
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Development of a multimodal
management platform for patients in

physical rehabilitation

Tiago Luís Salgueiro dos Santos

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Bruno Giesteira

Co-Supervisor: Pedro Cardoso

July 23, 2021

Development of a multimodal management platform for
patients in physical rehabilitation

Tiago Luís Salgueiro dos Santos

Mestrado Integrado em Engenharia Informática e Computação

July 23, 2021

Abstract

Increasing mobile apps accessibility is paramount to reaching more users, namely people with
special needs. Assistive technologies enable users to overcome obstacles when interacting with
smartphones. Multimodal input/output combinations increase the options offered to users, reduc-
ing obstacles present in single-modality applications.

In order to aid clients with special needs at Centro Profissional de Reabilitação de Gaia, a mo-
bile application was designed as a platform to manage their rehabilitation process. This project’s
first goal was to implement a mobile app helpful to clients’ daily lives. The second goal was to
determine whether and how multiple modalities of interaction increase accessibility and inclusive-
ness.

The design phase of this project was performed by students of the Specialization in Interaction
Design, Web and Games of the Faculty of Fine Arts of the University of Porto, of which a non-
functional prototype resulted. The conclusions and requirements gathered in this phase were used
as a starting point for the development of our application. Then, a User-Driven Development
method was adopted, with end-users providing continuous feedback. Usability tests with CRPG
clients were conducted to test our hypotheses.

The application features several integrated modalities of interaction and features related to
daily tasks the clients perform, such as selecting meals, consulting transport schedules or medi-
tating. Users can interact with the application by using the touchscreen or voice commands, and
audio hints are also provided. Contextual notifications remind users of events and provide short-
cuts to specific features of the app. The available interaction modalities were well received by the
users. Testing suggested that the multiple modalities are adequate in allowing participants to fulfill
their tasks. Younger participants, more experienced in smartphone usage, performed better with
the touchscreen. Older participants, who reported less self-perceived dexterity, seemed to benefit
from voice commands and audio hints. Some tasks were executed faster and with less requests for
help when compared to touchscreen use.

Including users in the development process allowed the application to meet the needs of the
CRPG community with more efficacy, addressing issues that would not have been identified oth-
erwise. The test results suggest the viability and efficacy of multiple interaction modalities in
improving the accessibility of the application, ensuring a broader reach to the CRPG commu-
nity. The study was limited by the small and homogeneous group. The five participants used
their smartphones daily and did not use other assistive technologies, so everyone had the dexterity
needed to interact without external assistance. In the future, other modalities of interaction can be
integrated to ensure even more clients at the CRPG can use the application.

Keywords: Accessibility, Mobile Health, Mobile Development, Rehabilitation, Assistive Tech-
nologies

i

ii

Resumo

Aumentar a acessibilidade de dispositivos e aplicações móveis é fundamental para aumentar o seu
alcance a um maior número de utilizadores, nomeadamente pessoas com necessidades especiais.
As tecnologias assistivas permitem ao utilizador superar obstáculos na interação com estes dispos-
itivos. Combinações multimodais de input/output aumentam as opções disponíveis ao utilizador,
reduzindo os obstáculos que podem ser encontrados nas aplicações monomodais.

Para ajudar clientes com necessidades especiais do Centro Profissional de Reabilitação de
Gaia, foi desenhada uma aplicação móvel como plataforma de gestão do processo de reabilitação
dos clientes. O primeiro objetivo desta dissertação foi implementar a aplicação útil para o dia a dia
dos clientes. O segundo objetivo era determinar se e como as múltiplas modalidades de interação
aumentam a inclusividade e acessibilidade.

A fase de concepção e design do projecto foi realizada por alunos da especialização em De-
sign de Interacção, Web e Jogos da Faculdade de Belas Artes da Universidade do Porto, tendo
culminado com a criação de um protótipo não funcional. As conclusões e requisitos recolhidos
nesta fase foram utilizados como ponto de partida para o desenvolvimento da aplicação. Durante
o processo de desenvolvimento, foi adotado o método User-Driven Development, com feedback
contínuo por parte dos utilizadores finais. A validação do protótipo funcional pelos utilizadores
ocorreu durante a fase de desenvolvimento, permitindo a identificação de obstáculos e possíveis
melhorias. Testes de usabilidade foram realizados com cinco clientes do CRPG para testar as
nossas hipóteses.

A aplicação móvel integra múltiplas modalidades de interação, e apresenta funcionalidades
relacionadas com tarefas diárias que os clientes realizam, como selecionar refeições, consultar
horários de transporte ou meditar. Os utilizadores podem interagir com a aplicação usando o
ecrã tátil ou comandos de voz, e sugestões de áudio também foram implementadas. Notificações
contextuais servem de lembretes para eventos e fornecem atalhos para recursos específicos da apli-
cação. As modalidades de interação integradas foram bem recebidas pelos utilizadores. Os testes
realizados sugerem que as múltiplas modalidades são adequadas para permitir que os participantes
cumprissem as tarefas. Os participantes mais jovens, mais experientes em aplicações para smart-
phones, tiveram melhor desempenho ao interagir usando o ecrã tátil. Os participantes de maior
idade, que autodiagnosticaram a sua destreza no uso dos dispositivos como sendo menor, parece-
ram beneficiar com o uso das sugestões de áudio e dos comandos de voz. Algumas tarefas foram
realizadas em menos tempo, e suscitando menos dúvidas quando comparadas ao uso do ecrã tátil
do dispositivo.

A inclusão dos utilizadores no processo de desenvolvimento da aplicação permitiu dar uma re-
sposta mais eficaz às necessidades da comunidade do CRPG, levantando obstáculos e questões que
não seriam identificadas de outra forma. Os resultados dos testes sugerem a viabilidade e eficácia
de múltiplas modalidades de interação na melhoria da acessibilidade da aplicação, garantindo que
a aplicação consiga abranger o máximo de pessoas na comunidade. O estudo foi limitado pelo
grupo pequeno e homogéneo. Todos os participantes utilizam smartphones diariamente, e não

iii

iv

usavam nenhum outro tipo de tecnologia assistiva ou de assistência para ajudar à execução das
tarefas. No futuro, outras modalidades de interação podem ser integradas para garantir que ainda
mais clientes do CRPG possam utilizar a aplicação.

Keywords: Acessibilidade, Mobile Health, Desenvolvimento para dispositivos móveis, Reabili-
tação, Tecnologias Assistivas

Acknowledgements

I would like to thank my mother, Clementina Silva, father, José Vieira dos Santos, and my brother
Pedro Santos for supporting me not just during these trying months, but throughout the years so
far.

I would also like to thank my supervisor, Bruno Giesteira and my co-supervisor, Pedro Car-
doso, for their guidance. I would also like to thank Cecília and Sandra of CRPG for their coop-
eration, as well as the clients who took part in this process, for their availability and kindness.
Last but not least, thank you to everyone who contributed by either providing advice or by sparing
some words of encouragement and motivation.

v

vi

Contents

1 Introduction 1
1.1 Context . 2
1.2 Questions, Goals and Challenges . 4
1.3 Expected Results . 5
1.4 Document Structure . 5

2 State of the Art 7
2.1 Previously developed work . 7

2.1.1 Requirements . 8
2.1.2 Workflow and wireflow definition . 9
2.1.3 High-fidelity prototype . 10
2.1.4 User feedback and proposed improvements 12
2.1.5 Discussion . 13

2.2 Related Work - Health Management Platforms 13
2.2.1 iMHere (interactive Mobile Health and Rehabilitation) 15
2.2.2 Medication Plan . 17
2.2.3 UbiMeds . 18
2.2.4 Discussion . 20

2.3 Design guidelines for multimodal applications 20
2.3.1 Discussion . 23

2.4 Methodologies and approaches to Software Development 23
2.4.1 Agile Methodology . 24
2.4.2 Waterfall Approach . 24
2.4.3 Incremental Approach . 25
2.4.4 SOLID Principles . 26
2.4.5 Discussion . 26

2.5 Inclusive Design Methods . 27
2.5.1 Participatory Design . 27
2.5.2 User-Centered Design . 28
2.5.3 Universal Design . 29
2.5.4 Inclusive Design Cube . 29
2.5.5 Discussion . 30

2.6 Summary . 31

3 Technologies 33
3.1 Accessibility standards and guidelines . 33
3.2 Frameworks/Programming Languages . 34

3.2.1 Overview . 34

vii

viii CONTENTS

3.2.2 React Native . 35
3.2.3 Flutter . 35
3.2.4 NativeScript . 35
3.2.5 Ionic . 36
3.2.6 Java . 36
3.2.7 Kotlin . 36
3.2.8 Frameworks/Programming Languages Comparison 38

3.3 Assistive Technologies . 40
3.3.1 Prosthesis and physical mechanisms . 40
3.3.2 Screen Readers . 41

3.4 Summary . 41

4 Proposed Solution 43
4.1 Platform Overview . 43

4.1.1 Use Cases . 45
4.2 Requirements . 45

4.2.1 Functional Requirements . 46
4.2.2 Non-functional Requirements . 46
4.2.3 Technical Requirements Update . 47

4.3 Software Architecture . 49
4.4 Methodology and Work Plan . 49

4.4.1 Deliverables description . 52
4.5 Assistive Technologies Use Survey . 53
4.6 Summary . 54

5 Implementation 57
5.1 Technologies and Development Tools . 57

5.1.1 Firebase . 57
5.1.2 Material Design . 58
5.1.3 JSON/GSON . 59
5.1.4 Ktlint . 59
5.1.5 Google Voice Search . 59
5.1.6 Testing related dependencies . 60
5.1.7 Other tools . 60

5.2 Restrictions to Development . 61
5.2.1 Software Compatibility . 62
5.2.2 Data Storage and Security . 62

5.3 First Prototype Overview . 63
5.3.1 Login . 64
5.3.2 Date Selection . 64
5.3.3 Agenda . 65
5.3.4 Create Reminder . 66
5.3.5 Transports . 69
5.3.6 Meal Selection . 72
5.3.7 Meditation . 73
5.3.8 Consult/Create Note . 75

5.4 Second Prototype Overview . 76
5.4.1 Speech Recognition/Voice Commands 77
5.4.2 Audio Hints . 79

CONTENTS ix

5.4.3 Talkback . 79
5.4.4 Contextual Notifications . 81

5.5 Project Code and Structure Documentation . 84
5.5.1 Architectural Patterns . 84
5.5.2 File Structure and Description . 85
5.5.3 First Prototype . 89
5.5.4 Second prototype . 91
5.5.5 Final deliverable . 95

5.6 Summary . 96

6 System Testing and Validation 97
6.1 User tests: First prototype . 98

6.1.1 Procedures . 98
6.1.2 Results . 99

6.2 User tests: Second prototype . 103
6.2.1 Procedures . 103
6.2.2 Results . 108

6.3 Functional and Non-Functional Testing . 114
6.3.1 Accessibility Testing . 116
6.3.2 Compatibility Testing . 121
6.3.3 Performance Testing . 121
6.3.4 Recoverability Testing . 122
6.3.5 Functionality Testing . 123
6.3.6 Ad-hoc Testing . 124
6.3.7 Graphical User Interface Testing . 124
6.3.8 Exception Handling Testing Testing . 125

6.4 Conclusions . 126

7 Conclusions 127
7.1 Findings . 127
7.2 Limitations . 129
7.3 Future Work . 130

References 133

A Code Fragments 141
A.1 Notifications . 141
A.2 Modality Settings . 146
A.3 Text-To-Speech . 149
A.4 Speech Recognition . 150
A.5 Recycler View Item Binding . 152
A.6 Interaction with Firebase API . 154
A.7 Event Data Class . 156

B Usability Tests Results 157
B.1 Test Case #1 . 157
B.2 Test Case #2 . 158
B.3 Test Case #3 . 159
B.4 Test Case #4 . 160

x CONTENTS

B.5 Test Case #5 . 161
B.6 Test Case #6 . 162

List of Figures

2.1 The proposed workflow . 9
2.2 Wireflow of the Notes feature (excerpt from the platforms wireflow document) . 10
2.3 The proposed design for the final prototype for the Agenda functionality 11
2.4 Example of the different screens for the Reminder feature 12
2.5 Medication List screen of the iMHere 1.0 mobile application. 16
2.6 Dashboard of the iMHere 2.0 mobile application. 16
2.7 Scheduling screen of the Medication Plan mobile application. 18
2.8 Scheduling screen of the UbiMeds mobile application. 19
2.9 Visual representation of the modalities, constraints, and effects and their relation. 22
2.10 A visual representation of the Waterfall Approach 24
2.11 A visual representation of the Incremental Approach 25
2.12 A visual representation of the Inclusive Design Cube 29

3.1 Example of a mouth stick for operation of a computer 40

4.1 Agenda screen of the application. 44
4.2 A visual representation of the architecture of the application. 50
4.3 Visual representation of the original work plan (Gantt chart). 51
4.4 Visual representation of the updated work plan (Gantt chart). 53

5.1 Illustration of the visual identity of UI elements used in Material Design 58

6.2 Answers to the survey (first prototype validation session). 102
6.3 Total elapsed time (sum of every test case elapsed time) for each modality, by

participant. 108
6.4 Total non-critical errors/deviations (sum of the non-critical errors from each test

case) for each modality, by participant. 109
6.5 Total critical errors (sum of the critical errors from each test case) for each modal-

ity, by participant. 109
6.6 Total assists (sum of the assists from each test case) for each modality, by participant.110
6.7 Answers to the survey (final prototype validation session). 113
6.9 Example of High Contrast Text tool in the Date Selection Screen. 118
6.10 Example of the Magnification tool in the Date Selection Screen. 119
6.11 Compatibility testing results. 121
6.12 Performance testing results. 122
6.13 Recoverability Testing results. 122
6.14 Functionality testing results. 123
6.15 Ad-hoc testing results. 124
6.16 Graphical User Interface testing results. 124

xi

xii LIST OF FIGURES

6.17 Exception Handling testing results. 125

List of Tables

3.1 Comparison between development tools. 38

4.1 Identifier, title and description of use cases. 45
4.2 Background . 54

5.1 Description of testing-related dependencies. 60
5.2 Description of non-testing-related dependencies. 61
5.3 Description of an expected user flow using voice commands to create a new Re-

minder. 78
5.4 Transcript of the audio hint messages. 80
5.5 Talkback description for each visual element in the Meal Selection screen. 81

6.1 Background of the participants (P). 97
6.2 Questions of the survey conducted after the users interacted with the app. 99
6.3 Description of the test cases for the usability testing. 105
6.4 Questions of the survey conducted at the end of the usability test. 107
6.5 Description of functional and non-functional types of tests. 115
6.6 Results of the contrast checking tool. 117
6.7 WCAG summarized guidelines and approaches used to meet each one (adapted

from [92]). 120

B.1 Test Case #1 (touchpad modality). 157
B.2 Test Case #1 (voice commands modality). 157
B.3 Test Case #2 (touchpad modality). 158
B.4 Test Case #2 (voice commands modality). 158
B.5 Test Case #3 (touchpad modality). 159
B.6 Test Case #3 (voice commands modality). 159
B.7 Test Case #4 (touchpad modality). 160
B.8 Test Case #4 (voice commands modality). 160
B.9 Test Case #5 (touchpad modality). 161
B.10 Test Case #5 (voice commands modality). 161
B.11 Test Case #6 (touchpad modality). 162
B.12 Test Case #6 (voice commands modality). 162

xiii

xiv LIST OF TABLES

Abbreviations

API Application Programming Interface
BaaS Backend-as-a-Service
CRPG Centro Profissional de Reabilitação de Gaia
EMA Ecological Momentary Assessment
EU European Union
FBAUP Faculdade de Belas Artes da Universidade do Porto
HCI Human Computer Interaction
ICT Information and Communication Technologies
IDC Inclusive Design Cube
IDE Integrated Development Environment
ISO International Organization for Standardization
iX Specialization in Interaction Design, Web and Games
OOD Object-Oriented Design
OS Operating System
SDK Software Development Kit
SR Speech Recognition
TTS Text-To-Speech
UCD User-Centered Development
UDD User-Driven Development
UI User Interface
UX User Experience
WAI Web Accessibility Initiative
W3C World Wide Web Consortium
WCAG Web Content Accessibility Guidelines
WCAG2ICT WCAG Applied to Non-Web Information and Communications Technologies

xv

Chapter 1

Introduction

The management of healthcare and self-care by rehabilitation patients has been the subject of

significant changes over the years. Technology advancement is part of that change, by enabling

new ways of monitoring and delivering healthcare to patients. One of the key elements to the

innovation in healthcare is related to the widespread adoption of smartphones.1

The practice of medicine and public health supported by mobile devices (also known as mobile

health or mHealth), aims to improve quality-of-life for the clients and caregivers. These aid indi-

viduals in their management of chronic medical conditions, allowing for early self-identification

of symptoms, monitoring of their condition and contributing to a better adherence to treatment,

through self-care [21].2

In the context of the Specialization in Interaction Design, Web and Games (also known as iX)

from Faculty of Fine Arts of the University of Porto (FBAUP), a partnership was made with Centro

de Reabilitação Profissional de Gaia (CRPG).3 CRPG requested a platform which would help the

clients in their rehabilitation process.

This dissertation aims to continue the development of the previously accomplished work in

this project, at this stage primarily focused on the implementation of the platform, using the non-

functional prototype and its documentation as the starting point. The expected result is an inclusive

mobile application to be used by CRPG clients, resulting in a positive impact on their daily lives

and rehabilitation process.

1A cell phone that includes additional software functions (such as e-mail or an Internet browser).
2Self-care is defined as the capacity of an individual to monitor health state independently of the contact with the

caregivers [71].
3Center of Professional Rehabilitation of Gaia.

1

2 Introduction

1.1 Context

CRPG started operations in 1992, as the result of an agreement between three entities (IEFP, CER-

CIGAIA and ADFA). Increasing the social and economical autonomy of people with disabilities is

CRPG’s mission. The institution offers several services and solutions for individuals with various

levels of incapacity or deficiency (both physical and cognitive) with the aim of integration into the

labour market. Some of these include rehabilitation and training of patients consultancy support

for organizations/companies, insurance companies and hospitals, and prescription and sourcing of

support products [18].

The focus of this specific proposal is on the rehabilitation and reintegration of victims of labor

accidents and occupational diseases. CRPG uses the term "clients" to identify participants in

their ongoing programs, and this nomenclature is used throughout this document. Clients in this

condition enroll into a program designed by CRPG named RAC-LCA. The five month program

consists of an assessment of the condition of each client, with a formative offer and development

of the skills of each client depending on the characteristics of the physical or cognitive limitation.

As mentioned previously, there is a high variance between the capabilities and skills of each

specific client. Some of the clients may need the assistance of a caregiver, or may even need

specific hardware (such as peripherals) to allow them to interact with devices such as computers

and mobile phones. Such circumstances provide additional challenges to the autonomy and require

detailed assessments.

In order to improve the autonomy and quality life of its clients, CRPG requested the creation

of a mobile application with several requirements, inserted in the scope of the program “Recovery

and Updating of Skills – Acquired Brain Injury”. A group of students of the specialization in

“Interaction Design, Web and Games” were responsible for the first phase of the project. The

design stage of this application, in which a User Centered Design methodology was adopted,

relied on close collaboration with the CRPG and its clients during a three month period. During

this phase, users’ specific needs and expectations on the management of their everyday tasks were

gathered through testimonials and meetings with clients and staff from CRPG.

Contacts with CRPG in the first and second phase are mediated by Cecília Carvalho, R&D as-

sistant coordinator, and Sandra Guerreira, psychologist. Before, during and after the development

of the project, the establishment of a communication channel for exchange of ideas with CRPG

collaborators was necessary for the project’s success.

Along with answering the needs of CRPG and its clients, it is important to mention the re-

strictions and obligations present in the Portuguese and European Law regarding public-sector

accessibility in websites and mobile applications. CRPG is an institution that works closely and is

related to Government-owned entities, and therefore can be included in this sector.

The most relevant policy at the European level is the European disability strategy 2010-2020,

presented in 2010 [17]. Under the umbrella of this policy, the European Parliament, to harmonize

varying standards within the EU, reduce barriers for developers of accessibility-related products

and services, issued the Directive (EU)2016/2102 [24]. This directive aimed at making public

1.1 Context 3

sector bodies websites and mobile applications "perceivable, operable, understandable and robust".

