
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Supply Chain tracking and
management with Distributed Ledger

João Malheiro de Sousa

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Alexandre Valle de Carvalho (FEUP)

Second Supervisor: Tiago Rocha (Associação Fraunhofer Portugal)

July 14, 2021





Supply Chain tracking and management with Distributed
Ledger

João Malheiro de Sousa

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Doctor João Correia Lopes

External Examiner: Doctor José Manuel Matos Moreira
Supervisor: Doctor Alexandre Valle de Carvalho

July 14, 2021





Abstract

Supply Chain is a network that establishes a flow of goods and materials between suppliers, clients,
transportation, until the end consumer. The management of this network, which is done in order
to maximize customer value, is called Supply Chain Management (SCM). In an agriculture supply
chain, for this management to be efficient there are some important aspects that need to be tackled
like the traceability of the assets and their transaction costs. Furthermore, the current food trace-
ability options are not linked throughout the chain and that makes it hard to validate the quality of
the product at any point of the network.

Distributed Ledger is a decentralized immutable network which can provide a more trans-
parent and safer way to manage a business and the logistics of a supply chain. After being ap-
proved, transactions are registered in blocks and sent to every peer. By using this approach, every
stakeholder has access to vital data, such as the conditions in which the product is kept, mak-
ing the whole network more efficient and trustworthy. Currently, the use of Distributed Ledger
Technology (DLT) in SCM is still in a pilot phase, but there are multiple cases of success of its
implementation in the referred context.

As it stands, it is of major importance that the problem of food traceability and its quality gets
tackled so that we can achieve lower transaction time and its costs, and by making the process
faster, increase the quality of the products.

Some of the work will be focused on replicating the network capable of handling the trans-
actions in an agricultural supply chain certification phase, in a way that is more traceable, secure
and verifiable than the currently used centralized solution. Most of the work will center around the
evaluation of a DLT system based on Hyperledger Sawtooth applied to an AgriFood Supply Chain,
specifically its product certification phase. In other words, the work will consist in analysing the
scalability, the network design and the reliability of the network.

The study shows that such a solution is a good alternative for distributed persistency where all
the actors will be able to participate not only by interacting with the system, but also optionally, in
the validation process (as validation nodes). The stakeholders can easily track their products and,
as a result of that data, they will be able to provide proof of their product’s certification, processes
and traceability, resulting in the improvement of their methods. Furthermore, the end customer
will be able to verify the quality of the products.

Keywords: Supply Chain Management and Tracking, Distributed Ledger Technologies, Food
traceability
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Resumo

Uma Cadeia de Abastecimento (SC) é uma rede que estabelece um fluxo de mercadorias e materi-
ais entre fornecedores, clientes, transportadoras e todos os elementos relacionados até ao consum-
idor final. A gestão dessa rede, que é feita com o objetivo de maximizar o valor do consumidor e
ganhar vantagens competitivas, é denominada de Supply Chain Management (SCM). Numa cadeia
de abastecimento agrícola, para que essa gestão seja eficiente, existem aspectos importantes que
precisam de ser abordados, como por exemplo a rastreabilidade dos produtos e seus custos asso-
ciados quando as mercadorias transitam entre atores da rede logística. Para além disso, as opções
atuais de rastreabilidade de alimentos não se extendem ao longo da cadeia e isso dificulta o pro-
cesso de validar a qualidade do produto em qualquer ponto da rede.

Distributed Ledger é uma rede descentralizada e imutável que pode fornecer uma solução
mais transparente e segura de gerir um negócio e a logística de uma cadeia de abastecimento.
Depois de aprovadas, as transações são registadas em blocos e enviadas a todos os pares da rede.
Utilizando esta abordagem, todos os pares da base de dados distribuída têm acesso a dados vitais,
como as condições em que o produto é mantido, tornando toda a rede mais eficiente e confiável.
Atualmente, a utilização de Distributed Ledger Technology (DLT) em SCM ainda se encontra
numa fase inicial, mas existem múltiplos casos de sucesso da sua implementação no contexto
referido.

Atualmente, é de extrema importância que se resolva o problema da rastreabilidade e da qual-
idade dos alimentos para que se consiga assim tornar o processo mais rápido, a cadeira logística
mais eficiente (reduzindo custos) e, assim, aumentar a qualidade dos produtos.

Parte do trabalho tem como foco prototipar e estudar uma rede capaz de lidar com parte das
transações de uma cadeia de abastecimento agrícola relativas ao processo de certificação de bens,
de uma forma mais eficiente do que a solução atualmente utilizada pela indústria. A maior parte do
trabalho concentra-se na avaliação do sistema DLT baseado na tecnologia Hyperledger Sawtooth
aplicado à cadeia de abastecimento de alimentos agrícolas. Por outras palavras, o trabalho consis-
tirá em analisar o design da rede e a sua escalabilidade como solução de persistência distribuída.

Com solução similares, todos os atores da rede serão beneficiados. As partes interessadas po-
dem rastrear facilmente os seus produtos e, como resultado dos dados recolhidos, poderão analisar
e melhorar os seus métodos. Além disso, o cliente final poderá verificar a qualidade dos produtos
que são adquiridos.
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Chapter 1

Introduction

This chapter presents the context of the dissertation and the motivation behind it, the approach,

and expected results. It has a total of 5 sections. Section 1.1 aims to explain the context of the

project. Section 1.2 is the motivation behind the work. Section 1.3 is the hypothesis around

which the dissertation will be developed. Next, section 1.4 is the chosen approach to fix the

problem presented in section 1.2 and the expected results of the implementation. Finally, Section

1.5 contains the document’s structure.

1.1 Context

Supply Chain is a network that establishes a flow of goods and materials between suppliers, clients,

transportation, until the end consumer. The management of a supply chain network aims to max-

imize customer value to improve brand image and gather a competitive advantage. Supply Chain

Management (SCM) is vital for a company because it heavily influences the efficiency of a com-

pany’s production cycle and, therefore, profit [26][23].

Companies use different solutions to help make the process of managing the supply chain more

efficient. Most organizations used to rely on internal solutions to manage transactions and all the

data it encompasses, but the globalization of supply chains due to the evolution of developing

countries demands for an adaptation into a more global approach [35].

Another possible way to do it is through a Distributed Ledger Technology (DLT). DLT is

a decentralized, immutable, and transparent network that can register and store data relevant to

SCM. Currently, the use of Distributed Ledger Technology in Supply Chain Management is still

in a pilot phase. However, there are multiple cases of success of its implementation in the referred

context [22][25]. This work will analyse these case studies in section 2.3.

1



2 Introduction

1.2 Motivation

Supply Chain (SC) networks providing agricultural products can be split into four simple phases as

depicted in Figure 1.1. A SC is more efficient if they tackle critical aspects regarding traceability

of their assets and transaction costs. These chains, with the advance in technology, are becoming

more and more global [32]. However, the current food traceability options are not connected

throughout the chain, and that makes it hard to validate the quality of the product at any point

of the network [36], which goes directly against the increasing need for companies to establish

the provenance of a product 1. A study from 2017 showed that 69% out of 408 organizations do

not have complete visibility into their respective supply chain [1]. This is due to companies only

knowing their immediately close partners (supplier and client).

Furthermore, the fragmentation of the network opens the door for food security fraud which

can cause harm to the remaining actors [36]. This was the case in 2017 when the United King-

dom’s top chicken supplier was discovered to be tampering with product records in order for their

customers to buy out-of-date chicken 2. Worldwide, WHO (World Health Organization) states that

each year, roughly one in ten people experience food poisoning and the death count reaches the

values of 420000 per year [25].

Figure 1.1: Agricultural Supply Chain Phases.

As it stands, it is of significant importance that the problem of food quality and traceability

gets addressed to achieve lower transaction costs. This would make the process faster and the foot

items more easily traceable, increasing the overall quality of the products.

1.3 Hypothesis

Regarding the current problem existing with Agricultural Supply Chains, it can be summarized in

lack of traceability and security of product information and time it takes to exchange information

between two participating entities. For that reason, a hypothesis regarding a DLT solution to this

problem was developed for this study.

DLT network for Supply Chain Management of agricultural products can provide a trustwor-

thy, secure, traceable, immutable, efficient, and affordable solution to every actor involved in the

chain, thus lowering process costs and improving traceability across the logistics supply chain and,

therefore, improving food quality.

1 https://www2.deloitte.com/us/en/insights/industry/retail-distribution/food-labeling-laws-iot-blockchain.html Ac-
cessed on: January 2021

2 TheGuardian - https://www.theguardian.com/business/2017/sep/28/uks-top-supplier-of-supermarket-chicken-
fiddles-food-safety-dates Accessed on: January 2021
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1.4 Approach and expected results

A Distributed Ledger is a peer-to-peer(P2P) decentralized and synchronized database. This type

of network can provide a more transparent and safer way to manage a business and the logistics

of a supply chain. After being approved, transactions between actors are registered in blocks and

are then available to be read and analyzed. By utilizing this approach (as opposed to centralized

databases, for instance), every peer in the distributed database would have access to vital data, such

as the conditions in which the product is kept or transporting details, making the whole network

more efficient and trustworthy. The stakeholders can easily track their products and, as a result of

the collected data, analyze and improve their methods. Furthermore, the end customer will be able

to access and verify the quality of the products.

Product certification carries many advantages for companies that adopt such a process: it rein-

forces customers’ trust, improves the organization’s brand, and opens up potential new markets for

the certificated product [42]. There are multiple rules and stipulations when getting a certification

of quality for a product. After inputting product data in the system, a certificate issuing entity

would then verify and issue a certificate for the product. This certificate provides the company

with an opportunity to include it in transactions of logistics and commercial operations.

After the prototype design and implementation, a study about the solution’s network design,

scalability, and reliability will be conducted. The underlying reason to proceed with the study is to

analyze how a DLT solution of this type can handle a large number of transactions a global SCM

would require.

The main objectives of this dissertation are to create, test, and validate a technological ecosys-

tem of product certification in the agricultural goods domain. At the core of this work is a prototype

to be developed supported on a DLT that can:

• Identify different actors and their roles in the system (producer, transportation, end-consumer);

• Support representation of product definition;

• Support the access of a product’s history and information regarding who changed what

information about that said product;

1.5 Document structure

Apart from this introduction, this document contains 5 chapters.

Chapter 2 introduces key concepts and ideas about DLT and its potential use in an AgriFood

Supply Chain. It contains details of DLT, such as consensus algorithms and smart contracts. Fur-

thermore, this chapter analyzes some real-world cases of DLT utilized in this study’s domain.

After, Chapter 3 explains the problem with AgriFood Supply Chains, and it contains implementa-

tion details of the developed prototype solution utilized for our experiments. Chapter 4 provides

the experimentation phases and environment utilized in this study to run and collect results from



4 Introduction

our prototype. Following, Chapter 5 discusses and analyses the experimentation results. Finally,

chapter 6 provides conclusions about the study and also future work.
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This chapter addresses state of the art regarding Distributed Ledger Technology and its appli-

cation in an agriculture Supply Chain. Firstly, Section 2.1 discusses Distributed Ledger Technol-

ogy and all of its components, properties, taxonomies, and implementations of DLT. Following,

section 2.2 presents DLT by the domain of application in Supply Chain Management, asset pro-

duction, goods transportation, and the end-consumer. Finally, section 2.3 contains and analyses

implementations of DLT technologies in the agricultural supply chain context.

In the next section, and because of its relevance to this study, Distributed Ledger Technology

is presented and discussed.

5



6 State of the art

2.1 Distributed Ledger Technology

Historically, the term “ledger” refers to the storage of relevant information to economic activity.

One example is the ownership and the relationships between individual actors or other different

entities. In other words, a ledger is a collection of transactions [10]. As the economy became

more global, the need for traceability, reliability, and trust increased, which can be achieved with

decentralization, and so the concept of Distributed Ledger Technology was created.

Multiple definitions of DLT exist since it is a complex concept subject to much research

throughout the most recent years. Benos et al. [9] states that a DLT is a “database architecture

which enables the keeping and sharing of records in a distributed and decentralized way, while

ensuring its integrity through the use of consensus-based validation protocols and cryptographic

signatures”. In other words, it is a database spread across multiple peers with the data being

replicated securely. The properties inherent to a DLT that define this technology are explained

throughout this section to better understand how a solution of this type can help an Agricultural

Supply Chain. The difference between the centralized and the distributed approach is depicted in

Figure 2.1.

Figure 2.1: Centralized Ledger (left) and Distributed Ledger (right).

There are many distinct DLT platform types, each with its different purpose, characteristics,

properties, and structure. This section analyzes each studied DLT platform regarding a set of

properties and identifies the differences between these types.

