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Resumo

Embora já existam muitos modelos que realizam a detecção e reconhecimento de muitos objetos ou
conceitos diferentes com graus razoáveis de confiança e taxas de sucesso, um dos objetivos desta
dissertação é desenvolver um sistema altamente especializado e eficiente para identificar um grupo
limitado e particular de objetos. Isto será alcançado usando transfer learning, que é um processo
que usa o conhecimento adquirido por um desses modelos enquanto resolve um problema (isto é,
enquanto reconhece um conjunto de conceitos) e o aplica a uma questão diferente. Basicamente,
ele tira proveito das saídas do processo de extração de características e utiliza-as para aprender a
identificar outro tipo de objetos.

A deteção e reconhecimento automático de objetos em dados visuais pode ser alcançado recor-
rendo a um sistema de aprendizagem que analisa e processa informações visuais e identifica auto-
maticamente um grupo de objetos, independentemente dos dados de entrada. Para poder realizar
este tipo de identificação, este sistema precisa analisar previamente um grande conjunto de dados,
para que ele possa memorizar características específicas de diferentes objetos.

Este processo é a chamada fase de treino e é o primeiro passo em todos os processos de
detecção e reconhecimento de machine learning.

A extração de características é um processo aplicado aos dados de entrada com o objetivo
de reduzir o volume de dados a serem processados pelo modelo, criando, desta foram, menores
conjuntos de informações não redundantes. Essencialmente, o volume de dados é reduzido e
as redundâncias que normalmente existem em dados visuais são eliminadas. Estes conjuntos de
dados, são mais fáceis de gerir e ainda fornecem uma descrição completa do grupo de dados
original. Desta forma, os recursos necessários, tanto durante a fase de aprendizagem como durante
o processo de reconhecimento, podem ser reduzidos.

Neste contexto, os dados a serem analisados serão capturados por uma câmara implementada
num ponto estacionário ou num veículo. Ao lidar com a captura de informações visuais, é normal
que o resultado seja um grande número de dados. Por isso, é importante analisá-lo com eficiência
e obter uma identificação de informações relevantes. Esta dissertação foca-se em usos militares,
pois estas operações serão usadas para identificar automaticamente objetos no campo militar, isto
é, tanques, armas, pessoas e veículos, alcançando vigilância territorial.
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Abstract

Although there are already many models that perform detection and recognition of many different
objects or concepts with reasonable degrees of confidence and success rates, one of the goals of
this dissertation is to develop a highly specialized and efficient system to identify a limited and
particular group of objects. This will be achieved by using transfer learning, that is a process
that uses the knowledge gained by one of these models while solving one problem (i.e., while
recognizing a set of concepts) and applies it to a different one. Basically, it takes advantage of the
feature extraction procedure outputs and use them to learn how to identify other kind of objects.

Automatic object detection and recognition in visual signals can be achieved by resorting to
a learning system that analyses and processes the visual data and automatically identifies a group
of objects independently of the input data. To be able to perform this kind of identification, this
system needs to previously analyze a large set/corpus of data, so it can memorize special features
of different objects. This procedure it is the so-called training phase and it is the first step in all
the detection and recognition processes of machine learning.

Feature extraction is a process applied to the visual input data, with the goal of reducing the
volume of data to be processed by the machine learning model, by creating smaller sets of non-
redundant information. It essentially reduces the volume of data by eliminating redundancies that
typically exist in visual signals. These smaller groups are more manageable and provide a full
description of the original data set. This way, the resources necessary both during the learning
phase as well as during the actual recognition process, can be greatly decreased.

In this context, the data to be analyzed will be captured by a camera implemented at a station-
ary point or in a vehicle. When dealing with the capture of visual information, it is normal that a
large number of data is generated. So, it is important to analyze it efficiently and achieve relevant
information identification. This dissertation focuses in military uses, therefore these operations
are going to be used to automatically identify objects in the military field, that is, tanks, guns,
people and vehicles (cars and trucks), achieving territorial surveillance.
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Chapter 1

Introduction

Features extraction is a set of processes with the goal of simplifying big groups of data by creating

small groups of non-redundant information. These small groups are more manageable and can

fully describe the original data set. Basically, by using features extraction processes or algorithms,

is possible to decrease the resources necessary to analyze a large group of data.

Nowadays, machine learning models use feature extraction processes, in order to perform

object detection and recognition. Through deep learning, artificial neural networks adapt and learn

from large amounts of data. Bigger the amount, higher the classification accuracy of a model.

Building a feature extractor system from scratch can be a difficult task. In order to avoid this

labour, machine learning models applied to object detection, can be used. Since the main focus is

military surveillance, it is necessary to detect some specific objects in this field (tanks and guns).

In order to achieve this, techniques such as transfer learning are used, where pre-trained models

are used as the starting point in a training procedure. Basically, pre-trained models are adapted to

perform specific tasks.

This dissertation will be developed in partnership with Critical Software as an internship in

their facilities.

1.1 Context

In this context, it is fundamental to develop a study about techniques of features extraction and

machine learning models that perform automatic object detection.

Machine learning is at the forefront of the nowadays technology so, it is important for Critical

Software to keep up with all the possible applications of this area.

There are a large number of examples that can be studied and this dissertation aims to analyze

their behaviour while performing feature extraction and object identification, concluding which

ones, achieve it in a more efficient way.
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2 Introduction

1.2 Motivation

In the past few years, the scientific community has been increasingly dedicating their time to

the development of visual information processing algorithms leading to the existence, at present

times, of an extended group of tools and approaches that allow to extract a wide range of features.

Likewise, in the last years, there have been significant breakthroughs in techniques of artificial

intelligence and their application in features processing with the intent of performing content clas-

sification and identification.

When the focus is to capture visual information, it’s normal that a large number of data, with

various levels of quality, is generated. So, it would be important to eliminate, in a efficient way,

all the unnecessary information that overloads the user. It’s possible to achieve this by doing an

automatic analysis that can identify relevant information, eliminating the need of storing redundant

data.

1.3 Goals

Regarding this dissertation, the main goal is to develop a software library that is capable of per-

forming features extraction, in an automatic way, on a set of videos or images. The visual data

will be captured by a camera implemented at a stationary point or in a vehicle. The library will

be implemented and perform automatic analysis to the visual information being captured. This

analysis, in addition to features extraction, will attempt to identify and detect objects.



Chapter 2

State of the Art

This chapter provides information related to techniques for feature extraction, machine learning

and object detection methods. Initially, a small introduction about image feature extraction and

processing is given in section 2.1. The following sections analyze algorithms that have a good

performance when dealing with features extraction.

In section 2.3, an overview to SIFT is given, the stages of this technique are presented and

the operation is explained. Subsections 2.3.1 and 2.3.2, explain the stages of this technique in a

specific way.

In section 2.4, SURF technique is analyzed. From subsection 2.4.1 to subsection 2.4.3, the

main stages of this algorithm are explained.

Section 2.2 gives an introduction to the feature space analysis and, the following section 2.5,

analyzes a technique that can be used for object recognition and tracking.

Section 2.6, divides machine learning overview into some topics. It is possible to find specific

details about types of learning, artificial neural networks and object detection methods.

Finally, section 2.7 represents what was concluded from this topics, what technique/method is

going to be used and why.

2.1 Image Feature Extraction and Processing

Image feature extraction techniques and learning based on features, are commonly used by com-

puter vision applications. This applications are able too automatically extract features and make

predictions based on them. Usually, this systems are composed by artificial neural networks that

analyze large amounts of data and perform three main tasks: Extraction, Selection and Classifica-

tion.

The extraction task generates features from images content that are selected by the selection

task, in order to achieve a specific goal. In this way, the number of features provided to the classi-

fication task are reduced since, feature that were not selected, are discarded. Since the efficiency

of the classification task depends on particular available features, the extraction task is the most

critical [20].

3



4 State of the Art

In Figure 2.1, it is possible to observe an example of feature extraction and image processing

techniques applied to object detection and segmentation.

Figure 2.1: Feature extraction and Image processing, adapted from [1].

2.2 Feature Space Analysis

An image feature space is a high dimensional set of values that have been obtained from apply-

ing processing techniques to images. Such high-dimensional set may contain a variable number

of values associated to different features of the image, such as color, average pixel intensity or

gradient magnitude. Normally, the features that are included in the space depend on the applica-

tion/objective in view. For example, in the real-world, a geographical location can be characterized

by a pair of GPS coordinates (N-S,E-W) in an two-dimensional linear space. If the objective is

to compare locations, a two-dimensional vectors will be used for each location. Now suppose

that is also necessary to compare the altitudes of the geographical locations. In this case, a three-

dimensional space would be built, with three values for each location (N-S, E-W, A). Then the

comparison would be done using three-dimensional vectors. So, if in image object detection there

are objects that have 5 features, then a 5-dimensional feature space would be used. Normally, the

values of the features included in such high-dimensional space of an image, are in a much lesser

number than the number of pixels and their base grey-level scale intensity feature.