This strategy is the follow-up to the eEurope action plan.4 The critical ideas mentioned in this

Directive serve as the basis for the considerations made in the Portuguese Government’s decree

which is mentioned below.

Another crucial objective of the decree is the diminishing of inconsistencies of national mea-

sures across several European countries. The aim to end the internal market fragmentation is made

possible by agreed accessibility requirements. As a result, uncertainty is reduced for developers

and interoperability is fostered.

Regarding the Portuguese Law, under the Decreto-Lei n.º 83/2018 [80], a proposal is presented

with regards to the "standardization of open standards in the State’s computer systems, the local

Public Administration and the functions considered essential, concerning accessibility of the con-

tent of websites web and mobile applications". The decree definition commands the obligatory

use of the WCAG (more details in section 3.1) standard WW WCAG 2.1/EN 301549 on mobile

applications and other comparable standards in websites. Guidelines advising for WCAG by the

Portuguese Government had been proposed back in 1999, albeit not being as far-reaching.5

The combination of the guidelines presented in the mentioned legislation with the require-

ments identified in CRPG’s proposal is necessary to ensure the adequacy of the proposed solution.

It is also likely that the legislation contemplates some requirements that were not included in the

proposal but which foster the inclusivity of the platform.

4A list of initiatives and guidelines to promote inclusion and extend Internet and digital platforms access for people
with disabilities. This plan marked a milestone in the European Union (EU) guidance on Information and Communi-
cation Technologies (ICT) accessibility[85].

5Decree RCM 97/99 recognizes that the adequate access of citizens with special needs to the information society is
prioritary importance and is a factor of social inclusion. The decree also highlights the necessity of adequate processes
of search and consultation of documents [79].

4 Introduction

1.2 Questions, Goals and Challenges

The clients of CRPG have difficulties interacting with devices such as smartphones and therefore

need specific solutions that cater to their needs. By analysing the report and the existing literature,

the presented hypothesis is based on the claim that the autonomy and quality of life of CRPG

clients can be improved by means of an inclusive management platform, adapted to their needs

of accessibility and multimodality. In order to validate this hypothesis the following research

questions should be answered:

1. How can inclusive design methodologies and approaches contribute to an adequate imple-

mentation of the non functional-prototype?

2. How can assistive technologies and multiple interaction modalities be integrated in the mo-

bile application in a way that specifically benefits the CRPG clients?

3. How do the multiple modalities of interaction between user and system benefit the clients

of CRPG?

To answer the first question, a study of the literature regarding existing methodologies for in-

clusive design and software development allowed for the optimization of the development process

to address the characteristics of this project. Regarding the second question, by understanding the

needs of the users and by validating the results during the development phase, it is possible to as-

sess the adequacy of the multimodality and interoperability with assistive software to increase user

satisfaction with the support tools at every iteration. To answer the third question, usability tests

were conducted at the end of the development phase, in order to allow CRPG clients to interact

with the different existing modalities and gather feedback regarding the interaction between user

and application. With this into consideration, the goals of this dissertation are the following:

1. Develop a mobile application that can respond to the needs of the CRPG community, based

on the non-functional prototype that was created in the design phase, following inclusive

design methodologies and continuous feedback from the CRPG clients and representatives

during development.

2. Identify requests and common necessities amongst the CRPG community, in order to in-

crease the accessibility and expand the reach of the application to as many clients as possi-

ble.

3. Evaluate the application with a group of participants from CRPG who interact with the

system, to assess the efficacy and adequacy of the multiple integrated modalities in the

context of the CRPG community.

1.3 Expected Results 5

The main challenges are related to the high degree of variance in each client’s autonomy and

capabilities, which means that the app needs to be flexible and adaptable to different circumstances

and needs. Overcoming these challenges translates the highly innovative component of the plat-

form, as it made use of the advances in technology in general, and more specifically of the accessi-

bility tools available for mobile developers, which rapidly increase, to improve the non-functional

prototype and be perfectly adjusted for the necessities of the clients at CRPG. Compared to other

existing platforms, this solution has several differentiating and innovative factors: multimodal-

ity, high level of accessibility and its focus on a group of users with particular needs, requiring a

specific approach.

1.3 Expected Results

The study regarding the technological approach to respond to the specific accessibility needs

should allow for the implementation of innovative tools. The focus on multimodality and interop-

erability with assistive technologies also contributes to assuming a specific type of development

which is, first and foremost, for the users. The contributions made by this work can also be ex-

panded to other communities with similar needs, given that the features of the application are

mostly based on common daily tasks which are transversal across different socioeconomic status.

By removing any obstacles to the usability of the app and including all of the requested tasks,

it was possible to increase its reach to as many CRPG clients as possible. The finished application

is expected to have a positive impact and benefit the clients and staff of CRPG, by being a com-

plement to the rehabilitation process and possibly even increasing the percentage of success in the

adherence to the proposed regimen (such as medication intake and activity participation) by the

clients.

The continued validation of the app, by comparing the results obtained from the usability tests

done at the end of each phase of the project, contribute to a deeper understanding of the needs of

the users and can also serve as a point of reference for future work, by allowing an understanding

of what was done adequately, but also identifying points which can be improved.

1.4 Document Structure

In chapter 2, a literature study is conducted on accessibility and methodologies for software de-

velopment. Guidelines for inclusive design are presented, as well as an overview of the provided

non-functional prototype. A study of related platforms is also presented. Chapter 3 provides an

overview of development tools, assistive technologies and accessibility guidelines.

In chapter 4, considerations regarding the proposed solution are made, including an overview

of the application and its functionalities, software architecture, and intended approach. Details of

the tasks, approaches to development and usability testing are explained. Limitations and chal-

lenges which led to disruptions in the scheduled are also identified.

6 Introduction

Chapter 5 describes the technical aspects of the development of the application. The chapter

starts with a description of libraries and development tools used to develop the application. Re-

strictions to development, such as technical limitations or requirements, are detailed. An overview

of both the first and second prototypes is presented. After the prototypes are described, the file

hierarchy and structure of the application are presented. The implementation chapter also high-

lights approaches to technical challenges that were identified during development, and how the

integration with assistive technologies was achieved.

Chapter 6 provides insights into the different types of tests performed, and the results which

were obtained, both in tests performed during development and also with clients at CRPG premises.

Chapter 7 presents a summary of the previous chapters, limitations to the development, future work

proposals and the conclusions.

Chapter 2

State of the Art

This chapter presents a study of the literature in different relevant areas to this dissertations. Sec-

tion 2.1 is based on the report that accompanies and documents the non-functional prototype.

Some remarks are made on the development process and the impact of the guidelines on the im-

plementation process.

Section 2.2 provides an overview of health management platforms, and a description of their

uses. In the same section, related work regarding similar management platforms and their main

features is presented. In section 2.3, insights into the design for multimodal software, along with

a discussion regarding their adoption in the context of this project are introduced.

An analysis and discussion of several approaches to software development is presented in sec-

tion 2.4. Section 2.5 presents methodologies and approaches specific to inclusive software design.

These approaches were used both in the design and implementation phases of the development of

the application.

2.1 Previously developed work

As mentioned in chapter 1, the first phase of the project aimed at requirements gathering and

subsequent proposition of the application’s design. The process and findings of the first phase are

documented in a report titled Creating a Mobile Application for people with brain injuries, which

serves as the basis for the work on this dissertation [73].

Subsection 2.1.1 provides an overview into the user research and requirements gathering

phase. Subsection 2.1.2 details the workflow and wireflow of the application. Subsection 2.1.3

presents the main elements of the high fidelity prototype. Lastly, in subsection 2.1.4, insights

obtained during the usability tests are detailed.

7

8 State of the Art

2.1.1 Requirements

A survey was conducted with CRPG staff, which identified as an issue the cognitive deficits that

some of the users presented related to memory, planning and daily life management. As a result,

CRPG requested a mobile application that would allow each user of the institution to access in-

formation regarding their specific activities, as well as other key-functionalities. Although similar

platforms for rehabilitation management have been developed, the focus on the needs of CRPG

clients and use of innovative assistive technologies are differentiating factors for this specific so-

lution.

The report is supported by user research, involving the cooperation of CRPG staff and testimo-

nials of clients for a better understanding of each individual’s daily routines and level of dexterity

regarding smartphone use. This process relied on the communication with clients of the institution

in order to integrate the necessities of the end-user and to ensure accessibility. This process relied

on the communication with clients of the institution, in order to integrate the necessities of the

end-user and to ensure accessibility.

The descriptions that each client provided regarding tasks in their daily life, along with the

requirements of CRPG’s first proposal, led to the definition of six significant features, which cor-

relate with clients tasks and needs: Agenda, Reminders, Meals, Transports, Notes, and Meditation.

The following list details each feature:

• Agenda: allows users to consult the schedule and information of the activities part of their

rehabilitation program.

• Reminders: allows users to set reminders, such as alerts announcing when is the time to

take the medication.

• Meals: a menu with the meal options for the following day is shown, and clients can choose

one of the available options.

• Transports: users can access the timetables of public transportation which have stops near

CRPG, as well as seeing on a map the path between their current location and CRPG. re-

questing CRPG’s own transport is also possible.

• Meditation: users can access audio files for meditation purposes.

• Notes: users can store notes in different formats (text, images, audio files).

The priority associated with each feature was assessed for reasons related to the planning of

the first phase. However, the priority hierarchy was also used to define which features should

be implemented first. The priority of each feature regarding its impact in the user’s daily life was

discussed with Sandra Guerreiro from CRPG, and after consideration the following priorities were

defined:

• High priority: Agenda and Reminders.

2.1 Previously developed work 9

• Medium priority: Transports and Meals.

• Low priority: Meditation and Notes.

After the User Research, the team discovered also that CRPG client disabilities were related

with cognitive and movement issues. In order to represent a wide range of needs specific to

different clients of CPRG, three personas1 were created. For each persona, several indicators

were defined: Goals, Motivations, Pain Points and Skills and quantified their Focus, connection

to Technology and Anxiety. By attributing different characteristics to the personas, each one ends

up representing an individual with a unique set of characteristics. Scenarios were also created,

in the form of a description for each one of the personas. This process allowed the team to have

a deeper understanding of the daily lives and needs of the clients, and, as a consequence, of the

requirements which the platform would have to meet.

2.1.2 Workflow and wireflow definition

With the requirements and features defined, the team drew the workflow and a preliminary inter-

face based on the priority of each task and possible interactions. After logging in, the main screen

is presented. The initial screen is the one that was defined by users when they start the activities

at CRPG. From there, users can navigate to each feature screen.

Figure 2.1: The proposed workflow (extracted from [73]).

From the Agenda screen, users start in the daily view and can opt to go to the weekly view.

They can also see activities details and create/edit a new activity. In Reminders, the initial screen is

the list of the reminders. Here, reminders can be individually selected in order to consult specific

information regarding each one. It is also possible to go to a screen to create/edit a reminder. In

Transports, the option to choose between the public transport screen and CRPG transport screen

is offered. Similar to Reminders screen, in Notes users can go to the note’s details or create a New

1A fictional character created to represent a user type that might use a site, brand, or product in a similar way [54].

10 State of the Art

Note. Lastly, the Meditation screen gives access to meditation details and plays the audio file for

the meditation classes.

After the definition of the workflow, the team defined the wireflow documenting the interac-

tions such as layout changes and system feedback. Fig.2.2 presents an excerpt from the platform

wireflow, regarding the wireflow of the Notes feature. The screens are designed to reduce the

number of clicks and inputs given by the user to finish the task.The platform is also adapted to let

users quickly correct errors, by providing buttons which cancel the task or return to the previous

screen, depending on the feature.

Figure 2.2: Wireflow of the Notes feature (excerpt from the platforms wireflow document, ex-
tracted from [73]).

2.1.3 High-fidelity prototype

A request was made for the brand identity of CRPG to be consistent with the institution’s updated

website. The colour palette of the website presented some problems to the users, given its high

contrast. The colour palette was modified to reduce the overall disparity between colours, resulting

in improved readability. The final prototype also features guidelines from Mobile Accessibility

Principles (w3.org) [90] and Material Design (Google) [6]. As a result, elements such as the

elevated cards concept2 and hierarchy of information are present.3

2A snapshot-like display that groups related information in a flexible-size container visually resembling a playing
card[72].

3Visual design principle which designers use to show the importance of each page/screen’s contents by manipulating
characteristics such as size and color of visual elements[23].

2.1 Previously developed work 11

The report also dwells on the need to consider unexpected situations and what use cases may

be more prone to the occurrence of an alternate flow of action (i.e. allowing the user to complete

a task even if mistakes are made during the process). Several iterations were conducted, each one

improving on the existing work. The screen for the Agenda with regards to the final iteration can

be seen in Fig.2.3.

Figure 2.3: The design for the non-functional prototype for the Agenda functionality (extracted
from [73]).

The screens available in Fig.2.3 and 2.4 present a visual representation of some of the features

and guidelines used. The use of high contrast between colors, simplicity and lack of clutter, as

well as appropriate font and button sizes, are some of the concepts used to improve the readability

of the data on display.

Using concepts that are familiar to the clients also helps them in understanding the visual cues.

CRPG clients make frequent use of Post-Its to write their reminders. Since Post-Its are a known

concept, the platform adopts a visual style for the reminders akin to a Post-It, making the task of

setting a reminder more understandable.

The app also provides feedback regarding the validation of the data introduced by the user.

Using the check symbol next to each field, the user gets visual feedback that the field is complete.

While not possible to see in the image, the built auto-fill system automatically fills some of the

fields depending on the type of reminder that is set by the user.

12 State of the Art

Figure 2.4: Example of the different screens for the Reminder feature (extracted from [73]).

Other features of the application share the same visual elements and concepts. The wireflow

may vary, but from the starting screen when opening the app, finishing any task can be done with

a small number of interactions by the user.

2.1.4 User feedback and proposed improvements

In order to assess the effectiveness of the non-functional prototype, usability tests were conducted.

The main points of interest were Easiness, Simplicity, Experienced Comfort and Readability,

Recognition of graphical elements and Responsiveness [73].

Participant feedback on the final prototype regarding the rehabilitation process was positive.

However, the users also suggested that there was room for improvement, and thus the following

suggestions were made:

• Highlight save function to make it standout and easy to spot.

• Use of different colors for events on the agenda.

• Including a component related to physical exercise would add value to the app.

The team who developed the report also did a self-assessment on what improvements could be

made from their work. Some considerations:

• It was difficult for users to recognize activities happening at the same time.

• The user data should be stored as soon as the minimum requirements are inserted, in order

to reduce work for the user (akin to an autofill system, seen in web browsers).

2.2 Related Work - Health Management Platforms 13

• The current time of day in order must be known by the platform to present the correct

activities.

• The app should allow to choose a meal between four options available.

• Initial guides and pop-ups with tips should be added.

• Message screens for errors should be implemented.

2.1.5 Discussion

The extensive documentation (including a report) provided by the team responsible for the first

phase allowed to a deep understanding of the intricacies of the project and the thought-process

behind some of the design decisions.

The assessment present on the report demands reflection regarding improvement to some of

the suggestions made by the users. Since the first phase was mostly focused on the design aspects

of the platform, areas such as interoperability and peripheral/support software use were not subject

of extensive documentation in the report.

These insights allowed the functional prototypes to be more adequate to the needs of clients at

CRPG. Validation by the users was prioritized during development, by conducting usability tests

in which obstacles to using the platform were identified and improved.

2.2 Related Work - Health Management Platforms

Healthcare and the medical area, in general, have been significantly impacted by the development

of technology. The changes are very significant, enabling new approaches to patient care, as well

as allowing the patients themselves to access more information and be more active in the manage-

ment of their condition. One of the most impactful changes in the way society used technology is

the mass adoption of smartphones globally, which led to a significant part of the global population

having access to mobile apps with a broad range of uses.

As with many other areas, applications that allow patients to manage their conditions have be-

come increasingly common. Estimates point to over five thousand mobile health apps as of 2017,

but an accurate number is difficult to pinpoint as more apps are released every year. The range of

functionality between these applications varies considerably, and they are generally categorized in

six groups. The groups are as follows:

• Lifestyle-oriented apps: allow individuals to track their progress in regimens such as diets

and exercise programs, leading to an healthier lifestyle.

• Patient-oriented apps: provide tools for early self-identification of symptoms along with

management and adherence to treatment, allowing for better management of chronic medi-

cal conditions.

14 State of the Art

• Clinician-oriented apps: aimed at clinicians, allow patient management by providing refer-

ence or educational information as well as aiding decision making.

• Disease management systems: allows for the monitoring of patients with chronic conditions

by clinicians. the systems (which can be web based or a mobile app) may be integrated into

electronic medical records and can include decision support tools.

• Traditional telehealth systems: provide and deliver information and services remotely using

electronic communications.

• mHealth systems: akin to telehealth applications but usually assume the form of a mobile

application rather than being accessed via a computer.

The main focus of this dissertation is in the group of mHealth apps. These applications aid in-

dividuals with medical problems in managing their conditions by offering information about their

specific circumstances, as well as allowing them to manage and incentivize treatment adherence.

These applications cannot replace the indications of medical personnel but can be used as

an increment to an already defined process. Medical personnel should always supervise the use

of these platforms. Despite the obvious limitations and precautions regarding the use of these

platforms, some literature claims benefits on their moderated use [21]. The overwhelming majority

of these platforms are implemented as applications for smartphones, mainly due to the following

advantages that this option enables:

• Individuals are more prone to carrying smartphones with them at all times, allowing for

improved accessibility.

• The devices are able to collect Ecological Momentary Assessment (EMA) data.4

• The communication capabilities of these devices, for example in a case of distress or need

of urgent care; the platform can provide the necessary contacts, and the user can use the

smartphone to contact a caregiver instantly.

One of the significant points of interest in the design of these applications is their adoption

of user-centered, high accessibility interfaces, which have to take into account individuals with a

range of different physical and psychological frames. A review of papers concluded that human

factors approaches are nearly always adopted in the design, development and evaluation of mobile

applications. The approach to the implementation of the platform results in a more engaging and

positive experience for the users, improving the rehabilitation process.

One of the most used methods for the human factor approach is the use of interviews and

surveys, which allow an assessment on the use of information technology, including mobile apps.

Technical literacy is an obstacle in the development and conceptualization of accessible software,

as some of the users are people of an older age and which may have less exposure to the use of

mobile applications.
4Data obtained in real-time regarding the user well-being and their current location[53].

2.2 Related Work - Health Management Platforms 15

A considerable number of mHealth solutions are present in the market, requiring a selection of

notable examples. The research for this dissertation focuses on applications released during 2010

or after. The research could not find a significant number of solutions subject to extensive usability

testing, and as such three examples were chosen. The decision to use these examples is due to them

sharing one or more functionalities with the platform that is proposed by this dissertation, as well

as having literature published which includes usability assessment.

2.2.1 iMHere (interactive Mobile Health and Rehabilitation)

iMHere is an application for mobile phones which can be used to support self-care and adherence

to self-care regimens for patients with chronic conditions [25]. Through the smartphone, users are

able to access a number of functionalities aimed at improving their rehabilitation process, such as

setting up alarms and confirming medication intake, as well as being able to report skin issues.

This application is the subject of several articles regarding the usability and accessibility of

mHealth apps. The problem which iMHere aims to solve is similar to the one faced in this disserta-

tion, not only regarding the functionalities, but also because it focuses on clients with overlapping

characteristics. Given the extensive research which used performance metrics to assess iMHere

usability, it appears to be the most relevant subject of study regarding the several mHealth apps

under scrutiny in this section.

Adding to the extensive research and usability tests done, it is worth noting that different

versions of the app, which try to improve upon the initial version, allow the readers to understand

the weak points of the first release, and how incremental improvements contribute to expanded

accessibility in later releases.

The first version of the app, iMHere 1.0, was released in 2013, and is the subject of study

for the article Perspectives on the Evolution of Mobile (mHealth) Technologies and Application to

Rehabilitation [21]. In this article, an overview of the scope of the app, as well as possible uses, is

presented. A visual representation of the screen allowing the user to see its medication list can be

seen on Fig.2.5.

