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Abstract 

Continental AG has decided to expand their Rubber Division product portfolio by resuming 

production of agricultural tires. With that purpose, a serious investment was made in their 

Lousado plant, Continental Mabor, to create a new facility, with new technology, to host the 

new production line for these tires. 

In order to minimize the associated maintenance costs for the new machines and to maximize 

their uptime and useful life, a proper maintenance plan must be developed. Prior to this work, 

only preventive (time-based) maintenance operations took place at this new facility, and no 

condition monitoring through sensors or frequent measurements was being performed. This 

work provides a predictive maintenance plan to be implemented in these new machines, with 

the aim of increasing the proportion of planned maintenance activities and their standardization, 

with the ultimate objective of reducing, in the long run, the number of failures and their severity.  

The first step was to find what failures were happening and their causes. This analysis was 

conducted with the aid of existing breakdown reports and of the maintenance personnel. Then, 

the maintenance actions and measurements that could be performed to mitigate those failures 

and their causes were idealized, as well as the recommended tool to execute them, if it was the 

case. The frequency of execution of the actions was then estimated using reliability analysis 

tools such as the Weibull distribution (in case of a non-constant failure rate) or simple linear 

regression (in case of a constant failure rate), based on the failure data and frequency provided 

by the breakdown reports, which allowed the estimation of the MTBF for each machine 

subassembly considered. An automatic monthly plan generator was developed using VBA 

based on the estimated execution periodicities, providing a useful aid for the engineering 

maintenance coordination team. 

The developed plan however, did not follow a pure condition-based maintenance approach, due 

to the lack of existing data on machine condition. Therefore, in order to complement the 

analysis and to demonstrate the approach’s potentialities, data from a critical parameter for one 

selected machine’s condition was gathered. To study the evolution of that parameter throughout 

time a condition-based model using a discrete time Markov chain was developed. Alternative 

condition-based policies with different preventive maintenance thresholds were simulated using 

the Monte Carlo simulation technique and compared with other policies, such as time-based 

and failure-based, based on their failure and maintenance costs. A sensitivity analysis to some 

of the underlying assumptions of the idealized model was performed to test the obtained optimal 

solution’s robustness and viability. One other parameter from a different machine was studied, 

with the aim of identifying its good condition values and define alarm and stoppage criteria for 

each tire measure and machine combination. 

The conducted work’s results should reflect more in the long run than in the short run, as 

predictive maintenance plans need some time to mature and really embed in the organizational 

culture and people’s way of thinking. Despite that, even in the short run the obtained results 

look encouraging: the maintenance maturity has increased in most of the machines, like 

expected, reaching beyond the desired target levels and looking balanced between each other; 

the MTBF’s have increased in the majority of the plant’s machines, meaning less frequent 

failures; and the MTTR’s have generally decreased, meaning the failures witnessed are less 

severe. In addition, it is shown that effective condition-based policies implementation can result 

in significant cost savings through both downtime reduction and repairing costs lowering. 

Future work suggestions comprise the adjustment of periodicities according to accumulated 

experience, a viability study about the presence of a dedicated predictive maintenance team, the 

review of time-based preventive maintenance checklists and the implementation of sensors that 

allow the knowledge of a machine’s state at any moment.  
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Resumo 

A Continental AG decidiu expandir o seu portfolio de produtos da sua Rubber Division ao 

retomar a produção de pneus agrícolas. Com esse propósito, um sério investimento foi feito na 

sua fábrica de Lousado, a Continental Mabor, para criar novas instalações, com nova 

tecnologia, para albergar a sua nova linha de produção para esses pneus. 

De forma a minimizar os custos de manutenção associados às novas máquinas e para maximizar 

o seu tempo disponível e tempo de vida útil, um plano de manutenção apropriado deve ser 

desenvolvido. Antes deste trabalho, apenas operações de manutenção preventiva (baseadas no 

tempo) tinham lugar nesta nova fábrica, sem que algum tipo de monitorização da condição 

através de sensores ou medições frequentes fosse realizado. Este trabalho tenta providenciar 

um plano de manutenção preditiva para ser implementado nestas novas máquinas, com o 

objetivo de aumentar a proporção de ações de manutenção planeadas e a sua standardização, 

com o derradeiro propósito de reduzir, no longo prazo, o número de avarias e a sua severidade. 

O primeiro passo foi identificar quais as avarias que estavam a acontecer e o que as estava a 

causar. Esta análise foi conduzida recorrendo aos relatórios de avarias existentes e ao pessoal 

responsável pela manutenção. Em seguida, as ações de manutenção e medição que podiam ser 

realizadas para mitigar a ocorrência de avarias e as suas causas foram idealizadas, bem como 

as ferramentas recomendadas para a sua execução, se fosse o caso. A frequência de execução 

dessas ações foi depois estimada usando ferramentas de análise de fiabilidade como a 

distribuição de Weibull (em caso de taxa de avarias não constante) ou regressão linear simples 

(no caso da taxa de avarias ser constante), baseado nos dados de avarias e sua frequência obtidos 

através dos relatórios de avarias, o que permitiu a estimativa do tempo médio entre avarias para 

cada subconjunto de máquina considerado. Um gerador automático dos planos mensais de 

manutenção foi também desenvolvido usando VBA, baseado nas periodicidades de execução 

estimadas, proporcionando uma ajuda útil à equipa de engenharia que coordena a manutenção. 

O plano desenvolvido, no entanto, não seguiu uma abordagem puramente baseada na condição, 

devido à falta de dados sobre a condição das máquinas. Por isso, e de forma a complementar a 

análise e demonstrar as potencialidades dessa abordagem, dados relativos a um parâmetro 

crítico da condição de uma máquina selecionada foram recolhidos e um modelo baseado na 

condição desenvolvido usando cadeias de Markov de tempo discreto, para estudar a evolução 

desse parâmetro ao longo do tempo. Várias políticas baseadas na condição com diferentes 

limites para manutenção preventiva foram simuladas usando a técnica de Monte Carlo e 

comparadas com outras políticas, tais como baseadas no tempo e na falha, considerando os seus 

custos de falha e manutenção. Uma análise de sensibilidade a alguns dos pressupostos do 

modelo idealizado foi executada para testar a robustez e viabilidade da solução ótima obtida. 

Um outro parâmetro de outra máquina foi também estudado, desta vez com o objetivo de 

identificar os valores para os quais a condição desta era “boa” e definir critérios de alarme e 

paragem da máquina para cada combinação de medida de pneu e máquina. 

É esperado que os resultados do presente trabalho se reflitam mais a longo prazo do que a curto 

prazo, uma vez que planos de manutenção preditiva como o idealizado requerem algum tempo 

para maturar e se embeberem na cultura da organização e na forma de pensar das pessoas. 

Apesar disso, mesmo no curto prazo os resultados obtidos parecem encorajadores: a maturidade 

da manutenção aumentou na maioria das máquinas, como esperado, ultrapassando os níveis-

alvo e apresentando-se balanceada entre todas elas; os tempos médios entre avarias aumentaram 

em quase todas as máquinas da fábrica, significando uma menor frequência de avarias; os 

tempos médios de reparação, por seu lado, diminuíram em boa parte das máquinas, significando 

falhas menos severas. Além disso, demonstra-se que a implementação de políticas de 

manutenção baseadas na condição eficientes pode resultar em poupanças significativas, através 

quer da redução de tempos perdidos, quer da diminuição dos custos de reparação. 

 



 

viii 

As perspetivas de trabalho futuro sugeridas compreendem o ajuste das periodicidades consoante 

a experiência acumulada, o estudo da viabilidade da existência de uma equipa dedicada à 

manutenção preditiva, a revisão das checklists usadas nas ações de manutenção preventiva 

(baseada no tempo), bem como a implementação de sensores que permitam o conhecimento do 

estado de uma máquina a qualquer momento.
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1 Introduction 

Nowadays, and in contrast to what had been an industry-wide general thought for several years, 

maintenance is no longer regarded as a cause for lost production time. Managers over the years 

have become more and more aware that effective maintenance plans can contribute to extend 

their equipment’s useful life and prevent it from having critical and extensive breakdowns that 

can stop an entire production line for long periods. The recognition of maintenance as a 

potential profit generator (through cost savings), however, is a fairly recent development 

(Waeyenbergh and Pintelon 2002). Managers have realized they could obtain significant 

savings both in new equipment and spare parts purchase, and in productivity gains through an 

increased equipment availability. 

Bearing this in mind, and considering also that the automotive industry is one of the most, 

competitive industries in the world, it is easy to associate that effective maintenance operations 

and policies give a crucial contribution to success and can create a decisive competitive 

advantage over the other players in the market.   

According to Kroeze (2015), there are three crucial requirements for a tire manufacturer to be 

successful: rapid development, compressing their development processes to innovate faster and 

take new concepts to market faster, at lower cost; automated manufacturing, replacing the 

traditional labor-driven manufacturing, in order to achieve higher levels of operational 

efficiency and product consistency, while there is a growing need to maximize increasingly 

scarce human skills; and proactive service and maintenance operations, to ensure that downtime 

is no longer seen as a necessary evil, but as a phenomenon that can be increasingly engineered 

out. In the remainder of this chapter, a brief company presentation is introduced, followed by a 

succinct characterization of the tire market, with a special focus on the agricultural tire market, 

and a short description of the project. 

1.1 Company presentation 

This project took place at Continental Mabor, Indústria de Pneus, S.A. (Continental Mabor). 

This tire manufacturing plant belongs to the worldwide known German tire manufacturer 

Continental AG.  

1.1.1 Continental AG 

Continental AG was founded in Hannover, Germany, in 1871, and has been growing steadily 

ever since. With a workforce totaling more than 240,000 employees worldwide (Continental 

2018b), Continental is present in many different markets, although all of them connected to 

mobility and the automotive industry, ranging from rubber products (tires) to chassis, interior 

designs, powertrains and safety devices. 

This product diversity made it the second largest supplier for the automotive industry, 

exceeding €40 billion in revenue in 2016, only behind Bosch (Statista 2017). This position was 

achieved through the corporate strategy of acquisitions, the most notable one being the 
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acquisition of Siemens VDO Automotive AG for €11.4 billion in 2007 (Reuters 2007). In 2008 

however, due to difficulties in integrating VDO’s business, Continental was targeted by a 

takeover bid from Schaeffler AG, a ball-bearing company whose size was about a third of 

Continental’s, who still controls just under 50% of Continental AG (Mason 2008). Schaeffler 

and Continental combined overtook Bosch as the leading vehicle components supplier by 2009, 

in the meanwhile since then Bosch has regained top position in the market.  

In 2016, 7% of Continental’s worldwide sales were invested the company’s research and 

development division, which demonstrates its constant pursuit for improvement and how the 

company wishes to stay as innovative as possible. 

Continental AG is divided in two main business groups: the Automotive Group and the Rubber 

Group. The Automotive Group, on the one hand, has three divisions: Chassis & Safety, Interior 

and Powertrain. The Rubber Group, on the other hand, has two divisions: Tire 

Division/Corporate Purchasing (where Continental Mabor inserts itself) and the ContiTech 

Division. The Automotive Group is the largest business group, accounting for roughly 60% of 

total sales, even if the largest division in terms of sales is the Tire Division (Figure 1), 

representing 26% of total sales (Continental 2017).  

 

Figure 1 - Continental consolidated sales evolution by division. Source: Continental (2017) 

In terms of markets, by observing Figure 2, it can be seen that the main customers are located 

in Europe, North America and Asia. This is not surprising given that the majority of car 

manufacturers and their plants are located in these continents. However, increasing 

globalization happening nowadays may, in the future, redistribute these sales figures in a more 

levelled way across the globe. 

 

Figure 2 - Sales by market in 2017. Source: Continental (2017) 
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Continental AG’s mission is propelled by four megatrends: promote safety, intelligent mobility 

through information, protect the environment and promote affordable mobility, enabling 

freedom and access to all.  

1.1.2 Continental Mabor 

Continental Mabor was born in December 1989. Its name comes from the union of two 

renowned companies in the rubber manufacturing sector: Mabor, at a national level, and 

Continental AG, a world-wide corporation.  

In July 1990 the great restructuring program that transformed the former facilities of Mabor 

into one of the manufacturing units of Continental began. Starting from an average daily 

throughput of 5,000 tires per day in 1990, a throughput of 21,000 tires per day was achieved in 

1996, meaning that production had quadrupled. Nowadays, Continental Mabor has an average 

production capacity of 57,000 tires per day, presenting itself as one of the plants in the whole 

group with better productivity indexes (Continental 2018a). It employs over 2,000 people and 

is the fourth biggest exporting company of Portugal (Cardoso 2018), exporting 98% of their 

€878 million business volume. 

Because of the high quality and productivity reputation Continental Mabor has gained over the 

years, the facilities have expanded in 2017 to host the production of the new agricultural tire 

line of Continental AG. 

1.2 The tire manufacturing sector 

Specifically speaking about the tire market, there are two main revenue generators: the new 

vehicles market and the replacement market. Continental claim that about a third of all vehicles 

in Europe are commercialized with Continental tires (Continental 2018a), which demonstrates 

the confidence car manufacturers have in Continental’s tires’ quality and performance. As of 

2017, Continental was the fourth largest tire manufacturer, only behind Bridgestone, Michelin 

and Goodyear, totaling $12.6 billion in revenue (Statista 2018). 

The tire market has been experiencing a shrink in the last years, especially due to the recent 

increase of the natural rubber price (Mordor Intelligence 2017), forcing manufacturers to 

increase their final products’ price.  

The agricultural tires market, more specifically, is characterized by increasingly sophisticated 

tire designing. Moreover, with the powerful farm vehicles, the productivity and need for tires 

with improved traction on a wide range of surfaces are increasing. The company with the 

highest market share in the global agricultural tires market is Michelin (Mordor Intelligence 

2017). 

The replacement tire segment is expected to constitute a major market share, due to the inherent 

efficiency that makes it universally applicable in varied agricultural purposes. Furthermore, one 

of the biggest challenges the agricultural tire manufacturers face is the exposure to frequent raw 

material price fluctuations, primarily of steel and rubber. With a raw material intensive industry, 

the profit margins of the manufacturers are correlated with the raw materials prices, among 

which natural rubber constitutes around 40 to 45% of the total costs (Mordor Intelligence 2017). 

This currently is working as an advantage for tire manufacturers, as the prices for natural rubber 

have been in a decreasing trend since 2011, and stabilized since the beginning of 2018. 

Notwithstanding, the Asia Pacific agricultural tire market is growing, due to the agricultural 

machinery demand, especially in India, since it possesses a large irrigated land area. Whereas 

owing to the high food demand, Europe and North America hold a combined market share of 

60%, which has influenced the agricultural tires market (Mordor Intelligence 2017). 
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1.3 Brief project description 

In 2017, Continental AG decided to resume production of tires for agriculture vehicles, 

something they had dropped quite a long time ago. To do so, Continental Mabor in Lousado 

was chosen to host the new production plant, due to their excellence in quality and productivity. 

$53.78 million were invested on agricultural tires production, increasing Continental AG’s 

portfolio by the next three years and cover about 100 different tire types (Mordor Intelligence 

2017).  

There were installed several new machines that compose the new production line for the 

manufacturing of agricultural tires. These machines, although fairly new, still experience 

several breakdowns due to many needed adjustments and because of the limited knowledge 

about them and their performance.  

This project merged from the need to implement a predictive maintenance plan which was 

nonexistent at this unit. It took place at Engineering Departments no. 7 and 8, that compose the 

new CST facility at Continental Mabor. The objectives to be achieved consist in the 

development of an initial framework over which the engineering departments can work on, and 

the establishment of the predictive maintenance plan, composed by a set of routine maintenance 

operations and measurements in the machines, the tools that should be used to perform those 

operations and the periodicity with which those operations should be executed. 

1.4 Document structure 

This thesis is divided in four main sections. In Section 2 of this document, a literature review 

presenting previous works made on the field of maintenance, as well as an introduction to the 

various types of maintenance according to several authors is presented. In Section 3 the problem 

and the methodologies used to tackle it are introduced in detail, as well as the initial situation. 

In Section 4 the proposed solution and plan is discussed and presented, as well as all the relevant 

steps towards it. A condition-based model used to study the degradation evolution of a 

parameter is also proposed. In Section 5 the obtained results from the plan implementation and 

from the condition-based model developed are presented and discussed, and a sensibility 

analysis on some of the model’s assumptions is performed. Finally, in Section 6 conclusions 

about the project are drawn, as well as suggestions for future work both from the research and 

the company’s perspective. 
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2 Literature review on maintenance practices 

Maintenance can be defined as “the process of preserving a condition or situation or the state 

of being preserved”, or as “the process of keeping something in good condition” ("Oxford 

Dictionaries"  2018). 

Its importance lies in the fact that it allows the extension of an equipment’s useful life, as well 

as its availability and, consequently, throughput. Thus, the choice of the maintenance policy 

can play an active role in the performance of a plant and its equipment.  

2.1 Evolution of the maintenance concept 

The approach to maintenance has changed dramatically since the implementation of the 

concept. Up to the decade of 1940, maintenance was considered only as a necessary evil 

(Waeyenbergh and Pintelon 2002) that provided an unavoidable cost, and the only maintenance 

that took place was Corrective Maintenance (CM). Whenever an equipment failure occurred, 

the system was returned to operation. Authors differ about who was responsible for those tasks: 

Waeyenbergh and Pintelon (2002) claim it was a production task, while Murthy et al. (2002) 

argue that there already existed a specialized maintenance workforce. Maintenance was neither 

incorporated into the design of the system, nor was the impact of maintenance on system and 

business performance duly recognized (Murthy et al. 2002). 

According to Murthy et al. (2002), the evolution of operations research, its applications during 

World War II and subsequent use in industry led to the widespread use of Preventive 

Maintenance (PM). Since the 1950s, operations research models for maintenance have appeared 

at an ever-increasing pace. The impact of maintenance actions on the business performance was 

still not addressed, and Waeyenbergh and Pintelon (2002) describe that at this stage, 

maintenance was seen as only a technical matter. 

In the 1970s, maintenance was not anymore seen as an isolated function, and there were some 

integration efforts with other functions in the company, as maintenance was now seen as a profit 

contributor (Waeyenbergh and Pintelon 2002). Some new approaches emerged, such as 

Reliability Centered Maintenance (RCM), where the connection between reliability and 

maintenance was recognized. According to Moubray (1991), under the RCM model 

maintenance is carried out at the component level and the maintenance effort for a component 

is a function of its reliability. At the same time, the Japanese evolved the Total Productive 

Maintenance (TPM) in the context of manufacturing, where maintenance is viewed in terms of 

its impact on the manufacturing through its effect on equipment availability, production rate 

and output quality (Murthy et al. 2002).  

Both RCM and TPM are upgrades from the latest operations research models for PM previously 

described in the way that they view maintenance in the broader business context and consider 

the link between component failures and their impact on business performance. However, they 

still have the downside of assuming a nominal operating condition and not considering the load 

of the equipment. Short-term strategies such as these models need good predictive models to 

assess the condition of different elements of the network and their residual lives, which requires 

a good understanding of the degradation mechanism and building models based on this and 

field data. However, long-term strategies need to take into account issues such as the socio-

political and demographic trends and the capital needed, and these models fail to do so (Murthy 

et al. 2002). 

The latest trends in maintenance go exactly in this direction. They emphasize the need to cross 

the factory boundaries and to look for globalization and greater integration with the other 

functions, especially with production (Waeyenbergh and Pintelon 2002). It is about pursuing 
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optimality in maintenance operations, making the best use possible of the information and 

communication technologies (ICT) and sensorial data to achieve such goal.  

2.2 Developing the maintenance concept 

Three important factors can be pointed out as critical success factors of a maintenance concept 

(Pintelon et al. 1997): (1) the production personnel and maintenance workers’ knowledge and 

competence to prevent disruptions at an early stage; (2) management skills regarding planning 

and control of maintenance tasks as well as Human Resources Management: studies have 

shown company-wide maintenance knowledge and participation of manufacturing personnel in 

the planning of maintenance are of major importance (Jonsson 1999); (3) flexibility to exploit 

opportunities and trends, such as the expanding maintenance services market and the ICT.  

Bearing these in mind, Waeyenbergh and Pintelon (2002) propose a general framework for 

developing a maintenance concept, based on multiple standard concepts widely used in 

industry, such as RCM or TPM.  This framework is divided in five modules of steps.  

The first one aims to capture the real objectives of the maintenance plan to be developed, which 

can be divided into smaller ones, like availability, quality, safety, flexibility or cost. 

The second module is where the technical analysis takes part. The Most Important Systems 

(MIS) are identified according to a set of criteria, like ease of detection, the impact on safety, 

loss of production or repair cost. These factors can be weighted according to each production 

line’s characteristics and help to prioritize the maintenance actions. The criticality analysis can 

be done using a table, where failures are evaluated according to possible severity factors, its 

frequency of occurrence and the repairing costs required, both in material and manpower. 

The third module is one of the most important, as is when the actual maintenance policy is 

chosen and optimized. These maintenance policies can be to keep the component running until 

it fails (Failure-Based Maintenance), to monitor its functioning using some measurable 

parameters (Condition-Based Maintenance), or to carry maintenance action after a specific 

amount of time, assuming that failures are predictable (Time-Based Maintenance). Then, the 

maintenance policy chosen for each component must be optimized and fine-tuned, to retrieve 

maximum benefits from it.  

Finally, the fourth and fifth modules are related to performance measurement and continuous 

improvement, acting on the first three modules and make the necessary adjustments to them. 

Maintenance policies ultimately divide themselves into two broad categories (see Figure 3): 

preventive (before failure) and corrective (after failure). In the preventive maintenance category 

there are mainly two subdivisions, which will be discussed next. 

 

 

Figure 3 - Types of maintenance policies 
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2.3 Corrective maintenance 

Reactive or corrective maintenance (CM) is the practice of fixing equipment when it breaks 

down or when performance deteriorates to a point that it is no longer acceptable. This is the 

traditional approach to maintenance, because it is the most natural — we tend to fix things when 

they break. That’s also why it is the most commonly maintenance policy used (Hemmerdinger 

2015). This type of maintenance is also often referred to as unplanned maintenance, even if 

sometimes incorrectly, as one may plan to only perform corrective maintenance. 

In the short term, it seems to cost less, as the cost of maintenance equals only what it takes to 

repair a broken unit. If nothing breaks, then very little is spent on maintenance. However, these 

savings are an illusion (Hemmerdinger 2015).  

The disadvantages of reactive maintenance are mostly not visible to management, which is why 

so many facilities continue to use this approach. It results in increased costs due to unplanned 

downtime, additional costs involved with repair or replacement of equipment, as well as an 

inefficient use of staff resources, who are always in “firefighting mode” (Hemmerdinger 2015). 

Theoretically, this approach might work well when all equipment is new, since a high degree 

of uptime and sound performance are reasonable expectations early in the equipment’s lifecycle 

(Hemmerdinger 2015). However, as so is happening at Continental Mabor, new equipment 

needs monitoring and adjusting, and possibly early-intervention maintenance. Failure to 

provide such maintenance will eventually lead to a premature failure of the equipment and the 

lifetime cost of the equipment will skyrocket, as replacement parts will always be needed 

regularly, and its lifetime will be severely reduced (Hemmerdinger 2015). 

Also, if it is expected for the equipment to work non-stop for a long period of time, it is well 

thought to implement a maintenance plan that considers the fact that the equipment’s condition 

will deteriorate in the future right from the beginning, or at least in parallel with a CM team to 

respond to any unexpected breakdown. 

2.4 Preventive maintenance 

Preventive maintenance activities (PM) refer to all maintenance actions that are programmed 

before the breakdown takes place. This does not necessarily mean that these activities only 

occur when the equipment is up; in fact, some activities may be performed when the equipment 

is down, for example because of an inability of the CM team to solve the problem or because 

the breakdown happened too close to a preventive maintenance activity, and so equipment 

maintenance is postponed until the time of that planned activity. 

In the literature, preventive maintenance is often divided in two types: time-based and 

predictive maintenance, also referred to as condition-based maintenance (CBM). 

2.4.1 Time-based maintenance 

Time-based maintenance (TBM) relates to regular maintenance operations to maintain 

equipment in a good state, preventing unplanned downtime and increased costs due to 

unpredicted equipment failure. It consists in carrying out the operations in machines and 

equipment before the failure or the breakdown takes place, at previously established fixed time 

intervals (time-based monitoring or maintenance). The objective of time-based PM is to prevent 

failures before they happen and therefore to minimize the probability of failure (Ruiz et al. 

