Slice Thickness equal to 1mm, due to less detail

compression.

From the LIDC-IDRI data collection [55], given the need for tumor annotations in this work

and its availability only for the nodules labelled as ≥3mm, only these were considered, resulting

in 2669 nodules included.

Regarding the availability of lung binary masks, the entire set of CT scans provided by the

Lung CT Segmentation Challenge [71] was used, and for the ILD dataset [24], only were included

the 112 patients with provided lung mask.
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When using the dataset from UHCSJ, only patients with available tumor mask annotated by at

least one radiologist were considered, counting for a total of 26 cases.

4.2 Data Pre-processing

4.2.1 DICOM Objects to Image Data Conversion

After the selection of the useful data to be used on each experiment, it was necessary to convert the

CT scan stored in DICOM format into an image array in order to perform the necessary processing.

Using the pydicom package [76], designed to work with data elements of DICOM data, the .dcm

files are stacked and converted to an image array with the Pixel Array attribute. Then, the pixel

values were converted to Hounsfield Units (HU) using the attributes Rescale Intercept and Rescale

Slope with tags (0028,1052) and (0028,1053) [77], respectively.

4.2.2 Resampling

When using multiple datasets with inconsistent scanning protocols for the same task, is of utmost

importance to standardize these parameters for the entire input data. Having consecutive slices

and adjacent pixels separated by different values, depending on the CT scan, a common practice

to standardize the entire dataset consists of resampling all images so that the previous distances

are equal to 1mm. For example, given an image with dimensions [397, 512, 512] and pixel spac-

ing [0.625, 0.70, 0.70], the resize factor is computed by dividing the original spacing by the new

spacing: [0.625/1.00, 0.70/1.00, 0.70/1.00]. The resampled image dimensions would be calcu-

lated using the computed resize factor: [0.625, 0.70, 0.70]× [397, 512, 512] = [248, 358, 358],

achieved by rounding. Then, the real resize factor is obtained by diving the resampled image by

the original image dimensions: [248/397, 358/512, 368/512] = [0.625,0.699,0.699]. The real

new spacing is then computed as [0.625/0.625, 0.70/0.699, 0.70/0.699] = [1.00, 1.00, 1.00]. It

is important to note that computations in this explanation rounded values to three decimal cases;

however, in all results were held eight decimal cases. In this case, the real new spacing result is

not exactly [1.00, 1.00, 1.00]. The resampled image is then obtained by interpolation using the

exactly computed real new spacing value for the previously computed dimensions. This operation

ensured that the whole set of data used to develop the model presented a similar representation,

which is an important aspect in Deep Learning model development.

4.2.3 HU Normalization

When extracting the information of a CT scan, each voxel of the 3D reconstruction is represented

by a value related to the correspondent tissue density and measured in the HU scale, as previously

detailed in Section 2.3.2. Thus, all CT images were normalized by using the min-max normaliza-

tion [78], where values under -1000 HU (HUmin), which corresponds to air’s radiodensity value,

were transformed into 0 and values above 400 HU (HUmax), representing hard tissues like bones,
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were transformed into 1. A linear transformation was computed to map all values in the middle

into the [0, 1] intended range as shown in Equation 4.1.

Imagenormalized =
Imageoriginal−HUmin

HUmax−HUmin
(4.1)

4.3 Summary

Given the description of each dataset used in this work, Table 4.1 summarizes the number of

considered samples for each task according to the inclusion criteria detailed.

Table 4.1: Number of patients from each dataset used considering each proposed task.

Task
# Included

Samples
Dataset

Nodule

Analysis

Feature learning 2669 LIDC-IDRI [55]

Malignancy classification 1095 LIDC-IDRI [55]

EGFR prediction 116 NSCLC-Radiogenomics [69]

Lung

Analysis

Lung segmentation
60 Lung CT Challenge [71]

112 ILD Dataset [24]

Feature learning 116 NSCLC-Radiogenomics [69]

EGFR prediction
116 NSCLC-Radiogenomics [69]

26 UHC São João

In nodule analysis, as only the nodules labelled as ≥3mm were extracted from the LIDC-

IDRI dataset [55], the entire set was included in the feature learning task. Using the provided

malignancy annotation value by each radiology and averaging the given values for each nodule

resulted in only 1095 included nodules, with 306 considered as malignant and 789 benign. Given

the EGFR mutation status assessment in this analysis, only the 116 patients with tumor binary

mask available were considered from the NSCLC-Radiogenomics collection [69].

When extending the analysed ROI to a lung axial slice, the whole set of 60 patients provided

by the Lung CT Challenge [71] dataset was included, adding 112 more patients from the ILD

dataset [24], being the ones with lung binary mask available. Considering the lung feature learning

and EGFR mutation status prediction tasks, only patients with provided tumor mask were included

due to the need of merging this mask, counting for 116 patients from the NSCLC-Radiogenomics

dataset [69] and 26 from the UHC of São João dataset.
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Chapter 5

Lung Nodule Characterisation

The present Chapter addresses the experiments conducted for the local nodule analysis. To employ

the Transfer Learning technique under investigation in this work, a Convolutional Autoencoder is

proposed in Section 5.1; to investigate the relevance of learned patterns in this ROI, in Section

5.2 a Transfer Learning based classification model intended to distinguish between benign and

malignant nodules is implemented, and the same approach is applied in the EGFR mutation status

assessment task in Section 5.3.

5.1 Unsupervised Feature Learning

Deep Learning architectures require a large number of trainable parameters, becoming imperative

to collect a substantial amount of data in order to prevent the model to overfit the training data.

However, in any medical field, obtaining more data to train a model is almost always a very

complex task.

Given the ability of Transfer Learning techniques to reduce significantly the trainable weights,

improving the model ability to generalize over unseen data, neural networks pre-trained on nat-

ural images have been widely explored and performances in medical imaging related tasks have

proven the viability of this approach. However, similarities between natural and medical images

are reduced, and in some cases, deeper fine-tuning approaches are necessary to reduce this gap

between such different domains, increasing the amount of necessary data at the same time [18].