This type of solution can bring significant benefits when it comes to its application in the

domain of the agriculture supply chain. The ability to verify both backward and forward trace-

ability of a product in the case of a food-related safety issue [36] is an example where DLT can

be advantageous. It is important to note that every use case is different with Distributed Ledger

Technology, so one has to study the pros and cons of the technology to better understand if it is

applicable. Even when it is adequate, multiple properties, implementations, and system design

options must be considered before development.

There are multiple cases where DLT is not the best solution to the problem due to the potential

high cost to implement or high energy demand.

DLT approaches come with some notorious downsides. One of which is making system design

decisions in this fast-changing technological landscape since by the time implementation is made,
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the product use cases and details might not be what is required [7]. Another example is the

scalability problem associated with DLT solutions 2.1.2.

2.1.1 Storing Transactions

This section explains the types of data structures that a DLT can have to store its transactions while

also containing advantages and disadvantages to the different approaches.

Blockchain

There are multiple types of distributed approaches for building a ledger that will connect the

transactions in the network. Firstly, there is the blockchain which presents a linked list of blocks

that contain the transactions. This differs from a standard database since, in those databases, data is

stored in tables, while in a blockchain implementation the information is aggregated into a block

and stored after the previously committed block. Another very different aspect this technology

presents is that when utilizing blockchain, the insertion order of the data matters. This is due to

many blockchain’s use cases being in the financial applications sector and managing money. That

is not the case with a legacy centralized database.

Transactions can be split into two main components: body and header. The headers hold a

hash of that block’s predecessor [8] whereas the data is the information to be stored. The first

block of the chain is named genesis and does not hold a predecessor block hash in its header.

Besides the hash, the header contains a timestamp and the Merkle Tree root hash. The timestamp

is essential to validate the block since it contains the time when the block was created. The Merkle

value is a hash of all the transactions inside the block. When it comes to the other components in

a block, the block body can be split into two parts: a transaction counter and the transactions.

A blockchain example structure is depicted in Figure 2.2.

Figure 2.2: Blockchain structure.

As previously mentioned, transactions are stored in the body of a block in the form of a Merkle

tree. A Merkle tree is a binary tree of hash values. The root of the tree, stored in the header, is

the combination of all of its children’s nodes hashes. This detail makes it so that any attempt to
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tamper with any child node is noticeable by comparing the root hash with the combination of its

branches and leaves, providing the chain with more security. Furthermore, this is a very efficient

data structure since the verification of transactions can be done in logarithmic time by computing

hashes in the path to the root of the tree [46]. This process is explained in Figure 2.3.

Figure 2.3: Example of a Merkle Tree.

Directed Acyclic Graph

In a Directed Acyclic Graph(DAG), data is stored in nodes instead of blocks where each node

only possesses a single transaction. Nodes are linked through edges that represent each transaction

validation.

This implementation is built on the belief that chaining the blocks with multiple transactions

is a bottleneck for the architecture. Therefore, separating the transactions will battle this problem

[20]. One example of a DAG network is Tangle developed by IOTA [37]. One of the main reasons

for the creation of Tangle is IOTA’s objective of eliminating transaction fees. In this network,

a user can only add a transaction after picking and validating two different transactions. This

characteristic contributes to an increase in the solution’s scalability. Apart from that, there is a

need to solve a cryptographic challenge to prove some work to defend the network against spam

attacks.

In these systems, as more users connect to the network, the time it takes to validate a transac-

tion decreases [37]. This can be a hurdle in adopting these solutions since the network’s perfor-

mance is directly tied to how large its user base is.
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Hashgraph

Alternatively, there is the hashgraph solution. This solution uses a Directed Acyclic Graph,

and it differentiates itself from the blockchain approach by not discarding any branches [6]. This

technology gives peers in the network two possible actions: submit a transaction or gossip about

one [20]. The gossip protocol utilizes gossiping generally found in people’s interactions but ap-

plied to network nodes. New information spreads exponentially fast.

2.1.2 Properties

In this section, properties inherited by a DLT ledger that are relevant to this dissertation are pre-

sented. All of the following properties will help in establishing the hypothesis (Section 1.3).

Immutability

In a Distributed Ledger, the blocks of transactions cannot be altered, so the records are, there-

fore, permanent. Actors in these chains can only check the data and add more if that is their desire,

making the network tamper-proof: for an attacker to alter the chain in any way, it would need to

control at least 51% of the network’s nodes. In an extensive network like Bitcoin, it is theoretically

impossible to achieve such computational power during that span [39]. Although this technology

is considered immutable by many, there are still valid security threats that can cause harm to a

network of this design. For example, spam attacks and double-spending [31].

Immutability is an advantage of implementing with a DLT, but in some specific cases, it can

also be seen as a disadvantage because it is good to, for example, be able to alter something in the

chain due to a change in a company’s business model or logic [36].

Decentralization

The data in the ledger is spread between all the peers in the network, making a DLT decentral-

ized. The information is replicated and synchronized. Each node possesses a copy of the ledger,

and after a consensus is reached to update the ledger, every node will make the changes necessary

to update and synchronize with its peers. This is called the global state of the network.

An important concept to have in mind is that a DLT solution is not always fully decentralized.

Decentralization is a spectrum.

An increase in decentralization typically comes with its trade-offs. This property decreases the

user’s dependency on centralized providers. As a result, we get an increase in their data protection

against those same providers. However, the trade-off is caused by the inherent transparency of the

data we get when utilizing a standard DLT solution. While their data is better protected against

third parties, the network’s transparency requires some metadata to be more visible to the entire

network [17].
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Security

These platforms are often responsible for handling large transactions or vital company data

that is too important to lose. Many reasons contribute to DLT being considered secure. Firstly,

the decision-making is not unilateral, which means that for a block of transactions to be validated

and added to the ledger, most nodes have to authorize it. The next reason is the cryptography

used. The network’s overall security depends on the strength of the cryptography algorithms used

for the generation of the authentication keys, encryption of the data itself in the blocks, and the

consensus algorithm. Lastly, if the network is private, it ensures that only a select few nodes have

permission to visualize the data, which can also increase security by restricting access. Despite all

of these contributing factors, there are still some possible exploits and problems when it comes to

DLT security, which are explained below:

• Majority attack - this exploit highly depends on the type of consensus algorithm used (sub-

section 2.1.5). However, it is defined by the malicious actor having control of the consensus

in the network. This can lead to faulty transactions and malicious blocks. When a network

grows in size, this is less and less probable to happen since it takes more computing power

to acquire the control of the network [29];

• Double Spending - this security issue is typically connected with online payments. It occurs

when a malicious actor duplicates a digital token and sends it to multiple parties. If digital

information can be duplicated, this problem can arise [46];

• DDoS attack - denial of service is when the attacker makes the network service unavailable

for its intended users. This is performed by feeding the system with a large number of

redundant requests, stressing it with the amount of processing this exercise requires;

• Eclipse attack - this attack isolates the target from the remaining peers in the network by

interfering with its connections. Following, the attacker has the power over what the victim

can view (control over the entire network view) [28].

Transparency

While having to agree that an increase in transparency in, for example, a public DLT, when

compared to a private one, can increase security problems in the ledger, the security features men-

tioned are capable of securing the network while it is fully transparent. Ghode et al. [18] states

that “The challenge is building a Distributed Ledger which can achieve a balance between trans-

parency and confidentiality of data”. Records are auditable by a group of participant nodes. For

example, in public DLT, every node holds equal rights and can access the ledger and even mine

it (update). The records are therefore transparent in that situation. “Poor transparency through

multiple supply chain steps can promote or conceal fraud” [36] is an example of what the lack of
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transparency can cause in a DLT platform when applied to a Supply Chain Management context.

Scalability

Scalability is one of the main concerns one has to consider when defining the structure and im-

plementation of a solution, mainly because of node data replication. Pearson et al. [36] states that

given a DLT complexity, it is likely that blockchain solutions will first emerge in niche, controlled,

or high-risk areas of the supply chain, where the technology may have the most significant impact.

This is due to its relatively low performance when accounting for an extensive global network. For

example, Visa needs more than 4000 transactions per second which are very distant from what the

current global-scale DLT implementations offer [47]. Given the issue at hand, this type of system

should first be implemented on a small scale. After that, and when the research develops more on

the subject, one can think about implementing this concept on a global level.

There are several metrics with a large effect on a DLT solution’s scalability:

• Block size - while increasing a block size can theoretically increase the network transaction

throughput, it also causes a block propagation delay in the system which can in turn have

large performance deficits in the system [47];

• Block time - altering the time it takes for a blockchain network to propose a new block

(depending on the consensus used) can alter the network scalability;

• Transaction validation time - another metric with a huge impact on how a solution performs

is the time it takes for a transaction to be validated. While this largely depends on the

consensus algorithm chosen (see 2.1.5), it presents a considerable scalability problem if

it depends on a vast number of nodes approving those transactions [14]. This does not

present such a problem to scalability in solutions with designated validating nodes since

an increase in network size does not necessarily mean that transactions take more time to

process and validate. A possible approach to decrease the transaction time in a system can

be Sharding. This method separates the nodes into shards, and it shard processes a different

set of transactions. It is a way of parallel executing the transactions [44].

2.1.3 Permission access

DLTs vary regarding the definition of permission access to block transactions or network mining

capabilities. Therefore, a DLT can be either public or private.

Public

Public ledgers, also known as permissionless ledgers, are made of computer nodes that can

join the network without permission. These nodes are called miners. Permissionless ledgers allow

all the peers to mine the network. The state of the network and its blocks are visible and accessible
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to everyone in this type of DLT. One of the disadvantages of transparency between every node is,

for example, not being able to hide some data that a company might not want to share with every-

one [45].

Private

Private ledgers, or permissioned, are the opposite of the public DLT and possess, therefore,

restricted access. Only previously authorized entities are allowed to participate in events in the

ledger. This ensures the privacy of the data stored in the network. While the privacy of the data

stored might be beneficial for some, it could also raise trust issues between actors in the system.

An overview of the trade-off between public and private DLT solutions is presented in Table

2.1.

Public DLT Private DLT

Any user can participate Participants are validated and authorized

Anonymous Participants know each other

Lower throughput Higher throughput

Higher level of decentralization Lower level of decentralization

Higher energy consumption Lower energy consumption

Table 2.1: Overview of public and private DLT solutions.

2.1.4 Smart Contracts

A smart contract is defined as a computerized transaction protocol that executes the terms of a

contract [40]. This concept was introduced by Nick Szabo in 1994, who suggested that contract

clauses should be translated into code. To simplify, smart contracts are the logic behind all the

transactions, either inside a company or between different organizations. One of the main aspects

of smart contracts is that it computerizes a process that would have to be done by a person. There-

fore, this feature can save money resources in the companies that adopted these types of systems.

In other words, in present time distributed systems, a smart contract validates transactions while

using programmed logic and changing the ledger’s state.

Some platforms allow for the implementation of code, for example, in Java or Go, to increase

the complexity of a contract, so it feeds the needs of the platform [16].

Even though smart contracts have evolved in time and are now a pillar of blockchain technol-

ogy, some security issues have emerged from hacks that exploited flaws in smart contracts logic.

An example of this is the 2016 DAO attack on Ethereum smart contracts [4]. The attacker took

advantage of the ether being paid out of the contract before the credit value was updated. There-

fore, by taking advantage of a callback, he was able to utilize recursion and steal ether. This could

be prevented by only allowing the withdrawal after the credit value of the contract was updated,
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not allowing the reentrancy attack to happen. A mock example of this attack can be observed in

Figure 2.4.

Figure 2.4: 2016 DAO reentrancy attack on an Ethereum smart contract.

2.1.5 Consensus Algorithms

One of the essential components in a DLT is its consensus algorithm. A consensus is achieved

when a certain number of peer nodes agree and approve a transaction. This feature helps protect

the system against attacks.

For consensus to be reached even in the face of malicious nodes, there are certain aspects a

consensus algorithm needs to address and trade-offs to be analyzed. A consensus algorithm has to

contain two properties: liveness and persistence. Persistence is what ensures a consistent response

from the nodes in the network regarding a transaction, and Liveness expresses that, after some

time, the consensus in the system is always reached [46].

There are multiple types of consensus algorithms:

• Proof-of-Work (PoW) - algorithm where each user (miner) has to solve a computationally

difficult problem to ensure the validity of new transactions. After solving the problem, the

peer receives a token to prove his work. This helps reduce spam attacks on the system. One

of the problems PoW faces is that because it is used in a public DLT it is impossible to

delete a malicious node from the system. Furthermore, the computational power it takes to



14 State of the art

solve the puzzle requires much energy in large networks, and that power is used only to get

tokens without presenting a valuable output. As a result of the high investment needed to

run this network, centralization of mining power in the long term can occur [41].