2007), being part of the planned maintenance category. It is normally conducted using a pre-

defined checklist, that states all the actions and components that must be verified. 
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Its biggest difference when compared to CM is that it is performed when the equipment is still 

up (Caballé et al. 2015) and the fact that they take place in pre-scheduled periods, regardless of 

the actual condition of the equipment. 

This maintenance policy has the clear advantages of reducing an equipment’s downtime and 

the risk of unexpected failures, while increasing its long-run life and reliability. Consequently, 

it enables to reduce not only the costs associated with direct machine repair and components 

replacement, but also the costs related to the lack of production during downtime. 

However, it still has the disadvantage of not considering the current state of the equipment. For 

example, if an equipment’s PM operation is scheduled to take place in 3 weeks’ time, even if it 

remains in a good state after the 3 weeks, it must stop because a PM action has been scheduled. 

This aspect may not be considered by many as critical, but minding the equipment´s condition 

into consideration can reduce unnecessary maintenance actions and eliminate the risks 

associated with preventive maintenance actions (Alaswad and Xiang 2017). 

2.4.2 Predictive or condition-based maintenance 

Like TBM, a predictive maintenance policy is based on the tenet that a proactive approach is 

better than a reactive one. However, instead of repairing based on a predetermined schedule, 

the predictive approach does repairs based on the actual condition of the equipment 

(Hemmerdinger 2015). Predictive maintenance is introduced as an advanced maintenance 

technique. It is popularly reported in the literature and its decision-making process relies on the 

diagnostic/prognostic of the system condition over time (Nguyen et al. 2015). 

A CBM policy has the advantage of being able to overcome the disadvantages of the “classic” 

TBM approach. Allows to cut the unnecessary maintenance operations given by too 

conservative TBM policies and mitigate the risks associated with optimistic ones, by simply 

monitoring, constantly or periodically, the equipment’s state. On the other hand, it also has the 

disadvantage of requiring the gathering of large quantities of information through sensors and 

other measuring devices in the equipment, whose installation and purchase may prove to be 

costly. However, the obtained availability and productivity gains often overrule the investment 

made, as an appropriate condition monitoring and maintenance management technologies can 

greatly increase the efficiency and profitability of industrial production (Zhen et al. 2010). 

In predictive maintenance, the system state is monitored through perfect inspections. When a 

fault is detected upon inspection, a CM operation replaces the failed system by a new identical 

one. However, both the fault and the CM operation can be very expensive because of, e.g., 

lower efficiency, production losses, security hazards or unplanned intervention. In this context 

a CBM policy can be profitable to avoid failure occurrence at the lowest cost and to improve 

the availability and safety of the maintained system (Grall et al. 2002b). 

Many industries, from automotive to chemical, already use sensorial data to monitor their 

equipment’s performance and state, and with very good results, as this proactive intervention 

technique has enabled to reduce downtime close to zero (Kroeze 2015). However, in the tire 

manufacturing industry, there is still little effort being done on transporting those practices to 

their manufacturing plants.  

The annual cost of maintenance has been reported to go up to 15% for manufacturing 

companies, 20%–30% for chemical industries (Nguyen et al. 2008), and 40% for iron and steel 

industries (Chu et al. 1998). Thus, developing new maintenance technologies and arranging 

proper maintenance scheduling has become more and more important to enhance production 

and economic efficiency. Despite this economic factor, the maintenance of equipment always 

has a major impact on system reliability, availability and security (Zhen et al. 2010). 

A CBM program should consist of three key steps (Lee et al. 2004): 
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1. Data acquisition (information collecting), to obtain data relevant to system health. 

2. Data processing (information handling), to handle and analyze the data or signals 

collected in step 1 for better understanding and interpretation of the data. 

3. Maintenance decision-making (decision-making), to recommend efficient maintenance 

policies. 

2.5 Maintenance performance indicators 

The performance and competitiveness of manufacturing companies is dependent on the 

reliability, availability and productivity of the production facilities. To ensure the plant achieves 

the desired performance, maintenance managers need a good track of performance on their 

maintenance processes. Maintenance performance indicators should not be defined separately 

from other company indicators, but should be the result of a careful analysis of the interaction 

of the maintenance function with other organizational functions, most evidently with the 

production function, aligning the maintenance objectives with the manufacturing and corporate 

objectives. Notwithstanding, the defined indicators should have a certain level of 

standardization, allowing its company-wide comparison (especially in the case of large 

multinational corporations). 

A few of the most commonly used maintenance performance measurements are: total operation 

time, total unavailability duration, expected total cost, expected cost per time unit and 

availability (Zhen et al. 2010); maintenance maturity (MM), mean time between failures 

(MTBF) and mean time to repair (MTTR). Total operation time and total unavailability duration 

are absolute measures to evaluate equipment performance, but analyzing availability (a relative 

measure giving the percentage of time the equipment is up compared to its total working time) 

is often more relevant, especially when comparing machines with different working times. Total 

cost and total cost per time unit have the aim to quantify and keep track of maintenance 

expenditures. The latter three were the ones used to assess the proposed plan’s performance and 

therefore will be further explored in Section 3. 

2.6 Reliability analysis 

Reliability analysis inserts itself in the second of three steps previously introduced: data 

processing. Reliability analysis is the called term for data analysis which allows, by fitting the 

failure events to a known distribution, their statistical study and functioning characterization 

(Jardine et al. 2006). 

The two most used distributions to fit event data when performing reliability analysis present 

in literature are the exponential distribution and the Weibull distribution (Das 2008).  

The exponential distribution has the advantage to be very easy to understand, implement, and 

can provide good approximations to machine failure distributions (Diallo et al. 2001); (Savsar 

2000); (Yazhou et al. 1995). However, it has the disadvantage of not being capable to fit to 

every data series, namely when the failure rate has an increasing or decreasing tendency. For 

this kind of data, Weibull distribution is used. In reliability work, Weibull distribution has the 

advantage of being a versatile distribution which is expected to fit many different failure 

patterns (Ireson et al. 1996) by adjusting its distribution parameter values.  

Researches have been studying the application of failure distributions to machine reliability 

analysis (Das 2008). Yazhou et al. (1995) studied the probability distribution of machining 

center failures in 24 cutter-changeable CNC machine tools. To identify the failure distribution, 

the failure data were fitted to a probability plot taking a linear regressive approach and on a 

Weibull paper, and then evaluated for goodness-of-fit by correlation analysis. Dai et al. (2003) 

applied type I censored data for machining centers to fit on Weibull distribution, checked by 
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goodness-of-fit test. The Weibull parameters were found by the Maximum Likelihood Method 

(MLE) method.  

Since the exponential distribution can be considered as a special case of the Weibull 

distribution, (shape 𝛽 =  1 and scale 𝜃 =  1/𝜆) (Das 2008), Weibull distribution can be used 

to fit to any kind of machine failure distribution and is next introduced with more detail. 

Weibull distribution 

The Weibull distribution, named after its inventor, Waloddi Weibull, is widely used in 

reliability engineering and in other applications due to its versatility and relative simplicity. Its 

application to define the maintenance periodicities was used in this work. The general 

expression of the Weibull probability distribution function is given by the three-parameter 

Weibull distribution expression (2.1): 

 

 𝑓(𝑇) =  
𝛽

𝜃
 (
𝑇 − 𝛾

𝜃
)
𝛽−1

𝑒−(
𝑇−𝛾
𝜃
)
𝛽

 (2.1) 

   

where 𝛽 is the shape parameter, 𝜃 is the scale parameter and 𝛾 is the location parameter. 

Frequently, the location parameter is not used, and the value for this parameter is set to zero. 

Depending on the values of the parameters, the Weibull distribution can be used to model a 

variety of life behaviors. An important aspect of the Weibull distribution is how the values of 

β and θ affect the shape of the pdf curve, the reliability and the failure rate. 

The value of the Weibull shape parameter, β, has a distinct effect is the failure rate. Weibull 

distributions with 𝛽 <  1 have a failure rate that decreases with time, also known as infantile 

or early-life failures. Weibull distributions with β close to or equal to 1 have a fairly constant 

failure rate, indicative of useful life or random failures. Weibull distributions with 𝛽 >  1 have 

a failure rate that increases with time, also known as wear-out failures. These comprise the three 

sections of the classic "bathtub curve” (Figure 4). On the other hand, a change in the scale 

parameter, 𝜃, has the same effect on the distribution as a change of the abscissa scale. Increasing 

the value of 𝜃 while holding 𝛽 constant has the effect of stretching out the pdf to the right and 

decreasing the “peak” of the pdf curve (ReliaSoft Corporation 2002). 

 

Figure 4 - The bathtub curve. Source: ReliaSoft Corporation (2002) 

For these parameters to be useful in any kind of analysis, they must be estimated from the 

gathered data. Two methods are the most used: Least Squares Estimation (LSE) and Maximum 

Likelihood Estimation (MLE). The method used in this thesis was the MLE (see Appendix A). 
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Considering that the machine failure event data can be fitted to a Weibull distribution, machine 

reliability for machine 𝑗 can be written as: 

 𝑅𝑗(𝑡) = 𝑒𝑥𝑝 [−(
𝑡

𝜃𝑗
)

𝛽𝑗

] (2.2) 

where 𝑡 = planned time period for the part under consideration and 𝜃𝑗  and 𝛽𝑗 are the scale and 

shape parameters for machine 𝑗, respectively (Das 2008). 

The Mean Time to Failure (MTTF) can be considered equal to Mean Time Between Failures 

(MTBF) for a repairable system when complete samples (failures) are analyzed for the 

estimation of MTTF (Abernethy 1996). There are a few limitations on using the MTTF as a 

metric, as it is not time-dependent. However, for enterprises it is a much more easily 

interpretable and tangible metric than the reliability probability, and enables to satisfy one of 

this thesis’ purposes, which is to determine the maintenance actions’ periodicities. If it is 

considered that failure data corresponds to the equipment’s early life and, therefore, to the first 

part of the bathtub curve (Figure 4), and that from that moment on the equipment will enter the 

useful life part of the bathtub curve, one may assume that the MTTF will remain constant, from 

that moment on. Assuming this as true, the MTTF can be estimated through the Weibull failure 

model (2.3), using data from the early life stage of the equipment. 

 𝑀𝑇𝑇𝐹 =  𝜃Г (1 +
1

𝛽
) (2.3) 

where Г is the gamma function (Das 2008). 

Weibull analysis applications and variants 

In literature one can found different ways to obtain the time to failure of components. Some 

authors look to adapt a model based on a statistical distribution like Weibull, while others seek 

to develop their own algorithms and models that can better suit the process data in question.  

In order to investigate maintenance performance of a process system, Weibull analysis is used 

as a statistical tool to predict the availability and reliability of process equipment (Zulkafli and 

Mat Dan 2016), being the most widespread and commonly used method in the field of failure 

prediction. This model provides adequate results even if there is relatively low number of 

samples and allows to model the decreasing, constant and increasing part of the bathtub curve 

(Irinyi and Cselko 2017), shown in Figure 4.  

Irinyi and Cselko (2017) also propose the CROW-AMSAA method to overcome Weibull 

distribution’s main disadvantage, that is the fact that it can only model one single failure mode. 

Zulkafli and Mat Dan (2016), on the other hand, analyze data from a gasification process and 

use pure Weibull analysis, estimating the shape and scale parameters to obtain the MTTF and, 

consequently, the failure rate of each component to schedule maintenance operations. 

Other authors use modified Weibull distribution models to predict the failure rate. Yujie et al. 

(2017) propose an improved Weibull-based Generalized Renewal Process, where the failure 

rate is predicted by estimating the Weibull parameters 𝜃 and 𝛽 from failure data utilizing an 

estimation algorithm.  

2.7 Data analysis combining event data and condition monitoring data 

Data analysis for event data only is known as reliability analysis, which fits the event data to a 

time between events probability distribution and uses the fitted distribution for further analysis. 

In CBM, however, additional information, condition monitoring data, is available, thus a 

combined event data and condition monitoring analysis is beneficial and can be accomplished 

by building a mathematical model (Jardine et al. 2006). 
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Time-dependent proportional hazards model  

A time-dependent proportional hazards model (PHM) is a popular model in survival analysis 

and suitable for this kind of analysis, as it relates the failure probability to both time and 

condition variables. The hazard function for this model is of the form presented in (2.4), where 

ℎ0(𝑡) is a baseline hazard function, 𝑥1(𝑡), … , 𝑥𝑝(𝑡) are covariates which are functions of time, 

and 𝛾1, … , 𝛾𝑝 are coefficients. 

 

 ℎ(𝑡) =  ℎ0(𝑡) exp (𝛾1𝑥1(𝑡) + ⋯+ 𝛾𝑝𝑥𝑝(𝑡)) (2.4) 

 

A commonly used baseline hazard function is the hazard function of the Weibull distribution. 

MLE is usually used to build a PHM from event data and condition monitoring data (Jardine 

et al. 2006). Among the authors that provide works on this method, are Jardine et al. (1987) 

and Vlok et al. (2004). 

Markov chains and Hidden Markov model 

In probability theory, a Markov process, named after Russian mathematician Andrey Markov, 

is a stochastic process that satisfies the Markov property, i.e., if one can make predictions about 

the future based solely on the current process state being, therefore, a memoryless process 

(Serfozo 2009). A Markov chain is a type of Markov process that has either discrete state 

space or discrete index set (often representing time), but it is also common to define a Markov 

chain as having discrete time in either countable or continuous state space (Asmussen 2008). A 

discrete time Markov chain is typically characterized by its probability transition matrix, which 

contain the transition probabilities from one state to another. 

Markov chains have many applications as statistical models to describe real-world processes, 

being the most frequently used example the modeling of queuing lines. As will be later 

explained, it also enables to model the degradation of an equipment throughout its life, being 

one of the most used approaches in the condition-based maintenance field. 

Hidden Markov model (HMM) is another appropriate model for analyzing event and condition 

monitoring data together. An HMM consists of two stochastic processes: a Markov chain with 

finite number of states describing an underlying mechanism and an observation process 

depending on the hidden state. Event data and condition monitoring data are then used to train 

the HMM, i.e., to estimate model parameters. Since full likelihood function is not available for 

an HMM, a statistical approach known as EM algorithm is usually used for parameter 

estimation (Jardine et al. 2006). Examples of works with HMM were developed by Bunks et 

al. (2000) and Dong and He (2004). 

2.8 Predictive maintenance techniques 

There are two main types of predictive maintenance techniques: diagnostics and prognostics 

(Okoh et al. 2017). Diagnostics is the process of checking faults and the health state of sub-

systems and units in an operational environment with the aid of sensors. During maintenance, 

inspection is required to identify components and provide information on the current 

performance status (Banjevic 2009). Prognostics is predicting the duration after which a 

component can no longer perform its intended or expected functionality to improve system 

safety. The International Standard Organization (ISO 13381-1:2004) define Prognostics as “the 

estimated-time-to-failure and the risk of existence or subsequent appearance of one or more 

failure modes” (Medjaher et al. 2012). 
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2.8.1 Diagnostic-based predictive maintenance 

Machine fault diagnostics is a procedure of mapping the information obtained in the 

measurement space to machine faults in the fault space. This mapping process is also called 

pattern recognition (Jardine et al. 2006), which is usually a process resultant from data 

acquisition signals, gathered by sensors installed in the machines. Diagnostic approaches are 

normally supported by statistical or artificial intelligence approaches. Hu et al. (2015), for 

example, studied the application of Weibull distribution in cable partial discharge pattern 

recognition. 

A common method of fault diagnostics through a statistical approach is to detect whether a 

specific fault is present or not based on the available condition monitoring information without 

intrusive inspection of the machine. This fault detection problem can be described as a 

hypothesis test problem with null hypothesis H0: Fault A is present, against alternative 

hypothesis H1: Fault A is not present. In a concrete fault diagnostic problem relying on sensorial 

data, hypotheses H0 and H1 would be interpreted into an expression using specific models or 

distributions (Jardine et al. 2006).  

2.8.2 Prognostic-based predictive maintenance 

The most obvious and widely used prognostics is to predict how much time is left before a 

failure occurs (or, one or more faults) given the current machine condition and past operation 

profile. The time left before observing a failure is usually called remaining useful life (RUL) 

(Jardine et al. 2006). The other method relies on obtaining a failure probability based on current 

condition and past operation profile, but it is mostly used when a failure can be catastrophic 

(e.g. nuclear power plant), and the literature on the topic is still quite scarce. 

RUL estimation 

Every condition-based policy is characterized by a threshold degradation level (value) which, 

when reached, triggers the execution of a PM action. The RUL consists in estimating the time 

to reach that defined threshold degradation level that should not be crossed (Varnier and 

Zerhouni 2012), given the current machine age and condition and its past operation profile 

(Jardine et al. 2006). For a correct interpretation of RUL, a proper definition of failure is 

required. There are two ways in describing the failure mechanism: assume that failure depends 

only on condition variables which reflect the actual failure level (failure occurs when the fault 

reaches a predetermined level), or  building a model using available historical data to define 

failure (Jardine et al. 2006). 

Banjevic and Jardine (2006) discussed RUL estimation for a Markov failure time process which 

includes a joint model of proportional hazards model (PHM) and Markov property for the 

covariate evolution as a special case. HMM, a stochastic process model discussed earlier, is 

also a powerful tool for RUL estimation (Chinnam and Baruah 2003). Daming and Makis 

(2004) introduced a partially observable continuous-discrete stochastic process model to 

describe the hidden evolution process of the machine state associated with the observation 

process. RUL estimation, as one of the prediction tasks, was given based on the model. Wang 

et al. (2000) proposed a stochastic process, called gamma process, with hazard rate as its mean 

for prediction of residual life.  

Prognostics incorporating maintenance policies 

RUL estimation plays an important role in prognosis-based CBM. Notwithstanding, prognosis 

is a wider field than RUL estimation, as it further aims to provide decision support for 

maintenance actions. The main idea of prognosis incorporating maintenance policies is to 

optimize the maintenance policies according to certain criteria such as risk, cost, reliability and 
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availability. Literature in this field is dominated by cost-based CBM optimization (Jardine et 

al. 2006).  

When it comes to the condition monitoring interval, there are two types: continuous and 

periodic. In continuous monitoring, one continuously monitors (usually by mounted sensors) a 

machine and triggers a warning alarm whenever an inconsistency is detected. Two limitations 

of continuous monitoring are its higher cost and the fact that to continuously monitor raw 

signals with noise may produce inaccurate diagnostic information. Periodic monitoring is, 

therefore, used due to being more cost effective and providing less reactive diagnosis (Jardine 

et al. 2006). Of course, the risk of using periodic monitoring is the possibility of missing some 

failure events which occur between successive inspections (Goldman 1999). 

Several works use a stochastic model (gamma process) to describe the deterioration process. A 

very important contribution in this field was given by Grall et al. (2002b), who propose a 

continuous monitoring predictive maintenance structure for a gradually deteriorating single-

unit system, that enables optimal inspection and replacement decision to balance the failure and 

unavailability costs on an infinite horizon. To do so, two maintenance decision variables are 

considered: the preventive replacement or fault threshold (𝑀) and the inspection intervals (𝑇𝑖) 
based on the system state (𝑋𝑡) allowing for irregular inspection intervals (Figure 5). The choice 

of these variables is of most relevance as they are directly correlated with the economic 

performance of the maintenance policy. 

The system is assumed to fail when the system state is greater than a fixed 𝐿, degradation 

characteristic of the considered system. Moreover, the deterioration process between two 

maintenance operations is assumed to be stochastic, time-homogeneous and to evolve by means 

of positive, increasing jump processes with independent stationary increments; inspections are 

assumed to be perfect and maintenance actions instantaneous. 

The proposed maintenance decision frame is as follows (see Figure 5), and is the most 

frequently found across CBM literature: 

a. If 𝑋𝑇𝑖
− ≥ 𝐿 (system failed), a corrective maintenance action takes place, and the system 

state is set to “as good as new” (𝑋𝑇𝑖
+ = 0) - regeneration; 

b. If 𝑀 ≤ 𝑋𝑇𝑖
− ≤ 𝐿 (system still functioning, but too deteriorated), a preventive maintenance 

action occurs, and the system state is also restored to “as good as new”; 

c. If 𝑋𝑇𝑖
− < 𝑀 the the system is left unchanged until the next inspection. 

Castanier et al. (2003) and Dieulle et al. (2003) have similar approaches. The first ones study a 

condition-based maintenance policy for a repairable system subject to a continuous state 

gradual deterioration monitored by sequential non-periodic inspections. Taking advantage of 

the semi-regenerative (or Markov renewal) properties of the maintained system state, the 

maintenance policy is evaluated in terms of the long-run system availability and expected 

maintenance cost. The latter ones assumed a one-level replacement policy in a continuously 

deteriorating system, modeled by a gamma process, which is inspected at random times 

sequentially chosen by help of a maintenance scheduling function. 
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Figure 5 - Schematic evolution of the system state. Source: Grall et al. (2002b)  

One different approach is to discretely model the deterioration process, i.e., deterioration levels 

are split into a set of pre-set number of discrete states. Grall et al. (2002a) propose an analytical 

model for a stochastically and continuously deteriorating single-unit system using a Markovian 

process to model the degradation process. The system condition is divided into a discrete 

number of thresholds (𝑁), that comprise the number of states (𝑆1, … , 𝑆𝑁) in the Markov chain. 

Inspections may take place at some possible 𝑡𝑘 = 𝑘∆𝑡 times, which are possible but not 

mandatory inspection times, being ∆𝑡 an arbitrarily chosen time or imposed by the maintenance 

policy. The system state upon inspection is what determines at which 𝑡𝑘 time should the next 

inspection take place (Figure 6). This model also aimed to test the influence of the number of 

thresholds 𝑁 in the total maintenance cost. 

 

Figure 6 - Maintenance policy structure for discrete stage deterioration process. Source: Grall et al. (2002a) 

Marseguerra et al. (2002) consider a continuously monitored multi-component system and use 

a genetic algorithm for determining the optimal degradation level beyond which preventive 

maintenance must be performed. To compute the genetic algorithm, a Markov model for a 
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repairable single-component degrading system is used, such that the increase in degradation, or 

decrease if a maintenance action is performed, is such to lead, with different probabilities, the 

component from the current degradation level to any other. The proposed Markov model 

comprises also the possibility of random shock failures (random failures that may occur 

independently from the degradation level). The evolution of the degrading system is then 

estimated using Monte Carlo simulation. The modeling approach followed in this thesis is 

closely related to this work and combined with the approach of Grall et al. (2002a) and with 

the decision frame provided by Grall et al. (2002b). 

An identical approach to the one provided by Grall et al. (2002a) is given by Amari and 

McLaughlin (2004), who consider a discrete stage deterioration process, modeled using Markov 

chains, subjected to periodic inspection. They present algorithms to find the optimal 

maintenance parameters to maximize system availability. Hontelez et al. (1996) formulate the 

decision process as a discrete Markov decision problem based on a continuous deterioration 

process to find the optimum maintenance policy with respect to cost. 

Some authors even provide models that not only prescribe the inspection times and the critical 

thresholds, but also interact with the production scheduling. These problems are usually called 

“joint maintenance and production scheduling problem". Varnier and Zerhouni (2012) propose 

a mixed integer linear programming model that intends to optimize the makespan (total 

schedule duration) of a flow-shop in which the machines are subject to predictive maintenance 

operations. Xiao et al. (2016) developed a joint optimization model to minimize the total cost 

including production cost, preventive maintenance cost, minimal repair cost for unexpected 

failures and tardiness cost. This way, the total cost depends on both the production process and 

the machine maintenance plan associated with reliability. Pan et al. (2012) provide a single-

machine based scheduling model incorporating production scheduling and predictive 

maintenance, introducing the machine’s effective age and remaining maintenance life to 

describe machine degradation. 
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3 Problem description 

Continental Mabor is one of the best manufacturing facilities across the whole Continental 

group, achieving excellence performance indexes in parameters such as productivity, quality 

and safety. These levels were achieved not only using the best engineering practices at the 

service of the productive process, but also due to the recognized skills and constant willingness 

to learn of its employees. Combining these factors with the implementation of effective 

maintenance policies, it is possible to retrieve as much as possible from the installed capacity 

and resources. 