The global nature of the derived representation of the input, brings advantages and disadvan-

tages into the feature space paradigm. All the evidence of the presence of a significant feature

is pooled together, causing excellent tolerance to a noise level which may render local decisions

unreliable. On the other hand, in spite of being salient for the tasks, features with lesser support

may not be detected in the feature space. This can be avoided by either augmenting the feature

space with additional parameters from the input domain or by robust post-processing of the input

domain leaded by the results of the feature space analysis.

In Figure 2.2, an example of a feature space is shown. It is possible to observe that the color

image is mapped into a three-dimensional color space. Also, a continuous transition between

the clusters arising from the dominant colors is seen and severe artifacts are introduced by the

decomposition of the space into elliptical tiles.
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Figure 2.2: In (a) a color image is shown and in (b) the corresponding color space, adapted from
[2].

Feature spaces that are arbitrarily structured are only analyzed by non-parametric methods,

once these methods do not have embedded assumptions. Non-parametric clustering methods can

be reunited into two classes: hierarchical clustering and density estimation.

The first class, either aggregate or divide the data based on some proximity measure. This kind

of methods tend to be computationally expensive and the definition of a stopping criterion for the

fusion of the data is not simple. In the density estimation clustering methods, the feature space is

interpreted as the empirical probability density function of the represented parameter. The local

maxima of this function represents the dense regions in the feature space or modes of unknown

density [2]. Once a mode is located, the cluster associated with it is defined based on the local

structure of the feature space [21].

One approach to dense regions detection and clustering, is the mean shift method proposed by

[22] and reinforced, later, by [23].

2.3 SIFT

SIFT (Scale-invariant feature transform) is a computer vision algorithm used for performing fea-

tures detection and description. Image data is transformed into scale-invariant coordinates relative

to local features [3].

SIFT is divided in four major stages [3]:

1. Detection of Space-scale extrema.

2. Key-point localization.

3. Orientation Assignment.

4. Key-point descriptor.

The detection is implemented efficiently using a difference-of-Gaussian function and the descrip-

tion uses gradient oriented histograms to describe the region around the interest point. Various
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Figure 2.3: Object recognition using SIFT algorithm, adapted from [3]

key-points are detected in an image and their descriptors are determined. Then, this group of

descriptors can be used to match different images.

SIFT has the advantage of being capable to generate a large number of features, covering

the full image in terms of location and scales. From a typical image it is possible to extract a

wide range of stable features. Then, these features are stored in a database to be used in future

comparisons with features extracted from a new input image. The comparisons perform feature

matching using the Euclidean distance between their feature vectors [3].

The quantity of features extracted is a very important aspect in object recognition, since ,in

some cases, it is required that at least 3 or more features are accurately matched, between objects,

to have a well grounded identification. A single feature has a high probability to find its correct

match in a large database, due to the high distinctiveness of the key-point descriptors [3]. On

another hand, various features from the background will not have a correct match in the database

causing the growth of false matches. Through a series of tests and computations, it is possible to

filter, from the full set of matches, the ones that are correct. In Figure 2.3, it is possible to observe

the use of different key-points from the object images, on the left, to identify them on the right

figure.

2.3.1 Detection of Space-scale extrema & Key-point localization

This operation is performed through an approach based on cascade filtering to identify candidate

locations to be analyzed in further detail [3]. The first step is to locate points that are invariant to

scale changes under different views of the same object. This is achieved by searching for stable

features in all possible scales through a continuous function of scale known as scale space [24].

Under these conditions, the only scale-space possible is the Gaussian function, as stated in [25, 26].

So, the calculated scale space is given by:

L(x,y,σ) = G(x,y,σ)∗ I(x,y), (2.1)

a convolution (*) between a variable-scale Gaussian, G(x,y,σ), and an input image I(x,y),

where

G(x,y,σ) =
1

2πσ2 e
−(x2+y2)

2σ2 . (2.2)
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A stable detection of key-points locations is accomplished by using scale-space extrema in

the difference-of-Gaussian function convolved with the input image [27], D(x,y,σ), that can be

calculated from the difference between two nearby scales separated by a constant factor k:

D(x,y,σ) = (G(x,y,kσ)−G(x,y,σ))∗ I(x,y) = L(x,y,kσ)−L(x,y,σ). (2.3)

In Figure 2.4, it is shown an efficient way to build D(x,y,σ). The input image gets convolved

with Gaussians to create a group of images that are separated by a constant k in scale-space.

Adjacent scaled images are subtracted to produce the difference-of-Gaussian images.

Figure 2.4: Difference-of-Gaussian representation, adapted from [3]

The local maximum or minimum of D(x,y,σ), can be detected by comparing the intensity of

each point with the intensity of its neighbours in the current image and with the neighbours in the

scale above and below. Then, it is selected if it is smaller or larger than all the other neighbours.

In Figure 2.5, it is possible to observe this detection process.

Figure 2.5: Detection of the local maximum and minimum of D(x,y,σ),adapted from [3]

2.3.2 Orientation Assignment & Key-point descriptor

Each key-point has a orientation assigned in order to build their descriptors. A orientation his-

togram is created using the gradient orientations from points within a nearby region around the
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key-point. Each point of that region is weighted and added to the histogram with a certain value.

The peaks in the histogram represent the dominant directions of the local regions gradients and

are used to define the key-point orientation. Then, the key-point descriptor is determined using

the magnitudes and orientations gradient from the regions around the key-point. In Figure 2.6,

it is possible to observe that the key-point descriptor generated (right side), has four orientation

histograms, each one with eight directions represented by arrows.

The determined features vectors alongside the technique k-NN (k-nearest neighbour) [28], can

be used to perform object recognition in an image.

Figure 2.6: Creation of the Key-point descriptor, adapted from [3].

2.4 SURF

SURF (Speeded-Up Robust Features) is an algorithm that detects interest points in different loca-

tions of the image. These interest points are invariant to scale and rotation operations.

The detector is based on the Hessian matrix but uses the determinant of this matrix to select the

scale and the location, instead of using a measure, like in a Hessian-Laplace [4]. The descriptor

describes the distribution of responses to Haar-wavelet in a nearby region of the interest point.

2.4.1 SURF Detector

SURF detector, in terms of object recognition, uses the interest points to perform the identification,

instead of searching for an object as a whole. This approach has different advantages such as the

computational cost for large data and high levels of redundancy. These levels of redundancy

outcome from independence of the pixels and from their correlation degree.

There are different methods that can be use to perform the detection and definition of the

interest points.
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2.4.2 Fast-Hessian Detector

This detector is based on the Hessian matrix since it shows a good performance in terms of com-

putation time and accuracy. Considering a point x=(x,y) in an image I, the Hessian matrix for that

point at scale σ is determined by [4]

H (x,y) =

[
Lxx(x,σ) Lxy(x,σ)

Lxy(x,σ) Lyy(x,σ)

]
, (2.4)

Lxy(x,σ) represents the convolution of the Gaussian second order derivative with the image I

in point x (similar to Lxx(x,σ) and Lyy(x,σ)).

As stated in [25, 26], Gaussians are the optimal approach to perform scale-space analysis.

However, in practical cases, the Gaussian needs to be cropped and discretised leading to, as a

consequence, a loss of repeatability over the rotations of the image. This is one the reasons why

the Hessian matrix is chosen because of its high repeatability rate for each rotation angle [29].

Since Gaussian filters are not ideal to use in any case, they are approximated by box filters 2.7.

Thus, the calculations can be performed with constant time, while using a group of integral images.

Figure 2.7: Approximations using box filters, adapted from [4].

To implement scale spaces, usually image pyramids are used. To achieve a higher level of the

pyramid, images are repeatedly smoothed with a Gaussian and sub-sampled. With the use of box

filters, there is no need to iteratively filter the image, instead it is possible to apply such filters with

different sizes at the same speed, directly on the original image. Higher layers of the pyramid are

reached through the application of gradually bigger filters. A scale space is divided in octaves and

each one of them is composed by the responses to the filter, when the input image is convolved

with a filter of growing size.

A non-maximum supression in a (3×3×3) neighbourhood is applied to locate interest points

in the image and over the scales. Using the method proposed in [30], the maxima of the determi-

nant of the Hessian matrix is interpolated in image scale and space.
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Figure 2.8: Detected Interest points using a Hessian based detector , adapted from [4].

2.4.3 SURF Descriptor

After the detection of the interest points the next stage is the description. This process initiates

with the attribution of one orientation to the point, so it can be distinguishable in any perspective

and invariant to rotation. For this, the Haar-wavelet responses are calculated in a x and y direction

in a circular neighbourhood that has 6s radius around the interest point, where s is the scale of the

interest point when it was detected. Wavelet responses in directions x and y with a sampling step

equal to s and wavelets with side length equal to 4s, are used.