The first version, while having received positive feedback from its users, still presented a

number of barriers which undermined its usability. Several articles tackled the weak points shown

in iMHere 1.0, leading to improved versions of the app. One of the most notable examples is

Accessibility needs and challenges of a mHealth system for patients with dexterity impairments,

in which points of improvement were identified for the original version of iMHere (1.0). In order

to create a new, improved version (2.0), accessibility needs and preferences of individuals with

dexterity impairments were identified, and usability tests carried out to assess their implementation

[96]. In the discussion section of the article, some of the main accessibility issues with the design

of the application were identified:

• Screen size is the main difficulty.

• Screen cluttered with irrelevant clutter, making text difficult to read.

16 State of the Art

Figure 2.5: Medication list screen of the iMHere 1.0 mobile application. (extracted from [21]).

Figure 2.6: Dashboard of the iMHere 2.0 mobile application (extracted from [69]).

• Low contrast of colors.

• Inappropriate text size and font.

2.2 Related Work - Health Management Platforms 17

The results of this study appointed a number of key accessibility tools that improved the expe-

rience of the users considerably:

• Thematic colors.

• Instructive guidance.

• Simpler cognitive process.

• Alternative camera button (one of the functionalities allows the user to take a picture of the

skin).

• Simple and streamlined applications.

Yu and colleagues [96] did an assessment of the needs and obstacles that impaired users faced

when using the iMHere app. A one-week field trial using the iMHere app was conducted. In

this trial, a group of nine participants participated. Among the group different levels of dexterity

impairment allowed for a more accurate assessment of the usability. As might be expected, the

degree of impairment of each individual user was shown to have a strong correlation with the

amount of errors that happened when using the app interface.

Given the fact that the usability tests conducted included individuals with a broad range of

capacity, it is logical to assume that there is an overlap between the necessities of the users of

iMHere and the users of the rehabilitation platform. The guidelines and ideas present on the results

section of the article should therefore be considered of great relevance when making decisions

regarding the implementation of the app.

2.2.2 Medication Plan

Medication Plan (Medikamentenplan in the original German name) is an app for the iPad, de-

veloped in 2010. It was specified by the Department of Nephrology, Essen University Hospital,

Essen, Germany; three German companies were in charge of its development [12]. The app allows

the users to set reminders for medication intake. The app is targeted mostly at elderly patients or

that suffer from chronic conditions.

Medication Plan is the subject of the scientific paper A mobile application improves therapy-

adherence rates in elderly patients undergoing rehabilitation: A crossover design study comparing

documentation via iPad with paper-based control [63]. The study aims to compare the effective-

ness of advanced technological measures for increasing adherence to medication.

The usability tests allowed the work group to assess the main difficulties and points of im-

provement to the application’s usability. The users (N = 24) were asked to perform several prede-

fined tasks and then answer questions regarding their satisfaction with the different methods and

characteristics of the user interface. Some of the key considerations made using the feedback from

the users:

18 State of the Art

Figure 2.7: Scheduling screen of the Medication Plan mobile application (extracted from [63]).

• Eleven elements of the group considered the font size to not be comfortable.

• Twenty-four elements (all of the individuals) were satisfied by the use of the touch screen

interface.

Mertens and colleagues classify the software as being successful in its goal. The iPad inter-

vention improved medication intake, which was a significant achievement, as the initial recorded

therapy adherence was already high, which correlates to a smaller margin of improvement. Even

though other methods of improving adherence were studied, such as using a pen and paper journal,

the digital solution resulted in greater adherence and surpassed the non-digital alternatives.

2.2.3 UbiMeds

UbiMeds is a German mobile application and architecture that aims at supporting prescription

medication adherence. Like the previously mentioned solutions, it serves specific sectors of the

population, such as older or disabled individuals[84]. The article UbiMeds: A Mobile Application

to Improve Accessibility and Support Medication Adherence describes the design process guided

by the accessibility issues that arise from the characteristics of the users. Fig.2.8 shows the View

Screen of the application in which the user can get an overview of the schedule and adherence

status. The authors identify four types of limitations regarding accessibility which contributed to

significant levels of non-adherence:

• Medication related: the amount of different medication to remember, schedules which can

be hard to memorize, drugs with similar names or similar containers.

• Patient related: trouble remembering events or tasks, health literacy, understanding the

different types of conditions and medications, incapacities (of any type).

2.2 Related Work - Health Management Platforms 19

Figure 2.8: Scheduling screen of the UbiMeds mobile application (extracted from [84]).

• Prescription related: lack of communication or incapacity of transmitting ideas and di-

rections to the patient, negligent patient monitoring, illegible handwriting on prescriptions,

complex technical jargon.

• Pharmacy related: difficulty reading type font, inconsistent formats in the instructions,

printing errors which cause misunderstandings on correct dosages and other crucial infor-

mation.

Following the identification of the problems faced by the patients, the authors realized a list of

implementations that were found to remove the obstacles raised by the mentioned issues:

• Automated Reminders: the system should proactively remind patients of scheduled medicine

intake hours, both by visual and audio cues.

• Intake tracking: a tracking system verifies the adherence to the drug prescription by the

user, and notifications are sent if the system identifies lack of compliance.

• Visual Aids: information on the screen should be easily comprehensible, by using adequate

visual elements such as icons, font type and color selections.

• Text to speech: the system dictates the instructions on how to take the medicine.

• Separation of information: interface views are designed with the intent of avoiding over-

load of information. The screens should be as free of clutter and non-essential information

as possible.

The architecture of the system is also explained, as this solution includes not only the mobile

app, but also a centralized module and a web app which is used by the medical team. In the

section Conclusions and Future Work, the authors indicate that a usability study would be needed

20 State of the Art

to correctly assess the adequacy of the taken measures in order to mitigate any usability obstacles

for the users. A mention is also made regarding the privacy of the users. In the UbiMeds system

this problem is exacerbated due to the reliance on a third-party system like Google Health and

Microsoft Vault to store the health records.

2.2.4 Discussion

The field of health management platforms was introduced, and the different existing categories de-

tailed. After consideration of the capabilities and purposes of each category, the proposed platform

was identified to be part of the mHealth category of health platforms.

Three platforms were the subject of analysis, due to their relevance to the scope of this dis-

sertation. The first analyzed platform is iMHere, which is the subject of different articles and had

several versions.

The second and third platform, MedicationPlan and UbiMeds, had less literature available.

However, looking at the conclusions and recommendations published in both cases, there is a clear

overlap on the topics which are considered important. Elements such as visual aids, automation,

use of voice commands and adequate text and button size are valid concerns across all platforms,

and were considered to be helpful when trying to increase the usability of the platforms. Due to

the similarity in the approaches and expected results of the platforms, the concerns mentioned in

their development were also addressed when developing the platform for CRPG.

2.3 Design guidelines for multimodal applications

Due to the unique challenges of developing a platform for individuals with disabilities present, a

study regarding multimodal applications is relevant. Reeves[82] presents some key ideas regarding

this topic:

• Simplicity is of high priority, in order to avoid cognitive load.

• Flexibility and customization to answer the needs and requirements of the users and to the

context.

• Users should receive system feedback, that is, understand which modalities are being de-

tected and interpreted.

• In order to prevent errors, the option regarding which modality to use should be given to

user; undoing or canceling the ongoing tasks should also be allowed.

The user should be aware of what is happening at all times during the use of the platform. The

visual or sound cues that are used to achieve that purpose are necessarily different from the ones

used on software designed for people without any disabilities. Other possible approaches must

also be considered:

2.3 Design guidelines for multimodal applications 21

• Application of Human Computer Interaction (HCI) techniques in the following points:

independence between the interface and the application (e.g. use of a language/framework

enabling a cross-platform consistent interface); advanced user interface design (study of the

user profile leads to interfaces that are better suited to respond to particular needs); inclusive

design (user diversity should always be considered during the design phase).

• Adopting specific privacy measures for the users: adequate storage (encryption use and

reliance on third-party servers needs to be assessed in order to avoid security risks) and the

duration of storage (it should only be stored as long as strictly necessary), must be specified.

There may be additional concerns, such as location tracking by the phone, and others.

• Designing specific feedback actions that actively improve usability: active feedback sys-

tem should be implemented, allowing the user to understand which modalities are being

detected and interpreted, as well as continuously monitoring the application usage (by ana-

lyzing parameters for each user and suggesting changes).

• Removing barriers and obstacles to access to the application: cost and hardware require-

ments constitute a barrier to software adoption; software distributed for free and which can

be used regardless of hardware limitations improves access for the users; It should also be

independent of third-party applications, i.e. it should not require the installation of any other

software in order to be operational.

Some of these concepts are also corroborated and object of further research later in 2009,

in the paper Multimodal human–computer interaction: A survey. Computer Vision and Image

Understanding[44]. The document provides a review on the major approaches to multimodal

human computer interaction. The authors focus mostly on body gestures, gesture, gaze, as well as

facial expression recognition and recognition of emotion in synthesized voice. System integration

architectures, modeling, and adaptability are also included in the scope of the paper. Due to its

increased relevance in the scope of this project, the focus was on emotion in the use and adequacy

of synthesized voices, system adaptability and system integration.

The authors identify the perceived emotion of speech software as necessary to establish in the

user a sense of trust and to improve its effectiveness. It is explained that the vocal aspect carries

different kinds of information. Disregarding the manner in which a message spoken may create

misunderstandings and does not allow the receiver to fully understand the meaning of the message.

The limitations also have an effect on the user’s speech, due to the technical shortcomings of

language processing and the inability to perform a context sensitive analysis. If the user has

speech impediments, the software may also be unable to properly interpret the conveyed message.

The paper also classifies software adaptability and customization as priorities. Adaptability

is especially important when there is a significant difference in skill level, culture, necessities be-

tween the users of the system. The idea behind adaptive human-computer interaction is that more

sophisticated natural input and output can be achieved. By refining the settings of the software,

22 State of the Art

users with varying levels of dexterity and capacity can perform complex type tasks more quickly

and with greater accuracy.

One of the topics which is also relevant is the response to input and output from hardware

devices such as peripherals, and how the interaction techniques change accordingly. Ideally the

system itself should be able to take into account not only support software and hardware, but

also store user preferences and dynamically present an adaptive interface which is suitable for

that specific user. This translates, for example, into the interface handling errors and interruptions

elegantly.

Despite some concepts which seem relatively consensual among researchers in this area, there

are also initiatives which aim to unify concepts from different areas, and, by doing so, contributing

to the development of more adequate multimodal software. In the report Universal Accessibility as

a multimodal design issue, some topics regarding multimodal design are addressed. The authors

claim that frequently interconnections between concepts of universal Accessibility and Human-

Computer Interaction are not evident. To show the connection between universal accessibility

and multimodal design the proposed solution is a unified generic framework where these areas

overlap[67].

Figure 2.9: Visual representation of the modalities, constraints, and effects and their relation (ex-
tracted from [67]).

The main idea is that user interfaces can be described as a set of communication channels. If

those descriptions can be linked with the profiles that represent the user’s environment and devices,

the adequacy of a multimodal interface can be assessed for a specific situation.

Initially a unified modeling framework was formally defined, with the objective of describing

multimodal human computer interaction and various user and environment characteristics using

standard terms which would minimize ambiguity. Using a table which maps the modalities and

2.4 Methodologies and approaches to Software Development 23

effects it is possible to describe concrete user interfaces using the high-level descriptions of these

modalities.

The investigators defending this approach identify several advantages. First, it allows for more

flexible and reusable solutions to be used by developers. On the other hand, it enables the same

treatment for different situations. The use of the term universal solution also discards the use

of the term disability which often is a negative connotation. In this case, the constraints are not

necessarily due to the physical limitations of the users.

2.3.1 Discussion

In section 2.3 several key ideas and elements of multimodal application design are presented. Most

mentioned strategies are relevant in the development of the platform. By integrating elements of

the design into the application, it will be possible to reach more CRPG clients, regardless of the

limitations they may face.

Interoperability with assistive technologies and use of sound both as input/output are relevant

for the implementation of the platform. Despite the identified limitations which are still relevant

today, it is also true that the technology behind Text-To-Speech systems and language processing

has improved significantly. As a consequence, the use of speech recognition and synthesized voice

both as input and output for the platform were deemed suitable and helpful given the wide range

of autonomy of the users.

Regarding the presented unified framework approach, despite appearing useful in several con-

texts, it was not considered adequate for the development process and as such its use was dis-

carded. The concept of the communication channel does not adequately represent the implications

of using assistive technologies such as support applications and peripherals, which have specific

characteristics not mentioned in the paper.

2.4 Methodologies and approaches to Software Development

This section describes and compares approaches and methodologies to software development.

Subsection 2.4.1 provides an overview of the Agile methodology.

Subsections 2.4.2 focuses on the Waterfall Approach and 2.4.3 on the Incremental Approach.

For each one of the approaches, considerations regarding the adoption of each for the scope of this

project are included.

24 State of the Art

2.4.1 Agile Methodology

The Agile approach allows for the development of solutions like software through a collabora-

tive effort of self-organizing teams in collaboration with the end-users. It was introduced by the

Manifesto for Agile software development. It borrows several principles from other software de-

velopment methodologies such as Scrum and Kanban.

There are several key concepts that are used with the Agile approach. The first consists in the

breakdown of the development work into smaller segments which minimize planning and design

time. Using development sprints or iterations, which are usually in the time frame of one to four

weeks, is also common.

Agile also advocates for the physical coexistence of coworkers or team members. As a result,

face to face interaction is encouraged, contributing to reduce the time that is typically used for

answering questions. In order to allow for very short feedback, daily stand-ups are used. These

sessions consist in the reporting of what each member did in the previous day, what is intended to

do on the same day and what challenges or impediments they face to reach their goal.

Along with the stand ups, Agile encourages tools and techniques which improve quality and

enhance development agility. This translates among other elements, the ability to show the end

user a version of the software which typically happens at the end of every iteration [11].

While not all of the characteristics of the Agile methodology can be applied to this project,

namely the ones regarding team work, the use of iterations and functional prototypes for demon-

stration and validation by the end user will be adopted.

2.4.2 Waterfall Approach

The Waterfall model is one of the most common software development methodologies. Similar to

the manufacturing process in an assembly line, it follows a structured sequential path. Each phase

of the sequence is comprised of specialized tasks. At each phase, milestones must be accomplished

before the next stage can begin [13]. A visual representation of this methodology can be seen in

Fig.2.10.

Figure 2.10: A visual representation of the Waterfall Approach (extracted from [28]).

This approach is limited because there is little flexibility or margin for corrections if new

necessities arise during the development of the project. For this reason, many developers consider

this approach to be outdated [62]. Due to the limitations of this approach and the necessity of

2.4 Methodologies and approaches to Software Development 25

being able to adapt to new circumstances and feedback during development, using the waterfall

approach does not seem to be the most adequate solution regarding this project.

2.4.3 Incremental Approach

In the incremental development approach, user needs and the overall architecture are defined. A

series of increments, known as software builds, is then used to divide the system. The first build

incorporates a part of the total planned capabilities, the next build adds more capabilities, and so

on, until the entire system is complete [42].

The incremental approach allows partial utilization of the product and avoids a long develop-

ment time. One of the main advantages is the ability to present functional releases soon in the

development process, speeding up assessment of the current work and allowing for validation.

Another benefit is that, when changes are necessary, it is not necessary to develop a new system

from scratch. The current project should have some modularity that can allow for changes and

flexibility. A visual representation of this methodology can be seen in Fig.5.1.

Figure 2.11: A visual representation of the Incremental Approach (extracted from [55]).

The incremental approach seems to tackle some of the uncertainties that are to be expected in

the process of developing software. It is not realistic to expect to know and predict what changes

could arise during development, since the development is a flexible endeavour.Given the circum-

stances of the platforms, this type of approach seems to be more suited for the development phase.

26 State of the Art

2.4.4 SOLID Principles

The SOLID principles are an acronym for the first five object-oriented design (OOD) principles

by Robert C. Martin. Despite the evolution of software development and the surge of different

approaches and principles, SOLID principles are frequently cited in articles.5 These principles are

also commonly used in IT companies globally. The following list summarily describes each of the

principles:

1. Single-responsibility principle: "There should never be more than one reason for a class

to change." In other words, every class should have only one responsibility[61].

2. Open–closed principle: "Software entities ... should be open for extension, but closed for

modification." A program’s modules should have responsibility over a single part of that

program’s functionality and be responsible for its encapsulation[60].

3. Liskov substitution principle: "Functions that use pointers or references to base classes

must be able to use objects of derived classes without knowing it". In other words, seman-

tic consistency is maintained in complex inheritance hierarchies, making classes easier to

understand and modify[59].

4. Interface segregation principle: "Many client-specific interfaces are better than one general-

purpose interface." This principle protects objects from depending on the behavior they do

not need. This principle aims to keep a system decoupled and thus easier to refactor, change,

and redeploy [58].

5. Dependency inversion principle: "Depend upon abstractions, [not] concretions." In other

words, high-level modules should not depend on low-level modules[57].

The main idea behind these principles is that using them leads to avoiding bad design deci-

sions. There are several principles and approaches from different authors, so different projects

may require different solutions. In the case of the application for CRPG, it should be expected that

future work will be done on the platform. This is due to CRPG’s IT department wanting to con-

tinue the project and adding more features and integration with the existing infrastructure. Using

the SOLID principles allows the code to be more modular and easier to read. This allows modifi-

cations to the code to be done faster, and less time is spent trying to understand the responsibility

of a specific class or module.

2.4.5 Discussion

Section 2.4 introduced several approaches to software development. Using both Agile and In-

cremental approaches seems justified, due to the possible change in requirements over the de-

velopment phase and need for early validation by end users. The Waterfall approach was also

5Using the keywords “software SOLID principles” in the Google Scholar search engine returns 2.250.000 results
(as of 08-06-2021).

2.5 Inclusive Design Methods 27

introduced, but due to its limitations such as lack of flexibility and adaptability to unforeseen cir-

cumstances its viability is compromised. The SOLID principles were also found to be adequate in

the context of this project, as they should improve the code quality and make future work on the

application easier.

2.5 Inclusive Design Methods

This section provides an overview of design concepts with a focus on inclusivity. The first subsec-

tion, 2.5.1, introduces the concept of Participatory Design. Subsection 2.5.2 presents the charac-

teristics and insights into User-Centered Design. Subsection 2.5.3 details the concept of Universal

Design. Subsection 2.5.4 explains the concept of the Inclusive Design Cube, and establishes its

strong points and limitations.

2.5.1 Participatory Design

Participatory design is an approach that aims to include all the stakeholders (clients, users, or other

entities which may be impacted by the product) in the conception of the solution and allowing them

to actively contribute to the design process. The aim is to ensure that the proposed solution meets

the requirements and is suitable to the end users [87].

Two main types of participatory design can be defined: one attributes power to the user to

provide insights for the professional designers to consider, but the final decision is the responsi-

bility of the professional. This type is named consultative design. The second type gives users full

power and responsibility in the final outcome, known as consensus design.

This approach has characteristics that overlap with the protest from software programming

such as Extreme programming.6 Both these approaches put the user at the center of the design

of the software. However, participatory design focuses on the involvement of a broad group of

individuals and not a small number of user representatives which is the case in a lot of software

projects [49].

This project employs the use of participatory design, which started in the first phase of the

project. When user research was conducted, the clients were questioned regarding features they

liked to see on the interface and also identifying points of improvement which would make their

interaction easier. Surveys and usability tests were used for validation of the design in each itera-

tion.

6Software development methodology whose purpose is to improve software quality and responsiveness to changing
customer requirements [10].

28 State of the Art

2.5.2 User-Centered Design

The development of an application that has the purpose of social inclusion has, necessarily, to have

the necessities of the final users as its utmost priority. The concept of development and design

focused on the user is discussed in User-Centered System Design: New Perspectives on Human-

Computer Interaction, published in 1986 [66]. Edited by D. A. Norman and S. W. Draper, it is the

result of collaborative work by UCSD group on Human-Machine Interaction and colleagues. The

book lays out a map of central issues, questions, and complex trade-offs facing designers, creators,

and users of interactive systems.

The authors highlight the importance of improving information flow between human and ma-

chine, employing a unified approach. Under some conditions, it is argued that the system should

volunteer information to the users, without the users even knowing they needed the information.

