
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Bluetooth Analysis for Real Time
Embedded Sensor Net

João Gomes

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisors: Luís de Almeida, Mario Espinoza

June 25, 2018

c© João Gomes, 2018

Abstract

This document focuses on the technological side of a Bluetooth medical device for prosthetic
fitting, herein called the tInterface and developed by the Adapttech company, and the need for
a technology that can fulfill the device’s data transmission requirements while acceptable in the
medical device community. A detailed analysis of the product’s limitations will be performed,
as well as the pursuit of a solution based on commercial off-the-shelf wireless data transmission
components. The desired device acquires data about physical parameters, such as pressure and
temperature, from the patient-socket interface, sending it via Bluetooth to an Apple iPad, enabling
the prosthetist to access detailed information.

At the start of this dissertation’s work, throughput and reliability requirements of this product
are not successfully met with existing solutions, an analysis into this device and the Bluetooth
technology will be performed together with a survey of other possible technological solutions
for the same problem. A series of tests and traffic captures allowed us to obtain information
about the suitability of technologies to meet the product’s requirements, supporting a comparison
regarding throughput, power consumption and ease of use between different technologies and
specific hardware.

The ultimate goal of this dissertation’s work is to find a suitable replacement for the current
wireless communication system in Adapttech’s product, considering the problem, specific proto-
cols, technologies and solutions involved. The best fitting solution found uses using Bluetooth 4.2
based on a Texas Instruments CC2640R2 System-on-Chip (SoC).

i

ii

Acknowledgements

This work was only possible due to the people and entities involved. I would like to thank
Adapttech for giving me the possibility and trust to be involved in their project, more specifically to
supervisor Eng. Mario Espinoza, the Hardware/Firmware department leader Eng. André Oliveira
and Eng. Frederico Carpinteiro Co-founder of Adapttech. I would also like to thank supervisor
Prof. Luís de Almeida, which was very upfront and enthusiastic with the topic of this dissertation
from the beginning, for the guidance throughout this last months. A special acknowledgment
to my girlfriend, to my parents, brother and family who have been the central pillar of support
throughout my academic path.

João Gomes

iii

iv

“With great power, comes great responsibility.”

Voltaire

v

vi

Contents

Abstract i

Acknowledgements iii

1 Introduction 1
1.1 Context . 1
1.2 Objectives for this work . 3
1.3 tInterface Description . 5
1.4 Dissertation Structure . 6

2 Literature review 7
2.1 Medical Device Communications . 7
2.2 IEEE Network Standards . 8
2.3 OSI Model . 9
2.4 Bluetooth Technology . 9
2.5 WiFi . 11
2.6 Ant . 12

2.6.1 Physical Layer . 13
2.6.2 Data Link Layer . 13
2.6.3 Transport Layer . 13
2.6.4 Network Layer . 14

2.7 Zigbee . 14
2.8 UltraWideband . 14
2.9 Summary . 16

3 Problems and Solutions 17
3.1 Problem Definition . 17
3.2 Proposed Solutions and Improvements . 19

3.2.1 Traffic Analysis Tools . 19
3.2.2 BR/EDR L2CAP direct transport . 20
3.2.3 Bluetooth Low Energy . 21
3.2.4 Bluetooth 5.0 . 21
3.2.5 WiFi . 22

3.3 Summary . 22

4 Bluetooth Technology 25
4.1 Bluetooth profiles . 25

4.1.1 Serial Port Profile . 25
4.1.2 Health Device Profile . 27

vii

viii CONTENTS

4.2 Bluetooth Networks . 27
4.2.1 Connection Modes . 30

4.3 Bluetooth Stack Overview . 30
4.3.1 RFCOMM . 31
4.3.2 Bluetooth Core Systems Overview . 33

4.4 Logic Link Control Adaptation Protocol . 35
4.4.1 Modes of Operation . 35
4.4.2 Fragmentation and Reassembly . 37

4.5 Generic Access Profile . 38
4.6 Generic Attribute Profile . 39

4.6.1 L2CAP interoperability . 41
4.7 Host Controller Interface . 42
4.8 Bluetooth Basic Rate / Enhanced Controller . 42

4.8.1 Bluetooth Baseband, Physical Channels, Links and Transports 42
4.8.2 Bluetooth Basic Rate / Enhanced Data Rate PHY 48

4.9 Bluetooth Low Energy Controller Overview . 48
4.9.1 LE Link Layer Overview . 49
4.9.2 LE Baseband . 52
4.9.3 LE Radio . 54

4.10 Security . 55
4.10.1 BR/EDR . 56
4.10.2 LE . 59

4.11 Throughput Considerations . 61
4.11.1 Bluetooth Classic . 61
4.11.2 Bluetooth Low Energy . 63

4.12 Summary . 66

5 Communications for Prosthesis fitting 69
5.1 Preliminary Experiments . 70

5.1.1 Microchip BM78 . 70
5.1.2 Connection Setup . 71
5.1.3 WT12 . 76

5.2 Bluetooth Low Energy . 80
5.2.1 ESP32 . 82
5.2.2 Texas Instruments CC2640R2 . 88

5.3 WiFi . 92
5.4 Power Consumption . 93
5.5 Summary . 95

5.5.1 Ubertooth . 96
5.5.2 Other Considerations . 96

6 Wireless Inertial Motion Unit 99
6.1 Analysis . 100

6.1.1 Requirements . 100
6.1.2 Technology . 100
6.1.3 Possible Network Solutions . 103

6.2 Summary . 104

7 Final Conclusions 105

CONTENTS ix

A 109
A.1 Python code used in tests with PC. 109

References 115

x CONTENTS

List of Figures

1.1 Adapttech’s process illustration . 3
1.2 Simple tLaser illustration . 4
1.3 Simple tInterface illustration . 4
1.4 Simple tAnalyzer illustration . 4
1.5 System Diagram . 6

2.1 OSI Model Definition . 9
2.2 Comparrison between several 802.11 PHY [1] 12
2.3 ANT stack . 13
2.4 ANT message . 13
2.5 UWB frequency range comparrison . 15
2.6 UWB Protcol Stack . 15

3.1 Application Packet Structure . 17
3.2 BM78 maximum supported data rates . 18

4.1 Bluetooth profiles [2] . 26
4.2 Protocol Stack used by the Serial Port Profile 27
4.3 HDP Network Topologies [2] . 28
4.4 HDP Stack [2] . 28
4.5 BR/EDR Network Topologies [2] . 29
4.6 LE Network Topologies . 29
4.7 BR/EDR and LE stack comparison [3] . 31
4.8 RFCOMM model [4] . 31
4.9 RFCOMM System parameters [4] . 32
4.10 RFCOMM DLC parameters [4] . 32
4.11 RFCOMM frame [4] . 33
4.12 Single/Dual Mode Configurations [2] . 34
4.13 Bluetooth Core System [2] . 34
4.14 Detailed Bluetooth Data Transport Structure [2] 35
4.15 Bluetooth Data Transport Architecture [2] . 35
4.16 L2CAP architecture [2] . 36
4.17 Basic Information and Group Frames [2] . 36
4.18 L2CAP Information and Control frames [2] . 37
4.19 LE Information Frame [2] . 37
4.20 L2CAP and Baseband information flow [2] . 38
4.21 Generic Access Profile Hierarchy [2] . 38
4.22 Generic Access Profile Stack [2] . 39
4.23 Generic Attribute Profile Hierarchy [2] . 40

xi

xii LIST OF FIGURES

4.24 ATT PDU [2] . 40
4.25 Default LE ATT Bearer parameters [2] . 41
4.26 BR/EDR Link Controller States [2] . 43
4.27 Logical Links and Transports Chart [2] . 44
4.28 TDD illustration [2] . 46
4.29 BR/EDR packet structure [2] . 47
4.30 BR/EDR Packet Header [2] . 47
4.31 LE Link Layer State Machine [2] . 50
4.32 Slave Latency Illustration . 50
4.33 More Data bit usage [2] . 51
4.34 Connection Setup [2] . 52
4.35 LE Uncoded Packet [2] . 53
4.36 LE Coded Packet [2] . 53
4.37 Security Manager [2] . 55
4.38 LMP Pairing Mechanism [2] . 57
4.39 Pairing regarding IO capabilities [2] . 58
4.40 Diffie-Hellman Key Generation [5] . 59
4.41 LE Legacy Pairing[6] . 60
4.42 LE Secure Connections Pairing[6] . 61
4.43 BR/EDR ACL link packet summary . 62
4.44 ACL link EDR packet summary . 62
4.45 RFCOMM Frame Structure . 63
4.46 Connection Interval Illustration . 64
4.47 Bluetooth v4.0/v4.1 packet format . 65
4.48 Bluetooth v4.2 packet format . 65
4.49 Application throughput in function of the connection interval 66
4.50 BLE Throughput Chart . 67

5.1 BR/EDR captured packet . 69
5.2 Python Program Output . 70
5.3 Initial Host connection request . 71
5.4 Maximum slots per packet update . 71
5.5 RFCOMM connection request . 71
5.6 PC RFCOMM connection request . 72
5.7 RFCOMM Channel 1 parameters . 72
5.8 RFCOMM flow control . 73
5.9 BM78 Throughput test - 20 ms . 74
5.10 BM78 Throughput test - 15 ms . 75
5.11 BM78 Throughput test - 10 ms . 75
5.12 BM78 Throughput test, 10ms . 75
5.13 BM78 Throughput test, 10ms . 76
5.14 BM78 Throughput test, 10ms . 76
5.15 WT12 Throughput test - 20 ms . 78
5.16 WT12 Throughput test - 15 ms . 78
5.17 WT12 Throughput test - 10 ms . 78
5.18 WT12 Throughput test - 5 ms . 79
5.19 WT12 Throughput test - 2,5 ms . 79
5.20 WT12 Throughput test - Continuous . 79
5.21 System Diagram . 80

LIST OF FIGURES xiii

5.22 Ipad Air 2 Features . 81
5.23 Application Data segmentation . 81
5.24 Packet Capture Timestamps . 83
5.25 LL_LENGHT_REQ Failure . 83
5.26 Link Layer Parameter Update . 83
5.27 MTU Exchange . 84
5.28 Packet Capture Timestamps . 84
5.29 iOS Test application . 85
5.30 ESP32 Throughput test - 20 ms . 85
5.31 ESP32 Throughput test - 15 ms . 86
5.32 ESP32 Throughput test - 10 ms . 86
5.33 ESP32 Throughput test - 5 ms . 87
5.34 Packet Capture with iPad Air 2 . 88
5.35 CC2640R2 Throughput test - 20 ms . 89
5.36 CC2640R2 Throughput test - 15 ms . 90
5.37 CC2640R2 Throughput test - 10 ms . 90
5.38 CC2640R2 Throughput test - 5 ms . 91
5.39 CC2640R2 Throughput test - 2,5 ms . 91
5.40 ESP32 iPerf output . 92
5.41 PC iPerf output . 93
5.42 ESP32 Wifi throughput graph . 93
5.43 Hantek 365 F . 94

6.1 tInterface . 99
6.2 Fair Device Scheduling . 101
6.3 Possible Network Topologies . 103

xiv LIST OF FIGURES

List of Tables

2.1 Bands used in wireless medical devices . 8
2.2 Wireless technology power and throughput comparison 16

4.1 BR/EDR Power Classification . 48
4.2 LE Power Classification . 54

5.1 Python Program Test Results (BM78) . 74
5.2 Wireshark Results Summary (BM78) . 74
5.3 Python Program Test Results (WT12) . 77
5.4 Wireshark Results Summary (WT12) . 77
5.5 Achieved Results . 84
5.6 Achieved Results . 89
5.7 Power Consumption Test Results . 94

6.1 Wireless technology comparison . 100

xv

xvi LIST OF TABLES

Abbreviations and Symbols

ACL Asynchronous Conection-less
ADC Analog-Digital Converter
ADVB Advertisement Broadcast
AES Advanced Encryption Standard
AFH Adaptative Frequency Hopping
AMP Alternate MAC/PHY
API Application Programming Interface
ARQ Acknowledge Repeat-Request
ATT Attribute Protocol
BAN Body Area Network
BLE Bluetooth Low Energy
BR/EDR Basic Rate / Enhanced Data Rate
BT Bluetooth
CSRK Connection Signature Resolving Key
DLE Data Length Extension
GAP Generic Access Profile
GATT Generic Attribute Protocol
HCI Host Controller Interface
HDP Health Device Profile
HS High Speed
IEEE Institute of Electrical and Electronics Engineers
IMU Inertial Motion Unit
IP Internet Protocol
IRK Identity Resolving Key
ISM Industrial, Scientific and Medical
LL Link Layer
LMP Link Manager Protocol
LTK Long Term Key
L2CAP Logic Link Channel Adaptation Protocol
MAC Medium Access
MFi Made For iPod
MICS Medical Implant Communication Service
MCAP Multi Channel Adaptation Protocol
OOB Out of Band
OSI Open System Interconnection
PADVB Periodic Advertisement Broadcast
PHY Physical Interface/Hardware
PDU Protocol Data Unit

xvii

xviii Abbreviations and Symbols

RFCOMM Radio Frequency Communication
SCO Synchronous Connection Oriented
SD SecureDigital
SDP Senvice Discovery Procotol
SDU Service Data Unit
SIG Special Interest Group
SM Security Manager
SPP Serial Port Profile
SYM Symbol
TCP Transport Control Protocol
TDD Time Division Duplex
UART Universal Asynchronous Receiver-Transmitter
USB Universal Serial Bus
UWB Ultra Wideband
WiFi Wireless Fidelity
WLAN Wireless Local Area Network
WMAN Wireless Metropolitan Area Network
WPAN Wireless Personal Area Network
WRAN Wireless Regional Area Network
WTMS Wireless Medical Telemery System

Chapter 1

Introduction

Adapttech is a startup company that focuses on the design of adaptation technologies —any type

of technology to help people with physical limitation to improve their quality of life. One of their

solutions helps patients go through a faster and easier prosthetic fitting process. The motivation

for this dissertation arises from a specific need that Adapttech has to improve: wireless medical

device communications.

In the last decades, the world has witnessed an increase in percentage of amputee population.

In the 1950s causes for lower-limb amputations were due to work accidents, but the recent high-

growth trend is actually explained by vascular diseases caused mainly by diabetes. The prolifera-

tion of such diseases is directly connected to the change in living habits that occurred specially in

the Western Hemisphere.

Prosthesis have evolved using now advanced and smart materials, and much research has been

done in that specific field. Despite this evolution, the process of handcrafting a customized socket

adequate to each patient’s amputation still requires improvements. Most patients need several

appointments and prosthesis adjustments before it becomes comfortable enough to be used ev-

ery day. Adapttech aims to solve this problem by creating a prosthetic-fitting tool that helps the

technician to determine how the pressure is distributed between the stump-socket interface.

Therefore, this aim is to contribute to the improvement of this process and facilitate the adap-

tation of prosthesis to those in need. Particularly, this can be done by assessing the prosthetic

fitting, which is the scope of the present work.

This chapter introduces Adapttech and its products, as well as the problems that we will ad-

dress in this work and the proposed solution we developed.

1.1 Context

Adapttech’s main mission is "To develop biomedical technologies to help people with physical

limitations improve their quality of life".

Within that mission, Adapttech is currently developing three products, namelyt, the tLaser,

tInterface and tAnalyzer. Adapttech has formulated a solution to make the prosthetic fitting process

1

2 Introduction

faster and more reliable for amputees. As the patients themselves have trouble communicating

exactly where the problem with their prosthetic is, the solution found by Adapttech is to create a

3D model and then, embedding a network of pressure sensors, enabling the prosthetist to have a

more accurate feedback of what area in the socket is causing discomfort to the patient. The sensor

data is displayed to the technician in an Apple iPad application, overlaying the 3D model. The

tInterface is, as of the date of writing this document, a wearable device that is connected to the

sensor network, collects its data and communicates with an application via a Bluetooth 3.0 module

. The system was designed to host a network of up to 128 sensors, and each sensor is sampled

with an 8-bit Analog-Digital Converter (ADC). As the sample rate for the network is 50 Hz and

having a byte of data per sensor, the throughput required to display data in real time is 71,8 kb/s.

Sensors are grouped in strips containing 8 sensors each. This wearable is also provided with 2

nine axis inertial motion units (IMU), featuring an accelerometer, gyroscope and magnetometer,

being also able to perform a gait analysis of the patient, and thus map the pressure data in a given

point in time, to the position of the leg. Two uses cases were considered for this device, for clinic

appointments between patient and prothetist, and to collect and store data offline for post analysis.

This process is illustrated in Fig. 1.1.

Among Adapttech’s products tLaser is the device which performs 3d scans prosthetic sock-

ets(Fig. 1.2), creating the respective 3d mesh for each prosthetic. This device is composed of a

laser, 2 cameras, and the socket support. A full scan starts with the laser being projected inside of

the prosthetic socket, while the cameras record the laser’s position. By taking several photographs

at different heights, a master computer is able to generate a 3D mesh. A second scan is then done,

without the laser, with the purpose of identifying sensor strips that were previously inserted into

the socket. This device plays a fundamental role in the smart prosthetic fitting solution, as the 3d

mesh will serve for a reference to identify the problems derived from the socket/limb interface.

The tInterface is a wearable embedded system, built in a rigid-flex PCB, responsible for sam-

pling the pressure sensor strips (Fig. 1.3) applied into the patient’s socket. This system is cur-

rently composed of a microcontroller, an Atmel SAML21J18B to communicate with the ADCs

and generate the acquisition data application message, a Microchip BM78 Bluetooth module for

the communication with the mobile application. Each pressure sensor strip, referred as tStrip, has

its own PCB with a circuit to linearize to the sensor output, and an ADC to collect data. Bluetooth

communication is done using an RFCOMM channel between an iPad and the tInterface, creating a

virtual serial port between both devices, enabling an abstraction from all of Bluetooth’s protocols,

as the communication system is seen as a black box, implementing only an UART tunnel, from a

developers perspective.

After collecting data from the sensors, data is displayed to the user in the tAnalyzer, an iOS

application(Fig. 1.4). The application uses the patient data to show the 3D mesh with the overlap-

ping sensor locations. Different pressure values result in differences in the colour of the 3d mesh,

in that sensor’s location, providing to the technician reliable data to be able to evaluate and adapt

the prosthesis accordingly.

1.2 Objectives for this work 3

Figure 1.1: Adapttech’s process illustration

1.2 Objectives for this work

The objectives for the work developed in the scope of this dissertation are to contribute to the

instrumentation of prosthetics within the scope of tInterface as described in the previous section.

The minimal technical requirements defined for the tInterface system are:

• A minimum sampling frequency of 50Hz.

4 Introduction

Figure 1.2: Simple tLaser illustration

Figure 1.3: Simple tInterface illustration

Figure 1.4: Simple tAnalyzer illustration

• Support 128 pressure sensors and 2 inertial motion units, totalling 164 bytes of information

per sampling cycle.

1.3 tInterface Description 5

• Be able to communicate with iPad device, which is approved by the FDA (U.S. Food and

Drug Administration) as a medical device.

• To be as low power as possible

• Maintain user interaction and configuration as simple as possible.

The primary objective is to be carried out is to achieve sufficient throughput in a reliable way

between the embedded system and the iPad, effectively enabling the product to transmit more

data. More specifically, the aim is to study and understand the protocols and specifications used

in this system to communicate, supporting the development and testing of a prototype of modules

to, that is capable to achieve a reliable sensors sampling at 50 Hz. Implementation should be done

with minimal changes to the product characteristics while consuming the least energy possible.

Although it is not an engineering requirement, using an iPad tablet is imperative to Adapttech as a

business requirement which raises some issues that will be explored.

1.3 tInterface Description

This dissertation is focused on this device and the iPad it communicates with via Bluetooth, as

such, we present next a more detailed explanation of how this device works and how it is com-

posed.

The tInterface device is composed of two separate entities. The rigid-flex part, composed

of USB-C female connectors, where the sensor strips are connected by the user, and the main

board, where the Bluetooth module and SAM microcontroller, battery charging ICs and one MPU

9250 Inertial Motion Unit are present. Besides reporting pressure data, this device also provides

data from 2 IMUs in order to support a gait analysis algorithm, based of machine learning, that

runs in a remote backend. With this in mind, the recommended sampling periods, for the sake of

compatibility with previously acquired data, are constrained to specific values. A sampling period

of either 20, 15, 10 or 5 ms are the values the recommended by Adapttech’s Bio-Engineering

Department. The information is collected by the microcontroller in the tInterface wearable system

from the pressure sensor network resorting to Analog-Digital Converters, embedded in each sensor

strip . The currently employed solution features a Texas Instruments AD088S052, capable of a

sampling rate up to 500k samples per second. An abstract system diagram can be seen in Fig.1.5.

In the initial connection setup between the tInterface and the iPad, the iPad sends a message

requesting information about the sensors present in the system. After this information is correctly

exchanged, a message is sent to the tInterface for it to start sampling the sensors and sending

information in real-time. A simple protocol is used to support this communication, employing a

message header and tail, in order to support different message types and lengths, as well as verify-

ing message integrity. As data is effectively sampled at a minimum rate of 50Hz, and considering

that up to 128 sensors may be in the sampling loop, a quick calculation is enough to quantify

the required throughput for application data, is 71200 bits per second, considering a maximum

application message length of 177 bytes.

6 Introduction

Figure 1.5: System Diagram

1.4 Dissertation Structure

This chapter introduced the context of this dissertation and laid down the objectives for this work.

Chapter 2 presents an overview of some popular wireless communication technologies and stan-

dards will be given, followed detailed view of the problems regarding the tInterface. Chapter 4

gives a description of Bluetooth technology, as it is the current solution employed in the product to

communicate wirelessly with the iPad. Chapter 5 presents the series of tests performed with dif-

ferent Bluetooth modules and Socs and the respective results. Chapter 6 presents a study regarding

the possibility of a second external IMU system. Finally, Chapter 7 summarizes the problem, so-

lution and the results that were achieved, considering the main the theoretical and practical aspects

discussed throughout the document. This chapter also presents a recommendation regarding the

wireless technology that is able to fulfill requirements - Bluetooth Low Energy - and and discusses

which would be the best solution for Adapttech’s tInterface product.