• Proof-of-Stake (PoS) - in this algorithm, a peer can validate or mine a new block according

to how much buying power (ether) he holds. There is not a need to solve a problem to be

able to mine like in Blockchain. This algorithm was created to solve the underlying issue of

PoW, which is energy consumption.

• Proof of Burn (PoB) - follows the principle of “burning” the coins/tokens held by the miners

that grant them mining rights once they have been used. This algorithm aims to stop the

double spending of tokens, one of DLT’s most dangerous attacks.

• Proof of Elapsed Time (PoET) - Intel developed this algorithm for their Hyperledger project,

and it enables its permissioned networks to elect leaders (who proposes the next block).

PoET algorithm generates a random wait time for each node, and each node has to sleep for

the duration of that random time. The first peer to wake up from their sleep wins the mining

rights of the new block. The setback with this algorithm is the need for fault-proof software

to generate the times randomly.

• Practical Byzantine Fault Tolerance (PBFT) - designed to be able to handle byzantine faults.

A three-phase process requires a node to receive votes from 2/3 of the other existing nodes

on the network. This algorithm helps in preventing spoofing and to detect altered messages

sent from malicious nodes [12].

A concept existing in DLT implementations related to consensus is the fork. A fork occurs

when, for some reason, nodes do not reach a consensus in the expected time. Normally, this is

due to upgraded versions on some nodes and older versions on others [29]. There are two types of

forks:

• Hard Fork - older nodes and newer ones cannot coexist on the same chain with their differ-

ences in protocol, so a hard fork occurs in which two chains are being built;

• Soft Fork - in this case, older protocol nodes can still interact with the chain as long as they

respect the new protocol rules implemented in the newer software version. Both new and

old nodes can still work on the same chain and. Eventually, after some amount of time, the

old nodes upgrade.

2.1.6 Oracles

A DLT oracle is any device or entity that connects a DLT with off-chain data (data that is not in

the network, for example, an external API to check the weather conditions in which a product

is kept). In other words, an oracle is a smart contract that serves real-world data at the request

of another smart contract in the chain so that it can execute the agreement [3]. This has to be
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implemented in the network with care because it can centralize it [3]. For example, if an API is

called to check a product’s price a moment later after another peer does the same, the value can be

different, invalidating the transaction in that case. A representation of this service is depicted in

Figure 2.5.

To battle the issue at hand, one can use a decentralized oracle network like Chainlink 1. This

technology possesses a consensus system close to that of blockchain. By using this platform, we

can integrate the DLT with real-world data in a safer way that helps fight malfunctions” [11].

Figure 2.5: Oracle service representation.

2.1.7 Implementations

The following sections contain DLT implementations that are relevant to this study. Furthermore,

the differences and similarities between them are analysed to find the best approach when applied

to a supply chain in an agricultural domain. This information is all summarized in Table 2.2.

Bitcoin

Bitcoin is the most well-known blockchain implementation in the world. It was invented by

Satoshi Nakamoto in 2008 [33]. This is a decentralized, distributed, and public network. Because

of its public nature, everyone in the world can join and interact with the network. This technology

uses a proof-of-work algorithm where each user (miner) has to solve a computationally difficult

problem to ensure the validity of new transactions. This mining, which is, in other words, a sort of

race between every participating node in the network, provides users with a monetary reward for

the energy consumption that was spent solving the problem. However, it creates a considerable

1 Chainlink - https://chain.link/ Accessed on: January 2021
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world energy problem.

Ethereum

Ethereum is an open-source DLT technology that features smart contracts through its virtual

machine(EVM), allowing developers to develop blockchain applications around it. These con-

tracts are immutable and are used as functions. Ether is the cryptocurrency that is the base of the

Ethereum network, and it is the currency utilized to pay transactions fees, which go to the net-

work’s miners. Each account has a balance of Ether and can transfer ETH to other accounts of its

choice.

Hyperledger Fabric

Hyperledger Fabric is a private DLT system. Linux Foundation created it, and it presents a

flexible design. Its most differentiable feature is being able to contain multiple ledgers within its

network as opposed to other implementations with only one ledger [15]. Another advantage is its

versatility. One can plug different consensus algorithms or encryptions which increases the use

cases in which the platform can be used.

Hyperledger Sawtooth

Sawtooth is a software framework that can suit a different number of use cases. As Hyper-

ledger Fabric, Sawtooth also allows choosing different consensus algorithms, but, on the other

hand, it differentiates from Fabric on the permission access. Sawtooth allows choosing between

both permissioned or permissionless network implementation. This implementation is highly

modular and it contains multiples SDKs in different languages such as Python, Javascript, Go,

etc.

Hyperledger Burrow

This DLT implementation can be seen as a private deployment of Ethereum, which means that

only authenticated peers can execute code [15]. This platform utilizes Byzantine fault-tolerant

Tendermint 2, which works with authorized validator nodes. One of the disadvantages of this im-

plementation is that the network can fail if more than one-third of the validators are malicious or

down [38].

2 Tendermint - https://tendermint.com/ Accessed on: June 2021
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R3 Corda

R3 Corda 3 is a public but permissioned implementation of the blockchain logic built for

supporting financial services. Corda presents extreme flexibility when it comes to its consensus.

It allows its notary nodes to pick what type of consensus to utilize. Since its consensus relies

only on specific nodes validating the transactions, the performance is superior when comparing

to a network using, for example, a PoW algorithm. A differentiating factor of this solution is the

evolution Corda provides when it comes to smart contracts. In this network, the smart contracts

contain not only code but also legal prone (logic to support legal regulations) [43].

Table 2.2: Overview of DLT Implementations utilizing Blockchain.

Implementation Permission Access Consensus

Bitcoin Public PoW

Ethereum Public PoW

Fabric Private PBFT

Sawtooth Public or Private PBFT, PoET, and Raft

Burrow Optimized for Public but can be Private Tendermint

R3 Corda Private Pluggable

2.2 DLT for Agricultural Supply Chain Management domain

This section presents the problems in the current supply chain and the benefits of applying DLT

in an agricultural supply chain. Supply chains have some inherited problems like traceability

of food items, dispute resolution, digitization of the data and DLT possesses the capabilities of

presenting a solution to these issues [13]. Making information safe and available to every actor

in the chain will improve efficiency(making the network more Farm-to-Fork) and allow for better

cooperation between the organizations. By using this technology, the immutability property can

flag any adulteration of data by a hostile peer [36].

Despite those advantages, the use of DLT in SCM still presents some disadvantages. Chang et

al. [13] state the top challenge for blockchain implementation is the ROI (return on investment),

especially in an agricultural context compared to, for example, big technological companies. This

is due to the costs compared to the monetary advantages of implementing a DLT in an agricultural

SC. Another issue could be standardizing the data. Although there have been efforts deployed

to developing standards so that there are no conflicts between networks, this is still a significant

problem in this context [34]. Finally, the decentralization nature of the network allows for peers

to be scattered around the globe. Because they are not in the same countries, different laws and

regulations might apply, complicating the development of the logic in the ledger’s smart contracts.

3 Corda - https://www.r3.com/ Accessed on: June 2021
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Jabbari et al. [21] states that one of the biggest problems of DLT for a food supply chain is the fact

that most of the technology used to keep track and provenance of the food along the chain (RFID,

temperature and humidity sensors, etc.) can be easily replaced or tampered with which defeats the

whole purpose of the implementation.

For farmers, the most influential factor in adopting DLT is the cost. Keeping the cost low

and the application simple is vital when it comes to these actors. A distributed ledger solution

lets farmers have forward traceability, which can improve a farmer’s knowledge of the network,

improving the actor’s ability to plan its harvesting and delivery schedule [27]. Furthermore, a

farmer can grade its crops before delivery to decrease product rejections further along in the chain.

Currently, transporting a product between continents takes cooperation between multiple enti-

ties and even more paperwork data. The digitization that would be inherited by applying DLT to

the logistics part of the supply chain can make this process digital and, therefore, faster.

When it comes to the end-consumer, a DLT solution allows a customer to check the full prove-

nance of a product, including the conditions in which it was kept. In other words, a person would

be able to authenticate and verify the quality of a food item. This would increase customer satis-

faction while giving an organization an advantage over its competitors [24].

2.3 Implementation in Agricultural Supply Chains

This section presents relevant implementations of the dissertation. Firstly, subsection 2.3.1 is

used to analyse the implementation of DLT by Walmart in cooperation with IBM to transport

perishable goods(mango, pork). Subsection 2.3.2 discusses Tradelens, by IBM and Maersk, which

is a global blockchain developed by the two companies. It also presents Provenance along with its

pilot project. Furthermore, OpenSC attempt to improve the fish supply chain in case is analysed

and then, finally, Decapolis, which is a Jordan based startup providing knowledge to developing

countries farmers, is presented. All of the analysis on the featured case studies attempt to approach

why that technological solution was implemented and differentiating factors such as IoT devices

used, for example.

2.3.1 Walmart and IBM

Walmart, which is a retail organization that operates grocery stores and hypermarkets, partnered

with IBM to implement a blockchain system to improve food item’s traceability. The objectives of

the company were to increase traceability, transparency and increase food safety. This technology

was applied to both Mangoes from the Americas, and pork from China [25].

The platform was developed using Hyperledger Fabric and was centered around allowing ac-

tors in the entire supply chain to access information about a product’s provenance. In this imple-

mentation, there are, both for the mangoes and the pork, sensors and IoT devices integrated with

the chain that help the network gather even more information. An application was developed that

allows every user to both insert data into the network regarding the conditions in which the product
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is kept (temperature, pesticides that were used in its development) and search for the origin of a

product in case of, for example, rotten items [5].

Using this DLT, Walmart Vice-President of Food Safety Frank Yiannas stated that it was able

to reduce the time it takes to scan a mango’s origins from seven days to only 2.2 seconds [25].

IBM then followed this project by creating IBM Food Trust 4 to expand their technology to

other organizations and to help increase food security and traceability even further.

2.3.2 Maersk and IBM - Tradelens

Maersk is the biggest shipping organization in the world. The company discovered that for a single

product to be shipped from Kenya to Europe took “200 separate communications and interactions

among nearly 30 organizations” [13]. Additionally, it is estimated that 15% of transportation

costs in the global market are due to time spent handling paperwork [19]. To try and resolve this

issue, Maersk partnered up with IBM to develop a blockchain solution that would allow for faster

shipping and tracking. Ibrahim Gokcen, CDO at Maersk stated that this project would reduce

products cost for the end-consumers but also improve the accessibility to the supply chain for

actors from developed and emerging countries [19].

This is a platform where actors can share transaction data transparently and safely. It uses

smart contracts to manage inter-organizational business processes. TradeLens can be split into

three different components: Network, Platform and Applications/Services. Like the solution in the

previous section, IoT devices were used in the implementation. This implementation of IBM and

Maersk is a permissioned blockchain where all participants know each other and are previously

authorized to participate.

As for the results, Maersk estimates that TradeLens was able to reduce the time of a shipment

of materials to the U.S. by 40% 5.

2.3.3 Provenance

Provenance 6, a London-based startup, started in 2013 with a desire to channel the power of block-

chain for social good by using it to impact food supply chains. This enterprise provides companies

with a way to implement blockchain solutions in their respective domains in order to increase its

transparency, in a business or product level. The company’s CEO stated that Provenance is driven

because people were “very concerned with how this data is presented to consumers, and not just

end consumers but consumers along the chain”. In other words, the problem presents itself not

only in hiding or altering information from the end-consumer, but also between cooperating ele-

ments in a product’s supply chain.

4 FoodTrust - https://www.ibm.com/blockchain/solutions/food-trust Accessed on: January 2021
5 https://newsroom.ibm.com/2018-08-09-Maersk-and-IBM-Introduce-TradeLens-Blockchain-Shipping-Solution

Accessed on: February 2021
6 Provenance - https://www.provenance.org/ Accessed on: May 2021
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The company pilot project saw them giving a digital token to every caught fish by some small-

scale fisherman organization in Indonesia. They provide the worker with a phone with its pilot

application in it and, every time the actor catches a fish, he registers it into the mobile application.

After the fish goes through the entire supply chain, the end-consumer could then check, using its

digital token, the entire history of the fish from the day it was caught to the transportation details.

Provenance’s mission is to involve more actors and small companies from developing coun-

tries in the current technology landscape. However, the company’s CEO warns that despite block-

chain providing trust and transparency, the industry is dominated by financial services and greedy

venture capitalists 7 which could stop its evolution in this context.

Since its pilot project, the organization is building on Ethereum and developed some projects

worth mentioning. One of which is its cooperation with Princes Tune. Princes is a significant

European food conglomerate and is currently utilizing blockchain technology to fuel its “Check je

Vis” application. This work allows people to check provenance of the tuna they are buying [2].