Figure 2.9: Haar wavelet types , adapted from [4].

Through the calculation of the sum of all the responses within a sliding orientation window,

the dominant orientation is estimated. Vertical and Horizontal responses of the sliding window are

summed, creating a vector. The longest vector determines the orientation of the interest point.

Then, a square region is centered around the interest point, with the orientation determined

previously and a size of 20s. This region is split up into (4× 4) square sub-regions. In this

way, important spatial information is kept. Through a Haar filter of size 2s, features at (5× 5)

regularly spaced sample points are computed in horizontal and vertical directions. The responses

to this filter are determined in the image without rotation and then they are interpolated. Using

a Gaussian (σ = 3.3s) centered at the interest point, responses dx and dy are weighted. Then,

the responses are summed over each sub-region and form the first entries to the feature vector.

Absolute values of the responses are also computed, |dx| and |dy|, to bring in information about

the polarity of the intensity changes. The result is a descriptor vector for all (4× 4) sub-regions

with a length of 64.
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Figure 2.10: Descriptor entries of a sub-region, adapted from [4].

SURF is less vulnerable to noise due to obtaining information through sub-regions gradient,

instead of using individual gradients. The processing time is reduced due to the use of 64 dimen-

sions the decreases the computational effort.

2.5 Mean Shift

Mean Shift is an algorithm for identification and tracking of objects. This algorithm moves, in

an iterative way, a window to the location of the image where it’s possible to reach the maximum

points distribution,that is, the area with the higher density of points. Given n data points xi in the

n-dimensional space Rn, the kernel function K(x) indicates how much x contributes for the average

estimation. For this method, the radially symmetric kernels that satisfy [2]

K(x) = ck,dk(|| x ||2), (2.5)

are often more suitable. To make this possible, the profile function k(x), is defined, only, for

(x > 0). Also, the normalization constant ck,d is assumed strictly positive, making K(x), the d-

variate kernel, integrate to one. When only one bandwidth parameter is employed, it’s possible to

obtain the kernel density estimator using [2]

∼
fK =

1
nhd

n

∑
i=1

K

(
x− xi

h

)
. (2.6)

The average of samples m(x) with kernel K at x ∈ Rn is defined as [23]

m(x) =
∑

n
i=1 K(x− xi)xi

∑
n
i=1 K(x− xi)

. (2.7)

The difference m(x)− x it is called mean shift [22]. This operation moves the point iteratively

to its average and stops when m(x) = x.
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Figure 2.11: Image segmentation by using Mean Shift , adapted from [2].

2.6 Machine Learning

Machine learning (ML), normally, is strongly associated to the changes in systems that perform

tasks related with artificial intelligence (AI). These tasks are performed without following any ex-

plicit instructions and can involve recognition, diagnosis, robot control, between others. Changes

in these type of systems can be enhancements to the already performing structure or components

of the beginning synthesis of a new system. In Figure 2.12, it is possible to observe an example

of an AI system. Any changes that may occur to some components in Figure 2.12, might count as

learning [5]. Basically, there’s a model defined with some parameters and learning it is the opti-

mization of these parameters by using training data or past experience. The model can be either

predictive (predicts future actions) or descriptive (gains knowledge from data), it can also be both.

Figure 2.12: AI System, adapted from [5].

Through statistics, machine learning builds mathematical models, due to the core task making
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inference from a sample. There is two major situations where it is needed maximum efficiency.

First, in training, since an optimization problem is solved and a large amount of data is processed

and stored. Second, in the representation and algorithmic solution for inference, once a model is

learned [31].

In certain applications, machine learning has an important role. For example, it can happen that

hidden among large groups of data are important relationships and correlations. ML methods are

used to extract these correlations/relationships, that’s called data mining. Also, machine learning

can provide adaptation to machines that need to keep up with the changes of an environment.

Reducing, in this way, the need for a constant redesign [5].

2.6.1 Types of Learning

Different types of learning can outcome from various scenarios. They can occur due to the training

data available to the learner, the order and the method that control the reception of the training data

and the test data used to the evaluation of the learning algorithm.

Supervised Learning

In supervised learning, a mathematical model is built using a data set that contains inputs and

outputs. Basically, there’s a set of labeled examples as training data and the algorithm generates

an inferred function capable of predicting outputs associated with new inputs. This prediction is

possible due to an iterative optimization of an function, which can be either a loss function or the

opposite (profit function). In a certain way, the environment is the teacher of the algorithm so,

when it improves the accuracy of the predictions over time, it is possible to say that it learned to

perform the task that was meant to develop.

Supervised learning issues can be grouped into Regression and Classification problems. The

only difference between these two groups is that the dependent attribute is numerical for regression

and categorical for classification [32, 33].

Unsupervised Learning

In unsupervised learning only unlabeled training data is received and, for all the unseen points,

predictions are generated. The goal of this learning is to study how to learn to represent input

patterns by reflecting the statistical structure, of the overall collection, of these patterns. It is

difficult to quantitatively evaluate the execution of a learner due to the nonexistence of labeled

examples in the setting. In comparison with supervised and reinforcement learning, explicit target

outputs connected with each input, don’t exist. Aspects of the structure of the input should be

captured in the output.

Clustering and dimensional reduction are examples issues of unsupervised learning [32, 34].

Reinforcement Learning
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In reinforcement learning, information is collected through an active interaction between the

learner and the environment and, in some cases, the environment is affected by the learner and a

reward is received for this action. The learner has the goal of maximize his reward through a set of

actions and iterations with the environment. The exploration versus exploitation dilemma appears

due to the fact of the environment doesn’t provide a long-term reward feedback. So, the learner

needs to choose between exploring unknown actions to obtain more information or exploiting the

information already collected. Basically, reinforcement learning is the problem faced by an agent

that must learn through trial and error interactions with a dynamic environment [32, 35].

Figure 2.13: Machine Learning Algorithm Overview.

2.6.2 Feature Learning

Feature learning or Representation Learning is represented by learning representations of the data

that makes easier the extraction of useful information when developing classifiers or predictors.

Basically, is a set of techniques that are able to learn a feature by generating a representation,

through transformation of raw input data, that can be effectively used to perform a specific task.

Manual feature engineering is replaced and the machine is enabled to both learn a task (using the

features) and learn the features themselves.

Normally, classification tasks in machine learning require an input that is computationally

convenient to process. Real-world data such as images or videos, usually, are very complex and

redundant so, it is necessary to uncover features or representations from raw data. Manual feature

analysis requires expensive human labor, relies on expert knowledge and, in some cases, results
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in a bad generalization. All of these situations motivate the design of feature learning techniques

that are capable of a efficient automation and generalization.

As shown in Figure 2.14, feature learning algorithms have an advantage because they learn

representations that capture underlying factors, a subset of which may be relevant for each partic-

ular task. Also, generalization is improved since these subsets overlap and share statistical strength

[6].

Figure 2.14: Representation Learning finding descriptive factors which explain the input and the
target for each task, adapted from [6]

2.6.3 Decision Trees

Decision trees are a set of techniques for predicting and explaining the relationship between ob-

servations about an item and his target value. Derived originally from management, statistics and

logic, decision trees, are used in areas such as data mining, pattern recognition, machine learning,

between others.

Decision trees have different advantages such as:

• Flexibility when handling a variety of input data;

• Non-parametric, a range of numeric or categorical data layers are easily incorporated;

• Very useful when dealing with large datasets;

• Easy to follow and self-explanatory;

• Adaptability when operates with datasets that may have errors;

• Versatility for a large variety of data mining tasks.

There are two main types of decisions trees, they are classification and regression trees.
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Classification trees use training data to build the model and the tree generator coordinates

which variable needs to be split at a node, the decision to stop and the terminal nodes assignment

to a class. This type of trees are used for the classification of an object or an instance to a predefined

set of classes that is based in the values of their attributes. Basically, in classification trees, class

labels are represented by the leaves while the features combination, that lead to those class labels,

are represented by the branches.

In regression trees, the input space is mapped into a real-valued domain and, for instance,

it is possible to predict the demand for a certain product given its characteristics. This type of

decision trees presents a structure very similar to the classification ones. The relationship between

the predictor and the response variables is calculated and terminal nodes are predicted function

values. So, the predicted values are limited to the values in the terminal nodes [36, 7].

(a) Classification Tree (b) Regression Tree

Figure 2.15: Examples of Decision Trees, adapted from [7]

2.6.4 Artificial Neural Networks

Artificial Neural Networks (ANN’s) are composed by a large number of “neurons” that can be

often organized into layers. “Neurons” consist of simple linear or nonlinear computing elements

that are interconnected frequently in a complex way. These structures receive a signal, process it

and then transmit it to another “neuron”.