The stance that error is an inevitable aspect of human action must be considered. Accounting

for the user’s fallibility allows for setting on the platform the burden of adapting to the user and not

the contrary, removing obstacles in the interaction. In practical terms, software must be capable of

monitoring task completion by the users. If erroneous or undesired actions are detected, it should

allow for rapid and graceful recovery and return to a previous state.

Another critical idea mentioned is integrating the users into the development process by gath-

ering information on how they progressively understand the system. The authors make the case

that, with better knowledge about how users come progressively to understand a system, we may

be able to build better learning support into it.

After the book’s publication, extensive documentation regarding the development with this

approach was released, and ISO (International Organization for Standardization) standards. While

different authors and publications have different interpretations of what means to adopt a User

Centered Design (also known as User Driven Development), some key ideas seem consensual.

The main focus is to research and discuss each stage of the design process from a user per-

spective. Several phases of the process need to be reviewed frequently, such as usability goals,

user characteristics, environment, tasks, and workflow to guarantee adequacy at each change to

the software.

In other product design philosophies, it may be expected that the user will adapt to the product,

and not the other way around. Obviously this approach has an impact on the scope of the social

inclusion of the software, so a good understanding of the users is necessary in order to assess its

adequacy. In user-centered design, the focus is on optimizing the product around how users can,

want, or need to use it. By doing so, users do not change their behaviour and expectations to

accommodate the solution, contributing to more inclusivity.

2.5 Inclusive Design Methods 29

2.5.3 Universal Design

The aim of universal design is to allow for the design of a concept which can be a product or a

service to be used and accessed to the greatest extent regardless of the characteristics of the user

such as age, ability, or disability [1]. In 1997 a group of seven principles for universal design were

developed. These principles can be used to evaluate existing designs and guiding design processes

[7]. The following list presents the different principles:

1. Equitable Use: Useful and marketable to users with different needs and capacities.

2. Use Flexibility: Allows for different individual preferences and abilities.

3. Simple and intuitive use: Easy to understand design, regardless of user characteristics.

4. Perceptible Information: information is conveyed adequately to the user.

5. Margin of Error: allows users to regain control after accidental or unintended actions.

6. Low physical effort: design does not provoke fatigue and can be used comfortably.

7. Appropriate Conditions for Use: Size and space is provided, and no barriers are presented

to the manipulation, regardless of users body size, posture or mobility.

2.5.4 Inclusive Design Cube

One of the possible approaches is related to the use of an Inclusive Design Cube. This method-

ology highlights different design approaches that can be used to develop inclusive products [46].

The graphical representation of this cube is shown in Figure 2.12. In each the five different layers,

With each one highlighting a different approach or necessity.

Figure 2.12: A visual representation of the Inclusive Design Cube (extracted from [46]).

30 State of the Art

Each axis of the cube represents beneath our capability, whether it is regarding motion, sensory

input or cognitive limitations. The necessities of non-disabled users are obviously fewer than those

of users who may have some incapacity, which leads to the most capable users to occupy a small

volume of the cube.

In order to include other groups of users with varying levels of capability, the cube needs to

expand in the three axis. Each axis length represents the capability of one area, respectively mo-

tion, cognitive and sensorial. The expansion of the cube, in practical effects, translates into going

beyond focusing only on user-aware design and incorporating a customizable, special purpose de-

sign, as well as accounting for the intervention of a carer in the use of the software.The five levels

of the IDC can be summarized as follows:

1. User needs: specification of system requirements.

2. User perception: identification of the output modalities that may steer users away from

interacting.

3. User cognition: system clarity is defined, given possible cognitive impairments.

4. User motor function: definition of the most adequate input modalities.

5. Usability: system evaluation.

One of the main limitations of this methodology is that it does not take into account the neces-

sities of individual users. This approach is more suitable when it is not possible to know who is the

final user, or the number of users is considerably high, such that it does not allow for fine-tuning

for specific individuals. Because of the characteristics of the current project, and also because

there is no mention of the use of this method in the non-functional prototype report, its use does

not seem justified here.

2.5.5 Discussion

In section 2.5, several methods for assuring inclusive design are presented. While these methods

may not be applied directly in the implementation of the solution, their comprehension provides

an insight into some of the design decisions, and how to continue refining the interface in a way

that does not compromise the work done so far. Concepts such as participative design and user-

centered design, which were applied during the design phase, were also used in the implementation

phase.

2.6 Summary 31

2.6 Summary

In this chapter, the background of the areas related to the project were presented. Section 2.1

gave an overview of the first phase of the project, and introduced the main specifications of the

non-functional prototype.

Section 2.2 provided an overview of health management platforms. It also includes an analysis

of three relevant platforms for the scope of this dissertation. The absence of more examples in this

section is due to a lack of platforms which were in conformity with the requirements. However,

some conclusions were reached during the study of the presented examples, such as common

points considered to be barriers to the user experience, and what measures can be taken to mitigate

these problems.

The state of the art of the design guidelines for multimodal software development and guide-

lines that can be used or serve as a reference in the development of the solution were also reviewed

in section 2.3.

Section 2.5 provided an insight into some of the inclusive design methods used during the first

phase of the project. While the main focus of this project is on the development and not on the

design of the platform, the exposition of the different concepts allowed for a better understanding

of the reasoning behind some of the decisions, translating into additional knowledge during the

implementation of the platform.

32 State of the Art

Chapter 3

Technologies

This chapter features an overview of the standards and technologies that are relevant to the de-

velopment of the application. Section 3.1 provides an insight into web and mobile accessibility

guidelines. An overview of development tools for mobile development is presented in section

3.2.The strong and weak points of each framework is highlighted and their adequacy for the de-

velopment analyzed in section 3.2.8. An overview regarding assistive technologies is included in

section 3.3. Section 3.4 presents a summary of the ideas and conclusions.

3.1 Accessibility standards and guidelines

The Web Content Accessibility Guidelines (WCAG) are part of a series of web accessibility guide-

lines published by the Web Accessibility Initiative (WAI) of the World Wide Web Consortium

(W3C). This consortium is the leading international standards organization for the Internet, which

aims to foster compatibility and agreement among industry members in the adoption of new stan-

dards [91, 89]. The WCAG are a set of recommendations for making Web content more accessible.

Due to the difficulties that people with disabilities face when using the Web, this group is the most

in need of accessibility guidelines, which also apply to highly limited devices, such as mobile

phones.

After the proposal of WCAG, which was primarily targeted for web content, a W3C working

group presented the document titled Guidance on Applying WCAG 2.0 to Non-Web Information

and Communications Technologies (WCAG2ICT) [48]. It provides informative guidance, mean-

ing that it is not normative and does not set requirements. However, since it is developed by experts

in accessibility, it is considered a good starting point for developers who need to meet specific ac-

cessibility requirements in their projects. The document encompasses a wide range of topics and

presents some ideas on implementing the accessibility tools mentioned in the non-functional pro-

totype report. The technologies and development tools used in the application’s development were

in compliance with the standards, resulting in increased usability.

33

34 Technologies

3.2 Frameworks/Programming Languages

In this section, an overview of different solutions for mobile development is presented. Several

native and hybrid development tools for Android are introduced. An overview for each one is

provided; characteristics that distinguish each one are also detailed.

3.2.1 Overview

Mobile development development tools can be in three categories: native, mobile web app frame-

works, and hybrid, which combine the features of both native and mobile web app frameworks.

As the application’s intended use is on Android smartphones, there was flexibility on whether to

opt for a native or hybrid solution.

Some of the functionalities (such as increased color contrast and voice assistant) are present

natively on Android and iOS. Frameworks that allow for the integration of the existing resources

of the OS were preferred, as some of these tools are too complex and time-consuming to be

implemented independently within the time-frame available for development. In this regard, native

development is usually preferred when the objective is to run the app on a single operating system,

taking advantage of its full capabilities [64].

Frameworks used for hybrid development can usually be more difficult to maintain and their

design can be rendered obsolete if is not updated frequently. Additionally, hybrid frameworks

make it more difficult to take advantage of the in-built tools that each specific operating system

offers. When developing for different operating systems, hybrid frameworks are usually time-

savers, as it enable to develop for several operating systems in a single project.

Progressive Web Apps (PWAs) are a type of application software delivered through the web,

built using common web technologies including HTML, CSS and JavaScript. The advantage of

using PWAs is that they do not require installation of software, and run across a wide range of

devices. On the other hand, PWAs have limited access to the OS resources, so no true integration

with the device is achieved. This limitation makes PWA usage inappropriate in the context of the

application as full access to OS resources was needed, such as support software built-in to the

system [14].

In software development, one of the biggest time-consumers is the need of frequently compil-

ing and recompiling the code, which can take, depending on the processing power of the system,

anything from several seconds to several minutes. Since this is an operation that has to be done

very frequently, the cumulative amount of time spent on this is considerable and amount to loss

productivity. One of the mentioned characteristics is "Hot Reload", and aims to solve that prob-

lem. Hot Reload translates to the possibility of keeping the app running and to inject new versions

of the files edited at run-time. This way, the state of the application is preserved. Development

tools which support Hot Reload or similar should be preferred.

3.2 Frameworks/Programming Languages 35

3.2.2 React Native

React Native is a framework for developing web and mobile apps. Developed and maintained

by Google, React is described as a “JavaScript library for building user interfaces”. The pro-

gramming language used is JavaScript. The library is updated regularly, and React Native allows

developers to use React to create cross-platform native Android and iOS apps. “React components

wrap existing native code and interact with native APIs via React’s declarative UI paradigm and

JavaScript”. In other words, the app adapts to the operating system where it is running, using its

specific functionalities [68].

Both Android and iOS provide APIs for integrating apps with assistive technologies like the

bundled screen readers that are built into the operating systems. React Native has complementary

APIs that allow for the integration of these resources[65].

3.2.3 Flutter

Flutter is a software development kit created by Google. With Flutter, applications for Android,

iOS and other platforms can be developed. While other options rely on web browser technology or

the set of widgets specific to each platform and device, Flutter uses a proprietary rendering engine

to draw widgets [38]. The majority of Flutter’s system, which includes the visual components,

animations, among other elements, is implemented in Dart (an object-oriented language).

Flutter offers several accessibility widgets, allowing to create a highly accessible application.

One of these, Semantics, allow the creation of a widget tree which allow the addition of annotations

to give audio cues to visually impaired users [40]. Given the reasonable amount of documentation

available for Flutter, the characteristics of this framework also make it a suitable option for the

approach to the development.

3.2.4 NativeScript

NativeScript is an open-source framework to develop mobile apps. Like React Native and Flutter,

development for iOS and Android is possible, resulting in native apps. Progressive is responsible

for its creation and updating. NativeScript apps are built using JavaScript; other languages, like

TypeScript, can also be used, if they can be transpiled to JavaScript. NativeScript supports the An-

gular and Vue JavaScript frameworks. Third-party libraries can also be re-purposed from several

sources (such as CocoaPods, Maven, and npm.js) in their mobile applications, discarding the use

of wrappers [81].

The NativeScript framework produces native apps. Thus, all vendor tools for impaired users

work right out of the box. Most automation tools and frameworks should work with no additional

bridging code or programming required. In addition to the entire set of native accessibility capabil-

ities, NativeScript also provides cross-platform APIs which speed up the process of incorporating

accessibility tools in both operating systems [20].

36 Technologies

3.2.5 Ionic

Ionic is an open-source SDK for hybrid mobile app development.1 It was created by three devel-

opers at Drifty Company. Released originally in 2013, it has been frequently updated and new

releases have allowed for more options regarding framework choice. The first release was based

on AngularJS and Apache Cordova. Later releases allowed for more freedom of choice regarding

interface framework, such as Angular, React or Vue.js. Ionic components without user interface

framework are also allowed [22].

Using Web technologies like CSS, HTML5, and Sass, Ionic provides tools and services for

developing hybrid mobile, desktop, and Progressive Web Apps. Like other hybrid frameworks,

Ionic uses the concept of shared-code among different builds in order to speed up the development

process. In particular, mobile apps can be built with Web technologies and then distributed through

native app stores.

Compared with the rest of the analyzed development tools, Ionic provides lackluster docu-

mentation, which makes it difficult to properly access its adequacy for the development phase.

In addition, complaints made by developers in websites such as StackOverflow indicate frequent

limitations to the implementation of accessibility tools in the apps.

3.2.6 Java

Java is an object-oriented programming language. It is considered to be an high-level language,

and follows a class-based programming style. Compiled Java code can run on all platforms that

support Java without the need for recompilation. Java was originally released in 1995, with James

Gosling being its author. Java is updated frequently, adding new features or syntax changes, as

well as security updates[70].

The Android SDK uses the Java language as the basis for Android applications. However,

it does not use any of its standard Graphical User Interface or other established Java standards.

Android, built on the Linux kernel, is written largely in C. Despite the complex technical structure

of Android, which features several layers, the Java language and Java libraries can be used to

develop software[75]. The Java virtual machine ensures that Android can be executed in many

different hardware configurations[88].

3.2.7 Kotlin

Kotlin is an statically typed programming language. It is open-source, and was released to the

public by JetBrains in 2011. Kotlin can be used freely, and from the developer side it also benefits

from having extensive documentation provided on the web [45].

The main idea behind Kotlin is being able to develop apps for Android while using a more

concise syntax, when compared to writing apps in Java. Due to its interoperability with Java,

every Java compatible library can be used, and the same project can share Java and Kotlin code

1A set of development utilities for writing software applications[29].

3.2 Frameworks/Programming Languages 37

(though in separate files). Compatibility with libraries used with Java is relevant in the scope of

this project, as it is a requirement for the full-access to the multimodal capabilities of the Android

OS.

There is some debate on whether Kotlin requires more time to compile and offers worse per-

formance than writing the entire project in Java. Some studies have shown inconsistent results,

with Kotlin being faster on some instances, with Java outperforming Kotlin in others. Regardless,

the competitive advantage usually boils down to a difference of milliseconds, and therefore, should

only be an issue in large scale projects.

One of the cases in favor of the use of Kotlin, is the amount of Java code which, although

necessary, can be considered as being boilerplate. One of these examples correlates with the

need to write getters and setters, in some cases abundantly if the project has many classes.2 The

following code exemplifies what a typical class in Java may look like:

1 class Book {

2

3 private String title;

4 private Author author;

5

6 public String getTitle() {

7 return title;

8 }

9 public void setTitle(String title) {

10 this.title = title;

11 }

12 public Author getAuthor() {

13 return author;

14 }

15 public void setAuthor(Author author) {

16 this.author = author;

17 }

18 }

Listing 3.1: Data class example in Java (extracted from [4]).

And as a follow-up a fragment of code which is obtained when the same objective is tried on

Kotlin is presented:

1 data class Book(var title: String,var author: Author)

Listing 3.2: Data class example in Kotlin (extracted from [4]).

This example illustrates one of the main objectives that led to the creation of Kotlin: code

that is simpler to write and read, when compared to Java. Other key difference when comparing
2Methods used to access and update the value of private variables, ensuring encapsulation. Encapsulation is a Java

programming practice that states that "sensitive" variables should be hidden from users and other classes[93].

38 Technologies

Kotlin to Java, is the approach of both languages to Null safety. To explain this concept, it is

necessary to mention that in many programming languages, including Java, accessing a member

of a null reference will result in a null reference exception. When conditions are not put in place

to check for possible null values, an error is thrown, which may cause, in most scenarios, the

application to fail. Writing code that accounts for these situations on a larger scale adds up to a

significant amount of conditions which have to be thrown, thus making the code harder to read

and comprehend.

The way Kotlin type system is designed aims to eliminate NullPointerException’s from the

code. The type system is able to differentiate between references that can hold null (nullable

references) and those that cannot (non-null references). The way Kotlin operates, is that Nulls in

Kotlin do not exist unless the developer states otherwise.

3.2.8 Frameworks/Programming Languages Comparison

Table 3.1 provides information regarding each development tool and allows for comparisons be-

tween characteristics of each option. The information listed is retrieved from the websites of the

companies or entities responsible for its support. No requirements regarding the use of a spe-

cific framework or programming language were specified by CRPG representatives. Development

tools were selected by taking into account each option’s characteristics and then opting for the

ones which proved to be more adequate.

In order to document the extensiveness of the documentation available with regards to the ac-

cessibility APIs two designations are used: "Extensive", which is applied to cases where it was

possible to find official documentation regarding the use of specific accessibility APIs, and "Re-

duced", which denotes inconsistencies in the found documentation, such as missing documentation

for a specific API.

Table 3.1: Comparison between development tools.

Framework Code
Access to

Device APIs
Hot Reload

Documentation coverage
on accessibility APIs

React Native 3 JavaScript Full Yes Extensive

Flutter 4 Dart Full Yes Reduced

NativeScript 5 JavaScript TypeScript Full Yes Reduced

Ionic 6 HTML, CSS, TypeScript, JavaScript Partial Yes Reduced

Java 7 Java Full Yes Extensive

Kotlin 8 Kotlin Full Yes Extensive

It is possible to conclude from table 3.1 that all of the solutions presented seem to check one

or more of the requisites for its use on the project. All of the development tools are also open

source and free to use, so there is no restriction due to financial constraints (although Ionic has a

free version and a paid version, which offers extra security and premium native plugins, among

other features).

3.2 Frameworks/Programming Languages 39

Due to the necessity of using the in-built resources of Android, there is a preference for native

development. All of the solutions for native development present in the table can make use of the

entire set functionalities built into the operating system; Ionic being an hybrid framework, uses the

concept of shared-code to make development for both Android and iOS easier. The downside is

that the code is not optimized for Android specifically, and access to the OS resources is limited.

One of the main advantages of using native solutions is that, by using UI/UX components of the

OS, Android updates should still allow the UI components to be consistent between the app and

Android.

Flutter, like React Native, enables access to OS features. When compared to React Native,

Flutter is a less mature technology, due to being released later. It also has not reached React Native

in terms of stability. The adoption between developers, assuming GitHub contribution numbers,

is also not as pronounced, which contributes to a smaller number of available packages and less

support by the community. NativeScript offers almost all of the capabilities that are necessary to

develop the app, however performance seems to be compromised when comparisons are made to

React Native.

Java has extensive documentation on accessibility and inclusion, and is frequently updated. It

also has the advantage of being the native Android language, which allows for the most extensive

list of both Google and third-party packages among all of the analyzed solutions, as well as having

an active community of developers that discuss topics related with it. It also eliminates the risk of

possible issues when trying to integrate specific Android tools.

Several reasons led to discarding the use of React Native. While most of the needed features

could be implemented by using libraries specific to React Native, some questions appeared regard-

ing limitations to the integration of the intended multiple modalities of interaction. If no libraries

were available to implement all the needed modalities, it would not be possible to change the

programming language in a later stage of development. Documentation was also lacking in some

accessibility subjects when compared to the official Android documentation for developers. After

examination of the available options, the Kotlin programming language was considered.

Kotlin, like Java, provides faster performance than hybrid frameworks, although it is not pos-

sible to declare Java or Kotlin faster due to inconsistent results that were mentioned. When com-

pared to Java, the amount of boilerplate code is reduced, improving readability, and the amount

of bugs is also reduced as a side effect of the cleaner code writing and the approach of Kotlin to

null references, amongst other improvements. Developing code in Kotlin also makes the occur-

rence of bugs less frequent by design of the language. Since the Android documentation provides

documentation for every API that can be used, including accessibility, choosing Java or Kotlin

guarantees that documentation on any Android API is guaranteed, and as such it can be considered

a safer choice when compared to the other solutions which have more inconsistent documentation.

After analyzing the advantages and drawbacks of each specific option, the decision was made to

write the application using Kotlin as the selected programming language, as it checked all of the

necessary requirements.

40 Technologies

3.3 Assistive Technologies

Individuals with a considerable degree of disability may need to resort to devices which help in-

teract with smartphones. Assistive technologies is an umbrella term which includes these devices,

as well as processes and techniques used to improve the quality of life for people with incapacities

[74]. For the purpose of this dissertation the focus was on smartphone-related technology, both

software and hardware, which enable complete autonomy by the user in interacting with the de-

vice. In subsection 3.3.1, an overview of physical systems is presented. Considerations are also

made on approaching the integration of their use with the application. Subsection 3.3.2 introduces

the concept of screen readers and explains its uses.