5.1.1 Convolutional Autoencoder (CAE)

One way to address this problem is to make advantage of the unsupervised self-learning abilities

of Convolutional Autoencoders. In the encoding phase, a CAE transforms the input data into

a lower dimensional structure while preserving the original spatial representation, extending the

fully-connected AE; then a decoder is applied to reconstruct the compressed representation into

the original data. Having the original input as target, the CAE learns the best features that enable

input reconstruction while eliminating the need for labelled data.

29
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An important advantage with the application of this dimensionality reduction technique lies in

the idea that the network is capable of learning a good representation of the input data, providing

an useful weight initialization if one intends to use the coding layers for a different task in the

same domain.

This approach has been explored when attempting a classification task with a reduced number

of labelled examples, consisting of a different manner of knowledge transfer by using the pre-

trained parameters of the encoder layers [42, 79].

5.1.2 Proposed CAE

The proposed CAE architecture in this study is represented in Figure 5.1. As one can see, the

encoding phase comprises four convolutional layers (C1 to C4) with 3×3 kernels and increasing

number of filters as the network goes deeper. All the convolutional layers are followed by a

Rectified Linear Unit (ReLU) activation function and a 2×2 strided max-pooling layer to reduce

the output feature map by half. Giving an input tensor of size C×H ×W , passing through the

encoding layers results in a feature map of 256 filters with size H
8 ×

W
8 . To reconstruct the original

input, 3 max-unpooling layers were employed to double the input size before each of the first

3 convolution blocks (C5 to C7), from (H
8 ,

W
8 ) to (H,W ). The last convolutional layer (C8) is

followed by a sigmoid activation, ensuring that all output pixels belong to [0,1] range of values.

C1	(64)

C2	(128)

C3	(192)
C4	(256)

C5	(192)

C6	(128)

C7	(64) C8	(1)

3	x	3	Conv.	Layer	
+	ReLU

2	x	2	Max-Pooling 2	x	2	Max-Unpooling Feature	Map

Input Input	Reconstruction

80	x	80 80	x	80

Figure 5.1: Proposed CAE architecture for lung nodule unsupervised feature learning by optimiz-
ing input reconstructions.

5.1.3 Materials and Methods

As the goal of this experiment was to extract nodule general features, an image of size (80×80×
80) voxels centered on the nodule was extracted for each of the 2669 examples included in this

task. The provided nodule masks were averaged and a threshold = 0.5 was applied to obtain the

final mask. Then, the mask axial slices were analysed to return the intended nodule cube. Given

the fact that the proposed CAE was developed to receive 2D images as input, middle slices from

the axial, coronal and sagittal planes were sampled to be used as input, as illustrated in Figure 5.2

below.
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Axial Sagittal Coronal

Figure 5.2: Lung nodule patch extraction example: middle slice from axial, sagittal and coronal
planes from the same 3D nodule.

The experiments were conducted in order to optimize the reconstruction output. Even though a

perfect reconstruction does not ensure the best set of learned features, the input/output similarities

were the only optimization criteria used. A simple manual search was employed to find the best

set of hyper-parameters, with values represented in Table 5.1.

Table 5.1: Set of hyper-parameters values used in CAE manual-search.

Hyper-parameter Range values

Learning Rate 0.0001, 0.001, 0.01, 0.1

Optimizer SGD1, Adam

Momentum 0.1, 0.5, 0.9

1 Stochastic Gradient Descent.

The entire set of nodules was divided into a training set (90%) and a testing set (10%), and the

split was employed at nodule-level, i.e slices of the same nodule were only used for training or

testing.

The best results were achieved when using mini-batches of 4 images with Stochastic Gradient

Descent (SGD) as the optimizer, learning rate of 0.01 and momentum with value of 0.9. The Mean

Squared Error (MSE) was used as loss function, representing the averaged error of each output

pixel when compared to the same pixel in the input image. Figure 5.3 shows some examples

collected from the test images used in this experiment.
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Figure 5.3: Lung nodule examples reconstructed by the proposed CAE. Collected from test im-
ages.

5.2 Nodule malignancy classification

To evaluate the self-learned features provided by the CAE, an experiment to classify lung nodules

into malignant or benign was conducted. The major goal consisted of evaluating if the pre-trained

weights provided by the feature extractor previously trained represented a good weight initializa-

tion and helped the model to converge while preventing overfitting, given the significantly reduc-

tion in the number of trainable weights.

5.2.1 Materials and Methods

Similarly to the experiments detailed before, the nodule malignancy classification model was de-

veloped using the examples annotated as ≥ 3mm from the LIDC-IDRI data collection [55]. The

ground-truth malignancy value is available for each one of these nodules in the annotation XML

file provided and it is an integer value ranging from 1 to 5 with the following designations related

to the malignancy degree: (1) Highly Unlikely, (2) Moderately Unlikely, (3) Indeterminate, (4)

Moderately Suspicious and (5) Highly Suspicious. To fit the binary classification of this study,

each nodule’s malignancy value was averaged over the provided annotations, and a mean malig-

nancy value ≤ 2.0 was considered as benign, and ≥ 4.0 as malignant. Given these criteria, from

the 7371 initially available nodules in this database, only 1095 were included in this task after

considering the expert’s annotations: 789 benign and 306 malignant.
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Figure 5.4: 5-Fold Cross-validation overall scheme for performance evaluation in lung nodule
malignancy classification.

Data was randomly split into a training set (80%) and a test set (20%), with 5-fold cross-

validation applied to the training data, as depicted in Figure 5.4. To achieve a more robust result,

5 random train/test splits were made and evaluation metrics were computed.

In the training phase, from the (80×80×80) extracted cubes centered on the nodule, 3 slices

correspondent to the axial, coronal and sagittal planes were sampled to increase the dataset size

for the benign nodules, as shown in Figure 5.2. Additionally, to achieve a balanced number of

malignant/benign samples, oversampling for malignant class consisted of extracting a total of 7

slices from cube symmetry planes, while only 3 were sampled for benign examples. To increase

generalization, some data augmentation was also performed, consisting of horizontal and vertical

flips, as well as random image rotations.