Bearing this in mind, by opening the new agricultural tire manufacturing unit (CST) at Lousado, 

Continental hopes to obtain, in the long run, close performance measures to the ones verified at 

the Passenger and Light Trucks tire (PLT) manufacturing unit. To achieve that, maintenance 

policies have a decisive role. This thesis came along as an attempt to complement the already 

existing maintenance practices, and to provide the establishment of a basis for future 

improvements. 

In this section, the project context and the initial situation verified at the CST plant will be 

discussed, as well as the methodologies used to tackle the problem. The productive process of 

the CST manufacturing unit will also be introduced, as well as the predictive maintenance 

actions that already take place in the PLT facilities. 

3.1 Project context description 

Since machine breakdown reduces production efficiency, maintenance in manufacturing 

systems is used to keep machines in good condition to decrease failures, making maintenance 

planning become more and more important in manufacturing processes (Pan et al. 2012). 

The new machines installed are the first ones to be introduced in the entire Continental Group, 

being in study the installation of similar ones in other factories worldwide.  Being a pioneer 

facility, the importance of a well thought maintenance plan is obvious, benefiting not only this 

facility, but also others in the group that will possibly employ this technology in the future, by 

providing if not the actual plan and policy (since every facility has its own characteristics, like 

employees’ skills and level of care for maintenance), a reasonably good starting point. 

These machines were tailor-made and developed in strict collaboration with the supplier, and 

so they are still subject to corrections in their parameters and programming logic. Moreover, 

production flow is small and there are many stoppages, increasing their propensity to failure. 

A CBM program, if properly established and effectively implemented, can significantly reduce 

maintenance costs by reducing the number of unnecessary scheduled preventive maintenance 

operations (Lee et al. 2004). However, the intent of this predictive plan is not to reduce the 

number of scheduled preventive maintenance operations, but for it to act as a complement with 

the goal of reducing the number and time length of machine breakdowns.  

3.2 Brief description of the productive process 

In order to comprehend the maintenance plan, it is required to briefly introduce the productive 

process for an agricultural tire (Figure 7), for a better understanding of the type of tasks these 

machines are subject to. 

The first step is the mixing process, where natural and synthetic rubber are mixed together with 

other materials, resulting in rubber compounds with different characteristics, according to the 

type of tire to be manufactured. This process, however, does not exist in the CST facility, as all 

the rubber compounds used come from the PLT mixers. 
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The second step of production, and the first one to take place at the CST plant, is the preparation 

process. At this step, the tire components are manufactured, involving several different 

machines, each one producing or preparing distinct tire components. Still, some of the 

components come from outside the facility, namely: the innerliner (interior layer of the tire that 

assures the tire holds high pressure on the inside), the body plies (other rubber and textile layers 

that give the tire structure strength) and the textile or metallic belts (that give the tire strength 

and dent resistance while allowing it to remain flexible). In the CST plant the following stages 

take place: the extrusion process, where the tire sidewalls (that give strength and resistance 

against the environment) are produced, performed by the Extruder; the cutting process, where 

the belt and the body plies are cut with a specific angle according to the tire type to be produced, 

performed by the Combicutter; the Bead Winder, a machine that constructs the bead (a set of 

steel wires wrapped in a rubber compound with a specific diameter that will be in direct contact 

with the rims); and finally the APEX, responsible for the application of a slim extruded rubber 

layer that mates against the bead (the apex).  

Next, occurs the tire building process. For this step, three types of machines are used. First, the 

tire carcass is built in the Carcass Building Machine. The tire carcass consists of several 

material layers that are, sequentially, wrapped up around a drum: innerliner, one or more body 

plies and the tire sidewalls. The carcass is then expelled from the drum and goes to the Green 

Tire Building Machine. There, the belts are applied against the body plies. Finally, the Strip 

Winder applies the tread, a thick extruded profile that surrounds the tire carcass. This is the 

compound that will contact the surface, and thus includes additives to impart wear resistance. 

Afterwards, the innerliner is sprayed with an “ink” in the Spraying Machine. This stage does 

not add value to the final product but is essential to guarantee the product quality at the end of 

the curing process, as it helps the demolding of the tire and extends the presses’ bladders’ useful 

lives.  

The curing process is where the tire gains its final shape. The sprayed tire is put in a Curing 

Press, where it is subject to high temperature and pressure. These conditions confer the tire 

higher resistance and contribute to the acquirement of its final shape. 

Finally, the last step is the final inspection, where the tire is subject to visual inspection and a 

radial eccentricity check. If any defect is found or the tire does not meet specifications, a final 

rework station is used to correct those defects, whenever possible. 

 

Figure 7 - Production process of an agricultural tire flowchart  

3.3 Maintenance concept at Continental Mabor 

At Continental Mabor, maintenance is regarded as an indispensable operation to keep 

productivity and quality levels at the highest possible. In fact, in the engineering departments, 

the two main divisions are projects and maintenance. Besides the dedicated maintenance teams, 

there are also many engineers whose job is to assure maintenance is performed correctly. 
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Initially, maintenance actions at the CST facility were only twofold: corrective and preventive 

(time-based) maintenance. CM is performed by teams of mechanical and electrical technicians, 

who respond directly when a breakdown occurs. These teams are the ones responsible for the 

direct repair of the machines, returning them into a good state and allowing production to 

resume, and for the replacement and repair of wearied parts that no longer perform at the 

required levels. Unlike CM, PM is performed by teams that aren’t dedicated to the CST facility. 

Depending on the machine, the PM team of the analogous department in PLT is asked to come 

to the CST facilities to perform the required maintenance operations.  

Therefore, the PM operations need to be jointly scheduled with the PLT departments, to avoid 

overlaps. All PM operations in the CST facility were to be scheduled on Thursday mornings, 

matching the weekly shift when production is stopped. Not all machines are subject to PM tasks 

in the CST plant in the same day, and there are even occasions when there are no PM operations 

scheduled for the entire facility. However, even in these situations, production always stops. 

PM operations are performed by the PM team according to a set of tasks (checklist) that were 

developed by the engineers responsible for maintenance in the PLT. Because of this, and due 

to the fact that those engineers do not know all the specificities of the CST machines (in some 

production steps the machines operate in a very different way from the ones at PLT), not all the 

tasks listed in the checklist are applicable. 

3.3.1 Predictive maintenance at Continental Mabor 

In the CST facilities, predictive maintenance actions are yet to be implemented. This is 

explained by the fact that machines are new and because production is not in full flow. 

In the PLT manufacturing unit, however, some predictive maintenance initiatives already take 

place. These initiatives are still in the early phases of development, as there is no serious 

sensorial data being collected. Predictive maintenance actions are mainly based in routines 

carried out by a dedicated team, that receives daily a plan given by production about which 

machines and which maintenance actions to perform in a given day. The majority of these 

actions are still not based in the monitoring of components, but instead based on the experience 

of multiple past hours of production and failure records. However, there is a minority that 

already considers the equipment’s performance like, for example, the measurement of engines’ 

energy consumption. 

Besides the practices described above, a framework for more effectively dealing with 

unexpected breakdown patterns was recently implemented. This approach is called Concurrent 

Engineering and was adapted and applied to maintenance. It consists in the gathering of 

multidisciplinary and independent teams to focus and tackle a specific problem (in this case, a 

breakdown pattern) that has been identified. Each team is assigned a leader and, during the 

project’s extension, all members, regardless of their department of origin, respond to that leader.  

In the context of Continental Mabor, this methodology consists in gathering members from the 

corrective maintenance shifts (who are very knowledgeable about machine breakdowns’ 

diagnosis), the preventive maintenance teams (members that have a deep knowledge about the 

parts and the montage), and the projects team (who are responsible to buy the machines and are 

mostly engineers). This multidisciplinary approach allowed to reduce the ratio between 

unplanned and planned maintenance time to a quarter in only a few years of its application. 

3.4 Initial situation 

In this subsection, initial breakdown data and maintenance performance indicators will be 

introduced, to provide a basis for the study. The responsibility for the maintenance of the 

machines in the production line is divided between the engineering departments: Engineering 
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Department 7 (ED7) is responsible for the Extruder, Combicutter, Bead Winder, APEX, 

Carcass Building Machines, Green Tire Building Machines and Strip Winder, i.e. the Preparing 

and Building processes; Engineering Department 8 (ED8) is responsible for the Spraying 

Machine, Curing Presses and Final Inspection. The machines in the final inspection stage will 

not be addressed due to the almost inexistence of breakdowns that justify a predictive 

maintenance plan. This analysis will tackle the two engineering departments separately, since 

each department has its own maintenance team to execute the maintenance tasks. 

3.4.1 Preparation and Tire Building 

Firstly, the total monthly downtime due to breakdowns (not considering preventive 

maintenance actions or tooling change procedures) was analyzed. It was gathered data since the 

start of production, in April 2017, until February 2018. In Figure 8 the total downtime per month 

from April 2017 to February 2018 in ED7 is presented. The months from September 2018 to 

February 2018 are the ones that show higher downtime (over 50 hours each month), excluding 

December, in which the plant was closed for 28 days.   

 

Figure 8 - Total downtime per month in ED7, from April 2017 to February 2018 

One must remind that these 50 hours per month are for all the machines combined. However, 

if we consider that all preventive maintenance and tooling change actions are excluded, this 

means that those machines were stopped for more than half the available time (Table 1), and 

that they are new, this value can be considered as high. Note that the working time percentages 

refer to the period from January 2018 to April 2018, but they are assumed to being able to be 

extrapolated backwards until September 2017, based on the plot displayed on Figure 8. 

Table 1 - Percentage of working time for each machine at ED7 from January 2018 to April 2018 

Machine Working Time (%) 

Extruder 7% 

Bead Winder 22% 

APEX 19% 

Combicutter 35% 

Carcass Building Machines 53% 

Green Tire Building Machines 53% 

Strip Winder 53% 
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Secondly, for a better understanding of the distribution of the downtimes, it was given a deeper 

look into the period from September 2017 to February 2018. Figure 9 shows the distribution of 

downtime through the different machines for this period. It can be verified, more clearly, that 

the machines that have higher downtime are the Carcass Building Machines. This makes sense 

because not only these are the ones with higher load (Table 1), but they are also the most 

complex and difficult to program, requiring almost permanent adjustments. 

 

Figure 9 - Total downtime for each machine in ED7, from September 2017 to February 2018. 

Finally, it is important to understand the relationship between the working time and the total 

downtime for each machine, to better assess their performance level (if they fail almost every 

time they work or if their failures are more spread out through their working time). For this a 

plot was constructed (Figure 10), for the previously considered range [Sep’17 – Feb’18], 

emphasizing the ratio between downtime and working time percentage. The differences 

observed are meaningful to conclude that the Extruder is clearly the machine with the worst 

performance overall, being the neediest machine for maintenance in relation to its working time. 

This analysis allows to draw the conclusion that the machines from ED7 that would benefit the 

most from a predictive maintenance plan implementation are, for the aforementioned reasons, 

the Carcass Building Machines and the Extruder. On one hand, the Carcass Building Machines 

would benefit because they exhibit higher downtime; on the other hand, the Extruder would 

benefit as it is the machine with worst ratio between downtime and working time.  

 

Figure 10 - Ratio between downtime and working time percentage for each machine in ED7 

3.4.2 Spraying and Curing 

The same rational sequence used for the preparing and tire building machines was followed to 

analyze the initial breakdown data for the spraying and curing machines. Here, preventive 
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maintenance actions and tooling changes were also excluded. Nevertheless, there is a notable 

difference from the curing presses to the spraying machine and the other machines of ED7: not 

all curing presses work at the same time, as the installed capacity highly exceeds the actual 

needs. For example, one curing press may work for a whole month, almost non-stop, while the 

one right next to it may be stopped during that whole period. 

For that reason, the plot in Figure 11, which represents the total downtime per month, from July 

2017 to January 2018, some of the presses may have no downtime in a certain month and 

present a huge downtime in the following one. The exception here is the Spraying Machine, 

which is expected to be constantly working.  

 

Figure 11 - Total downtime per month in ED8 machines, from July 2017 to January 2018 

For that reason, the Spraying Machine is the only one worth analyzing its current working time 

percentage (which is of 9%) as the Curing Presses’ work behaves like a binary variable, at the 

current point: a press either works at its full capacity for a relatively long period of time (1 or 2 

months), or it does not work at all. The Spraying Machine is, therefore, the only one that works 

continuously, and its percentage of working time was obtained based on future improvements 

that will soon be implemented, that will increase the machine’s throughput capacity. 

The fact that the Spraying Machine is, unlike the Curing Presses, permanently working, also 

reflects in each machine’s total downtime. In fact, it can be observed in Figure 12 that its 

downtime is significantly higher than the one verified in the Curing Presses. It also shows, if it 

is assumed that the downtime and the working time are directly correlated, that the work in the 

period in question is distributed through all the presses, meaning that all of them worked and 

stopped during this period, except for B04, which has not worked in this period. 

An analysis of the relationship between downtime and working time is not as pertinent as it was 

for the preparing and building processes, since it was already concluded that the Spraying 

Machine would benefit from a more frequent maintenance plan implementation. Besides that, 

the Curing Presses are all very similar to each other, despite having three different classes, 

according to their size (A, B and D), so one can assume that their maintenance needs are also 

similar within each other, and only dependent of their state: working or idle. 
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Figure 12- Total downtime per machine in ED8, from July 2017 to January 2018 

3.4.3 Maintenance performance indicators 

An analysis of the preliminary maintenance performance indicators is also relevant to assess 

the initial performance of maintenance operations, enabling further comparisons with the ones 

obtained at the end. The performance indicators used at CST plant to assess maintenance 

operations are the MM - Maintenance Maturity - (3.1), the MTBF - Mean Time Between 

Failures – (3.2) and the MTTR - Mean Time To Repair – (3.3).  

 

 𝑀𝑀 = 
∑𝑃𝑙𝑎𝑛𝑛𝑒𝑑 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝐻𝑜𝑢𝑟𝑠

∑𝑇𝑜𝑡𝑎𝑙 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝐻𝑜𝑢𝑟𝑠
 (3.1) 

 

 𝑀𝑇𝐵𝐹 =
𝑇𝑜𝑡𝑎𝑙 𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 − ∑𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛𝑠
 

 

(3.2) 

 𝑀𝑇𝑇𝑅 =
∑𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛𝑠
 

 

(3.3) 

The MM indicator is a ratio between planned maintenance time and total maintenance dedicated 

time, allowing to assess the quality of maintenance operations and to give an idea about where 

maintenance expenses are going. There is no optimal value for this indicator, as a very high 

ratio may indicate that there are almost no breakdowns, or that too many frequent preventive 

maintenance actions occur, but it certainly should not assume a low value. 

The MTBF indicator enables to assess the reliability of an equipment. It is of particular interest 

in heavy asset enterprises, like Continental, as an unreliable equipment may prevent from 

generating revenue. For this indicator, the ideal is to be as high as possible. 

Finally, the MTTR indicator is used to evaluate the corrective maintenance teams’ effectiveness 

and efficiency in finding the root cause for a breakdown and correct it. An effort should be put 

into keeping this indicator as low as possible, but without compromising the MTBF. 

These indicators are divided in ED’s 7 and 8, allowing the assessment of the two maintenance 

teams separately. 

Preparation and Building – ED7 

In ED7, indicators are provided for each machine, and in Table 2 are presented the values for 

these indicators in the first 3 months of 2018. Data obtained for the maintenance performance 
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indicators suggests, and corroborates, the idea that the Extruder is the machine with worst 

performance levels (very low MTBF for all 3 months), even though the high MM percentage 

indicates that an effort is being made to increase planned maintenance in that machine. It is also 

emphasized that, for the machines that have higher utilization (tire building and strip winding), 

the Carcass Building Machines are the ones exhibiting the worse performance, showing a 

considerably lower MTBF when compared to the Green Tire Building Machines and the Strip 

Winder. Data for the machines that with lower utilization also suggests that their performance 

may be affected by the existence of constant stoppages. 

Table 2 - Maintenance performance indicators for ED7, from January 2018 to March 2018 

 MM (%) MTBF (h) MTTR (h) 

Machine Jan Feb Mar Jan Feb Mar Jan Feb Mar 

Carcass Building Machine 01 72% 73% 84% 4.01 4.65 7.49 0.46 0.22 0.18 

Carcass Building Machine 02 82% 86% 88% 4.51 3.49 6.29 0.29 0.32 0.51 

Green Tire Buil. Machine 01 65% 74% 77% 41.90 17.43 16.25 0.27 0.24 0.14 

Green Tire Buil. Machine 02 65% 89% 71% 17.01 12.13 11.20 0.27 0.07 0.23 

Extruder 96% 90% 95% 1.10 1.25 2.29 0.54 0.56 0.32 

APEX 80% 73% 60% 0.82 5.47 7.20 0.55 0.16 0.16 

Bead Winder 74% 85% 64% 4.81 7.78 7.11 0.57 0.06 0.09 

Strip Winder 75% 
 

80% 67% 13.31 99.80 51.33 0.26 0.42 0.18 

Combicutter 78% 73% 62% 3.28 4.08 4.54 0.46 0.12 0.19 

Spraying and Curing – ED8 

In ED8, these indicators were grouped: MM is obtained for the whole department, while MTBF 

and MTTR were grouped according to the process (Spraying or Curing). Table 3 presents the 

values for these indicators in the first 3 months of 2018. 

Table 3 - Maintenance performance indicators for ED8, from January 2018 to March 2018 

 MM* (%) MTBF (h) MTTR (h) 

Machine Jan Feb Mar Jan Feb Mar Jan Feb Mar 

Curing Presses 
70% 73% 79% 

18.00 19.00 29.40 1.40 1.22 0.38 

Spraying Machine 3.50 2.40 5.20 1.01 0.77 0.28 

*MM values also include the Final Inspection machinery 

Looking at these data, it can be observed that the overall maintenance performance is evolving 

with a positive trend. Although, there still seems to exist room for improvement, as the year-to-

date value for MM, for example, is still below the target value (74% against 75%). The other 

indicators seem to be behaving quite well, but one always must mind that continuous 

improvement should always be an explicit goal to every corporation. 
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4 Methodology 

A maintenance plan should always be adjusted to each facility’s characteristics and current 

needs. Therefore, the developed plan cannot be exactly equal to the one existent at the PLT 

plant. 

The ultimate future goal of the company, concerning its maintenance operations, is to combine 

time-based maintenance policies with condition-based maintenance policies. This would allow 

to dispatch maintenance actions in the most efficient and effective way possible, following the 

principles of recent Industry 4.0 trends and attempting to minimize at most downtime and repair 

costs. 

Following this desire, the conducted study attempts to provide a solid progress and basis for 

this goal, and can therefore be divided in two distinct parts: one that comprises the actual 

development of the predictive maintenance plan to be implemented in the CST plant; and 

another one consisting of a more detailed study and modelling of the behavior of one condition 

monitoring parameter throughout a certain period, with the goal of aiding decision-making 

concerning the optimal maintenance period.  This section presents the used approaches and the 

way these different policies can be idealized and implemented, describing every step in as much 

detail as possible, displaying also a few intermediate results.  

4.1 Predictive maintenance plan development 

Often in the literature, machines are usually treated as holistic entities, and its breakdowns are 

not assumed to be caused by multiple factors, or due to certain components’ failure. This 

assumption works well if the considered machine is very simple and the causes for failure are 

always the same. However, this is not the case in real problems, where machines really are 

composed of multiple components that, because of their distinct functions in the machine, are 

subject to different levels of deterioration. In this work, several failure modes were considered 

to occur in the same machine. Therefore, a study of each machine’s sub-assemblies’ failures 

was performed, as a basis for the identification of the maintenance actions to be included in the 

intended predictive maintenance plan, as well as their execution frequency. 

4.1.1 Approach overview 

Since production in this new manufacturing unit is still not in full-flow, it was more difficult to 

correctly assess the real maintenance needs of the machines, as well as their optimal execution 

periodicity. A large portion of existent breakdowns was due to factors that arise in this context: 

the introduction of new products that still require constant adjustments, the lack of experience 

in the production process, the existence of newly-formed teams (engineering, process and 

production) that have been working together for a short period, and the fact that procedures are 

still in a development phase. Although, an effort was put into identifying those failures that 

happened due to inefficient machine operation through its mechanical or electrical systems that 

could be mitigated if more regular maintenance was performed.  

In order to do so, it was given a deep look into the breakdown reports of each machine, in an 

attempt to identify their components that more regularly failed. This task was difficulted by the 

lack of standardization in the failure reports, increased by the fact that the reports were filled 

by different people. This led to a one-by-one check of failures in an attempt to group each 

component’s similar types of failure, enabling further and more concrete analysis. 

After this identification and preliminary data treatment, it was necessary to understand the 

causes for those failures, as well as some possible other causes that could lead to failure but had 

not happened yet. To achieve that, the corrective maintenance personnel and the plant’s 

engineers were consulted, given their experience and knowledge about the machines’ operation.  
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Having the failure causes as a starting point, the actual maintenance actions to be performed 

were then idealized, having in mind that predictive maintenance actions are to be included in 

routines, and should be performed preferably while the machine is running (requiring no 

stoppage). These actions may include not only routine verifications and adjustments, but also 

certain parameter measurements that impact the machine’s overall performance, for which the 

adequate measuring devices were proposed. The proposed actions were then prioritized, by 

means of a criticality analysis. A parameter named “Criticality Index” was calculated for each 

machine subassembly, allowing maintenance actions to be sorted according to it. 

Finally, the periodicity of the maintenance actions was estimated. For this estimation, the 

previously treated data from the breakdown reports was used. However, the number of 

occurrences even after grouping similar breakdowns, for some cases, was still very scarce. To 

gather an enough amount of data to enable a statistical analysis, breakdowns were subject to 

another clustering, based on the corresponding machine subassembly. This clustering was made 

to facilitate the analysis and making it more significant, allowing conclusions to be drawn based 

on data and not prejudicing the machines’ performance, as it is a more conservative approach. 

4.1.2 Identification of failures, causes and maintenance actions idealization  

Initially, the most common failures for each machine were grouped, as well as their frequency 

and total stoppage time. As already mentioned, this data was obtained through the breakdown 

reports. Since all machines in the plant were analyzed and, thus, the statement of all failures for 

all those machines would be very extensive, it will only be presented in this section data 

referring to the Carcass Building Machines, shown as an example of the conducted work. The 

failure modes encountered in the remaining machines are available in the Appendix B. 

The five most common failure modes and their frequency percentage in relation to the total 

number of failures for the Carcass Building Machine no. 1 are presented in Table 4, and for the 

Carcass Building Machine no. 2 in Table 5. 

Table 4 - Top 5 most common failure modes and their frequency for Carcass Building Machine no.1 

Failure mode description Frequency 

Errors in drum commands 10.74% 

Damaged or mispositioned conveyor belts 6.49% 

Front nose hits drum or dog ears / tilting error 5.37% 

Mispositioned slab conveyor 5.59% 

Error in front nose’s sensor 5.17% 

Table 5 - Top 5 most common failure modes and their frequency for Carcass Building Machine no.2 

Failure mode description Frequency 

Errors in PLC/drives 7.44% 

Errors in drum commands 7.02% 

Reels do not work properly 6.20% 

Damaged or mispositioned conveyor belts 5.99% 

Diafragms do not expand properly 5.17% 

After identifying the most significant failure modes, the causes for those failures were dissected. 

For this task, the help from the corrective maintenance personnel was of the utmost importance. 
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The identified causes for some of the failure modes stated in Table 4 and Table 5 are presented 

as an example in Table 6, being the identified causes for all machines available at Appendix C. 

Table 6 - List of causes for some of the identified failure modes for the Carcass Building Machines 

Failure mode description Identified causes 

Errors in PLC/drives 

• Problems with recipe parameters 

• System updates 

• Electrical switchboard temperature too high 

Reels do not work properly 

• Insufficient lubrication of the reels’ guides 

• Misalignments 

• Excessive wear in the reel’s disc 

Damaged or mispositioned conveyor belts 

• Positioning sensors not properly adjusted 

• Conveyor belt “jumps” out of the guide 

• Excessive wear in bronze connection contact 
 

After the identification of the causes, the monitoring and maintenance actions were idealized. 

These actions had in mind the existent failure modes, emphasizing the most frequent ones, and 

were also directed to other machine components that do not fail as often but would benefit from 

more frequent verifications. These actions attempt to tackle the existing problems and respond 

to questions such as “What can we do to increase equipment’s uptime?” or “How can we 

mitigate the effect of this failure safely and non-intrusively?”.  

