

# 5<sup>th</sup> European Conference on Environmental Applications of Advanced Oxidation Processes (EAAOP5)

Book of abstracts

Editor Josef Krýsa

Prague, Czech Republic, 2017

# OPTIMIZATION OF MAGNETIC GRAPHITIC NANOCOMPOSITES FOR THE CATALYTIC WET PEROXIDE OXIDATION OF LIQUID EFFLUENTS FROM A MECHANICAL BIOLOGICAL TREATMENT PLANT FOR MUNICIPAL SOLID WASTE

# <u>R. S. Ribeiro<sup>a,b</sup></u>, R. O. Rodrigues<sup>a,b</sup>, A. M. C. Carvalho<sup>c</sup>, A. M. T. Silva<sup>b</sup>, J. L. Figueiredo<sup>b</sup>, J. L. Faria<sup>b</sup>, H. T. Gomes<sup>a</sup>

<sup>a</sup> Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE-LCM), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal, }rui.ribeiro@ipb.pt).

<sup>b</sup> Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal

<sup>c</sup> Resíduos do Nordeste, EIM, 5370-340 Mirandela, Portugal

Mechanical biological treatment (MBT) plants are an established option to limit the environmental impact of direct landfill disposal, while benefiting from resources and energy recovery. However, a significant amount of liquid stream with high pollutant load is usually generetared in MBT plants. In a previous work, a hybrid magnetic graphitic nanocomposite (MGNC) catalyst – composed by a magnetite core and a graphitic shell – revealed a high performance when applied in catalytic wet peroxide oxidation (CWPO) [1]. Seeking for MGNC catalyst optimization, nickel and cobalt ferrites were prepared in the present work and encapsulated within a carbon shell in addition to magnetite. The material composed by the cobalt ferrite core (CoFe<sub>2</sub>O<sub>4</sub>/MGNC) revealed a superior performance in CWPO, achieving a remarkable abatement of

the liquid effluent collected from a MBT plant located in Portugal [9206 mg L<sup>-1</sup> chemical oxygen demand (COD); 1933 mg L<sup>-1</sup> biochemical oxygen demand; 2046 mg L<sup>-1</sup> total organic carbon (TOC); 14350 mg L<sup>-1</sup> bicarbonates; 3664 mg L<sup>-1</sup> chlorides; 14.7 x  $10^4$  CFU mL<sup>-1</sup> heterotrophic bacteria]. The results obtained in a series of CWPO runs performed at near neutral pH with consecutive reuse of CoFe<sub>2</sub>O<sub>4</sub>/MGNC are given in Figure 1. For that purpose, a magnetic separation system was applied for catalyst recovery after each cycle, the treated water being replaced by a fresh effluent sample. In addition, desinfection of the effluent was also achieved, the treated water revealing no toxicity against selected bacteria.

#### 100 90 80 Conversion (%) 70 60 50 40 30 20 10 1st cycle 2nd cycle 3rd cycle 4th cycle 5th cycle ure 1. COD, TOC, $H_2O_2$ and Figure aromaticity conversions obtained after 24 h in five CWPO runs performed with consecutive reuse of the CoFe<sub>2</sub>O<sub>4</sub>/MGNC catalyst, with pH 6 and $T = 80 \text{ }^{\circ}\text{C}$

COD TOC H,O, Manaticity

## Acknowledgments

This work was supported by: Project POCI-01-45-FEDER-006984 – Associate Laboratory LSRE-LCM funded by FEDER through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI) – and by national funds through FCT - Fundação para a Ciência e a Tecnologia. R.S. Ribeiro and R.O. Rodrigues acknowledge the FCT individual Ph.D. grants SFRH/BD/94177/2013 and SFRH/BD/97658/2013, respectively, with financing from FCT and the European Social Fund (through POPH and QREN). A.M.T. Silva acknowledges the FCT Investigator 2013 Programme (IF/01501/2013), with financing from the European Social Fund and the Human Potential Operational Programme.

## References

[1] R.S. Ribeiro, A.M.T. Silva, P.B. Tavares, J.L. Figueiredo, J.L. Faria, H.T. Gomes, Catal. Today 280 (2017) 184.