ANN’s were developed with the goal of simulate biological nervous systems by combinations

of many simple computing elements (“neurons”) . These elements belong to systems highly in-

terconnected with the ambition that, through self-organization or learning, a complex phenomena

such as “intelligence” would appear. In ANN implementations, at the connections, called edges,

between the “neurons”, the signal is represented by a real number (normally). The output of each

“neuron” is determined by a non-linear function of the sum of the respective inputs. “Neurons”

and edges of the ANN, usually, have a weight that is being adjusted during the learning procedure

and that increases or decreases the strength of the signal. These weights are obtained through a

process that involves highlighting the contribution of particular aspects of a data set over others,
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creating a final outcome or result. Basically, some of the data variables are modified to have a

larger contribution for the result than others.

There are several ways to use neural networks, but there are three that are the most common,

such as, data analytic methods, models of biological nervous system and real-time adaptive signal

processors [37].

Figure 2.16: Artificial Neural Network example.

The complexity around neural networks is originated by the accumulation of several layers. It’s

possible to divide the working procedure of neural networks into to two main processes: learning

and prediction.

In learning process, while the inputs and the desired outputs are being received, the internal

state is being updated respectively, with the goal of obtaining an output very similar to the desired

one.

In the prediction process, inputs are received and, using the internal state, the most plausible

output is generated by using past “training experience”.

Figure 2.17: Processes involved in Neural Networks, adapted from [8].
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Loss Function

At some point, the model has the actual and the desired output. To evaluate the performance

of the neural network in achieving outputs as close as possible to the desired ones, a loss function

is calculated. This loss function is simply calculated by subtracting the actual output to the desired

output. This function can result into negative values, when the NN undershoots (predicted output<

desired), and into positive values when the NN overshoots (predicted > desired). Its possible to

only focus in the absolute error, regardless of the over and undershooting, by calculating the loss

function using the absolute function

loss = |desiredout put−actualout put| (2.8)

In some cases, the total sum of the errors can be the same in different situations. This happens

since there’s a lot of small errors and few large ones, leading to the same sum of errors. So, it’s

better to have a distribution of many small errors than to have one with few large errors. For

the NN to converge to this distribution, the loss function is defined as the sum of squares of the

absolute errors, therefore, small errors are counted much less than large ones. Basically, the goal

is to minimize the overall error over the whole dataset. The loss function turns to be an error

instance that calculates an indicator that reflects how much precision is lost, when replacing the

desired output by the one that is generated by the neural network model.

Machine learning transforms itself into an optimization problem with the goal of minimizing

the loss function [8].

Differentiation

To optimize the loss function, it’s possible to use different techniques that can modify the

internal weights of the neural network. These techniques aim to deduce which weight result in the

smallest sum of the squares of the errors over the dataset. Genetic algorithms or brute force search

are examples of techniques that can be used.

Differentiation is a mathematical concept that can strongly guide this optimization problem in

the right way. This concept deals with the derivative of the loss function, since this value indicates

the rate of which the loss function is changing its values at a certain point. The advantage of

using the derivative is that it’s more precise to calculate and much faster. Basically, if the weight

is decreased the total error will decrease too. So, when the network is initialized randomly, the

learning process checks the derivative and takes some decision [8]:

• If the derivative is positive, the error increases if the weights increase, therefore, the weight

should be decreased;

• If the derivative is negative, the error decreases if the weights increase, therefor, the weight

should be increases;
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• If the derivative is zero, it’s a stable point;

Back-propagation

In order to obtain more variations in the functionality of the neural network, more layers are

needed between the inputs and the outputs. Since the derivative is decomposable, it is possible

to back-propagate it. There’s a starting point of errors (loss function) and it’s known how to

derivate each function from the composition, therefore, it’s possible to propagate back the error

from the end to start. Through the creation of a library of differentiable functions or layers, for

each function, it is possible to forward-propagate by directly applying the actual function. Also,

back-propagate becomes possible, by calculating the derivative of this function. So, any complex

neural network can be composed. For this to happen, it’s only necessary to keep, in a stack, the

function calls throughout the forward pass and their parameters. Then, through the calculation of

the derivatives of these functions, it’s possible to back-propagate the errors. There’s a technique

that can be used, called auto-differentiation, that de-stacks the function calls. It only requires that

each function is given with the implementation of its derivative. Basically, any layer can forward

its result to many other layers and, to back-propagate, the errors from all the target layers are

summed [8].

Usually, for the derivation of the back-propagation algorithm, the sigmoid function is used,

since it has nice properties [38].

Figure 2.18: Process of back-propagating errors, adapted from [8].

The weight is updated through [8]:

weight = oldweight−DerivativeRate× learningrate (2.9)

The learning rate is a constant with the aim to force the weight updating slowly and smoothly.
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2.6.5 Deep Learning

Deep learning is a subgroup of machine learning in which the tasks are divided and distributed

to algorithms that organize everything into layers. Each layer receives the information from the

previous layer, builds up and transmits the data to the next one. In this type of learning, artificial

neural networks adapt and learn from large amounts of data.

Figure 2.19: Relation between AI, ML and Deep Learning, adapted from [9].

Deep learning models show a good performance when dealing with large groups of data in-

stead of stopping to improve after a saturation point, like old machine learning models. The

difference between machine learning and deep learning is at the feature extraction process. In

Figure 2.20, it is possible to observe that feature extraction, in ML, is done by a human and in a

deep learning model is figured out by the model itself [39].

Figure 2.20: Feature extraction process in machine learning and in deep learning, adapted from
[9].
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Basically, deep learning has successive layers of representations and the depth of this type of

models depends on how many layers are being used. So, a deep learning model is a directed and

acyclic graph of layers [40].

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are an architecture of deep learning and are mainly

used in areas such as image recognition and classification. In CNN’s, an image is taken as an

input, processed and classified with a category.

Features are extracted through convolution by the convolutional layer. This operation is ap-

plied in the beginning because it preserves the relationship between pixels, by using small squares

of input data to learn the image features. Convolution takes two inputs, the image matrix and a

filter/kernel (sometimes called “Feature Map”). Different kind of operations such as blur or edge

detection, can be performed by applying different filters to the convolution of an image.

The goal of CNN’s is to reduce images into a form much easier to process, without loosing

important data, in order to achieve a good prediction [10].

Figure 2.21: Neural Network with convolution layers, adapted from [10].

Padding & Rectified Linear Unit

In some cases, the filter applied to the input image doesn’t fit correctly. Too solve this situation,

it’s possible to pad the image with zeros (zero-padding) to make the filter fit. Also, the part of the

image where the filter doesn’t fit can be dropped, keeping only the valid part of the image.

Activation functions are used, in artificial neural networks, to define the output of a node using

an input or a group of inputs. Rectified Linear Unit (ReLU) is the activation function commonly

used in deep learning. This function returns zero if a negative input is received and, for any positive

value received, it returns the same value back. ReLU can be represented by

f (x) = max(0,x). (2.10)

The goal of applying ReLU is to introduce non-linearity in convolution networks since, for real

world data, non-positive values doesn’t matter for the learning procedure.
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There are other non-linear functions such as sigmoid that can be used. Although, ReLU has a

better performance [11, 10].

Stride & Pooling Layer

Stride is represented by the number of pixels shifts over the input matrix. If the stride is one,

the filters move one pixel at a time so, when the stride is, for example, three, the filter moves three

pixels at a time.

When images are too large, in order to reduce the number of parameters, pooling layers are

used. The dimensionality of each map is reduced but all the important data is kept. There are two

types of spatial pooling: Max and Average pooling.

Max pooling returns the largest element from the rectified feature map. Average pooling re-

turns the average of all the values.

Noisy activation is discarded and de-noising along dimensionality reduction is performed by

max-pooling. Also, this type of pooling works as noise suppressant. Average pooling only per-

forms as noise suppressant by applying dimensionality reduction. So, max pooling has a better

performance than average pooling [10].

Figure 2.22: Max and average pooling operations, adapted from [11].

The number of layers that perform pooling and convolution operations can be increased to

capture low-level details, depending on the complexity of an input image. However, more compu-

tational effort is needed [11].

After all the above procedures, the model understands the features and it’s possible to feed the

output to a regular NN (fully connected layer) for classification.

The feature map is converted into a vector and taken as an input of the fully connected layer.

This NN combines the features and creates a model and, in the end, an activation function such as

sigmoid or softmax is used to classify the outputs with a category (car, person).
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Figure 2.23: CNN architecture, adapted from [10].