2.3.4 OpenSC

Like Provenance, OpenSC 8 is a company proving an increase in food supply chains transparency

through the use of blockchain solutions. The company helped Austral Fisheries track its Chilean

sea bass products throughout its entire global supply chain. This was done in order to help combat

the amount of illegally caught fish in the world.

The difference between this project and Provenance pilot is that OpenSC integrates the block-

chain with multiple IoT (Internet of Things) devices to help collect data that enriches the available

information in the network. On top of that, OpenSC also utilizes a machine learning algorithm de-

veloped by the company to ensure the fish was caught in legal areas. After being caught, each fish

is tagged with an RFID and the GPS information of the ship it was caught by which allows Austral

to then share that data with its direct consumers. All of the collected data was made available in a

dashboard so that Austral could use it to further improve its operation and logistics 9.

2.3.5 Decapolis

Decapolis 10 is a Jordan based company also utilizing blockchain for slightly different reasons.

They encountered the problem that small and uneducated producers with their lower quality crops

could not compete with the healthier crops the big organizations were producing. They pointed

out bad water supply and lousy food safety general knowledge as part of the problem.

In cooperation with the World Food Programme, they launched a pilot private blockchain

solution to trace the products from the farm until its last phase. Decapolis also taught the struggling

small farmers better agricultural practices such as using pesticides and how to test the water and
7 https://www.coindesk.com/provenance-channeling-blockchain-social-good Accessed on: June 2021
8 OpenSC - https://opensc.org/ Accessed on: May 2021
9 Austral - https://opensc.org/case-studies.html Accessed on: May 2021

10 Decapolis - https://www.decapolis.io/ Accessed on: June 2021
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the soil for detrimental agents that may be in it. To conclude, this platform allows the smaller farm

holders to produce better quality products which will increase their income while putting better

quality products on the market for all of the area’s population 11.

An overview containing all these examples of implementations is presented in Table 2.3.

Table 2.3: Overview of Real World Implementations utilizing Blockchain in Agricultural SC.

Case Primary Reason for the Project Technology

Walmart and IBM Traceability, Transparency, and increase food safety Fabric

Tradelens Reduce shipping time and Product Cost Fabric

Provenance Food Data Fraud, Companies from Small Countries Ethereum

OpenSC Food Transparency Ethereum

Decapolis Help small farmers and organizations Private

2.4 Chapter Summary

In this chapter, we began by analysing the evolution of ledgers and, specifically, Distributed Ledger

Technology was presented. We explored DLT definitions, and its most utilized types were ex-

plained (blockchain, hashgraph and DAG). Following, we summarized inherent properties to a

DLT system, detailing some of them, such as security or scalability. The most important design

features of a DLT implementation are its consensus mechanisms and smart contracts, explained

in detail. Furthermore, different types of DLT implementations were listed. To provide context,

the chapter’s second section contains an analysis of DLT solutions for the Agricultural SCM do-

main, including advantages for all the multiple actors along a supply chain and bottlenecks for

its adoption in such domain. To conclude the chapter, real-world examples of DLT solutions to

agricultural problems were presented.

11 https://innovation.wfp.org/project/decapolis Accessed on: June 2021
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This chapter presents the problem currently found in Agricultural SC while addressing the

implementation design and structure of the DLT solution chose to help perform this study. First,

section 3.1 identifies the current problems in current supply chains in section. Following, section

3.2 presents the research questions that this study will try to fully address and provide a complete

answer to. Section 3.3 discusses the possible solutions that were investigated in order to provide

a solution to the problem. Finally, section 3.4 contains implementation details and the overall

structure of the chosen solution.
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3.1 Problem definition

Supply Chain Management aims to maximize customer value and gain an advantage when com-

paring the business to its competitors. This can be done by improving the flow of either raw or

finished products in the network.

Currently, in agricultural supply chains, this concept presents some flaws. Food is a very

fragile good which can be subject to a multitude of possible malicious acts performed by those

who wish to gain something from it. Providing a secure way to store, transfer and visualize data

regarding food items is a key to surpass the obstacles that are currently present in Agricultural

Supply Chains.

In this context and in order to maximize customer value, one of the main factors one can opti-

mize is the time it takes for actors to execute transactions between each other and along the chain.

By lowering this time, we speed up the process, reducing the time it takes for a product to go from

the production phase to the end-consumer. This has a direct influence on all the actors involved

by delivering better and fresher products. Furthermore, another important detail to consider is the

high usage by different users. In a centralized solution, if the system cannot deal with the high

usage of transactions at a certain point, the chain can be disrupted. Consequently, agricultural

products can lose quality or even go bad.

One of the most essential segments of a complete supply chain is its certification phase. This

part of the SC (Supply Chain) was chosen for this study because it usually contains a lot of back-

and-forth communication between the producer and the certifying entity. Commonly, this is a

process that relies on communication either via e-mail, phone or a centralized solution that does

not provide sufficient security and trust levels since those methods can be easily tampered with.

For those reasons, studying the performance of a decentralized solution to this problem is even

more relevant.

3.1.1 Certification process

Meuwissen et al. [30] states that “certification is the (voluntary) assessment and approval by a

(accredited) party on a (accredited) standard”. In other words, and the agricultural domain, it can

be said that the certification phase is the process where a certifying entity provides an agricultural

producer with an official document attesting to the origin, quality, and safety of a specific product.

The first step to a certification process of agricultural goods is when a producer registers agri-

cultural goods on a system with its properties (name, quantity, etc.). Subsequently, a request for

the certification of such product is made to a certifying entity.

Three scenarios were found that describe the most standard practices in which a certification

process can occur in an actual situation within an agricultural domain. The most basic one consists

of having the responsible certifying agent validate the product’s properties and then issue the

certificate that will later be used to prove the product’s quality and integrity. This action is shown

in Figure 3.1.
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The second scenario requires the certifying entity to perform an inspection on the producer’s

facilities, and product 1 2. Furthermore, they will submit a report explaining that the producing

operation complies with certifying industry standards.

The third scenario involves the certification report indicating some failures in the operation,

which will involve an extra step of communication from the producing company telling the certi-

fying organization that the changes to fulfill the requirements were made. Test scenarios 2 and 3

are represented in Figure 3.2 in green and purple, respectively.

The way these three different processes were replicated in the blockchain is detailed in section

3.4.8.

Figure 3.1: Test scenario 1.

3.2 Research Questions

We aim to tackle the problem found in Agricultural Supply Chains with a Distributed Ledger

approach that can help solve many of the issues encountered. This dissertation strives to find if

a DLT solution is well fitted and capable of efficiently dealing with such a supply chain. This is

achieved by testing the network with different system designs and block characteristics. On top of

that, it raises the hypothesis question:

DLT network for Supply Chain Management of agricultural products provides a trustworthy,

secure, traceable, immutable, and affordable solution to every actor involved in the chain while

lowering transaction costs and improving food quality.

For a decentralized solution to be adequate in the AgriFood Supply Chain domain, it needs to

help fix the problems inherent with utilizing a legacy centralized ledger and present an efficient
1 https://www.usda.gov/media/blog/2012/10/10/organic-101-five-steps-organic-certification Accessed on: March

2021
2 https://www.qcsinfo.org/food-safety-gaps/ Accessed on: March 2021
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Figure 3.2: Test scenario 2 and 3.

way to operate it. There is a couple of important system design choices and attributes that can help

study a solution’s performance: the number of the nodes in the network and batching transactions

together.

Additionally, we find that answering these research questions can provide extra information

when concluding if the solution we propose is scalable and reliable:

• RQ01 - How does block size bottleneck the network?

• RQ02 - Does putting transactions into batches (sets) of transactions help the network per-

formance?

• RQ03 - What effects does the network size (number of nodes) have on the system perfor-

mance?

3.3 Hyperledger Sawtooth

Several blockchain implementation options were analysed before a decision on the underlying

technology was performed. Ethereum, for example, is the most used blockchain technology in
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the world. However, its transaction costs (ether) are significant and not the best approach in the

context of agricultural goods.

Hyperledger Fabric was another analysed technology. Although it has some significant advan-

tages like, for example, being able to build multiple layers of chains (multiple supply chains in the

same network), the fact that it only supports the implementation of permissioned networks was a

deterring factor.

Hyperledger Grid 3 is a promising project that originated from the Sawtooth supply chain

dedicated project but was not chosen for this dissertation because it is still in the incubation phase.

Hyperledger Sawtooth was the underlying blockchain implementation chosen to perform this

study in the SCM domain, specifically in the certification phase. This technology provides ex-

treme flexibility not only by having different methods to achieve consensus (see Section 2.1.5) but

also because of its modular design. Furthermore, this software allows for parallel execution of

transactions that can consequently increase its transaction rate capability.

In order to test the blockchain implementation and answer this study’s research questions,

two different experiments will be run using different Sawtooth configurations and network sizes.

Following the experimentation, metrics will be extracted out of these tests, which will help validate

the hypothesis. Further detailed explanation on Chapter 4.

3.4 SmartAgriChain Technical Implementation

This section explains the specific implementation of the Sawtooth underlying blockchain technol-

ogy. This prototype is designed for the agricultural supply chain domain and is utilized to perform

a study in order to validate this work’s hypothesis.

3.4.1 Structure

SmartAgriChain is divided in 5 components as detailed in Figure 3.3:

• Frontend Client: frontend built using ReactJS 4 that serves to interact with the blockchain

by submitting requests to the Rest API via proxy (Server);

• Rest API: used to connect the client to the nodes;

• Server: built using Express 5. It is utilized as a proxy to serve requests from the browser to

the Rest API;

• Node: contains the main logic of the service in its Transaction Processors (TP), particu-

larly the SAC Transaction Processor. The TP is responsible for executing and handling the

payload of a transaction. More details can be found at section 3.4.5;

3 Grid - https://www.hyperledger.org/use/grid Accessed on: May 2021
4 React - https://reactjs.org/ Accessed on: June 2021
5 Express - https://expressjs.com/ Accessed on: June 2021
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• Kotlin client: extra application used to feed requests to the network to get performance

metrics analysed later in chapter 5.

Figure 3.3: SmartAgriChain structure specification.

3.4.2 Sawtooth Validator

The Sawtooth Validator is one of the main components in the Sawtooth network design. It has

a multitude of responsibilities that are critical to the system. First, the validator oversees all the

connections between the nodes (this is what allows the nodes to establish communication). Fur-

thermore, it must communicate with the other nodes to reach a consensus and maintain the global

state. The global state is another name for the set of chained blocks every node contains. By

maintaining consensus, every node contains the same state which is of significant importance to

maintain the network’s immutability. Finally, this component receives transaction requests and

sends them to the correct transaction processor for further validation (section 3.4.5).

There are two ways Sawtooth can reject transactions. One of which is when the validator is

full of transactions to process and its queue has also reached full capacity. The other is called back

pressure test and it helps prevent Denial of Service attacks. This attacks are executed in order to

stop a system from being accessible to its users. Following the system being overwhelmed it will

come back to its normal state of processing transactions.
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3.4.3 Sawtooth REST API

The Sawtooth REST API is an interface used by a client to communicate with the validator compo-

nent mentioned in section 3.4.2. This communication is done through HTTP requests and allows

to submit transactions or query blocks (the API treats the validator as a black box). Furthermore,

the developed React Client has to establish the communication to the Rest API by using a server as

a proxy because the Sawtooth component does not support CORS (cross-origin resource sharing).

Another Sawtooth feature is the batching of transactions. Blockchain technology allows for

the transactions to be put and committed together. It is important to note that they are submitted

according to their order inside the batch, so if they contain dependencies, it is essential to be careful

when setting the batch request. We will test the effect batching has on the system’s performance

in the experiments of this study.

3.4.4 Collections

In order to prove the hypothesis and to study the performance of a DLT implementation in a

certification process context, a series of data collections were defined to store in the system and be

used in the experiments.

This implementation of the Sawtooth blockchain holds four different collections, explained

below, and its fields are specified in Table 3.1:

• Organization: collective entity with associated details. Each organization object can have

multiple associated agents via its address (details explained in section 3.4.6);

• Agent: a single entity that can be part of an Organization and perform actions in the chain.

An example is, for instance, creating or altering either a product or a certification process.

• Product: goods or a set of goods (batch). One of the most important aspects of a product is

its ownership. A product can have an owner (Agent). It also allows for a vast range of types

of products (simple or created using multiple simple components, etc.) since it contains

optional fields that allow customization;

• Certification: current state and some core data of a certification process and the steps that

make such process.

3.4.5 Transaction Processor

Like Ethereum (section 2.1.7) has the concept of smart contracts, Hyperledger Sawtooth contains

its Transaction processor (TP) to validate the business logic in the request’s data. In other words,

this is the component responsible for the execution of a transaction in the network.