3.3.1 Prosthesis and physical mechanisms

The use of prosthesis and other physical mechanisms increases the autonomy of the individuals

who need them. The way these systems interact with the mobile device is different from the use

of a human hand, and the application design should consider those differences. It is relevant to

mention that many of these solutions are created for each individual, and they may differ to the

point that could reduce the usability of the application.

Physical pointers are used by people who have limited use of their arms and hands. Some

of them are designed to be used with digital devices, while others can serve other purposes (like

painting on canvas) [95]. Physical pointers can be divided into three main categories:

• A head pointer (also called “head wand”): mechanism attached to the head with a helmet or

headband, and can be used to operate a keyboard, touch screen, or switch device.

• A mouth stick: mechanism held in the mouth by the teeth, and can be used the same way as

a head pointer.

• An adapted stylus: for example, one with a wide handle and straps to secure it to the hand,

which can be used with a touch screen or instead of a mouse.

Figure 3.1: Example of mouth stick use for operation of a computer (extracted from [50]).

3.4 Summary 41

3.3.2 Screen Readers

A screen reader relies on software to translate on-screen information into electronic text. The

information is then relayed to the user employing a text-to-speech tool or a refreshable braille

display. Screen reader software is of the most importance for blind or visually-impaired users,

which would otherwise have difficulty accessing the information on the screen on the device [26].

The two operating systems for mobile systems used by most smartphone users, iOS and An-

droid, have their in-built screen reader software. VoiceOver is the in-built screen reader on iOS

that interacts with objects in apps so users can drive the interface even if they can not see it [9].

TalkBack is Android’s built-in screen reader. Like VoiceOver, TalkBack provides information on

the status of the interface and possible commands, discarding the need to watch the screen. Google

allows for the integration of this tool with third-party software, which simplifies development [41].

The application’s access is also made more comfortable as the users do not need to install

any additional software to have Talkback working. Talkback is available in Portuguese, which is

crucial as users interact with the app in Portuguese.

3.4 Summary

The study of the state of the art found and filtered several standards related to mobile develop-

ment with a focus on accessibility and inclusion. Section 3.1 detailed several standards such as

WCAG2ICT, which improve accessibility in mobile applications and websites and could be helpful

in augmenting the usability of the application.

Section 3.2 features an overview of Frameworks usage in mobile development; description

of several frameworks is presented, as well as the accessibility documentation used to assess its

capabilities for the project. Section 3.3 mentions some of the existing assistive technologies which

may be necessary for the user interaction with the application, and how they affect and restrict the

interactions between users and smartphones.

Lastly, section 3.2.8 compared the development tools, discarding the less adequate ones and

allowing to identify Kotlin as the more adequate choice between the available options.

42 Technologies

Chapter 4

Proposed Solution

This chapter describes the proposed solution and the approach to the development. Section 4.1

provides a technical overview of the application and justifies the thought process behind it. The

Use Cases related to the application are introduced in subsection 4.1.1. The requirements, both

functional and non-functional, are presented in section 4.2. A description of the system archi-

tecture is present on subsection 4.3. Section 4.4 provides the work plan for second phase of the

project, including the tasks and an explanation of each one. Section 4.4.1 details the characteristics

of each delivery and what is added at each iteration. The chapter ends with a description of the

assistive technologies use survey and an analysis of the answers to the survey.

4.1 Platform Overview

The platform consists of a mobile application designed to run on smartphone devices equipped

with an Android operating system release/version equal or posterior to Android 6.0 Marshmallow.

The platform is centered on the clients at CRPG and thus all of the features aim to improve their

daily life in the center. The management of real-life data and back-office features for the staff are

out of scope for this project.

The main objective of the application is to aid the clients at CRPG in managing and keeping

track of their daily events and serving as a memory aid through the use of visual and sound cues

for notifying of the occurrence of events. As is mentioned in the survey at section 4.5, different

clients have different needs which have to be accounted for. Short-term memory loss and impaired

vision are among the main difficulties that several clients face. As such, the application provides

tools and modalities of interaction that allows more users to interact. Figure 4.1 shows the Agenda

screen with a list of the events happening at CRPG on a specific date. The application’s design

follows as closely as possible the visual characteristics of the non-functional prototype created

by the design team, as mentioned in Section 2.1. Some technical limitations did not allow the

application to fully resemble the original design, mostly due to restrictions and lack of flexibility

when using the Material Design elements. The clients have access to the following features:

43

44 Proposed Solution

Figure 4.1: Agenda screen of the application.

• Selecting a date in the initial screen, through a horizontal scrolling list, which updates the

information in the Agenda, Transports and Meals to be accurate for the selected date.

• Consulting CRPG-related events in the Agenda as a chronological feed along with all the

events occurring on a chosen day and being able to click them to access more info about

them.

• Consulting and inserting reminders, which can be customized regarding their type, fre-

quency, alert type (sound, vibration or both). Due to the requirement which indicates that the

application should delegate some tasks to already available apps featured in the operating

system, the application requests the use of the native clock/alarm app present on the operat-

ing system. Editing/removing reminders after their creation is done on the native alarm app.

Availability may vary depending on device model and brand, however “vanilla” Android

features an app of this sort.1 The use of an independent app for this task allows for visual

and sound alarms to occur independently of the application being in use at the time of the

alarm.

• Consult/request information regarding public transports or the transport options offered by

CRPG, such as viewing timetables or calling the drivers of the CRPG transport for a specific

date.

• Consult/choose a meal option from four different possibilities (meat, fish, diet or vegetar-

ian), saving the selection and being able to access the chosen meal later in the agenda.

• A meditation area with the possibility of selecting different moods and playing audio files

corresponding to the specific moods.
1Name given to unmodified versions of Android, released by Google as-is. Different smartphone brands may

add/change/remove functionalities of the software developed by Google, according to their needs.

4.2 Requirements 45

• Consulting text and voice notes in a list format, which can also have images associated with

them, and having the voice notes be played directly in the list of notes.

4.1.1 Use Cases

The application has fourteen use cases, which can be accessed by CRPG clients. The use cases

are separated into six main features. Table 4.1 presents the identifier, title and description for each

use case.

Table 4.1: Identifier, title and description of use cases.

Use Case Identifier Use Case Title Description
UC01 Login User inserts credentials and is able to sign into the app.

UC02 Select date
User selects a date from a list with the

dates of the current month.

UC02 View selected date events User sees a list of events in the Agenda screen.

UC03 Consult event details
User clicks an event in the Agenda screen,

and details from the event such as name,

type and additional information are shown.

UC04 Create new reminder

User adds a new reminder, defining type of reminder,

frequency (single instance or repeated occurrence,

alert type (auditory only, vibration only, or both)

and associating a note with it.

UC05 Access public transport timetables
The user is able to access timetables of

public transports which stop near CRPG.

UC06 Access CRPG bus schedules User is able to request the CRPG transport.

UC07 Access custom schedule
User is able to consult a menu with the four

meal options available for the next day.

UC08 Select meal option User is able to choose a meal from four possible options.

UC09 Consult notes User accesses previously stored notes.

UC10 Create text note
User inserts a new note with an

associated title, image and text content.

UC11 Create voice note
User inserts a new note with an

associated title, image and voice note.

UC12 Select mood User selects the current mood from one of six options.

UC13 Play audio file associated with mood
The user can interact with a media player in order to

play an audio file associated with the selected mood.

4.2 Requirements

This section presents the functional and non-functional requirements that were requested by the

representatives of CRPG during the conversations. While this project was a follow-up to a finished

design phase, some requirements changed over time due to requests of the CPRG representatives

and clients.

46 Proposed Solution

4.2.1 Functional Requirements

The functional requirements of the app are described in the following list:

• Create and view events on the Agenda: the main feature on the application is the Agenda.

The Agenda looks like a chronological feed and spans twenty-four hours, akin to the chrono-

logical feeds commonly used in other social networks. The feature welcomes the users to

a screen in which a particular date can be chosen, and after confirming the chosen date the

user is taken to the Agenda screen with the chronological feed for that specific date.

• Create and Consult Reminders: reminders are events that the users can set, and which

trigger an alarm (which can take the form of a ringtone or smartphone vibration). The

reminder feature allows the users to set the hours of the alarm, the frequency of the alarm

(the application offers the options to set the alarm for the current day, the following day

(these two options more suitable for single-instance events), for every single day (which can

be useful for medication intake) and also a customized option, in which the user can select

the weekdays in which the alarm should be set.

• Access Transport Timetables: one of the features should allow users to consult the timeta-

bles for both public transportation and CRPG’s own transport system. Since the CRPG

transport makes stops at Porto, Gaia, and in the residence of each one of the clients, it is

necessary to display the bus stop time in each one of these locations; the name and phone

number of the CRPG bus driver is also shown, and the user can contact the driver by pressing

a button.

• Consult and choose Meals: CRPG clients can select a meal for a specific date, from a

menu with four different options (meat, fish , diet and vegetarian); information regarding

each dish is presented and users can select the option they prefer.

• Meditation area: users can select one mood between six available, and a corresponding

audio file to the selected mood is played in the application.

• Consult and Add Notes: Notes are akin to reminders, but they are time-independent, in the

sense that they do not trigger alarms and are mostly used to aid the users remember useful

information. Notes can be of two types: text notes, in which the content of the note is plain

text which can be edited using the keyboard, and voice notes, in which the content is a voice

note recorded by the user.

4.2.2 Non-functional Requirements

Due to the special needs of the users, the non-functional requirements are comprised of issues

regarding accessibility, data privacy and others as can be seen from the following list:

• Accessibility: the application should provide tools that help overcome the users’ difficulties

and obstacles, given their broad range of physical and cognitive capabilities/impairments

4.2 Requirements 47

such as short-term memory loss and vision impairments. This objective is achieved by

means of a UI/UX designed specifically with the needs of these users in mind, but also

through the several modalities of communication between user and system. The modalities

translate into the use of sound and visual cues to alert the user of events happening soon

or to aid the user in performing an action in the application, as well as the use of Android

accessibility tools such as Google’s Speech Recognition software, which enable users to

control the app using their voice, and TalkBack, which uses a synthesized voice to describe

screens and actions on the app to the user.

• Responsiveness: the system should adapt the design to as many screen measurements and

configurations as possible and be as fluid as possible. The system should also take advan-

tages of the device own accessibility tools and SDKs, since developing some of the features

that are present in the application, such as the alert functionality and the Speech recognition

tools, would not be possible within the development time frame and would reduce the appli-

cation’s compatibility overall, while possibly creating slowdowns and draining the battery

of the device.

• Modular System: the system must be capable of having new features integrated or having

the existing ones adapted/removed in the future with minimal effort, i.e. the CRPG technical

team may want to build a back office tailored to their needs, and as such, the system must

be able to receive a new module and easily integrate it and make it available.

• Data Security and Privacy: data inserted by users should not be stored in a remote database

and accessible by other users. In order to achieve this, data that is inserted into the app falls

into one of two categories: public and private data. Public data refers to data accessible by

the entire CRPG community, such as transportation schedules, meal options for a specific

date and events that are aimed at all of the participants of a specific group or even all of

CRPG clients. Private data refers to the reminders and notes that the user inserts into the

application and which are stored on Android’s internal storage (explained in more detail at

subsection 4.3).

4.2.3 Technical Requirements Update

In the build-up to the start of the development process, contacts were made with representatives

from CRPG, in order to confirm that all of the initial requirements were still adequate. It was also

crucial that the representatives scrutinized and were in agreement to the application’s technical

characteristics and decisions. The main points of discussion were the following:

• whether CRPG could provide access to its existing infrastructure and data storage to the

project or if a third-party storage service would be more adequate.

• implementing the pathfinder tool in the Transports section, which would require the use of

the Google Maps platform.

48 Proposed Solution

• Integration with the Microsoft Outlook API, used by some members of the CRPG staff.

Regarding the topic of database hosting, since CRPG possesses an internal database, it would

be sensible for the application to obtain its data from the existing database, with the added benefit

that data would not need to be duplicated, saving time to the CRPG staff. After speaking to

CRPG’s IT department representative, the idea of accessing the existing database was discarded,

given the lack of an API or adequate interface that could enable a stream of data between the

application and the existing database. No documentation was provided regarding the data structure

and inner workings of the information system used by CRPG. As a result, the structure of the

database which was eventually implemented was designed during the development phase.

In order to prevent delays to the development of the project, it was agreed to store the data on

a third-party server, but safeguarding sensitive data should not be stored in these remote servers.

No additional requirements or information regarding the information system used at CRPG were

provided. The solution was to use the Firebase platform and create a non-relational database from

the ground up. This approach enabled a faster integration with the project and delegated data-

storage and authentication responsabilites to Firebase, enabling more development time for the

multimodal interaction module of the application. After discussing the possible solutions to each

topic, the following decisions were made:

• the database would be stored on a server provided by a third-party service, since the infor-

mation system used by CRPG did not have an API to establish communication with external

systems.

• removal of the pathfinder tool, as it would require accessing Google Maps API, allowing

an external entity to gather information regarding the user real-time location and adding

financial costs which are associated with using this service.

• the Transports feature of the app was also modified: each user should be able to view the

time when the CRPG transport would pass by their house and two predetermined locations

(Porto and Gaia bus stops).

• integration with the Microsoft Outlook API was abandoned, and manual introduction of data

was agreed to be the best course of action.

With this new set of information, modifications were made to the previous requirements, in

order to make the application respond to the CRPG community most current needs. Other adjust-

ments were made regarding the non-functional prototype. The text font used in the non-functional

prototype, Trebuchet MS Bold, is trademarked and cannot be used without a paid license, which

may need to be renewed after a fixed time period. In order to solve this issue, the solution was

to use Source Sans Pro, an open source font family which can be used without restrictions. The

typography is also similar to the paid font, so it was deemed to be an adequate solution. Because

there were no High-fidelity designs for some of the screens, designs for screens with missing lay-

out were based on the low fidelity prototypes or the available wireflow. An effort was made to

keep the visual identity of the app consistent across all screens and features.

4.3 Software Architecture 49

4.3 Software Architecture

The platform consists of a mobile application developed using Kotlin. The Firebase platform is

used in the form of Backend-as-a-Service.2 The Firebase platform ensures data storage through the

Firebase Realtime Database SDK, and authentication capabilities through the Firebase Authenti-

cation SDK. As mentioned previously, some accessibility tools are natively built in the Android

OS, such as the TalkBack text-to-speech tool. The application takes advantage of the capabilities

of TalkBack, but also provides its own text-to-speech tool, as it was not possible to override An-

droid’s TalkBack code to provide more customized and contextual information to the user. Speech

recognition is also integrated, enabling the users to execute contextual actions using voice com-

mands.

Users log into the app, using personal credentials, of which there are two types, for identifying

users as CRPG clients or staff. Data inserted by the staff in the database cannot be edited, only

consulted, by the clients. Apart from the information which is made public by the staff, the private

data that each client creates is not accessible by other clients. The staff can add or remove data

from the database using the Firebase console. Due to the concerns regarding personal data, use and

storage of sensitive information of each user is avoided. The data that is introduced by the users,

such as reminders and notes, is stored in the form of app-specific files.3 Media files, such as the

meditation-related audio files, can be streamed from the database if necessary, or from the device’s

own storage. The app was also designed with the SOLID principles in mind, translating into a

highly modular structure and easily adaptable in future implementations. A simplified overview

of the system architecture can be found in Fig. 4.2.

4.4 Methodology and Work Plan

Regarding the implementation of the application, the User-Driven Development methodology was

adopted. This translated into keeping close contact with the clients who volunteered to test the

app and continuously listen to requests and feedback during the development process. Not only

a channel of communication was established, in which the clients could suggest new features and

voice any concerns, but a survey was conducted before starting the implementation, as well as user

interview sessions following the first prototype delivery, and an usability test following the second

prototype delivery.

Before starting the implementation phase, a study regarding the technologies needed for the

development phase was conducted. This study coincided with the release of the survey for the

clients at CRPG. Libraries necessary for the development of the app were studied, and chosen

considering their adequacy in the scope of the project.

2Service to which some behind-the-scenes aspects of the mobile application development can be delegated, so more
resources and time are available to write and maintain the frontend[16].

3Files that are meant for the application’s use only, either in dedicated directories within an internal storage volume
or different dedicated directories within external storage. These directories are recommended by the official docs to
save sensitive information that other apps shouldn’t access[33].

50 Proposed Solution

Figure 4.2: A visual representation of the architecture of the application.

The validation of the application by its users provided constructive feedback. These instigated

further analysis of possible improvements to the application. Usability tests were conducted in

order to quantify several parameters regarding the use of the application through different means

of interaction. Metrics such as the time taken to perform specific tasks or errors made while

performing the tasks were measured. More information regarding the different types of testing

can be found in chapter 6.

In order to define realistic goals during development, it was necessary to break down the

development of the project into smaller, more concise sections. The development of the first

prototype began as soon as all of the data was gathered and the employed technologies had been

studied. Even though the phases are mostly sequential, some tasks were done in parallel. For

example, functional and accessibility tests were performed during all development phases, and

not only after the development of code. This decision was made in accordance with what are

considered to be adequate Agile development testing approaches[56]. The original scheduled

work plan, with the time frame expected for each enunciated phase, can be seen in Fig.4.3.

The original work plan was modified: due to the coronavirus pandemic, no RAC program was

ongoing at CRPG at the time of the originally planned first prototype delivery. It was necessary to

allow users to interact with the first prototype under supervisions, in order to gather all the needed

information. As a result, the first development period was extended for longer than originally

4.4 Methodology and Work Plan 51

Work Plan
2021

Feb Mar Apr May Jun

Application Development
Requirements gathering

Project Setup

First functional prototype implementation

Second functional prototype implementation

Final release implementation

Functional and Non-Functional Testing
First prototype validation

Second prototype validation

Final validation

Final Presentation

Figure 4.3: Visual representation of the original work plan (Gantt chart).

intended, and the idea of having two validations with users and an usability test was discarded, as

logistically was not possible. The phases as described as follows:

• PHASE 1 – Requirements gathering: before the development process can begin, a sur-

vey is conducted to understand the capabilities and limitations of the mobile devices used

by CRPG clients, and also identifying mechanisms used by the clients which may present

additional challenges in the coding of the software.

• PHASE 2 – Project setup: includes initializing a working repository with version control

implemented, in order to make revising changes easier, and also by installing and doing the

setup of the programs and tools needed to develop the software.

• PHASE 3 – First functional prototype implementation: the development of the first pro-

totype encompasses the implementation of the non-functional prototype into a minimum

viable product, which features the six main features, featuring the design present in the hi-fi

designs and integration with the Firebase platform.

• PHASE 4 – First functional prototype validation: validation of the prototype includes

functional and non-functional testing. A session with CRPG clients is scheduled in order

to gather feedback and thoughts on the application and on obstacles/weaknesses were faced

while using the application.

• PHASE 5 – Second functional prototype implementation: the development of the sec-

ond prototype prototype is mainly focused on the multimodal capabilities of the application,

52 Proposed Solution

such as contextual notifications with integrated action buttons, integration of TalkBack, cus-

tomized voice messages through the use of a synthesized voice with Text-To-Speech capa-

bilities, receiving voice commands from the user and also integration of contextual notifica-

tions with associated action buttons.

• PHASE 6 – Second functional prototype validation: validation of the prototype includes

functional and non-functional testing. Usability testing was conducted with CRPG clients

in order to perform measurements and gather quantitative information on the usability of

each modality of interaction.

• PHASE 7 – Final release implementation: the development of the final release is mainly

focused on the multimodal capabilities of the application, such as contextual notifications

with integrated action buttons, integration of TalkBack, customized voice messages through

the use of a synthesized voice with Text-To-Speech capabilities, receiving voice commands

from the user and also integration of contextual notifications with associated action buttons.

• PHASE 8 – Final release validation: :validation of the prototype includes functional and

non-functional testing. Usability testing was conducted with CRPG clients in order to per-

form measurements and gather quantitative information on the usability of each modality of

interaction;

• PHASE 9 – Final presentation: delivery of the dissertation and of the platform in its

finished state;

The first prototype included all of the functionalities and not only the first two proposed. The

participants were able to interact with the application in a session at CRPG, as soon as it was ready

to be used. The first session of experimentation with the app was not a usability test. Instead, it

was meant to gather validation and feedback from the users regarding difficulties, obstacles and

general thoughts during the interactions.