2.6.6 Object Detection Methods

Object detection has been, since a long time, a common problem in computer vision. Usually,

this type of methods aim to identify and classify objects that appear in an image. The existence

of a range of objects to identify and the necessity of predicting bounding boxes that surround

the object, can difficult the task of detecting objects. To define a bounding box, four parameters

[x,y,w,h] are used. (x,y) refer to a spatial position in the box (center or upper-left corner) and

(w,h) refer to the width and height of the corresponding box.

Through convolutional neural networks, deep learning models had a positive impact in this

area.

Initially, object detection tasks were performed by the technique of “the sliding window”,

where a rectangle, with different dimensions, moves over the whole image with the goal of finding

relevant objects. However, computational effort is large since a classifier, for each class, needs to

be applied to the window. CNNs also implement this technique but in a more efficient way.

2.6.6.1 Fast-RCNN

This object detection system is composed by two modules. The first one is a deep fully con-

volutional network, where regions are proposed, and the second one, which uses this regions, is

the Fast-RCNN detector. These modules combined form a unified network for object detection.

Basically the region proposal networks (RPN) module indicates where the Fast-RCNN should

observe.

Region Proposal Network

Region proposal network (RPN) is a convolutional network that aims to detect regions where

objects can be found. The deep fully CNN is used as the feature map and is arranged into H×W

nodes. These nodes are related to receptive field that has a certain size in the input image. Feature

map depth determines the actual size.



24 State of the Art

A convolutional layer is placed after the feature map, with the goal of learning 256 features for

each node. This is possible since a 256 channel convolutional is connected through a 3×3 kernel.

A new feature map results from this and is used to predict the presence of an object.

Finally, this feature map is passed to a predictor. It’s possible to say that, this predictor, divides

into two. The first one, predicts if the region contains or not an object, and, if it contains, the second

one predicts the bounding box that will surround that object. Basically, one performs as a classifier

and other as a regressor.

Anchors

Anchors are a set of reference regions that the region proposal network uses per node, to

accelerate the training. This structures represent a rectangular region in the input image and is

located in the center of the respective field, in each node, in the feature map. Scale and the aspect

ratio define an anchor.

For each sliding window position, multiple region proposals are predicted. In each location,

the number of maximum possible region proposals is defined as k. So, the classification layer

outputs 2k scores that indicate the probability of existing an object or not. The regression layer

will have 4k outputs that encode the coordinates of k boxes.

Classical cross-entropy loss is used, by the classifier, in the training. This type of loss measures

the performance of a classification model that has a probability value, between zero and one, as an

output. It increases as the predicted probability diverges from the actual label. A smooth-L1 loss

function is used by the regressor [41, 12].

Figure 2.24: Region Proposals Network and an example of detections done by using RPN propos-
als, adapted from [12].

Detection

The detection is made by a Fast-RCNN model and the set of candidate objects is provided

by the RPN. The goal of the Fast-RCNN is to predict the most plausible class (through a set of

provided classes) and a class that also represents the background. For this purpose, a convolutional

network is used since it can produce discriminative features for each region of interest (ROI).
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Fast-RCNN extracts a subregion from the candidates regions of interest proposed by the RPN,

using the feature map computed from the input image. The diversity of sizes within the region of

interest can define the architecture of the convolutional model. To solve this, Fast-RCNN suggests

a special layer called “ ROI Pooling Layer” that, through the average pooling operation, transforms

the feature map of the given ROI into a feature map of H×W nodes. Finally, the result is passed

to a couple of fully connected layers and then to a set of classifiers that predict the most probable

class. Also, a set of regressors adjust the input region of interest, using semantic information.

Figure 2.25: Fast-RCNN architecture, adapted from [13].

Fast-RCNN has shown high performance results, however, for real-time implementations, has

very slow results [12, 41].

2.6.6.2 YOLO-Real-Time Object Detection

YOLO (You Only Look Once) is a minimalist approach to object detection that also uses a con-

volutional network to generate a feature map from the input image. This feature map has S× S

nodes and each one of them is related to a respective area in the input image. Also, each node

predicts B bounding boxes that are weighted by the predicted probabilities. This weight represents

the confidence of the model in finding an object in that box. Five predictors are needed for each

bounding box, in order to estimate the (x,y) coordinates (center of the box), the width (w), height

(h) and the confidence of the prediction. Also, a conditional class probability, C, is predicted. One

set of class probabilities per each node is predicted, despite of the number of boxes.

Finally, the regressors are estimated through

S×S× (B×5+C). (2.11)

So, it’s possible to refer to this model as a regression problem. In Figure 2.26, it’s possible to

observe the division of the input image in a S× S grid, the prediction of the bounding boxes, the
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confidence for those boxes and the C class probability map. Finally, predictions are encoded using

the equation referenced above(2.11), resulting into the final objects detection [14].

Figure 2.26: YOLO Model, adapted from [14].

2.6.6.3 SSD - Single Shot Detector

Single Shot Detector is an approach to object detection based on a feed-forward convolutional

network. This network produces a collection of bounding boxes and scores that measure the

presence of an object class and a non-maximum suppression step provides the final detections.

Basically, it is only necessary one single shot to detect multiple objects within an image. While

approaches based on RCNN need two shots, one to generate region proposals and other to detect

the object in each proposal, methods that use SSD are much faster since, it is only necessary one

single shot to achieve object detection.

Feature extraction is achieved by a group of convolutions and a feature layer is obtained. For

each location, there are k bounding boxes with different sizes and aspect ratios. For each bounding

box, c class scores and four offsets relative to the default bounding box, are computed [15].

In order to achieve a better accuracy in object detection, different layers of the feature map go

through a small 3 X 3 convolution, as it is possible to observe in Figure 2.27.
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Figure 2.27: SSD Architecture, adapted from [15]

2.7 Conclusion

In this chapter, features extraction techniques, machine learning basics and methods to perform

object detection were described. In an initial stage, features extraction techniques were introduced

as a way to understand how algorithms identify and extract points of interest from an input image.

Also, the way they performed this task was explained and demonstrated. However, in this project,

to achieve object classification, machine learning models have a better performance and feature

extraction techniques are applied in an implicit way. Therefore, the main focus will be in machine

learning object detection methods.

In section 2.6.6, it is possible to find examples of objection detection methods. From these

examples, the one that was chosen to help developing this dissertation is referred in section 2.6.6.3.

Pre-trained models with this type of architecture will be used in conjunction with a software library

called TensorFlow. This library was chosen due to the abstraction provided by it. Instead of dealing

with particular details or implementing algorithms, the main focus becomes the overall logic of

the application. Basically, this system deals with details in a implicit way or "behind the scenes".

Therefore, this library will be studied and used to retrain a pre-trained SSD model, in the next

stages of this dissertation.



28 State of the Art



Chapter 3

Methodology

In this chapter, the software library referenced in section 2.7 is presented and its implementa-

tion steps are demonstrated. Finally, a real-time implementation of this software library object

detection API is referred.

3.1 TensorFlow

TensorFlow is a framework that builds deep learning models and it was created by Google. This

framework allows the creation of trained production models and was invented thinking about pro-

cessing power limitations. It provides a front-end API that builds applications by using Python,

however, executes these applications in high-performance C++. Basically, the actual math opera-

tions are not performed in Python but in C++. So, Python just coordinates traffic between pieces

and high-level programming abstractions hook these pieces together.

The main operation of TensorFlow is to create computational or dataflow graphs. It’s possible

to think about a computational graph as a network of nodes where, each node, represents an

operation that could be either a simple addition or a complex equation. The operation can be

referred as op and it returns zero or more tensors that can be used in the graph. Each operation can

receive a constant or a n-dimensional matrix. So, each edge or connection between the nodes is a

multidimensional array (tensor).

In Figure 3.1, it is possible to observe the creation of a computational graph by multiplying

two constant tensors and outputting the result. All the inputs necessary to the operation are run

automatically and, usually, the inputs run in parallel [16, 17].
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Figure 3.1: Computational graph example, adapted from [16]

Figure 3.2, displays TensorFlow as two parts. One represented by the multidimensional array

(tensor) on left and other represented by the operations applied to data. Also, TensorFlow provides

an object detection API that makes easy the construction, train and deployment of object detection

models.

Figure 3.2: TensorFlow procedure, adapted from [17]
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3.2 TensorFlow Configuration

3.2.1 Computational Graph

Every variable and operation created is added automatically to this graph. By TensorFlow import-

ing the library, the default graph is initialized. When dealing with the creation of multiple models,

creating a graph object instead of using the default one can be useful. However, in most of the

situations, it is better to use the default graph.

3.2.2 Session Objects

There are two types of session objects in TensorFlow: tf.Session() and tf.InteractiveSession().

tf.Session()
The environment where the operations and tensors are executed is encapsulated by this session

object. Each session has its own variables, queues and readers so, it is important to use the close

method when the session is over. When this function is called, all the dependencies that are

necessary for the graph, are executed.