Chapter 2

Literature review

2.1 Medical Device Communications

As technologies evolve, so do medical devices and, in the current days, possibilities for smarter

technologies for monitoring and analyzing vital signs and biological information have emerged,

providing ever improving quality of life and establishing new standards. For a long time technol-

ogy has been involved in a day to day basis with human life. As cheaper and more precise devices

appear, usability becomes of significant importance to the proliferation of a certain technology.

Many of the medical devices available today feature wireless communication standards, allowing

for patients and medical personnel to have more practical approaches to solving and determining

problems. [7]

Telemedicine is one of those examples, providing a method for supervisory control between

both parties, without requiring physical proximity. Body Area Networks (BANs) are also one of

the concepts that medical professionals today, as well as technology companies, invest in to give

them the ability to monitor different bio-signals resorting to different sorts of sensors.[8]

Body sensor networks have emerged, causing new challenges in the industry and introducing

new and ever more specific features and requirements for technologies.[9]

Wireless communication in medical devices predominantly use the Industrial Scientific and

Medical (ISM) frequency band, which is unlicensed, although various exceptions exist. There is

no standard specifically defined for medical devices BANs, as a result several technologies such

as GSM, Wifi, ZigBee, Bluetooth and Ultra Wide Band (UWB) are used. In addition to the ISM

unlicensed band, there are bands defined for medical devices in the spectrum such as Medical Im-

plant Communication Service (MICS) and Wireless Medical Telemetry Service (WTMS), bands

that support short and long range communications. One of the advantages of these licensed bands

is that there are less interference possibilities, given that only licensed equipment may operate on

those frequency bands.

The most important characteristics for medical wireless devices are, among other, power con-

sumption, electromagnetic compatibility, interoperability with other devices and physical charac-

teristics such as size. Table 2.1 presents an overview over some of the more widespread wireless

7

8 Literature review

communication technologies and bands used in medical devices.

Table 2.1: Bands used in wireless medical devices

2.2 IEEE Network Standards

The Institute of Electrical and Electronics Engineers Standards Association has published and is

actively engaged in developing, standards for networking to assure interoperability, organization

and coexistence between communication technologies.

Several wireless standards are defined by IEEE, providing an organized and systematic ap-

proach to generic types of communication. This methodology is necessary in order to guarantee

reliability, environmental compatibility, and structured standards for various types of applications.

The OSI model is an important reference, enabling technology to be developed in a decentral-

ized layered approach. This way it becomes easier for protocols from different layers to interact

with one another. An abstract protocol stack is defined with the OSI model, defining how interac-

tion between different layers is able to deliver data from applications up to the physical media.

Various types of wireless networks can be found:

• IEEE 802.22 (WRAN)- Wireless Regional Area Network is intended for standards regarding

long range communication, for devices that have operating needs to communicate further

than regular urban distances.

• IEEE 802.16 (WMAN) - Wireless Metropolitan Area Network standards define operation

for inner city networks.[10]

• IEEE 802.11 (WLAN) - Wireless Local area networks are very widespread, normally used

for communication within buildings. They have medium range, and are supported by most

mobile devices succh as laptops and cellphones.

• IEEE 802.15.1 (WPAN) - Wireless Personal Area Networks are intended to support opera-

tion between devices on a very short range (<10m).

• IEEE 802.15.6 (WBAN) - Wireless Body Area Networks mostly used for medical/biomed-

ical applications that retrieve information about vital signs from the human body.[11]

2.3 OSI Model 9

2.3 OSI Model

This model is a standard reference in the communications world, as it provides guidelines for de-

velopment of network protocols and applications. The model is composed of a layered structure,

in order to improve reliability and interoperability, and facilitate implementation. Its ratification

happened in 1984, and although the protocol does not indicate how physical parts should be imple-

mented, instead provides an overview on the techniques to build a structured network, assigning

different tasks and responsibilities for each layer. [12]

Although this model became a standard, it only indicates good practices, and implementations

can vary, e.g., the TCP/IP protocol follows a different organization of layers. Different technolo-

gies may or may not apply this model, but in a general way this model is embedded into the

mindset of the electrical and computer engineering world and most protocols are designed with

this model in reference.

The model defines a seven layers structure with an associated terminology represented in Fig.

2.1.

Figure 2.1: OSI Model Definition

2.4 Bluetooth Technology

"Bluetooth wireless technology is a short-range communications system intended to

replace the cable(s) connecting portable and/or fixed electronic devices. The key

features of Bluetooth wireless technology are robustness, low power, and low cost."

[2]

Bluetooth technology was created in the late 90’s, by Ericsson, Intel and Nokia. Its main

goal was to provide simple interoperability between devices in a PAN (Personal-Area-Network)

without the need for cables. It was intended to be used with printers, mobile devices, computers,

etc. Since its early days the technology has evolved and expanded into a globally accepted standard

available in almost every mobile device today. Bluetooth has classically been used to replace serial

ports, creating a virtual serial port in both of the devices, allowing for backward compatibility with

older devices.[13]

10 Literature review

Bluetooth’s simple user interaction and seamless interoperability between devices, supporting

multiple and diverse functions, is only possible due to the numerous profiles, and protocols in-

volved. Below the simple user interaction lies a complex specification, developed with a generic

approach to applications, in order for it to be able to support ever appearing new features and

applications.

In 1998 the Bluetooth Special Interest Group (SIG) was created with 5 founder companies

- Intel, Ericsson, Nokia, Toshiba, IBM - and one year later the Bluetooth 1.0 Specification was

released. From then on, the number of supported devices only grew. On the following years

Bluetooth continued to be a supported technology, with continuous improvements, as new speci-

fications were released.

As it became a widespread standard, the initial purpose of replacing cables for connecting

devices hasn’t changed, but requirements for throughput, distance, pairing time and power con-

sumption have all become stricter, and Bluetooth’s applications (use cases) ever more demanding.

Today, the several specifications enable the possibility for many different types of devices, from

the really low power devices that can run for a year on a coin cell battery, to mesh networking

devices, audio devices such as headsets and speakers. Nowadays Bluetooth is a mature technol-

ogy with 3 different physical controllers, Bluetooth Basic Rate/Enhanced Data Rate (BR/EDR),

Bluetooth AMP (AMP) Bluetooth Low Energy (LE), in order to cater for specific requirements.

Both systems, BR/EDR and BLE, feature services for device discovery, pairing and connecting.

Whilst Basic Rate/Enhanced Data Rate is intended to be used on data intensive applications, the

other, Bluetooth Low Energy, is generally used in cases of low frequency data sensors with re-

duced energy and production costs. Shipped Bluetooth devices are over 3.4 billion per year, as the

technology is a proved solution for the problems that it was intended to solve.[14] The availabil-

ity and flexibility of this technology makes it very appealing for developers and users. Bluetooth

devices are composed a host and a controller, using a series of links and channels, to effectively

transmit data.

With each specification new features are introduced, an overview of the most relevant features

will be highlighted in this section.[2]

• v1.2

– Adaptative frequency hopping

– Extended SCO links

• v2.0 + EDR

– 2 Mb/s and 3 Mb/s PHY

• v2-1 + EDR

– Erroneous Data Reporting

– Extended inquiry response

2.5 WiFi 11

– Secure Simple Pairing

• v3.0 + HS

– L2CAP Enhanced Retransmission and Streaming Modes

– AMP

– 802.11 PAL

– USB and SDIO HCI transports

• v4.0

– LE PHY, Link Layer

– AES encryption

– Attibute protocol

– Generic Attribute Profile

• v4.1

– BR/EDR secure connections

– LE Dual Mode Topology

– LE L2CAP connection oriented channel

– LE Ping

• v4.2

– LE data packet length extension

• v5.0

– LE 2 Msym/s PHY

– LE Long Range

2.5 WiFi

WiFi technology arises in a general way in the early 2000’s, quickly becoming a very promis-

ing technology. Support, evolution and new specifications have made possible communication

for devices within a household, bar, hospital, to work in a cordless way. This has impacted pro-

foundly our societies behaviour patterns, changing them significantly and introducing new habits,

technologies and technological expectations.

WiFi is a commercial brand for the Wireless Ethernet Compatibility Alliance, and its certi-

fied products. This organization was created with the purpose of assuring interoperability and

integration of 802.11 based norms, also providing a specific trademark making the technology’s

marketability more appealing.

12 Literature review

Wifi can be abstractly placed in the WLAN standard, being a low-medium range wireless

communication technology. The technology itself is composed of several norms and protocols,

defining interaction between different layers that compose it. The two layers that are defined are

the physical PHY and MAC layers, responsible for physical data transportation and defining how

different nodes have access to the medium.

Several PHY norms have been designed and implemented over the years, improving connec-

tion bandwidth and radio related problems. Today, the 802.11n norm is the most used. Also

recently 802.11ac has been entering the market, being incorporated by manufacturers in their de-

signs.

The numerous norms differ primarily in the modulation scheme used to transmit data, being

a direct factor in the frequency of operation, range, interference and obviously, throughput. A

comparative chart regarding such aspects is presented in Fig. 2.2.

Figure 2.2: Comparrison between several 802.11 PHY [1]

2.6 Ant

"ANT is a 2.4GHz bidirectional wireless Personal Area Network (PAN) communica-

tions technology optimized for transferring low-data rate, low-latency data between

multiple ANT-enabled devices. " [15]

Ant is a wireless technology enabling the use of low power sensors. It defines protocols

for the 3 lower layer of the OSI model. Higher layer is to be defined and implemented by the

user. This technology is intended to provide simple data transmission for low cost microcontroller

units, providing for cheap and low power devices. An example of the stack layering from the

ANT specification is presented in the next figure. Supported hardware is manufactured by Nordic

Semiconductors, such as modules, USB sticks and development kits.

Ant communications are based in the ISM spectrum, being unlicensed.

2.6 Ant 13

One of ANT’s relevant characteristics is the low data rate, making it unfit for applications with

higher performance requirements. Its maximum throughput is 60 Kb/s.[15]

Figure 2.3: ANT stack

2.6.1 Physical Layer

ANT’s physical layer operates on the ISM 2.4GHz band„ dividing a 124MHz frequency range into

125 physical channels. Medium access is governed by a TDMA scheme, allowing for multiple

channels to coexist.[16]

2.6.2 Data Link Layer

Data is transported in channels, that need to be configured and equal in both endpoints, in order for

information to be transported. The protocol allows sending bursts of data, improving low power

capabilities.[17]

2.6.3 Transport Layer

Data between the ANT hardware and its host microcontroller is exchanged via serial communica-

tions, obeying a specific message structure, illustrated in the following image.

Figure 2.4: ANT message

The hardware bus itself is not specified, so implementations may vary for different applica-

tions/manufacturers.

14 Literature review

2.6.4 Network Layer

ANT networks support diverse configurations allowing for easy interaction between nodes and

information dissemination. Networks can be decentralized and have complex topologies. Con-

nections are bi-directional and basic networking is enabled by using different channels to connect

different nodes.

2.7 Zigbee

"Wireless sensor networks are an emerging technology for low-cost, unattended mon-

itoring of a wide range of environments. Their importance has been enforced by the

recent delivery of the IEEE 802.15.4 standard for the physical and MAC layers and

the forthcoming ZigBee standard for the network and application layers." [18]

The Zigbee protocol, proposed by the Zigbee Alliance, has influenced heavily sensor networks.

It defines a network layer that specifies several network topologies. Zigbee allows for large quan-

tities low power devices, sampling and transmitting data, to be applied in diversified fields such as

agriculture, inventory monitoring, motion tracking and many other. Common Zigbee devices are

composed of a ordinary 8 bit microcontroller, sensors and a 802.15.4 transceiver. The availability

and cheap cost make this technology an attractive solution for many use cases. The radio opera-

tion is performed in the ISM band, support data rates up to 250 kb/s and a maximum range of 300

meters.[18] The IEEE 802.15.4 defines a physical layer and a MAC layer for Low Power Wireless

Personal Area Networks (LR-WPAN).

2.8 UltraWideband

"Ultra-wideband (UWB) technology offers a solution for the bandwidth, cost, power

consumption, and physical size requirements of next-generation consumer electronic

devices"[19]

Ultra wideband, formerly known as pulse radio, is a wireless technology, offering a diverse

range of solutions such as radars that can identify objects through walls or floor, distance measure-

ment and communication. The technology can theoretically be used for WPANs with high band-

width, supporting data rates greater than 100Mbit/s. UWB emits radiation over a very wide fre-

quency range, possibly overlapping with existing services. Frequency is controlled through pulse

shaping and several modulation techniques can be implemented, having impact over power con-

siderations and in direct relation with possible interference caused to telecomunication systems.

UltraWideband communications use a recently approved frequency, from 3.1GHz to 10.6Ghz.

This allows for a very big range of frequencies, providing a new approach to wireless communi-

cation technologies.[19]

2.8 UltraWideband 15

Figure 2.5: UWB frequency range comparrison

A startup company, Decawave has already developed cost effective modules featuring Blue-

tooth Low Energy and UltraWideband technology, in order to have Real Time Location Services

(RTLS).

"DecaWave’s DW1000 chip, is a complete single-chip CMOS Ultra-Wideband IC

based on the IEEE802.15.4-2011 standard. DW1000 is the first in the DecaWave

ScenSor family of parts, operates at data rates of 110 kb/s, 850 kb/s and 6.8 Mbps,

and can locate tagged objects both indoors & outdoors to within 10 cm.[20]"

However, UWB is still just a promising technique, where its capabilities have been explored very

little, as it is technology in its early stages. Protocol stacks are already envisioned, as can be

observed in Fig 2.6.

Figure 2.6: UWB Protcol Stack

16 Literature review

2.9 Summary

After a brief exploration the previous technologies, a qualitative table regarding the most relevant

aspects in the reviewed technologies is presented.

Power Consumption Maximum Throughput
Bluetooth Low/Medium Medium
ANT Low Low
UWB Low/Medium High
WiFi High High
ZigBee Low Low

Table 2.2: Wireless technology power and throughput comparison

Several factors will need to be taken into account when choosing a wireless technology for the

tInterface. Although throughput and power consumption are important factors when choosing a

technological solution for this problem, the user experience also has to be considered. As usabil-

ity is an important feature on a wearable product such as the tInterface, wireless technologies that

imply more complex configuration procedures for the user are less desirable. The simple interac-

tion provided by Bluetooth was an important factor when considering the technologies that will

be subjects of interest for further work. A network with a fixed access point is also not appealing

when considering the application in question, as the devices does not have any keyboard or in-

puts, configuration of an WiFi AP would be an issue and also the fact that the device would only

work in the range of this AP. Also, as Bluetooth Low Energy permits the creation of lower power

devices, it seems a viable technological solution for this problem, as it is currently used in many

other wearable devices. Furthermore, Bluetooth Low Energy is a technology that has seen good

evolution in the last years and is a technology with an actual and competitive market. The specific

need of communication with an iPad was also a defining requirement when choosing an appro-

priate wireless technology, as Apple’s environment is usually restrictive and not all technologies

considered can interact with its hardware, such as ANT, ZigBee and UWB. The Bluetooth specifi-

cation supports the data rates required by the application and is present in every Apple iPad tablet,

thus being a technology with characteristics that can fulfill all of the tInterface’s communi-

cation and usability needs. WiFi also supports the required throughput capacity, exceeding it by

far. However, in terms of usability and configuration does not appear to be fully adapted to the

application in question.

Chapter 3

Problems and Solutions

3.1 Problem Definition

The problem to be addressed in the dissertation work is the study of low power high through-

put wireless technologies to find a suitable solution for the tInterface device of Adapttech. As

configured and used prior to this work, the throughput provided did not allow for a satisfactory

achievement of the defined requirements.

When in operation, the tInterface sends messages from the Bluetooth module to the iPad, those

messages include, among other fields, a 4 byte timestamp provided by the microkernel running in

the tInterface’s microcontroller. When the application is running, pressure data received can be

observed represented by a colored mesh overalapped over the 3D scan of the prosthesis with

a color range with 256 values. When inspecting in detail the application’s debug output and,

although visually data is apparently flowing correctly, the message timestamps have frequent gaps

of about 280 milliseconds to 1 second. This problem, reported by Adapttech, was first discovered

by the Software Department when testing of a program for internal use, which revealed the lost

messages and the unreliability of the connection. These gaps are, in fact, a crippling problem

to Adapttech’s application, as it makes it impossible for any machine learning algorithm to be

accurate with the amount of data that is missing.

The messaging protocol used to transfer information between both endpoints, as shown in Fig.

3.1, is composed of a message header with 3 octets, 2 length octets, a variable size payload and 3

other octets in the end closing the message.

Figure 3.1: Application Packet Structure

The algorithm for receiving messages checks for the header, receiving a variable number of

bytes determined by the length field, and after checks to see if the last 3 bytes match a prede-

termined sequence. Although this technique was implemented to check consistency in messages,

17

18 Problems and Solutions

some unnecessary overhead is created with the usage of that protocol, as the last 3 bytes are redun-

dant and do not enable any forward error correction or cyclic redundancy check. The algorithm is

designed to determine if data in a specific use case is correct: A packet header is received contain-

ing length information, then the rest of the message is received and the tail sequence confirmed.

If the tail sequence is not correct, the message is probably missing some bytes in the middle and

therefore is discarded as intended.

Microchip’s BM78 Bluetooth module embedded in the system is the entity responsible to

receive data from the microcontroller and transmitting it wirelessly to the iPad tablet. The module

is configured to use the Serial Port Profile in order to be accessed as a virtual serial port. This

profile enables for simple interaction and minimal programming on the application side, where

the program only needs to access an OS virtual serial port, and as it is an old and well established

concept it is relatively cost and time efficient to implement. The BM78 provides a simple interface

with the microcontroller, using a transparent UART tunnel from the system to the iPad. Microchip

only provides a computer program to change the Bluetooth parameter options, but that can never

be done "on-the-fly", and only SPP and iAP profiles are supported.

One critical problem is evidenced in the module’s datasheet, as it does not offer support for the

required data rates, as seen in Fig.3.2. The required application throughput is 71kbit/s, while this

module provides 32kbit/s at most. The Bluetooth specification, although defining every protocol

exhaustively, does not describe how the stack should be specifically implemented, just how it

should behave. Although compliance testing is required, many of the features specified do not

have to be implemented, being optional to the manufacturer. As one cannot interact with the

stack running in the module or have knowledge on how it is implemented, no conclusions can

be made leaving many questions and uncertainty regarding the possible consequences related to

implementation details.

Figure 3.2: BM78 maximum supported data rates

Another problem is that, in order to communicate with an iPad using BR/EDR, it is required

using iAP, Apple’s Accessory Protocol. In a forum post for a Bluetooth module manufacturer,

Bluegiga, its support briefly discusses this subject.

"The iAP protocol has a lower maximum throughput than a pure RFCOMM/SPP

connection due to the way it is designed." [21]

3.2 Proposed Solutions and Improvements 19

As MFi (Made For iPod) Program and associated documentation can not be discussed or disclosed

and no successful BR/EDR capture was achieved, there is no straightforward explanation as to why

that occurs.

Part of the problem is derived from the tablet side since the tablet initiates the connection.

Thus, it inherently assumes master role in the connection, controlling the connection parameters.

The API provided by Apple for Bluetooth related programming does not support changing con-

nection parameters as the OS manages them internally. An aggravating factor is the lack of infor-

mation provided by Apple regarding iAP(Acessory Protocol) protocol and its kernel management

of Bluetooth connections.

Another factor restraining communication is that Bluetooth 2.1/3.0 devices require specialized

hardware/firmware in order to be able to connect with Apple iPod, iPhone and iPad. This external

hardware is responsible for authenticating the accessory as an authorized MFi product, introducing

overhead to each communication packet, and limiting throughput.

"To incorporate iAP into an accessory design, the accessory developer must be a

member of the Apple MFi licensing program and integrate specific MFi hardware

into the accessory." [22]

As either of the endpoints is incapable of providing an interface for using different profiles or

changing meaningful connection aspects, one is not able to change in any advantageous way this

Bluetooth connection.

3.2 Proposed Solutions and Improvements

The product developed before this work does not does not meet the full requirements, provid-

ing communication with a certain degree of service quality, only. However, we believe that the

Bluetooth technology is able to support and meet all the requirements, if different connection

parameters and configurations are used. In the last years, a wide popularity of iPads for medi-

cal applications has emerged, making the device a very marketable approach for companies and

having advantages regarding development costs and know-how, when compared to developing a

fully customized system. Therefore, a solution maintaining the Bluetooth technology and the iPad

tablet device is in the best interest of the company.

Since the communication cannot be monitored at either endpoint, we decided to use a traffic

sniffer to provide an analysis of the packets in the air. Traffic analysis is an invaluable tool in

offering detailed data about how the two endpoints are specifically interacting, and being able to

understand what and how stack layers are being used as well as roles, maximum transmission units

for transport protocols and providing accurate throughput information.

3.2.1 Traffic Analysis Tools

As most Bluetooth modules do not allow promiscuous mode captures, capturing Bluetooth traffic

is not as easy as with other technologies such as WiFi, in which a good percentage of network cards

20 Problems and Solutions

allow a promiscuous mode, in which air packets can be captured. As bluetooth uses frequency

hopping, a technique that requires consecutive packets to be transmitted in different frequencies,

capturing packets when not synchronized with the hop pattern is not possible, so software based

approaches for analyzing Bluetooth traffic like Wireshark are only relevant if the connection being

analyzed is with the computer running the packet analyzer, otherwise monitoring is almost impos-

sible. Hardware solutions generally have a high price, but there are hardware-based traffic-analysis

tools that are affordable such as is the open-source Ubertooth project.

"Project Ubertooth is an open source wireless development platform suitable for Blue-

tooth experimentation. Ubertooth ships with a capable BLE (Bluetooth Smart) sniffer

and can sniff some data from Basic Rate (BR) Bluetooth Classic connections."[23]

Although not all data traffic from Classic Bluetooth connections can be sniffed, the Ubertooth

is already a good help. However, to capture and analyze traffic to the smallest detail, professional

tools are required.