Sawtooth possesses multiple built-in transaction processors like the settings TP or the identity

TP which are used to add or change in-chain network policies. This is a way of, for example,

altering consensus settings while keeping the network operational.
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Table 3.1: Collections in the Hyperledger Sawtooth blockchain.

Agent Organization
docType: String
name: String
active: boolean
roles: List<Role>
publicKey: ByteArray

docType: String
name: String
address: String
ID: String

Product Certification

docType: String
name: String
custom: Map<String, Any>
onwerPKey: ByteArray
producerPKey: ByteArray
productionDate: Long
expirationDate: Long
quantity: Int
components: List<String>
description: String

docType: String
ID: String
productID: String
certificationType: String
timestamp: Long
currentStep: Int
numberOfSteps: Int
assigneePKey: ByteArray
certificationPKey: ByteArray
producerPKey: ByteArray
certificationStatus: Enum

The custom transaction processor for this network was developed using Javascript, and it is in

charge of handling the request’s payload.

To communicate and submit transactions, a user must create its identity with a pair composed

of a public and a private key. He utilizes this authentication mechanism in all of its interactions

with the system.

The data handling is made of three distinct phases. The transaction processor first starts by

deserializing the data encoded in Protocol Buffer (Protobuff). Afterwards, the payload is processed

depending on the collection it serves (product, agent, organization, certification) and its respective

fields. For example, a specific collection field might have a size limit. The final phase consists of

serializing the data so that the transaction can go through and be inserted in the chain, altering the

ledger state. This process is shown on Figure 3.4.

Figure 3.4: Transaction Processor phases.

3.4.6 Addressing

Addressing is one of the main implementing details one must look to when deploying a Sawtooth

Network. With this technology, queries are always based on the addresses in the transaction.
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Sawtooth stores its data in a Merkle Tree (see section 2.1.1). In this network design, each leaf

node can be accessed through a 35 bytes address (70 hex characters).

Every sawtooth address begins with six-digit prefix used to let the validator know to which

transaction processor it should send the data (namespace prefix). Sawtooth leaves the rest of the

address to be thought out and designed by the developers. One of the main advantages of address-

ing with a transaction family prefix is that since Sawtooth completely separates its application

level (transaction processor) from the network core, it can utilize the same network for different

applications other than SmartAgriChain. This is possible due to each application having its own

prefix.

Following the prefix, we have a two-character indicator representing one of the four collections

(either Agent, Organization, Product, or Certification). The remainder of the address, which is 62

characters long, is interpreted based on the collection identifier used in the previous space.

For example, the agent collection has two equal-sized parts in its custom 62 characters long

section. The first contains the organization ID, and the second contains the agent ID. All of these

fields are generated utilizing cryptography hash algorithms (in this case, “sha()” function). To

query all the agents belonging to a specific organization, we only have to use a partial address

without the agent section. An example of an Agent collection address is shown in Table 3.2.

General Addressing sections are depicted in Figure 3.5.

Figure 3.5: Addressing in Sawtooth.

Table 3.2: Example of Agent collection addressing.

Transaction Family Collection ID Organization ID Agent ID

4c0aba ed sha (org,31) sha (agent,31)

3.4.7 Consensus

Hyperledger Sawtooth gives the developer the possibility of choosing between four different types

of dynamic consensus algorithms. These are the PBFT, PoET (SGX or CFT), Raft, and Devmode

(the first three are explained below). All of these algorithms have its advantages and disadvantages.

Devmode was firstly used in order to develop the network and then PoET was chosen in the

deployment phase. The reason for these choices is detailed below.

Sawtooth devmode consensus is equipped to be used in development to test a transaction pro-

cessor with one single node. Regarding Proof of Elapsed Time, this is a byzantine fault-tolerant
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(BFT) algorithm where every participating node waits for a randomly distributed time value as-

signed by a trusted timer. This time is free of malicious intervention because it is obtained via Intel

Software Guard Extensions (SGX), a TEE. A TEE (Trusted Execution Environment) is software

that runs a particular set of instructors in a protected environment in memory. After, the first node

that finishes its waiting period can mine the upcoming block. In other words, the node that wins

that election is the elected leader. After that, the block is easily verified by the remainder of its

peers, and the process repeats itself 6. This process is depicted in Figure 3.6.

One of the most notable advantages of this algorithm is the efficiency created in allowing the

processor of the miner to sleep instead of solving a computationally heavy problem, as it happens

with blockchains utilizing PoW. In that time frame, the processor can then focus on other tasks

or requests. Furthermore, Proof of Elapsed Time does not rely on any kind of cryptocurrency

to function which largely weights in a Supply Chain Management implementation since some

transactions might not involve monetary affairs.

Sawtooth contains a simulator of this algorithm that does not require specific hardware. It is

called PoET CFT since instead of using the SGX, it is simulated in the Sawtooth system. This

algorithm is Crash Fault Tolerant (CFT) because a trusted agent does not give the time for each

node. Despite that security difference, we chose to implement this system for testing with this

algorithm since it does not need specific hardware for its execution.

Figure 3.6: Proof of Elapsed Time.

6 Sawtooth Docs - https://sawtooth.hyperledger.org/docs/core/releases/latest/ Accessed on: June 2021
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3.4.8 Certification process in Sawtooth

To study and analyse this study’s hypothesis, certification processes must be committed through

transactions into the blockchain.

The three scenarios detailed in section 3.1.1 are replicated in this dissertation by using the

Certification collection with a various number of steps. This can be either 1, 2, or 3 total steps.

For that purpose, a test class for the whole process of certification was developed, which

allows simulating the insertion of a certification process and its completion. This class was used

to mock the entire certification scenario and prove this network’s purpose of allowing producers

and certifying entities to create or alter a certification process.

We will assume the network is empty and does not contain any actor or organization registered

to explain the whole process.

The process of certification in the blockchain is depicted in Figure 3.7, and it can be divided

into three main phases:

Figure 3.7: Certification process phases.

• Actors insertion phase - phase in which the organizations and the actors responsible for the

certification are created in the system; Firstly, two organizations are inserted using a name

and an address. Following this, we need to set up the actors that will later interact in the

certification process. Two different agents are inserted in the network through two different

transactions with their names, roles, public key. Another important implementation detail is

that we can associate the inserted agents with their organizations via the address (see section

3.4.6. This segment is the one that initiates the whole process of certification. By inserting

the actors in the network, we can then verify ownership of the products or certifications and

apply logic accordingly if it is required;
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• Product insertion phase - in this phase, the product subject to the future certification will

be sent to the network. In this transactions payload, we can provide the following data:

product’s name, owner’s public key, quantity, and product origin information like producer

identification through its public key, producing data, expiration date. Depending on if the

product is a complex item with multiple products used in its production, we can also provide

a list of components used to make the item. It is important to note that product details can

be modified. The blockchain will always keep a history of the product data and know who

changed it.

• Certification insertion and completion phase - this is the final phase of this scenario. Begins

with the sending of a transaction to the network containing a certification payload. In this

payload, we can have the product, the producer and the organization identifiers, certification

status (accepted, pending, rejected) and certification steps. A certification step is a phase in

which the producer has to submit new information or a file to attest to the product’s quality

and provenance. After the insertion, we have the back-and-forth transactions between the

producer and the certifying agent to fulfill the requirements of the step. After the steps are

covered, the certifying agent alters the certification status to accepted and can provide a

document link with the field certificationDocument;

3.4.9 Unit Testing

To test this network, unit tests in Kotlin were developed for each collection class presented in

section 3.4.4. This is done to validate the insertion of transactions containing each one of the four

collections. These test classes are built to send a request to deliver one transaction with a specific

payload. Following that, it queries the blockchain to check if the previously requested transaction

was successful and if all its information is correctly stored in the blockchain network.

3.5 Chapter Summary

In this chapter, we began by presenting the problem in current agricultural supply chains with a

specification of the certification phase to better understand this study’s scope. After, we discussed

the technology options that could be a fit as a solution to the problem. Following, an explanation of

Hyperledger Sawtooth components and system structure is presented, including information about

its Rest-API, Validator node, transaction processor, addressing of transactions in the network,

and the consensus algorithm specification. We ended this chapter with a description of how a

certification process is replicated in the blockchain solution.
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This chapter contains the details of the experimentation performed on the Hyperledger Saw-

tooth implementation prototype detailed in chapter 3. First, section 4.1 contains the experimen-

tation phases. Following, section 4.2 presents the technology stack that was used to perform the

multiple experiments on the system. Furthermore, section 4.3 provides system details of the ma-

chines where the tests were run. Section 4.4 explains the multiple metrics utilized to compare

experiments and, finally, section 4.5 contains specific details about the tests.

4.1 Experimentation phases

To perform tests, metrics from the Sawtooth network are to be collected and analysed. For that

purpose, the experimentation is composed of two separate experiments. Furthermore, the client is

used to feed the requests to Sawtooth’s Rest API.

We can divide each experiment into four distinct phases that are performed in this order:

• Load Simulation - feed Certification Processes transactions with mock payload to the system

with multiple input rates (4.5);

• Metrics Extraction - extract the metrics (4.4) from the transaction stress tests mentioned in

the previous phase;

35
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• Results discussion - analyse the collected results with a focus on exposing the information

that is more relevant to answer the research questions and to validate the hypothesis (chapter

3.2). Following, a discussion on the data to answer the questions (chapter 5);

• Draw conclusions - conclusions are taken from the experimentation used to answer the

research questions. In this phase of the dissertation, future work and some difficulties faced

in the present study are also presented (6);

The experiment method is depicted in Figure 4.1.

These experiments aim to stress the network to study its behaviour and conclude if it has a

big enough transaction throughput to hold a real-life agricultural supply chain and all of its actors,

organizations, and products. Stress and load tests will be performed to find the limits in terms of

transactions per second, scalability, response time, and system behavior with more participating

nodes.

Figure 4.1: Scientific method of experimentation.

4.2 Test Technology stack

In order to achieve the goal of studying the distributed network and Hyperledger Sawtooth imple-

mentation, we first need to have access to the relevant metrics that will allow us to measure the

system’s performance. System performance is a term that, in this case, can be related to hardware

performance (CPU and RAM) or network response time and transaction execution rate. With a

stress test in which we will try to bring the system closer to its limits, it is important to understand

its limits. These limits can be split into two different categories:

• Network design limit - meaning that a network setting or a certain way of implementing the

system causes a bottleneck (changing the number of transactions per batch).

• Computational limit - meaning the hardware itself is being utilized at its maximum potential

and can not perform any better with the current design.

To extract the desired metrics to prove the hypothesis, a test technology stack composed of

Telegraf 1, InfluxDB 2 and Grafana 3 was required. These software components are individually

explained below:

1 Telegraf - https://www.influxdata.com/time-series-platform/telegraf/ Accessed on: June 2021
2 InfluxDB - https://www.influxdata.com/products/influxdb Accessed on: June 2021
3 Grafana - https://grafana.com/ Accessed on: June 2021
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• Telegraf - open-source server agent used to collect, aggregate, and send system-related met-

rics like CPU and RAM usage to a database. This component is fundamental to analyse the

computational limits;

• InfluxDB - this component is a time-series database (TSDB) developed using Go by Influx-

Data 4. It is utilized as storage for all the collected data. Furthermore, it is responsible for

storing the hardware system metrics sent by Telegraf and the Sawtooth internal metrics sent

by the Validator (section 3.4.2). The latter are important to analyse the network design limit

(transaction processing data);

• Grafana - software used to display the metrics collected by the database. Here we can filter

and query the database for specific data.

These components are running in the genesis node (node responsible for initializing the net-

work and posting the genesis block to the network). Ideally, InfluxDB and Grafana would be

outside this machine because they are extra programs running on the same machine. Regardless

of that need, Telegraf must be on the genesis machine to collect system information.

This scheme is depicted in Figure 4.2.

Figure 4.2: Test stack to measure the desired metrics.

4 Influxdata - https://www.influxdata.com/ Accessed on: June 2021
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4.3 Environment

All the experiments detailed in this study are run in Virtual Machines containing instances of

Ubuntu 18.04. These virtual machines are running in the same network. Furthermore, during the

testing, transaction latency is dependent on network delays.

It is essential to understand that the VM running the genesis node requires extra computational

power compared to the other machines. This particular machine needs that advantage since it

contains services that contribute to the extraction of performance data from the network (Telegraf,

Grafana, and InfluxDB running).

Each non-genesis node is composed of a Fraunhofer AICOS m1 large instance with the specs

being as follows: 0.4 CPU (allocation of 40% of 1 core of Intel Xeon (R) X5675 @3.07Ghz CPU);

1 GB of RAM, and 16GB of disk space. On the other hand, the machine containing the genesis

node has 2GB of RAM, one core of the same CPU, and 16GB of disk space. An overview of these

specifications is presented in Table 4.1.

Table 4.1: System specifications.