5.2.2 Classifier

To perform the intended classification, a Multi-layer Perceptron (MLP) was used as classifier. An

MLP is an artificial neural network composed by an input layer where all the input values are

received, an output layer with a number of neurons depending on the classification task in hands,

and in between a variable number of hidden layers. Since it is a fully-connected neural network,

each neuron is connected to all neurons of the following layer.

When approaching a classification task with Transfer Learning techniques, the developed

model will consist of the feature extraction pre-trained layers and a classifier stacked on top com-

pletely trained with the new target data. Figure 5.5 illustrates the referred framework overview.
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Figure 5.5: Model framework for lung nodule malignancy classification.

The binary output represented the probability of being malignant, with a dynamic decision

threshold applied to evaluate this probability. The Binary Cross-Entropy (BCE) loss function

was employed to be minimized. For the hyper-parameters manual-search employed, the range of

values considered are presented in Table 5.2.

Table 5.2: Set of hyper-parameters values used in the manual search for malignancy classification
model.

Hyper-parameter Range values

Learning Rate 0.0001, 0.001, 0.01, 0.1

Batch-size 8, 16, 32, 64

Momentum 0.1, 0.5, 0.9

Weight decay 0.0001, 0.001, 0.01

Dropout 0.25, 0.5

Hidden Layers 1, 2, 3

Hidden Neurons 32, 64, 128, 256, 512

Optimizer SGD1, Adam

1 Stochastic Gradient Descent.

5.2.3 Model fine-tuning

Considering basic observation on CNN behavior, the first convolutional layers of the proposed

CAE learn generic features useful for many different tasks, but progressively, as the network goes

deeper, more specific patterns are detected and most relevant information is learned regarding the

target task [67]. Following this assumption, and given the target and source data similarities, as

well as the size of the included training examples, the adopted fine-tuning strategy is illustrated in

Figure 5.6.
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Figure 5.6: Fine-tuning layer-wise approach overview for lung nodule malignancy classification.

As represented above, in training first stage only the classifier FC layers were trained. Given

the fact that the feature extractor layers were pre-trained with the same images, similarities and

a good convergence were expected, but still far from a local minimum. Thus, to find the best

classification performance, the convolutional layers were progressively unfrozen and retrained to

detect more representative patterns related to lung nodule malignancy. The major advantage of this

layer-wise fine-tuning approach relies on the fact that immediately unfreeze the entire model was

not expected to be a viable option given the small amount of training data. Due to large similarities

between source and target datasets, it was also considered an unnecessary approach.

5.2.4 Results

The hyper-parameters values that achieve the best performance on test set are presented in Table

5.3. A total number of 5 random train/test splits were employed to investigate data variance and for

better performance robustness. In these experiments, the classifier was trained for 200 iterations

until converge, then the last convolutional layer (C4) was retrained; finally, after the second visible

convergence, gradients were updated for layers C4 and C3 for a final training. This strategy

obtained the best results by preventing the model to overfit - which occurred when attempting to

retrain layer C2, decreasing performance on validation set. Moreover, the same experiments were

conducted with the same architecture completely trained from scratch, assessing the effect of the

proposed Transfer Learning approach in this classification task.

For a better understanding of the model performance, different evaluation metrics were com-

puted. Mean values for 5 random splits are presented in Table 5.4. By making advantage of

cross-validation data, the decision threshold was tuned for F-score maximization by recall. This

threshold optimization was employed by evaluating the precision-recall trade-off which, given the

context, represents the cost of a missing malignant nodule (false negative) over a false suspicious

of a benign tumor (false positive). Thus, as a missing malignant tumor should be a more penalized

error, recall was maximized over precision in this classification task.
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Table 5.3: Best hyper-parameters for lung nodule malignancy classification.

Hyper-parameter Values

Learning Rate 0.001

Batch-size 8

Momentum 0.9

Weight decay 0.0001

Dropout 0.25

Hidden Layers 1

Hidden Neurons 64

Optimizer SGD1

1 Stochastic Gradient Descent

Table 5.4: Lung nodule malignancy classification results.

Performance metrics (mean)
Training Method AUC Precision Recall F-score

Transfer Learning 0.936 0.794 0.848 0.817

Trained from scratch 0.928 0.842 0.789 0.808
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Figure 5.7: Averaged ROC curve for lung nodule malignancy classification using the Transfer
Learning approach. The ROC curve is computed for each iteration, the arithmetic average is
then calculated and represented by the blue line with a standard deviation represented by the gray
shading area. The red dashed-line represents an at-chance classifier ROC curve.
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5.2.5 Discussion

Analysing Table 5.4, the results achieved in this task suggest that a Transfer Learning approach

based on the CAE unsupervised feature learning abilities is able to prevent the overfitting and

perform well with the available data for this task. Given the lung nodule reconstruction results

achieved by the proposed CAE (Figure 5.3), and despite a perfect input reconstruction was not

achieved, it is possible to say that the patterns learned by the encoder convolutional layers helped

the network to avoid the overfitting. When training the network from scratch, besides the over-

fitting occurrence early in training, it was possible to take the best model weights by maximizing

validation AUC before the network starts to overfit the training data, achieving a very promising

performance too as can be seen; however, the decision threshold tuning algorithm was not able to

find a value that maximized f-score through recall, often resulting in models with more FN than

FP predictions on test set, which was not desired in this task.

Considering a more conventional Transfer Learning strategy as using available pre-trained

networks on ImageNet data collection as feature extractors, an important advantage provided by

the proposed pipeline relies on the similarities between source and target datasets, which is often

a problem when applying Transfer Learning in medical imaging tasks.

Several works have proposed CNN based models for lung nodule malignancy classification

using data from LIDC-IDRI [55] dataset, either applying Transfer Learning techniques or not. Da

Nóbegra et al. [43] proposed an investigation with multiple ImageNet pre-trained feature extrac-

tors and different classifiers, with a highest AUC of 0.932 achieved. Yan et al. [80] proposed a

comparison between 2D and 3D implementations, achieving a mean AUC of 0.947 with 3D in-

puts. Kumar et al. [79] proposed to use a denoising autoencoder to extract deep features from

2D lung nodule slices, achieving a classification mean accuracy value of 75.01%, using a deci-

sion tree as classifier. Considering these attempts, the major contribution of this work relies on

the investigation of the relevance of patterns learned by a Convolutional Autoencoder with any

labelling necessary, making advantage of the computational resources lower consumption of a

smaller architecture.