3.2.2 BR/EDR L2CAP direct transport

Using an L2CAP connection for data transport, control over the transmission features such as

retransmission and flow control can be obtained, also possibly containing less overhead than if

using RFCOMM, and therefore enhancing efficiency. To reduce the number of layers involved,

there is the possibility to use an L2CAP connection oriented-channel, without having unnecessary

RFCOMM encapsulation and signaling and control messages creating unnecessary overhead.

To implement this solution we need to have control over the Host entity part of the stack on

the tInterface, such as the L2CAP protocol layer, in order to be able to create and manage pure

L2CAP connections. The Bluetooth module as it is used is not able to perform those tasks. The

only option when implementing this solution is to find a Bluetooth module that allows performing

the previously referred tasks.

An option to implement the solution is the Bluegiga WT12 Bluetooth 2.1+EDR [24] module,

which allows for creating and managing L2CAP connections, as well as some few other types

of connections, profiles and general Bluetooth configurations over the UART or USB interface

it provides. The proprietary stack running is named iWrap, and allows for a large number of

configuration options as well as profiles. This module allows more precise control of the stack

parameters, ultimately enabling a deeper control of the connection. Although not an open source

stack, a powerful API provides mechanisms to change, while in operation, features such as pairing,

device role, and create pure RFCOMM, L2CAP and HCI connections.

Although the solution seemed viable, it was later discovered that with the special hardware

required to communicate with Apple products, performance is much lower and never allow for

this product’s requirements to be fulfilled using Bluetooth Classic. As Apple’s Made For iPod

(MFi) program documentation is protected under NDA, no further explanation can be provided.

At this point, implementing BR/EDR ceases to appear as viable solution, and is discarded.

3.2 Proposed Solutions and Improvements 21

3.2.3 Bluetooth Low Energy

As Apple’s restriction regarding specific hardware to communicate with its devices is only for

BR/EDR based physical layers, using Bluetooth Low Energy may allow us to meet the desired

requirements. Before Bluetooth 4.2 it would be harder, or even impossible, to fulfill our require-

ments using Bluetooth LE because the baseband maximum payload size was 27 octets, possibly

resulting in crippling overhead and not being able to provide the required throughput for applica-

tion data. A new feature, packet length extension, is introduced in specification 4.2, making this

approach technically appealing as the new packets support payload sizes up to 251 bytes.

Apple’s iPad supports Bluetooth 4.2 and although a maximum of up to 251 payload bytes

can be negotiated, the actual maximum size in both devices depends on their stack implementa-

tion. Some OS’s provide for an interface to change this value, while others like Apple manage it

internally.

The period for data transmission would also be negotiated to the smaller value possible, en-

abling for more packets per unit of time.

Various modules and embedded systems in the market are equipped with Bluetooth 4.2, like

the Espressif ESP32 module, the Texas Instruments CC26xx based modules as well as Nordic

Semiconductors NRF5x solutions.

With available modules and being supported by the iPad without the need for external hardware

such as with BR/EDR, this solution appears viable and implementable.

With a strong possibility of BLE v4.2 being a viable solution, two different modules were

chosen to be tested, in order to evaluate characteristics such has if they are able to achieve the

requirements, ease of programming, accessory features, power consumption and market/industry

considerations.

Another factor when considering BLE, is the fact that, with no restraints to the implementation

of devices that communicate with iOS over BLE such as the need to use a proprietary protocol, the

community and corporate support provided by e2e (Engineer-to-Engineer) forums and by techni-

cal support platforms is far more accessible, being discussed openly as there is no documentation

subject to NDAs.

3.2.4 Bluetooth 5.0

With Bluetooth 5.0 improvements on data transmission layer were introduced. The maximum data

rate supported by the LE PHY in this specification is double than in v4.2, allowing for 2 Mbps.

With this possibility, data could presumably be transmitted with double the frequency.

This feature will improve performance if supported by both endpoints. Even if Apple’s API

does not allow for negotiating connection parameters, the data rate would still nearly double what

it was, due to the faster transmission of packets.

Bluetooth 5.0 modules are already available for purchase and supported by manufacturers.

Currently the only Apple equipment supporting Bluetooth 5.0 is the iPhone X model. Al-

though the application is not intended to be run on an iPhone, if successfully implemented, this

22 Problems and Solutions

solution would also allow acquiring knowledge about the most recent Bluetooth specification.

When eventually an iPad model that supports the new version of Bluetooth is released, the com-

pany would be ready to update its technology.

Testing of this solution would be a great opportunity to use the latest technology, also a favor-

able factor for the product.

3.2.5 WiFi

This technology would most likely provide an answer to the problem, as the physical layer supports

data rate much higher than required. However, a direct connection between the devices in ad-hoc

mode would be required in order to maintain product usability. With the need for a router, a

series of usability problems would arise, such as the tablet not being able to access the Internet if

the tInterface were to be an AP, or having to configure both devices to connect to a local router

in every place the product were to be used. Such approach is not impossible, but not viable in

terms of usability and therefore, marketability. - Some concerns for this solution arise from health

system regulations regarding data protection and WiFi usage. Different laws and regulations exist

depending on countries and/or regions, and an ever increasing concern for security in medical

devices exist[25]. Power consumption is also normally significantly higher within devices that use

WiFi technology, making it a less attractive solution than its counterparts.

3.3 Summary

This chapter discussed the problem as formulated by Adapttech, in which the existing product is

not able to meet the throughput requirements. This is surely related either with the receiving end

of the application messages (iPad) or the BM78 Bluetooth module. As the information regarding

the iAP protocol is under an NDA and the implementation of the Bluetooth stack running in the

BM78 is also private IP, a deeper understanding of the Bluetooth specification is needed in order

to be able to find, understand and provide a solution for the described problem.

Various solutions have been considered and, although every one of them is technically achiev-

able, some were discarded as they are not implementable in the corporate environment due to

other, non technical, restrictions. Examples of these restrictions are usability considerations such

as how a user would interact with a device, how the connections with the system are created and

the configurations required in order to operate the device. Technically, the main constraints to

consider were the use of an iPad and Bluetooth communication.

For the sake of solving the problem at hand, we needed to consider both effective and appli-

cation throughput. For this purpose, we used a protocol sniffer for throughput measurement, as

it can provide an observer’s perspective, not interfering with any of the process components and

allowing for a more detailed view of connection requests, parameter negotiation and data message

segmentation.

3.3 Summary 23

This way we expect to be able to pinpoint the effective reasons for the BM78’s behaviour

and also to know how to create and implement a Bluetooth device that meets the requirements,

focusing on BR/EDR and BLE.

24 Problems and Solutions

Chapter 4

Bluetooth Technology

As Bluetooth is the existing solution found in the tInterface, a detailed analysis of the several

specifications will be performed, in order to understand how the device communicates and to be

able improve performance, satisfying requirements and providing an in-depth look of Bluetooth

Technology.

4.1 Bluetooth profiles

Bluetooth profiles are one of the key points in this technology. While different parts of its stack

have features which make interoperability a possibility, with profiles that possibility is material-

ized. Profiles are cross-layer to the Bluetooth stack (Fig 4.1), although most of the time they are

said to be at the top of the stack, just below the application. They provide the stack layers with

predetermined interactions, creating several different standard behaviours for Bluetooth devices.

The following image shows an abstract relation between the stack layer and profiles. There are

profiles serving a wide range functions, from medical devices to simple thermometers.

4.1.1 Serial Port Profile

This profile was designed in order to support legacy devices using virtual COM ports, providing a

simple interface for legacy applications[26].

"The applications on both sides are typically legacy applications, able and wanting to

communicate over a serial cable (which in this case is emulated)"

The Serial Port Profile (SPP), provides applications a virtual serial port, completely transparent

to the operating system. SPP states a need to provide reliable communications, such as the ones

in the RS-232 protocol so, with this in mind all procedures and characteristics of this profile are

made in order to provide the best reliability possible. This profile uses the RFCOMM protocol

in order to establish a Data Link Connection (DLC), from a initiating device known as DevA,

to a remote Bluetooth device, DevB. SPP also dictates configuration options and parameters for

25

26 Bluetooth Technology

Figure 4.1: Bluetooth profiles [2]

lower layers, such as L2CAP. An option is also provided for SPP to emulate RS-232’s flow control

signals, RTS/CTS, dependent on API.

The connection establishment procedure for SPP is described shortly next:

• Discover Remote RFCOMM Server channel.

• Execute authentication and encryption procedures (optional)

• Create L2CAP connection-oriented channel to remote entity.

• Start an RFCOMM session and establish a Data Link Connection.

The protocol stack and device interaction can be seen in Fig. 4.2.

Just below the Serial Port Emulation entity is the RFCOMM protocol,based of the GSM TS

07.10 specification, used for terminal-modem communications in Global System for Mobile Com-

munications (GSM).

L2CAP is a transport protocol used in Bluetooth communications and, as such, SPP imposes

L2CAP connection parameters such as it’s Maximum Transmission Unit, Flush Timeout and rec-

ommendations for flow and error control. The flush timeout parameter can be seen as how much

time a baseband packet can be waiting on a buffer to be re-transmitted. In order to provide a reli-

able link, L2CAP is configured with an infinite flush timeout, therefore disabling it from discarding

packets.

4.2 Bluetooth Networks 27

Figure 4.2: Protocol Stack used by the Serial Port Profile

4.1.2 Health Device Profile

Bluetooth Classic has an accessory profile, specialized for use with medical devices, in order to

provide easy connectivity and compatibility. Health devices must follow this specification in order

to be qualified for Bluetooth Healthcare and Fitness. There are two main abstract roles defined in

this specifications, sources and sinks, with each device being either a sink, source, or both. Sources

transmit information, whilst sinks are receivers of information. Several possible configurations are

also defined, in order to cover most use cases.

In order to support those topologies, HDP uses the Multi Channel Adaptation Protocol in order

to create an abstraction from the L2CAP layer. Data is exchanged using the IEEE 11073 Health

Informatics - Medical / health device communication standards. The complete stack can be seen

in Fig. 4.4 as well as how two devices communicate with another.

4.2 Bluetooth Networks

For better understanding, we will briefly discuss network topologies before an in-depth analysis

of the Bluetooth stack, to provide readers with a basic understanding of the theory of operation

within Bluetooth Networks. With Bluetooth Classic, two topologies were introduced, piconet and

scatternet. The main difference is that a piconet is a network containing only one BT device

operating as the master in the connection. A device is said to be in a scatternet if it is active in

more than one piconet, consequently having more than one master node.

Below are two illustrations representing the possible network topologies involved, for BR/EDR

and Bluetooth LE.

28 Bluetooth Technology

Figure 4.3: HDP Network Topologies [2]

Figure 4.4: HDP Stack [2]

In a BR/EDR piconet, all slaves are tuned into the master channel and frequency hop. A

piconet can support up to 7 slaves, and allow for unicast and broadcasting communications. In

LE, slaves within the same piconet use different channels to communicate with the master, each

slave having its own channel. The maximum number of slaves is directly related to a part of the

packet header, LT ADDR, which is 3 bits long, making it possible to address the 7 slaves and one

extra address for broadcast.

In LE device networks scatternets are not defined, although a device can be both executing a

central and peripheral role, being a master and a slave at the same time in different piconets. In

essence, each group of slaves connected to a master forms a piconet, and a master can also be

4.2 Bluetooth Networks 29

Figure 4.5: BR/EDR Network Topologies [2]

Figure 4.6: LE Network Topologies

a slave to another piconet or, be a master to two different piconets. These topologies create the

possibility for a device to be actively communicating with one network, whilst being discoverable

and pairable to another network. The connections represented in the figures above are defined in

the Link Layer of the Bluetooth Stack. To create them, Bluetooth Specification supports several

device operations like scanning for other devices, pairing and connecting with scanned devices,

30 Bluetooth Technology

among others.

4.2.1 Connection Modes

In order to support different features and enable networks to operate under different conditions

and with several slaves, the Bluetooth specification defines several connection states.

4.2.1.1 BR/EDR Connection Modes

Connections within BR/EDR networks can be in one of several states:

• Active Mode - In this mode, connections are actively engaged in data transmission

• Sniff Mode - Sniff mode implies that a Bluetooth device will listen to the medium with a

lower frequency, lowering it’s duty cycle.

• Hold Mode - This other power saving mode enables connections to be held for a specific

time frame.

• Park Mode - When slaves are parked, they yield the ability to transmit data, only listening

for broadcasts and synchronization packets.

4.2.1.2 BLE Connection Modes

• Connected Mode - In this mode, connections are actively engaged in data transmission,

where both devices are directly connected, sharing a physical data channel.

• Advertising mode - In this mode, data can be transmitted through advertisement channels

and can be received by other devices. It can be used to transmit information, or to scan,

retrieve information and connect to other BLE devices.

4.3 Bluetooth Stack Overview

Bluetooth features two main architectures, BR/EDR and LE, and these differ in numerous as-

pects. Fundamental characteristics will be presented in this next section, having a ever more

in-depth look on how both core systems components relate with another, and how operations are

performed. The stack provides mechanisms and functions to support operations required by the

profiles functionalities.

Referring to Figure 4.7, it can be seen that generally an application interacts with a profile,

and this profile executes different procedures and controlling lower layers in order to provide a

connection with other devices and a configured channel for data flow. Another observable fact,

is that the LE and BR/EDR devices employ different stacks. The RFCOMM protocol, used by

many profiles, is not used in Low Energy devices. Data in LE devices is normally exchanged

on a client/server configuration using the General Attribute Table, where different services are

composed of different characteristics and attributes that are ultimately store and present data.

4.3 Bluetooth Stack Overview 31

Figure 4.7: BR/EDR and LE stack comparison [3]

4.3.1 RFCOMM

RFCOMM or Radio Frequency Communication is a protocol designed to provide an abstraction to

be able to virtualize Bluetooth services as a serial port. The protocol is responsible for delivering

to an application an interface to be able to read and write data though a virtual serial port, also

dealing with it’s signaling. The reference model for RFCOMM is show in Fig. 4.8:

Figure 4.8: RFCOMM model [4]

RFCOMM, adapted from TS 07.10, has two main types of frames, which are used for commu-

nications, frames that are intended to carry signaling and control information, and frames intended

to carry data. A connection between to RFCOMM entities, is called a Data Link Connection

(DLC).

Different types of frames can be sent over a DLC, with different intended uses such as control

or data services. These frames are:

32 Bluetooth Technology

• SABM - Set Asynchrounous Balanced Mode command

• UA - Unnumbered Acknowledgement response

• DM - Disconnected Mode response

• DISC - Disconnect Command

• UIH - Unnumbered information with header check command and response.

Several parameters are defined in an RFCOMM entity as shown in Fig. 4.9

Figure 4.9: RFCOMM System parameters [4]

Regarding reliability, RFCOMM does not provide any direct mechanisms to assure it and as

such for each timeout, a connection should be closed and re-established. The defined parameters

for Data Link Connection parameter negotiation can be seen in Fig. 4.10

Figure 4.10: RFCOMM DLC parameters [4]

"(...)RFCOMM must require L2CAP to provide channels with maximum reliability,

to ensure that all frames are delivered in order, and without duplicates. Should an

L2CAP channel fail to provide this, RFCOMM expects a link loss notification (..)"

This protocol defines two devices, DevA and DevB, supporting several multiplexed serial

connections. Emulation of the serial port requires modem control functions, port and parameter

negotiations as well as a method for information transmission. An example of the frames used by

RFCOMM can be seen in Fig 4.11. This protocol enables a set of features such as flow control,

baud rate selection and methodologies to set up and extinguish connections. Different types of

frames are defined in order to allow for modem communications, such as creating Data Link

Connections (DLC). RFCOMM is defined as a reliable stream of data, as such, it requires the

underlying L2CAP channel to be configured with a infinite flush timeout. Also, as the link is

supposed to be reliable, the specification states:

4.3 Bluetooth Stack Overview 33

Figure 4.11: RFCOMM frame [4]

"If an L2CAP link loss notification is received, the local RFCOMM entity is respon-

sible for sending a connection loss notification to the port emulation/ proxy entity for

each active DLC. Then all resources associated with the RFCOMM session should be

freed."

4.3.2 Bluetooth Core Systems Overview

Every Bluetooth System is composed by two main entities, the Host and the Primary Controller.

According to the specification defined by the Bluetooth SIG, a Controller is defined as a logic

unit, responsible for the lower stack layers, such has the baseband, physical layer and a part of the

Host Controller Interface (HCI). The other logic entity defined is the Host, which implements the

higher layer protocols and profiles like the Service Discovery Protocol (SDP), Attribute Protocol

(GATT/ATT) and L2CAP. The interface between both entities is the Host Controller Interface

(HCI) and it specifies a set of commands and parameters supported by both entities, to transmit

data between both parties. Commands are sent from the host to the controller, and events are

reported from the controller back to the host platform. Both parties may be implemented in the

same device, such as in many Bluetooth modules that provide a transparent UART service, or, be

physically separate such as the case of Bluetooth dongles that connect via USB to a PC.

Two types of controllers are defined, primary and secondary controllers (Fig. 4.12). Primary

controllers are BR/EDR and LE cores, and secondary controllers are defined as AMP controllers.

AMP controllers were only introduced in specification 3.0, giving the possibility to use a different

physical layer for transport of data, using the same higher layer protocols. This was introduced into

the Bluetooth specification in order to support different radio standards, such as the 802.11, taking

advantage of the different characteristics of various physical layers such as increased bandwidth.

Using the defined logic entities, controllers and hosts, a Bluetooth radio can contain one or more

of those, in different configurations as the following images illustrate.

A global overview of the Bluetooth Core System is presented in Fig. 4.13, in which all three

types of Controllers are present, although that does not mean every implementation has to be

composed of the three.

Directly above the physical channel and link layers are the logical links, logical transports and

L2CAP layers. Each of these layers play an important role, making Bluetooth a versatile protocol

34 Bluetooth Technology

Figure 4.12: Single/Dual Mode Configurations [2]

Figure 4.13: Bluetooth Core System [2]

supporting data with different timing characteristics and providing mechanisms to convey both

user and control data to the appropriate entity.

The abstract layering used for data transportation is illustrated in Fig. 4.14 and Fig. 4.15.

In Fig. 4.14, several layers can be identified, each subdivided into possible combinations of

transports, channels and links. A more detailed illustration is shown in the Fig. 4.15, elucidating

which entities are involved in each layer. Any kind of data sent via Bluetooth is sent from the

upper layers to the lower ones, being transmitted and ,after being delivered, are delivered back to

the application on the other endpoint device(s).

4.4 Logic Link Control Adaptation Protocol 35

Figure 4.14: Detailed Bluetooth Data Transport Structure [2]

Figure 4.15: Bluetooth Data Transport Architecture [2]

4.4 Logic Link Control Adaptation Protocol

Although every one of the protocols appending the Bluetooth specification are important, L2CAP

is essential regarding application data transmission. Offering packet multiplexing, quality of ser-

vice options and segmentation and reassembly, this protocol is imperative in most cases involving

transmission of data for applications. Providing these services, L2CAP creates an important layer

of abstraction in order to facilitate higher protocol functions, simplifying some necessary complex

and critical tasks mandatory for reliable communication. L2CAP’s interaction with other upper

and lower layers is also defined, using a scheme used based on an asynchronous request-response

technique.

4.4.1 Modes of Operation

As different types of traffic are required by applications,L2CAP features several modes of opera-

tion:

36 Bluetooth Technology

Figure 4.16: L2CAP architecture [2]

• 4.4.1.1 Basic L2CAP Mode

In Basic L2CAP Mode there are two types of frame used to support connection-oriented and

connectionless traffic, respectively known as G-Frame and B-Frame. These can be seen in

Fig. 4.17.

Figure 4.17: Basic Information and Group Frames [2]

• Flow Control Mode, Retransmission Mode, Enhanced Retransmission Mode and Streaming

Mode In these 3 operational modes, Supervisory and Information Frames are used in order

to permit flow control, retransmission and streaming. S-frames are used to supervise the

connection, being used according the defined operational mode and performing acknowl-

edgement and retransmission requests.

4.4 Logic Link Control Adaptation Protocol 37

Figure 4.18: L2CAP Information and Control frames [2]

• LE Credit Based Flow Control Mode This mode of operation is only used with LE systems

resorting to LE information frames (LE-frame) 4.19.

Figure 4.19: LE Information Frame [2]

*

4.4.2 Fragmentation and Reassembly

After receiving SDUs, L2CAP normally delivers its PDU to the Host Controller Interface (HCI),

with is responsible for communication with lower layers in the present in the Bluetooth Controller.

As information is tranfered from the L2CAP layer to the physical radio interface, it is fragmented

and reassembled by various controllers and protocols. An illustration of this process can be seen

in Fig. 4.20.

38 Bluetooth Technology

Figure 4.20: L2CAP and Baseband information flow [2]

4.5 Generic Access Profile

The Generic Access Profile (GAP) is a mandatory profile that must be present in every Bluetooth

device, as it enables required procedures devices have to perform in order to establish and maintain

connections. GAP defines device roles and procedures and modes for discoverability, connections

and security. A hierarchical view is given in the following image.

Figure 4.21: Generic Access Profile Hierarchy [2]

In BR/EDR GAP defines two roles for devices, the initiator of the connection known as A-

party and acceptor, B-party.

For LE systems, GAP defines 4 roles, for use in more specific cases, with its own charac-

teristics. The Broadcaster role is relevant for use in applications that only transmit data. On the

4.6 Generic Attribute Profile 39

other side, the Observer role acts as a listener, normally used for applications only receiving data.

Peripheral role enables a device to be able to support a single connection, giving the possibility

to make cheaper, smaller and lower consuming devices. The Central role is normally performed

by devices such as a laptop, in this role devices support several connections with peripherals and

are the ones responsible for initiating connections. Advertisement, device discoverability and re-

lated procedures are also defined in the GAP specification, effectively creating an entry point to a

device, also handling scanning and connection creation.

The GAP specification also defines a user interface level, where the representation of param-

eters on a UI (User Interface) shall be displayed, such as the Bluetooth device address, friendly

name and security procedures at a higher level. As figure 4.22 shows, GAP interacts with a big

part of the stack, as functions performed by it are fundamental for Bluetooth device to operate.