Furthermore, on another scope, the lack of monitorization was a problem at the beginning, as 

people only have an idea about what was really happening in the machines. Therefore, we also 

included parameter monitoring actions, allowing to increase the knowledge about some critical 

components’ current state. The questions to be answered here were such as “How can we 

monitor the level of deterioration of that component?” or “How can we know if a failure is 

about to happen and fix it before it does?” 

As an example, some of the developed maintenance actions for the Carcass Building Machines 

are presented in Table 7, as well as, if applicable, the tool or measuring device that should be 

used when performing those actions. The developed maintenance actions for the remaining 

machines in the CST plant and the remaining actions idealized for the Carcass Building 

Machines can be found in Appendix D. 

Table 7 - List of some of the maintenance actions idealized for the Carcass Building Machines 

Machine 
Subassembly 

Maintenance / monitoring action 
Tool/Measuring 

device 

Front nose Gap between structure and bearing support Pachymeter 

Conveyor belts Verification of wear in the bronze contact  

Conveyor belts Adjust and clean sensors  

Reels Verification of lubrication in reels’ guides  

Reels Check disc reels’ alignment (xx) in homing position Measuring tape 

Reels Verify positioning of turning reels (xx, yy, zz) in homing Measuring tape 

Dual slab conveyor Engine consumption of the conveyor Multimeter 

Innerliner knitting zone Blade and counter-blade cleaning  

Electrical switchboard Temperature of drives Thermal camera 

Of course, these proposed maintenance actions will always be subject to possible future 

modifications, as the period during which they were tested was very small (only one month). 

In addition, they can be changed due to possible machine construction improvements, meaning 

that some of the maintenance actions may be no longer required. On the other hand, the 
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monitoring actions are also subject to changes. If a conclusion is reached that one of the 

proposed monitoring parameters does not have a significant impact in the machine’s 

performance, it may be eliminated from the plan, as others that are found to be relevant to 

measure may, and should, be added. 

4.1.3 Criticality analysis 

A well-defined maintenance plan is not exhausted by the definition of the maintenance actions 

to be performed. In fact, especially in cases where the number of actions to be executed is 

relatively large, it is of utmost importance to prioritize them. In the case of the CST plant at 

Continental Mabor this need for prioritization is even bigger, since these actions are not to be 

performed by a dedicated Predictive Maintenance team but, at least in an initial period, by the 

CM personnel, who also have numerous other tasks to execute during their working hours.  

For these reasons, as proposed by Waeyenbergh and Pintelon (2002), a FMECA (Failure Modes 

Effects and Criticality Analysis) was performed. In this approach, failures are evaluated 

according to a set of fixed factors that, depending on the component, may have possible severity 

levels, which are then weighted according to the plant’s characteristics, providing a final 

number, which was called Criticality Index. A distinct Criticality Index was obtained for each 

considered machine subassemblies, for all machines in CST plant studied. 

The first step of this analysis was to define which factors should be evaluated. The same factors 

should be evaluated throughout the plant to increase standardization and enable comparisons 

between the different machines and their subassemblies, validating the established 

prioritization. These factors should consider not only the frequency of breakdown and the time 

to repair it, but also the consequences associated with that breakdown, such as worker’s safety, 

influence on other machine components’ performance or the effect the failure has in the 

machine subassembly. Bearing this in mind, the factors that were evaluated and their weight in 

calculation are displayed in Table 8. Weights were computed such that their sum equaled 1. 

The second step was to define the number of severity factors and their range limits. The number 

of severity factors considered was set to three: 1-Good; 2-OK; 3-Bad. Some of these were 

quantitative (like the ones for frequency and stoppage time), while others were qualitative (such 

as worker’s safety and easiness of failure detection). The range limits and characterization of 

the severity factors for each of the selected factors are also displayed on Table 8. 

The third step was to compute the Criticality Index (𝐶𝐼), for each machine’s subassembly (4.1), 

where 𝑊𝑖 is the assigned weight for factor 𝑖, and 𝑆𝑖 is the severity value (from 1 to 3) attributed 

to each factor 𝑖, for the machine subassembly in question. The obtained values for the CI for all 

machine subassemblies are available in Appendix E. 

 

𝐶𝐼 =  ∑𝑊𝑖𝑆𝑖

7

𝑖=1

 (4.1) 

The severity levels used in this analysis were sorted in ascending order, being 1 the less severe, 

and 3 the most severe. From here we can conclude that the subassemblies’ priority levels are 

sorted in descending order, meaning that the subassembly with the highest 𝐶𝐼 value should be 

the one whose maintenance actions should be given the highest priority (if scheduled for the 

same date as others). For the Carcass Building Machine, the subassembly in this condition is 

the Electrical switchboard, meaning that their maintenance actions should be performed first. 
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Table 8 - List of criticality factors evaluated and their corresponding weight and severity ranges 

Factor Weight 
Severity scale 

1 2 3 

1 - Maximum registered stoppage time 0.15 t ≤ 1h 1h < t ≤ 3h t ≥ 3h 

2 - Average frequency 0.1 < 1x/trimester < 1x/month > 1x/week 

3 - If failure occurs, automatic scrap? 0.2 Never Yes, little Yes, a lot 

4 - Easy to detect a failure? 0.02 Always Sometimes Never 

5 - Compromises worker’s safety? 0.3 Never It is possible Always 

6 - Influences other components? 0.15 No Only 1 More than 1 

7 - Is the machine a production bottleneck? 0.08 No Yes, but many Yes, and only 

4.1.4 Periodicity calculation 

After idealizing the maintenance actions and prioritizing them according to numerous factors, 

there is the need to define the periodicities at which the actions should be executed for the plan 

to be complete. This is one of the most important steps when developing a plan of this kind, as 

a very low periodicity may produce an insignificant impact on the machines’ performance and 

in their breakdown reduction, and a too frequent periodicity may lead to an unwanted excess of 

maintenance costs. Therefore, it is of vital importance to find a balance between optimizing 

maintenance costs, not neglecting the overall machine performance. 

In parallel to the used approach in the criticality analysis, periodicities were also calculated 

separately for each machine subassembly. Although a given machine subassembly may have 

many distinct failure modes and, therefore, distinct maintenance actions to mitigate their effect, 

to reduce the number of calculations performed and to gather enough amount of data, all failures 

from a given subassembly were clustered, independently of their cause for failure. 

A cyclical overview of the approach used in the periodicity calculation process is presented in 

Figure 13, from the raw failure data obtained through the breakdown reports to the final 

periodicity value attainment. Next, every step of this process will be further explored. 

 

Figure 13 - Periodicity calculation process flowchart 

In this section, will be presented the results obtained for the Carcass Building Machines’ 

subassemblies as an example. The results for the remaining ones can be found in Appendix F. 
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The first step in this process was to filter each subassembly’s failures and retrieve their time of 

occurrence. Breakdown reports from April 2017 to March 2018 provided failure data, 

identifying the type of failure, machine subassembly and failure date to be used. Let 𝑡𝑖 define 

the time of occurrence of failure 𝑖, with 𝑖 = 1,… , 𝑛 (total number of subassembly failures).  

To estimate the time between failures, first 𝑡𝑖 was plotted to realize if the failure rate is 

increasing, decreasing, or remains constant throughout time. The linear trend line given 

automatically by MS Excel was also plotted, and the R2 value for its adjustment to data 

analyzed. The decision about what model should be used to estimate the time between failures 

was based on the R2 value obtained for the adjustment of data to the linear model: 

• If R2 ≥ 0.9, it was assumed that the linear model provided a good adjustment to data, as 

that linear model was able to explain more than 90% of the independent variable. This 

also means that the failure rate can be considered constant; 

• If R2 < 0.9, it meant that the linear model could not explain a satisfactory percentage of 

the independent variable, and therefore meaning that the failure rate may not be constant 

and the model used to translate the failure rate was the Weibull distribution. 

Data obtained for some of the Carcass Building Machines’ subassemblies is presented in Table 

9, including the total number of failures observed in each machine, the R2 value on which the 

decision was based, and the technique used to model their time between failures. It is important 

to refer that if the same subassembly in the two machines had different adjusting models by the 

application of the mentioned decision rule, the used adjusted model for that subassembly in 

both machines was the most conservative of the two, that is, the Weibull model. This is the case 

of, for example, the Innerliner knitting zone and the Front nose – structure subassemblies. 

The indicator that allows the estimation of each machine’s subassemblies maintenance 

periodicity is the MTBF. The method used to calculate the MTBF for each machine 

subassembly was dependent of the shape of the failure rate and, consequently, of the adjusted 

distribution used. Next, the two methods used (linear and Weibull models) are introduced. 

Table 9 - R2 values and adjusted model used for some of the subassemblies of the Carcass Building Machines 

Machine subassembly 
Number of 

failures 
R2 value for 
linear model 

Adjusted 
model used 

Conveyor belts (Machine 01) 24 0.9589 Linear 

Conveyor belts (Machine 02) 29 0,928 Linear 

Front nose - structure (Machine 01) 24 0.9056 Weibull 

Front nose – structure (Machine 02) 18 0.8111 Weibull 

Front nose – photocells (Machine 01) 21 0.868 Weibull 

Front nose – photocells (Machine 02) 14 0.8989 Weibull 

Reels (Machine 01) 13 0.947 Linear 

Reels (Machine 02) 14 0.9899 Linear 

Electrical switchboard (Machine 01) 14 0.9251 Linear 

Electrical switchboard (Machine 02) 31 0.9502 Linear 

Constant failure rate 

As already mentioned before, for the subassemblies in which the linear model was found to 

adjust itself at a very satisfactory level to the actual failure data, a constant failure rate was 

assumed. Figure 14 shows a plot of the failure data for one of the subassemblies of the Carcass 

Building Machines (in this case, conveyor belts for machine no. 2) throughout time, being the 
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time variable (in days) the independent variable and the cumulative number of failures the 

dependent variable.  

 

Figure 14 - Failure evolution throughout time for Carcass Building Machine no.2 conveyor belts 

The equation displayed on the graph is the equation for the linear trend line generated by MS 

Excel. Below the equation is shown the R2 value of adjustment of data to that trend line. The 

failure rate, in this case, as R2 ≥ 0.9, can be estimated by the slope of the linear trend line, that 

for this subassembly is equal to 0.1578 failures/day. The MTBF (expressed in days) can 

therefore be computed using equation (4.2), giving for this subassembly an estimated 6.338 

days. In Table 10 the estimated failure rates and MTBF for the subassemblies whose failure 

rate was considered as constant throughout time are presented. 

 

 
𝑀𝑇𝐵𝐹 =

1

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑅𝑎𝑡𝑒
 (4.2) 

   

Table 10 - Failure rate and MTBF estimations for the subassemblies with constant failure rate 

Machine subassembly 

Machine no. 1 Machine no. 2 

Failure rate 
(failures/day) 

MTBF 
(days) 

Failure rate 
(failures/day) 

MTBF 
(days) 

Conveyor belts 0.086 11.623 0.158 6.338 

Reels 0.106 9.394 0.060 16.743 

Electrical switchboard 0.062 16.248 0.141 7.077 

Non-constant failure rate 

Figure 15 shows the evolution of failure data throughout time for the Front nose – photocells 

in Carcass Building Machine no. 1 subassembly. In this case, the data points are well more 

dislocated from the linear trend line, suggesting a decreasing failure rate. This is confirmed by 

the R2 value for the adjustment to that linear trend line, meaning that the failure rate should not 

be estimated by the slope of the observed trend line. 

For the subassemblies which the R2 of the adjustment to the linear trend line was lower than 

0.9, the linear model was a very rough model to estimate the MTBF. For this reason, in these 

cases failure data were adjusted to a Weibull distribution. The valences of the Weibull 

distribution were already explored in Section 2, being the most important one the ability to fit 

every dataset by the estimation of its parameters. 
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Figure 15 - Failure evolution throughout time for Carcass Building Machine no. 1 front nose photocells 

For every machine subassembly, the parameters for the Weibull model to be used were 

estimated using the MLE method, described in Appendix A. For the subassembly whose failure 

data is presented in Figure 15 (front nose photocells for machine no. 1), the obtained Weibull 

parameters were 𝛽 =  0.691 and 𝜃 =  10.60. It is relevant to note here that 𝛽 <  1, which 

corroborates the idea from the graph that the failure rate has been decreasing.  

After the estimation of the Weibull parameters, the MTBF was estimated from them, using 

equation (2.3), which for the case of this subassembly was of 13.588 days. Table 11 presents 

the estimated Weibull parameters for the remaining machine subassemblies for the Carcass 

Building Machines, as well as their estimated MTBF. The MTBF is usually a function of time; 

however, as it was already stated in Section 2, if it is assumed that the equipment will enter in 

the useful life part of the bathtub curve, from this moment on its failure rate will remain constant 

and, therefore, the MTBF value will also remain the same. 

Table 11 - Weibull parameters and MTBF estimations for the subassemblies with non-constant failure rate 

Machine subassembly 

Machine no. 1 Machine no. 2 

Shape 
(β) 

Scale 
(θ) 

MTBF 
(days) 

Shape 
(β) 

Scale 
(θ) 

MTBF 
(days) 

Front nose – photocells 0.691 10.60 13.588 0.805 15.73 17.737 

Front nose - structure 0.749 9.97 11.880 0.721 10.74 13.232 

Headstock / Tailstock 1.026 32.33 31.996 0.713 14.47 17.996 

Dual slab conveyor 0.654 7.53 10.228 0.674 10.74 14.117 

Rolls 0.613 10.60 15.526 1.002 17.73 17.717 

Let-off station 1.001 14.77 14.765 1.090 19.53 18.902 

Pneumatic sourcing / diafragm 0.709 15.54 19.440 0.655 8.38 11.352 

Innerliner knitting zone 1.179 34.11 32.237 0.776 13.44 15.584 

Final periodicity value and adjustment to the production level 

In Table 11, it can be verified that the estimated MTBF’s for the same subassembly on the 2 

machines is sometimes quite different. In order to predict the worst scenario possible, giving 

priority to machine reliability and uptime, the smallest rounded-up number (that corresponds to 

the most frequent periodicity) was assumed as the “ideal” periodicity for the subassembly in 

question in both machines. This value was assumed as the initial periodicity, for the current 

production level. 
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However, the current production level is still well below the installed capacity, as one can attest 

by reminding Table 1, as most of the machines’ working time is still less than 50%. Because 

the plant is still in an embryonic stage, it is expected for the working time percentage to increase 

in the future and, consequently, the production level. Therefore, the initial periodicity, estimated 

above, is expected to become more frequent, especially in the maintenance actions that affect 

components that are subject to increasing wear and their level of deterioration is strongly 

correlated with the working time. If, on the other hand, the plant was already producing close 

to its full capacity, this question would not pose itself, as the calculated periodicities could be 

considered as final, because normally a production line does not decrease its production level 

and, therefore, there would not be any need for further adjustments. 

Not all maintenance actions are subject to that kind of “working time-dependent” wear. As 

such, there was the need to categorize the actions that are subject to wear and the ones that are 

not. This categorization was made action-by-action and not by subassembly, therefore actions 

for the same subassembly can have different periodicities in the future.  

For the actions which did not depend on the production level, the periodicity was assumed as 

fixed, and equal to the initially estimated periodicity displayed before, independently of the 

machines’ production levels. In contrast, the ones that did depend on the production level due 

to continuous and accelerated wear from increased working time, require further calculations 

to be correctly estimated. 

First, it was assumed that the deterioration rate remained constant, independently of the 

percentage of machine working time. This means that if a machine operates for 50% of the 

available time or if it operates for 90% of the available time, they are subject to the same 

deterioration per unit of time. This allows to assume that the production level and the 

maintenance periodicities have a linear correlation: if the production level for a given machine 

increases, the periodicities of their maintenance actions will decrease in the same proportion, 

taking into account the initial periodicity and the initial production level. 

To achieve this condition, equations (4.3) and (4.4) define a “working time offset” for machine 

𝑖 at the initial production level (𝐼𝑛𝑖𝑊𝑇𝑂𝑓𝑓𝑠𝑒𝑡𝑖) and at the current (in the future) production 

level (𝐶𝑢𝑟𝑊𝑇𝑂𝑓𝑓𝑠𝑒𝑡𝑖). The initial working time percentages are the ones presented in Table 

1. This accounts for the production level, but the initial periodicity still needs to be considered. 

The final periodicity calculation for the actions whose components are subject to “working time 

dependent” wear in machine 𝑖’s subassembly 𝑗 is given by equation (4.5). A safety coefficient 

(∝) was defined to further increase the margin of error, again in a perspective of prioritizing 

machine reliability and uptime. 

 
𝐼𝑛𝑖𝑊𝑇𝑂𝑓𝑓𝑠𝑒𝑡𝑖 = 

1

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 %𝑖
 (4.3) 

 

 
𝐶𝑢𝑟𝑊𝑇𝑂𝑓𝑓𝑠𝑒𝑡𝑖 = 

1

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 %𝑖
 4.4) 

 

 
𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑒𝑟𝑖𝑗 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑒𝑟𝑖𝑗 ×

𝐶𝑢𝑟𝑊𝑇𝑂𝑓𝑓𝑠𝑒𝑡𝑖
𝐼𝑛𝑖𝑊𝑇𝑂𝑓𝑓𝑠𝑒𝑡𝑖

× (1−∝) (4.5) 

In addition to these calculations, to avoid too frequent interventions in the machines and since 

the worst case is being considered for all the calculations and therefore a large margin for error 

has been accounted for, there were established maximum and minimum periodicity limits. 

These limits were established together with the engineering team, whose experience and 

knowledge regarding the machine breakdown patterns were crucial in this task. The maximum 

limit was defined for 90 days, while the minimum limit was set to 7 days. This means that even 

if calculations suggest that, for a given production level, an action should be executed, for 
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example, every 4 days, the attributed periodicity for that action will be of 7 days. Otherwise, if 

calculations suggest an intervention frequency between the interval of 7 to 90 days, it will be 

applied. 

Table 12 displays the estimated values for the initial periodicities (remember that the initial 

working time percentage was of 53%, which gives an initial offset of 190%) for some of the 

maintenance actions designed for the subassemblies of the Carcass Building Machines (are the 

same in both machines, as the smallest rounded number was considered). There are also 

presented results for the periodicities assuming a current production level (or working time 

percentage) of 60%, which means a working time offset of 167%.  

This was the used approach in ED7. In ED8, on the other hand, the data available for many of 

the machine subassemblies was scarce. For this reason, the calculation of the periodicity for the 

maintenance actions was not based on actual failure data. The initial periodicities for the defined 

actions were assumed after consulting the people that work most directly with the machines, 

the CM personnel, and the engineers of that department. These initially defined periodicities 

for those actions can be consulted in Appendix F. However, after this assumption, the 

calculation of the current periodicities for the Spraying Machine’s maintenance actions also 

followed equation (4.5). For the Curing Presses, however, considering that they either work 

almost non-stop during an entire period or are completely idle, the assumed initial periodicities 

are already considering a full-time work, so no adjustments to the production level are required. 

Table 12 - Initially calculated and current periodicities for some of the maintenance actions for the Carcass 

Building Machines, assuming a current working time of 60% 

Machine 
subassembly 

Maintenance action 
Initial 

periodicity 
(days) 

Current 
periodicity 

(days) 

Let-off station Engine consumption while unrolling 15 13 

Innerliner knitting zone Visual inspection of blade: color and stretch marks 16 14 

Conveyor belts Adjust and clean sensors 7 7* 

Front nose Gap between structure and bearing support 12 10 

Pneumatic sourcing Verification of correct air pressure in valves’ exit 12 12* 

Reels Verification of lubrication in reels’ guides 10 10* 

Reels Check disc reels’ alignment (xx) in homing position 10 9 

Headstock / Tailstock Check lubrication and wear of the rotary joints 30 25 

Electrical switchboard Temperature of drives 8 8* 

Dual slab conveyor Engine consumption of the conveyor 11 10 

Rolls Check prisons in rolls 16 14 

*Maintenance actions that have fixed periodicity, independently of the production level 

4.1.5 Monthly plan generation 

To complement the developed maintenance plan and to provide the engineering departments a 

more user-friendly way to generate the monthly plans, an algorithm was developed in MS Excel 

VBA. In the case of ED7, whose interface is displayed in Figure 20 (in Appendix G), the only 

inputs needed are the month to which the plan is wished to be generated and the current 

production levels for that month for every machine (as a % of working time). On the other hand, 

in the case of ED8, whose interface is presented in Figure 21 (in Appendix G), it is required the 

month in question, the predicted monthly production level for the Spraying Machine and which 

curing presses will be working on that month. For the Curing Presses, this was the used 

approach, since it is considered that they either work almost non-stop during the entire month 
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or do not work at all, and it is thus worthless to perform maintenance on machines that will not 

be working during that month.  

These algorithms were constructed assuming that the user will generate the plan for the next 

month at the end of the current one. The actions that compose the plan appear chronologically 

in the Plan Sheet, with their predicted and limit execution dates (set with a 5-day margin). The 

user should then introduce the actual execution date for each action, and by clicking a button in 

the Plan Sheet called “Update Plan”, the plan is automatically updated, meaning that if an action 

is executed a day after its predicted execution date, actions similar to that one scheduled to be 

done later that month will also be considered late. It is also provided a control indicator 

(percentage of actions executed within limit date) which is also constantly updated whenever 

the same button is pressed. This indicator allows to check if CM personnel are executing the 

actions in useful time or if they are neglecting them or having no time to perform them. 

4.2 Parameter behavior modelling and maintenance interval estimation 

The maintenance plan development and the periodicity calculations underlying it are based on 

reliability analysis. Usually, a predictive or condition-based maintenance plan intends to go 

much further, comprising the estimation of optimal inspection intervals and critical 

maintenance thresholds definition for considered critical parameters for a machine’s 

performance. However, this data collection from installed sensors was yet to be made at the 

beginning of the project, therefore there was not the possibility to apply those techniques 

immediately, as they require the existence of large quantities of data, collected during a 

significant period to understand the machine behavior.  

For these reasons, the project focused more in the idealization of routine inspections to the 

systems and its scheduling though a reliability analysis on their breakdowns, as well as in the 

definition and proposal of measurement actions that may support a more detailed data-driven 

condition-based maintenance plan implementation soon.  

Notwithstanding, an attempt was made to design a condition-based policy for a machine’s 

critical performance parameter. This study aims to provide a basis for future condition-based 

studies in the plant and to demonstrate the potentialities that a well-thought and detailed study 

of the critical performance parameters may have on the overall machine performance. 

4.2.1 Approach overview 

The second part of the project required the data gathering for a condition monitoring parameter 

that could assess the deterioration state of a machine’s component. After the data acquisition, 

the parameter evolution throughout time was estimated using a discrete-time Markov Chain, 

where a discrete number of states was defined, as its probability transition matrix, based on the 

gathered data.  

This probability matrix had, however, to be slightly adjusted, as the time span over which the 

data was gathered was not large enough to observe all the states specified in the transition 

matrix. Therefore, some of the transition probabilities, namely the ones to reach the higher 

deterioration states, were assumed. 

A decision rule was set, similar to the one proposed by Grall et al. (2002b) and already explored 

in section 2.8.2. Under this modelling framework a corrective maintenance action takes place 

if the parameter reaches the state of failure; a preventive maintenance action occurs if the 

parameter reaches the state immediately before the state of failure (“preventive maintenance” 

state); and no action is pursued elsewise. 

Finally, the evolution of the parameter throughout a large period was simulated, based on the 

transition probabilities of the Markov chain. For this, the Monte-Carlo simulation technique 
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was implemented in MS Excel. The goal of this simulation was to predict the time it takes for 

the parameter to reach the states of failure and “preventive maintenance”. This information can 

be then utilized to set the inspection and maintenance intervals. 

4.2.2 Parameter description and data collection 

The first step in this study was to select the parameter whose behavior should be studied. 

Preferably, it should be from a component that is working for as long as possible (for this 

estimation to be as close as possible to the full-production reality), should be easily measurable 

at any time, as the frequency for data gathering was not very long, and its deterioration measure 

evolution should exhibit (not just a condition of failed or not failed).  

Bearing these conditions in mind, the selected parameter was the water pressure exit from the 

Temperature Control Units (TCU) of the Strip Winder’s extruder, who are responsible for 

controlling its components’ temperatures by pumping hot or cold water as required. This 

component was ideal, as it not only belongs to one of the machines with highest working time 

percentage as it is a component that must be working all the time, regardless of the machine’s 

state (working or not), water must keep circulating to ensure that the temperatures of the 

extruder components remain at the desired level. In addition, the water pressure could be easily 

monitored at any time, with an analogic manometer that displays its value constantly. 