Finally, some improvements might be important to note to address different limitations in

this work. Lung nodules are 3D elements, and with 2D or even 2.5D implementations, a large

portion of useful information might be lost, which makes these perspectives sub-optimal ways of

approaching this classification task. However, besides consuming more computational resources,

a 3D approach does not allow a slice oversampling operation as employed in this study, which

might be a problem given the lower amount of available training data.

5.3 EGFR Prediction

Following the proposed nodule characterisation task, a binary classification to distinguish be-

tween EGFR mutant or wildtype was conducted. More specifically, it was investigated if the same

Transfer Learning technique previously applied for the nodule malignancy classification provided
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a good result in this more complex task. Thus, two distinct experiments are presented regarding a

small difference in the feature extraction layers’ pre-training: besides transferring the pre-trained

layers from the proposed CAE encoder, it was investigated if the encoder used in the nodule malig-

nancy classification, after fine-tuning, showed better results. This evaluation was conducted with

the idea that more complex patterns related to nodule malignancy could also be associated with

EGFR mutation status.

5.3.1 Materials and Methods

5.3.1.1 Data

Using the NSCLC-Radiogenomics [69] data collection, 116 nodules of size (80× 80× 80) were

extracted to be used in this task, with 23 and 93 examples for mutant and wildtype classes, respec-

tively.

Data were split into a training and test sets by patient level, ensuring that examples from the

same patient would not appear in both sets, and 5-fold cross-validation was applied to the training

examples, preventing the model to suffer from some possible bias from any specific input data.

The model architecture for this task is the same as represented in Figure 5.5, and the best hyper-

parameters were found by manual-search, with range values depicted in Table 5.5

Table 5.5: Set of hyper-parameters values used in the manual-search for EGFR classification
model.

Hyper-parameter Range values

Learning Rate 0.0001, 0.001, 0.01

Batch-size 8, 16, 32

Momentum 0.1, 0.5, 0.9

Weight decay 0.0001, 0.001, 0.01

Dropout 0.25, 0.5, 0.75

Hidden Layers 1, 2

Hidden Neurons 32, 64, 128

Optimizer SGD1, Adam

1 Stochastic Gradient Descent

5.3.1.2 Overfitting

An important aspect that should be noted considering these experiments related to nodule charac-

terisation lies in the number of features received by the classifier input layer vs number of training

examples. As mentioned before, when a (80×80) nodule image passes through the encoder pre-

trained layers, the extracted feature map will be a tensor with size (256× 10× 10), which after

a flattening operation is represented as a 1D tensor with 25600 neurons, resulting in more than



5.3 EGFR Prediction 39

800,000 trainable parameters, only considering the first FC layer. Given the reduced number of

training examples, this large amount of features is often a problem in any machine learning model,

by increasing the chances of overfitting the training data. Since this work presents an approach

based on an end-to-end DL structure, the dataset size was increased by oversampling the training

examples with slices extracted from cube symmetry planes, improving class balance at the same

time. Additionally, a dropout layer was appended before the first FC layer to force the network to

learn more robust features by dropping out a neuron of the layer with a probability p at each iter-

ation. These regularization techniques must be applied cautiosly, too many of them might cause

the model to underfit resulting in performance decrease.

5.3.2 Results

The best results were achieved with the set of hyper-parameters depicted in Table 5.6. Adittion-

aly, Table 5.7 shows the achieved performances, with mean values of AUC reported for the two

Transfer Learning approaches followed in this classification task.

Table 5.6: Best hyper-parameters for lung nodule malignancy classification.

Hyper-parameter Values

Learning Rate 0.1

Batch-size 32

Momentum 0.9

Weight decay 0.0001

Dropout 0.5

Hidden Layers 1

Hidden Neurons 32

Optimizer SGD1

1 Stochastic Gradient Descent

Using the feature extractor pre-trained to detect useful patterns related to nodule malignancy

provided slightly better results, with a mean AUC of 0.540± 0.0505 averaged over a total of 20

train/test random splits, as represented in the mean ROC curve in Figure 5.8.

Table 5.7: EGFR mutation status prediction results considering 2 different Transfer Learning ap-
proaches.

Feature Extractor AUC (mean ± standard deviation)

Nodule CAE encoder 0.507 ± 0.055

Nodule malignancy encoder 0.540 ± 0.051
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Figure 5.8: Averaged ROC curve for EGFR mutation status prediction when using the encoder
transferred from nodule malignancy classification. The ROC curve is computed for each iteration,
the arithmetic average is calculated and represented by the blue line, with standard deviation as
represented by the gray shade area. The red dashed-line represents an at-chance classifier ROC
curve.

5.3.3 Discussion

Performance results show that detecting relevant patterns related to EGFR mutation status is a very

complex task. Besides all regularization techniques applied in these experiments, the proposed

model was not able to generalize over unseen data.

Considering related works in this task, as far as it was concerned, no other work proposed a

Deep Learning based approach using the same dataset used. Xiong et al. [11] was able to find

useful features in lung nodules to classify EGFR mutation status, by proposing an investigation

with different learning methods and input parameters, achieving a mean AUC of 0.838 with a 2D

multi-view Transfer Learning approach. Wang et al. [81] also proposed a Deep Learning model

to find deep features related to EGFR mutation status in 2D lung nodule slices, achieving a mean

AUC of 0.81 in validation set. Considering these approaches, the proposed model attempted to

perform this task with a smaller dataset and a different Transfer Learning technique.

Taking into account the achieved results, the biggest limitation of these experiments is the re-

duced size of the dataset used, which makes difficult to find useful, generalized and representative

information to achieve unbiased predictions. Moreover, it might be interesting to explore more

complex architectures for feature extraction, given the complexity and abstractness of the patterns

that are intended to be captured.

5.4 Summary

In this Chapter, different experiments were conducted regarding a lung nodule characterisation.