Figure 4.22: Generic Access Profile Stack [2]

4.6 Generic Attribute Profile

This profile uses the Attribute Protocol (ATT) in order to transfer data, defining the type of data

used and its formatting. GATT profiles are composed of one or more services, in turn composed

of characteristics. Characteristics are a set of one or more values and their properties such as how

the value is displayed and accessed (Fig. 4.23).

Each GATT transaction relies on lower layer protocols to transfer information and directly

below is the Attribute Protocol (ATT) 4.24, responsible for the transmission of data using a re-

quest/response scheme.

GATT data is transferred using a client/server architecture, where usually the client sends

requests for data and the server replies with the corresponding data or an error code. Several

procedures are defined, in order to discover, read and write data. There are various types of

procedures for writing and reading characteristics values, in order to fit different use cases:

• Read Characteristic Value - This is the simplest procedure to read a characteristic value,

based on the attribute handle, making a request and receiving the subsequent response.

40 Bluetooth Technology

Figure 4.23: Generic Attribute Profile Hierarchy [2]

Figure 4.24: ATT PDU [2]

• Read Using Characteristic UUID - Reading based on the Universally Unique Identifier.

• Read Long Characteristic Values - This sub-procedure enables reading of a characteristic

value longer then the defined ATT Maximum Transmit Unit.

• Read Multiple Characteristic Values - This sub-procedure is used to facilitate the reading of

several characteristic values using only one request

• Write Without Response - This sup-procedure writes a value to a characteristic’s value,

without the need for acknowledgement .

4.6 Generic Attribute Profile 41

• Signed Write Without Response - Like the previous write sub-procedure it writes a charac-

teristic value, but the ATT PDU contains a field with a signature in order to enable authen-

tication of the sending device.

• Write Characteristic Value - Using this write method implies a response from the server thus

serving as an acknowledge message.

• Write Long Characteristic Write - Has the same function as the previous procedure, but

enables the write of a value longer than the ATT MTU.

• Characteristic Reliable Write - A reliable write is different as it is done in two separate

phases, first transferring the data and checking it’s validity and in the second phase the

actual value of the characteristic is changed.

• Notification - This sub-procedure is used for a GATT server to update a characteristic value

in a client. This type of procedure does no imply any type of acknowledgment.

• Indication - An indication is similar to a notification, but requires acknowledgment.

4.6.1 L2CAP interoperability

GATT also defines a series of requirements for lower layers, more specifically L2CAP, in order to

assure implementation compatibility between devices. ATT transfers are done using an L2CAP

channel, referred to as the ATT bearer. This bearer is different for use in BR/EDR and LE PHYS,

each with it’s own default parameters and configurations.

The predetermined L2CAP packet used in this channel, for both BR/EDR and LE, is the B-

Frame, also known as Basic Information Frame.

A standard BR/EDR ATT Bearer is configured for reliable traffic with a flow specification

used is best effort, using a dynamic channel ID and a fixed Protocol Service Multiplexer (PSM). In

Bluetooth LE, requirements are similar to Bluetooth Classic, using a fixed channel ID, transmitting

data with reliability with the retransmission and flow control mode set to Basic L2CAP mode.

Default parameters for an LE ATT Bearer can be seen in Fig. 4.25.

Figure 4.25: Default LE ATT Bearer parameters [2]

42 Bluetooth Technology

4.7 Host Controller Interface

In this section of the specification, every possible interaction between the host and the controller is

defined. Three hardware interfaces can be used, USB, UART and Secure Digital(SDIO). The con-

troller typically receives commands from the host and sends events back to the controller. A set of

commands and responses are defined by the Host Controller Interface, supporting communication

between the Bluetooth Host and Controller.

4.8 Bluetooth Basic Rate / Enhanced Controller

The BR/EDR defines a set of protocols and entities that, together with the physical radio specified,

enable devices to operate at 1, 2 and 3 mb/s. It defines a data transport architecture, in order to

provide communication channels for different types of traffic, and protocols in order to enable

physical packet fragmentation reassembly and support different types of networks.

4.8.1 Bluetooth Baseband, Physical Channels, Links and Transports

The Bluetooth Link Controller specification dictates the operating methodology of the BR/EDR

baseband, as it defines a set of packets and timing conditions for each type of physical channel.

The Bluetooth Link Controller is also directly responsible for managing timing slots necessary for

the communication to occur. Different types of packets are defined for the baseband layer, these

answer specific needs of different physical transports. Packets differ in function and can occupy

from one to five time slots, depending on packet type, each slot having a duration of 625µs .

The Link Controller manages connections and procedures, such as the entry and exit of pi-

conets and scatternets. The controller can be described as a state diagram. There is a primary

state as well as several secondary, temporary states. Transition between states are either started

because of internal controller events or commands from the link manager. Fig. 4.26 shows the

state diagram.

Physical channels are the bare core of Bluetooth communication, every transaction occurs in

one of these channels. A channel is characterized as a set of frequencies, temporal parameters and

spatial considerations. In other words, for a device to be able to communicate with another, they

must be tuned exactly at the same time to the same frequency. It is assumed that different devices

on various networks are probable to operate within the same space, and to mitigate collisions each

channel is identified with an access code. There are several channels in order to fulfill different

needs, like device discovery, network synchronization and data transmission on established con-

nections. As only one channel can be used at a time, time division is used to imply parallelism to

operations, however different channels may be able to collide in the same frequency.

An overview of the various links and transports in given in Fig. 4.27.

4.8 Bluetooth Basic Rate / Enhanced Controller 43

Figure 4.26: BR/EDR Link Controller States [2]

4.8.1.1 Logical Links and Transports

In BR/EDR there are 4 types of logical transports, and each has it’s own characteristics. There are

two logical transport links responsible for synchronous data, the Synchronous Connection Ori-

ented (SCO) and Extended Synchronous Connection Oriented (eSCO). Those logical transports

are mostly used in use cases such as audio communications, which transmit data on a specific

and previously established data rate. The other two are divided into Asynchronous Connection-

Oriented (ACL) and Active Slave Broadcast (ASB).

Logical Links provide an abstraction, separating user and control data. I.e., the ACL-U Logical

Link is used for the to deliver user data to upper layer protocols such as RFCOMM, while the

ACL-C Logical Link is responsible for delivering control data to the L2CAP resource manager.

4.8.1.2 Addressing

Each Bluetooth device has a unique 48 bit address, defined as a EUI-48 (Extended Unique Iden-

tifier). The device address for Bluetooth devices is not, as other protocols/specifications, just a

unique reference, as it is an important property which is used for determining how the connection

will be set up, such as channel access code and critical operations such as data whitening. The

address itself is divided in to three parts, the LAP (Lower Address Part), UAP (Upper Address

44 Bluetooth Technology

Figure 4.27: Logical Links and Transports Chart [2]

Part) and the NAP (Non-important Address Part), each playing an important role, except for the

NAP.

4.8 Bluetooth Basic Rate / Enhanced Controller 45

4.8.1.3 Physical Channels

In Classic Bluetooth, the most basic building block for communication is a physical channel,

defined as a combination of slot timing, access code, encoding and hopping sequence. In order

to consider two device as connected, they need to have these parameters successfully negotiated.

As the hopping sequence is pseudo-random, access codes for a channel are needed in case two

different piconets accidentally tune into the same frequency at the same time, enabling for a packet

from a different piconet to be discarded. Frequency hopping is used in order to reduce EMI, as

Bluetooth devices operate in the ISM spectrum.

In BR/EDR there are 5 physical channels, these are:

• Basic Piconet Channel - This is used for data transmission between devices with established

connections. Every time slot has a specific frequency, with hops happening between con-

secutive time slots.

• Adapted Piconet Channel - Being similar to the Basic Piconet Channel, this channel uses

another sequence relating to frequency and time slots. In the Adapted Piconet Channel

two consecutive time slots generally have the same frequency. This channel supports AFH,

being able to use a reduced channel map.

• Inquiry Scan Channel - This channel is used for device discovery, as it awaits inquiry request

it browses through every possible inquiry frequency sending a request on each one, and upon

a request a response is sent. The channel is also identified by one of two types of access

codes, either a general inquiry access code or a limited access code.

• Page Scan Channel - Is used to initiate a connection from one device to another. The device

initiating the process will send page requests to the target device, hopping frequencies in

order to find the other devices hopping pattern and frequency.

• Synchronization scan Channel - This channel is used for providing clock synchronization to

devices during the page process .

Time division multiplexing is critical in order to allow devices to perform actions simultane-

ously, from a user’s point of view, like being connected and scanning devices at the same time.

4.8.1.4 Piconet Clock

The main clock in any Bluetooth device is the Piconet Clock, used as reference for Link Layer

scheduling, and practically every baseband function. An offset update is periodically required,

since oscillators from different devices will naturally diverge. The Piconet Clock is defined and

broadcasted by the piconet Master, normally the initiator device in the connection.

46 Bluetooth Technology

4.8.1.5 Transmission Timing

As previously stated, communications is made using a TDD (Time-Division Duplex) technique,

and each slot defined is 625us. There are two different types of slots, master-slave and slave-

master, and these are distributed temporally in a that collisions between master and slaves will

never occur, as even slots are reserved for master transmissions and odd slots are for slave-master

transmissions. A polling scheme is used by the master in order to control slaves in a piconet, so

each slave is only able to transmit data if it receives a packet on the previous master-slave time

slot.

At the lower physical level, data is transmitted using a packet based communication technique.

A packet normally uses only one time slot, but this can be extended, giving the possibility to

transmit longer packets, using several time slots at a time. Full duplex communication is supported

due to the TDD scheme used. Data is sent making use of physical links, a layer that sits directly

above the physical channel, which provides mechanisms to convey information correctly resorting

to some level of abstraction. A physical link is used to transport information from different logical

links using a multiplexing technique assigning different slots for different types of network traffic.

Figure 4.28: TDD illustration [2]

4.8.1.6 Packet Types

BR/EDR packet structure serves as a standard for every packet being transported between two

BR/EDR PHY. Packets are designed to allow for optimal use in normal operation cases. Its generic

structure can be analyzed in the following scheme.

As various applications and profiles differ, so do the type of traffic that they require to operate.

There are several types of packets defined in order to support either data, voice or to support other

of Bluetooth’s operations.

4.8 Bluetooth Basic Rate / Enhanced Controller 47

Figure 4.29: BR/EDR packet structure [2]

• ID packet - ID packets are used to convey device access code (DAC) or inquiry access code

(IAC), used during inquiry or scan phases.

• NULL packet - A NULL packet is normally used when link layer information is to be

conveyed and no other data is buffered to be sent.

• POLL packet - A POLL packet is used by the master in a connection in order to request an

answer from a slave.

• FHS packet - Frequency Hopping Sequence packet carries real-time clock information and

the Bluetooth device address.

• DM - ACL link packet with FEC encoding. DM packets can be of 1,3 or 5 slots of occupancy

and also modulated either at 1, 2 or 3 mb/s, resulting in 9 different DM packets.

• DH - Similar to DM packet, but without FEC. Also features 9 different types of packets.

• AUX1 - AUX1 packet is similar to DH but without any MIC or CRC code.

• DV - Combined data and voice packet used in SCO links.

• HV - Non FEC encoded voice packet similar to DV.

• EV - Extended Voice packet are used in eSCO links, for use in EDR.

Each physical packet contains a header (Fig 4.30) conveying information necessary for the

maintenance of connections.

Figure 4.30: BR/EDR Packet Header [2]

48 Bluetooth Technology

The first field, LT_ADDR, is used in order to address individual slaves or broadcast informa-

tion. The TYPE field identifies the number of slots and modulation scheme used. In order to

provide an acknowledgment and request scheme, the ARQN field provides feedback, indicating if

a successful transfer was performed or not. Order in the packet stream is supported by the SEQN

bit, which provides a alternating numbering scheme enabling the receiving device to identify dif-

ferent packets.

4.8.2 Bluetooth Basic Rate / Enhanced Data Rate PHY

Bluetooth Basic Rate, also known as Bluetooth Classic, was introduced in the first Bluetooth

specification, v1.0. The radio specification uses the 2.4 GHz ISM (Industrial, Scientific and Med-

ical) band. Version 1.0 of the Bluetooth specification was quickly deprecated, as problems in that

version were resolved. Instead of v1.0, today the oldest active specification is the legacy Bluetooth

v2.1. The radio operates with a Frequency Hopping scheme, in order to reduce interference with

other devices using the same frequency bands. The frequency hopping scheme was introduce very

early in the technology’s development, as it is imperative to enable Bluetooth to work in polluted

RF environments.

Basic Rate and Enhanced Data Rate differ on the physical data modulation technique. While

Enhanced Data Rate (EDR) uses Phase Shift Keying (PSK), Basic Rate makes use of Frequency

Shift Keying (FSK).

Basic Rate uses GFSK, a modulation technique described in the following figure. This tech-

nique allows for the transmission of 1Msym/s but this throughput is relative to all of the on-air

data, not application data.

Enhanced Data Rate makes use of Π/4-DQPSK and 8DQPSK, allowing for double and triple

data rate. In a physical channel connecting devices in a network. communication occurs on a

TDMA (Time Division Multiple Access) scheme, as the physical channel is divided into time

slots.

BR/EDR radios are categorized according to output power within the following 3 classes.

Power Class Maximum Output Power
1 100 mW
2 2.5 mW
3 1 mW
Table 4.1: BR/EDR Power Classification

4.9 Bluetooth Low Energy Controller Overview

Bluetooth Low Energy is introduced in specifications after 2010 to provide a solution for an

emerging set of problems, while trying to keep most of the features that made Bluetooth a pro-

ficient wireless communication specification. While BR/EDR addresses problems such as data

4.9 Bluetooth Low Energy Controller Overview 49

rate, LE first approach was enable wireless low power devices, empowering a new generation of

devices, and making it easier to develop and implement sensor devices in environments where

cables are difficult to use and battery life of those devices is a priority.

4.9.1 LE Link Layer Overview

The LE Link Layer (LL) can be described as a protocol which implements several very important

functions over an LE physical channel.

Devices with an LE controller have a 48 bit address that can be either a public or random

device address. Public device addresses are generated accordingly to the BR/EDR specification,

already mentioned before. Random addresses can be either defined as static or private. Static

Random addresses are used if a device is meant to have a different address every time it powers

on. Private addresses give the LE Link Layer the possibility to generate encrypted addressing

using a public-private key scheme.

In Bluetooth Low Energy, there are three Logical Transports defined, ACL and Advertising

Broadcast (ADVB) and Periodic Advertising Broadcast (PADVB). These are used for active con-

nections (ACL), and advertisements (PADVB and ADVB) to be received devices that are listening.

The LL specifies five different states that a LE connection can have:

• Standby State - In this state the Link Layer is idle and does not send or receive packets.

• Advertising State - In the advertising state, only advertisement packets are sent or received.

• Scanning State - This state is only used to listen for advertising channel packets.

• Initiating State - This is a state used with the purpose to listen and start a connection with a

specific device.

• Connection State - When in connected state, a device assumes one of two roles: Master or

Slave.

Only with these different states Bluetooth LE is able to have such different characteristics than

BR/EDR. Only one of the following five LL states is permitted to be active at once. Not all states

have to be implemented, allowing manufacturers to implement reduced versions of the Link Layer.

The state machine defined is illustrated in the figure below.

4.9.1.1 Connection Interval and Slave Latency

The connection interval is defined in the Bluetooth specification as a period in which two con-

nected devices are required to communicate. It’s value starts in 7.5ms and can be as big as 4

seconds, in increments of 1.25ms. While in a piconet, a master is required to send at least one

empty packet at each connection interval. A slave response is required every at every connection

interval also, but only if another parameter, slave latency is set to zero. If different than zero, the

50 Bluetooth Technology

Figure 4.31: LE Link Layer State Machine [2]

Figure 4.32: Slave Latency Illustration

slave latency parameter is a counter of how many connection intervals a slave can skip, giving the

slave a chance to enter sleep mode and save power, an example can be seen in Fig. 4.32

According to Texas Instruments CC2540 Bluetooth low energy Software Developer’s Refer-

ence Guide [27], changes in the connection interval have the following impact:

• Reducing the connection interval will increase throughput between both devices, reduce

latency, and increase power consumption.

4.9 Bluetooth Low Energy Controller Overview 51

• Increasing the connection interval will have the reverse effect, lowering throughput between

both devices, increasing latency, and lowering power consumption.

• Increasing Slave Latency will reduce power consumption on the peripheral device and in-

crease it’s latency.

4.9.1.2 Connection Event End and Supervision Timeout

In order to inform slaves whether to sleep, in case of a finished connection event, or to keep waiting

for another packet from the master, the MD bit of the Data Channel PDU is used. If this bit is not

set by either device, after receiving a master packet and sending a response, the connection event

is closed, and the slave can sleep up until the next connection event. Even if the slave sets this bit,

the master’s response is still optional, but the slave must continue listening for a master packet. In

case of the master setting this bit, the slave is always required to wait for another packet.

Figure 4.33: More Data bit usage [2]

In the case of two invalid packet receptions, the connection event is automatically closed.

The Supervision Timeout parameter sets the limit for the maximum time between packets until

a the connection is considered dropped. This impacts on how much time a device will try to send

data until GAP changes state.

4.9.1.3 Connection setup and operation

The primary procedure for connecting two BLE devices is sending a CONN IND packet to the

slave in order to start a connection. Upon receive of the connection request, both devices will start

a procedure in order to successfully establish a connection. In this procedure, illustrated in Fig

4.34, there is a waiting window and then a first packet from the master to the slave. If received

correctly, the instant that the packet was received marks the start of the connection interval, also

known as an anchor point, and both the slave and the master will use this reference to tune into

the correct frequency at the correct time, creating a communication link between devices. The

time window between the connection request packet and the first connection interval is known

52 Bluetooth Technology

to both devices as it is transmitted in the CONN IND packet and allows the master to schedule

communications to this slave while having other radio activities to attend to (such as other slaves,

scans and other radio specifications). For each connection interval a different radio channel will be

used, but every packet of a determined connection interval will be sent using the same frequency.

A master is required to send a packet every connection interval, although it does not have to contain

a PDU if there is no data to be sent. A slave, as previously stated does not have to reply to each

packet from the master, as a response depends on the slave latency parameter.

Figure 4.34: Connection Setup [2]

Although there is no specified limit for how many packets can be sent during a connection

interval, the number obviously depends on the transmission time of the packets and the connec-

tion interval but also on implementation details on both controllers. However, the master has the

ultimate control and can refuse to receive more packets from a slave in order to schedule other

activities, i.e. if using 0 slave latency, it is only required to reserve the minimum time to send and

receive a packet from each slave at each connection event.

4.9.2 LE Baseband

The baseband is composed of 40 radio frequency channels, spreading throughout the frequency

spectrum. In order to avoid collisions between devices operating on different networks, an access

address present in every packet header. A physical channel is considered connected when two or

more devices are correctly tuned to one of the forty defined RF frequencies at the same moment,

or more precisely synchronized with timing, frequency and access address. Channels are divided

into three categories:

• LE Piconet Channels - Data transmission between devices is handled through this channel.

• LE Advertising Channels - With this physical channel the LE core offers a possibility to

broadcast data to unconnected devices, being able to be used to set up connections as well.

• LE Periodic Physical Channels - The channels are used to enable a broadcast between un-

connected devices, being responsible for setting the timing in the broadcast communication.

4.9 Bluetooth Low Energy Controller Overview 53

4.9.2.1 LE Packets

There are two types of LE packets, uncoded and coded packets, the later only supported only

by the LE 1M PHY. An uncoded packet is composed of several fields, the Preamble, Access

Address, PDU and CRC. Each of the 4 fields performs a specific function on the physical layer.

The preamble is used for synchronizing devices at the start of the packet, and its size is 1 octet

for the LE 1M PHY and 2 for the LE 2M PHY. As referred before, the Access Address is used to

avoid collisions if two devices from different networks happen to transmit on the same channel.

The PDU carries data relevant to the LL packets. The first specification defined the maximum size

of the LE PDU as 23 octets, but since Bluetooth v4.2, the maximum size is 257 octets . CRC is

used to check data integrity.

Figure 4.35: LE Uncoded Packet [2]

"The LE Coded PHY allows range to be quadrupled(...)."

Coded packets have a very specific purpose, introduced in Specification 5, these allow for a greater

transmission range by applying a Forward Error Correction (FEC) mechanism. Using this method

requires the generation of some overhead in order for the receiver to have the ability of correcting

a packet in case of errors that occur when receiving a packet, due to either background noise or

direct radiation. Two coding schemes are available, creating either 1 or 8 additional bits for each

bit input at the FEC generator. As stated, there are two different coding schemes used, determined

by the parameter S, either being equal to 2 or 8. These types of packets have a Preamble, Access

Address, PDU and CRC fields, but also contain 3 other fields in order to support the described

features. Although significant overhead will be produced by this technique, range can be increased

without a significant transmission power increment.

Figure 4.36: LE Coded Packet [2]

54 Bluetooth Technology

4.9.2.2 Data Length Extension

An important feature was introduced in specification 4.2 which enables a packet with a PDU

with up to 257 bytes, instead of the default maximum value of 23 bytes. This feature greatly

enhances aspects regarding application throughput with BLE devices as it implies less overhead

per application data unit.

4.9.3 LE Radio

A Bluetooth LE radio also operates in the same frequency range as the BR/EDR radio, but the

differences start with the modulation schemes. When BR/EDR have three different modulation

schemes, LE radios have only two with a bandwidth of 1 and 2 Msym/s, using Guassian Frequency

Shift Keying (GFSK) as the modulation technique. Time Division Duplex is also used in this

radio specification, allowing for duplex communication, where each entity in the connection has a

predetermined time slot to communicate. The 1 Msym/s PHY supports two packet formats, coded

and uncoded. The output power in LE radios is classified according to the following power classes

in Table 4.2:

Power Class Maximum Output Power
1 100 mW
1.5 10 mW
2 2.5 mW
3 1 mW

Table 4.2: LE Power Classification

4.10 Security 55

4.10 Security

In wireless communications security is always a important topic, as information flows over the air,

it can always be captured, jammed, or even injected by other devices. Associated with security is

the combination of device parameters in terms of discoverability and connectivity, which defines

3 types of addressing for a Bluetooth device, known as security levels. Also, apart from security

levels there are several security modes which defining security procedures to use in each mode.