After the implementation of all the features in the first prototype, the development of the

second prototype, which focused on the multimodal capabilities of the app, occurred during a

much shorter development period. The development period for this phase was of four weeks,

compared to the eight weeks of development time for the first prototype. Fig. 4.4 illustrates the

updated work plan.

4.4.1 Deliverables description

Two functional prototypes were developed to allow for user testing as soon as possible. The

first delivery implemented all of the features aimed at the users. At this phase, interoperability

with other assistive technologies or alternative modalities of app interaction was not present. The

second delivery featured all of the functionalities, including authentication. Adding to the appli-

cation’s capabilities, interoperability with other systems such as Text-To-Speech, Speech Recog-

nition services and Android’s notification system was implemented.

4.5 Assistive Technologies Use Survey 53

Work Plan
2021

Feb Mar Apr May Jun

Application Development
Requirements gathering

Project Setup

First functional prototype implementation

Second functional prototype implementation

Testing and validation
First prototype testing/validation

Second prototype testing/validation

Final Release

Figure 4.4: Visual representation of the updated work plan (Gantt chart).

The feedback provided by users allowed for small adjustments and improvements to be made

to the second prototype. The overall structure did not suffer any drastic changes, and no new

features were implemented, as users had already interacted with the app with all of the planned

features integrated. The last period of development was also focused on troubleshooting, bug fixes

and minor adjustments that improve the user experience overall and increase stability on different

devices.

4.5 Assistive Technologies Use Survey

A survey was conducted to understand the background of the participants and their interaction

with mobile devices. The survey was shared with a total of twelve CRPG clients. Overall, eight

participants answered the survey. From this group, five were a part of a RAC program which had

already finished at the time of writing this dissertation. The rest were part of the program which

started with the development of the application already ongoing.

As shown by table 4.2, the participants were inquired regarding the following topics: age, sex,

operating system present in the participant device, identified needs, and use (or lack of) assistive

technologies needed to interact with their smartphone. Five participants used phones with the

Android OS, with the remaining three using iPhone devices with iOS.

The answers to the survey can be summarized as follows:

• All of the participants used the touchscreen integrated in the smartphone (no participant

reported using any physical device or mechanism to facilitate interaction with the smart-

phone).

54 Proposed Solution

Table 4.2: Background of the CRPG clients who answered the survey (P).

Questions P01 P02 P03 P04 P05 P06 P07 P08

Age (in years) 43 46 60 50 40 55 51 27

Sex (M/F) M F F F M M F M

Touchscreen/Peripheral use Touchscreen Touchscreen Touchscreen Touchscreen Touchscreen Touchscreen Touchscreen Touchscreen

Assistive software Reminder app No No No No No No No

Used Operating System iOS Android iOS Android Android iOS Android Android

Identified necessity Vision impairment Memory impairment - - - - - -

• Of the seven participants, five did not report any obstacles or difficulties regarding interac-

tion with smartphones.

• Two participants identified specific obstacles when interacting with the devices: short-term

memory loss was identified by one participant, with another mentioning an impairment to

the vision.

• he participant who mentioned short-term memory loss also indicated the use of a memory

aid software installed on the device.

From the total of eight participants, seven showed interest in following and contributing to

the application’s development. From these seven, two had to eventually cease collaborating and

asked to be removed from the group of participants. The group was left with five participants.

These five volunteers actively provided feedback throughout the development of the application,

and participated in the validation and usability testing sessions.

4.6 Summary

This chapter provides an overview the proposed solution. The functional and non-functional re-

quirements presented in section 4.2 aim to help the community of CRPG while maintaining the

high level of accessibility that is needed in order to respond to different users’ needs. The represen-

tatives from CRPG were consulted on possible requirements changes with regards to the previous

requirements gathering, and the changes actually enabled to streamline some of the features of the

app. Section 4.2.3 enumerates these updates to the requirements, which were adopted during the

development of the application.

Regarding the architecture of the solution, an effort was made to take full advantage of the

accessibility tools that the Android operating system offered. Choosing Firebase as a platform

to support the back-end of the application allowed for a quick integration into the system, and

reduced time spent on back-end development. This approach allowed for more available time

to develop the app’s multiple modalities of interaction, which increased the accessibility of the

application.

In section 4.4, the different stages of the implementation phase were presented. The modifica-

tions to the plan are also described, and he updated work plan is also shown. Given the different

4.6 Summary 55

focus of the first and second parts of the development phase, section 4.4.1 provided an analysis

of the features and highlights of each functional prototype. Section 4.5 presented the results of

the survey, which allowed to understand the backgrounds and characteristics of each participant

regarding smartphone usage.

56 Proposed Solution

Chapter 5

Implementation

This chapter provides an in-depth view into the intricacies and decisions made during the imple-

mentation phase. A further study on the applied technologies and development tools is presented

in 5.1. Section 5.2 details restrictions and limitations regarding characteristics of the application

which had to be accounted for. In Section 5.3, an overview is provided for the first prototype.

The second prototype is described in section 5.4. Section 5.5 details the structure of the project

and explains the reasoning behind implementation approaches and decisions. A summary of the

content ends this chapter in section 5.6.

5.1 Technologies and Development Tools

In chapter 3, several technologies have been introduced. Conversations with CRPG staff allowed

for discussing implications of the use of different technologies in the development. As a result,

further conclusions were drawn, allowing for a better assessment of which technologies to adopt

for this project.

Third-party libraries were used in cases where developing the features from zero would be too

time-consuming and would negatively impact the time period available for the multimodality part

of development. By reducing the time spent on the development of the more basic features of the

application, more time was available to focus on the development of the interaction modalities.

Before starting the development, the project setup was done. The integrated development

environment (IDE) used was Android Studio, due to its mainstream usage and provided support

for building Android apps[31]. In order to maintain an index on changes made to the application

and provide better documentation, Github, a software used for version control was used[30]. 1

5.1.1 Firebase

Firebase is a mobile and web application development platform created and maintained by Google

[34]. While Firebase is comprised of a number of various services with differentiating offers, the

services to be used here are Firebase Storage and Firebase Authentication. Firebase offers the

1System that records changes to a file or set of files over time so that specific versions can be recalled later[2].

57

58 Implementation

choice between a free version and a paid version. The paid version allows for more storage and

requests to the provided services. Due to the fact that the application is expected to be used by a

small number of users, it is expected that the free plan should suffice. If needed, an upgrade to a

paid plan with more features can be done later.

Firebase Storage is able to store data in a remote server, accessible anywhere, to be accessed

via mobile apps. The data is structured as tree of information in JSON files. The Firebase SDKs for

Cloud Storage integrates seamlessly with Firebase Authentication to identify users. A declarative

security language is also provided, allowing for access controls to be set on individual files or

groups of files. Opting for this solution makes public data available to all users, and private data

is only by the user who created it.

Firebase Authentication provides backend services, SDKs, and ready-made UI libraries to

authenticate users to mobile applications. It supports authentication using different types of cre-

dentials, such as phone numbers and passwords. Using Firebase in this project offers several

advantages. For instance, being supported by Google infrastructure translates into reduced down-

time. Due to redundancy and load balancing the performance is expected to be better than using

lower cost equipment. On the other hand, the integrated security checks and validations add layers

of security to the service.

5.1.2 Material Design

One of the concepts that were used in the non-functional prototype is the Material Design prin-

ciples by Google. Material Design is described as a design language developed by Google[37].

In comparison with previous iterations of visual elements provided by Google, Material Design

expands on "card" motives. It also enables responsive animations, transitions and depth effects

which allow for more ways of conveying information to the user in an appealing form.2

Figure 5.1: Illustration of some visual elements used in Material Design (extracted from [37]).

2Google published a video entitled Making Material Design which provides an insight into the thought-process
behind this design language. Available at https://www.youtube.com/watch?v=rrT6v5sOwJg (last accessed on
12-02-2021).

https://www.youtube.com/watch?v=rrT6v5sOwJg

5.1 Technologies and Development Tools 59

5.1.3 JSON/GSON

JSON is a syntax for storing and exchanging data. It allows for lightweight data storage, and its

use is less demanding than setting up and maintaining a local database [94]. JSON is the format

that adopted by Firebase, and due to it also being a viable option to be used for local storage in the

device, it was selected for use in this project. A JSON object contains data in the form of key/value

pair.

Gson is a Java library that can be used to convert Java Objects into a JSON representation.

Since it provides both serialization and deserialization, files with JSON items can also be extracted

and turned into Java Objects. Gson can work with arbitrary Java objects including pre-existing

objects, which facilitates working with unknown code [3]. Using Gson allows for the reduction of

boilerplate code, and also makes interpreting the code easier, as less lines of code are required to

achieve the same results.

5.1.4 Ktlint

During the development of large-scale software projects, it is common for some code to be written

in a less than adequate way, or, for some reason, become obsolete due to new releases of libraries

used in the project. Linting is the process of checking the source code for programmatic and

stylistic errors. The use of linters aid developers to deliver code that complies with the official

documentation, guaranteeing that the code is on par with the best available practices and making

it more comprehensible to other developers to read [78].

One of the more relevant Linters for Kotlin is named Ktlint [83]. This specific linter includes

an in-built formatter, and has extensive coverage for a considerable number of cases. A wrapper

for Ktlint, kotlinter-gradle, was used, as it did not require any special configuration and was ready

to use.3 Ktlint set of rules include:

• Uniform identation across all files.

• Discard use of semicolons.

• Remove wildcard or unused imports.

• Consistent spacing and order of modifiers.

5.1.5 Google Voice Search

Google Voice Search is a product which allows users to say voice commands, and have them

registered by the service [19]. It is an online service, which means that it is not necessary to

install any language packages or download any application for it to be used. When the service is

activated, the commands are sent for Google’s servers for processing and the result is sent back to

the device.
3Entity that encapsulates (wraps around) another item to hide the complexity of the underlying concept[8].

60 Implementation

Despite the good results obtained in the commands recognition during testing, this solution has

drawbacks, mainly regarding privacy. Google can have access to the words uttered by users, since

these are processed by the company servers. Offline, open-source alternatives were investigated,

but none had convincing results and met the requirements needed. One of the main issues with

using offline speech recognition tools is the need for voice packages. These packages are usually

in the hundreds of Megabytes in size, and present slower performance in comparison to the Google

alternative. Adding to these drawbacks, tests with this library did not prove to be as accurate when

compared to the alternative. After considering the pros and cons of each option, the decision was

made to use Google’s SDK. In order to facilitate this task, a wrapper for the Google Voice Search

SDK called Android Speech, by Alex Gotev was used[39].

5.1.6 Testing related dependencies

Some libraries/frameworks were used specifically for testing purposes, namely unit and UI testing.

Table 5.1 provides the names, authors, descriptions and URL’s of each one:

Table 5.1: Description of testing-related dependencies.

Dependency
Name

Author Dependency Description URL

AndroidX.test Google
Basic testing package which complements JUnit,

providing features necessary to test the application.

https://developer.android.com/training/testing/set-up-project

(accessed on 10-06-2021)

JUnit
Kent Beck, Erich Gamma,

David Saff, Kris Vasudevan

and others.

Framework which allows writing of repeatable tests.

Instance of the xUnit architecture

targeted at unit testing frameworks.

https://junit.org/junit4/

(accessed on 10-06-2021)

Roboelectric
Michael Hoisie, Jonathan Gerrish

and others.

Framework that allows unit tests to be written and run

on a desktop JVM while still using Android API.

Robolectric handles inflation of views, resource loading,

and provides emulation for code that’s implemented

in native C code on Android devices.

http://robolectric.org/

(accessed on 10-06-2021)

Mockito
Szczepan Faber, Brice Dutheil,

Rafael Winterhalter,

Tim van der Lippe and others.

Mockito allows for

the creation of test double objects (mock objects)

in automated unit tests for the purpose of

test-driven development (TDD) or

behavior-driven development (BDD).

Mockito is open-source and suitable

for Java/Android development.

http://www.methodsandtools.com/tools/mockito.php

(accessed on 10-06-2021)

Espresso Google

Testing framework that helps developers write

automation test cases for user interface (UI) testing.

Suitable for both testing of

individual components during development cycles,

as well as black-box testing.

https://developer.android.com/training/testing/espresso

(accessed on 10-06-2021)

5.1.7 Other tools

Along with the development tools mentioned previously, there are other tools with a smaller scope

which do not justify individual sections for each. This subsection presents and details all of the

libraries and dependencies. Since the total number of libraries and dependencies is in the hun-

dreds, some libraries are described as a group of dependencies (such as android.* and androidx.*

packages), for conciseness sake. Table 5.2 details some of the third-party libraries used and their

objective in the scope of this project:

Of the libraries mentioned before, Scroll Date Picker is covered under a MIT license, and the

rest are covered by the Apache 2.0 license. Both licenses are considered to have a relatively low

number of restrictions to their use, making them permissive for most uses. Among these uses are

https://developer.android.com/training/testing/set-up-project
https://junit.org/junit4/
http://robolectric.org/
http://www.methodsandtools.com/tools/mockito.php
https://developer.android.com/training/testing/espresso

5.2 Restrictions to Development 61

Table 5.2: Description of non-testing-related dependencies.

Dependency
Name Author Dependency Description URL

ExpandableLayout Jaewoong Eum
Allows for the integration of responsive
layouts which expand and collapse
when an action is performed.

https://github.com/skydoves/ExpandableLayout
(accessed on 10-06-2021)

ScrollDatePicker Harry Whewell

Allows for a way to pick dates
intuitively by having items
associated with each date
displayed sequentially on a horizontal list.
The user can then scroll the list to find
the intended date.

https://github.com/GastricSpark/ScrollDatePicker
(accessed on 10-06-2021)

TimelineView Vipul Asri
Allows for the display of a timeline, with support
for a dynamic amount of content.

https://github.com/vipulasri/Timeline-View
(accessed on 10-06-2021)

NaraeAudioRecorder Seo Dong Gil

Recording and playback of audio files
using the device microphone as the input source.
Files are stored with the .WAV extension,
as Android’s media player
can play this extension
without the need for any plug in or additional library.

https://github.com/WindSekirun/NaraeAudioRecorder
(accessed on 10-06-2021)

ImagePicker Daval Patel

Allows for the selection of images
from the device storage
by opening the gallery and
allowing the user to edit the photo
before selecting it.

https://github.com/Dhaval2404/ImagePicker
(accessed on 10-06-2021)

ExoPlayer
Oliver Woodman, Andrew Lewis,
Ian Baker, Erdem Guven
and others.

Application level media player for Android.
Alternative to Android’s MediaPlayer API.
Allows playback of audio and video,
both from locally stored or remote files.
ExoPlayer supports features
which are not provided by the default MediaPlayer API.

https://github.com/google/ExoPlayer (accessed on 10-06-2021)

included commercial use, modification, distribution, patent use and private use [5]. Files which

replicate code, or present code modified from one of these libraries, include the original library

license replicated in the header of the file, as mandated by the license types. Considering the few

restrictions imposed by these two licenses, the adoption of the mentioned libraries was deemed

adequate for implementation on the application.

5.2 Restrictions to Development

The aim of the application is to provide support for daily tasks of the clients at CRPG plan. The app

will be centered on the clients of CRPG, but the staff is also able to share events and information

with the clients. Initially, the approach of developing the application for both Android and iOS was

considered, as this would allow the application to be truly accessible for an even higher number of

devices.

As the requirements were gathered, and given the focus on multimodality and accessibility, it

became apparent that due to the architectures of the different operating systems and their approach

to accessibility features, it would not be feasible to use an hybrid framework, as using shared code

among the two operative systems is only possible to an extent.

Given that the period allocated to development was of three months, deciding to develop for

both operating systems would eventually consume time which would otherwise be allocated into

exploring the multimodal features. As a result, and given the importance of the innovative and

experimental viewpoint of the dissertation, the decision to develop for one operating system was

made. Android was chosen as the target OS due to the representatives of CRPG saying most

clients had Android in their devices.

https://github.com/skydoves/ExpandableLayout
https://github.com/GastricSpark/ScrollDatePicker
https://github.com/vipulasri/Timeline-View
https://github.com/WindSekirun/NaraeAudioRecorder
https://github.com/Dhaval2404/ImagePicker
https://github.com/google/ExoPlayer

62 Implementation

5.2.1 Software Compatibility

As new updates and builds of the Android OS are released, additional accessibility tools are pro-

vided, allowing for a more inclusive experience to the users. It would make sense to develop an

app which would be targeted at the newer Android versions, however at the time of writing this

dissertation, less than 1% of the existing mobile devices were running Android R 11.0, the latest

version available.

Since newer versions are not easily accessible by the general audience, it is necessary to de-

velop the application to be compatible with older versions of Android, even if some limitations are

present. After careful examination of the accessibility resources present in each Android version,

it was stipulated that the minimum necessary version would be Android Marshmallow 6.0. This

version of Android features Voice Interactions, not available in any of the previous versions. Be-

ing able to express voice commands is necessary to ensure the desired level of multimodality and

freedom of choice for the users to interact with the device.

According to data available in Android Studio, 84.9% of Android devices worldwide are on

this version or a newer one, which guarantees a very significant coverage for mobile devices.

While choosing any specific version of Android will necessarily cause drawbacks (either due to

varying levels of device support coverage or available features), the mentioned version of Android

was selected since it was deemed as an acceptable compromise between features and compatibility.

Android Marshmallow was released in May of 2015. It is common that smartphone devices

with Android (depending on the brand/model) receive updates in the following months or years

after release. In practical terms, this translates into the likelihood of a significant number of

devices released before 2015 being compatible with this operating system, and as a consequence,

the application. Using Android’s native capabilities also answers one of the mentioned topics in

chapter 1, in which a reference is made to the removal of barriers to app use, which includes not

having to download additional software, therefore augmenting the reach of the application.

5.2.2 Data Storage and Security

Since CRPG possesses an internal database, it would make sense for the application to obtain its

data from the existing database, with the added benefit that data would not need to be duplicated,

saving time to the CRPG staff. During the first meeting with a member of the IT department of

CRPG, the idea of accessing the existing database was discarded, given that the existing infras-

tructure did not have an API or any type of interface that could be used to fetch data. Adding to

this issue, no documentation was available regarding the data structure and inner workings of the

information system used by CRPG.

In order to keep track of the dynamic data that appears as the result of data inserted by the

users of the app, there is a need to make this data persistent. When the user closes the app, the data

is stored and accessible the next time the application is used. As a consequence, the application

synchronizes the offline and online data. In the Agenda feature, some events can be accessed

5.3 First Prototype Overview 63

by the entirety of the community, and some are only accessible on the specific device they were

created on.

The chosen approach was to use JSON files to store all of the local data. The application

features both public and private data: public data is data that the CRPG staff can insert into the

database, and which becomes available to the entire community. Data that falls under this category

include events for the CRPG community, available meals and transport information. Private data

is the data that each user inserts into the application. The latter is not sent to the Firebase Storage,

and is instead stored in a JSON file locally in the device, in the assets folder, with a different file

existing for each type of data (events, meals and transports).

5.3 First Prototype Overview

The first prototype can be described as a Minimum Viable Product (MVP), as interaction can

be done using the touchscreen, but lacks authentication capabilities the and multiple interaction

modalities. This section details the layouts for each feature, using labels to identify the visual

elements present in each one. A video which showcases the application in motion, as well as the

different layouts, is available as a complement to the textual description.4

Figure 5.2: Appbar and Bottom Navigation Bar.

Some visual elements are consistent across the application (with the exception of the login

screen): the Appbar, which is the bar that is located at the top of the screen shows the name of the

current screen, as well as allowing users to return to the previous screen in certain circumstances

(A). The top bar also features a three dots icon to the right, which does not serve any purpose in

this release, but was integrated so that in future work a settings screen or an about page can be

accessed through the three dots icon. On the bottom of the screen, the bottom navigation bar is

4CRPG Application video demonstration: https://drive.google.com/file/d/1RTVqFX-
p5jNMjPq0flQ33R5PnLNWvfyB/view?usp=sharing (accessed on 2021-06-28)

https://drive.google.com/file/d/1RTVqFX-p5jNMjPq0flQ33R5PnLNWvfyB/view?usp=sharing
https://drive.google.com/file/d/1RTVqFX-p5jNMjPq0flQ33R5PnLNWvfyB/view?usp=sharing

64 Implementation

always present (B). From the bottom navigation bar, the users can access one of four features of

the application: the agenda, the reminders, notes and meditation (from left to right). The other two

features of the app, choosing meals and transports, can be accessed by clicking on specific items in

the Agenda screen. These items are differentiated by their title tag and differences in contrasting

colours that grab the user’s attention.