This parameter provides information about the clogging level of the filters installed just before 

the pressure measurement. These filters capture dirt and impurities from the central water 

supply for the whole plant, and are important to be kept unclogged, since an insufficient or non-

renovation of water in the extruder’s components may cause them to overheat, damaging the 

materials that are extruded and are then added to the tire. When the registered water pressure 

drops, it therefore means that the filters are getting more and more clogged. 

Data collection took place for nearly a month and a half, with very irregular intervals between 

data points. This was mainly due to the inability to collect data at weekends and holidays and 

because data were collected at different hours in each day. To solve this issue, data was 

normalized, to obtain equally spaced data points. 

Data was collected for six different components of the extruder, but ultimately only two of them 

were chosen to be the object of analysis: the extruder’s head and inferior roll TCU’s.   

4.2.3 Condition-based model used 

The initial idea for this study was to construct an algorithm based on discrete Markov chains’ 

probability transition matrix, with the aim of optimizing the critical threshold from which a 

preventive maintenance action should take place (𝑀), as well as optimizing the inspection 

intervals based on the measured value. However, after the discrete degradation level states 

definition for the Markov chains, and by looking at the gathered data, it was realized that this 

optimization was no longer possible to achieve, as the observation of the higher degradation 

states was not verified, due to frequently imposed maintenance actions by the engineering team 

to prevent the component to fail, making the total definition of the matrix and the algorithm 

construction an impossibility.  Another approach was then used to tackle these problems, which 

will be further described in detail next.   

Data normalization process 

The first step was to treat the gathered data. As it was already said, the intervals over which 

data were obtained were very irregular, which is something that is incompatible with the use of 

discrete-time Markov chains, that entail transitions to be made between equally spaced intervals 

(e.g. days, weeks, etc.). For this reason, there was a need to normalize the obtained raw data to 

match Markov chains’ specifications. 
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Inspection times 𝐼𝑇𝑖 were normalized from 0 to 1 - 𝑁𝐼𝑇𝑖 -, using normalization equation (4.6). 

Of course, this does not convert the observed values into equally spaced time intervals. To do 

so, each normalized and equally spaced instant of time - 𝑁𝐸𝑆𝐼𝑇𝑖 - was said to be equal to 1/𝑁, 

being 𝑁 the number of registered data points, maintaining then the same sample size. Finally, 

there was a need to obtain the pressure values for the normalized and equally spaced time data 

points - 𝑃(𝑁𝐸𝑆𝐼𝑇𝑖), which was achieved by linear interpolation (4.7).  

 

 
𝑁𝐼𝑇𝑖

𝐼𝑇𝑖 −𝑀𝑖𝑛(𝐼𝑇)

𝑀𝑎𝑥(𝐼𝑇) − 𝑀𝑖𝑛(𝐼𝑇)
 (4.6) 

 

 
𝑃(𝑁𝐸𝑆𝐼𝑇𝑖) = 𝑃(𝑁𝐼𝑇𝑗) + (𝑁𝐸𝑆𝐼𝑇𝑖 − 𝑁𝐼𝑇𝑗) ×

𝑃(𝑁𝐼𝑇𝑗+1) − 𝑃(𝑁𝐼𝑇𝑗)

𝑁𝐼𝑇𝑗+1 − 𝑁𝐼𝑇𝑗
 (4.7) 

where:   

• 𝑃(𝑁𝐸𝑆𝐼𝑇𝑖) is the interpolated pressure value for normalized and equally spaced time 𝑖; 

• 𝑁𝐼𝑇𝑗 is the maximum normalized sampled time 𝑗, such that 𝑁𝐼𝑇𝑗 < 𝑁𝐸𝑆𝐼𝑇𝑖; 

• 𝑃(𝑁𝐼𝑇𝑗) is the sampled pressure value for normalized sampled time 𝑗, such that 𝑁𝐼𝑇𝑗 <

𝑁𝐸𝑆𝐼𝑇𝑖; 
• 𝑁𝐼𝑇𝑗+1 is the minimum normalized sampled time 𝑗 + 1, such that 𝑁𝐼𝑇𝑗+1 > 𝑁𝐸𝑆𝐼𝑇𝑖; 

• 𝑃(𝑁𝐼𝑇𝑗+1) is the sampled pressure value for normalized sampled time 𝑗 + 1, such that 

𝑁𝐼𝑇𝑗+1 > 𝑁𝐸𝑆𝐼𝑇𝑖; 

Probability matrix construction and underlying assumptions 

After the data normalization process, it was possible to construct the probability transition 

matrix to model the parameter evolution over time. The probability transition matrix in a 

Markov chain is what commands the behavior and evolution state of the system characteristic 

that is being modeled. Given its number (𝑚) of discrete states (𝑋0, … , 𝑋𝑚−1), it sets the 

conditional probabilities 𝑃(𝑋𝑗|𝑋𝑘) of the system transitioning to state 𝑋𝑗 (𝑗 = 0,… ,𝑚 − 1), 

given that it is currently on state 𝑋𝑘, subject to the condition described in equation (4.8). State 

transitions occur whenever the defined transition interval passes. The system’s state can either 

change, if the next observed value is below the current state’s lower limit or above its upper 

limit, or remain the same if that condition does not verify. 

 ∑ 𝑃(𝑋𝑗|𝑋𝑘)
𝑚−1
𝑗=0 = 1,    ∀𝑘 = 0,… ,𝑚 − 1 (4.8) 

Typically, the probability transition matrix is constructed based on data, being 𝑃(𝑋𝑗|𝑋𝑘) equal 

to the number of observed state transitions from 𝑋𝑘 to 𝑋𝑗 divided by the total observed 

transitions from state 𝑋𝑘 to any state. However, as already stated before, in this case the data 

collected were not enough to observe sampled values for the higher deterioration states. Thus, 

assumptions had to be made in order to obtain a probability transition matrix that allowed 

relevant decision-making conclusions about the optimal maintenance policy: 

• Adapting the approach proposed by Marseguerra et al. (2002), transitions due to 

component degradation are only allowed until the state immediately before failure. 

Failure state is therefore only reachable if a random failure occurs, and it can occur from 

any degradation state from 𝑋0 to 𝑋𝑚−2. Transition probabilities from state 𝑋𝑘 =
𝑋0, … ,𝑋𝑚−2 to state 𝑋𝑗 = 𝑋0, … ,𝑋𝑚−2 were therefore defined separately from the 

transition probabilities from state  𝑋𝑘 = 𝑋0, … ,𝑋𝑚−2 to state 𝑋𝑚−1 (failure state). Failure 

and degradation events are considered as being mutually exclusive; 
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• Whenever the system reaches the failure or “preventive maintenance” state, it is subject 

to a corrective or preventive maintenance operation respectively, and its state is returned 

to “as good as new”, i.e., 𝑃(𝑋0 |𝑋𝑚−1) = 1 (perfect maintenance); 

• The system can only remain in the current state or transition to a state of higher 

deterioration, being the only exception if the current state at a given moment is the 

failure state; 

• Probabilities of reaching the failure state 𝑋𝑚−1 increase exponentially with the increase 

of the degradation level, being defined by condition (4.9). 

 
{
𝑃(𝑋𝑚−1 |𝑋𝑘) = 0.002                                                               𝑖𝑓 𝑘 = 0

𝑃(𝑋𝑚−1 |𝑋𝑘) =   𝑃(𝑋𝑚−1 |𝑋0) ∙ 𝑒
𝑘                     𝑖𝑓 0 <  𝑘 ≤ 𝑚 − 2

} (4.9) 

The initial probability of 0.002 is an assumed value for this particular case, found to be suitable 

enough for the number of discrete states specified in Table 13. The resulting generalized 

probability transition matrix based on these assumptions is presented next (4.10).  

 

 

(

 
 
 

𝑃(𝑋0 |𝑋0) 𝑃(𝑋1 |𝑋0) 𝑃(𝑋2 |𝑋0) 𝑃(𝑋3 |𝑋0) ⋯ 𝑃(𝑋𝑚−1 |𝑋0)

0 𝑃(𝑋1 |𝑋1) 𝑃(𝑋2 |𝑋1) 𝑃(𝑋3 |𝑋1) ⋯ 𝑃(𝑋𝑚−1 |𝑋1)

0 0 𝑃(𝑋2 |𝑋2) 𝑃(𝑋3 |𝑋2) ⋯ 𝑃(𝑋𝑚−1 |𝑋2)

0 0 0 𝑃(𝑋3 |𝑋3) ⋯ ⋮

⋮ ⋮ ⋮ ⋮ ⋱ 𝑃(𝑋𝑚−1 |𝑋𝑚−2)
1 0 0 0 0 0 )

 
 
 

 (4.10) 

The discrete states in which the markovian process was based on, which in this case correspond 

to pressure value ranges, are presented in Table 13. It is important to refer that the intermediate 

states have different ranges between themselves: for example, states 1 and 2 have a range of 

0.5 bar, while states 3 and 4 have a range of 1 bar each. The influence of this range difference 

will be tested later in a sensitivity analysis. The highest and lowest deterioration states’ ranges 

are not required to be equal, as the maximum value for the lowest deterioration state and 

minimum value for the highest deterioration state are not relevant as they have no impact on 

the analysis (those values are never reached in reality). Additionally, the upper limit of the 

highest deterioration state (state 5) is also the failure threshold – 𝐿 - (3.5 bar), so state 5 is 

considered as the failure state. 

Table 13 - Discrete states to be used in the Markov chain and their upper and lower pressure limits 

State 
no. 

Lower pressure 
limit (bar) 

Upper pressure 
limit (bar) 

5 0.0 3.5 

4 3.5 4.5 

3 4.5 5.5 

2 5.5 6.0 

1 6.0 6.5 

0 6.5 8.0 

Monte Carlo simulation and maintenance policy decision-making 

The initial aim of the study was to optimize the preventive maintenance threshold – 𝑀- and the 

inspection intervals for this component. However, due to the impossibility to do so, the 

decision-making of the optimal condition-based maintenance policy was made through 

simulation, using the Monte Carlo technique, of the parameter behavior using the model 

previously described. It is important to refer that this technique cannot be applied to the 

probability transition matrix, but to the cumulative probability transition matrix.  
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Different preventive maintenance thresholds were set, and their simulated total maintenance 

costs compared with other maintenance policies, such as time-based maintenance (TBM) and 

failure-based maintenance (FBM), aiming to find the optimal one, i.e., the one with lower total 

cost. These different scenarios and their preventive maintenance triggers (the policies’ main 

decision rule) are presented in Table 14.   

Table 14 - Description of tested scenarios and their underlying maintenance policies 

Scenario description Preventive maintenance trigger 

FBM - Run until failure None 

TBM – 2 weeks Every 15 calendar days 

TBM – 1 month (current policy) Every 30 calendar days 

TBM – 2 months Every 60 calendar days 

CBM – Safety threshold = 4 When system reaches state 4 

CBM – Safety threshold = 3 When system reaches state 3 

CBM – Safety threshold = 2 When system reaches state 2 

CBM – Safety threshold = 1 When system reaches state 1 

Maintenance and failure costs depend on multiple factors. The number of machine stoppage 

hours is one of them. If currently a stoppage can be compensated later easily, in the future when 

production is in full-flow it will be a lot more difficult, therefore it is a crucial factor. In case of 

a maintenance operation, it is accounted the time for shutting the machine down, cleaning the 

filter and reconnect it, while in the case of failure is added the time for repairing and checking 

the entire system again before resuming it, besides the fact that the cleaning time should be 

longer if the filter is completely clogged. The cost to consider here is the opportunity of losing 

production. For this, the average selling price for an agricultural tire was considered. On the 

other hand, if a filter clogs and the extruder overheats, the material it produces does not have 

the required specifications and therefore the tire in which that material is applied becomes a 

scrap. Under these circumstances the plant loses the money it could gain with that tire. Finally, 

the possibility of substitution of the filter is accounted for, assuming it is higher in a case of 

failure. The assumed maintenance and failure costs and their calculation steps are described in 

Table 15 and equations (4.11), (4.12), (4.13) and (4.14). 

Table 15 - Inputs for calculation of preventive maintenance and failure costs 

Preventive maintenance costs Failure costs 

Estimated stoppage time (hours) 0.75 Estimated stoppage time (hours) 2 

Tires produced / hour (throughput) 8 Tires produced / hour (throughput) 8 

Number of scrap tires 0 Number of scrap tires 1 

Average selling price (€) 1000 Average selling price (€) 1000 

Probability of filter substitution 5% Probability of filter substitution 20% 

New filter cost (€) 400 New filter cost (€) 400 

TOTAL COST (€) 6020 TOTAL COST (€) 17080 

 

 𝑂𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦 𝑐𝑜𝑠𝑡 = 𝑆𝑡𝑜𝑝𝑝𝑎𝑔𝑒 𝑡𝑖𝑚𝑒 × 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 × 𝑆𝑒𝑙𝑙𝑖𝑛𝑔 𝑝𝑟𝑖𝑐𝑒  (4.11) 

 

 𝑆𝑐𝑟𝑎𝑝 𝑐𝑜𝑠𝑡 = 𝑁𝑟 𝑠𝑐𝑟𝑎𝑝 𝑡𝑖𝑟𝑒𝑠 × 𝑆𝑒𝑙𝑙𝑖𝑛𝑔 𝑝𝑟𝑖𝑐𝑒 (4.12) 

 

 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 = 𝐹𝑖𝑙𝑡𝑒𝑟 𝑐𝑜𝑠𝑡 × 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (4.13) 
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 𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝑂𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦 𝑐𝑜𝑠𝑡 + 𝑆𝑐𝑟𝑎𝑝 𝑐𝑜𝑠𝑡 + 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 (4.14) 

It is important to refer that all the variables contributing to the total maintenance and failure 

costs are assumed as constant throughout the analysis. Thus, the contribution of each cost type 

to the total maintenance and failure costs is fixed (as they only depend on the number of failures 

and maintenance operations, respectively). The contributions (in percentage) of each cost type 

to maintenance and failure costs are presented in Table 16. 

Table 16 - Contributions of the different cost types to the total failure and maintenance costs 

Cost type 
Maintenance cost contribution Failure cost contribution 

€ % € % 

Opportunity cost 6000 99.67% 16000 93.68% 

Scrap cost 0 0.00% 1000 5.85% 

Replacement cost 20 0.33% 80 0.47% 

TOTAL 6020 100% 17080 100% 

4.3 Curing presses N2 pulses analysis 

One of the goals for this project was to find critical parameters to the machines’ performance 

that were not being monitored yet and evaluate their behavior in order to understand with higher 

precision their behavior. By doing so one could understand what was these parameters’ 

evolution and what are the critical values from which one should act (maintenance) or bear in 

mind that something is not working as it was supposed to (alarm). In the case of the Curing 

Presses, this condition parameter was the number of nitrogen pulses sent to the bladder, which 

maintain high pressure inside it. 

In the curing process, the pressure and temperature inside the bladder are two essential 

parameters that must be kept at certain values to make sure the quality of the cured tire is not 

negatively affected. The pressure inside the bladder during the process tends to decrease with 

time, and to avoid that instant high-pressure nitrogen pulses are prompt into the bladder in order 

to re-increase the pressure inside it. The number of pulses sent is, therefore, an indicator of 

possible leaks in the bladder or on the tubes: if the number of pulses in a cycle is well above 

the expected, it means that a leak is happening. 

4.3.1 Automatic chart generation 

The presses send data relative to temperature and pressure of the bladder and dome every 5 

seconds. The first problem was that this data was not being treated properly, and there was a 

need to develop a very fast way to chart these parameters for any given period, to be checked 

every time something odd was detected on a cycle. In order to solve that problem, an automatic 

chart generator was developed using MS Excel VBA, whose only inputs were the date, the 

machine in which the cycle occurred and the time period of that cycle, that could be easily 

defined through the interface presented in Appendix J. The obtained chart for a random curing 

cycle can be visualized in Figure 16. The Excel sheet containing the code was then put into the 

company’s servers, allowing to generate the chart for any cycle, at any time, at any machine. 
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Figure 16 - Curing press data from one curing cycle, obtained from the VBA code developed 

The red emphasized zone in Figure 16 represents the curing process itself, where the yellow 

peaks are the nitrogen pulses that are sent to re-increase the inner bladder pressure during the 

cycle. The number of nitrogen pulses often depends on the tire type to be produced (tire types 

are often referred to as tire measures) and of the curing machine type used in the process. There 

are multiple tire measures to be vulcanized in three types of curing presses: A (104’’ – inches - 

of dome diameter), B (91’’ of dome diameter) and D (104’’ of dome diameter). Currently there 

are 1 press of type A, 4 presses of type B and 4 presses of type D. As mentioned before, not all 

of them work at the same time, and they are not designed to cure every tire measure, being the 

A’s and B’s used for the larger tire measures and the D’s for the smaller tire measures.  

4.3.2 Alarm and maintenance value setting 

A vast number of cycles was analyzed, from January to March 2018. To easily obtain the 

number of pulses of a given cycle without counting them by hand, a VBA macro was coded. 

For each combination of tire measure and machine type, we retrieved statistics regarding the 

number of pulses, such as the average, the mode, and the maximum and minimum values 

observed.  

A leak is characterized by a considerably higher number of pulses throughout a set of 

consecutive cycles. Therefore, isolated cycles with a higher number of pulses, when the 

immediately before and after cycles register “good” numbers were marked as outliers (due to 

incorrect data processing or because something specific happened during that cycle) and were 

excluded from the analysis. 

The initial goal with this analysis was to identify cycles with remarkably higher number of 

pulses than the others, which would indicate the observable number of pulses when a leak was 

happening. However, even if a clearly identifiable leak is not detected, the obtained values can 

be assumed as the ones characterizing good cycles, and that any observed values that go above 

the observed range mean that something is wrong. For these cases, there are two types of 

possible actions to be pursued: an alarm may be issued, as a message for the engineering team 

to bear in mind that a cycle has recorded more pulses than the alarm limit and may need a closer 
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monitoring in the upcoming cycles; and the stoppage of the machine, if a cycle has recorded a 

such large number of pulses that it is even above the defined stoppage limit. These limits, 

theoretically speaking, are achieved sequentially, as it is expected for a leak to be, at first, small 

and therefore register a smaller number of pulses, and then to become larger as the machine 

continues working, prospecting an increase in the number of pulses from cycle to cycle until 

the stoppage limit is surpassed. The formulas for these limits are found in (4.15) and (4.16) for 

each measure 𝑖 to be produced in machine 𝑗. 

 

 𝐴𝑙𝑎𝑟𝑚 𝑙𝑖𝑚𝑖𝑡𝑖𝑗 = 1.1 ∙ 𝑀𝑜𝑑𝑒𝑖𝑗  (4.15) 

 

 𝑆𝑡𝑜𝑝𝑝𝑎𝑔𝑒 𝑙𝑖𝑚𝑖𝑡𝑖𝑗 = 1.15 ∙ 𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑖𝑗 (4.16) 

The definition of the above formulas in (4.15) and (4.16) did not follow any theoretical basis, 

but they have a logical sense. If a cycle’s number of pulses goes a certain margin (assumed 

10%) beyond the most observed value, it means that something may be going out of control but 

may not necessarily implicate a large enough leak to influence the tire quality. On the other 

hand, if a cycle’s number of pulses goes beyond the maximum registered value by a given 

margin (assumed 15%), it may indicate that a large leak is occurring, that may damage the tire 

characteristics and therefore the machine should be stopped to repair the leak. 
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5 Results 

In this section of this thesis the obtained results after applying the described methodologies in 

Section 4 are presented. First, the impact results from the implementation of the predictive 

maintenance plan are displayed; afterwards the simulation results from the condition-based 

model developed for the tested scenarios are presented, as well as a sensitivity analysis on some 

of its most critical assumptions; and finally results from the curing presses nitrogen pulses 

analysis are introduced, comprising the definition of the critical alarm and stoppage values for 

a few tire measure and machine type combinations. 

5.1 Time-based maintenance plan implementation  

Having already shown some of the intermediate results obtained, crucial for a better 

understanding of the methodology used, the true impact of the developed maintenance plan has 

yet to be shown. The way to assess the impact that the plan had on the overall maintenance 

performance of the plant is to look and compare the selected maintenance performance 

indicators prior and after the maintenance plan implementation. 

5.1.1 Maintenance performance indicators analysis 

Even if the period of implementation was only a month, it is relevant to compare the obtained 

values for the maintenance performance indicators before and after. Table 17 summarizes the 

resultant performance indicators for May 2018, also presenting the percentage variation in 

relation to the ones verified at March 2018, for both ED7 and ED8. 

Table 17 - Maintenance performance indicators for May 2018 and comparison to the ones from March 2018 

 MM MTBF (h) MTTR (h) 

Machine May +/- (vs Mar) May +/- (vs Mar) May +/- (vs Mar) 

Carcass Building Machines 80.0% -5.9% 7.08 +2.8% 0.15 -57.1% 

Green Tire Buil. Machines 66.3% -7.3% 28.38 +106.7% 0.22 +15.8% 

Extruder 96.8% +1.6% 2.98 +30.1% 0.09 -71.9% 

APEX 83.4% +23.6% 6.24 -13.3% 0.14 -12.5% 

Bead Winder 90.2% +26.5% 9.23 +29.8% 0.33 +266.7% 

Strip Winder 88.6% +21.3% 24.63 -52.0% 0.09 -50.0% 

Combicutter 90.1% +28.6% 7.67 +68.9% 0.07 -63.2% 

Spraying Machine 
81.0% +2.0% 

3.50 -32.7% 0.85 +203.6% 

Curing Presses 27.80 -5.4% 0.48 +26.3% 

Through the observation of Table 17, the improved standardization of maintenance operations 

can be verified, as the MM values are now very balanced for all the machines. The majority of 

them experienced an increase in this indicator, proving maintenance operations are now much 

more organized, and that planned maintenance operations have a very superior weight when 

compared to CM operations in the total maintenance time expended. Also, good signs are shown 

in the MTBF and MTTR indicators, as many machines show higher MTBF’s (less frequent 

failures) and lower MTTR’s (less severe failures), especially in the machines of ED7. However, 

it is still very early to evaluate the results from these two indicators, as they normally require 

more time to mature, therefore these results should be viewed in a conservative perspective, as 

they may have coincided with a good month. 
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5.2 Condition-based modelling  

In this section are presented the obtained results for the Monte Carlo simulation conducted on 

the various scenarios, as well as a sensitivity analysis on the condition-based model’s most 

critical underlying assumptions. Prior to the application of the model to real data, however, a 

simple concept validation was made, based on simulated data, to make sure the model could 

demonstrate the required trade-off between the number of failures and maintenance operations. 

Every scenario presented in Table 14 was simulated throughout 5000 time-intervals, with a 

warm-up period of 500 time-intervals. It is important to notice that each time-interval does not 

correspond to one day, since the initially obtained raw data had to be normalized to allow the 

parameter modelling using a Markov chain. Since the 72 data points collected were gathered 

within a range of 41 days, and data were then normalized so that they were equally-spaced, 

each time interval corresponds to 41 72⁄ = 0.569(4)  days. 

5.2.1 Concept validation 

In order to validate the conceptual model previously described and verify the existence of a 

trade-off between failures and maintenance operations, prior to its application to real data, the 

model was tested using a simulated probability transition matrix. For this concept validation, 

the number of states (6) and their designations were kept the same as in the used condition-

based model. The pressure ranges defined for the discrete states of the Markov chain to be 

applied to real data are not applicable here, since the probability transition matrix is not 

generated based on any kind of pressure values data, results obtained have no practical meaning, 

but are used to understand the policy potential. 

The simulated transition probabilities from the degradation states 𝑋𝑘 (𝑘 ≤ 𝑚 − 2) to states 

𝑋𝑗 (𝑘 ≤ 𝑗 ≤ 𝑚 − 2) - 𝑃(𝑋𝑗|𝑋𝑘) - were obtained using the formula proposed by Marseguerra et 

al. (2002), displayed in (5.1). The failure probabilities - 𝑃(𝑋𝑚−1|𝑋𝑘) - were generated 

according to (4.9), and then added to the simulated probability matrix. 