Security in Bluetooth devices is handled by the Security Manager(SM), responsible for configu-

ration and control of several parts of the stack in order to create and maintain secure connections

4.37. As in most parts of the specification, BR/EDR differs a little from LE devices regarding

security mechanisms. In order to understand the reasons behind the implementation of security

features, one should have in mind several concepts:

• Authentication - Determination of the identity of the remote device.

• Authorization - Determination of whether to allow services to be accessed by remote device.

• Encryption - Obfuscation of data in order to only allow access by authorized parties.

• Privacy - Obfuscation of the device’s identity.

Figure 4.37: Security Manager [2]

The Bluetooth pairing process is divided into several different phases, these provide a struc-

tured way to set up a secure connection. These 3 phases are:

• Pairing feature exchange - Determination of the I/O characteristics and security protocol of

each device.

• Key Generation - In this phase keys are generated with one of two methods, either LE Secure

Connections or LE legacy pairing, depending on device characteristics and authentication

requirements.

• Key Distribution - In phase 3, the generated keys are sent to the remote device via Bluetooth

or Out of Band (OOB). The choice made in this phase is directly related to phase 1, as

device IO capabilities are known in this phase. In Fig 4.39 the different combinations of IO

capabilities are shown.

56 Bluetooth Technology

After pairing, the process of bonding two Bluetooth devices enables them to restart connec-

tions already encrypted, as the Link Keys are stored in both devices. This reduces security vulner-

abilities and makes a possible attack more difficult, if the bonding process was not eavesdropped

on.

4.10.1 BR/EDR

For Bluetooth devices with this PHY, there are 4 defined Security Modes, describing behaviour of

a device upon connection initiation until it’s closure. These different modes are meant to provide

security for different use cases, as security sometimes interferes with usability. The different

modes are discussed below:

4.10.1.1 Security Modes

There are 4 defined security modes [6], the behavior of a device should be dictated by the chosen

mode. Below is a succinct explanation of each one:

• Security Mode 1 - In this mode all devices are considered as non-secure, as it does not

require any security features to be used.

• Security Mode 2 - Devices using configured in this mode use a security manager which

provides an authorization mechanism at the service level, enabling or not a remote device

access to services available.

• Security Mode 3 - This security mode enforces link layer protection, only allowing for

physical link establishment if the specified procedures are successful.

• Security Mode 4 - Similar to Security Mode 2, but Secure Simple Pairing (SSP) is used,

providing a more robust pairing mechanism.

4.10.1.2 Service Security Levels

In the Bluetooth specification there are also security levels defined, providing requirements for

each security mode. For Security Modes 1 and 3 there are no defined requirements, as these

modes are either link level security or ,in the case of security mode 1, no security.

For Security Mode 2 authentication, encryption or authorization may be enforced.

In Security Mode 4 the possible enforced requirements are:

• Service Level 0 - No Man in the middle (MITM) protection, encryption or user interaction

required.

• Service Level 1 - User interaction required.

• Service Level 2 - Only encryption is required.

• Service Level 3 - Man in the middle (MITM) protection and encryption required.

4.10 Security 57

4.10.1.3 Link Manager Pairing (LMP)

In the early versions of Bluetooth this was the authentication mechanism used, requiring only a

4 digit PIN and a randomly generated secret in order to pair 2 devices. Being a fairly simple

approach in terms of cryptography, this mechanism can be easily circumvented with any modern

day computer, as there are only 10,000 possible keys. A sequence diagram of the pairing process

using LMP is shown in Fig. 4.38.

Figure 4.38: LMP Pairing Mechanism [2]

4.10.1.4 Secure simple pairing (SSP)

Introduced in version 2.1+EDR, in order to cover some of the LMP Pairing mechanism flaws,

and simplifies the pairing process by providing several association models, covering devices with

different IO capabilities, where for LMP a keypad would be required. SSP uses a Diffie-Hellman

key as the shared secret between two devices. This mechanism uses a public-private scheme in

order to guarantee that no critical information is sent over the air, making it difficult to circumvent

even if the pairing process is eavesdropped by an attacker. At the same time, the number of

possible solutions is greater than 2128, making it very difficult to compute.

A defining characteristic of this algorithm is that, when a device receives a public key from

another, the Link Key is derived from the combination of it’s private key with the remote device’s

public key, and this Link Key is also equal on the remote device’s side.

"Given two SSP key pairs A and B, there exists a well-known function F such that

F(PublicA, PrivateB) = F(PublicB, PrivateA). The result of this function is the DHKey.

Only the very two devices owning A and B are able to calculate the same DHKey."

4.40

58 Bluetooth Technology

Figure 4.39: Pairing regarding IO capabilities [2]

There are 4 association models in SSP, a selection table for possible association models is

show in Fig. 4.39:

• Numeric Comparison - A six digit numeric value is show in both devices, and the user is

prompted to confirm the number with a yes or no response.

• Passkey Entry - This is used normally if one of the devices has input capabilities, such as a

keyboard, and the other output capabilities such as a screen.

4.10 Security 59

Figure 4.40: Diffie-Hellman Key Generation [5]

• Just Works - In this association model is used when one of the devices does not have IO

capabilities. The key received is not checked, as the device automatically accepts it.

• Out of Band - Used normally with NFC or other similar technologies, providing a mecha-

nism to exchange keys with a different technology.

4.10.2 LE

Bluetooth Low Energy implementations are often done in resource constrained devices, as such,

security is mostly implemented in a way that does not require much processing power. Mecha-

nisms are somewhat similar to Bluetooth BR/EDR/HS, but several other keys are defined. The

notion of Long-Term Key is introduced replacing the Link Key.

Private and Public Addresses were also introduced with LE, providing an effective method

for identity tracking prevention, and the Identity Resolving Key, which enables devices to resolve

another device’s private address.

4.10.2.1 Security Levels and Modes

In Bluetooth Low Energy the security modes provide service-level security, having defined 2 dif-

ferent modes.

• LE Security Mode 1

– Level 1 - No security, authentication or encryption required.

– Level 2 - Requires pairing with encryption.

– Level 3 - Requires authenticated pairing with encrypted

• LE Security Mode 2

– Level 1 - Requires data signing.

– Level 2 - Requires authenticated pairing with data signing.

60 Bluetooth Technology

4.10.2.2 Pairing

Pairing is fairly similar, but the procedure is different. Firstly a Temporary Key (TK)is agreed upon

and a Short Term Key (STK) is derived. Using the STK, a temporary encrypted link is created in

order to securely distribute the other keys: Long-Term Key (LTK), IRK and Connection Signature

Resolving Key (CSKR). The analogy can be made that the same role is given to the Link Key

in BR/EDR as the Long Term Key in Bluetooth LE. Other keys such as the Identity Resolving

Key enable address resolution for devices in which the address is private and resolvable. The

Connection Signature Resolving Key enables connections between devices to be authenticated, as

the packets sent are signed resorting to cryptographic algorithms also.

The pairing modes have similar names as the ones from SSP used in BR/EDR/HS, although

implementation differs. Introduced in Bluetooth v4.0, now known as LE Legacy Pairing, is very

similar to SSP but does not use the Diffie-Hellman algorithm in order to generate any of it’s en-

cryption keys. This pairing method uses the previously introduced security keys and it’s algorithm

can be seen in Fig 4.41.

Figure 4.41: LE Legacy Pairing[6]

As it can be seen, the initial encryption used is based on the STK, which is exchanged using

one of the four association models similar to those defined in SSP, and as the STK is always

exchanged in clear text, a conclusion can be made that this does not provide any eavesdropping

protection. An attacker could possibly gather the STK and proceed to sniffing and decrypting

other encrpytion keys and further communications between both devices. Introduced in Bluetooth

Specification v4.2, LE Secure Connections introduces another pairing method, using the Diffie-

Hellman algorithm, provides a more secure approach to Bluetooth Low Energy pairing.

4.11 Throughput Considerations 61

Figure 4.42: LE Secure Connections Pairing[6]

Using method and benefiting from asymmetric key generation [5], keys are generated securely

and no critical data is shared prior to encryption, and the LTK, IRK an CSRK are only shared after,

within an encrypted connection.

4.11 Throughput Considerations

In this section theoretical calculations of maximum throughput will be presented, as well a discus-

sion about overal Bluetooth performance. First of all, the reader has to have in mind the concept of

goodput, which is understood as the application throughput. Although many Bluetooth modules

are advertised as having data rates as high as the baseband bit rate, this does not translate into

application throughput, as there are several sources of communication overhead, naturally.

As a review about Bluetooth Technology was made in the previous sections, it can be observed

that the different specifications support physical layers with different data rates, i.e. Bluetooth

Basic Rate and Bluetooth Enhanced Data Rate have two different data rates, 1 mb/s and 2/3 mb/s,

respectively. As data passes through several stack layers and respective buffers, delivery to the

application is not immediate and dependent on stack implementation and RF conditions.

4.11.1 Bluetooth Classic

Achieving maximum goodput will always depend on the amount of stack layers underneath an

application. For example, audio data transmitted over SCO links is delivered directly to the HCI

layer, allowing for lower latency. On the other hand other profiles using RFCOMM as the main

carrier are influenced by protocol overhead. The best case scenario for an application that does

not use an SCO link is to use directly an L2CAP channel, configuring it’s parameters in a way that

benefits application throughput.

62 Bluetooth Technology

Theoretical values for throughput, regarding ACL links and different types of packets, were

withdrawn from the Bluetooth Specification 5, as can be seen in Fig.4.44:

Figure 4.43: BR/EDR ACL link packet summary

In Fig. 4.44 can be seen encapsulation for an L2CAP connection-oriented and connection-less

channels.

Figure 4.44: ACL link EDR packet summary

There are two types of payload headers for ACL packets, one used in single slot packets and

another for multi-slot packets. For the single slot packets, the payload header is composed of 3

4.11 Throughput Considerations 63

fields, the Logical Link ID (LLID) is used to identify the link, and in case of an ACL-U or ASB-U

if it is the start or continuation of an L2CAP message. The second field is only a bit long and

is name FLOW, intended to control whether if the remote device can send more ACL packets,

although specific links have different usages for the FLOW bit. The final field in ACL single-slot

packets is the length, referring to the length of the payload. Using a 3-DH5 packet, one would

theoretically be able to achieve maximum for an application data transfer rate if using an L2CAP

connection oriented channel, 2.1mb/s. Although this is all theoretically achievable, actual payload

normally embeds other protocol data such as the RFCOMM protocol, used by many profiles.

As shown is previous sections the RFCOMM Protocol, adapted from TS 07.10, was developed

to support virtual serial port. RFCOMM communications are divided into packets, having the

format shown in Fig. 4.45.

Figure 4.45: RFCOMM Frame Structure

As dictated in RFCOMM Specification v1.2 [4], the default allowed frame size is 127 bytes

and supporting an interval from 23 to 32767.

Experiences made by manufacturers such as Texas Instruments have been made with the pur-

pose of testing their hardware. A test was performed using the Serial Port Profile in order to

communicate data between an embedded Bluetooth module to a PC [28]. The maximum achieved

throughput was 675kbit/s, using a UART bit rate of 921kbit/s.

Although this data rate was achieved by Texas’ specific hardware, not all implementation are

required to perform as well, as compliance requirements are much lower and SPP is intended

to be a profile to support legacy applications, SPP was not developed in order to achieve a high

throughput.

"This profile requires support for one-slot packets only. This means that this pro-

file ensures that data rates up to 128 kbit/s can be used. Support for higher rates is

optional."

4.11.2 Bluetooth Low Energy

In Bluetooth Low Energy, communications are also performed in a master/slave schema and hap-

pen within connection intervals. The start of a connection interval is referred to as an anchor point,

where it is expected for the master to send a starting packet, that may not contain a payload, to the

64 Bluetooth Technology

slave. This marks the start of the connection interval, after this point the master listens to a reply

by the slave. Depending on the configured slave latency, the slave may or may not be required to

reply with a packet. The connection interval continues until one of the devices signals that it does

not have more data to send. In between packets from the master and the slave there is a required

window of 150µs, known as the inter-frame space (T_IFS), where no device may transmit.

Figure 4.46: Connection Interval Illustration

Summarizing Exploring Bluetooth 5 - How Fast Can It Be? [29], packets are different for

Bluetooth v4.0/v4.1 and v4.2. As seen in Fig. 4.48, the length field in Bluetooth v4.2 is a byte

long, while for v4.0/v4.1 is just 5 bits long.

Also, referring to Exploring Bluetooth 5 - How Fast Can It Be?, one can understand the

definition of throughput as:

T hroughput =
payload
period

In a Bluetooth Low Energy connection even if application data is only being sent from slave

to master, the master still has to send packets to the slave in order to control piconet traffic. As

such, optimal throughput can be calculated for each of the different specifications:

• In Bluetooth v4.0/v4.1 the maximum permited L2CAP payload size is 27 bytes, being that

the total packet size will be:

DataPacketSize=Preamble+AccessAddress+PayloadHeader+Payload+Mic+CRC = 41bytes

NULLPacketSize = Preamble+AccessAddress+PayloadHeader+CRC = 10bytes

Transmission the biggest packet results in 328µs of transmission time. As the master polls

slaves with NULL packets, and these do not contain any payload or MIC fields, total trans-

mission time will be 80µs.

With this in mind, the total period for transmission and reception would be:

TotalPeriod = (80+150+328+150) = 708µs

4.11 Throughput Considerations 65

Figure 4.47: Bluetooth v4.0/v4.1 packet format

Figure 4.48: Bluetooth v4.2 packet format

Calculating maximum throughput for this connection would result in:

T hroughput =
27×8

708
×106 = 305,084kbit/s

However this is the throughput for the data sent over the Link Layer. As applications

normally use GATT/ATT, additional overhead as to be taken into account. As this article

calculates[30], throughput for applications using GATT is affected by 4 additional L2CAP

bytes and 3 ATT protocol bytes, in the case of a notification. It is also stated that application

throughput if using GATT and a 7,5ms connection interval is approximately 236,7 kbit/s,

however implementations of different Bluetooth Controllers and Stacks sometimes impose

limits to the number of packets being sent during a connection event.

• For Bluetooth v4.2, if using Data Length Extension, the payload field length can be negoti-

ated up to 251 bytes. This results in a maximum transmission time of 2120 µs and therefore

the transmission/reception period increases to 2500µs. Maximum Link Layer throughput is

then equal to 803 kbit/s.

• Regarding Bluetooth 5 and using the LE 2M physical layer, packets are transmitted at double

the rate, although the interframe space remains the same, 150 µs . With this in mind,

66 Bluetooth Technology

maximum throughput can be calculated as:

T hroughput =
251×8

(40+150+1060+150)µs
×106 = 1,4mb/s

[29]

One important consideration is that throughput varies with the connection interval as. As

shown in the previously mentioned article [30], we can observe the throughput in function of the

connection interval, suggesting that a lower connection interval allows for higher throughput. At

Apple’s World Worldwide Developers Conference (WWDC) 2017, during the What ’ s New in

Core Bluetooth Best practices [31] presentation about the Core Bluetooth API, a recommendation

was made to use a 15ms connection interval in order to maximize throughput .

Figure 4.49: Application throughput in function of the connection interval

Summarizing, a graphic of BLE’s throughput regarding features and different versions of the

Bluetooth specification can be seen in Fig. 4.50.

4.12 Summary

In the past chapter, an more detailed view about the protocols used in Bluetooth Classic and BLE

have been discussed, as well as the most important features regarding security, throughput and

their characteristics. While Bluetooth Classic supports higher data rates, including more logical

transports and supporting two network topologies, Bluetooth Low Energy aims at the requirements

of small battery powered devices. Throughput was not a primary concern when first developing

BLE but, as the technology evolved more effort has been make in order to enhance bandwidth.

The influence of the connection parameters, such as the connection interval and packet length

was discussed. A lower connection interval allows for bigger throughput partly due to the fact that

4.12 Summary 67

Figure 4.50: BLE Throughput Chart
[29]

most stack implementation limit the number of notifications per connection event. The difference

that the Link Layer packet length has regarding throughput was also shown, demonstrating that

the Data Length Extension feature introduced in Bluetooth v4.2 allowed for an increase of over

two fold of throughput when using the 1M PHY, and over 4 times when using the 2M PHY. The

maximum theoretical data rates for Bluetooth Classic, LE 1M and 2M are, respectively, 2,1 mb/s,

803 kbit/s and 1,4 mb/s.

68 Bluetooth Technology

Chapter 5

Communications for Prosthesis fitting

In this chapter a series of practical experiments will be described, first explaining the theoretical

concepts that lie behind the implementation followed by a discussion.

Various test were carried out, using a Bluegiga WT12 Bluetooth v2.1+EDR module, a Mi-

crochip BM78 (Bluetooth v3.0 with EDR) module, and two other Bluetooth Low Energy SoCs,

the ESP32 and the CC2640R2. In order to test relative throughput, two different versions of the

iPad and a Desktop PC were used. BR/EDR and BLE connections were analyzed, resorting to

Wireshark and an Ubertooth, and testing different modules in order to have information about

their performance.

Using the Ubertooth platform, only BLE connections were successfully captured, as captured

BR/EDR payloads are encrypted and no tool was found in order to decrypt them (Fig. 5.1). Con-

sequently, no traffic between the iPad and any of the Bluetooth Classic modules was successfully

captured.

An additional demonstration was performed, using the ESP32 communicating over WiFi to

a TCP server, in order to measure this system’s capabilities when resorting to WiFi for wireless

communication and provide a comparison whilst to tests performed with Bluetooth Classic and

Low Energy.

Figure 5.1: BR/EDR captured packet

69

70 Communications for Prosthesis fitting

5.1 Preliminary Experiments

The connection between the iPad and BM78 is only possible to capture if using expensive and pro-

fessional hardware, however, if connecting it to a GNU/Linux machine an insight into connection

parameters and features of the BM78 can be retrieved. BlueZ, the official Bluetooth stack used

by the Linux kernel, offers an interface that allows programs, such as Wireshark and Kismet, to

access the communications handled by the respective stack. Capturing the traffic between a PC

and the BM78 could provide some clarification as to what is the cause for the problems described

earlier, and therefore show if the Bluetooth module is indeed the source of the problem or if it is

related with iAP and the iOS kernel management.

Preliminary tests were performed with the BM78 and WT12 modules, connected to a PC,

in order to be able to analyze connection setup and Link Manager parameters. As the only main-

stream OS currently supporting Bluetooth Wireshark captures is GNU/Linux, the OS used in order

to perform these tests was Arch Linux (4.16.12-2-ck).

Tests were performed with a Linux desktop with Realtek’s RTL8820 WiFi/Bluetooth module,

resorting to a Python program that was specifically developed in order to communicate with the

tInterface, enabling it to receive data streamed from the device and evaluate throughput at the

application level.

Using Wireshark, it was possible to capture and analyze the connection between the two de-

vices. Packets were captured at the HCI level and consequently all of the communications between

the Bluetooth host and controller were accessible. In this way, two independent sources were used

to evaluate the connection throughput.

Figure 5.2: Python Program Output

5.1.1 Microchip BM78

The aim of this experiment, using the Bluetooth module currently present in the tInterface, was

to evaluate if the problems previously referred were indeed dependent on the Bluetooth module

itself. Connecting it to a Linux PC with an open-source Bluetooth stack, the access to logs,

documentation and support is more widely available than for closed source software. As such, the

initial connection setup was analyzed and, after that the throughput was evaluated resorting both

to the Python program and Wireshark. Three different tests were performed, using a sampling

period of 20, 15 and 10ms.

5.1 Preliminary Experiments 71

5.1.2 Connection Setup

Wireshark packet captures from tests performed have shown how the beginning of a connection

between the desktop PC and the BM78 module is done. At first the PC sends an HCI command to

the controller in order to create a connection (Fig. 5.3) and, after an event occurs reporting success,

the maximum number of slots is extended to 5 (Fig. 5.4). Following this, supported features are

exchanged and pairing and encryption procedures are completed. The master of the connection at

this point is the PC. After this, a request for the remote’s supported LMP is performed and after

that L2CAP features. Following this exchange an RFCOMM connection is created (Fig. 5.5) and

a Data Link Connection (DLC) is created and configured , resorting to the multiplexer control

connection (DLC 0) The remote’s SDP attributes are received, after the creation of an L2CAP

channel to the SDP service. At this point application data starts being sent over another channel

multiplexed over RFCOMM.

Figure 5.3: Initial Host connection request

Figure 5.4: Maximum slots per packet update

Figure 5.5: RFCOMM connection request

After the maximum slot negotiation and security procedures, the RFCOMM connection where

the application data will be transmitted is created. As defined in the RFCOMM specification, the

Data Link Connections are defined, with an acknowledgment timer of 0ms, a maximum number

of retransmissions of 0 (Fig. 5.6). This means that reliability of the connection is only provided

72 Communications for Prosthesis fitting

at lower levels of the stack, as no acknowledgment or retransmission is enabled in the RFCOMM

layer.

Figure 5.6: PC RFCOMM connection request

Figure 5.7: RFCOMM Channel 1 parameters

After this, an L2CAP channel is formed in order to read the WT12’s SDP records and, after-

wards, serial data starts being sent over DLC 1.

It is important to notice, at this point, that the reliability of communications is delegated by

the RFCOMM protocol to the lower layers, L2CAP and the Link Manager Protocol.

"Data frames do not require any response in the RFCOMM protocol, and are thus un-

acknowledged. Therefore, RFCOMM must require L2CAP to provide channels with

5.1 Preliminary Experiments 73

maximum reliability, to ensure that all frames are delivered in order, and without du-

plicates. Should an L2CAP channel fail to provide this, RFCOMM expects a link loss

notification, which should be handled by RFCOMM as described in Section 5.2.3."

Also, as RFCOMM specifications later than version 1.0B require that a credit based control

flow is to be used for communications with this protocol. The credit based flow control imposes

that for each message sent by a slave device, a credit has to be used and, if there are no more

remaining credits, no messages can be sent. Therefore, the master periodically sends a UIH frame

with conveying credits, enabling the slave to send data at the RFCOMM level (Fig. 5.8).