Machine type RAM CPU Disk Space

Genesis 2GB 1 16GB

Non-Genesis 1GB 0.4 16GB

This experimentation structure is depicted on Figure 4.3.

Having analysed the hardware specifications, we need to look at Software versions used to

perform this study.

An overview of the software versions utilized in this dissertation is detailed in Table 4.2. The

only service not running on its current latest released version is the database which is InfluxDB,

version 1.7. This occurs due to the lack of compatibility found when trying to run Influx 2.x with

Sawtooth.

Table 4.2: Software versions.

Sawtooth Telegraf Grafana InfluxDB

1.2.6 1.18 7.5.7 1.7

All the applications and services are run using docker services (dockerized) except Telegraf, a

Ubuntu system service.

4.4 Metrics

For experimentation purposes, a set of metrics was selected. These metrics become available to

the user in a Grafana dashboard. Metrics can be split into two distinct categories. The first group
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Figure 4.3: Experimentation Virtual Machine and node structure.

consists of Sawtooth metrics from its Validator:

• Committed Transactions - total number of transactions that were successfully validated and

committed in the network. This metric is useful to see the percentage of transactions that

are commited and the ones that stay pending or are rejected;

• Transaction Execution rate - number of transactions committed to the network consider-

ing a certain time period (transactions per second). An important metric to compare the

performances in the system with different input rates;

• Transaction Processing duration (99th percentile) - value below which 99% of the trans-

actions committed in the network take to be processed. For instance, for a value of 0,1

seconds, this metric means that 99% of the transactions were processed in that time frame.

Percentile metrics have the advantage of being more resilient to outliers when compared to

averages, etc. This data will more accurately tell how much time a transaction takes to be

processed by the TP. We utilized this metric to calculate the standard deviation of the trans-

action processing time, which will be a good indicator of how stable the processing duration

is over a while;

• Pending Batches - number of transaction batches in the queue pending further processing

and validation. It presents a good indicator of the existing cluster of transactions flooding

the system. When this value reaches large numbers, the system starts to reject transactions;
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• Batches rejected (back-pressure tests) - number of batches of transactions that were rejected

by Sawtooth due to the queue being full (explanation on section 3.4.2). An important metric

to know when the system triggers its security measures of rejecting batches to deny Denial

of Service attacks;

The second group of metrics is composed of System hardware related metrics:

• RAM used - total Random Access Memory used by the system during the time it was being

monitored;

• CPU usage (user) - shows CPU used by userspace processes;

Both of these system hardware metrics are used to know how the network is affecting system

performance and, more importantly, know when the hardware components are in total capacity

and, for that reason, are holding the blockchain performance back.

4.5 Validation

In order to validate this study’s hypothesis presented in 1.3, we will study the performance of the

blockchain network with transactions sent to the system at a fixed rate. In order to do so, the

experiment runs a thread that is executed every x amount of milliseconds and for 150 seconds.

The period of 150 seconds was chosen because we believe it is long enough so that the data shows

an accurate depiction of the network’s performance.

To study the scalability of the blockchain solution implemented regarding its nodes, we need

to understand how network design and the number of transactions being sent affect the overall

system performance.

Two different test network designs experiment, each with a different number of nodes in the

network (3 and 5). This increase in the number of nodes in the network is helpful to study the

scalability of the network. In other words, how an increase in the number of network nodes affects

the system’s performance.

Experiment 1 (configuration 1)
In this network design and configuration, we have a system containing three nodes and 100

batches per block. These tests were run with a 50, 100, and 200 milliseconds input rate to be

analysed and discussed. This is a valuable test to address Research Question 01 (“How does

block size bottleneck the network?”). More details about block size and how this experiment

allows to answer this question are presented in section 5.1.

Experiment 1 (configuration 2)
The network structure is the same as in the previous configuration. The difference is how

the transactions are sent. In this experiment, the transactions are sent in couples (batched).

These tests were run with a input rate of 200, 100 and 50 milliseconds to measure the
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impact batching the transactions together (two transactions per batch instead of one) has on

the system which will allow addressing Research Question 02 (“Does putting transactions

into batches (sets) of transactions help the network performance?”).

Experiment 2 (configuration 1)
This experiment is run with a network size of 5 nodes to check whether the increase in node

size bears any changes in the system data collected after the experiment is run. This is a

very important experiment to address if the network can expand in a global Supply Chain

context and will specifically address Research Question 03 (“What effects does the network

size (number of nodes) have on the system performance?”).

The specific input rates and the overview of the different types of experiments run are ex-

plained in Table 4.3.

Table 4.3: Experiments overview.

Experiment 1 - 3 node network E2 - 5 node network

1 transactions per batch 2 transactions per batch 1 transactions per batch

50 ms - 20 t/s 50 ms - 40 t/s 100 ms - 10 t/s

100 ms - 10 t/s 100 ms - 20 t/s 200 ms - 5 t/s

200 ms - 5 t/s 200 ms - 10 t/s -

4.6 Chapter Summary

In this chapter, we explained the experimentation process of this study. It starts by explaining the

experimentation phases (load simulation, metrics extraction, results discussion, and conclusions).

We then present the technology stack set up to collect metrics from the Sawtooth solution (In-

fluxDB, Telegraf, and Grafana). After, we provide details of the system design (Virtual Machines

specifications and Software versions). System hardware and Sawtooth internal metrics that will

help answer the research questions and validate this disseration’s hypothesis are then discussed.

Lastly, the experiments used to validate this study are shown and explained.
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This chapter contains the results of the experimentation conducted on the Sawtooth Supply

Chain solution and testing environment. Section 5.2 presents not only statistical data of the fixed

rate testing with a three node network but also an analysis of the results. Section 5.3 serves the

same purpose but for a network design of five nodes. This will all be done regarding this study’s

domain and its hypothesis.

To summarize what was previously stated in section 4.5, configuration 1 and 2 will try to

answer how does block size and batching transactions together affect the network (RQ01 and

RQ02). Comparing the two experiments with different network designs (amount of nodes) will

answer how network size impacts system performance (RQ03).

5.1 Sawtooth details

In this section, some details about Sawtooth settings that significantly impact this study are anal-

ysed.

Firstly, each block of data is published into the system every 10 seconds (average time). After,

we have that each block only holds a maximum of one hundred (100) batches. It is important to

note that both of these settings were constant throughout the two different experiments.

43
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The mentioned one hundred maximum batches per block value is the default in Sawtooth, and

tuning it into higher values can create some problems in the network. Increasing block size causes

the network to increase the time it takes to publish a new block and communicate that larger block

to all the peers in the system, which can cause the network to fork since the global state is not

maintained so easily.

With those settings in mind, we can summarize that, theoretically, every 10 seconds, the block-

chain can only publish a maximum of 100 batches. If every batch only holds a single transaction,

this will cap the network at a maximum of ten transactions per second (10/s). What happens if we

exceed that input throughput value will be studied in the first experiment since one of the test rates

is 20 transactions submitted per second (section 5.2).

5.2 Experiment 1 - Insertion with fixed rate in 3 node network

In this section, the results of the experiments conducted with a fixed input rate are going to be pre-

sented. The network utilized for this experimentation is built using three nodes. For this purpose,

experiments using different input throughput were deployed. The different chosen values were 50,

100, and 200 milliseconds. These equal 20, 10, and 5 transactions per second. The first (20 trans-

actions per second) surpasses the theoretical limit of 10 transactions per second inherent from the

Sawtooth settings chosen. In this experiment, we will study what happens in that situation where

the input rate is larger than the publishing capacity of the system.

Sawtooth allows to group transactions in batches. Regarding that, and because this work is

in the supply chain product certification domain, we believe that each transaction should be sent

to the network either alone or coupled with another transaction (batch of two) to better depict a

real-world scenario. We will study how a variation in this configuration can alter the performance

on an overwhelmed system between configuration 1 (section 5.2.1) and configuration 2 (section

5.2.2).

5.2.1 Configuration 1

This subsection analyzes and discusses the experiments conducted within a three node network

design with one transaction per batch. This is probably the most utilized use case in this study’s

context of Agricultural Supply Chain since an actor may not want to submit a large number of

transactions at the same time.

It is essential to understand each input rate and how many transactions per second are being

submitted into the system. Firstly, the 200 milliseconds test has an average submission rate of 5

transactions per second (tps) and, therefore, totals 750 committed batches (in this configuration,

each batch contains one transaction). Following, the remaining two tests of 100 milliseconds and

50 milliseconds submit 10 tps and 20 tps, respectively, which totals to 1500 and 3000 total trans-

actions in the 150 seconds in which the test occurs.
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Total number of committed transactions

As a starting point, the total number of committed transactions is depicted in Figure 5.1. In

that plot, we can observe that the faster throughput rate doesn’t equal to more total transactions

committed. In 150 seconds, the 100 milliseconds rate is the one presenting the largest throughput

of transactions committed.

It is also imperative to note that during the 150 seconds, the slower input committed the best

percentage of the total transactions sent. At a 5 tps rate, and in 150 seconds, it committed 720,

which equals to 96% of the total 750 that were submitted. This value is not 100% since the network

only committed the remainder of 30 transactions after the 150 seconds studied period. Following,

the input rates of 100 milliseconds and 50 milliseconds presented a percentage of 76% and 31%,

respectively, on their 1500 and 3000 total inserted transactions.

It is important to note that the transactions that were not committed in the 150 seconds span

were not lost. Due to the higher value of input throughput they were either rejected or are in a

pending state and will be processed when the system has the needed processing power. When

developing an application utilizing this underlying technology, a client should have a workflow

that allows for transactions to be re-sent after they are rejected.

Figure 5.1: Total number of committed transactions in a 3 node network with 1 transaction per
batch.

Transaction execution rate

The transaction execution rate is an excellent metric to study the speed at which transactions

were committed into the blockchain. As we can observe in Table 5.1, the faster input rate (50 ms)

is only able to commit 6,32 batches per second to the network, while the 100 ms test presented a

value of 7,57. It is essential to note that the 200 milliseconds test presented an execution rate (4,8
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batches committed per second) very close to its input rate. In other words, this means the system

was able to process the transactions that were being sent efficiently.

The maximum execution rate occurs in the 100 milliseconds test, which is the best output

value out of the three rate configurations. It presents the best execution rate results since the block

size is being limited to a theoretical maximum capacity of 10 tps (explained on section 5.1).

Standard deviation is used to express how much the values of a metric are different from the

average. This is a good metric to study the instability of the performance in a system. Higher

values of standard deviation mean that the values differ more when comparing to the average. In

this case, when a system has a more significant throughput, it presents a higher standard deviation

which translates to its performance being more unstable. The 50 milliseconds test presented a

larger standard deviation value (4,81) compared to the other two values (4,16 for 100 ms and 4,17

for 200 ms). In other words, and regarding execution rate, we can conclude that the system is more

unstable when we increase the input throughput, which is expectable in this scenario.

Table 5.1: Transaction execution rate statistical data in a 3 node network with 1 transaction per
batch.

Fixed input rate (ms and tps) Average Ex. rate (tps) Maximum Ex. rate Standard deviation

50 ms (20 tps) 6,23 10,0 4,81

100 ms (10 tps) 7,57 15,7 4,16

200 ms (5 tps) 4,8 12,3 4,17

Pending and Rejected Batches

The results in table 5.2 show an expected value of pending batches, with the 50 milliseconds

test being the highest average pending batches with 236,75. This is a very high value compared to

its peers. It is explained by the input throughput (20 t/s) being higher than the network theoretical

maximum processing value (10 t/s) with the defined setting. Some factors with influence on these

metrics are the possible network delays and bottlenecks. This can cause events that should ideally

be received 50 ms apart from each other to be received in bulks depending on network conditions.

Furthermore, we can also note that no tests triggered Sawtooth back-pressure test mechanism

since no transactions were rejected due to the security mechanism (explained on 3.4.2).

Table 5.2: Pending and Rejected batches in a 3 node network with 1 transaction per batch.

Fixed input (ms and tps) Avg. Pending batches Max. Pending batches Total rejected b.

50 ms (20 tps) 236,75 517 0

100 ms (10 tps) 42,69 139 0

200 ms (5 tps) 5,34 41 0



5.2 Experiment 1 - Insertion with fixed rate in 3 node network 47

Transaction Processing Duration (99th percentile)

Following, we detail the results achieved regarding the Transaction Processing Duration (99th

percentile). This metric most accurately depicts how long it takes to process a single transaction

at a specific time (for 99% of the transactions processed). As we can observe in Figure 5.2, at

the end of the 150 second experiment time, all the tests followed different paths until they started

to converge into the same value of around 0,3. This action is explainable by the faster input rate

(50 milliseconds) leaving a more significant amount of batches in a pending state when comparing

to the other tests. As a cause of leaving batches in the pending queue, the system transaction

processing duration value decreases and converges into the values presented by the other two

experiments.