In Section 5.1, a CAE architecture was proposed with the intention to learn important represen-
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tations of tumor-related patterns, and by using Transfer Learning strategies, in Section 5.2 was

investigated if the pre-trained encoder layers represented a useful feature extractor by classifying

lung nodules into benign or malignant. Moreover, an attempting to predict EGFR mutation status

by evaluating two Transfer Learning approaches was also conducted (Section 5.3), where it was

suggested that the available data did not allow the network to extract representative features, given

the lack of heterogeneous information. All things considered, there are some conclusions possible

to take:

• Nodule general features learned by the CAE encoding layers can be considered as a reliable

weight initialization to apply Transfer Learning techniques in order to perform a malignancy

classification task, being able to outperform a model trained from scratch under the same

circumstances;

• Besides only supported by a small performance improvement, the hypothesis that patterns

related to nodule malignancy might be useful in a more complex task as EGFR mutation

status prediction was not refuted and it might make sense to continue to be considered;
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Chapter 6

Lung Characterisation

This Chapter presents experiments conducted for a lung characterisation using a holistic analysis.

As it was only employed a 2D approach, the analysed ROI was extended to a lung section/slice and

not the entire volumetric region. In Section 6.1 is detailed the the implementation of an adapted

U-Net [82] to obtain a lung segmentation mask in a completely automatic manner. All data used to

develop this model is detailed, as well as the performance evaluation given the available ground-

truth for this task; similarly to Chapter 5, Section 6.2 addresses the same feature learning approach,

where a CAE is implemented to learn relevant patterns inside the given lung section; finally, in

Section 6.3 a classification task is attempted to predict EGFR mutation status.

6.1 Lung Segmentation

With the need of a holistic lung analysis, implementing a segmentation model which enabled an

efficient lung representation was considered a pre-processing task of utmost importance, often

included to perform other detection or classification tasks due to eliminating areas of non-relevant

information. The complexity of this task is often related with the presence of abnormal tissues

in lung parenchyma like large nodules, blood vessels and different tissue inflammations. Figure

6.1 illustrates two examples of different lung slices from two datsets used in this work where

is possible to visualize some differences. In a general way, testing a lung segmentation model

on these slices, chances of seeing a performance decrease for the image on the right are usually

high. Thus, it is important to develop models able to perform the desired task given different

circumstances.

6.1.1 Materials and Methods

For these experiments, the images used were collected from the Lung CT Segmentation Challenge

2017 [71] and the ILD Dataset [24]. It is important to note that, in the majority of cases, the

tumor is excluded from the provided lung mask ground-truth in the challenge dataset. The ILD

collection made available a total of 112 CT scans with correspondent lung binary mask. Given the

multiple number of lung diseases found in the second database, these images represented a very

43
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(a) Lung axial slice extracted from the Lung CT
Segmentation Challenge [71].

(b) Lung axial slice extracted from the ILD datset
[24].

Figure 6.1: Comparison on two axial lung slices. From these, it is possible to expect that lung
sections with multiple pathologies with imaging manifestation (Figure 6.1b) would make it more
difficult to perform a lung segmentation task than with a more "clean" slice (Figure 6.1a).

useful dataset to test the model’s performance. Pre-processing steps applied in these experiments

included an image crop by body size, using the Otsu’s method for histogram-based thresholding1,

followed by a resize to (256×256) by interpolation. These operations were considered an impor-

tant step, reducing the computational consumption and eliminating background areas in the raw

CT slice not relevant for this task.

The segmentation model implemented to perform the desired task was based on U-Net [82],

a deep neural network especially designed for biomedical image segmentation. The robustness

of the implemented model was an important factor in this task, so different datasets were used to

performance evaluation. Experiments were conducted using the train/test split as provided for the

challenge data collection, and test results were reported. Additionally, to evaluate the developed

model robustness the ILD data was used to test. Given the 2D characteristic of these experiments,

the ground-truth binary mask was used to locate the axial slice with the largest lung area to detect,

and then a random slice from a range of 10 consecutive slices around the largest one was selected

for each training iteration.

A simple manual-search was used to select the best set of hyper-parameters, with values rang-

ing as shown in Table 6.1 below.

Table 6.1: Set of hyper-parameters values used in manual-search for lung segmentation model
development.

Hyper-parameter Range values

Learning Rate 0.0001, 0.001, 0.01

Optimizer SGD1, Adam

Batch-size 4, 8, 16

1 Stochastic Gradient Descent

1Available at: https://scipy-lectures.org/packages/scikit-image/index.html.

https://scipy-lectures.org/packages/scikit-image/index.html
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6.1.2 Segmentation Model

The overall architecture of the implemented model to perform the lung segmentation task is shown

in Figure 6.2. The architecture consists of a contraction, bottleneck and expansion phases. When

contracting the input, four blocks of 3× 3 convolutional layers followed by ReLU activation are

employed, with each block’s feature map being stored before passing through a 2×2 max-pooling

layer with stride 2 for down-sampling. The number of filters duplicates every block so that more

complex patterns can be learned by the network. The bottleneck feature map is achieved by two

3×3 convolutional layers with 256 filters each, and then is followed by a strided 2×2 transposed

convolutional layer for up-sampling, starting the expansion phase. It consists of four new blocks

composed by two 3×3 convolutional layers and one strided 2×2 transposed convolutional layer.

The output is achieved by a fully-convolutional layer with only one 1× 1 filter, followed by a

sigmoid activation. Besides mirroring the contraction phase, the first convolutional layer of each

expansion block uses a concatenation of the feature maps provided by the block before and the

activations from the contraction block at the same level. This concatenation operation allows the

expansion layers to build the desired mask using features not only learned from the bottleneck

representation but also learned while contracting the input image [82].
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Figure 6.2: Architecture implemented based on U-Net [82], designed to perform the lung seg-
mentation task. The network consists of five contracting and five expansion convolutional blocks.
While expanding, each decoder block makes use of features learned in the encoder block with the
same feature map (H×W ) size.

6.1.3 Results

The hyper-parameters set of values that achieve best performance are presented in Table 6.2. As

previously mentioned, to investigate the model’s robustness, a second dataset was used to test.