Figure 5.8: RFCOMM flow control

5.1.2.1 Results

Three tests were performed, lasting 1 minute and with different periods for the UART application

messages (tInterface sampling rate). In the following tables, results from the Python program and

Wireshark can be seen:

74 Communications for Prosthesis fitting

Period 20 ms 15 ms 10 ms

Achieved Tp. 69,22 kb/s 93,4 Kpbs 101,87 kb/s

Required Tp. 70,8 kb/s 94,4 kb/s 141,6 kb/s

Messages Lost 169 369 2244

Timestamp Gaps(Max) 280ms 405ms 460ms

Timestamp Gaps(Total) 3380ms 5535ms 22440ms

Table 5.1: Python Program Test Results (BM78)

Period 20 ms 15 ms 10 ms

Packets 6778 7923 16667

Avg. packets/s 96,373 113,535 259,536

Avg. packet size 90,852 102,499 61,357

Bytes 615792 812096 744029

Avg. bytes/s 8755,631 11637,223 15924

Avg mb/s 0,070 0,093 0,127

Table 5.2: Wireshark Results Summary (BM78)

Throughput graphics generated in Wireshark can also be consulted in Figs. 5.9, 5.10 and 5.11.

• Wireshark I/O Graph, test period 20ms (Bits/second):

Figure 5.9: BM78 Throughput test - 20 ms

• Wireshark I/O Graph, test period 15ms (Bits/second):

5.1 Preliminary Experiments 75

Figure 5.10: BM78 Throughput test - 15 ms

• Wireshark I/O Graph, test period 10ms (Bits/second):

Figure 5.11: BM78 Throughput test - 10 ms

As it is clear from the results, this module delivers an considerable amount of data with er-

rors to the application level and, analyzing the throughput graphics from Wireshark some erratic

behaviour can be seen, such as the spikes in the throughput and occasional moments where com-

munication ceases at the RFCOMM level. Tests were repeated several times and results some-

times were significantly worst than the ones shown above. The BM78, whilst operating at these

data rates, displays different behaviours when repeating tests several times, given this, it can be

observed that this module indeed does not support, in a stable manner, these data rates. In the

following images (Figs. 5.12,5.13,5.14), the different behaviour for tests performed with the same

10ms application message period can be seen.

Figure 5.12: BM78 Throughput test, 10ms

76 Communications for Prosthesis fitting

Figure 5.13: BM78 Throughput test, 10ms

Figure 5.14: BM78 Throughput test, 10ms

The lack of control over the BM78’s behaviour was the defining point at which it was decided

that a deeper understanding of the Bluetooth specification was required. The many messages con-

taining errors, which are discarded at the application level, are also a problem, as implementing

a higher layer acknowledge repeat-request (ARQ) scheme would impact throughput even further.

As the flow control between L2CAP and the RFCOMM protocols is not defined in any of the spec-

ifications and is implementation-specific, no assumptions can be made as the BM78’s implementa-

tion details are not known. This module is not only unable to provide the required throughput as it

is to implement other solutions that would require more control of the stack. Being very restrictive

in terms of usage and configuration, the BM78 is therefore shown as not viable for fulfilling this

application’s specific needs.

5.1.3 WT12

Without prior knowledge about the limitations imposed by Apple’s iAP, the first attempt at solving

this problem was finding a Bluetooth v2.1+EDR module that would allow precise control of its

stack parameters and configurations. Most Bluetooth modules in the market reside under two

categories, either a module that already implements a Bluetooth Core Controller and Host in one

package and provides a simple interface for data transport (using SPP or a similar profile) or, a

module that only implements a Bluetooth Controller and providing an interface to the Host. As

the purpose of this preliminary experiment is to test the possibility of using BR/EDR as a solution,

a module which contains both the Bluetooth Core Controller and Host was chosen. Although only

the Serial Port Profile would be necessary in order to provide an interface for data transport, the

chosen module, Bluegiga’s WT12 implements 12 different profiles, such as iAP, HDP and HID.

5.1 Preliminary Experiments 77

In order to provide a good interface for the user, the WT12 runs iWrap, a proprietary Bluetooth

stack, which is controlled via UART commands and provides a straight-forward way to enable and

configure the different available profiles.

Substituting the BM78 by the WT12 Bluetooth module, a small portion of code was produced

to properly configure the WT12 module to select the SPP profile and appropriate baud rate. An

Atmel SAML21J18 Xplained Pro Board and a WT12 breakout board were used in order to perform

testing. The system was mounted using the same configuration as the previous one, a UART bus

between the Bluetooth module and the microcontroller.

Six tests were conducted, each with a different period for the task running in the SAM mi-

crocontroller, with the duration of one minute. In the next paragraphs, test results produced with

Wireshark and the program written in Python will be presented. A sample output of the Python

program can be seen in Fig. 5.2.

5.1.3.1 Results

In the following table, 5.3, a comparison of the required values of throughput for the different

sampling periods and the test results.

Period 20 ms 15 ms 10 ms 5 ms 2,5 ms Continuously

Achieved Tp. 70,22 kb/s 93,4 kb/s 140,29 kb/s 280,46 kb/s 559,07 kb/s 627,7 kb/s

Required Tp. 70,8 kb/s 94,4 kb/s 141,6 kb/s 283,2 kb/s 566,4 kb/s 921,6 kb/s

Msgs. Lost 0 0 0 1 113 787

Timestamp Gap(Max) 0 0ms 0ms 5ms 22,5ms 50ms

Table 5.3: Python Program Test Results (WT12)

Period 20 ms 15 ms 10 ms 5 ms 2.5 ms Continuously

Packets 6778 7923 9524 14389 18063 1852

Avg. packets/s 96,373 113,535 136,917 209,312 233,301 110,136

Avg. packet size 90,852 102,499 124,823 159,810 244,084 277,682

Bytes 615792 812096 1188811 2299504 4408890 514267

Avg. bytes/s 8755,631 11637,223 17090,352 33450,058 56945,014 30582,769

Avg mb/s 0,070 0,093 0,137 0,268 0,456 0,245

Table 5.4: Wireshark Results Summary (WT12)

• Wireshark I/O Graph, test period 20ms (Bits/second):

78 Communications for Prosthesis fitting

Figure 5.15: WT12 Throughput test - 20 ms

• Wireshark I/O Graph, test period 15ms (Bits/second):

Figure 5.16: WT12 Throughput test - 15 ms

• Wireshark I/O Graph, test period 10ms (Bits/second):

Figure 5.17: WT12 Throughput test - 10 ms

• Wireshark I/O Graph, test period 5ms (Bits/second):

5.1 Preliminary Experiments 79

Figure 5.18: WT12 Throughput test - 5 ms

• Wireshark I/O Graph, test period 2,5ms (Bits/second):

Figure 5.19: WT12 Throughput test - 2,5 ms

• Wireshark I/O Graph, continuous test (Bits/second):

Figure 5.20: WT12 Throughput test - Continuous

It is important to refer that when performing tests sending continuously UART data, the Blue-

tooth module after some seconds would become unresponsive, not being able to perform any

further actions such as send/receiving data and disconnecting/connecting. The values shown in

Table 5.4 are referent to a 10 second test.

80 Communications for Prosthesis fitting

With this module, a reliable connection with sufficient throughput was achieved when con-

nected to a PC, providing a suitable alternative for BM78. The overall performance of this module,

if using a PC, is more than required to achieve throughput objectives, supporting up to 600 kb/s

using the Serial Port Profile and consequently sending data resorting to RFCOMM. Throughput

would possibly be even higher if using directly an L2CAP connection oriented channel to convey

application data.

However, after successful tests using a PC, the respective documentation regarding using iAP

with the WT12, it was discovered that this solution would not be possible, as Apple’s protocol

introduces severe throughput restraints to communications, and would never allow for the require-

ments to be achieved. Therefore discarding this module as a solution for this problem, albeit it’s

far superior performance when compared with the BM78.

5.2 Bluetooth Low Energy

In order evaluate the proposed BLE solution two different modules were chosen, in order to also

provide a power consumption and performance comparison. The modules tested were Espressif’s

ESP32, and Texas Intruments CC2640R2, using common development boards, ESP32-WROOM

and CC2640R2LAUNCHXL, respectively. Code was developed for each module, in order to

provide a UART tunnel from Atmel’s SAM microcontroller and an iPad, simulating Adapttech’s

current tInterface system. Tests were also performed with two different versions of the iPad, a

2017 iPad Air 2 and an iPad 2018 were used. In order to capture traffic and characterize all of

the Bluetooth devices involved an Ubertooth One platform was used. A brief description of the

generic system used in BLE tests is shown in Fig. 5.21.

Figure 5.21: System Diagram

As using an Apple iPad is a requirement for this system, all further tests were performed ac-

cordingly, as there is no extra hardware required in order to communicate with Apple’s equipment

using BLE. However two different iPads were used. This is because although both devices are

advertised as having Bluetooth v4.2 compliant hardware, their supported features are different, as

the older iPad Air 2 does not support Data Length Extension and a few other features, seen in Fig.

5.22. The maximum supported ATT MTU for the iPad Air 2 is also 185 bytes, whilst the newer

iPad 2018 has shown support up to 527 bytes from data collected during tests.

5.2 Bluetooth Low Energy 81

Figure 5.22: Ipad Air 2 Features

As GATT data transfers using notifications imposes less overhead and latency, i.e. only 3 bytes

and requiring no response, a characteristic with the notifying property will be used to transfer data.

As such, the ATT MTU is an important parameter in order to reduce overhead as it directly affects

communication overhead. The best case for this specific application is an L2CAP MTU bigger

than the maximum length of an application message, 177 bytes, plus 3 bytes counting with the ATT

header. This is because if the ATT MTU is smaller than the maximum message of the application,

additional notifications will have to be sent in order to transfer the entire application message.

With the iPad Air 2 only supporting the default 27 byte Link Layer payload size, bigger L2CAP

PDUs will consequently suffer segmentation at the Link Layer as illustrated in Fig. 5.23

Figure 5.23: Application Data segmentation

With encapsulation, in order to transfer 177 bytes of application data, an L2CAP PDU with

184 bytes will be submitted to the Link Layer. 7 packets will have to be sent from slave to master

82 Communications for Prosthesis fitting

although the last packet has a shorter length.

The calculation of necessary LL packets:

Np =

⌈
184
27

⌉
= 7

A calculation of the required transmission of time for a notification can be defined as:

6× (80+150+328+150)µs+(80+150+240+150)µs = 4868µs

The 150 µs parcels are related to the interframe space required in between each packet sent

either by the master or the slave. The other parcels are the respective transmission times for the

packets sent. The 80 µs is the time required to transmit a NULL packet, the 328 µs is the time

required for the transmission of a message with 27 payload bytes and the 240 µs for the remaining

packet.

Using a connection interval of 15ms, the lowest value the iPad accepts, up to 3 notifications

could be sent per connection event, enabling a maximum sampling frequency for the tInterface of

200 Hz, a packet diagram is shown in Fig. 5.23, illustrating how a notification is sent.

T p =
Noti f ications×Data
ConnectionInterval

T p =
3×177×8

15ms
= 283,2kb/s

For the iPad 2018, as DLE is supported, maximum application throughput is obviously differ-

ent. The transmission time for a notification is much smaller, as only a single packet is required to

send a complete application message:

Tn = (80+150+1552+150)µs = 1932µs

This would allow, in a best case scenario, for 7 ATT notifications to delivered to the iPad.

Maximum throughput can be calculated as:

T pDLE =
7×177×8

15ms
= 660,8kb/s

5.2.1 ESP32

Using example code provided with ESP-IDF, the development framework provided by the respec-

tive manufacturer, adaptations were made in order to be able to configure Apple’s recommended

15 ms connection interval and 0 slave latency. The primary example used, spp server , is a GATT

server composed of one service, with 3 characteristics. A packet parser was also added to the ex-

ample code, in order to identify application messages and submit them unsegmented to the GATT

server. The UART driver on the ESP32 was also altered to use a baud rate 921600 bps, in order to

reduce UART communication time.

5.2 Bluetooth Low Energy 83

When connecting, both devices a perform series of procedures. As observed in Fig. 5.24,

initiation of connections happens when the initiator device (iPad) sends a request to the ESP32,

CONNECT_REQ with the required parameters in order to setup a connection.

Figure 5.24: Packet Capture Timestamps

After this Link Layer versions are exchanged between devices with the two devices already

having formed a piconet. In parallel the ESP32 sends a LENGTH_REQ, in order to request a Link

Layer payload size of 251 bytes, however the response from the iPad Air 2 is a LL_UNKNOWN_REQ

keeping the connection with a default maximum Link Layer Payload of 27 bytes, as seen in Fig.

5.25.

Figure 5.25: LL_LENGHT_REQ Failure

With the other iPad tablet, the response confirmed the maximum Link Layer payload size in-

crease to 251 bytes. The following procedures performed include a feature exchange, an update on

connection parameters to a connection interval of 15ms(Fig. 5.26) and a L2CAP MTU exchange

between both devices (Fig. 5.27).

Figure 5.26: Link Layer Parameter Update

84 Communications for Prosthesis fitting

Figure 5.27: MTU Exchange

Logs from the captures performed during the test with the Ubertooth show that this platform

was able to record most of the interaction between the iPad and ESP32 devices. However, an

erratic behaviour on Wireshark’s timestamps could be seen, skipping several milliseconds at a

time as shown in Fig. 5.28. In a detailed inspection, it was observed that messages received using

the LightBlue iOS app were missing from the Ubertooth packet log. As this application did not

provide any suitable data about connection throughput and the Ubertooth wasn’t able to capture

every packet in the connection, an iOS application with a simple interface was developed in order

to properly evaluate throughput. The application was created, based of Adafruit’s Basic Chat

open-source application written in Swift3 (Fig .5.29). Throughput values shown in the following

table have been calculated resorting to this application.

Figure 5.28: Packet Capture Timestamps

As shown in Table 5.5, the throughput values achieved can be seen relatively to the system’s

sampling period. This test was performed with a connection interval of 15ms and a slave latency

of 0ms and for both iPads, with a duration of 1 minute.

Period Required Throughput iPad Air 2 (Avg) iPad Air 2 (Max) iPad 2018 (Avg) iPad 2018 (Max)

20 ms 70,800 kb/s 70,800 kb/s 71,200 kb/s 68,200 kb/s 70,8 kb/s

15 ms 94,3056 kb/s 94,3056 kb/s 95,410 kb/s 90,88 kb/s 96,288 kb/s

10 ms 141,600 kb/s 94,3056 kb/s 95,410 kb/s 133,53 kb/s 143,016 kb/s

5 ms 283200 bps N/A N/A N/A N/A

Table 5.5: Achieved Results

5.2 Bluetooth Low Energy 85

Figure 5.29: iOS Test application

In the following graphs, the throughput data is shown for the different tablets and sampling

periods. As it was not of interest, within the topic of this dissertation, to make a graphic in

the application itself, data shown is plotted from data logged in XCode’s console, the Integrated

Development Environment (IDE) used for development.

• Throughput Graph, test period 20ms (Bits/second):

Figure 5.30: ESP32 Throughput test - 20 ms

86 Communications for Prosthesis fitting

• Throughput Graph, test period 15ms (Bits/second):

Figure 5.31: ESP32 Throughput test - 15 ms

• Throughput Graph, test period 10ms (Bits/second):

Figure 5.32: ESP32 Throughput test - 10 ms

• Throughput Graph, test period 5ms (Bits/second):

5.2 Bluetooth Low Energy 87

Figure 5.33: ESP32 Throughput test - 5 ms

As seen in the figures and respective tables, there is a discrepancy between the required through-

put and the measured. This might happen because of unknown characteristics in the iOS app

scheduling, as there is a periodic 1 second task measuring throughput. Although this happen, it

was possible to verify that in cases where the difference is small, 2 or 3 kb/s, no messages were

lost, and therefore the reason as to why that happens remains unknown.

While performing some tests with the iPad Air 2 the ESP32 would often freeze in more de-

manding situations. As such, there is no information in regarding this tablet for the 10ms and 5ms

tests.

Measured using the iPad application developed for this purpose, the maximum achieved aver-

age throughput using an iPad Air 2 was 94 kb/s . However, this value is much lower than what is

theoretically achievable, as often specific Bluetooth stacks impose a limit on the number of pack-

ets and/or notifications per connection event, due to implementation. Another cause for this might

also be related with the code produced and with task concurrency in the ESP32.

In the traffic analysis, it can be noticed that notifications are divided into 8 L2CAP fragments,

when communicating with the iPad Air 2. As the master, the iPad controls the piconet. By

sending packets to a slave during a connection event, it enables the slave to respond subsequently,

transferring data from slave to master. If no packets are sent by the master, the slave isn’t permitted

to transmit packets.

From the traffic analysis performed, it can be seen that each notification is divided into 8

L2CAP fragments, 7 with a LL payload of 26 and a remaining packet with 2 bytes of payload,

totaling the 184 bytes of the original L2CAP PDU. Observing Ubertooth packet logs, it can be

seen that the first packets are quickly transmitted, as the master is rapidly sending packets and

enabling the ESP32 to transmit data. However, normally after 6 packets are sent, the master stays

88 Communications for Prosthesis fitting

silent and only returns to communicate with the slave in the end of the connection event (Fig.

5.34). However, often there are discrepancies in timestamps provided in the packet, showing some

lack of reliability of the Ubertooth for higher data rate connections.

Figure 5.34: Packet Capture with iPad Air 2

With the iPad version released in 2018, supporting Data Length Extension, reliable communi-

cation was achieved with a sampling frequency of 100Hz and a throughput of 141kb/s. A maxi-

mum throughput of 263,4 kb/s also was achieved using a sampling frequency of 200 Hz, although

many application messages were not received and therefore does not permit the tInterface device

to reliably transmit application data at this rate. As the Ubertooth firmware does not appear to be

able to capture Link Layer packets with more than 41 bytes, and only NULL packets were captured

when attempting to monitor traffic, no further traffic analysis was performed for this tablet.

5.2.2 Texas Instruments CC2640R2

The ESP32’s development environment were found to be still in development, and not all BLE

features available in the hardware are implemented at a firmware level. Also, as support material

was found to be less than expected, a search was performed to find a better supported platform.

The platform chosen for further tests was TI’s CC2640R2.

Two types of tests were performed with this module, first connecting to an iPad and testing

throughput with Bluetooth v4.2 with and without DLE such as for the ESP32.

The setup of the tests is the same as for the previous module, and 5 different tests periods were

used. The code produced was based in a example provided with the default SDK, spp_ble_server,

and several modifications were made in order to enhance its application data transmission rate.

In the last test performed, the module would start to behave erratically after some seconds, not

being able to recover. This might be a cause of implementation, or hardware constraints such as

memory.

As the connection setup is similar to the one with the ESP32, it will not be discussed.

The following table summarizes the throughput values obtained when testing. A 15ms con-

nection interval and 0 slave latency were the used parameters in the connection.

5.2 Bluetooth Low Energy 89

Period Required Throughput iPad Air 2 (Avg) iPad Air 2 (Max) iPad 2018 (Avg) iPad 2018 (Max)

20 ms 70,800 kb/s 70,800 kb/s 71,200 kb/s 68,91 kb/s 72,216 kb/s

15 ms 943,056 kb/s 94,3056 kb/s 95,410 kb/s 91,12 kb/s 94,872 kb/s

10 ms 141,600 kb/s 94,3056 kb/s 95,410 kb/s 135,16 kb/s 144,432 kb/s

5 ms 283,200 kb/s N/A N/A 244,75 kb/s 267,624 kb/s

2,5 ms 566,400 kb/s N/A N/A N/A N/A

Table 5.6: Achieved Results

• Throughput Graph, test period 20ms (Bits/second):

Figure 5.35: CC2640R2 Throughput test - 20 ms

• Throughput Graph, test period 15ms (Bits/second):

90 Communications for Prosthesis fitting

Figure 5.36: CC2640R2 Throughput test - 15 ms

• Throughput Graph, test period 10ms (Bits/second):

Figure 5.37: CC2640R2 Throughput test - 10 ms

• Throughput Graph, test period 5ms (Bits/second):

5.2 Bluetooth Low Energy 91

Figure 5.38: CC2640R2 Throughput test - 5 ms

• Throughput Graph, test period 2,5ms (Bits/second):

Figure 5.39: CC2640R2 Throughput test - 2,5 ms

The tests performed revealed a superior performance with this module, as the CC2640R2 was able

to fulfill throughput requirements in the 20ms and 15ms tests for both iPads. When using the iPad

2018 in the 5ms test, the CC2640R2 was able to achieve a maximum throughput of 267,624 kb/s,

very close to the required throughput of 283,200 kb/s. The existing gap between the required and

92 Communications for Prosthesis fitting

measured throughput values occur because the available L2CAP buffer is full, as not all messages

submitted sent immediately.

When using a period of 2,5 ms for application messages, communication was not possible, as

the connection halted some seconds after its start. This is not related to the Bluetooth protocol,

but with the hardware itself or code implementation. However, as the tests show, a maximum

throughput of 267;62 kb/s was achieved using the CC2640R2, making this SoC a viable solution

for the system’s throughput problems.

5.3 WiFi

As the ESP32 already has peripherals supporting WiFi, a test was also performed in order to

evaluate this module’s performance using another wireless technology.

After some research, a network bandwidth analysis tool, iPerf, was found and used in order to

test this SoC’s performance using TCP sockets. In the microcontroller, an example provided with

the default framework, ESP-IDF, was used in order to send data to the TCP server running in a

desktop PC. A Hauwei HG8247H router was used as a WiFi Access Point.

The output on both programs consoles can be seen in Figs. 5.40 and 5.41.

Figure 5.40: ESP32 iPerf output

5.4 Power Consumption 93

Figure 5.41: PC iPerf output

Figure 5.42: ESP32 Wifi throughput graph

The test had a duration of one minute, achieving a maximum throughput of 19,66 mb/s and an

average of 14,56 mb/s (Fig 5.42). As expected, a much higher throughput was achieved using the

ESP32 and WiFi, as baseband data rates are on another scale than that of Bluetooth.

5.4 Power Consumption

As the tInterface is a battery powered wearable device, the power consumption is also an important

factor to take into account when considering different wireless technologies and systems. The

modules/SoCs that were analyzed previously, apart from the BM78, were also tested in terms of

power consumption.