5.3.1 Login

The application’s opening screen consists of a standardized login screen. The user must insert the

credentials in two fields: one for the e-mail (A), the other for the password (B). After inserting

the data, the user can click the "Enter" button to validate the credentials and access the app (C). If

the validation of the credentials is successful, the Date Selection screen is shown. If the validation

is not successful, an error message is shown in order to indicating the issue to the user. Fig. 5.3

presents the layout of the login screen.

Figure 5.3: Login Screen.

No sign-up screen is present in the application, as the registration of users done by CRPG staff.

This was requested by the CRPG representatives, as it could not be possible for some of the users

to register their own credentials. Since the number of clients is relatively small, it is feasible to

have the staff inserting the users data at each new RAC program.

5.3.2 Date Selection

The date selection screen consists of a horizontal scrollable list, which the user can swipe to select

a specific date (A). The user can confirm the selected date by clicking on the “Select” button (B).

After the application validates the selected date, the Agenda screen is shown.

5.3 First Prototype Overview 65

Figure 5.4: Date Selection Screen.

5.3.3 Agenda

In the Agenda screen, a list of the events, both public and inserted by the user, can be seen and

clicked for more information or to access other features of the application. The events are ordered

in a chronological order, starting with the earliest events in the morning, and continuing with the

events that follow. To the left of the screen, a line with the hours of start and finish for each event

are present (A).

CRPG caregivers commonly use Post-Its as a memory aid to the clients. Since Post-Its are a

familiar concept to the users, the choice was made to make each event on the agenda list resemble

the format of a Post-It note. Each item in this list represents an individual event and can be clicked

(B). Each item has an image which is related to the event type, and also a title and preview of

the content (C). Depending on the item, pressing it takes the user to another screen or launches a

pop-up with more information (D).

Events can be classified into three types: related to transportation, meal selection or CRPG

activities. If the user selects an activity-related item, a white pop-up is displayed, revealing all of

the information associated with that activity. This information can include where the activity will

take place in the CRPG premises, the person responsible for the activities, among any other info

the creator of the activity may find helpful.

66 Implementation

Figure 5.5: Left: Agenda Screen. Right: pop-up window with information associated with the
selected item.

5.3.4 Create Reminder

When clicking on the reminder icon in the bar at the bottom of the screen, the user is shown the

welcome screen for the reminders feature. After clicking the button with the pencil icon (A), the

create reminder screen is shown.

Figure 5.6: Welcome screen to the Reminder feature.

In the reminder screen, the user can set a new reminder that is accompanied by an alarm. This

screen is composed of five sections, with each related to the characteristic/setting for the created

alarm (B). All of the sections are expandable, meaning they can be opened or closed to facilitate

5.3 First Prototype Overview 67

navigation on the screen. It is also possible to scroll vertically, exposing sections that may appear

hidden due to the above sections being opened and taking a portion of the screen area.

Figure 5.7: Create new reminder feature screen (all sections are shown closed/collapsed).

The reminder creation starts with the user selecting the reminder type in the corresponding

section (C), from one of four options:

• Administer medication.

• Catch a bus/transport.

• Select meal option for lunch/dinner.

• Custom reminder.

Figure 5.8: Set Reminder type section in the create new reminder screen.

68 Implementation

After selecting the type, the application requests the user to select the time at which the alarm

should be set (D). The frequency can also be defined in one of three options (E):

• One-time event.

• Daily occurrence.

• Custom alarm at specific weekdays.

Figure 5.9: Set reminder frequency section in the create new reminder screen.

The user can also define the type of alarm in the alarm type section (F): only sounds, only

vibration, both sound and vibration. Finally the user can define a note for that specific reminder

(G).

Figure 5.10: Set alert type section in the create new reminder screen.

5.3 First Prototype Overview 69

The Android operating system natively features a pre-installed alarm application, which can be

notified by the application. By setting the alarm in the existing application, the need for a duplicate

alarm clock functionality inside the application is discarded. To confirm that the reminder was set

successfully, a success screen is shown (H):

Figure 5.11: Reminder created successfully notification screen.

5.3.5 Transports

Just like the reminder screen, the transport screen can be accessed by pressing transport related

items on the Agenda screen. When the user presses an item related to transports, a new screen

appears allowing for the user to select the desired type of transports. The screen shows three

different options:

• CRPG main bus (A).

• Users custom timetables and schedules (B).

• Information regarding public transportation (C).

70 Implementation

Figure 5.12: Transport Selection Screen.

If the user selects the CRPG Bus option, a new screen appears, with a dropdown list on top of

the screen. From the dropdown (D), the user can choose from one of three bus stop options: the bus

stop at Porto, Gaia, and the user’s residence. When one of the options is chosen, the information

is automatically updated. The user can then view the schedule at the selected bus stop. The screen

also shows the driver’s name and a button, which makes a phone call to the driver when pressed

(E).

Figure 5.13: CRPG Bus Screen.

If the user selected the Public Transport option, the corresponding screen shows up. The user

is greeted with a drop-down list in the public transport screen (F). The list includes four different

bus lines that have stops in a one-kilometre radius, if CRPG is used as the centre. After selecting

5.3 First Prototype Overview 71

the bus line, the information on screen is updated. Below the drop-down list, two arrows indicate

the two possible directions of the line. The start and end points for each line are shown at the sides

of each arrow. Two buttons, each one below each arrow, can be clicked to make the timetable

specific to that line/direction appear (G).

Figure 5.14: Public Transport screen.

By clicking on one of the options, the user is shown time tables for the selected bus line (H).

When the image is shown, the user can click on the image or use finger gestures to zoom in or

zoom out on the picture (I). It is also possible to close the shown image by double-tapping on it.

Since no API was found on the websites of the bus service providers, images with the timetables

at the time of writing the dissertation were chosen to be displayed to the user as an alternative.

Figure 5.15: Left:Timetable viewer screen, which can be tapped once for zoom or twice to return
to the previous screen. Right: Zoom on timetable.

If the user selects the Custom Schedule option, a new screen is shown, which allows the user

72 Implementation

to see custom information that the CRPG staff inserted into the database. The screen features two

groups of information: the first presents the schedules or relevant information for a specific date

(J), and the second displays the contacts of the drivers which the user may need (K).

Figure 5.16: Custom schedule screen.

5.3.6 Meal Selection

If the user presses an item in the Agenda associated with a lunch or dinner event, a screen is

shown with four different options: meat, fish, diet and vegetarian (A). When one of these options

is pressed, a green check sign shows up inside the icon which was selected. If the user fails

to select any option, a red error message shows up requesting the user to select the user before

submitting.

Figure 5.17: Meal selection screen.

5.3 First Prototype Overview 73

In order to confirm the selected option, the user presses the Save button (B). If the user selects

a meal, saves the option and the process is completed with success, a new screen, similar to the

success screen for the Create Reminder feature appears. This screen features bright colors, a green

check box item and a message which reads “Meal selected successfully!” (C).

Figure 5.18: Meal selection success notification screen.

By clicking the OK button, the user is returned to the Agenda Screen. If the user scrolls to the

item corresponding to the meal which information was updated, the item now shows the name of

the selected dish, instead of the “Click to select meal” default message.

5.3.7 Meditation

In the meditation screen, the user is greeted with six options(represented by buttons) related to

different moods (A). The user can select one of the following depending on current mood:

• Confident.

• Happy.

• Relaxed.

• Loved.

• Mindful.

• Sleepy.

74 Implementation

Figure 5.19: Meditation Screen.

Figure 5.19 shows the meditation screen. By selecting one option and clicking the confirm

button, the user is shown the meditation media player screen. The new screen is composed of two

different sections. A centred frame at the top of the screen can be seen, containing a solid colour

or an image (B). The selected mood is also shown here. Below the frame, a media player is shown

with buttons, allowing the user to either play, pause, rewind or fast-forward the audio related to

that mood (C). Each mood has a specific audio file associated with it. The audio file is selected by

the CRPG staff and should be representative of that specific mood.

Figure 5.20: Meditation Media Player Screen.

5.3 First Prototype Overview 75

5.3.8 Consult/Create Note

In the consult notes screen, which can be accessed via the bottom navigation bar, the user can

access a list of notes added previously (A). Two types of notes exist: one is a text message, and the

other is a voice message. Each type has an associated button, seen at the bottom of the screen, with

each associated with the creation of a note of either type (B/C). Both types of notes can have an

image file associated. When the user clicks a text note item, a pop-up dialog is shown, revealing

the title and content of the note to their full extent (D). If the clicked item is of a voice note, a

media player is displayed inside the item. The media player has three buttons, allowing the user

to play, pause, rewind and fast-forward the voice recording associated with that item.

Figure 5.21: Left: View Notes feature screen. Right: Pop-up containing information regarding an
item which was clicked.

The Create New Voice Note and Create New Text Note screens share a common module,

related to the associate Image (E) and title of each note (F), since these features are the same

for both types of notes. The changes between text notes and voice notes is related to the means

of setting the content of the note: if the user is creating a text note, a text field shows up (G),

and by pressing it the touchscreen keyboard is highlighted, allowing the user to insert the content

manually. If the user is creating a voice note, three buttons appear (H), each one with a specific

action associated: the button to the left of the screen initiates the recording when pressed; the

center button stops the recording and the last one replays the last created recording. The user can

then use the save button (I) to save the note.

76 Implementation

Figure 5.22: Left: Create new Text Note Screen. Right: Create new Voice Note Screen.

5.4 Second Prototype Overview

For the second prototype, the main focus was on enabling the multimodality of the application

through different means of interaction between the users in the system. Several modalities of

communication are present between the user and the system. The list below details the different

ways in which the application and the user communicate:

• The user can perform actions using the touchscreen of the device .

• The system can provide information about each visual element on all screens, through the

use of TalkBack, which is mainly useful to users with impairments to their vision.

• The system can provide pre-determined audio messages indicating the user which voice

commands can be said in order to perform certain tasks, which is mainly targeted at users

who can see the screen but may have impaired dexterity or difficulties using the touchscreen.

• The user can utter voice commands (from a list of short predefined commands), which are

then received by the app, identified, and an action is triggered depending on the uttered

command.

Since Talkback and Audio Hints both use a synthesized voice, it is necessary to make a distinc-

tion between both features. TalkBack uses audio cues and feedback, as well as the device vibration

feature, to inform the user on what visual elements are present on the screen, and what purpose

they serve. The user can interact using specific gestures integrated into the TalkBack SDK and

which are helpful in navigating or performing tasks in the app. The Audio Hints feature informs

the user of the voice commands and aids in uttering the commands in a way that the software can

recognize with more efficacy. The Text-To-Speech Contextual Audio Hints and Voice Recogni-

tion features that were integrated into the application are independent of the TalkBack feature and

cannot be used simultaneously, since Google has strict limitations on alterations and use of the

TalkBack services. As a result, the contextual information provided to TalkBack is mainly used

5.4 Second Prototype Overview 77

to aid users with impaired vision, and the Contextual Audio Hints/Speech Recognition are mainly

targeted at users who can see the screen but may have limited mobility, and thus can be used to

reduce touchscreen use to the minimum.

5.4.1 Speech Recognition/Voice Commands

One of the features that ensures enhanced multimodality is the use of voice commands by the

user. Voice commands allow users to interact with the app, by navigating between features of the

application or executing actions specific to each feature. Saying the name of a specific feature

opens the fragment corresponding to that feature. When opening the app, the user is presented

with a pop-up message which requests acceptance to the use of voice input in order to provide

spoken commands. If the user refuses to accept this permission, the app will not capture sound

and can also be fully controlled using the touch screen of the smartphone.

Figure 5.23: Pop-up windows requesting user preferences regarding the use of the voice com-
mands feature.

If the user accepts the permission, the voice input is enabled whenever a feature that supports

it is currently being used, in order to catch any voice commands and prevent the user from having

to use the touchscreen. This option could add confusion to users and provide an additional barrier

in interacting with the app. The use of voice commands is similar between the different features

of the app, with slight changes which are indicated to the user through the Audio Hints feature.

It is relevant to detail what “becomes focused” means in this context. The screen is scrollable,

and all of the sections, if expanded, occupy a vertical space larger than the screen dimensions.

This means that the user needs to scroll to find a section if it is not visible. In order to overcome

this issue, when the name of a section is uttered, the scroll occurs automatically and the section

comes into view. Table 5.3 explains in more detail the usage of the service for the Create New

Reminder feature.

78
Im

plem
entation

Table 5.3: Description of an expected user flow using voice commands to create a new Reminder.

ID Objective Steps Expected results Visual Feedback Auditory Feedback

1 Expand all of the sections. 1. The user says "Expand all".
1. All of the sections in
the screen are expanded.

All of the sections which
are initially collapsed are expanded,
revealing the contents.

Sound beep after user command is
registered and processed successfully.

2 Select the "Remember to Administer
Medication"reminder type.

1.The user utters
"Medication Reminder" .

1. The section becomes focused.
2.The "Remember to Administer Medication"
reminder type is selected.

Corresponding button changing color.
Sound beep after user command is
registered and processed successfully.

3 Set the reminder for 9h30 AM.
1.The user utters
"nine and a half in the morning".

1. The section becomes focused.
2. The uttered hours are selected.

The set hour dials on the screen
are updated with the correct
hour and minute values.

Sound beep after user command is
registered and processed successfully.

4
Set the reminder frequency
to specific weekdays
(Wednesday and Friday).

1.The user utters "Weekdays".
2. The user utters "Wednesday".
3.The user utters "Friday".

1. The section becomes focused.
2. The "Weekdays" option is selected.
3. The "Wednesday option is selected"
4. The "Friday" option is selected.

The buttons corresponding to
the "Weekdays" option and
each of the individual dates
change their colors to
highlight selection.

Sound beep after user command is
registered and processed successfully.

5 Set the reminder alert
type to "Vibrate only".

1. The user utters "Vibration only".
1. The section becomes focused.
2. The "Vibration only" option is selected.

The "Vibration only" button
changes color and a check box icon
appears besides the option.

Sound beep after user command is
registered and processed successfully.

6 Add a note to the reminder. 1.The user utters "Note".
1.The section becomes focused.
2. The edit text field for the note is focused.
3. The keyboard becomes visible.

The exit text becomes focused
and the keyboard is shown.

Sound beep after user command is
registered and processed successfully.

7 Cancel current reminder creation. 1.The user utters "Cancel".
1. All of the selections are text edit fields
are reset to their initial position.

All of the visible cues regarding
selected elements and text in text fields,
are reset or disappear.

Sound beep after user command is
registered and processed successfully.

8 Confirm reminder creation. 1.The user utters "Save".
1. Validation of all of the sections occurs.
2. If validation is successful, reminder is saved.

If validation is successful,
current screen stops being visible
and a new screen appears,
notificating the user of
the success in saving the reminder.
If the validation is not successful,
an error message appears asking the user
to correct any missing or invalid data.

Sound beep after user command is
registered and processed successfully.

5.4 Second Prototype Overview 79

5.4.2 Audio Hints

After setting the voice commands options, another pop-up appears related to the Text-To-Speech

Audio Hints feature. If the user selects the “Allow” settings, this feature is activated and a predeter-

mined voice message is played when entering specific features. This audio message is only played

the first time the feature is opened, in order to prevent constant repetitive audio messages to be

played when using the app, which could result in a displeasing user experience and overwhelming

the user.

Figure 5.24: Pop-up windows requesting user preferences regarding the activation of the audio
hints feature.

The audio hints mainly serve the purpose of informing the user about the voice commands

specific to that feature. It also aids users in understanding the correct words/formulation for the

command in order to facilitate recognition by the service. As an example, when creating a new

reminder, users are requested to select the hour of the day in which the alarm associated with the

reminder should be activated. If the user wants to set the alarm to 21h30 using the touchscreen, it

is expected that the user writes 21h30 because it’s the natural way of doing it. When using voice

commands, it is not natural for someone to say “twenty-one hours and thirty minutes”. The way

clients at CRPG said it during testing was “nine and a half in the afternoon”, and as a result this is

the expression that is recognized by the application for this specific hour setting. The transcript of

every Audio Hints message in the application is shown in table 5.4.

5.4.3 Talkback

Activating TalkBack, Android’s proprietary screen reader, requires enabling the associated option

in the operating system settings, after making sure this feature is enabled natively. If TalkBack is

enabled/installed on the device, a synthesized voice can be heard when using the app, providing

80 Implementation

Table 5.4: Transcript of the audio hint messages.

Screen/Feature Audio Hint Message

Date Selection Screen
Say the desired date as per the following example: "July 10th".
Wait for the confirmation beep.
After selection say "Select" out loud to confirm your option.

Transport Type
Selection Screen

Say one of the following three options:
"Public Transports", "CRPG Bus" or "My Timetable".

CRPG Bus Screen

Say the name of the desired bus stop.
Wait for the confirmation beep and for
the information on screen to be updated.
Say "call outward driver" or "call return driver" in order
to make a phone call to the adequate bus driver.

Public Transport Screen
Say the name of the desired bus line.
After the information on screen is updated, say "Consult Schedule"
to open the schedule.

Public Transport
Schedule Screen

Say the name of the desired bus line.
After the information on screen is updated, say "outward"
or "return" in order to select the corresponding button.

Create New Reminder

Please say "expand all" to expand all sections,
or the name of each section individually to expand it.
If the section consists of multiple buttons, say the button’s name
out loud to select it.
On the "define hours" section, say the desired time,
as per the following example: "nine and a half in the morning"
or "nine and a half in the afternoon".
To add a note to the reminder, say "Notes"
to make the keyboard appear.
You should then use the touchscreen keyboard to add a note.

Consult Notes Screen
Say out loud "Create Text Note" or "Create Voice Note" to access
the note creation feature.

Create New Text Note

Say "Upload Image" and wait for
the selected image pop-up to appear.
Select the desired image using the touch screen.
Say "Title" or "Content" and wait for the keyboard to appear.
You can then edit the fields using the touchpad.
When finished, say "Select" to save the note.

Create New Voice Note

Say "Upload Image" and wait for
the selected image pop-up to appear.
Select the desired image using the touch screen.
Say "Title". You can then edit the field title using the touchpad.
To use the voice recording feature, please use the touchscreen.
When finished, say "Select" to save the note.

Meditation Screen Say the name of the mood you want to select.

5.4 Second Prototype Overview 81

information on each visual element and indicating the relevance of the visual elements for per-

forming certain tasks inside the app. In order to request more detail on a specific item on screen,

the user can use one-finger gestures. For example, if the user wants to focus on the next item, it

is possible to swipe right on the screen, and the Talkback feature will read the content associated

with that element. An example of the expected flow of a feature using Talkback is shown below for

the Meal Selection Screen. When the screen is initially shown, the text at the top of the screen is

read by Talkback. If the user swipes right using one finger, the next element is described, and this

process is repeated until all of the elements are described sequentially. Fig.5.25 presents the visual

elements of the screen, with a colored circle featuring the ID of each one. Table 5.5 provides the

description that is uttered by Talkback when the user is swiping through each element.

Figure 5.25: Visual elements in the Meal Selection screen, each with an associated ID.

Table 5.5: Talkback description for each visual element in the Meal Selection screen.

ID Talkback description
1 "Select your meal"

2 "Meal option"

3 "Fish option"

4 "Diet option"

5 "Vegetarian option"

6 "Save meal selection"

5.4.4 Contextual Notifications

On a specific times of the day, a notification is shown regardless of the application being currently

open on the device, which can show messages related to meals, reminders and transports. To

illustrate the purpose of these notification, an example for when the meal time is approaching can

82 Implementation

be used. If the user has selected the meal option for that specific day and meal, a message is

displayed with information regarding the selected dish. This feature was implemented after the

clients at CRPG indicated that it was a common occurrence for some to have issues remembering

what meal option had been selected, if any.

If the meal option has not been selected, the user is shown a notification reminding that one op-

tion should be selected, and that it is possible to access that feature by clicking on the notification.