Thus, results are presented in Table 6.3 regarding the experiments conducted with these datasets.
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The loss function used to optimize was based on the Dice Coefficient (DSC) performance met-

ric, which basically represents the similarity between the output and target images, by measuring

the area of overlap over the area of union, being widely used in semantic segmentation tasks, as

can be understand in Equation 6.1. To use this metric as loss function, it should measure the differ-

ences between output and target masks, so loss returns a value of 1 - dsc_metric. Adam optimizer

parameters were used as default (beta1 = 0.9, beta2 = 0.999, epsilon = 10−8).

DSC = 2× out put_mask ∩ target_mask
out put_mask ∪ target_mask

(6.1)

Table 6.2: Set of hyper-parameters that achieved highest performance.

Hyper-parameter Value

Learning Rate 0.001

Optimizer Adam

Batch-size 4

To test the developed model, given the 2D approach in this segmentation task, experiments

were employed changing the range of slices tested. Besides testing using the axial slice with the

largest lung area to segment, a second experiment used a wider range of possible slices, giving

an idea on the model’s performance when trying to segment slices with fewer lung area. Besides

the Dice Coefficient metric, mean values of Hausdorff Distance (HD) were also reported for ten

independent tests for each slice range configuration. The HD performance metric was employed

to represent the model robustness in a less optimistic way, by measuring the longest distance that

a point in one contour need to travel to reach its closest point in the other contour. Figure 6.3

shows an example of a poor segmentation achieved with an expected difficult example from the

ILD database, representing the importance of using this dataset to test the model’s robustness.

Table 6.3: Lung segmentation results regarding both datasets used to test.

Test Dataset Slice Range
Dice Coefficient Hausdorff Distance (mm)

(mean ± standard deviation)
Lung CT Segmentation

Challenge 2017 [71]

largest_slice 0.959 ± 0.061 4.45 ± 1.65

random slice in

[largest_slice ± 50]
0.940 ± 0.065 4.54 ± 1.72

ILD Dataset [24]
largest_slice 0.961 ± 0.041 4.71 ± 1.37

random slice in

[largest_slice ± 5]
0.907 ± 0.160 4.62 ± 1.24
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Figure 6.3: Comparison between the output lung mask achieved with the developed segmentation
model and the ground-truth mask. Lung axial slice from the ILD dataset [24].

Changing the slice used to test the model was considered an important investigation given the

2D characterisation proposed in this study. Not having an ideally 3D lung segmentation, testing

only in one slice for each CT scan would be a very optimistic analysis. Considering the number of

slices in each CT scan in the ILD dataset, values ranged from 14 to 60, with mean 26.2. Given this

reduced number of slices when comparing with the CT scans provided by the challenge dataset,

the test slice range for each dataset was selected to include a similar proportion of the entire lung

volume. In this case, an oversampling to standardize space between slices in these two datasets

was not employed given the unrealistic results when creating the required pixels by interpolation.

To develop a more robust model, the same architecture was trained using a random train

and test sets including examples from both datasets. Values of 0.948 ± 0.015 and 4.21 ± 1.29

were achieved for the DSC and HD metrics, respectively, over five independent tests using the

[largest_slice±5] slice range configuration, showing an improvement in both metrics mean val-

ues, as well as a large decrease in performance variation results.

6.1.4 Discussion

Regarding the proposed lung segmentation task, it is possible to consider the achieved results as

promising. Besides not being ideally, the explained way to evaluate the model performance on

different slices with different lung sections within the same CT scan was the best found. The

results achieved when testing in the ILD dataset examples were better than expected, which sug-

gests that the developed model is able to perform well on different datasets, which is considered

an extremely important factor. Moreover, an attempting to develop a more robust model trained

on two very different datasets was conducted resulting in improvements on test performance.

Regarding related works in lung segmentation field, different 2D and 3D based implementa-

tions have been proposed. Skourt et al. [83] proposed an U-Net [82] implementation to segment

2D lung axial slices. Manually segmented images from LIDC [55] dataset were used, and an

averaged Dice-Coefficient vale of 0.950 was achieved. Despite some details not being specified,

it should be considered the more similar approach in the literature to the implemented in this

study. Considering submissions to the Lung CT Challenge 2017 [71,72], several works employed
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2.5D and 3D U-Net based approaches to lung segmentation, not being possible to obtain a direct

comparison from this examples, due to different evaluation parameters.

With a simple architecture, the proposed model was able to perform well with the available

input data, leaving space to some improvements as well: despite being computationally more ex-

pensive approaches, 2.5D or 3D implementations allow a complete lung analysis which is, without

any question, an ideally approach; other architectures with more complex convolutional blocks

in feature extraction, extending U-Net, have also been proposed and showed interesting perfor-

mances in lung segmentation tasks [72, 84], which might be considered as another possible point

of improvement in this work.

6.2 CAE for Lung Feature Learning

Following a similar approach to the lung nodule’s analysis, a CAE architecture was proposed to

make advantage of imaging patterns self-learning ability. After the lung segmentation task, it was

possible to develop a CAE to reconstruct lung CT axial slices with only segmented lung sections

as non-zero pixel values, allowing the CAE to focus on the lung areas where the potentially useful

information might be present. Thus, this task intended to achieve a trained CAE with segmented

lungs CT slices to be further applied in a Transfer Learning method to a classification task using

the same ROI.

6.2.1 CAE architecture

The proposed CAE architecture for lung axial slice reconstructions is presented on Figure 6.4.

Considering the architecture proposed to reconstruct lung nodules, the network implemented for

this task is very similar: the encoding phase is composed by five convolutional layers (C1 to C5)

with filters size of 3× 3, with a ReLU activation and a 2× 2 max-pooling layer following each

convolutional block. Thus, given an input with size (C×H ×W ), a (256× H
16 ×

W
16) bottleneck

represents the coded representation; the input reconstruction is achieved by a decoder with four

blocks of a 2×2 strided max-unpooling layer for up-sampling followed by a 3×3 convolutional

layer. The 3×3 output convolutional layer maps the 16 feature channels received into a final 2D

image, which is followed by a sigmoid activation.
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Figure 6.4: Comparison between the output lung mask achieved with the developed segmentation
model and the ground-truth mask. Lung axial slice from the ILD dataset [24].