94 Communications for Prosthesis fitting

Using an Hantek 365 F data-logger/multimeter (Fig. 5.43), data relative to the average current

which is being consumed by each module could be determined. An important note is that, although

tests were performed using development kits and breakout boards, the consumption may be higher,

as some of the boards used do not provide an interface to measure only the current drawn by the

modules/SoCs, but the whole system, which may include other components that have influence on

the measurements.

Figure 5.43: Hantek 365 F

Tests for power consumption were performed for the 3 devices, when not connected but in an

advertising/waiting state, when connected, and in real-time operation. All modules were evaluated

using an application sampling period of 10ms, in order to provide an equal comparison base.

Module/SoC In Standy-by Connected In Operation

WT12 85,8 mW 155,1 mW 201,3 mW

ESP32 (BLE) 369.6 mW 385,4 mW 405,9 mW

ESP32 (WiFi) 608.5 mW 790,0 mW 950,2 mW

CC2640R2 6,435 mW 41,25 mW 49,5 mW
Table 5.7: Power Consumption Test Results

As it can be seen, the device that consumes overall less power if by far the TI CC2640R2,

followed by the BM78 and then the ESP32. Even if using BLE with the ESP32, power consump-

tion is still much higher than of its counterparts, which might be due to the numerous array of

peripherals present in the ESP32, it’s clock rate of up to 240MHz and the additional ICs that can

be found in the development board used. When comparing both tests performed with the ESP32,

a significantly higher consumption occurred when using WiFi, although power consumption using

5.5 Summary 95

BLE is also relatively high. The CC2640R2, even when operating at a relatively high throughput,

consumes very little power, providing a very attractive solution.

5.5 Summary

The results obtained when testing the BM78 module, point out that it does not perform in a way

that is viable for the product’s requirements. Its behaviour is not stable, as it performs differently

when repeating the same tests in the same conditions. This is the reason why an overview of the

Bluetooth protocol was required, and a search for other modules and SoCs. Also, as RFCOMM

DLCs rely on lower layers for error correction, segmentation and reassembly, and the BM78 fails

to provide reliability, performance is reduced.

None of these mechanisms are provided by RFCOMM and, furthermore, the UIH frames are

supposed to be employed in cases were the data integrity is less important than its actual delivery,

as stated in TS 07.10 . With these characteristics it is only natural that occasional errors appear in

communications with this module. Even more, as the implementation of actual LMP and L2CAP

managers in the BM78 is unknown and of closed source, the causes for missing/incomplete mes-

sages are very hard to pinpoint. Given this, a conclusion is reached that the BM78 is not an

appropriate solution for this specific application.

"UIH is used where the integrity of the information being transferred is of lesser

importance than its delivery to the correct DLCI. For the UIH frame, the FCS shall be

calculated over only the address, control and length fields." [4]

Using the WT12 Bluetooth Classic module connected to a PC, tests have shown that Bluetooth

Classic is still a viable candidate for use in high data rate PANs. However, when using iAP and

Apple hardware, various constraints arise, affecting further development. As it is an imperative

requirement to use an iPad to communicate with the tInterface, BLE presented a more appealing

perspective as implementation does not require additional hardware or entering any specific Apple

program such as MFi.

With the tests performed the ESP32 and TI’s CC2640R2, the throughput achieved was some-

how similar and, although the CC2640R2 had better overall performance and power consumption,

requirements were achieved satisfactory with both Bluetooth modules. After implementation and

testing this solution was validated as being able to provide a real time message each 20ms or 50

Hz and also 15ms, or 66,7Hz whilst testing with the iPad Air 2. When using the Data Length Ex-

tension feature with the iPad 2018, the maximum allowed sampling frequency for the system was

extended to 100Hz, allowing a significant performance increase. It is important to notice that the

maximum throughput for the application is not equal to the link’s throughput, as the application

is required to use a set of predetermined sampling frequencies, as required by the gait analysis

algorithms used. The reason of the difference between the theoretical and practical maximum

throughput values with Bluetooth Low Energy can be directly linked to the iPad, as it assumes the

master role in the connection and controls the timming of transmission slots for slaves.

96 Communications for Prosthesis fitting

Results from the tests conducted with the ESP32 module using WiFi have shown that it is

much easier to achieve higher throughput whilst using this technology. The required throughput

was achieved using TCP sockets, although with UDP results could possibly be higher, this way

the use of a reliable connection based communication protocol already delivers application data

unsegmented and in order. However, power consumption is much higher than when using BR/EDR

or BLE, which would be a serious disadvantage for the product, if implemented.

5.5.1 Ubertooth

The Ubertooth One is an open-source and open-hardware device enabling Bluetooth traffic anal-

ysis, packet injection and a few other features. The firmware provided by the project enables the

user to promptly use the device with packet analyzing software such as Wireshark or Kismet. For

BLE traffic analysis, the ubertooth-btle tool starts by listening to advertising packets, and follows

device connections upon a connection request. After capturing packets, these are transmitted via

a USB Virtual Serial Port to a driver on the host PC which then dumps them to a FIFO queue.

The traffic analysis software then reads the FIFO file and processes packets, enabling the user to

graphically interpret and decode communications.

As the development of this hardware is not directly paid to its developers, and although the

platform behave extremely well for its price tag, some limitations were found when using the

device to monitor throughput. Evidently some packets were missed, either because of queuing or

enviromental factors, that could be seen delivered to the application but not found in the capture

log. This provoked further research in order to clarify if it was possible to, with this hardware,

capture and evaluate effectively LE connections throughput. Another limitation of this hardware is

that for a 2Mb/s PHY layer such has the one present in BT v2.1, there is no possibility of sniffing,

as the radio front end present in the Ubertooth One (Texas Instruments CC2400) does not enable

for demodulation of 4GFSK. This limits the Ubertooth sniffing to Bluetooth LE until v4.2 and

Basic Rate connections only.

5.5.2 Other Considerations

"ESP32 integrates Wi-Fi (2.4 GHz band) and Bluetooth 4.2 solutions on a single chip,

along with dual high performance cores, Ultra Low Power co-processor and several

peripherals. Powered by 40 nm technology, ESP32 provides a robust, highly inte-

grated platform to meet the continuous demands for efficient power usage, compact

design, security, high performance, and reliability."

This microcontroller is produced by Espressif, being packed with features such as Wi-Fi, Blue-

tooth Dual Mode (LE and BR/EDR), and supported by the ESP-IDF (IoT Development Frame-

work). Implementation of BLE 4.2 firmware to substitute the previous module required some

reading, configuration and research in order to achieve this solution. The ESP-IDF is a framework

which makes use of a specific FreeRTOS port for the ESP32, a widely supported and popular

RTOS, managing all of the task processing, scheduling and execution on the main CPU. Being a

5.5 Summary 97

fairly simple and intuitive real time operating system, most of the time was applied to understand-

ing the Bluedroid Stack, the default stack used by ESP-IDF and Android v4.2+ platforms, and the

API provided to interact with it. Although other Bluetooth stacks may be ported and adapted to

use with the ESP32, such as the BTstack developed by Swiss company BlueKitchen, no further

research was performed. As examples provided are not feature rich, some work was carried out in

order to implement GAP and GATT services, resorting to various examples.

The market availability of this hardware is increasingly bigger, as the ESP32 becomes a more

widespread microcontroller. However large order purchases are not available in semiconductor

distributors such as Mouser Electronics or Farnell, thus being a decisive factor when adopting this

hardware for mass production product. Although every tool tested is correctly working, Espressif

proves to have a specific methodology in developing embedded solutions, firstly developing the

hardware, launching it into the market and developing the framework while already on the market.

With this approach some problems arise, such as security implementation in BLE devices, which

doesn’t fully support every pairing mechanism. Some of these particularities make the ESP32 an

attractive solution for easy development, but not appropriate for every kind of product, especially

for products/companies requiring extensive support from manufacturers.

From the experience gained developing a BLE solution with the CC2640R2, it can be said that

TI provides engineers with many different resources. Extensive support, guides and tutorials are

easily available and a fully configured IDE is also provided. The SoC itself is sold in discrete units

without an antenna or crystal oscillators, however different manufactures produce modules includ-

ing this IC such as Laird’s Sable-X-R2 module, easily accessible. Texas Instruments also provides

its own RTOS, the TI-RTOS, which enables for a good environment in order to develop embedded

solutions, an array of drivers and code examples are also available and well documented, making

this an attractive platform.

One great feature about the CC2640R2 is that it is composed of several processing units, and

its RF core is able to support different radio specifications such as ZigBee, Bluetooth or other pro-

prietary protocols. Also, TI already offers a proprietary pre-certified Bluetooth 5 stack, enabling

products were this hardware is present, to use the latest version of the Bluetooth Specification and

benefit of its advantages.

98 Communications for Prosthesis fitting

Chapter 6

Wireless Inertial Motion Unit

After achieving initial requirements, a secondary requirement for the practical work developed

in this dissertation was taken into account, which was to develop a second IMU (Inertial Motion

Unit) system communicating wirelessly with the main system (Wearable/iPad). The purpose of

this second IMU is to relay more data about lower limb movement in order to develop machine

learning algorithms to characterize and analyze a patient’s gait. The current solution employed

is to have a cable connected from the wearable device into the second IMU (Fig. 6.1)which has

some disadvantages in terms of usability.

Figure 6.1: tInterface

This secondary requirement aims for the replacement of this cable, effectively creating an-

other, independent, device. The solution, regardless of technology implementation, should be as

transparent to the user as possible and have the least amount of impact in usability of the product

as possible.

99

100 Wireless Inertial Motion Unit

Taking this into consideration an analysis into this other requirement was performed, in order

to open a path to future work around this topic.

6.1 Analysis

Prior to any implementation, a review of possible solutions was performed, in order to produce a

device that meets all of the defined requirements. First a qualitative analysis of each technology

will be performed, regarding several key parameters and, secondly, a technical revision of the

solution to implement will be performed.

6.1.1 Requirements

In order to add this new device into the system, several requirements have to be met:

• To support a payload size of 22 bytes, 18 for IMU data and a 4 byte timestamp.

• To be able to have a battery duration and sampling frequency equal or greater than the

tInterface.

• Have a small form factor and to be lightweight.

6.1.2 Technology

There are various technological solutions that could be used in this product in order to satisfy func-

tional requirements, such as Bluetooth, Zigbee, ANT or even other proprietary radio specification.

In order to evaluate which technology fits best this product, some facts have to be taken into ac-

count. The implementation and time to market are a recurring theme in discussion on a corporate

environment, as such, choosing a technology is not only a matter of technical importance, as it

impacts also the company’s core business.

A qualitative table is presented next, in order to better understand possible advantages and

disadvantages of each technological solution.

Technology Power Consumption Throughput Supported by iPad Implementation Difficulty in current System / Reason
BLE Low <1mb/s Yes Easy - Already supported in current version
BR/EDR Medium >1mb/s Yes Medium - Requires extra hardware
ZigBee Low <250kb/s No Difficult - Requires new Hardware and Knowledge Base
ANT Low <60kb/s Yes, with external module Difficult - Requires new Hardware and Knowledge Base
WiFi High >10mb/s Yes Easy - Already supported in future version

Table 6.1: Wireless technology comparison

All of the studied technologies meet throughput requirements, this will not be the defining

parameter in order to choose a wireless technology for this device. Choosing a technology that is

supported by the iPad is very important, although not imperative, as long as data can be relayed

through another system which can communicate with the tablet.

6.1 Analysis 101

ZigBee is not a viable candidate a it’s not supported by Apple’s iPad, making it a last resort

as a choice, despite being an accessible and widespread technology. In order to use ZigBee in a

system, one would have to have 2 different wireless standards operating within a third system to be

able to act as a gateway, which is viable, despite possible concurrency, escalation and throughput

problems.

The possibility of using BR/EDR does not represent the best solution for the application con-

sidered, as it implies higher power consumption and the use of additional hardware in order to

be able to connect to the iPad. For this reason, Classic Bluetooth may not the best technology

available for this specific purpose.

ANT and ANT+ require an external adapter in order to provide a compatible radio, posing a

great disadvantage in terms of usage, making it unfit for this application.

Another possible candidate would be WiFi, but as previously stated, with WiFi it would be

increasingly difficult to construct a low-power device. A possible solution for this problem is to

implement deep sleep and send data in batches but less frequently. Still, using WiFi would pose

a usability problem in terms of a device’s required configuration in order to connect to an access

point.

Being a previously studied technology, and already implemented in other products, BLE could

possibly be the best technological solution for this problem. As shown in the previous chapter, for

a sampling rate of 100Hz, there is still bandwidth left for other application data to be streamed to

the iPad.

In the next paragraphs a detailed perspective will be given regarding the ideal connection

in order to support both devices, and theoretical validation of the possibility of using different

network topologies.

As Apple recommends a 15ms connection interval and 0ms slave latency, if two slaves are

connected to an iPad, the iPad’s scheduler will have to divide each 15ms interval in two, as no

connection events can be skipped due to the slave latency parameter, in order to allow both slaves

to transmit and receive data. As this is not publicly accessible information, one can only perform

theoretical best case calculations and then proceed to verify it experimentally. In the case of a fair

scheduler [32], each of the anchor points for each device would be 7,5ms apart from the other, as

shown in Fig. 6.2

Figure 6.2: Fair Device Scheduling

102 Wireless Inertial Motion Unit

In this case each slave would have 7.5ms available to communicate with the master, being that

the necessary transmission time for each device’s data should be lower than this value. Summariz-

ing and dependent on the Bluetooth specification and features used, the necessary time to receive

data successfully from both devices is:

• For Bluetooth v4.0/v4.1 with a 27 byte payload, 7 Link Layer packets would be needed

to receive the 177 bytes of pressure and inertial sensor data from the tInterface device,

and 2 packets to receive a 4 byte timestamp and 18 byte IMU data for the Wireless IMU

device, totaling 22 bytes. The first packet would contain 20 bytes of payload, resulting in a

transmission time of 328 us. For the second packet that would be required, only 2 payload

bytes are left to be sent, resulting in 128us of transmission time.

6∗ (80+150+328+150)µs+(80+150+240+150)µs = 4868µs

The total time needed to transmit the 22 bytes of data is defined by:

T2 = (80+150+328+150+80+150+128+150)µs = 1216

Total4.1 = (5464+1216)us = 6680µs

The total time used by the 2 devices in order to transmit data to the application is 6680us,

occupying more than one third of the connection interval. As the tInterface’s remaing part

of it’s connection event is not enough to send another application data message, a maximum

sampling period for the device is imposed at 15ms, equivalent to a sampling frequency of

66.6Hz.

• In Bluetooth 4.2, if using DLE, transmission time could be reduced to us, as the tInterface

device is able to send it’s information much faster as only one packet is needed. For the

Wireless IMU device also, only one packet is required to transmit the 22 bytes application

data.

T1 = (80+150+1552+150)µs = 1932µs

T2 = (80+150+344+150)µs = 724µs

Total4.2 = (1932+724)µs = 2656µs

As for the tInterface device, the total required transmission time is 1932us, up to three

notifications could be sent in ideal conditions. For the other device up to 10 notifications

could be sent in 7.5ms. This would permit a maximum sampling frequency for the whole

system of 200Hz, with a total throughput of 283,6kb/s.

6.1 Analysis 103

6.1.3 Possible Network Solutions

As the product currently uses Bluetooth technology, there is a certain advantage in implementing

this new IMU system with the same technology. If so, two network topologies could be employed.

If connected to the iPad separately both wearable devices would form a piconet with the master

device, enabling for an easy implementation regarding the iPad application. With this topology it

would even be fairly easy to add more than one Wireless IMU device. There is one disadvantage

to this topology which is the fact that the user would have to select each wearable device in the

application in order to connect, as with the previous version only one device existed.

The other possible solution would be to have the primary wearable device (tInterface) as a

middle-man, in which a wireless IMU would send it’s data to be relayed through the wearable

device and then delivered to the iPad. This would have the advantage of being transparent to the

user, as one would only have to select the primary device to connect.

Both topologies are represented in Fig. 6.3.

Figure 6.3: Possible Network Topologies

An inconvenient fact regarding a configuration where the tInterface is the master of the piconet

is that, the master of a piconet is the initiator device, the one which connects to others, unless a

role change occurs after connection setup.

Although technically possible, a solution involving this topology produces an array of prob-

lems for usability such as, for example, the master (tInterface) would have to decide to what iPad

it would connect, or have a dynamic or hard coded MAC address in order to facilitate connection

initiation. As such, this would create a major problem, effectively making it more viable to use

the first alternative, where both devices connect to the iPad separately.

Another possibility, although equal to the previous to the end user, could be using the tInterface

as both a peripheral and central at the same time. The simplicity to the user would, in fact, make

implementation more complex.

104 Wireless Inertial Motion Unit

6.2 Summary

No assumptions can be made about how the iOS Bluetooth stack handles two different peripherals.

However calculations for a favorable case were performed, proving that in theory it is possible to

substitute the cable needed for the second IMU by a Bluetooth Low Energy connection and thus

creating another, separate device. Also, various network configurations were considered, however

using both devices as peripherals seems the most adequate solution in terms of user experience.

Chapter 7

Final Conclusions

As initially described, the BM78 module does not satisfy requirements, due to the number of mes-

sages that are not reliably transmitted. The lack of control and openness of this module led to a

profound research regarding Bluetooth technology, its market and embedded solutions. A number

of tools were also used, some created, in order to be able to test and analyze all of the connec-

tions between modules, iPads and PCs. The search for solutions, at first, led to using the WT12

Bluetooth v2.1+EDR module to perform tests in order to evaluate its reliability and throughput

capabilities. At first, it proved to be much more reliable and capable than the original BM78 when

connected to a PC. Besides the good results, the documentation regarding the necessary coproces-

sor in order to connect to an iPad indicated that the requirements would never be achieved with the

WT12 (or any other BR/EDR module). With this constraint, BLE was studied in order to evaluate

its adaptation to the tInterface.

After researching and performing tests with different Bluetooth SoCs and modules as well as

WiFi, results have shown that the establish requirements are possible to achieve and surpass. With

the two technologies tested, Bluetooth and Wifi, a big discrepancy can be seen in both throughput,

power consumption and usability for both solutions.

Using Bluetooth in order to support Adapttech’s product wireless communications is definitely

possible and, although throughput values are much lower, it still poses a great advantage in terms

of usage of the product. If it was not an absolute requirement for Adapttech using an Apple tablet

to communicate with the tInterface, the challenge would possibly be less demanding. The lack of

documentation, lack of openness and support as well as the restrictive APIs provided and required

external hardware, make it very difficult, in Apple environment, to produce quality analysis and

improvements to this system with the resources available to a startup company. If using other

devices besides the iPad, such as a regular PC or Android tablet, the possibilities for this product

would be more broad, as it is far more easy to find documentation with other hardware, apart

from Apple. Still, Apple shows improvements in successive models of the its iPad, as Bluetooth

throughput and additional features are regularly discussed at developers events. Regarding Blue-

tooth Classic, as it is much more difficult to analyze, and implement products to work with iPads

or iPhones, the natural step is to focus more on Bluetooth Low Energy, as there are no imposed

105

106 Final Conclusions

restrictions. Although, as demonstrated, BR/EDR allows for bigger bandwidths when used with

other Bluetooth hardware, specific restrictions taken into account during this dissertation’s work,

make this technology less advantageous when compared to other.

As with Bluetooth Low Energy, there is no required external hardware or enrollment in specific

programs in order to communicate with Apple hardware, there is more support by the engineering

community, enabling more developers to develop devices that interact with iOS. Furthermore, with

newer Bluetooth specifications, maximum bandwidth has been substantially increased, showing

that this is a real interest subject in the Bluetooth community. With the introduction of Bluetooth

5, another step was taken into allowing an ever increasing throughput for BLE devices, making

this an attractive and versatile technology, adequate for usage both in very low power devices that

can operate for years on a battery, as well with devices with higher throughput requirements.

WiFi, the other wireless communication technology tested, is much more adequate for high

performance devices, enabling for a much higher transmission rate than its tested counterparts.

WiFi fulfills satisfactory throughput requirements, however, it does not allow for ease of usage for

the product on users perspective, requiring an AP to be configured previously and proving more

power consuming than the other technologies tested.

A good amount of work was dedicated to circumventing restrictions posed by Apple’s hard-

ware, in order to correctly measure throughput and capture/analyze, that otherwise could have

been much more easily achieved. The lack of reliable sources of information regarding protocols,

the Bluetooth stack used in iOS and the vague official documentation were a constant obstacle

throughout this dissertation. A number of different programming languages were used in order to

be able to perform the required tests.

Regarding the different SoCs and Bluetooth modules tested, not all required the same amount

of expertise and experience in order to reach the same goal. The BM78 and WT12 modules are

used as black boxes, as there is none or little information about how they work and what are

their maximum supported data rates or, why they often suffer from a complete system halt during

operation. Implementing a solution for this problem with the ESP32 and CC2640R2 allows for a

much more detailed perspective of what is really happening, as the two SoCs offer debug support

and programming is done by the end developer. Although it imposes a harder learning curve,

ultimately it allows for much more precise control of the operations carried out, enabling them to

be used in more specific applications, in contrary to other more generic Bluetooth modules that

only offer a transparent UART service.

A great aid in understanding Bluetooth communications was the Ubertooth, which was able

to provide meaningful information when performing tests with BLE devices. Although far from

perfect, this device is fairly able to support most applications it was designed for. However, for

more detailed analysis in more demanding cases, such as developing and certifying Bluetooth

modules, professional tools are required.

Directly related with this dissertation’s work, two prototypes have already been produced by

Adapttech, in order to mitigate the throughput problems existent in the current system. Both the

Final Conclusions 107

ESP32 and a CC2640R2 based module have been utilized in each of the prototypes. After suc-

cessfully testing and fulfilling requirements, the next step will be to produce a new version of the

tInterface using a Sable-X-R2 module, based of TI’s CC2640R2. As theoretically proven possi-

ble, future work regarding Adapttech’s product would be to implement and test the possibility of

having an, external, wireless IMU. Also, a detailed understanding of the inner works of Bluetooth

technology was acquired in order to allow enhancement of specific features of its Adapttech’s

product.