Furthermore, these results are backed up by the data in Table 5.3. We can observe that the

50 milliseconds input rate test presents a higher average transaction processing duration and the

maximum value registered at 0,46 seconds. The instability mentioned in the transaction rate sub-

section is also visible in this table, with a higher value of standard deviation the 50 ms test presents

when compared to the two tests that were within the system settings limit.

Figure 5.2: Transaction processing duration 99th percentile in a 3 node network with 1 transaction
per batch.

Table 5.3: Transaction Processing Duration (99th Percentile) in a 3 node network with 1 transac-
tion per batch.

Fixed input rate Avg. T. Proc. Duration (s) Max. T. Proc. Duration Standard Deviation

50 ms 0,39 0,46 0,048

100 ms 0,31 0,37 0,034

200 ms 0,24 0,28 0,022

Another aspect we have to account for while experimenting is the system limiting factors. We
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have to try to understand better what can be prohibiting the network from operating at its fullest

potential. One of these reasons could be the machines in which the experiments are being run. The

machines not having enough computational power to run the network efficiently can be a factor

that limits system performance. We are trying to analyse this while looking at system hardware

data like CPU and RAM usage.

RAM usage

As we can see in Figure 5.3, the RAM usage value does not change very much when compar-

ing the three tests, and it converges to a value of around 55%. This indicates that the RAM in the

system is not presenting a bottleneck to the network’s performance.

Figure 5.3: RAM usage in a 3 node network with 1 transaction per batch.

CPU usage

As for table 5.4, it presents a distinct behaviour when comparing to the RAM system met-

ric. While the higher input rate tests presented an average CPU usage at around 42%, the 200

milliseconds experiment showed only a 24% usage. Since the average values are very distant

from the maximum system capacity, we can conclude that it is not presenting a bottleneck to the

blockchain solution performance. Nonetheless, it is essential to note the difference in usage when

comparing the two higher throughputs (50 and 100 ms) that presented a value around 42% to the

lower one (200 ms) with 24%. We can also note a significant difference in standard deviation

indicating again that, in the 50 milliseconds test, the whole network was much more unstable.



5.2 Experiment 1 - Insertion with fixed rate in 3 node network 49

Table 5.4: CPU usage in a 3 node network with 1 transaction per batch.

Fixed input rate Average CPU usage (%) Maximum CPU usage (%) Standard Deviation

50 ms 42,78 89,2 25,57

100 ms 42,19 65,6 17,14

200 ms 24,43 56,5 13,87

Discussion

To summarize, we obtained the theoretically expected results in most of the metrics. First,

we have the Sawtooth transaction-related metrics. We noted that the faster input rate of 50 mil-

liseconds did not have the highest transaction execution rate out of the three tests since the system

was over the theoretical limit of 10 tps and was working over its limit. For that reason, in the

50 milliseconds scenario, the transaction processing duration and the average pending batches in

the queue were also much higher than the other two scenarios. Regarding the system hardware

metrics, while the RAM usage was very similar in all of the tests, the CPU usage was much higher

in the 50 and 100 ms experiments, presenting a value of around 42% when comparing to the 200

ms test with 24%.

We can conclude that, based on the low values the system hardware metrics present, in this

experiment, the hardware is not a bottleneck to the system throughput.

Furthermore, we believe the current bottleneck is the number of transactions being published

in each block that is not letting the system process transactions faster while writing them in the

blockchain. There are two different ways to increase this number. Either increase the number of

batches per block (currently at 100) or group more than one transaction per batch. However, in-

creasing the number of batches per block (increasing block size) can negatively affect transactions

processing time and even cause network forks (explained in section 2.1.5) since the nodes take

more time to communicate and transmit blocks, delaying the update of the global state. Another

solution that can be applied is batching the transactions together. That would keep the network

stable while also achieving a higher transaction rate. With that in mind, increasing the number of

transactions per batch to two should allow blocks to hold much more transactions while keeping

the block size at 100 batches. In 5.2.2 we detail how the system performed with two transactions

per batch.

5.2.2 Configuration 2

This subsection is used to explain and analyse the experiments conducted within a three node

network design with every existing batch containing a total of two transactions instead of one as

in Configuration 1.

To summarize, this experiment will double the number of transactions being sent to the net-

work per time unit while leaving the number of batches being sent unaltered. Firstly, the 50

milliseconds rate will submit 20 batches per second to the network (40 tps). After, we have the
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100 milliseconds test, which will send 10 batches per second (20 tps). Finally, the 200 ms input

throughput sends 5 batches per second (10 tps).

In this experiment, we expect a transaction rate increase for all the input rates and a significant

increase in system hardware usage (CPU and RAM). To compare the values obtained in Config-

uration 1 and 2, we will present the values from the second experiment and compare them to the

first set of tests in each subsection analysis.

Total number of committed transactions

Starting the analysis of this configuration, we have the total number of committed transactions,

depicted in Figure 5.4. There is not a surprise in these results since the faster throughput (50

milliseconds) ends up, after the 150 seconds time frame, committing more transactions than the

other two.

It is important to note that the total transactions sent to the system double while utilizing

this configuration. The 50 milliseconds test submits 6000 transactions, while the 100 ms test

sends 3000 transactions and, finally, the 200 ms input rate is responsible for sending 1500 total

transactions in the 150 seconds time frame. Furthermore, the batches being published per second

are the same as in Configuration 1, so the 50 ms test presents 20 batches per second which is still

higher than the 10 batches per second the network can publish.

However, it is very interesting that the 50 milliseconds experiment, because it is still over the

limit in terms of batches per block, is not committing close to what it should (total of around

2500 out of the 6000). The other two rates show much more efficient rates, with the 100 ms test

committing 2100 out of 3000 and the 200 ms presenting a value of 1200 out of 1500 transactions.

To summarize, the two lowest input rates commit almost all of their transactions in due time,

while the 50 ms input rate is only halfway to its total value.

Figure 5.4: Total number of committed transactions in a 3 node network with 2 transactions per
batch.
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Transaction execution rate

As we can confirm based on the data presented in Table 5.5, a faster input rate translates into

a faster transaction execution rate.

The maximum execution rate is 68,6 transactions per second in the 50 milliseconds test. It

is higher than the 55,4 batches/second recorded in the 100 milliseconds input rate, which is what

one would expect. The 50 milliseconds input rate is sending 2 transactions every 50 ms, which

equals a total of 40 transactions per second, while the 100 milliseconds only delivers 20 a second.

Therefore, we can also note that the 50 ms test presents a 44% efficiency rate when comparing

the input with output throughput, which is lower than the 77% the 100 milliseconds experiment

shows.

The standard deviation metric demonstrates the same it did in the first configuration. When

we increase the input rate, the stability of the Sawtooth blockchain decreases, creating a more

significant variation of execution rate values.

Table 5.5: Transaction execution rate data in a 3 node network with 2 transactions per batch.

Fixed input rate (ms and tps) Avg. Exec. rate (tps) Max. Exec. rate Standard Deviation

50 ms (40 tps) 17,81 68,6 21,83

100 ms (20 tps) 15,38 55,4 16,46

200 ms (10 tps) 8,21 23,2 7,95

Pending and Rejected Batches

The results in table 5.6 show an expected outcome since this metric refers to the number of

batches in a pending or rejected state and not transactions. The number of submitted batches in

this configuration and Configuration 1 is the same in each test. Furthermore, there is no sizeable

difference in the data between the two configurations, and a conclusion cannot be drawn from it.

Table 5.6: Pending and Rejected batches in a 3 node network with 2 transactions per batch.

Fixed input rate Avg. Pending batches Max. Pending batches Total rejected batches

50 ms 196,75 549 0

100 ms 34,25 190 0

200 ms 7,38 30 0
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Transaction Processing Duration (99th percentile)

Looking at the data presented in Table 5.7, and comparing to the first configuration’s Trans-

action Processing Duration values, we can conclude that there is not a sizeable difference in the

results. In other words, the time it takes to process one single transaction is similar utilizing the

two different configurations, which is very positive since we are submitting a significantly larger

amount of transactions.

It is important to note that Sawtooth has a feature of parallel scheduling of transactions, men-

tioned in section 3.3, which allows the system to process multiple transactions at the same time.

Without this feature, and if the system took 0,36 seconds to deal with each transaction (value from

the 50 milliseconds test) serially, the network would not be able to process the input rates we are

experimenting with and would present a much slower execution rate.

Table 5.7: Transaction Processing Duration (99th Percentile) in a 3 node network with 2 transac-
tions per batch.

Fixed input rate (ms and tps) Avg. T. Proc. Duration (s) Max. T. Proc. Dur. Std. deviation

50 ms (40 tps) 0,36 0,38 0,015

100 ms (20 tps) 0,33 0,36 0,013

200 ms (10 tps) 0,29 0,34 0,053

RAM usage

When it comes to Random Access Memory usage, the results show the fastest throughput pre-

sented the most usage in RAM, as expected since it is sending more requests to the validator. It is

important to note that there is an increase of RAM usage from around 55% in configuration 1 to

around 80% in this set of tests which is a significant difference (see Figure 5.5).

CPU usage

This metric presents the most differentiating factor for the results found in testing the two con-

figurations. According to the data in Table 5.8 we can see a sizeable difference between the values

of CPU usage utilizing this configuration and the first one. This is due to the CPU being utilized

to process double the amount of transactions it was processing in the previous configuration.

Table 5.8: CPU usage in a 3 node network with 2 transactions per batch.

Fixed input rate Average CPU usage (%) Maximum CPU usage (%) Standard Deviation

50 ms 73,99 93,1 21,03

100 ms 84,51 95,5 13,09

200 ms 35,31 66,1 18,76
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Figure 5.5: RAM usage in the system with 3 nodes and 2 transactions per batch.

Discussion

Using this configuration, we compared the results with the first configuration and noticed

that the system hardware metrics are being significantly more used. However, they are not fully

stressed yet. Therefore, we can conclude that increasing the number of batched transactions would

probably stress the hardware even more and closer to its maximum capacity.

Furthermore, based on the data collected, we believe that this increase in the number of trans-

actions per batch is highly efficient and favorable to the network’s performance. For that reason,

this increase (which is an application design feature) may be one valid way of dealing with block-

chain inherent scalability problem since it allows the network to process more transactions while

keeping its system metrics at a standard usage rate.

The scalability problem is going to be looked at in more detail in the second experiment (sec-

tion 5.3) since the network design contains five nodes instead of three.

5.3 Experiment 2 - Insertion with fixed rate in 5 node network

Having compared how a change in the batch size can alter the network performance, now we will

analyse how a change in the network size alters its output and system performance.

With an increase in the number of nodes in a blockchain network, there comes more com-

munication between each node, negatively affecting the system. We will study this effect when

comparing Configuration 1 of Experiment 1 with Experiment 2. Since this test aims to study the

scalability issue of expanding the network size, there is no need to extract and analyse the input
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rate of 50 milliseconds which helped studied the impact of block size in previous configurations.

Therefore, this analysis contains two different input rate tests, 100 and 200 milliseconds.

Regarding input rates in the test runs, the 100 milliseconds presents 10 transactions per second

and the 200 milliseconds has a rate of 5 transactions per second, the same values of Configuration

1 in Experiment 1.

Total number of committed transactions

Beginning the analysis of this configuration, we have the total number of committed transac-

tions, depicted in Figure 5.6. The values are very close to what we saw on Configuration 1 (720

and 1136 with 200 ms and 100 ms, respectively). When it comes to total committed transactions

increasing the network size does not present a scalability concern.

Figure 5.6: Total number of committed transactions on a 5 node network.

Transaction execution rate

Moving on to the execution rate, as we can confirm based on the data available in Table 5.9,

the first experiment contains slightly higher values which indicates it was processing transactions

at a faster rate, even if it is just a tiny increase.

When it comes to standard deviation, the difference between the two experiments we are com-

paring is slight. However, it gives the edge to Experiment 2 since its standard deviation values are

lower.

To summarize this subsection, even if the transaction execution rate is slower in this experi-

ment, the network does not oscillate its performance as much as in experiment 1.
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Table 5.9: Transaction execution rate statistical data in a 5 node network.

Fixed input rate (ms and tps) Avg Exec. rate (tps) Max. Exec. rate Standard deviation

100 ms (10 tps) 7,11 12,7 3,71

200 ms (5 tps) 4,5 9,2 2,23

Pending and Rejected Batches

Following, in table 5.10, we have an expected outcome. The results are similar to the values

obtained utilizing the first configuration, so the number of pending batches does not change when

the network increases its size from three to five nodes.

Table 5.10: Pending and Rejected Batches in a 5 node network.