Each session has three optional arguments:

• graph, the graph that needs to be launched;

• target, execution engine to connect to;

• config, protocol buffer with configurations for the session.

tf.InteractiveSession()
This type of session it is more related to the use of IPython or Jupyter Notebooks. It allows to

evaluate tensors and run operations without needing to always run the session, therefore there’s no

need of explicitly create a session object.

3.2.3 Variables

Each session manages the variables and are able to persist between them. This is very useful

since tensors and operations are immutable, that is, they’re unchangeable objects. To initialize the

variables, TensorFlow variable initialization function is used. Then, this function is passed to each

session, therefore, is possible to have multiple sessions but with the same variables. Also, it is

possible to update the value of a variable inside a session.

3.2.4 Scopes

In a way to reduce models complexity, TensorFlow uses scopes. These structures are very simple

and can be nested inside other scopes. Usually, these structures are used in collaboration with

other TensorFlow tools.
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3.2.5 Setting Up the Environment

To set a proper environment for the execution of TensorFlow, different libraries are necessary. By

consulting [42], the dependencies that need to be installed are:

• Python-tk;

• Pillow 1.0;

• lxml;

• Cython;

• Protobuf;

• Matpolib;

• contextlib2;

• TensorFlow;

• Jupyter notebook;

• pycocotools;

Then, TensorFlow models folder is cloned from [43] and the directories that will be used are

organized in the following way:

models > research > object_detection

PROTOBUF

Protocol buffers are a mechanism used to serialize structured data. It is Google language-

neutral and is smaller, simpler and faster. In every TensorFlow execution, the protocol buffer needs

to be installed at an initial state. It should be executed in the same directory of object_detection

folder.

PYTHONPATH

PYTHONPATH is an environmental variable that defines a search path. It is used by the

Python interpreter to find out where the modules, that need to be imported, are located. So, for

every new terminal used to run TensorFlow, it is necessary to indicate the path to these modules.

This is done by running this environmental variable in the research directory.

3.3 Transfer Learning

Training a new model from scratch is a very hard task requiring large amounts of data and compu-

tational effort. Transfer Learning uses a pre-trained model as an initial point of a new model, that

is, reuses the pre-trained weights as the starting weights of the new model.

In another words, imagine there’s a Task A and a Task B and it is necessary to perform transfer

learning between them (from A to B). This only makes sense if:

• Both of the tasks share the same type input;

• There’s more data for Task A than for Task B;
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• Low-level features from Task A can be helpful for the learning procedure in Task B.

Transfer Learning can be done in two different ways, by fine-tuning or feature extraction [44].

3.3.1 Fine-Tuning

Sometimes, it is necessary to perform a task that is very similar to another. This other task, is

performed by a trained and designed model. Assuming that the tasks are similar, it is possible

to use this pre-trained model to perform a new task. This is done by taking advantage of the

feature extraction process in the top layers of the model instead of creating a new feature extraction

network. Basically, the output layer is replaced by a new one that recognizes the number of classes

required. Also, this new output layer, is trained to use low-level features and map them to the

desired output.

3.3.2 Feature Extraction

In this way of performing transfer learning, a pre-trained network is used to compute features for

an input image. A new classifier is added and trained on top of the pre-trained model, that is, the

previous feature map is repurposed. The original model it is not modified and new tasks benefit

from previous learned features.

In Figure 3.3, it is possible to observe a comparison between fine-tuning and feature extraction

methods.

Figure 3.3: Fine-tuning and Feature Extraction methods, adapted from [18].



34 Methodology

As it was referred in section 1.3, the goal is to identify and classify a particular group of objects.

This group of objects are vehicles, people, guns and tanks. To achieve this, transfer learning

fine-tuning method will be explored.

The idea it is to use a pre-trained model and fine-tune the layers in order to recognize particular

objects. Since there are already trained models that detect people and vehicles, it is only necessary

to fine-tune them, in order to start detecting guns and tanks too. Fine-tuning it is the best approach

since there’s no need of building a feature extraction network from scratch and there’s different

pre-trained models that can be used.

TensorFlow has different pre-trained models available at [19]. In table 3.1, there are some

examples of pre-trained models along with the respective speed and COCO mAP values. The

speed value stands for the running time of the pre and post-processing. COCO mAP is a measure

metric to evaluate the performance of the model detector when dealing with COCO (Common

Objects in Context) dataset. .

From table 3.1, the pre-trained model ssd_mobilenet_v1_coco was used in the next stages of

this dissertation. SSD stands for "Single Shot Detector", that is, it only needs one shot to detect

multiple objects within the image. This model detects a large range object classes and seems to be

good choice to use as pre-trained model.

Model Speed (ms) COCO mAP
ssd_mobilenet_v1_coco 30 21
ssd_mobilenet_v2_coco 31 22

ssd_mobilenet_v2_quantized_coco 29 22
ssdlite_mobilenet_v2_coco 27 22

Table 3.1: Examples of some pre-trained models provided by TensorFlow, adapted from [19].

In section 3.4, the steps needed to perform the model fine-tuning, by using TensorFlow Object

Detection API, are demonstrated.
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3.4 TensorFlow Object Detection API

As it was mentioned above, TensorFlow Object Detection API is a very powerfull tool that facili-

tates the creation and deployment of object detection models. Figure 3.4 represents a summary of

the steps taken in the implementation of this API. The next subsections will explain these steps.

Figure 3.4: Implementation Steps.

3.4.1 Dataset Construction

In order to detect a particular group of objects, a dataset containing only images of guns and tanks

was created. Then, it was necessary to indicate/label in these images where the main object was

located. This is important since, the model needs to know where to find the specific object that

needs to be learned.

To label the objects, a tool called LabelImg and provided by [45] was used. Through this tool,

it is possible to manually create a bounding box that surrounds the specific object and indicate his

type. By doing this, the tool automatically generates a .xml file that contains the dimensions and

location of the bounding box as well the name of the object. So, in the end, each image should

have a .xml file associated.

Finally, the dataset was divided into two folders, test and train. Usually, 10% of the images

go into the test folder and 90% go into the train folder. Images and .xml files in train folder are

used to train the model and, the elements of test folder, are used to evaluate the performance of the

model, that is, evaluate if the model is predicting the type of the object correctly.
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Figure 3.5: LabelImg tool usage to label a tank.

In an initial stage, all the objects that could be detected in an image were labeled, that is, not

only tanks and guns were labeled. This introduces errors during training because the same input

can give two or more possible outputs, implying that the function that maps images to classes isn’t

well-defined. So, for the further implementations, only guns and tanks were labeled in the dataset.

3.4.2 Label Map

To map each label to an integer value, TensorFlow uses a label map. This file contains the labels of

the objects that model needs to detect and an ID associated to each one. The label map file should

have the .pbtxt format and is used in training and detection processes.

In this dissertation, two label maps were used. One, only containing the labels "tank" and

"gun". Other, containing the same labels as the label map of COCO dataset plus "tank" and "gun"

labels. So, the ID should be attributed by respecting the order of the previous labels.

These two label maps were used in two different training sessions, leading to two different sets

of results.

3.4.3 TFRecords Generation

TFRecords are TensorFlow own binary storage format. When dealing with a large dataset, binary

storage format can be used in order to improve the model performance and training time. Taking

less disk space and less time to copy, binary data becomes much more efficient to use. Further-

more, this format easily combine multiple datasets and integrate preprocessing and data import

functionality consistently. This is an advantage when there’s a dataset too large to be stored in

memory since, only the data that is required at the time is loaded from the disk and processed [46].

To generate the TFRecords, there’s a couple of steps that were done. First, it is necessary to

convert the .xml files, that resulted from the object labeling, to .csv files. Comma Separated Values
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(CSV) files are text files composed by a list of data. These files are used to store complex data

from one application and, then, import, this data, to another application. To convert the .xml files

into .csv, the script xml_to_csv.py was used, generating .csv files containing, in this case, the file

name, the bounding box dimensions(normalized coordinates) and localization and the class of the

object. In this script, it is necessary to add the path to the test and train image folders and the path

to the folder where the .csv files should be stored.

Finally, to obtain the TFRecords, .csv files are converted by using generate_tfrecord.py script.

In this script, the label map needs to be updated, that is, for each label there’s a row and a return

value associated. This return value should be equal to the ID of the respective label in the label

map. So, in this case, "tank" and "gun" were added with the returning values of one and two,

respectively. The paths for the .csv files and for the output folder, are indicated via terminal when

running this script.

Both of these scripts were provided by [47] and adapted for this specific case.

3.4.4 Configuration File

Protobuf files are used by TensorFlow Object Detection API to configure the training pipeline.

This configuration file is divided into five components [48].