Ultimately, having achieved requirements and, with a perspective of a favorable evolution, the

most appropriate wireless technology found for this product specific needs was Bluetooth Low

Energy. Additionally, a specific Bluetooth SoC was found to have the appropriate characteristics

in order to be integrated into the tInterface system, providing a very low power and well supported

platform, already supporting the latest version of the Bluetooth specification.

108 Final Conclusions

Appendix A

A.1 Python code used in tests with PC.

\lstset{breaklines=true}

\begin{lstlisting}[language=Python]

import os

import sys

import bluetooth

import time

import struct

import select

import signal

import time

from chronometer import Chronometer

startrealtime = bytes.fromhex(’42470A0000004E440A’)

ack = bytes.fromhex(’42470A0400004E440A’)

stop = bytes.fromhex(’42470A0300004E440A’)

target=’all’

last_msg_time=0

msg_time = 0

error_counter=0

error_counter1=0

biggest_gap=0

total_gaps=0

bytes_recvd=0

freq=10

i=0

j=0

start_time=0

elapsed_time=0

109

110

s = bluetooth.BluetoothSocket(bluetooth.RFCOMM)

def signal_handler(signal, frame):

os.system(’clear’)

print("________Test Report________\n")

print("Test Time: ",int(test_time/60),":",int(test_time%60))

print("Total Messages Received: ",i)

print("TimeStamps Skipped = ",error_counter)#,"(",round(error_counter/i,3),")%")

print("Message Errors = ",j-i)#,"(",round(j-i/i,3),")%")

print("Biggest time gap (ms) = ",biggest_gap)

print("Total time gaps (ms) = ",total_gaps)#,"(",round(total_gaps/test_time,3),")%")

print("Total Bytes Received: ",bytes_recvd)

print("Average Troughput: ",round(8*(bytes_recvd/(test_time)/1000),2),"Kb/s")

print(’Sending Stop Message’)

print(’Connection Closed!’)

s.send(stop)

s.close()

sys.exit(0)

def recvall(sock, n):

Helper function to recv n bytes or return None if EOF is hit

data = b’’

while len(data) < n:

packet = sock.recv(n - len(data))

if not packet:

return None

data += packet

return data

def search_header(sock, n):

Helper function to recv n bytes or return None if EOF is hit

data = b’’

header_ok=0

while header_ok == 0:

packet = recvall(1)

#if packet == 66:

if not packet:

return None

A.1 Python code used in tests with PC. 111

data += packet

return data

def read_msg(sock,n,previousT):

msg_pdu=recvall(s,n+3)

timestamp_tuple=struct.unpack(’I’,msg_pdu[0:4])

TimeStamp=int(timestamp_tuple[0])

print("Header Correct \n")

print("Length: ",n+4)

print("Message Number: ",i)

print("TimeStamp = ",TimeStamp)

print("TimeStamps Skipped = ",error_counter)

print("Message Errors = ",j-i)

print("Biggest time gap (ms) = ",biggest_gap)

print("Total time gaps (ms) = ",total_gaps)

print("Average Troughput: ",round(8*(bytes_recvd/(test_time)/1000),2),"Kb/s")

print("Header: ",recvbuffer)

print("PDU: ", msg_pdu)

print("")

return TimeStamp

serverMACAddress = ’00:07:80:4A:10:ED’

while 1:

print("Choose Options:")

print("1-Start Real Time")

print("2-Scan Devices And Services")

#print(ord(’a’))

text = input() # Note change to the old (Python 2) raw_input

if text == "1" :

112

port = 1

s.connect((serverMACAddress, port))

signal.signal(signal.SIGINT, signal_handler)

print(’Press Ctrl+C to Exit’)

#signal.pause()

#s.setblocking(0)

s.send(startrealtime)

time.sleep(2)

s.send(ack)

start_time = time.time()

while(1) :

try:

test_time=time.time() - start_time

#os.system(’clear’)

print("\n\n\n\n\n\n\n\n\n

\nTest

Time: ",int(test_time/60),":",int(test_time%60))

j=j+1

recvbuffer=recvall(s,3)

if recvbuffer[0]==66 and recvbuffer[1]==71 and recvbuffer[2]==10 :

i=i+1

last_msg_time=msg_time

header_msg=recvall(s,3)

bytes_recvd+=9

packet_size_tuple=struct.unpack(’h’,header_msg[1:3])

packet_size=int(packet_size_tuple[0])

msg_time=read_msg(s,packet_size,msg_time)

bytes_recvd+=packet_size

if(msg_time-last_msg_time>freq and last_msg_time!=0):

error_counter=error_counter+1

total_gaps+=msg_time-last_msg_time

if(msg_time-last_msg_time>biggest_gap):

biggest_gap=msg_time-last_msg_time

elif recvbuffer[1]==66 and recvbuffer[2]==71 :

i=i+1

last_msg_time=msg_time

header_msg=recvall(s,4)

bytes_recvd+=10

A.1 Python code used in tests with PC. 113

packet_size_tuple=struct.unpack(’h’,header_msg[2:4])

packet_size=int(packet_size_tuple[0])

msg_time=read_msg(s,packet_size,msg_time)

bytes_recvd+=packet_size

if(msg_time-last_msg_time>freq and last_msg_time!=0):

error_counter=error_counter+1

total_gaps+=msg_time-last_msg_time

if(msg_time-last_msg_time>biggest_gap):

biggest_gap=msg_time-last_msg_time

elif recvbuffer[2]==66 :

i=i+1

last_msg_time=msg_time

header_msg=recvall(s,5)

bytes_recvd+=11

packet_size_tuple=struct.unpack(’h’,header_msg[3:5])

packet_size=int(packet_size_tuple[0])

msg_time=read_msg(s,packet_size,msg_time)

bytes_recvd+=packet_size

if(msg_time-last_msg_time>freq and last_msg_time!=0):

error_counter=error_counter+1

total_gaps+=msg_time-last_msg_time

if(msg_time-last_msg_time>biggest_gap):

biggest_gap=msg_time-last_msg_time

else:

print("Incorrect Header")

except bluetooth.btcommon.BluetoothError as error:

print ("Caught BluetoothError: ", error)

s.close()

s.connect((serverMACAddress, port))

time.sleep(5)

pass

#print(recvbuffer)

s.send(stop)

s.close()

114

if text == "2" :

target = "all"

if target == "all": target = None

services = bluetooth.find_service(address=target)

if len(services) > 0:

print("found %d services on %s" % (len(services), sys.argv[1]))

print("")

else:

print("no services found")

for svc in services:

print("Service Name: %s" % svc["name"])

print(" Host: %s" % svc["host"])

print(" Description: %s" % svc["description"])

print(" Provided By: %s" % svc["provider"])

print(" Protocol: %s" % svc["protocol"])

print(" channel/PSM: %s" % svc["port"])

print(" svc classes: %s "% svc["service-classes"])

print(" profiles: %s "% svc["profiles"])

print(" service id: %s "% svc["service-id"])

print("")

#s.send(text)

sock.close()

\end{lstlisting}}

References

[1] Intel. Different Wi-Fi Protocols and Data Rates. URL: https://www.intel.com/
content/www/us/en/support/articles/000005725/network-and-i-o/
wireless-networking.html.

[2] Bluetooth Special Interest Group. Bluetooth Core Specification Version 4.2. Bluetooth Core
Specification Version 4.2, (December):2684, 2014. URL: https://www.bluetooth.
org/en-us/specification/adopted-specifications.

[3] Karl Torvmark. Three flavors of Bluetooth R© : Which one to choose? The current state of
Smart. URL: http://www.ti.com/lit/wp/swry007/swry007.pdf.

[4] Serial Port Emulation. RFCOMM WITH TS 07 . 10 Abstract. 2012.

[5] Keith Palmgren. Diffie-Hellman Key Exchange – A Non-Mathematician’s Explanation.
ISSA Journal, pages 1–7, 2006. URL: http://academic.regis.edu/cias/ia/
palmgren{_}-{_}diffie-hellman{_}key{_}exchange.pdf.

[6] John Padgette, John Bahr, Mayank Batra, Marcel Holtmann, Rhonda Smithbey, Lily Chen,
and Karen Scarfone. NIST Special Publication 800-121 Revision 2 Guide to Bluetooth Se-
curity. URL: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-121r2.pdf, doi:10.6028/NIST.SP.800-121r2.

[7] Diagnostic Horizon and Scanning Centre. Diagnostic Technology: iPhone, iPod and iPad
add-on or plug-in medical devices Clinical Question:. (December), 2012.

[8] S. Stowe and S. Harding. Telecare, telehealth and telemedicine. European Geriatric
Medicine, 1(3):193–197, 2010. URL: http://dx.doi.org/10.1016/j.eurger.
2010.04.002, doi:10.1016/j.eurger.2010.04.002.

[9] Rim Negra, Imen Jemili, and Abdelfettah Belghith. Wireless Body Area Networks: Applica-
tions and Technologies. Procedia Computer Science, 83:1274–1281, 2016. URL: http://
dx.doi.org/10.1016/j.procs.2016.04.266, doi:10.1016/j.procs.2016.
04.266.

[10] Junn Yen Hu and Chun Chuan Yang. On the design of mobility management scheme for
802.16-based network environment. IEEE Vehicular Technology Conference, 2:720–724,
2015. doi:10.1109/VETECF.2005.1558018.

[11] Humaira Abdus Salam and Bilal Muhammad Khan. Use of wireless system in healthcare
for developing countries. Digital Communications and Networks, 2(1):35–46, 2016. URL:
http://dx.doi.org/10.1016/j.dcan.2015.11.001, doi:10.1016/j.dcan.
2015.11.001.

115

https://www.intel.com/content/www/us/en/support/articles/000005725/network-and-i-o/wireless-networking.html
https://www.intel.com/content/www/us/en/support/articles/000005725/network-and-i-o/wireless-networking.html
https://www.intel.com/content/www/us/en/support/articles/000005725/network-and-i-o/wireless-networking.html
https://www.bluetooth.org/en-us/specification/adopted-specifications
https://www.bluetooth.org/en-us/specification/adopted-specifications
http://www.ti.com/lit/wp/swry007/swry007.pdf
http://academic.regis.edu/cias/ia/palmgren{_}-{_}diffie-hellman{_}key{_}exchange.pdf
http://academic.regis.edu/cias/ia/palmgren{_}-{_}diffie-hellman{_}key{_}exchange.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-121r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-121r2.pdf
http://dx.doi.org/10.6028/NIST.SP.800-121r2
http://dx.doi.org/10.1016/j.eurger.2010.04.002
http://dx.doi.org/10.1016/j.eurger.2010.04.002
http://dx.doi.org/10.1016/j.eurger.2010.04.002
http://dx.doi.org/10.1016/j.procs.2016.04.266
http://dx.doi.org/10.1016/j.procs.2016.04.266
http://dx.doi.org/10.1016/j.procs.2016.04.266
http://dx.doi.org/10.1016/j.procs.2016.04.266
http://dx.doi.org/10.1109/VETECF.2005.1558018
http://dx.doi.org/10.1016/j.dcan.2015.11.001
http://dx.doi.org/10.1016/j.dcan.2015.11.001
http://dx.doi.org/10.1016/j.dcan.2015.11.001

116 REFERENCES

[12] Gaurav Bora, Saurabh Bora, Shivendra Singh, and Sheikh Mohamad Arsalan. OSI Refer-
ence Model Networking : An Overview. International Journal of Computer Trends and
Technology, 7(4):214–218, 2014.

[13] Dai Davis. Bluetooth. Network Security, 2002(4):11–12, apr 2002. URL: https://
www.sciencedirect.com/science/article/pii/S1353485802004130, doi:
10.1016/S1353-4858(02)00413-0.

[14] Bluetooth Special Interest Group. Why Build with Bluetooth | Bluetooth Technol-
ogy Website. URL: https://www.bluetooth.com/develop-with-bluetooth/
why-build-with-bluetooth.

[15] ANT+. This is ANT, 2017. URL: http://www.thisisant.com/.

[16] CISCO. Wireless Technologies. Cisco, pages 1–41,
2005. URL: http://www.igi-global.com/chapter/
advances-security-privacy-wireless-sensor/58886, doi:10.4018/
978-1-61350-101-6.

[17] Medium Access Control, Application Support, and Access Control Lists. Key Standards and
Industry Specifications. pages 7–15, 2012.

[18] Boris Bellalta, Luciano Bononi, Raffaele Bruno, and Andreas Kassler. Next generation IEEE
802.11 Wireless Local Area Networks: Current status, future directions and open challenges.
Computer Communications, 75:1–25, 2016. URL: http://dx.doi.org/10.1016/j.
comcom.2015.10.007, doi:10.1016/j.comcom.2015.10.007.

[19] Intel. Ultra-Wideband (UWB) Technology White Paper.

[20] DecaWave. DecaWave | Next Frontier of Wireless Technology, 2016. URL: https://
decawave.com/technology.

[21] Bluegiga Technologies Ltd. How to speed up iAP data stream. URL: https:
//www.silabs.com/community/wireless/bluetooth/forum.topic.html/
how{_}to{_}speed{_}up{_}iap-gGYq.

[22] Apple Inc. Bluetooth Accessory Design Guidelines for Apple Products. History, page 24,
2011.

[23] Ubertooth. GitHub - greatscottgadgets/ubertooth: Software, firmware and hardware designs
for Ubertooth. URL: https://github.com/greatscottgadgets/ubertooth.

[24] Oracle General Ledger. Data Sheet. Workbench, 0402(April):1–8, 2014. doi:10.1007/
978-3-211-89836-9_355.

[25] Medicines and Healthcare Products Regulatory Agency. Guidance on the regulations for
electronic instructions for use of medical devices. (February), 2015.

[26] Riku MettŠlä, Olof Dellien, and Johan Sšrensen. Serial Port Profile. 2012.

[27] Texas Instruments. CC2540 and CC2541 Bluetooth R© low energy Software Developer’s
Reference Guide. 2010. URL: http://www.ti.com/lit/ug/swru271g/swru271g.
pdf.

https://www.sciencedirect.com/science/article/pii/S1353485802004130
https://www.sciencedirect.com/science/article/pii/S1353485802004130
http://dx.doi.org/10.1016/S1353-4858(02)00413-0
http://dx.doi.org/10.1016/S1353-4858(02)00413-0
https://www.bluetooth.com/develop-with-bluetooth/why-build-with-bluetooth
https://www.bluetooth.com/develop-with-bluetooth/why-build-with-bluetooth
http://www.thisisant.com/
http://www.igi-global.com/chapter/advances-security-privacy-wireless-sensor/58886
http://www.igi-global.com/chapter/advances-security-privacy-wireless-sensor/58886
http://dx.doi.org/10.4018/978-1-61350-101-6
http://dx.doi.org/10.4018/978-1-61350-101-6
http://dx.doi.org/10.1016/j.comcom.2015.10.007
http://dx.doi.org/10.1016/j.comcom.2015.10.007
http://dx.doi.org/10.1016/j.comcom.2015.10.007
https://decawave.com/technology
https://decawave.com/technology
https://www.silabs.com/community/wireless/bluetooth/forum.topic.html/how{_}to{_}speed{_}up{_}iap-gGYq
https://www.silabs.com/community/wireless/bluetooth/forum.topic.html/how{_}to{_}speed{_}up{_}iap-gGYq
https://www.silabs.com/community/wireless/bluetooth/forum.topic.html/how{_}to{_}speed{_}up{_}iap-gGYq
https://github.com/greatscottgadgets/ubertooth
http://dx.doi.org/10.1007/978-3-211-89836-9_355
http://dx.doi.org/10.1007/978-3-211-89836-9_355
http://www.ti.com/lit/ug/swru271g/swru271g.pdf
http://www.ti.com/lit/ug/swru271g/swru271g.pdf

REFERENCES 117

[28] Texas Instruments. CC256x MSP430 TI’s Bluetooth Stack Ba-
sic SPPDemo APP Improving throughput v14 - Texas Instruments
Wiki. URL: http://processors.wiki.ti.com/index.php/
CC256x{_}MSP430{_}TI{%}27s{_}Bluetooth{_}Stack{_}Basic{_}SPPDemo{_}APP{_}Improving{_}throughput{_}v14.

[29] Bluetooth Special Interest Group. Exploring Bluetooth 5 - Going the Dis-
tance | Bluetooth Technology Website. URL: http://blog.bluetooth.com/
exploring-bluetooth-5-how-fast-can-it-behttps://blog.bluetooth.
com/exploring-bluetooth-5-going-the-distance.

[30] J.A.a Afonso, A.J.F.a Maio, and R.b c Simoes. Performance Evaluation of Blue-
tooth Low Energy for High Data Rate Body Area Networks. Wireless Personal
Communications, 90(1):121–141, 2016. URL: https://www.scopus.com/
inward/record.uri?eid=2-s2.0-84964286066{&}partnerID=40{&}md5=
9fa7a0844709a9118ee548b5050e0845, doi:10.1007/s11277-016-3335-4.

[31] Apple Inc. What ’ s New in Core Bluetooth Best practices. 2017. URL: https:
//devstreaming-cdn.apple.com/videos/wwdc/2017/712jqzhsxoww3zn/
712/712{_}whats{_}new{_}in{_}core{_}bluetooth.pdf?dl=1.

[32] Tolga Girici, Chenxi Zhu, Jonathan R Agre, and Anthony Ephremides. Pro-
portional Fair Scheduling Algorithm in OFDMA-Based Wireless Systems with
QoS Constraints. JOURNAL OF COMMUNICATIONS AND NETWORKS, 12(1),
2010. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.163.6859{&}rep=rep1{&}type=pdf.

http://processors.wiki.ti.com/index.php/CC256x{_}MSP430{_}TI{%}27s{_}Bluetooth{_}Stack{_}Basic{_}SPPDemo{_}APP{_}Improving{_}throughput{_}v14
http://processors.wiki.ti.com/index.php/CC256x{_}MSP430{_}TI{%}27s{_}Bluetooth{_}Stack{_}Basic{_}SPPDemo{_}APP{_}Improving{_}throughput{_}v14
http://blog.bluetooth.com/exploring-bluetooth-5-how-fast-can-it-be https://blog.bluetooth.com/exploring-bluetooth-5-going-the-distance
http://blog.bluetooth.com/exploring-bluetooth-5-how-fast-can-it-be https://blog.bluetooth.com/exploring-bluetooth-5-going-the-distance
http://blog.bluetooth.com/exploring-bluetooth-5-how-fast-can-it-be https://blog.bluetooth.com/exploring-bluetooth-5-going-the-distance
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964286066{&}partnerID=40{&}md5=9fa7a0844709a9118ee548b5050e0845
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964286066{&}partnerID=40{&}md5=9fa7a0844709a9118ee548b5050e0845
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964286066{&}partnerID=40{&}md5=9fa7a0844709a9118ee548b5050e0845
http://dx.doi.org/10.1007/s11277-016-3335-4
https://devstreaming-cdn.apple.com/videos/wwdc/2017/712jqzhsxoww3zn/712/712{_}whats{_}new{_}in{_}core{_}bluetooth.pdf?dl=1
https://devstreaming-cdn.apple.com/videos/wwdc/2017/712jqzhsxoww3zn/712/712{_}whats{_}new{_}in{_}core{_}bluetooth.pdf?dl=1
https://devstreaming-cdn.apple.com/videos/wwdc/2017/712jqzhsxoww3zn/712/712{_}whats{_}new{_}in{_}core{_}bluetooth.pdf?dl=1
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.163.6859{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.163.6859{&}rep=rep1{&}type=pdf

	Front Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Objectives for this work
	1.3 tInterface Description
	1.4 Dissertation Structure

	2 Literature review
	2.1 Medical Device Communications
	2.2 IEEE Network Standards
	2.3 OSI Model
	2.4 Bluetooth Technology
	2.5 WiFi
	2.6 Ant
	2.6.1 Physical Layer
	2.6.2 Data Link Layer
	2.6.3 Transport Layer
	2.6.4 Network Layer

	2.7 Zigbee
	2.8 UltraWideband
	2.9 Summary

	3 Problems and Solutions
	3.1 Problem Definition
	3.2 Proposed Solutions and Improvements
	3.2.1 Traffic Analysis Tools
	3.2.2 BR/EDR L2CAP direct transport
	3.2.3 Bluetooth Low Energy
	3.2.4 Bluetooth 5.0
	3.2.5 WiFi

	3.3 Summary

	4 Bluetooth Technology
	4.1 Bluetooth profiles
	4.1.1 Serial Port Profile
	4.1.2 Health Device Profile

	4.2 Bluetooth Networks
	4.2.1 Connection Modes

	4.3 Bluetooth Stack Overview
	4.3.1 RFCOMM
	4.3.2 Bluetooth Core Systems Overview

	4.4 Logic Link Control Adaptation Protocol
	4.4.1 Modes of Operation
	4.4.2 Fragmentation and Reassembly

	4.5 Generic Access Profile
	4.6 Generic Attribute Profile
	4.6.1 L2CAP interoperability

	4.7 Host Controller Interface
	4.8 Bluetooth Basic Rate / Enhanced Controller
	4.8.1 Bluetooth Baseband, Physical Channels, Links and Transports
	4.8.2 Bluetooth Basic Rate / Enhanced Data Rate PHY

	4.9 Bluetooth Low Energy Controller Overview
	4.9.1 LE Link Layer Overview
	4.9.2 LE Baseband
	4.9.3 LE Radio

	4.10 Security
	4.10.1 BR/EDR
	4.10.2 LE

	4.11 Throughput Considerations
	4.11.1 Bluetooth Classic
	4.11.2 Bluetooth Low Energy

	4.12 Summary

	5 Communications for Prosthesis fitting
	5.1 Preliminary Experiments
	5.1.1 Microchip BM78
	5.1.2 Connection Setup
	5.1.3 WT12

	5.2 Bluetooth Low Energy
	5.2.1 ESP32
	5.2.2 Texas Instruments CC2640R2

	5.3 WiFi
	5.4 Power Consumption
	5.5 Summary
	5.5.1 Ubertooth
	5.5.2 Other Considerations

	6 Wireless Inertial Motion Unit
	6.1 Analysis
	6.1.1 Requirements
	6.1.2 Technology
	6.1.3 Possible Network Solutions

	6.2 Summary

	7 Final Conclusions
	A
	A.1 Python code used in tests with PC.

	References