Fixed input rate Average Pending Batches Maximum Pending Batches Rejected Batches

100 ms 38,44 145 0

200 ms 8,1 37 0

Transaction Processing Duration (99th percentile)

With regards to the data presented in Table 5.11, and comparing to Configuration 1, we can

point out an increase in Transaction Processing Duration values which backs up the data analysed

in the previous section. In other words, in this second experiment, transactions take more time to

be executed.

Table 5.11: Transaction Processing Duration (99th Percentile) in a 5 node network.

Fixed input rate (ms and tps) Avg. T. Proc. Duration (s) Max. T. Proc. Duration Std. Dev.

100 ms (10 tps) 0,33 0,38 0,047

200 ms (5 tps) 0,29 0,35 0,029

RAM usage

Analysing Figure 5.7, we can note that both of the test values start at 60 and increase slightly

into the 65% range. This is about 10% higher than the number registered in configuration 1.

CPU usage

Regarding CPU, with regards to table 5.12, we can see the values slightly increase from 34%

to 38% in the test with an input rate of 100 milliseconds and from 24% to 26% in the 200 ms run.
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Figure 5.7: RAM usage in the system in a 5 node network.

In other words, CPU usage increases slightly when we inserted two more nodes in the network

design.

Table 5.12: CPU usage in a 5 node network.

Fixed input rate Average CPU usage (%) Maximum CPU usage (%) Standard Deviation

100 ms 37,90 88,8 24,95

200 ms 26,46 54,8 13,41

Discussion

By utilizing this configuration and comparing it to the first configuration of experiment 1, we

can conclude about the system scalability options.

Addressing the comparison between experiences 1 and 2, a slight decrease in the execution

rate and an increase in system hardware usage metrics can be justified by the significantly more

considerable amount of communication a two node increase in the network requires. It is essential

to note that network latency, utilized system hardware, and variance can affect the results. We

cannot conclude that another increase in network size from five to seven nodes or a different

scenario would have the same effect. To summarize, the solution could handle the extra nodes

added to its design with only a small increase in usage and a slight decrease in transaction rate.

These experiment input rates present much higher transactions per second values when compared

to what a real-world AgriFoods Supply Chain would require. Therefore, we can conclude that this

solution is scalable in that scenario.
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5.4 Chapter Summary

In this chapter, we presented the results of the experiments that were conducted for this study. It

starts by comparing the results obtained when experimenting with committing batches with one

transaction and two transactions (with three nodes in the network). We provide the results for

experiment 2 (five nodes), compare the data with the first experiment, and conclude the system.

Furthermore, in this section, we try to address the research questions of this study with the discus-

sion regarding the experiments conducted on the Sawtooth prototype.





Chapter 6

Conclusions

The need for decentralized solutions in agricultural supply chains has been increasing due to the

globalization of the industry. The objective of this work was to test and validate if a DLT, when

applied to an agricultural Supply Chain domain, can become a solution to lower transaction costs

while, by providing the inherent advantages of blockchain, allows to improve the traceability, trust,

and decentralization of product data, as compared to other legacy (centralized) solutions.

6.1 Main Challenges

Regarding technical challenges, blockchain implementations hold many different settings and

structure details one must study and understand to make the best solution. This is due to the

large number of technological advancements this field of study has been subject to in the last few

years, which holds advantages and disadvantages. The main downside is that the technological

landscape is constantly changing, making it hard for developers to make system decisions that can

remain relevant through the mentioned evolution. Another adequate downside is that there is no

clear implementation leader at this point in time, causing fragmentation and several small and not

fully matured/maintained projects.

6.2 Conclusions

This study starts with relevant topics such as DLT, concepts, properties, and different components

being analysed. Next, some of the most used implementation technologies were analysed. One

of which is this study’s underlying blockchain technology, Hyperledger Sawtooth. After, there is

an analysis of DLT solutions in Agricultural Supply Chains which contains both advantages and

disadvantages of its utilization. Case studies regarding DLT in AgriFood SC are then presented

along with their implementation details and primary reasons for implementation. Following, we

explain the details of the developed Sawtooth prototype, focusing on the consensus algorithm used

59
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(POET CFT). This study focused heavily on testing the system and its performance to answer the

Research Questions and validate the hypothesis.

Regarding the research questions, we can conclude that they were addressed in this study.

While research questions 2 and 3 were fully addressed, question 1 was only partially answered.

Research Question 01 involved analysing how the network’s block size affected the system. De-

spite discussing that topic, more in-depth work could be done surrounding that aspect of the solu-

tion.

After, RQ02 centered around the batching of transactions. By comparing two different config-

urations of a network containing three nodes, we concluded that increasing the number of trans-

actions in a batch can slightly increase the system workload but has a significant positive impact

on the execution rate of the transactions. This is an excellent feature for a complete application

with the same use cases. It would make the network more efficient by decreasing the number of

batches holding only one transaction and increasing multiple transaction batches.

Finally, RQ03 addressed the scalability problem found in most blockchain solutions. Increas-

ing network size (number of nodes) causes the nodes to increase the amount of network commu-

nication required to stabilize the system and reach a consensus. This factor can have a significant

effect on system performance. In the solution, while it was proven that an increase in the num-

ber of nodes does negatively alter the production, that effect was slight. The network was being

stressed with a rate scenario that does not represent the normal workload a supply chain in an agri-

cultural domain would sustain. Therefore, we can conclude that building and deploying a scalable

solution regarding a DLT for an agricultural solution is achievable.

Lastly, the hypothesis was validated since the developed network is secure, immutable, afford-

able, a good candidate to provide traceability of agricultural items, and increase visibility across

the entire supply chain network until the end consumer. By utilizing this solution, every actor in-

volved in the chain would process information faster and secure access to immutable information

that would directly improve food quality.

While doing this study, I learned a lot about all the small details about doing a dissertation,

which I could not imagine before this experience started.

6.3 Future work

Future work should address the in-depth study of how a network reacts, practically, to a block

size increase. In Sawtooth’s case, that would be achieved by increasing the number of maximum

batches allowed per published block. It would be interesting to, while altering the block size,

also variate the block publish time. This would allow studying how those blockchain key settings

alter the throughput rate a system of this caliber can withstand and fully address research question

number 1.

Another item that can be addressed in the future is to get specific blockchain metrics instead

of system hardware metrics. For example, having RAM utilized only by the solution and not the
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entire system would allow studying, with more detail, its performance while eliminating outliers

in the collected data.

Furthermore, a study could be performed regarding the time it takes to complete a whole

certification process compared to a centralized legacy system. In this work, we utilized fixed

input rate testing to study performance. However, a direct comparison between centralized and

decentralized when regarding a complete certification process could result in an excellent study to

help further validate the use of DLT in Agricultural Supply Chains.

Future work could also address studying the system with real hardware (raspberry pis, for

example) in different locations of the globe in order to better simulate a global Supply Chain.

Finally, in this study we could not run the solution with a greater number of nodes, for example,

one hundred and this would be a great study. The large increase in network size would provide

extra insight and data regarding the scalability of the solution which would further help validate a

DLT solution in an AgriFood Supply Chain domain.
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applying blockchain technology in shipping. Pomorstvo, 33(2):274–279, December 2019.

[25] Reshma Kamath. Food traceability on blockchain: Walmart’s pork and mango pilots with
IBM. The Journal of the British Blockchain Association, 1(1):1–12, July 2018.



REFERENCES 65

[26] Laura Kopczak and M.E. Johnson. The supply-chain management effect. MIT Sloan
Management Review, 44:27–34, 03 2003.

[27] Malni Kumarathunga. Improving farmers’ participation in agri supply chains with
blockchain and smart contracts. In 2020 Seventh International Conference on Software
Defined Systems (SDS). IEEE, April 2020.

[28] Xiaoqi Li, Peng Jiang, T. Chen, X. Luo, and Qiao yan Wen. A survey on the security of
blockchain systems. Future Gener. Comput. Syst., 107:841–853, 2020.

[29] I.-C Lin and T.-C Liao. A survey of blockchain security issues and challenges.
International Journal of Network Security, 19:653–659, 09 2017.

[30] Miranda P.M. Meuwissen, Annet G.J. Velthuis, Henk Hogeveen, and Ruud B.M. Huirne.
Traceability And Certification In Meat Supply Chains. Journal of Agribusiness, 21(2):1–15,
2003.

[31] Joanna Moubarak, Eric Filiol, and Chamoun Maroun. On blockchain security and relevant
attacks. pages 1–6, 04 2018.

[32] Gopal Naik and D.N. Suresh. Challenges of creating sustainable agri-retail supply chains.
IIMB Management Review, 30(3):270–282, September 2018.

[33] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Technical report.

[34] World Trade Organization. World Trade Report 2018. 2018.

[35] Kirk A. Patterson, Curtis M. Grimm, and Thomas M. Corsi. Adopting new technologies for
supply chain management. Transportation Research Part E: Logistics and Transportation
Review, 39(2):95–121, March 2003.

[36] Simon Pearson, David May, Georgios Leontidis, Mark Swainson, Steve Brewer, Luc
Bidaut, Jeremy G. Frey, Gerard Parr, Roger Maull, and Andrea Zisman. Are distributed
ledger technologies the panacea for food traceability? Global Food Security, 20:145–149,
March 2019.

[37] S. Popov. The tangle. 2015.

[38] C. Saraf and S. Sabadra. Blockchain platforms: A compendium. In 2018 IEEE
International Conference on Innovative Research and Development (ICIRD), pages 1–6,
2018.

[39] G. Thiraviya Suyambu, M. Anand, and M. Janakirani. Blockchain – a most disruptive
technology on the spotlight of world engineering education paradigm. Procedia Computer
Science, 172:152–158, 2020.

[40] Nick Szabo. Smart contracts. Unpublished manuscript, 1994.

[41] Paolo Tasca and Claudio Tessone. A taxonomy of blockchain technologies: Principles of
identification and classification. Ledger, 4, 02 2019.

[42] Ann Terlaak and Andrew A. King. The effect of certification with the ISO 9000 quality
management standard: A signaling approach. Journal of Economic Behavior &
Organization, 60(4):579–602, August 2006.



66 REFERENCES

[43] Martin Valenta and P. Sandner. Comparison of ethereum, hyperledger fabric and corda.
2017.

[44] Junfeng Xie, F. Richard Yu, Tao Huang, Renchao Xie, Jiang Liu, and Yunjie Liu. A survey
on the scalability of blockchain systems. IEEE Network, 33(5):166–173, 2019.

[45] Victor Zakhary, Mohammad Javad Amiri, Sujaya Maiyya, Divyakant Agrawal, and Amr
ElAbbadi. Towards global asset management in blockchain systems. arXiv, 2019.

[46] Rui Zhang, Rui Xue, and Ling Liu. Security and privacy on blockchain. ACM Computing
Surveys, 52:1–34, 07 2019.

[47] Qiheng Zhou, Huawei Huang, Zibin Zheng, and Jing Bian. Solutions to scalability of
blockchain: A survey. IEEE Access, 8:16440–16455, 2020.


	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Hypothesis
	1.4 Approach and expected results 
	1.5 Document structure

	2 State of the art
	2.1 Distributed Ledger Technology
	2.1.1 Storing Transactions
	2.1.2 Properties
	2.1.3 Permission access
	2.1.4 Smart Contracts
	2.1.5 Consensus Algorithms
	2.1.6 Oracles
	2.1.7 Implementations

	2.2 DLT for Agricultural Supply Chain Management domain
	2.3 Implementation in Agricultural Supply Chains
	2.3.1 Walmart and IBM
	2.3.2 Maersk and IBM - Tradelens
	2.3.3 Provenance
	2.3.4 OpenSC
	2.3.5 Decapolis

	2.4 Chapter Summary

	3 Implementation
	3.1 Problem definition
	3.1.1 Certification process

	3.2 Research Questions
	3.3 Hyperledger Sawtooth
	3.4 SmartAgriChain Technical Implementation
	3.4.1 Structure
	3.4.2 Sawtooth Validator
	3.4.3 Sawtooth REST API
	3.4.4 Collections
	3.4.5 Transaction Processor
	3.4.6 Addressing
	3.4.7 Consensus
	3.4.8 Certification process in Sawtooth
	3.4.9 Unit Testing

	3.5 Chapter Summary

	4 Experimentation
	4.1 Experimentation phases
	4.2 Test Technology stack
	4.3 Environment
	4.4 Metrics
	4.5 Validation
	4.6 Chapter Summary

	5 Results and Discussion
	5.1 Sawtooth details
	5.2 Experiment 1 - Insertion with fixed rate in 3 node network
	5.2.1 Configuration 1
	5.2.2 Configuration 2

	5.3 Experiment 2 - Insertion with fixed rate in 5 node network
	5.4 Chapter Summary

	6 Conclusions
	6.1 Main Challenges
	6.2 Conclusions
	6.3 Future work

	References