• Model Configuration : This defines what model is going to be used as feature extractor,

that is, the model that is going to be trained;

• Train Configuration : This defines which parameters are going to be used to train the

model;

• Eval Configuration : This defines the set of metrics that is used in the model evaluation;

• Train Input Configuration : This defines the path to the dataset that will be used to train

the model on;

• Eval Input Configuration : This defines the path to the dataset that will be used to evaluate

the model.

Each pre-trained model has a specific configuration file [49]. In this dissertation, the configu-

rations file of the model ssd_mobilenet_v1_coco was reused but with some specific changes. An

initial setting of this file and further modifications are demonstrated in the next chapter.
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3.4.5 Training and Evaluation

Before training the model, all the files should be organized into folders. In Figure 3.6, it is possible

to observe the three main folders that were created:

• /data - This folder contains the label map, tfrecords files and the labels files;

• /images - This folder contains the images to use in test and training procedures;

• /training - This folder contains the configuration file and the label map.

Figure 3.6: Directories Organization.

Then, these folders are moved into /research/object_detection directory, inside of the models

folder that was previous cloned from TensorFlow Github. Also, the folder that contains the pre-

trained model, that is going to be used, was moved into this directory too.

The training and evaluation processes, can be performed at the same time by using the

model_main.py script [50], created by TensorFlow researchers. This script is executed by taking

as input, the path to an output folder, where it stores the model training checkpoints, and the

path to the configuration file. During the training session, the number of the training step and the

respective loss are displayed in the terminal.

The model is evaluated while the training takes place. This evaluation measures the accuracy

of the model when predicting the class of an object on the images from the test folder.

For better control of this procedures, the TensorFlow visualization toolkit, TensorBoard [51],

is used. Through this tool, it is possible to track the loss and the accuracy of the model that is

being trained. Also, it displays the evolution of the detection bounding box in test images, during

the training. The tool is initiated via terminal and it is necessary to indicate the directory of the

training checkpoints.
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3.4.6 Inference Graph

Finally, to perform object detection with the newly trained model, it is necessary to export the

frozen inference graph. This graph cannot be trained anymore, it defines the computational graph

of the model at that point. Also, it contains all the training weights. To export the inference graph,

TensorFlow provides the script export_inference_graph.py [52]. By taking as input the path to the

configuration file and to the last model checkpoint during training, this script outputs a folder with

the newly trained model and the respective inference graph.

3.4.7 Testing the Trained Model

For the newly model testing, the object detection tutorial jupyter notebook [53], available at Ten-

sorFlow GitHub, was converted to a python file. Then, some adjustments were made to the code

in order to adapt it to video feed, that is, real-time video capture or video sequences. So, all the

fields in this script that deal with single images are no longer needed. To capture video or read

video files, the library cv2 is imported and the class VideoCapture is used. Through this class,

frames are grabbed, decoded and returned in an array. Then, this array, is processed by a function

that runs the inference and gives the outputs. This function was created by separating the detection

boxes definition from the execution of the TensorFlow session. Basically, instead of defining the

bounding boxes for each inference, they are defined once. Through this modification, the inference

frame rate of the output video gets improved. To visualize the results of the detection, the function

imshow() is used.
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Chapter 4

Results Analysis

In this chapter, each section is composed by the configuration file setting and by the respective

outcome. Also, each different outcome is analyzed and each modification done to the configuration

file is explained.

4.1 Configuration File: Initial Settings

Before initiating the training and evaluation procedures, some parameters in the configuration file

should be defined.

First, the number of classes of objects to detect is defined. Since the goal is to detect tanks

and guns, this number was defined as 2. Then, the batch size needs to be specified in the train

configuration field. This parameter defines the number of samples that are propagated through

the network. When defining this number it should be accountable the fact that, it should not be

higher than the number of samples inside the train folder and that a large batch size can degrade

the quality of the model. So, in this dissertation, the batch size was defined as 32. In the evaluation

configuration field, the number of samples was defined as 55, since this is the number of images

inside the test folder. Also, the detection metrics were defined as the ones used in COCO dataset.

Finally, the paths to the tfrecords, to the label map and to the pre-trained model that are going to

be used, were indicated.

These are the main settings of the configuration file and, in further sections, are maintained.

4.1.1 Initial Results

In order to control the training and evaluation of the pre-trained model, the training and validation

loss are analyzed. These losses are the sum of errors made, by the training model, when dealing

with the train and test datasets. So, it indicates how well the model is doing for these two datasets.

In Figure 4.1, it is possible to observe the validation and training loss corresponding to the

previous configuration file settings. During the training steps, the validation loss increases while

the training loss decreases. This represents a typical case of overfitting.
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Overfitting means that the model is unable to generalize well. It is caused when the model

learns noise and random fluctuations in training data as features. These features cannot be ap-

plied to new data so, the performance of the model on the validation set decreases. However, the

performance on the training set improves.

(a) Training Loss (b) Validation Loss

Figure 4.1: Validation and Training Loss Graphs

In order to analyze the model accuracy when detecting objects, the detector is evaluated by

measuring two different tasks.

• Classification - Determining if an object exists in an image;

• Localization - Determining the location of the object.

It is important to control the risk of misclassifications so, each bounding box needs to be

associated with a model score or a "confidence score". This can be conducted by using Average

Precision (AP) that deals with the precision and recall of a classifier. Precision is the fraction of

relevant items among the retrieved instances and recall is the fraction of relevant items, that have

been retrieved, over the total amount of relevant instances. To calculate the AP score, the average

value of precision is taken across all the recall values.

In terms of calculating the model score on the task of object localization, the intersection over

union (IoU) is computed. The IoU is given by the ratio of the area of intersection and the area

of union between the predicted and the ground-truth bounding box. Intersection over union is a

number between zero and one and larger the better. Ideally, the IoU between the predicted and

the ground-truth bounding box should be 100% but, anything above 50% is considered a correct

prediction.

Finally, the mean average precision (mAP) score combines these two metrics. It is calculated

by taking the AP score over all the classes and all the IoU scores.

In Figure 4.2, it is possible to observe that the model bounding box prediction accuracy (mAP

score) decreases. Since the model cannot generalize well due to overfitting, it causes a decreasing

accuracy during the training. So, there is the possibility of occurring misclassifications.
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Figure 4.2: Bounding Boxes Precision (mAP).

During training, checkpoints that summarize the training status are made. In each checkpoint,

an evaluation step occurs by predicting bounding boxes for possible objects in test images. Figure

4.3, displays the predicted bounding box by the model on the image of the left and the ground-

truth on the right. It is possible to observe that, in the initial training steps, the bounding boxes are

not in the correct location. However, in the latest steps, the bounding box converges to the correct

location of the tank but regarding the gun image it does not converge accurately.

(a) Gun

(b) Tank

Figure 4.3: Bounding boxes predictions through training.
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In the next sections, some techniques will be applied in order to eliminate overfitting and to

improve the training model accuracy.

4.2 Configuration File: Dropout

In order to eliminate overfitting, there are regularization techniques that can be applied. Regular-

ization techniques produce slight modifications to the learning algorithm to improve the models

ability to generalize. In this section, the regularization technique used is Dropout.

Dropout is a regularization technique that, at every iteration/step, randomly selects and elim-

inates nodes and their connections from the neural network. So, each step will have a different

set of nodes and a different set of outputs. This technique reduces the complexity of the NN and

improves the models ability to generalize, when dealing with data that haven’t been seen.

To use Dropout in the training procedure, in the field of the box predictor in the configuration

file, the flag use_dropout was set to true, enabling this technique. Also, the dropout keep probabil-

ity, that is, the probability of keeping a node, was defined as 0.8. So, the probability of dropping a

node is 20%. It is advisable to have a probability of dropout between 20% and 50%. This was the

only modification, in this set, made to the configuration file.

4.2.1 Result Set 1

In Figure 4.4, it is possible to observe that the overfitting persists. Even after introducing dropout

to the training algorithm, the validation loss keeps increasing while the training loss decreases.

Once more, the model is learning noise and random fluctuations as features. It seems that using

dropout it is not sufficient to eliminate the overfitting of the model. So, dropout it is not the best

approach to this problem.

(a) Training Loss (b) Validation Loss

Figure 4.4: Validation and Training Loss Graphs

Figure 4.5, displays the model predicting accuracy decreasing during the training. Again,

overfitting is comproved, since the model cannot generalize and interpret correctly new data.
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Figure 4.5: Bounding Boxes Precision (mAP).

Figure 4.6 reflects the model accuracy. It is possible to observe a classification error made by

this model since, it has confused the position of the men holding the gun with the structure of a

tank.

Figure 4.6: Bounding boxes predictions through training.

4.3 Configuration File: Data Augmentation

Another regularization technique that can be used is data augmentation. Data augmentation is a

simple way of reducing overfitting by increasing the size of the training data. The training data

is increased by perfoming transformations to images in training dataset. Basically, images are

rotated, scaled or flipped, depending on the transformations that are chosen. The list of possible

transformations can be found at [54].