 𝑃(𝑋𝑗|𝑋𝑘) =
2

𝑁 − 𝑘 + 1

𝑁 − 𝑘 − 𝑗

𝑁 − 𝑘
 (5.1) 

where 𝑁 is the number of degradation states (before failure), i.e., 𝑁 = 𝑚 − 1. Of course, the 

transition probabilities obtained for the degradation process had to be adapted using (5.2) to 

respect the inviolable condition stated in (4.8). 

 

 𝑃(𝑋𝑗|𝑋𝑘) =  𝑃(𝑋𝑗|𝑋𝑘) ∙ (1 − 𝑃(𝑋𝑚−1|𝑋𝑘)) (5.2) 

The final simulated probability transition matrix used for the concept validation is displayed in 

(5.3). Monte Carlo simulation was performed based on the cumulative probability transition 

matrix, presented in (5.4). 
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0.3327 0.2661 0.1996 0.1331 0.0665 0.0020
0 0.3978 0.2984 0.1989 0.0995 0.0054
0 0 0.4926 0.3284 0.1642 0.0148
0 0 0 0.6399 0.3199 0.0402
0 0 0 0 0.8908 0.1092
1 0 0 0 0 0 )

 
 
 

 (5.3) 
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 (5.4) 

Results after simulation over 5000 transitions, with a warm-up period of 500 were obtained 

through the Monte Carlo technique. By increasing the policy strictness, it is expected for the 

number of failures to decrease, but the number of preventive maintenance actions is expected 

to rise. The goal is to find the policy that better balances these two, considering the assumed 

maintenance and failure costs of Table 15. 

 

Figure 17- Failure and maintenance trade-off verification 

Analyzing Figure 17, it can be concluded that the number of failures decreases as the policies’ 

strictness increases, and the opposite happens with the number of maintenance actions. This 

was the trade-off that was hoped the model could provide and was tried to verify with this 

concept validation. A total cost analysis was not the purpose of this concept validation. 

5.2.2 Application to real data 

Having validated the concept, it is time to apply it to the collected data on the field, that will 

allow to draw conclusions about what should be the optimal maintenance policy to be followed 

for the component in question. However, because the obtained data is too polarized in the least 

degradation states, one additional assumption had to be made. Due to the fact that sudden 

significant decreases in pressure values (implying sudden “jumps” to higher deterioration 

states) are not observed (degradation is steady), it was assumed that only transitions to the 

immediately next higher degradation level take place, besides staying in the current state 

(meaning that, for 𝑘 = 0,… ,𝑚 − 2, only {𝑃(𝑋𝑘|𝑋𝑘), 𝑃(𝑋𝑘+1|𝑋𝑘)}  ≠ 0). In addition, since 

pressure values for the higher deterioration states aren’t observed, it was assumed that the 

transition probabilities obtained based on data for the lower deterioration states are kept the 

same throughout the chain’s deterioration states. The probabilities that were used as a reference 

to explain the parameter evolution in the Markov chain were the ones obtained for the most 

frequently observed states in data.   

As already mentioned, this study was conducted using data from two of the Strip Winder’s 

extruder components: the head and the inferior roll. Next are presented all the assumptions 

made for each component, as well as the simulation results that led to a decision about the 

preferable maintenance policy to use.  
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Extruder head analysis 

The probability transition matrix was inferred from the state transition observations of the 

normalized data. Matrix (5.5) presents the number of observed transitions for the extruder head 

pressure values. From that matrix, the probabilities 𝑃(𝑋𝑘|𝑋𝑘) and 𝑃(𝑋𝑘+1|𝑋𝑘), for 𝑘 =
0, … ,𝑚 − 2 were estimated from the observed transitions of the most observed state, that in 

this case is state 1, with a total of 39 observations. Therefore, 𝑃(𝑋1|𝑋1) = 35 39⁄ = 0.8974 

and consequently 𝑃(𝑋2|𝑋1) = 1 − 0.8974 = 0.1026, since it was assumed that only 

transitions to the next higher deterioration state are allowed besides remaining in the same 

system state.  

0 1 2 3 4 5 

 

0
1
2
3
4
5(

  
 

17 2 0 0 0 0
3 35 1 0 0 0
0 2 4 1 0 0
0 0 1 6 0 0
0 0 0 0 0 0
0 0 0 0 0 0)

  
 

 (5.5) 

Of course, since transitions to the failure state also need to be considered, these observed 

probabilities are adapted in the final probability transition matrix in order to not violate the 

condition in (4.8). Thus, a similar exercise to the one used above with simulated data was 

performed (5.2), and the final probability transition matrix is presented in (5.6). 
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0.8956 0.1024 0 0 0 0.0020
0 0.8926 0.1020 0 0 0.0054
0 0 0.8842 0.1010 0 0.0148
0 0 0 0.8614 0.0984 0.0402
0 0 0 0 0.8908 0.1092
1 0 0 0 0 0 )

 
 
 

 (5.6) 

Similarly to the concept validation, the Monte Carlo simulation technique should be applied to 

a cumulative probability transition matrix, shown in (5.7). Simulation results from 5000 

simulated transitions, with a 500 transitions warm-up in each of the tested scenarios for the 

extruder head component are detailed and presented in Table 18. 
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0.8956 0.9980 0.9980 0.9980 0.9980 1.0000
0 0.8926 0.9946 0.9946 0.9946 1.0000
0 0 0.8842 0.9852 0.9852 1.0000
0 0 0 0.8614 0.9598 1.0000
0 0 0 0 0.8908 1.0000
1 0 0 0 0 0 )

 
 
 

 (5.7) 

Considering all the scenarios that were tested, using the proposed model and the cost 

assumptions for failure and preventive maintenance situations, it becomes clear that a 

condition-based model is more beneficial than a time-based or failure-based model for this 

component. Comparing to the policy currently in use (perform preventive maintenance every 

month), a condition-based model (except for the most conservative scenario) proportions 

savings of more than 400,000 € for 5000 transitions, i.e., 2847 days, which is just under 8 years 

of operation. This corresponds to an annual saving of 92,420 € for the optimal policy. 

Considering that the plant will be operating for way longer than 8 years, one can imagine the 

savings that can happen over the next 20 or 50 years.   
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Table 18 - Simulation results and cost analysis for Strip Winder extruder head filter 

Scenario description Failures 
Maint. 
Actions 

Total Failure 
Cost (€) 

Total Maint. 
Cost (€) 

Total Cost 
(€) 

FBM - Run until failure 131 0 2237480 0 2237480 

TBM – 2 months 115 47 1964200 282940 2247140 

TBM – 1 month (current policy) 95 96 1622600 577920 2200520 

TBM – 2 weeks 61 192 1041880 1155840 2197720 

CBM – Safety threshold = 4 66 83 1127280 499660 1626940 

CBM – Safety threshold = 3 32 155 546560 933100 1479660 

CBM – Safety threshold = 2 16 248 273280 1492960 1766240 

CBM – Safety threshold = 1 9 483 153720 2907660 3061380 

The optimal maintenance policy for this component, according to the proposed model, is to set 

the preventive maintenance threshold at the upper bound of state 3, i.e., to perform a 

maintenance operation every time the water pressure exit value drops below 5.5 bar. However, 

due to the number of assumptions that had to be made in the model construction process, setting 

that threshold at 4.5 bar (lower bound of state 4) should also be looked into as a viable 

possibility. The expected times to failure and maintenance for these two scenarios are specified 

in Table 19. The expected time to each maintenance operation can act as a reference for the 

frequency to which the maintenance team should check the pressure level. 

Table 19 - Expected number of days to failure and maintenance for extruder head 

Scenario description 
Expected time to 

failure (days) 
Expected time to 

maintenance (days) 

CBM – Safety threshold = 4 43.14 34.30 

CBM – Safety threshold = 3 88.98 18.37 

Extruder inferior roll analysis 

A similar approach to the one presented in the analysis of the extruder head was carried out for 

the extruder inferior roll component, obtaining the probability transition matrix based on 

observed transitions in the normalized data. The intermediate steps and the final results obtained 

for this component can be found in Appendix H. 

Sensitivity analysis 

In order to assess the robustness of the developed model and of the optimal decision obtained 

through simulation, a sensitivity analysis to a few of the assumed parameters was conducted. 

In this analysis, the parameters chosen to be evaluated were the ratio between individual failure 

and maintenance cost, the deterioration and failure probabilities and, finally, the number of 

assumed states in the Markov chain. For this analysis to be meaningful, when testing a given 

parameter, the others must be kept the same as before. With the purpose of not making this 

analysis too extensive, only the extruder head component results will be subject to it. 

First, the ratio between failure and maintenance costs was evaluated. The assumed ratio was 

the one specified on equation (5.8), meaning that the failure cost is 2.84 times higher than the 

maintenance cost. For this analysis, ratio values of 1.5, 2 and 3 will be tested, and the critical 

ratio for which the two policies (“Safety threshold = 4” and “Safety threshold = 3”) match in 

terms of total cost. For this, the maintenance cost will be kept constant, but the critical ratio is 

independent of the actual value of the maintenance cost. 
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 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑟𝑎𝑡𝑖𝑜 =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑐𝑜𝑠𝑡

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡
=
17080

6020
= 2.837 (5.8) 

Obtained failure, maintenance and total costs for the two most viable scenarios for the cost 

ratios of 1.5, 2 and 3 and for the critical cost ratio are specified in Table 20. The costs for the 

remaining scenarios for each of the tested cost ratios can be consulted in Appendix I. 

Table 20 - Total cost comparisons between the two most viable policies for different cost ratios 

Cost Ratio 
Maint. 
Cost 

Fail. Cost 
‘CBM – Safety threshold 

= 3’- Total Cost 
‘CBM – Safety threshold 

= 4’ - Total Cost 

Current = 2.837 6020 17080 1479660 1626940 

1.5 6020 9030 1222060 1095640 

2 6020 12040 1318380 1294300 

3 6020 18060 1511020 1691620 

Critical = 2.118 6020 12748.24 1341043.5 1341043.5 

From Table 20, one can conclude that when the cost ratio increases, the cost difference between 

the policy that sets the maintenance threshold at state 3 and the one that sets it at state 4 

increases. However, when the cost ratio decreases, the opposite happens. The critical ratio value 

of 2.118 means that setting the critical threshold at state 3 remains the optimal policy if the ratio 

between failure and maintenance costs is equal or higher than 2.118, i.e., if the failure cost is at 

least 2.118 times higher than the maintenance cost, whatever its value. If their ratio is found to 

be lower than 2.118, the optimal policy is to set the maintenance threshold at state 4. 

Next, the deterioration probabilities were modified, using that to assess the robustness of the 

optimal policy obtained. For this exercise, deterioration probabilities 𝑃(𝑋𝑘+1|𝑋𝑘), for 𝑘 =
0, … ,𝑚 − 2 were modified from the estimated value of 0.1026 (5.5) to 0.05 and 0.15. The 

obtained probability matrices for these cases, after the necessary adjustment to obey to 

unbreakable condition (4.8), can be found in Appendix I.  

The results obtained when setting the deterioration probability to 0.05 show that the condition-

based maintenance policies (except for the most conservative policy) still perform significantly 

better than the time-based or failure-based policies (Appendix I). The optimal policy is still the 

one that sets the preventive maintenance threshold at the upper bound of state 3, however given 

that deterioration was slowed, the policy that sets the threshold at the upper bound of state 2 

has a very similar cost performance (see Figure 18, where 𝑃(𝑋𝑘+1|𝑋𝑘) is represented as “Det. 

P”), as the number of performed maintenance operations for this threshold is a lot lower than 

for higher deterioration probabilities, allowing maintenance costs to be lower and compensate 

the higher number of failures in the other policies. 

For a deterioration probability of 0.15, it was expected that the optimal policy would be nearer 

to the one that sets the threshold at the upper bound of state 4. That, when comparing to a lower 

deterioration probability, does happen, however the optimal policy found is still the initial one, 

that sets the maintenance threshold at the upper bound of state 3 (Figure 18), meaning that even 

for slower and faster deteriorations, this policy is still the optimal one, proving its robustness.  
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Figure 18 - Total cost comparison, for the three most viable scenarios, for different deterioration probabilities 

Besides the deterioration probabilities, the assumed failure probabilities may also have a huge 

effect on the optimal maintenance policy, especially since their assumption had no underlying 

data to support it. It was tested a slower and faster evolution for these random failure 

probabilities than the one used in the model, according to the rules specified in (5.9) and (5.10), 

respectively. Again, results showed that condition-based policies are considerably better than 

time-based or failure-based policies (Appendix I). Figure 19 shows the total cost obtained for 

the three most viable scenarios for the different failure probability distributions. 

 

 {
𝑃(𝑋𝑚−1 |𝑋𝑘) = 0.0025                                                               𝑖𝑓 𝑘 = 0

𝑃(𝑋𝑚−1 |𝑋𝑘) = 2 ∙ 𝑃(𝑋𝑚−1 |𝑋𝑘−1)                       𝑖𝑓 0 <  𝑘 ≤ 𝑚 − 2
} (5.9) 

 

 {
𝑃(𝑋𝑚−1 |𝑋𝑘) = 0.002                                                                  𝑖𝑓 𝑘 = 0

𝑃(𝑋𝑚−1 |𝑋𝑘) =   𝑃(𝑋𝑚−1 |𝑋0) ∙ 1.5 ∙ 𝑒
𝑘               𝑖𝑓 0 <  𝑘 ≤ 𝑚 − 2

} (5.10) 

 

Figure 19 - Total cost comparison, for the three most viable scenarios, for different failure probabilities 

Through the observation of Figure 19, it can be drawn that even when the failure probabilities 

are changed, the initially obtained optimal policy holds up very well, only slightly outperformed 

by the policy that sets the maintenance threshold at the upper bound of state 4 in the case of 

smaller failure probabilities. Therefore, this analysis corroborates the idea that the obtained 

optimal solution is quite robust, as it remains the best one even if changing such important 

parameters as the deterioration and failure probabilities. 

The final evaluation had to do with the number of states considered. Initially, there were 

considered 5 degradation states and 1 failure state. It is intended to study if an increased 
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segmentation of the pressure values, increasing the number of degradation states of the Markov 

chain, would be beneficial to the total cost and if it would change the initially obtained solution. 

The initial ranges choice was one in which the ranges were not all identical, and now one of the 

intentions is to make them all identical. For this reason, all states, excluding state 0 and the 

failure state, were assumed to have a range of 0.4 bar. Table 21 summarizes all the states used 

for this analysis, as well as their pressure value ranges.  

Table 21 - Characterization of defined states and their pressure value ranges for the sensitivity analysis 

State 
no. 

Lower pressure 
limit (bar) 

Upper pressure 
limit (bar) 

State 
no. 

Lower pressure 
limit (bar) 

Upper pressure 
limit (bar) 

9 0.0 3.5 4 5.1 5.5 

8 3.5 3.9 3 5.5 5.9 

7 3.9 4.3 2 5.9 6.3 

6 4.3 4.7 1 6.3 6.7 

5 4.7 5.1 0 6.7 8.0 

Since the number of degradation states was increased from 5 to 9, the transition probabilities to 

a higher degradation state must be higher than the previously obtained ones, since the states’ 

ranges have decreased. Therefore, they were estimated based on the initially assumed ones, 

multiplying them by 9/5, being 𝑃(𝑋𝑘+1|𝑋𝑘) = 0.1846. This step is arguable, since the 

normalized real data could be used to set the new probabilities for the newly defined discrete 

states with an increased accuracy. However, the aim with this analysis is to test the sensitivity 

of the developed model to a change in the number of states solely, and not to develop a whole 

different new model. Also, the failure probabilities must be modified, but this time they were 

estimated through equation (5.11). The obtained transition matrix used in this analysis can be 

found in Appendix I. 

 

 {
𝑃(𝑋𝑚−1 |𝑋𝑘) = 0.002                                                           𝑖𝑓 𝑘 = 0

𝑃(𝑋𝑚−1 |𝑋𝑘) =   𝑃(𝑋𝑚−1 |𝑋0) ∙ 𝑒
𝑘∙
5
9               𝑖𝑓 0 <  𝑘 ≤ 𝑚 − 2

} (5.11) 

Again, the condition-based policies perform better even if the number of discrete states 

considered increases, as can be proven by Table 22 which proves the viability and robustness 

of the use of such a policy. The optimal obtained solution in this case corresponds to setting the 

maintenance threshold at the upper bound of state 4, i.e., to perform a maintenance operation 

whenever the pressure value drops below 5.5 bar. The obtained solution is the same as the one 

obtained previously, which is a clear demonstration of the robustness of the initially obtained 

solution and attests the strength and suitability of the developed condition-based model. 

Almost all scenarios evaluated in this sensitivity analysis have a common optimal solution, the 

same as the initially obtained. This not only proves the robustness of that solution, as whatever 

conditions are applied it still remains as the optimal one, but also the strength of the developed 

condition-based model, by the fact that it was able to obtain an initial optimal solution that was 

not very sensitive and dependent of its underlying assumptions. 
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Table 22 - Results obtained for the tested scenarios with an increased number of states 

Scenario description Failures 
Maint. 
Actions 

Total Failure 
Cost (€) 

Total Maint. 
Cost (€) 

Total Cost 
(€) 

FBM - Run until failure 94 0 1605520 0 1605520 

TBM – 2 months 72 47 1229760 282940 1512700 

TBM – 1 month (current policy) 59 96 1007720 577920 1585640 

TBM – 2 weeks 22 192 375760 1155840 1531600 

CBM – Safety threshold = 8 84 12 1434720 72240 1506960 

CBM – Safety threshold = 7 68 32 1161440 192640 1354080 

CBM – Safety threshold = 6 48 57 819840 343140 1162980 

CBM – Safety threshold = 5 44 76 751520 457520 1209040 

CBM – Safety threshold = 4 23 118 392840 710360 1103200 

CBM – Safety threshold = 3 13 171 222040 1029420 1251460 

CBM – Safety threshold = 2 11 252 187880 1517040 1704920 

5.3 Curing presses N2 pulses analysis 

Finally, the results retrieved from the analysis of the number of N2 pulses in the curing cycles, 

using the approach previously described in Section 4.3 are presented in this section, with the 

descriptive statistics for few of the tire measures and machine type combinations and their alarm 

and stoppage found values. 

Descriptive statistics 

The obtained statistics about the number of N2 pulses found in the analyzed curing cycles are 

entirely presented in Appendix J, while Table 23 provides its values for two of the most frequent 

tire measures produced and, consequently, most observed, in two different machine types (in 

this case, curing presses of type B and D). 

Table 23 - Descriptive statistics on the number of nitrogen pulses for two of the most observed tire measures 

Measure Curing press Nr of cycles Maximum Minimum Average Mode 

340-85 R28 D01 299 18 15 17.037 17 

460-85 R38 B01 222 23 20 21.586 22 

Alarm and stoppage limits 

Only one leak was clearly identified, having happened in press D03 for measure 420-70 R38, 

where were registered consecutive cycles of 26, 27 and 28 pulses, while the average was under 

21 pulses.  

For this reason, for the remaining combinations of tire measure and machine type, alarm and 

stoppage limits were defined, according to the criteria specified in Section 4.3.2. The alarm and 

stoppage limit values for the measures previously mentioned are found in Table 24. The alarm 

and stoppage limits found for the remaining measures can be consulted in Appendix J. 

Table 24 - Alarm and stoppage limits for two of the most produced tire measures from January to March 2018 

Measure Curing press Alarm Limit Stoppage Limit 

340-85 R28 D01 19 21 

460-85 R38 B01 25 27 
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6 Conclusions 

In this section, a few final considerations regarding the achievement of the initial objectives, 

the pertinence of the conducted work to the company and the results obtained are drawn. Some 

future work perspectives are also suggested, building on the developed work. 

6.1 Final Considerations 

The main expected goal for this thesis, from the company’s perspective, was the development 

of a predictive maintenance plan to be implemented in the new machines that comprised the 

new agricultural tire manufacturing facility at Continental Mabor, that could provide a basis for 

systematizing maintenance activities and at the same time improve, in the long run, the uptime 

and useful life of the machines. These objectives were achieved, and the analysis was even 

furthered through the development of condition-based approaches that may prove to be useful 

in future decisions regarding the choice of the most suitable maintenance policy. 

A predictive or condition-based maintenance plan usually relies on sensorial data being 

collected throughout a significant period, such that it becomes possible to draw conclusions 

about the optimal policy that should be implemented. However, no sensorial data were being 

collected prior to the project, and therefore a detailed data-driven condition-based study was 

not possible.  

For this reason, the used approach was very similar to a reliability analysis, where breakdowns 

per machine subassembly were analyzed, their causes identified and, from there, possible 

maintenance actions to mitigate those causes idealized. Finally, breakdowns were modeled to 

find the optimal periodicity for each of the developed maintenance actions. The developed plan 

is expected to contribute in the long run to the reduction of breakdown frequency, which should 

in the future reflect in the MTBF. However, as the designed maintenance plan implementation 

results are only from a one-month period, only the MM indicator has so far suffered an upgrade. 

Although the development of this plan was the utmost objective for the company with this 

project, and the tool from which it will benefit the most, the developed maintenance plan did 

not result from a pure condition-based approach. In order to complement the analysis and to 

demonstrate the viability of the implementation of a condition-based maintenance plan instead 

of a preventive one, data was collected from a condition parameter a critical component of one 

machine, and a condition-based model based on a discrete state Markov chain was developed 

to study the parameter evolution. Various policies were tested and compared and the optimal 

policy, obtained by means of a Monte Carlo simulation. The method was proved to be very 

robust and viable, as attested by the performed sensitivity analysis, where some of the model’s 

underlying assumptions were changed, and the observed optimal policy almost always 

remained the same. This also proves the robustness and adaptability of the developed model. 

Although the proposed condition-based model to simulate a parameter’s evolution throughout 

time is based on many assumptions that may not entirely correspond to reality, it provides a 

demonstration that such a model can be applied to the monitoring of components that are 

continuously subject to wear in the different machines across the plant. It requires, however, a 

combined effort in the gathering of a sufficient volume of data that allows the construction of 

a model as much precise as possible, in order to approximate it the most to reality and enable, 

consequently, decision-making about what should be the most viable maintenance policy to 

implement for a given component. These decisions may also prove to be very relevant to 

increase the components’ useful life, reduce machines’ downtime increasing its availability and, 

ultimately, maximize savings (in maintenance operations) and revenue (due to the increased 

availability). 
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Finally, a different approach to condition-based maintenance was proposed, through the 

analysis of a parameter that indirectly evaluates if a leak during curing occurs in the presses. 

This approach consisted in the data processing from sensorial data sent by the presses, 

identifying the normal performance values and then extrapolating those into obtaining the 

values from which an alarm should be issued, or close monitoring pursued and the ones from 

which a machine should be stopped and a CM operation take place. 

6.2 Future work perspectives 

An expanding and leading company such as Continental Mabor should always put a clear effort 

to evolve and improve its operations, in every field. In this sense, future improvements and 

works are suggested, regarding the existent maintenance operations at the CST facility and 

building on top of the performed work. 

First, the periodicity calculations for the maintenance plan were performed under many 

assumptions, such as calculating the periodicities for the whole subassembly, and not the 

component focused on each maintenance action. Therefore, these should be adjusted over time 

according to the experience: if one finds the current periodicity for a given action is too low 

and frequent, it should be increased for a better resource usage, and vice-versa if the contrary 

is observed.  

Another important aspect worth to look into is the viability of a dedicated predictive 

maintenance team in the CST facility, as already takes place in the PLT facility. Of course, the 

performance of the CM team that will be, for now, in charge of the predictive maintenance 

activities should be evaluated (if they have the necessary time to perform all CM and predictive 

maintenance activities or if their available time is almost completely dedicated to CM). This 

evaluation should involve the estimation of costs and working time occupied by the predictive 

maintenance activities with the dedicated predictive maintenance team and without it (with the 

CM team in charge of the predictive maintenance activities). 

Also, it was noticed during the project that the preventive maintenance checklists to perform at 

the CST machines are very identical to the ones of the PLT machines, as they were adapted 

from them. However, the machines in both facilities are quite different, in size and 

functionalities. For this reason, many of the actions in those checklists are not applicable to the 

existent machines in the CST plant. Thus, it is suggested that a deeper and detailed look is given 

by the engineering team, in order to completely tailor them to the functionalities and needs of 

the existing machines in the plant. 