6.2.2 Materials and Methods

To perform this reconstruction task, the data used was collected from the NSCLC-Radiogenomics

database [69]. Given the fact that the proposed model for lung segmentation was trained with a

ground-truth where the tumors were often excluded, only the CT scans with available nodule mask

annotation were included in this task, accounting for a total of 116 patients.

Slice	Preparation

Pre-processing

Lung	Segmentation

Post-processing

Feature	Learning

CAE

Figure 6.5: Lung CAE data acquisiton pipeline. Before passing through the CAE, the represented
framework transforms a raw CT slice into an image with segmented lung areas and background.
This way, the CAE is not learning any patterns from unnecessary structures outside the lung.

As represented in the overall pipeline for this task in Figure 6.5, the CT scan and the correspon-

dent nodule 3D binary mask are extracted for each patient. Then, given the importance of nodule

information, the slice in the CT scan with the largest correspondent nodule mask is selected and

before applying the developed lung segmentation model to this slice, an image crop by body size

to eliminate unrequired pixel computation was employed, followed by a resize to (256×256) by

interpolation. Following the application of lung segmentation model in the pre-processed image,

some post-processing operations were employed to clean the output lung mask: (1) the nodule

mask is merged given the probability of not being included in the lung segmentation output, (2)
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false positive areas identified as lungs close to the image borders are excluded, and (3) some pos-

sible "holes" are filled inside the lung mask, to avoid losing important structures not detected as

lung areas by the model. The final output is then used to feed the CAE to be reconstructed.

A simple manual-search was employed to find the set of hyper-parameters that allow the best

possible image reconstruction. The searched values are depicted in Table 6.4 below:

Table 6.4: Set of hyper-parameters values used in Lung CAE manual-search.

Hyper-parameter Range values

Learning Rate 0.001, 0.01, 0.1

Optimizer SGD1, Adam

Batch-size 1, 4, 8

1 Stochastic Gradient Descent.

The best reconstruction results were achieved with a learning rate of 0.01, SGD as optimizer

and mini-batches of one lung slice. The MSE was the cost function used to represent the distance

between the input and output images. In these experiments, the model was forced to train for a

longer number of iterations to achieve better image reconstructions, stopping the network training

after 1000 iterations with no change in loss value. Figure 6.6 represents some results obtained

when testing.

In
pu
ts

O
ut
pu
ts

Figure 6.6: Lung axial slice CAE reconstruction examples from test set.

6.3 EGFR Prediction

To complete the proposed lung characterisation, a binary classification to assess the EGFR muta-

tion status was conducted using information not only from the nodule, as in 5.3, but also consider-

ing a larger ROI including the entire lung section in a selected CT axial slice. The main motivation

behind this investigation relied on the hypothesis that it might be possible to find relevant infor-

mation related to EGFR mutation status outside the tumor ROI [9, 16].
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6.3.1 Materials and Methods

To implement this task were used the same CT slices as the ones selected to develop the CAE:

an axial slice for each case with annotated nodule mask from the NSCLC-Radiogenomics [69]

collection, selected based on the correspondent nodule mask area. Having in mind the limitations

of a 2D analysis, not having information on the location of relevant patterns to looking for, and

assuming that not all slices would contain EGFR imaging manifestations, the detailed slice selec-

tion method provided confidence that useful patterns would be detected by including the nodule,

where is proven that is possible to find EGFR-related information [11,81], not passing mislabelled

slices to the network at the same time. All things considered, the number of slices used in these

experiments were 23 and 93 for mutant and wildtype classes, respectively.

The model architecture proposed follows the same approach as previous classification tasks.

The encoder layers from the pre-trained CAE were used as feature extractor, stacking a classifier

on top to be completely trained for the new task. The manual-search employed to find the best

set of hyper-parameters is presented in Table 6.5. The same fine-tuning layer-wise approach was

implemented in these experiments to retrain the feature extractor layers.

The available images were split into training (85%) and test (15%) sets, with data augmen-

tation applied to decrease overfitting. To improve class balance, two additional equidistant slices

around the originally selected were extracted for mutant cases only in the training set. Similarly

to the EGFR assessment experiments in the nodule analysis, a dropout layer was appended before

the first FC layer of the classifier, to decrease the number of trainable neurons at each training

iteration.

Table 6.5: Set of hyper-parameters values used in manual-search for EGFR mutation status as-
sessment.

Hyper-parameter Range values

Learning Rate 0.0001, 0.001, 0.01

Batch-size 8, 16, 32, 64

Momentum 0.1, 0.5, 0.9

Weight decay 0.0001, 0.001, 0.01

Dropout 0.25, 0.5

Hidden Layers 1, 2, 3

Hidden Neurons 32, 64, 128, 256

In an attempt to increase the available training examples, some cases from the UHC São João

dataset were included. Even though limited by the availability of the annotated tumor mask,

were included 6 mutant and 20 wildtype examples. These examples were used in two different

experiments: (1) as hold-out test set, while training with the entire set of examples from NSCLC-

Radiogenomics dataset, and (2) to create a hybrid collection, using examples from both datasets

to train and test the model.
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6.3.1.1 Lung with nodule selection

In an intermediate investigation, two different experiments were conducted in this analysis: only

considering the lung with nodule in the analysed ROI, and considering both lungs. After all pre-

processing steps explained above, to obtain an image with only the lung with nodule, one side (left

or right) of the image was considered background. More specifically, depending on the nodule

side of the image (left or right), the other side was filled with background pixels. By considering a

static lung division in the middle of the image it was possible to obtain the desired representation

in a fast way. Figure 6.7 illustrates the results for two examples from the NSCLC-Radiogenomics

dataset.

Figure 6.7: Selection of the lung with nodule. Slices from NSCLC-Radiogenomics database pa-
tients.

6.3.2 Results

The hyper-parameters that achieved best performance are depicted in Table 6.6. Given the small

amount of training data, mean AUC values are averaged over a total of 20 random train/test splits,

as presented in Tables 6.7 and 6.8, considering the lung with nodule and both lungs in the analysed

ROI, respectively.

Table 6.6: Best hyper-parameters found for lung slice EGFR mutation status classification.