For this case, the transformations chosen were :

• Horizontal and vertical Flip;
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• Image scaling;

• Conversion of RGB to grayscale;

• SSD random crop;

So, images are flipped, enlarged or shrinked, converted to grayscale and randomly cropped

according to [15].

It is possible to used this transformations by introducing them into the training configuration

field in the configuration file. Also, the probability of converting a RGB image into grayscale

needs to be defined. In this case, it was set as 0.5.

4.3.1 Result Set 2

Even with the increase of the training data, Figure 4.7 shows that overfitting steal persists during

the training of the model. The validation loss still increases during the training procedure, however,

as it is possible to observe in Figure 4.7c, the models accuracy improves. This is unusual, since the

increasing of the validation loss should lead to a decrease in models accuracy. This can be caused

by examples with an incorrect prediction that keep getting worse in each training step. Also, when

examples with a correct prediction lose accuracy during the training steps, can cause this situation.

So, introducing data augmentation options is still not sufficient to reduce overfitting.

(a) Training Loss (b) Validation Loss

(c) Bounding Boxes Precision (mAP).

Figure 4.7: Validation Loss, Training Loss and Bounding Boxes Precision Graphs
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In Figure 4.8, it is possible to observe that in the initial steps of training, a certain misclassi-

fication exists. However, in later steps, the object is classified correctly and the bounding boxes

converge to right location of the object. So, it justifies the accuracy graph behaviour since, there

is high and low peaks along the graph but, during training, it is continually increasing.

(a) Gun

(b) Tank

Figure 4.8: Bounding boxes predictions through training.

4.4 Configuration File: Hybrid Solution

In this section, a hybrid approach to the problem of overfitting was taken. This approach joins

fine-tuning and feature extraction techniques in order to perform transfer learning. So, the goal is

to maintain the initial layers of the model unchanged and fine-tune the final ones. To achieve this,

the weights of the initial layers need to be frozen, that is, attempt to learn new features without

forgetting previous ones that had already learned. So, to attempt to freeze the weights, the flag
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load_all_detection_checkpoint_vars in the train configuration field of the configuration file was

set to false.

Then, as it was referred at section 3.4.2, the label map of the COCO dataset was used in this

training procedure. This label map was used to test whether the model is capable of predicting

previous and newly trained classes.

After adding the labels "tank" and "gun" to this label map, the number of classes to detect in

the configuration file was defined as 92 since, this was the number of classes that the pre-trained

model was previously detecting.

Finally, the previous data augmentation options were maintained in this file, in order to in-

crease the training data.

4.4.1 Result Set 3

In Figure 4.9, it is possible to observe that ovefitting was reduced. During the model training,

the training and validation loss decrease, meaning that the model generalization was improved.

However, the validation loss is still larger than the training loss so, there is still some overfitting.

For a perfect fitting, both losses should almost the same and converge into the same value. In this

case, it is not a perfect fitting but overfitting was largely reduced.

Also, Figure 4.9c, displays the accuracy of the model increasing during the training steps. By

analyzing this graph, it is possible to understand that misclassifications are being reduced and the

overall accuracy is continuously increasing during training.

(a) Training Loss (b) Validation Loss

(c) Bounding Boxes Precision (mAP).

Figure 4.9: Validation Loss, Training Loss and Bounding Boxes Precision Graphs
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In Figures 4.10a and 4.10b, it is possible to observe that, in the initial steps, some misclassifi-

cations occur. However, in the next steps, the classification improves and the bounding boxes are

always near the correct location of the object. So, by analyzing the accuracy graph, it is possible

to observe that the bounding boxes are progressing according to it.

(a) Gun

(b) Tank

Figure 4.10: Bounding boxes predictions through training
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Since, in this case, it is possible to see an improvement in the model training, is important to

analyze the model performance when processing a video sequence. First, the inference graph was

extracted and then, by using the script referenced in section 3.4.7, a video sequence was processed

by this newly trained model.

Figure 4.11 , displays some of the object detections that occurred. It is possible to observe that

it is classifying and locating the object correctly. However, in some cases, it commits incorrect

predictions. As it is possible to observe in Figure 4.12, a tank is being classified as a gun. This

misclassification problem can be due to the training loss not converging to a lower value. Also,

the fact that validation loss is larger than training loss, can cause this problem.

(a) Gun (b) Tank

Figure 4.11: Newly trained model predictions

Figure 4.12: Misclassification produced by the newly trained model
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4.5 Discussion

To initiate the training procedure, there are numerous parameters in the configuration file, that

need to be defined. By using the initial settings, the model displayed a typical case of overfitting.

To solute this, different regularization techniques were applied. First, dropout was used but the

overfitting persisted. Then, data augmentation options were applied and introduced to the con-

figuration file. In this case, even though the accuracy of the model has improved, the validation

loss still increased, that is, the model was overfitting. Finally, the weights of the initial layers

were frozen, the label map of the COCO dataset plus the labels "tank" and "gun" and the previous

data augmentations were used. This training experiment had the better results among the others.

However, training loss needs to decrease to lower values and validation loss too. This can be

resolved by passing the model through more training time or increasing the dataset. The dataset

can be increased by adding more data to the configuration file, in order to improve the model

generalization.

So, it is possible to understand that, when only fine-tuning was performed in sections 4.1,

4.2 and 4.3, it seemed that this approach was deteriorating the original learning of the pre-trained

model. Fine-tuning all the layers of the model leaded to overfitting and to an incorrect learning

of features. However, when this approach was combined with feature extraction, by freezing the

weights of the initial layers, overfitting was reduced and the accuracy improved. This proves that,

to perform transfer learning, the fine-tuning approach should be only applied to final layers and

initial ones should stay unchanged. Therefore, the approach that combines both fine-tuning and

feature extraction techniques in section 4.4, it is the better way to perform transfer learning.

Although in section 4.4 the model training results improved, there are still some problems.

Objects that the model was preciously detecting, are no longer being detected. This means that,

after training the model to detect guns and tanks, it is only able to detect this type of objects. One

possible solution can be building a dataset composed by all the main objects that are necessary

to detect. Also, some overfitting is still occurring and can be caused by the complexity of the

structure of the model in comparison with the size of the data that is being used. This can be

possibly resolved by reducing the number of layers of the network.
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Chapter 5

Final Remarks

5.1 Conclusion

Building a software library capable of automatically detecting and classifying objects, in real-time

or in video sequences, it is not a trivial problem. Taking into account the large amounts of data

that need to be processed and analyzed, it is a process that requires large amounts of time and

computational effort. However, after the study here developed, it was possible to find different

techniques and tools that implement this type of systems. It was possible to focus on a software

library called TensorFlow that already provides an object detection API. Using this API, a training

procedure was executed to a pre-trained model with the goal of detecting specific types of objects

or classes, namely, guns and tanks.

Throughout this dissertation, different steps have been undertaken to understand how it would

be possible to use models that had already been trained to detect various types of classes, with

the objective of detecting new objects or to become highly specialized in detecting a limited set

of objects. Based on the knowledge and experience acquired, different configuration file settings

were defined and used to control the training process towards meeting the desired goal.

The initial general settings that were used, led to overfitting and thus to poor results. Different

regularization techniques were applied in order to eliminate this problem. Improvements were

achieved when it was used data augmentation options together with a feature extraction approach

to freeze layers weights. Then, the model was trained by using the modified COCO dataset label

map. The model that resulted from this training procedure achieved the goal of detecting specific

objects such as guns and tanks. Even though the solution still led to some misclassification errors,

the improvements obtained with this solution provided evidence that this problem can be solved

with more training time or dataset augmentation.

The work developed in this dissertation proved that, when dealing with transfer learning imple-

mentation problems, it is possible to obtain better results when using the hybrid solution developed

and described in section 4.4. Such solution is based on combined use of different existing tech-

niques. The possibility of taking advantage of the feature extraction process of this model, reduces

the complexity and the necessity of building a model from scratch. Also, it proves that TensorFlow
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is a good software tool to be used, since it simplifies this type of processes and offers a wide range

of tools to use in model training.

5.2 Future Work

Machine learning systems are at the forefront of the nowadays technologies. Object automatic

identification and classification is a growing area, since it can offer a lot of implementing options.

In order for this system to be reliable and usable, the system should identify a larger range of

objects. This can possibly be done by adding more object classes to the training dataset. Also,

a further analysis should be done to see if, by freezing the weights of some layers, the training

procedure and the model performance are improved.

In terms of processing speed, an implementation of this Object Detection API in C++ should

be carried out. Since this is a low-level language, it executes faster than Python and, consequently,

the real-time performance improves.
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