Finally, a project for the implementation of real time sensors in some of the critical machine 

components that enable real time data collection and online monitoring of these components’ 

deterioration state should be put at the top of the pile. This not only would enable the triggering 

of maintenance actions only when a certain (previously studied) limit is achieved (which could 

result in the optimization of resource usage), as it would put the facility as a leading force in a 

constantly demanding industry through the implementation of Industry 4.0 principles, which is 

the step companies must take to remain as competitive as possible. 
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Appendix A: Weibull parameters estimation methods 

MLE method 

Given n observations (𝑥1, 𝑥2, … , 𝑥𝑛), the log-likelihood function of the Weibull distribution is: 

𝐿(𝛽, 𝜃) =  ∑ln𝑓(𝑋𝑖|𝛽, 𝜃)

𝑛

𝑖=1

 

Solving for the optimal solution: 
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Eliminating 𝛽: 
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This can be solved to estimate 𝜃. Now 𝛽 can be found in terms of 𝜃:  
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Appendix B: Identified failure modes 

Carcass Building Machine no. 1 (remaining) 

Table 25 - Remaining identified failure modes for Carcass Building Machine no. 1 

Failure mode description Frequency 

Reels don’t work properly 4.25% 

Problems with cassettes’ coupling 4.03% 

Material stuck in rolls 3.80% 

Errors in PLC’s and drives 3.13% 

Mispositioned reels 2.91% 

Other 13.19% 

Carcass Building Machine no. 2 (remaining) 

Table 26 - Remaining identified failure modes for Carcass Building Machine no. 2 

Failure mode description Frequency 

Front nose hits drum or dog ears / tilting error 4.13% 

Mispositioned slab conveyor 3.93% 

Mispositioned reels 3.31% 

Error in front nose sensor / photocell 3.10% 

Material stuck in rolls 3.10% 

Other 16.74% 

Extruder 

Table 27 - Identified failure modes for Extruder machine 

Failure mode description Frequency 

Errors in TCU’s 20.62% 

Problems in thermic and electric switchboards 13.40% 

Errors in opening and closing extruder head 9.28% 

Problems with balancers 9.28% 

Problems with nozzles and conveyors 8.25% 

Errors in the chiller 7.22% 

Other 22.68% 

APEX 

Table 28 - Identified failure modes for APEX machine 

Failure mode description Frequency 

Errors in PLC and drives 50.72% 

Apex detection sensor misadjusted 10.14% 

Problems with the flipper 8.70% 

Error in the metals detector 8.70% 

Other 21.74% 



Application of predictive maintenance in an agricultural tire manufacturing plant 

62 

Bead Winder 

Table 29 - Identified failure modes for Bead Winder machine 

Failure mode description Frequency 

Errors in PLC and drives 28.16% 

Problems with the guiding disc 11.65% 

Wire jumps out of the guiding disc 10.68% 

Problems in the wire reel 9.71% 

Errors in TCU’s 8.74% 

Problems in wire cutting 5.83% 

Other 20.39% 

Combicutter 

Table 30 - Identified failure modes for Combicutter machine 

Failure mode description Frequency 

Torque value not adjusted 18.24% 

Le-off station sensors misadjusted 14.71% 

Centering problems when rolling 14.12% 

Problems with cassettes’ coupling 10.00% 

Failure in splicing procedure 10.00% 

Errors in PLC and drives 8.24% 

Other 24.71% 

Green Tire Building Machines 

Table 31 - Identified failure modes for Green Tire Building Machines 

Failure mode description Frequency 

Machine does not initialize cycle 17.09% 

Mispositioning / errors in lasers 16.64% 

Problems with barcodes 14.56% 

Safety sensors / scanners in error 11.39% 

Problems with cassettes’ coupling 9.49% 

Mispositioning of reels 7.59% 

Problems with the turret 5.70% 

Other 17.72% 
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Strip Winder 

Table 32 - Identified failure modes for Strip Winder machine 

Failure mode description Frequency 

Errors in PLC and drives 33.33% 

Alpha mispositioned 25.40% 

Rubber cutting not accurate 15.87% 

Rubber stuck inside the extruder or in rolls 11.11% 

Security area sensor error 11.11% 

Other 9.52% 

Spraying Machine 

Table 33 - Identified failure modes for Spraying Machine 

Failure mode description Frequency 

Illumination failure 18.87% 

Inner layer amends sprayed 16.98% 

Problems with barcodes 13.21% 

Gantry mispositioned 11.32% 

Problems with visualization 9.43% 

Pistole nozzle cleaning 9.43% 

Other 20.75% 

Curing Presses 

Table 34 - Identified failure modes for Curing presses 

Failure mode description Frequency 

VCL does not load tire, is not centered 57.98% 

AGV failure 10.64% 

Steam leaks 8.51% 

VCL engine failure 5.85% 

Hydraulic filter failure 4.79% 

Press opening/closing mechanism failure 3.19% 

Internal pressure failure 2.66% 

Other 4.79% 
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Appendix C: Failure causes identification 

Carcass Building Machines (remaining) 

Table 35 - Remaining identified failure causes for the failure modes of the Carcass Building Machines 

Failure mode description Identified causes 

Front nose hits drum or dog ears, 
mispositioning of the front nose 

• Sensor errors 

• Existence of a gap between the bearing and the structure 

• “Telescopes” are not aligned 

Problems with material unrolling, 
material gets stuck 

• Misadjusted loop values 

• Material adherence to the rolls due to its adhesiveness 

• Material glues to the counter-blade when knitting 

Failure when knitting the innerliner 

• Innerliner does not move forward 

• Blade does not move forward 

• Counter-blade does not go up 

Problems with pneumatic system / 
diafragms 

• Pneumatic failures 

• One of the diafragms is more stretched than the other, so 
one of them is filled faster 

Dog ears do not advance or back off 
• Excessive component weight 

• Component vibrations make the pneumatic cylinder block 

Problems with cassettes’ coupling • Unevenness of the cassette in relation to its support 

Green Tire Building Machines 

Table 36 - Identified failure causes for the failure modes of the Green Tire Buildng Machines 

Failure mode description Identified causes 

Machine does not initialize new cycle • IPC failure and replacement need 

Reels do not work properly 
• Excessive wear in reel’s disc 

• Mispositioning of the reels 

Problems with barcodes 
• Worker changes “recipe” before removing the carcass 

from the drum 

Security sensors / scanner in error 
• Sensor is very precise, detects the smallest dust 

• Misalignments 

Errors in lasers • Mispositioning, cause unknown 

Strip Winder 

Table 37 - Identified failure causes for the failure modes of the Strip Winder 

Failure mode description Identified causes 

Errors in PLC’s and drives • Cooling system failure 

Errors in alpha: does not apply the 
tread / mispositioned 

• Tread strip breaks due to too much tension 

• Tread strip gets stuck in the cooling drum due to its 
adherence 

Problems with tread strip knitting 
• Blade is not sharp enough 

• Problem in pneumatic feeding 
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Extruder 

Table 38 - Identified failure causes for the failure modes of the Extruder 

Failure mode description Identified causes 

Errors in TCU’s 
• Excessively polluted water, making filters clog and valves 

to jam 

Errors in sensors when opening or 
closing extruder head 

• Extruder vibrations misalign sensors 

Problems with nozzles and cooling 
conveyor belts 

• Nozzles badly screwd 

• Excessive dirtiness in the water pump, water does not 
reach the nozzles 

Problems with the chiller 
• Oil leaks in the compressors 

• Accumulated dirtiness inside the deposit 

Problems with balancers 

• Misadjusted sensors 

• Programming errors 

• Support pins corrosion 

• Loosening of the level sensor bracket 

Problems in the heating mills, conveyer 
belts do not move forward 

• Switchboard overheating 

• Flowmeter does not work properly 

Combicutter 

Table 39 - Identified failure causes for the failure modes of the Combicutter 

Failure mode description Identified causes 

Torque value not adjusted • Variable material rolls diameters 

Failure in amendment process 

• Cylinder does not lower 

• Rubber goes through the cylinder 

• Amendment table engine uncoupled 

Machine does not cut material 

• Mispositioned material 

• Gripper distance not adequate 

• Misadjusted detection photocell 

Material roll not centered • Material comes unaligned with the cassette 

Material not stretched after cutting 
• Conveyor belt speed not constant 

• Material adheres to the gripper or the counter blade 

Bead Winder 

Table 40 - Identified failure causes for the failure modes of the Bead Winder 

Failure mode description Identified causes 

Wire jumps out of guiding disc 
• Wire jumps during engine transitions 

• Disc contacts with the bead rim, damaging it 

Problems with wire reel and reel’s 
brake 

• Reel’s inner shaft breaks 

• Brake does not work properly 

Errors in TCU’s 
• Excessively polluted water, making filters to clog and 

valves to jam 



Application of predictive maintenance in an agricultural tire manufacturing plant 

67 

 

APEX 

Table 41 - Identified failure causes for the failure modes of the APEX 

Failure mode description Identified causes 

Errors in PLC’s and drives • Electrical switchboard overheating 

Failure when applying the apex 

• Centering wheel with gap 

• Programming errors 

• Dirtiness in the mirror of the disc where the bead settles  

Spraying Machine 

Table 42 - Identified failure causes for the failure modes of the Spraying Machine 

Failure mode description Identified causes 

Inner layer amends sprayed • Barcode not in the correct position 

Excess of “ink” 
• Flowmeter not working properly 

• Ink’s density change with time  

Gantry mispositioning • Programming failures 

Curing Presses 

Table 43 - Identified failure causes for the failure modes of the Curing Presses 

Failure mode description Identified causes 

VCL does not load tire, is not centered • Construction problems 

VCL engine breaks down • Aggressive start and stop due to the many existent gaps 

Steam leaks 

• Damaged hoses 

• Material of hoses and bushings is not adequate 

• Sealants are not insulating enough and wear out very 
quickly 

• Valves should hold the high pressures, but cannot 

Internal pressure failures (in the 
bladder) 

• Bladder not properly screwed 

AGV failures 
• Oil leaks due to insufficient screw of accessories 

• Problems with wi-fi signal 
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Appendix D: List of idealized maintenance actions for CST plant 

Carcass Building Machines (remaining) 

Table 44 - List of the remaining maintenance actions idealized for the Carcass Building Machines 

Machine 
Subassembly 

Maintenance / monitoring action 
Tool/Measuring 

device 

Let-off station Engine consumption measurement while unrolling Multimeter 

Let-off station Verify adjustment of the cassettes’ entrance guides  

Front nose Cleaning and adjustment of sensors  

Innerliner knitting zone Verify charge sent to the blade by the generator  

Innerliner knitting zone Visual inspection of blade: color and stretch marks  

Innerliner knitting zone Blade temperature Given by controller 

Conveyor belts Check prisons in rolls  

Conveyor belts Visual inspection to conveyor belts  

Headstock / tailstock Visual verification of wear at the dog ears’ guides  

Reels Verify wear state of the disc and of the turning reels  

Electrical switchboard Re-set of contactors and circuit breakers  

Green Tire Building Machines 

Table 45 - List of the maintenance actions idealized for the Green Tire Building Machines 

Machine 
Subassembly 

Maintenance / monitoring action 
Tool/Measuring 

device 

Let-off station Engine consumption measurement while unrolling Multimeter 

Electrical switchboard Measure switchboard’s drives temperatures Thermal camera 

Electrical switchboard Re-set of contactors and circuit breakers  

Belt application station Periodic cleaning and adjustment of safety sensors  

Belt application station Verify reels’ positioning in homing (xx, yy, zz) Pachymeter 

Belt application station Check turret’s positioning in homing  Measuring tape 

Belt application station Measure turret’s engine consumption while working Multimeter 
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Extruder 

Table 46 - List of the maintenance actions idealized for the Extruder 

Machine 
Subassembly 

Maintenance / monitoring action 
Tool/Measuring 

device 

TCU’s Electric consumption of TCU’s and resistors Multimeter 

TCU’s Cleaning of filters in the feeding pipes  

Extruder group Verify lubrication mass of the rotary joints  

Extruder group Verify gap in the scraper knife  

Cooling zone Verify screw in the nozzles’ sockets Screwing tool 

Cooling zone Measure flow at the exit of pump Flowmeter 

Cooling zone Verify balancers sensors’ alignment  

Chiller Measure flow at the exit of the deposit Flowmeter 

Chiller Chiller’s filters cleaning  

Electrical switchboard Measure switchboard’s drives temperatures Thermal camera 

Electrical switchboard Re-set of contactors and circuit breakers  

Heating mills / conveyors Check safety hydraulic valves  

Heating mills / conveyors Measure temperature in mills and compare with controller Thermometer 

Heating mills / conveyors Mills’ engine consumption measurement Multimeter 

Extruder head Check position and alignment of head’s sensors Pachymeter 

Extruder head Extruder engine consumption measurement during work Multimeter 

Hydraulic unit Manual check of the hydraulic valves  

Hydraulic unit Verify oil level and register  

Strip Winder 

Table 47 - List of the maintenance actions idealized for the Strip Winder 

Machine 
Subassembly 

Maintenance / monitoring action 
Tool/Measuring 

device 

Electrical switchboard Verify cooling system  

Electrical switchboard Measure switchboard’s drives temperatures Thermal camera 

Electrical switchboard Re-set of contactors and circuit breakers  

Tread application station Periodic cleaning and adjustment of safety sensors  

Tread application station Cleaning of the tread applicator Pachymeter 

Tread application station Cleaning of rolls and cooling drum  

Tread application station Visual inspection of blade (color and stretch marks)  

Extruder Electric consumption of TCU’s and resistors Multimeter 

Extruder Verify lubricant mass in the rotary joint  

Extruder Verify gap in the scraper knife  

Extruder Cleaning of filters in the feeding pipes  
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Combicutter 

Table 48 - List of the maintenance actions idealized for the Combicutter 

Machine 
Subassembly 

Maintenance / monitoring action 
Tool/Measuring 

device 

Amendment table Verify screws of engine Screwing tool 

Amendment table Engine consumption measurement Multimeter 

Amendment table Verify pressure at each cylinder’s entrance Manometer 

Amendment table Verify alignment of the inclined plates Pachymeter 

Amendment table Verify alignment of the cylinders’ plates and screw height Pachymeter 

Amendment table Verify wearing state of the plates’ coating  

Cutting station Verify screw of engine that moves the cutting blade Screwing tool 

Cutting station Visual inspection of blade (stretch marks, sharpness)  

Cutting station Clean and adjust material detection photocell  

Cutting station Measurement of cutting blade’s and disc’s thickness Pachymeter 

Cutting station Cleaning of conveyor’s and counter-blade’s surfaces  

Cutting station Check conveyor’s speed at different points Velocimeter 

Rolling up station Cleaning and adjustment of the cassettes’ centering sensor  

Rolling up station Cleaning and adjustment of the centering cylinder’s sensor  

Rolling up station Cleaning and adjustment of the cassettes’ detection sensor  

Let-off station Let-off positioning sensors adjustment  

Let-off station Verify calibration of let-off angle  

Let-off station Engine consumption measurement while unrolling Multimeter 

Electrical switchboard Measure switchboard’s drives temperatures Thermal camera 

Electrical switchboard Re-set of contactors and circuit breakers  

APEX 

Table 49 - List of the maintenance actions idealized for the APEX 

Machine 
Subassembly 

Maintenance / monitoring action 
Tool/Measuring 

device 

TCU’s Electric consumption of TCU’s and resistors Multimeter 

TCU’s Verify lubricant mass in the rotary joint  

TCU’s Verify gap in the scraper knife  

TCU’s Cleaning of filters in the feeding pipes  

Electrical switchboard Measure switchboard’s drives temperatures Thermal camera 

Electrical switchboard Re-set of contactors and circuit breakers  

Apex application station Cleaning of the mirror of the disc where the bead settles  

Apex application station Screw, adjustment and cleaning of the station’s sensors  

Apex application station Visual inspection to the gripper’s guides and lubricate  

Apex application station Verify functioning and state of the flipper’s spring  

Apex application station Verify position of the flipper’s cylinder  

Apex application station Verify gripper’s basic position Pachymeter 
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Bead Winder 

Table 50 - List of the maintenance actions idealized for the Bead Winder 

Machine 
Subassembly 

Maintenance / monitoring action 
Tool/Measuring 

device 

Extruder Electric consumption of TCU’s and resistors Multimeter 

Extruder Verify lubricant mass in the rotary joint  

Extruder Verify gap in the scraper knife  

Extruder Cleaning of filters in the feeding pipes  

Extruder Monitor noise from the extruder’s transmission mechanism Decibel meter 

Electrical switchboard Measure switchboard’s drives temperatures Thermal camera 

Electrical switchboard Re-set of contactors and circuit breakers  

Bead construct. station Visual inspection to the blade’s state  

Bead construct. station Visual inspection to the guiding disc’s wear  

Wire feeder Verify noise in the reel’s shaft  

Wire feeder Verify brake’s state  

Spraying machine 

Table 51 - List of the maintenance actions idealized for the Spraying machine 

Machine 
Subassembly 

Maintenance / monitoring action 
Tool/Measuring 

device 

Ink pistol robot Register pistol pressure for 10 operations  

Ink pistol robot Check correct functioning of valves before flowmeters  

Ink’s pump Monitor pump’s rotation speed  

Entrance zone Check sharpness and state of sensors, adjust if necessary  

Electrical switchboard Measure switchboard’s drives temperatures (same point) Thermal camera 

Suction system Register pressure at entrance and exit of the filter Manometer 
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Curing Presses 

Table 52 - List of the maintenance actions idealized for the Curing Presses 

Machine 
Subassembly 

Maintenance / monitoring action 
Tool/Measuring 

device 

VCL Engine consumption measurement while working Multimeter 

VCL Verify and adjust positioning sensors  

VCL Clean guides and check safety brake’s state  

VCL Verify screw of the engine’s coupling to the structure Screwing tool 

Bladder feeding system Search for incrustations in the pipes’ internal walls IRIS test 

Bladder feeding system Inspection and cleaning of the traps’ filters  

Bladder feeding system Ultrasound measurement in the pipes Ultrasound device 

Bladder feeding system Ultrasound measurement in the valves (look for leaks) Ultrasound device 

Bladder feeding system Temperature measurement in the dome pipe during cycle Thermometer 

AGV Verify accessories correct screwing Screwing tool 

Lubrication system Force automatic lubrication and check for leaks  

Lubrication system Verify level of lubricating mass in the deposit  

Safety components Verify & clean transductors’ and pressure switches deposit  

Vacuum Ultrasound measurement in vacuum pipes Ultrasound device 

Hydraulic circuit Check and register level of oil in the tank  

Electrical switchboard Re-set of contactors and circuit breakers  

Mold adjustment system Visual inspection to the pinion’s wear state  

Opening / closing system Engine consumption measurement during work Multimeter 

Opening / closing system Verify and adjust dome positioning sensors  
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Appendix E: Calculation of Criticality Indexes 

Carcass Building Machines 

Table 53 - Criticality Index calculations for the Carcass Building Machine's subassemblies 

Subassembly 
Severity level for factor no. 

CI 
1 2 3 4 5 6 7 

Pneumatic sourcing / Diafragm 1 2 3 1 1 1 2 1.58 

Electrical switchboard 3 3 2 3 1 3 2 2.12 

Dual slab conveyor 1 2 1 2 1 1 2 1.2 

Conveyor belts 2 3 1 1 1 1 2 1.43 

Innerliner knitting zone 2 2 2 1 1 1 2 1.53 

Headstock / Tailstock 2 1 1 3 1 1 2 1.27 

Reels 3 3 2 1 1 1 2 1.78 

Front Nose 1 2 1 1 2 3 2 1.78 

Let-Off station 1 2 1 1 1 1 2 1.18 

Weight 0.15 0.1 0.2 0.02 0.3 0.15 0.08  

Green Tire Building Machines 

Table 54 - Criticality Index calculations for the Green Tire Building Machines’ subassemblies 

Subassembly 
Severity level for factor no. 

CI 
1 2 3 4 5 6 7 

Turret 1 1 2 1 1 1 2 1.28 

Electrical switchboard 1 2 2 3 1 3 2 1.72 

Reels 1 2 1 2 1 1 2 1.2 

Safety sensors 3 3 1 1 2 1 2 1.78 

Let-Off station 1 2 1 1 1 1 2 1.18 

Weight 0.15 0.1 0.2 0.02 0.3 0.15 0.08  

APEX 

Table 55 - Criticality Index calculations for the APEX’s subassemblies 

Subassembly 
Severity level for factor no. 

CI 
1 2 3 4 5 6 7 

TCU’s 1 1 3 1 1 3 1 1.7 

Extruder  3 1 3 3 1 3 1 2.04 

Electrical switchboard 3 2 2 1 1 3 1 1.9 

Apex application station 2 1 2 1 1 2 1 1.35 

Weight 0.15 0.1 0.2 0.02 0.3 0.15 0.08  
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Combicutter 

Table 56 - Criticality Index calculations for the Combicutter’s subassemblies 

Subassembly 
Severity level for factor no. 

CI 
1 2 3 4 5 6 7 

Rolling up station 1 3 1 1 1 3 1 1.5 

Let-off station 1 2 2 1 1 1 1 1.3 

Angle system 2 1 2 1 1 2 1 1.5 

Amendment zone 2 1 2 1 1 2 1 1.5 

Electrical switchboard 1 2 1 1 1 3 1 1.4 

Cutting zone 2 1 2 3 1 1 1 1.39 

Weight 0.15 0.1 0.2 0.02 0.3 0.15 0.08  

Extruder 

Table 57 - Criticality Index calculations for the Extruder’s subassemblies 

Subassembly 
Severity level for factor no. 

CI 
1 2 3 4 5 6 7 

TCU’s 2 2 3 2 1 3 1 1.97 

Nozzles and cooling conveyors 2 1 2 3 1 2 1 1.54 

Dancers / Balancers 2 2 3 2 1 1 1 1.67 

Chiller 2 2 3 3 1 3 1 1.99 

Electrical switchboard 1 2 2 3 1 3 1 1.64 

Cutting zone 1 1 3 1 1 1 1 1.4 

Heating mills / porkshop 2 1 2 1 2 1 1 1.65 

Extruder head 1 2 2 1 1 2 1 1.45 

Hydraulic system 1 1 2 3 1 3 1 1.54 

Weight 0.15 0.1 0.2 0.02 0.3 0.15 0.08  

Bead Winder 

Table 58 - Criticality Index calculations for the Bead Winder’s subassemblies 

Subassembly 
Severity level for factor no. 

CI 
1 2 3 4 5 6 7 

TCU’s 1 2 3 3 1 3 1 1.84 

Extruder  3 1 3 3 1 3 1 2.04 

Wire feeder 1 2 1 1 1 2 1 1.25 

Electrical switchboard 2 2 1 1 1 3 1 1.55 

Bead construction station 1 2 2 3 1 2 1 1.49 

Weight 0.15 0.1 0.2 0.02 0.3 0.15 0.08  
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Strip Winder 

Table 59 - Criticality Index calculations for the Strip Winder’s subassemblies 

Subassembly 
Severity level for factor no. 

CI 
1 2 3 4 5 6 7 

TCU’s 1 2 3 3 1 3 1 1.84 

Extruder  3 1 3 3 1 3 1 2.04 

Tread cutting zone 1 2 2 3 1 1 1 1.34 

Pneumatic feeding 2 1 3 1 1 1 1 1.55 

Electrical switchboard 1 2 2 2 1 3 1 1.62 

Alpha 2 2 2 1 1 1 1 1.45 

Safety sensors 2 1 1 1 2 1 1 1.45 

Weight 0.15 0.1 0.2 0.02 0.3 0.15 0.08  

Spraying machine 

Table 60 - Criticality Index calculations for the Spraying Machine’s subassemblies 

Subassembly 
Severity level for factor no. 

CI 
1 2 3 4 5 6 7 

Barcode recognition zone 3 2 3 3 1 3 1 2.14 

Entrance zone sensors  2 2 3 3 1 2 1 1.84 

Electrical switchboard 3 3 1 1 1 3 1 1.84 

Weighting zone 1 2 3 1 1 2 1 1.65 

Ink pump 3 1 3 3 1 3 1 2.04 

Flowmeters and pistoling 2 2 3 3 1 3 1 1.99 

Suction system 1 1 1 3 2 1 1 1.34 

Weight 0.15 0.1 0.2 0.02 0.3 0.15 0.08  

Curing Presses 

Table 61 - Criticality Index calculations for the Curing Presses’ subassemblies 

Subassembly 
Severity level for factor no. 