Hyper-parameter Range values

Learning Rate 0.001

Batch-size 32

Momentum 0.9

Weight decay 0.0001

Dropout 0.5

Hidden Layers 1

Hidden Neurons 64
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Table 6.7: Lung with nodule: classification results for lung axial slice EGFR mutation status
prediction.

Train Dataset Test Dataset AUC (mean ± standard deviation)

NSCLC-Radiogenomics NSCLC-Radiogenomics 0.615 ± 0.156

Table 6.8: Both lungs: classification results for lung axial slice EGFR mutation status prediction.
Mean AUC values are depicted regarding the dataset used for each experiment.

Train Dataset Test Dataset AUC (mean ± standard deviation)

NSCLC-Radiogenomics NSCLC-Radiogenomics 0.645 ± 0.145

NSCLC-Radiogenomics UHC São João 0.557 ± 0.066

NSCLC-Radiogenomics +

UHC São João

NSCLC-Radiogenomics +

UHC São João
0.556 ± 0.142
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Mean ROC (AUC = 0.645 ± 0.145)

Figure 6.8: Averaged ROC curve for EGFR mutation status prediction when using only the exam-
ples from NSCLC-Radiogenomics dataset, where the network was able to perform better. The blue
line represents the averaged ROC curve over each iteration, with standard deviation as represented
by the gray shade area. The red dashed-line represents an at-chance classifier ROC curve.

6.3.3 Discussion

Considering the 2D lung analysis proposed in this investigation, results showed that makes sense

to continue to study this holistic hypothesis. The experiments also showed a small performance

increase when analysing both lungs, instead of only include the lung with tumor. To the best

of gathered knowledge, no other Deep Learning based work attempted to assess EGFR mutation

status extending the ROI to structures outside the tumor. Besides the scarce availability of data

that could be included in this investigation, the proposed 2D analysis achieved a mean AUC of

0.645 ± 0.145 averaged over twenty random combinations for train and test patients, a value
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that emphasizes the variance found when classifying unseen images. When joining data from the

UHC São João database, the decrease in test performance also supports the lack of representative

training data, which is a problem in such a complex classification task.

The performance achieved in previous work (mean AUC = 0.746) [9], where semantic features

related to both the nodule and structures outside the nodule ROI were included, suggested that,

with the available datasets, working with qualitative assessed information might increase chances

of better EGFR mutation status predictions. With Deep Learning based approaches, the large set

of deep features extracted from a larger ROI might not work well together with such a reduced

dataset size, rising the idea that a hybrid approach where deep features combined with semantic

EGFR-correlated information might gather the best of these two approaches.

6.4 Summary

This Chapter addressed different experiments regarding a lung characterisation. It was imple-

mented a segmentation architecture in Section 6.1, with promising results achieved in a multi-

dataset analysis, and in Section 6.2 a CAE was developed to learn imaging patterns related to lung

structures. Given the same 2D input ROI, Transfer Learning techniques were applied to assess

EGFR mutation status (Section 6.3).

Considering the proposed lung characterisation task, the achieved results make possible to take

the following conclusions:

• Given a 2D analysis, a simple U-Net [82] based model implementation was capable to

perform well on two different datasets, emphasizing the importance to work on a direction

that allows robust model implementations able to perform under different circumstances;

• Considering a ROI including an entire lung section in axial view, it was possible to improve

performance results over a tumor region analysis when predicting EGFR mutation status;

• The importance of more heterogeneous and representative data is a general issue when work-

ing in medical imaging field, and working with more abstract imaging manifestations highly

increases this necessity to obtain a reliable generalization.
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Conclusions

Advances in precision medicine research have shown that treatment customization depending on

each individual’s necessities might be considered as a more efficient practice to decrease lung can-

cer mortality. Thus, the importance of a complete tumor characterisation is emphasized, and given

its spatial and temporal heterogeneity, reliable non-invasive methods must be improved to obtain

the necessary characterisation. Besides its complexity and wide range of active research points,

a tumor characterisation by making advantage of relevant imaging patterns present in medical

images has proven its reliability.

The work developed in this dissertation addressed an investigation in lung tumor characterisa-

tion by analysing not only the nodule region but also the entire lung section in a 2D perspective

using Transfer Learning techniques in Computed Tomography images. Considering the local nod-

ule analysis, the proposed characterisation resulted in a classification model with AUC = 0.936

when distinguishing between benign and malignant lung nodules, as well as an attempt to assess

EGFR mutation status (AUC = 0.540). When extending the ROI to a lung axial perspective, a lung

segmentation model was implemented achieving a robust performance in a multi-dataset evalua-

tion, and the same input was used to predict the EGFR mutation status, achieving an improved

classification performance (AUC = 0.645). All classification models were implemented with a

feature extractor based on a trained Convolutional Autoencoder, investigating the relevance of

learned features when trying to reconstruct the input image.

Besides not supported by a large performance improve, using the entire lung axial slice in-

put provided better results in EGFR assessment, which emphasizes the idea behind this study’s

motivation that complex transformations related to lung cancer might be present in other lung

structures, and not only in the nodule region. It is considered of utmost importance to continue

to investigate this possibility, bringing a new perspective that might change the direction of this

research topic. However, to develop models capable to work with larger images with more poten-

tially relevant information, more representative data of the population affected by lung cancer are

needed to enable such abstract and complex transformations detection. An important limitation

in this work that should also be noted relies on the number of studied genes. An investigation

in imaging phenotypes of a more extensive list of lung cancer related genes is necessary to ob-

55
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tain a more complete characterisation, given the importance of other genes in targeted therapies

development.

Thereby, in the future, it would be interesting to investigate the possibility to combine relevant

qualitative information with abstract EGFR manifestations represented by extracted deep features,

considering this holistic lung analysis. Providing tested and representative semantic information

could help to reduce problems related to the scarce availability of data. Another aspect that should

be considered relies on the analysed region of interest. Considering a 2.5D or 3D approach, in-

vestigating the possibility of using semantic features to assess the location of potentially useful

information might be an interesting effort to extend the explored ROI by a more viable strategy

than the entire lung volume analysis, given the computational resources optimization.
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