CI 
1 2 3 4 5 6 7 

Opening / closing system 3 1 3 1 1 1 2 1.78 

Electrical switchboard 3 3 1 1 1 3 2 1.92 

Safety devices 2 1 3 3 1 3 2 1.97 

Internal pressure system 2 2 3 3 1 1 2 1.99 

Steam system 3 2 3 2 1 3 2 2.2 

VCL 2 3 1 1 1 1 2 1.43 

Weight 0.15 0.1 0.2 0.02 0.3 0.15 0.08  
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Appendix F: Initial periodicity calculations 

In this appendix, the initially estimated periodicities for the subassemblies of machines from 

ED7 are presented, as well as some intermediate calculation results, according to its failure rate 

distribution (constant or not constant). 

Green Tire Building Machines 

Constant Failure Rate 

Table 62 - Periodicity calculation results for Green Tire Building Machines' subassemblies with constant failure 

rate 

Machine subassembly 

Machine no. 1 Machine no. 2 Initially 
estimated 
periodicity 

(days) 

Failure rate 
(failures/day) 

MTBF 
(days) 

Failure rate 
(failures/day) 

MTBF 
(days) 

Turret N/A N/A 0.028 35.662 36 

Non-constant failure rate 

Table 63 - Periodicity calculation results for Green Tire Building Machines' subassemblies with non-constant 

failure rate 

Machine subassembly 

Machine no. 1 Machine no. 2 Initially 
estimated 
periodicity 

(days) 

Shape 
(β) 

Scale 
(θ) 

MTBF 
(days) 

Shape 
(β) 

Scale 
(θ) 

MTBF 
(days) 

Electrical switchboard 0.850 15.30 16.651 1.026 31.81 31.480 17 

Reels 0.710 24.45 30.533 1.022 39.16 38.821 31 

Let-off station 0.857 25.30 27.387 0.835 22.49 24.755 25 

Safety sensors 0.980 55.66 56.133 0.735 23.76 28.776 29 

Strip Winder 

Constant Failure Rate 

Table 64 - Periodicity calculation results for Strip Winder’s subassemblies with constant failure rate 

Machine subassembly 
Failure rate 

(failures/day) 
MTBF (days) 

Initially estimated 
periodicity (days) 

Electrical switchboard 0.081 12.317 13 

Tread knitting zone 0.035 28.191 29 

Alpha 0.057 17.667 18 

Non-constant failure rate 

Table 65 - Periodicity calculation results for Strip Winder’s subassemblies with non-constant failure rate 

Machine subassembly Shape (β) Scale (θ) 
MTBF 
(days) 

Initially estimated 
periodicity (days) 

TCU’s / Extruder 1.123 61.52 58.965 59 

Safety sensors 0.582 23.06 36.155 37 
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Extruder 

Constant Failure Rate 

Table 66 - Periodicity calculation results for Extruder’s subassemblies with constant failure rate 

Machine subassembly 
Failure rate 

(failures/day) 
MTBF (days) 

Initially estimated 
periodicity (days) 

Electrical switchboard 0.081 12.317 13 

Non-constant failure rate 

Table 67 - Periodicity calculation results for Extruder’s subassemblies with non-constant failure rate 

Machine subassembly Shape (β) Scale (θ) 
MTBF 
(days) 

Initially estimated 
periodicity (days) 

TCU’s  1.123 61.52 58.965 59 

Nozzles and cooling conveyors 0.833 18.49 20.368 21 

Chiller 0.75 27.24 32.397 33 

Extruder head 1.117 28.02 26.907 27 

Dancers / balancers 0.706 25.94 32.554 33 

Combicutter 

Constant Failure Rate 

Table 68 - Periodicity calculation results for Combicutter’s subassemblies with constant failure rate 

Machine subassembly 
Failure rate 

(failures/day) 
MTBF (days) 

Initially estimated 
periodicity (days) 

Electrical switchboard 0.055 18.335 19 

Let-off station 0.049 20.298 21 

Rolling up station 0.114 8.739 9 

Amendment zone 0.054 18.435 19 

Non-constant failure rate 

Table 69 - Periodicity calculation results for Combicutter’s subassemblies with non-constant failure rate 

Machine subassembly Shape (β) Scale (θ) 
MTBF 
(days) 

Initially estimated 
periodicity (days) 

Cutting station 1.200 44.46 41.822 42 

Bead Winder 

Constant Failure Rate 

Table 70 - Periodicity calculation results for Bead Winder’s subassemblies with constant failure rate 

Machine subassembly 
Failure rate 

(failures/day) 
MTBF (days) 

Initially estimated 
periodicity (days) 

Electrical switchboard 0.071 14.103 15 

Wire cutting 0.037 27.072 28 

Wire feeder 0.050 19.834 20 
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Non-constant failure rate 

Table 71 - Periodicity calculation results for Bead Winder’s subassemblies with non-constant failure rate 

Machine subassembly Shape (β) Scale (θ) 
MTBF 
(days) 

Initially estimated 
periodicity (days) 

Extruder 0.647 13.38 18.385 19 

Bead construction station 0.801 10.06 11.393 12 

APEX 

Constant Failure Rate 

Table 72 - Periodicity calculation results for APEX’s subassemblies with constant failure rate 

Machine subassembly 
Failure rate 

(failures/day) 
MTBF (days) 

Initially estimated 
periodicity (days) 

Apex application station 0.071 14.103 15 

Electrical switchboard 0.094 10.657 11 

Gripper 0.050 19.932 20 

Non-constant failure rate 

Table 73 - Periodicity calculation results for APEX’s subassemblies with non-constant failure rate 

Machine subassembly Shape (β) Scale (θ) 
MTBF 
(days) 

Initially estimated 
periodicity (days) 

Flipper 0.434 18.11 48.758 49 

 

The periodicities for the Spraying Machine and Curing Presses (ED8) were not estimated 

through the breakdown reports as the ones for ED7, due to insufficient historical data. The 

presented periodicity values in Table 74 and Table 75 were assumed based on the CM 

personnel’s experience and knowledge, and are presented individually for each maintenance 

action. 

Spraying Machine 

Table 74 – Initially estimated periodicities for Spraying Machine’s maintenance actions 

Machine 
Subassembly 

Maintenance / monitoring action 
Initially estimated 
periodicity (days) 

Ink pistol robot Register pistol pressure for 10 operations 30 

Ink pistol robot Check correct functioning of valves before flowmeters 30 

Ink’s pump Monitor pump’s rotation speed 30 

Entrance zone Check sharpness and state of sensors, adjust if necessary 30 

Electrical switchboard Measure switchboard’s drives temperatures (same point) 15 

Suction system Register pressure at entrance and exit of the filter 15 
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Curing Presses 

Table 75 - Initially estimated periodicities for Curing Presses’ maintenance actions 

Machine 
Subassembly 

Maintenance / monitoring action 
Initially estimated 
periodicity (days) 

VCL Engine consumption measurement while working 30 

VCL Verify and adjust positioning sensors 30 

VCL Clean guides and check safety brake’s state 30 

VCL Verify screw of the engine’s coupling to the structure 30 

Bladder feeding system Search for incrustations in the pipes’ internal walls 365 

Bladder feeding system Inspection and cleaning of the traps’ filters 30 

Bladder feeding system Ultrasound measurement in the pipes 15 

Bladder feeding system Ultrasound measurement in the valves (look for leaks) 15 

Bladder feeding system Measure temperature in the dome pipe during cycle 30 

AGV Verify accessories correct screwing 30 

Lubrication system Force automatic lubrication and check for leaks 30 

Lubrication system Verify level of lubricating mass in the deposit 15 

Safety components Clean transductors’ and pressure switches deposit 15 

Vacuum Ultrasound measurement in vacuum pipes 60 

Hydraulic circuit Check and register level of oil in the tank 30 

Electrical switchboard Re-set of contactors and circuit breakers 365 

Mold adjustment system Visual inspection to the pinion’s wear state 30 

Opening / closing system Engine consumption measurement during work 15 

Opening / closing system Verify and adjust dome positioning sensors 30 
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Appendix G: Interfaces for maintenance plan generation 

 

Figure 20 - User interface for the monthly maintenance plan generation for ED7 

 

Figure 21 -  User interface for the monthly maintenance plan generation for ED8 
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Appendix H: Extruder inferior roll complete analysis 

The number of observed transitions for this component’s pressure values is presented in matrix 

(H.1), where it can be verified that the most visited state is, in this case, state 0, with a total of 

54 observations. Thus, analogously to the extruder head component, 𝑃(𝑋0|𝑋0) = 52 54⁄ =
0.9630 and consequently 𝑃(𝑋0|𝑋0) = 1 − 0.9630 = 0.0370.  

The same failure probabilities as before were assumed (4.9) and the same adjustment to the 

matrix was made, in order to not violate the condition referenced in (4.8). The final obtained 

probability transition matrix for the extruder inferior roll is presented in (H.2), while the 

cumulative probability transition matrix used in the application of the Monte Carlo technique 

is presented in (H.3). 

0 1 2 3 4 5 

 0
1
2
3
4
5(

 
 
 

52 2 0 0 0 0
3 15 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0)

 
 
 

 (H.1) 

 

0 1 2 3 4 5 

 

0
1
2
3
4
5(

  
 

0.9610 0.0370 0 0 0 0.0020
0 0.9577 0.0369 0 0 0.0054
0 0 0.9487 0.0365 0 0.0148
0 0 0 0.9243 0.0355 0.0402
0 0 0 0 0.8908 0.1092
1 0 0 0 0 0 )

  
 

 (H.2) 

 

0 1 2 3 4 5 

 

0
1
2
3
4
5(

  
 

0.9610 0.9980 0.9980 0.9980 0.9980 1.0000
0 0.9577 0.9946 0.9946 0.9946 1.0000
0 0 0.9487 0.9852 0.9852 1.0000
0 0 0 0.9243 0.9598 1.0000
0 0 0 0 0.8908 1.0000
1 0 0 0 0 0 )

  
 

 (H.3) 

Simulation results from 5000 transitions, with a 500 transitions warm-up in each of the tested 

scenarios for the extruder inferior roll component are detailed and presented in Table 76. 

Table 76 - Simulation results and cost analysis for Strip Winder extruder inferior roll filter 

Scenario description Failures 
Maint. 
Actions 

Total Failure 
Cost (€) 

Total Maint. 
Cost (€) 

Total Cost 
(€) 

FBM - Run until failure 71 0 1212680 0 1212680 

TBM – 2 months 50 47 854000 282940 1136940 

TBM – 1 month (current policy) 38 96 649040 577920 1226960 

TBM – 2 weeks 23 192 392840 1155840 1548680 

CBM – Safety threshold = 4 49 25 836920 150500 987420 

CBM – Safety threshold = 3 36 42 614880 252840 867720 

CBM – Safety threshold = 2 16 90 273280 541800 815080 

CBM – Safety threshold = 1 10 182 170800 1095640 1061380 
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In the case of the extruder inferior roll, the optimal maintenance policy found with the proposed 

model is a condition-based policy, like it was observed for the extruder head. This time, the 

optimal condition-based maintenance policy recommends the setting of the preventive 

maintenance threshold at the upper bound of state 2, i.e., to perform a preventive maintenance 

operation whenever pressure drops below 6 bar. It is observed a difference when comparing 

this threshold to the one obtained for the extruder head, which can be explained by the fact of 

the assumed degradation probabilities are higher in the case of the extruder head, promoting a 

faster deterioration, which increases a lot more the number of maintenance actions if the 

threshold is too low, consequently increasing the total maintenance costs incurred.  

In parallel to the extruder head component, another policy besides the one found to be optimal 

may be of interest to consider, that in this case is to set the preventive maintenance threshold to 

whenever state 3 is reached, i.e., to only perform a maintenance operation when pressure drops 

below 5.5 bar. This is so because the model is based on many assumptions that may not 

correspond integrally to reality, and the cost differences observed are not very large. In Table 

77 the expected times to failure and between maintenance operations for both policies for the 

extruder inferior roll component are presented. Analogously, the expected time to maintenance 

can be regarded as a reference to when to check the pressure values. 

Table 77 - Expected number of days to failure and maintenance for extruder inferior roll 

Scenario description 
Expected time to 

failure (days) 
Expected time to 

maintenance (days) 

CBM – Safety threshold = 3 79.09 67.79 

CBM – Safety threshold = 2 177.95 31.64 
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Appendix I: Sensibility analysis full data 

Cost Ratio Analysis 

Complete results relative to the extruder head component for all the tested scenarios for the cost 

ratios between failure and maintenance costs of 1.5, 2, 3 and for the found critical one, are 

presented in Table 78, Table 79, Table 80 and Table 81, respectively. 

Table 78 - Obtained cost results for the tested scenarios for the extruder head, with a cost ratio of 1.5 

Scenario description Failures 
Maint. 
Actions 

Total Failure 
Cost (€) 

Total Maint. 
Cost (€) 

Total Cost 
(€) 

FBM - Run until failure 131 0 1182930 0 1182930 

TBM – 2 months 115 47 1038450 282940 1321390 

TBM – 1 month (current policy) 95 96 857850 577920 1435770 

TBM – 2 weeks 61 192 550830 1155840 1706670 

CBM – Safety threshold = 4 66 83 595980 499660 1095460 

CBM – Safety threshold = 3 32 155 288960 933100 1222060 

CBM – Safety threshold = 2 16 248 144480 1492960 1637440 

CBM – Safety threshold = 1 9 483 81270 2907660 2988930 

 

Table 79 - Obtained cost results for the tested scenarios for the extruder head, with a cost ratio of 2 

Scenario description Failures 
Maint. 
Actions 

Total Failure 
Cost (€) 

Total Maint. 
Cost (€) 

Total Cost 
(€) 

FBM - Run until failure 131 0 1577240 0 1577240 

TBM – 2 months 115 47 1384600 282940 1667540 

TBM – 1 month (current policy) 95 96 1143800 577920 1721720 

TBM – 2 weeks 61 192 734440 1155840 1890280 

CBM – Safety threshold = 4 66 83 794640 499660 1294300 

CBM – Safety threshold = 3 32 155 385280 933100 1318380 

CBM – Safety threshold = 2 16 248 192640 1492960 1685600 

CBM – Safety threshold = 1 9 483 108360 2907660 3016020 

 

Table 80 - Obtained cost results for the tested scenarios for the extruder head, with a cost ratio of 3 

Scenario description Failures 
Maint. 
Actions 

Total Failure 
Cost (€) 

Total Maint. 
Cost (€) 

Total Cost 
(€) 

FBM - Run until failure 131 0 2365860 0 2365860 

TBM – 2 months 115 47 2076900 282940 2359840 

TBM – 1 month (current policy) 95 96 1715700 577920 2293620 

TBM – 2 weeks 61 192 1101660 1155840 2257500 

CBM – Safety threshold = 4 66 83 1191960 499660 1691620 

CBM – Safety threshold = 3 32 155 577920 933100 1511020 

CBM – Safety threshold = 2 16 248 288960 1492960 1781920 

CBM – Safety threshold = 1 9 483 162540 2907660 3070200 
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Table 81 - Obtained cost results for the tested scenarios for the extruder head, with the critical found cost ratio 

Scenario description Failures 
Maint. 
Actions 

Total Failure 
Cost (€) 

Total Maint. 
Cost (€) 

Total Cost 
(€) 

FBM - Run until failure 131 0 1670018.8 0 1670018.8 

TBM – 2 months 115 47 1466047.1 282940 1748987.1 

TBM – 1 month (current policy) 95 96 1211082.4 577920 1789002.4 

TBM – 2 weeks 61 192 777642.4 1155840 1933482.4 

CBM – Safety threshold = 4 66 83 841383.5 499660 1341043.5 

CBM – Safety threshold = 3 32 155 407943.5 933100 1341043.5 

CBM – Safety threshold = 2 16 248 203971.8 1492960 1696931.8 

CBM – Safety threshold = 1 9 483 114734.1 2907660 3022394.1 

Transition probability analysis 

The modified final transition probability matrices, assuming a transition probability of 0.05 and 

0.15, maintaining the same failure probabilities defined in (4.9) and after the adjustment to not 

violate the condition referenced in (4.8), are presented, respectively, in (I.1) and (I.2). The 

obtained results for all the tested scenarios for each assumed probability (0.05 and 0.15) are 

displayed in Table 82 and Table 83, respectively. 

0 1 2 3 4 5 

 

0
1
2
3
4
5(

  
 

0.9481 0.0499 0 0 0 0.0020
0 0.9449 0.0497 0 0 0.0054
0 0 0.9360 0.0492 0 0.0148
0 0 0 0.9118 0.0480 0.0402
0 0 0 0 0.8908 0.1092
1 0 0 0 0 0 )

  
 

 (I.1) 

Table 82 - Obtained cost results for the tested scenarios for the extruder head, with degradation probability of 

0.05 

Scenario description Failures 
Maint. 
Actions 

Total Failure 
Cost (€) 

Total Maint. 
Cost (€) 

Total Cost 
(€) 

FBM - Run until failure 86 0 1468880 0 1468880 

TBM – 2 months 65 47 1110200 282940 1393140 

TBM – 1 month (current policy) 52 96 888160 577920 1466080 

TBM – 2 weeks 27 192 461160 1155840 1617000 

CBM – Safety threshold = 4 58 30 990640 180600 1171240 

CBM – Safety threshold = 3 36 65 614880 391300 1006180 

CBM – Safety threshold = 2 16 122 273280 734440 1007720 

CBM – Safety threshold = 1 10 251 170800 1511020 1681820 

0 1 2 3 4 5 

 

0
1
2
3
4
5(

  
 

0.8483 0.1497 0 0 0 0.0020
0 0.8454 0.1492 0 0 0.0054
0 0 0.8374 0.1478 0 0.0148
0 0 0 0.8158 0.1440 0.0402
0 0 0 0 0.8908 0.1092
1 0 0 0 0 0 )

  
 

 (I.2) 
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Table 83 - Obtained cost results for the tested scenarios for the extruder head, with degradation probability of 

0.15 

Scenario description Failures 
Maint. 
Actions 

Total Failure 
Cost (€) 

Total Maint. 
Cost (€) 

Total Cost 
(€) 

FBM - Run until failure 166 0 2835280 0 2835280 

TBM – 2 months 144 47 2459520 282940 2742460 

TBM – 1 month (current policy) 122 96 2083760 577920 2661680 

TBM – 2 weeks 95 192 1622600 1155840 2778440 

CBM – Safety threshold = 4 66 83 1127280 872900 2000180 

CBM – Safety threshold = 3 30 155 512400 1348480 1860880 

CBM – Safety threshold = 2 19 248 324520 2082920 2407440 

CBM – Safety threshold = 1 9 483 153720 3979220 4132940 

Failure Probability Analysis 

The modified transition probabilities, assuming slower and faster random failure evolutions are, 

respectively presented in (I.3) and (I.4). The obtained results for all the scenarios tested under 

these conditions are displayed in Table 84 and Table 85, respectively. Note that here the original 

degradation probabilities were maintained. 

0 1 2 3 4 5 

 

0
1
2
3
4
5(

 
 
 

0.8952 0.1023 0 0 0 0.0025
0 0.8929 0.1021 0 0 0.0050
0 0 0.8885 0.1015 0 0.0100
0 0 0 0.8795 0.1005 0.0200
0 0 0 0 0.9600 0.0400
1 0 0 0 0 0 )

 
 
 

 (I.3) 

Table 84 - Obtained cost results for the tested scenarios for the extruder head, with slower random failure 

evolutions 

Scenario description Failures 
Maint. 
Actions 

Total Failure 
Cost (€) 

Total Maint. 
Cost (€) 

Total Cost 
(€) 

FBM - Run until failure 100 0 1708000 0 1708000 

TBM – 2 months 80 47 1366400 282940 1649340 

TBM – 1 month (current policy) 68 96 1161440 577920 1739360 

TBM – 2 weeks 42 192 717360 1155840 1873200 

CBM – Safety threshold = 4 46 102 785680 614040 1399720 

CBM – Safety threshold = 3 27 161 461160 969220 1430380 

CBM – Safety threshold = 2 18 248 307440 1492960 1800400 

CBM – Safety threshold = 1 13 483 222040 2907660 3129700 

 

0 1 2 3 4 5 

 

0
1
2
3
4
5(

 
 
 

0.8956 0.1024 0 0 0 0.0020
0 0.8901 0.1017 0 0 0.0082
0 0 0.8775 0.1003 0 0.0222
0 0 0 0.8433 0.0964 0.0603
0 0 0 0 0.8362 0.1638
1 0 0 0 0 0 )

 
 
 

 (I.4) 
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Table 85 - Obtained cost results for the tested scenarios for the extruder head, with faster random failure 

evolutions 

Scenario description Failures 
Maint. 
Actions 

Total Failure 
Cost (€) 

Total Maint. 
Cost (€) 

Total Cost 
(€) 

FBM - Run until failure 146 0 2493680 0 2493680 

TBM – 2 months 130 47 2220400 282940 2503340 

TBM – 1 month (current policy) 108 96 1844640 577920 2422560 

TBM – 2 weeks 74 192 1263920 1155840 2419760 

CBM – Safety threshold = 4 89 68 1520120 409360 1929480 

CBM – Safety threshold = 3 47 145 802760 872900 1675660 

CBM – Safety threshold = 2 22 243 375760 1462860 1838620 

CBM – Safety threshold = 1 9 483 153720 2907660 3061380 

Increase in number of states 

For the analysis with the states provided in Table 21, the used probability transition matrix is 

presented at (I.5). 

0 1 2 3 4 5 6 7 8 9 

0
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0.8956 0.1024 0 0 0 0 0 0 0 0.0020
0 0.8943 0.1022 0 0 0 0 0 0 0.0035
0 0 0.8920 0.1019 0 0 0 0 0 0.0061
0 0 0 0.8879 0.1015 0 0 0 0 0.0106
0 0 0 0 0.8809 0.1006 0 0 0 0.0185
0 0 0 0 0 0.8685 0.0993 0 0 0.0322
0 0 0 0 0 0 0.8471 0.0968 0 0.0561
0 0 0 0 0 0 0 0.8097 0.0926 0.0977
0 0 0 0 0 0 0 0 0.8297 0.1703
1 0 0 0 0 0 0 0 0 0 )

 
 
 
 
 
 
 

 (I.5) 
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Appendix J: Curing presses data analysis tools 

Curing press data visualization interface 

 

Figure 22 - Curing presses data visualization user interface 

Descriptive statistics on the observed data 

Table 86 – Descriptive statistics regarding the number of N2 pulses for all measure-press observed combinations  

Measure Curing press Nr of cycles Maximum Minimum Average Mode 

280-85 R28 D03 4 16 15 15.25 15 

320-85 R28 D03 231 16 14 14.589 15 

340-85 R24 D02 76 16 14 14.855 15 

340-85 R28 D02 10 22 18 21.300 22 

380-70 R24 D01 24 21 15 18.583 17 

380-85 R24 D01 152 22 19 20.763 21 

420-70 R24 D02 68 21 10 18.485 19 

420-70 R28 D03 299 28 15 20.824 21 

420-85 R24 D01 11 23 22 22.273 22 

420-85 R28 D01 165 23 18 19.115 19 

460-85 R34 B01 6 21 16 20.000 21 

460-85 R38 B02 49 23 21 22.082 22 

480-70 R24 D01 6 22 21 21.500 22 

480-70 R38 A01 6 21 20 20.167 20 

520-70 R34 A01 101 22 17 20.683 21 

520-70 R38 B01 83 22 20 21.169 21 

520-85 R38 A01 10 23 21 22.000 22 

520-85 R38 B03 267 23 18 21.255 21 
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Defined Alarm and Stoppage values  

Table 87 - Alarm and stoppage limits for the remaining measure-press observed combinations 

Measure Curing press Alarm Limit Stoppage Limit 

280-85 R28 D03 17 19 

320-85 R28 D03 17 19 

340-85 R24 D02 17 17 

340-85 R28 D02 25 26 

380-70 R24 D01 19 25 

380-85 R24 D01 24 26 

420-70 R24 D02 21 25 

420-70 R28 D03 24 27 

420-85 R24 D01 25 27 

420-85 R28 D01 21 27 

460-85 R34 B01 24 25 

460-85 R38 B02 25 27 

480-70 R24 D01 25 26 

480-70 R38 A01 22 25 

520-70 R34 A01 24 26 

520-70 R38 B01 24 26 

520-85 R38 A01 25 27 

520-85 R38 B03 24 27 

 