Whether the meal option has been chosen or not, both notifications allow clicking, which opens

the application on the specific meal selection feature. This allows users to be reminded of choos-

ing their meals or to be reminded of their selection before meal time. This approach removes the

need to manually open the application and navigate to the Select Meal option menu, which would

be more time consuming and inconvenient for the user.

Figure 5.26: Left: Shown notification if no meal is selected. Right: Shown notification if a meal
has been selected.

The same feature is also available for when the time for catching a transport is coming up. The

application is proactive and sends notifications before the user may need them, and enables access-

ing specific screens inside the application by clicking the notification. Because the Transports area

of the application has more screens and is more complex than the Meal Selection screen, three dif-

ferent action buttons are present on the notification. When clicked, the application is immediately

opened and the screen associated with the clicked button is shown. Using these notifications is

useful as they enable users to bypass both the date selection screen (because the date is obviously

the current date, there is no need to have the user manually selecting it) and the Agenda/Trans-

port Selection Screens. The user is only shown the requested screen at that specific time. The

notification with contextual action buttons can be seen in 5.27.

By pressing one of the buttons, the application is opened on the corresponding screen, allowing

the user to quickly access the information which is most relevant to the user at that point in time.

The expected flow after pressing each of the buttons can be seen in Fig 5.28.

5.4 Second Prototype Overview 83

Figure 5.27: Transports notification. Clicking one of the buttons present on the notification opens
a corresponding screen.

Figure 5.28: Diagram illustrating which screens are opened when pressing each of the Transports
Notification buttons.

Both the transport and the meal notifications are independent of each other and of the re-

minders currently set by the user. While the meal selection reminder is shown at a fixed time (the

default value is thirty minutes before lunch or dinner time), the transport notification will be shown

thirty minutes before the user goes to or returns from the CRPG premises, if that information is

available.

84 Implementation

5.5 Project Code and Structure Documentation

This section details the decisions regarding both the structure of the project and some approaches/-

solutions used from a technical perspective to reach the proposed objectives. This section focuses

on the logic and approaches behind each feature; fragments of code related with each of the men-

tioned features can be found in Appendix A.

5.5.1 Architectural Patterns

Regarding the project structure, a Model–View–ViewModel (MVVM)5 architectural pattern, in as-

sociation with the Repository pattern were selected.6 This approach separates the project into sev-

eral layers, enforcing separation between the UI, front-end layer and the back-end logic, following

the SOLID principles.7 A visual representation of the MVVM model can be seen in Fig.5.29.

Figure 5.29: A visual representation of the Model-View-ViewModel architecture pattern(extracted
from [15]).

The Model in MVVM refers to the domain model, which represents the structure of the data

models used in the project. The platform has four models: events, meals, notes and reminders.

Each one of these entities is represented by several characteristics. The View encapsulates ev-

erything that correlates to what is seen on screen. This includes associating actions to pressing

specific elements on screen, updating the screen when needed, among others. Storing and and

managing UI-related data is delegated to the ViewModel, in a lifecycle conscious way. The View-

Model class allows data to survive configuration changes such as screen rotations. Separating the

app’s UI data from the Activity and Fragment classes ensures the single responsibility principle

[52].

The adoption of the Repository pattern translates into the use of repository classes. In order to

isolate data sources from the rest of the app, the repository class is used. As an added benefit, it

provides a clean API for data access to the rest of the app. Using a repository class adds an extra

layer between the ViewModel and the database, and as such contributes to the centralization of the

data access logic, so code maintainability is easier, among other advantages[86]. All interactions

with the Firebase platform are dealt with by the Repository classes.

5Software architectural pattern that enforces separation of responsibilities. This approach states that the development
of the graphical user interface (the view) should be kept separate from the development of the business logic or back-end
logic (the model) This approach guarantees that the view is independent of any specific model platform[76].

6Use of a specific Repository class for abstracting data access, with the purpose of reducing duplicate code across
modules and and enforcing the single responsibility rule of the SOLID design principles[77].

7See subsection 2.4.4.

5.5 Project Code and Structure Documentation 85

5.5.2 File Structure and Description

This application can be defined as being a Single-Activity application[47]. In this approach, a

sole activity is used (in this case, MainActivity.kt). This activity is used as a container that hosts

the fragments associated with each feature of the application. For each feature available on the

app, there is one or several Fragments associated. Each Fragment is associated with a screen,

and has its lifecycle, independent of the Activity lifecycle. Using fragments instead of activities

is advantageous in this project context as it frees up resources for the operating system when it

is not being used, making the app perform better while using fewer resources. In multi-activity

projects, and given the activities’ more considerable demand for resources, the application may

feel sluggish and slowdowns can occur more easily.

The global structure of the project can be seen in Fig.5.30. In the first folder, Manifest, the

AndroidManifest.xml file is present. The manifest file describes essential information about the

app to the Android build tools, the Android operating system, and Google Play. It also indicates

the permissions which are needed in order to make specific features of the app available. Some

of the features can be intrusive or harmful to the privacy of users. Every time a permission is

required for a feature, a pop-up is shown to the user detailing the implications of granting per-

mission and allowing the user to choose. If the user does not grant permission, the feature is not

activated, ensuring the user is always informed about the consequences of enabling permissions.

The permissions which are requested by the application are the following:

• permission.SET_ALARM: allows for the creation of alarms, used by the create Reminder

feature.

• permission.CALL_PHONE: allows the application to make phone calls, used by the Trans-

port feature, in which users can call the driver of the bus.

• permission.RECORD_AUDIO: allows the application to record the microphone of the de-

vice, used by the voice notes feature.

• permission.READ_EXTERNAL_STORAGE: allows the application to read data from the

shared storage volume of the device.

• permission.WRITE_EXTERNAL_STORAGE: allows the application to write data to the shared

storage volume of the device.

The core structure of the project is contained in the java folder, more specifically in the

com.plataforma.crpg folder. The first two packages seen in the image, com (androidTest) and

com (test) contain the test packages. The expandablelayout and timelineview modules are neces-

sary for the correct functioning of these libraries in the project. The res folder contains several

packages. The existing folders contained inside the res folder can be seen in Fig.5.31 and are

described in more detail in the following list:

86 Implementation

Figure 5.30: Overview of the project’s structure.

• drawable: includes all of the visual assets, such as images, icons, XML definitions of several

elements.

• font: includes .ttf files responsible for integrating the Source Sans Pro font into the project.

• layout: includes the XML layouts for all of the screens and fragments of the project.

• menu: includes two XML files, bottom_nav_menu and menu_main. The first is responsi-

ble for showing icons and descriptions of the features in the bottom navigation bar, and

associating them with the correct fragment, which is crucial for the mobile_navigation.xml

described below. The menu_main is responsible for the options in the top bar, which are not

used but can be edited in future versions to allow for a settings tab for example.

• mipmap: includes icons of the CRPG logo in different resolutions and formats, in order to

make the logo appear adequately in different devices on the application button in Android’s

application menu.

• navigation: contains the mobile_navigation.xml. This file is responsible for associating

fragments with specific navigation ids, allowing for the execution of the correct transition

when the user clicks on a button in the bottom navigation bar. Each fragment has a unique

navigation identifier. This file can also handle transitions between fragments of the same

feature. This can be illustrated with an example in which the user is currently visualizing

the Public Transports Screen. By clicking the back button on a screen, the user is shown the

Transport Selection Screen, which is defined in the mobile_navigation file.

• raw: contains the media files which the mediation feature may play. The platform can fetch

URLs from the database to stream specific media files, but can also play files stored on the

device.

5.5 Project Code and Structure Documentation 87

• values: contains files which define several characteristics of the project, such as: the colors

used in the platform, the styles (predetermined visual identities which guarantee visual con-

sistency across the application), which colors should be predominant in certain areas, and

also the strings.xml file, which contains all of the strings and text used in the platform.

Figure 5.31: Structure of the res folder.

Inside the com.plataforma.crpg package, all of the packages containing the code, both related

to the front-end and back-end, can be found. The project structure (inside the features package)

consists of modules, with each one representing a feature of the application: classes are grouped

by the features they represent. Every feature in the application has a corresponding package, in

which a Fragment (View), ViewModel and Repository classes are always present. Other classes

may exist depending on the feature, but the three mentioned are constant across all modules.

This modular structure makes maintaining the code more manageable, as adding new features and

modifying existing ones is simplified due to the separation between modules. Fig.5.32 shows the

file structure of the project (excluding test packages).

The extension package has two classes: DateTimeExtensions.kt and ViewExtensions.kt. The

first provides parsing capabilities for one of the used libraries, and the second provides helpful

methods to be used by the timelineview library. In the package model, all of the data classes can

be found. The purpose of data classes is to hold data while providing a structure to facilitate

processing later on. Since the GSON library is being used, for some types of variables such as

EventTypes, the @SerializedName annotation was used. This annotation allows the library to

convert the type correctly into the JSON file and vice-versa, as without the annotation, the field

would not be conveyed adequately.

Following the model package, the notifications package can be found. Since this package

was implemented during the second prototype development cycle, this package is described in

detail at subsection 5.4.4. The utils package includes two singleton classes: CustomDateUtils

and VectorDrawableUtils.8 The logic associated with the creation of these classes is related to
8Software design pattern in which a class is restricted to one "single" instance that restricts the instantiation of a class

to one "single" instance. When one object is used in across the system, this pattern is helpful and reduces boilerplate
code[27].

88 Implementation

Figure 5.32: Structure of the com.plataforma.crpg folder.

the reduction of boilerplate/duplicate code. The first class provides classes such as getIsLun-

chOrDinner(), which indicates, based on the current time of day, if the the time of having lunch

or dinner is coming up and is used by the Agenda and Meal Selection features of the app. The

VectorDrawableUtils provides useful methods to support the timelineview library.

The widgets package is also related to the timelineview library, and provides the necessary

methods and constructors to ensure the visual consistency of the visual elements provided by the

library. In cases where it was necessary to share data between different fragments, a SharedView-

Model was used. This can be seen for example in the Agenda module, where a SharedViewModel

is used to store data between the Date Selection Fragment and the Agenda Fragment.

Figure 5.33: Structure of the agenda package (shared view model is highlighted in blue).

For the Agenda and Notes feature, Recycler Views with Adapters were used to allow for the

display of large data sets in a list. These lists can be dynamically updated in real-time by creating,

5.5 Project Code and Structure Documentation 89

editing or deleting items in real-time. Every time an item is added, modified, or deleted, the

notifySetDataChanged() method is used, notifying any registered observers that the data set has

changed. Using this method, it is possible to ensure that the list is kept up to date and will reflect

any changes made by the user. When a Note is of the Voice type, a media player is attached to the

item. If the item is identified as a text note, no media player is attached. Instead, a preview of the

content (limited to thirty characters to fit the item) can be seen. Clicking the item opens a Dialog

which exposes the full title and content of the Text Note.

5.5.3 First Prototype

The first prototype is a functional minimum viable product, as detailed in section 4.4.1. However, it

does not integrate the several interaction modalities necessary to make the project more inclusive.

The login screen and authentication capabilities are also not included.

5.5.3.1 Data Storage/Firebase Interaction

Reminders and notes are stored internally on the device and are not stored in the remote database.

Storing data on the device ensures the safety of the data and prevents data sharing with third-

party providers. Data related to transports, meals and community events on CRPG is stored in

Firebase’s Realtime Database servers. A setup was conducted on the Firebase console to integrate

the Realtime Database features into the project (available after logging in as an administrator on

the Firebase website). The setup consists of defining settings for the database and defining the

data structure.The database is then associated with the project, and this is done by Android Studio

automatically. The automation of this process discards the need for input by the developer. After

initializing the database, it is now possible to insert, edit, remove data from it.

The database structure consists of calendar dates as the primary id, with data as its children

branches such as Meals, transports and events. The data structure is relatively simple to make

accessing the data as quick and easy as possible. The Firebase documentation recommends a flat

hierarchy for the data. Given the relatively small scale of the app and the reduced number of

users in each RAC program, the amount of data stored is expected to be relatively reduced. Using

the relatively flat structure should make localizing and accessing the requested data faster. As

mentioned previously, the MVVM with Repository pattern was used in this app. Fig.5.34 details

the links between the common classes and the link between the Repository class and the Database.

Figure 5.34: Common classes in each module and interactions between them (adapted from [51]).

90 Implementation

The interactions with the database are handled by the repository classes present in each mod-

ule. The structure of the repository classes is relatively similar between all of the existing in-

stances: in all of them, three basic functions are shared. The first one retrieves data from the

database, as a JSON, the second inserts data (parsed as a JSON entity). The third function is a

listener which notifies the ViewModel in case any changes to the data have occurred while the

application is open. If that is the case, the information visible on screen is updated the next time a

Fragment is created.

5.5.3.2 Feature specific documentation

In the date selection screen, the application requests a date from the user. In order to do this, a

horizontal scrolling list is available. The list presents all of the dates of the current month. When

the user selects one date and confirms the decision, the date is then transmitted to the repository

class of the agenda feature. In this class, a request is made to fetch all data available for the

selected date.

The agenda, meal selection and transport information feature all use data from the remote

database. In order to make sure that these features can all access the selected date information, a

shared ViewModel, accessible by each of these modules, is used. Other features of the application

are not dated, meaning they are not associated with a specific date. These features can be freely

accessed even if the user has not selected a date on the initial date selection screen. After the date

has been chosen, the only way to select another date is by closing the app and opening it again. It

was important to not clutter the screen with buttons that could confuse the user, which led to this

decision. After the date is selected, it is used to fetch the information associated with a specific

date.

When the meal is selected by the users, the application then writes to the database the new

order and increments a counter, depending on the dish that was chosen. This counter can then

be used by the CRPG staff to know how many dishes of each type were ordered by the clients.

In the agenda screen, the library timelineview was used. The first time the agenda is opened,

events related to the selected date are loaded from the database. Regardless of the information

about transports and meals having been uploaded by the staff, the ViewModel class automatically

created items for transportation, lunch and dinner. The lunch and dinner items are set for a fixed

hour of the day, usually some minutes before the specified lunch or dinner time. The transport item

schedule is associated with the hours of passing by the nearest location to the user, if available.

In the meal selection feature, the user is presented with four different options for the date that

has been selected. This information is stored on the user’s device by pressing one of the options

and selecting it. This information is helpful for the CRPG staff as well. For the staff to access

this information, an increment counter request is also sent to the database. Doing so increases a

counter associated with the total number of orders for each meal. This feature aims to help the

CRPG staff monitor the number of orders for each meal option, which is useful when dealing with

preparing meals for the RAC program clients.

5.5 Project Code and Structure Documentation 91

Regarding the create new reminder feature, the AlarmManager service was used. After the

user has created a reminder, the reminder is stored locally on the JSON file. An Intent is also

sent to Android’s default clock app. The advantage of using Android’s resources to start the

alarm is that there the alarm is not disabled (according to the documentation and testing) when the

application closes, or the device is rebooted. This is an issue that can happen when defining the

alarms by the application itself.

After the alarm has been set in the specific app, the application no longer has access to that

specific alarm, so the user may need to disable or delete it if needed in the app itself. This approach

was used because implementing an alarm feature from scratch would be too time-consuming and

would not respect the guideline of using Android’s resources and instead add features to the app

which were already present in the operating system. The meditation scream is composed of six

buttons. When the button is pressed, a bundle is created, which can be used to pass data between

activities or fragments. The application then fetches the corresponding audio file, by finding the

audio file or an URL in the database.

5.5.4 Second prototype

As mentioned in section 4.4.1, the second prototype is focused mainly on increasing the accessibil-

ity and interaction modalities between system and user. This section describes the implementation

of each feature.

5.5.4.1 Modality settings

In order to allow the user to define the settings for the multimodal services, the SharedPreferences

API was used. This API helps store a small collection of key values that can be accessed through-

out the app and changed in real-time. According to the Android documentation, shared prefer-

ences are adequate for storing and handling user-defined settings and allow all of the fragments

and activities to be aware of what services should be executed from the available communication

modalities. When the application is opened, two dialog windows pop up, requesting the user to

use the text to speech audio hints and the application’s speech recognition capabilities. Depending

on the response of the user to these dialogues, the Shared Preferences are updated. Depending

on the settings that the user has determined when the application is open, fragments can access

the shared preferences and determine which services will be used. The logic is the same across

the fragments, but the voice messages and commands are specific to each fragment’s context. If

the multimodal option is selected, a predetermined voice message can be heard when entering the

class. After that, a sound alarm can be heard, informing the user that the application is currently

listening to the voice commands. For each fragment that supports these capabilities, there are

five shared common methods related to both the Audio Hints and Speech Recognition features,

detailed in the following list:

• defineModality(): ensuring that the correct services are deployed, by accessing the value of

the SharedPreferences variables.

92 Implementation

• startTTS(): handles the Audio Hints feature individually.

• startSpeechRecognition(): handles the speech recognition feature individually.

• multimodalOption(): ensures that the two services are run

• performActionWithVoiceCommand(): receives a string containing the words uttered by the

user and performs a task depending on the content of the string.

A variable named hasRun flag is used to indicate if the fragment was visible/open before in

the current application session. If the user has requested the audio hints to be activated, when the

fragment is opened for the first time, the value is set to false, so the audio message plays. If the

fragment is opened again without the activity being destroyed, the value is set to true. Because of

the flag validation, only the voice recognition service is started, enabling the user to start talking as

soon as he hears the beep without the voice message being played. The decision for this approach

is to prevent repetitive voice messages and overload the user with information, which can be

disorienting.

5.5.4.2 TalkBack

While Android provides some native voice input capabilities by default, these capabilities are

limited to actions on the operating system and not inside third-party applications. Cues and de-

scriptions regarding the existing visual elements in the platform are specific to this application.

The use of content description attributes in the XML tag of each visual element, associated with

the TalkBack functionality. The content description tag sets the description of specific visual el-

ements’ purpose. By defining the purpose of each element, the app can read it back to the user,

enabling users with impairments to their vision to understand what each element on screen does.

Not every element is necessary or relevant for the purpose of executing actions within a screen.

Some elements serve a purely decorative purpose. For these cases, the tag “important for acces-

sibility” allows the developer to indicate if the specific element is purely decorative or serves a

relevant purpose for the correct functioning of the app.

1 <ImageView

2 android:id="@+id/botao_submeter_nova_nota"

3 ...

4 android:importantForAccessibility="yes"

5 android:contentDescription="@string/descricao_botao_submeter_nova_nota"

6 />

Listing 5.1: Code fragment associated with accessibility tags for the visual elements.

Special attention also needs to be given to the dynamic lists present in the Agenda and Notes

features. Talkback is not able to identify individual items in dynamic lists, and their structure

might not be easily translatable to sound descriptions. The content description can be added

5.5 Project Code and Structure Documentation 93

programatically in the onBindViewHolder() method, ensuring proper description of each item and

its corresponding contents.

1

2 override fun onBindViewHolder(holder: MyRatingViewHolder,

3 position: Int) {

4 val ratingData = myData[position]

5 holder.ratingView.contentDescription = "Movie ${position}: " +

6 "${ratingData.title}, ${ratingData.starRating} stars"

7 }

Listing 5.2: Code fragment associated with setting content description strings to the items in a

dynamic list binding.

5.5.4.3 Contextual notifications

The platform’s notifications feature used several Android concepts such as Pending Intents, Broad-

cast Receivers, the AlarmManager class and lastly notification channels. Each of these concepts

is explained in further detail in the following paragraphs. The module responsible for the noti-

fications consists of four different classes/objects: AlarmScheduler.kt, AlarmReceiver.kt, BootRe-

ceiver.kt and NotificationsManager.kt. The structure of the notification module, as well as portions

of the code were adapted from the Pet Medicine Reminder project, by Kyle Jablonski[43]. Frag-

ments of code associated with the methods described in the below paragraphs can be seen in A.

Pending Intents allow developers to define actions to be executed in the future and received by

other classes of the project. In this case the Pending Intent is launched to be received by the Main-

Activity class.The NotificationsManager.kt class is the core class of the notifications module. It

handles most of the logic that is needed for a notification to be sent. Responsibilities include:

• Creating the notification channels.

• Having different methods for the different types of notifications to be created.

• Creating the intents and pending intents that are needed for the notifications to be shown.

In order to provide a common visual and auditory experience for similar types of notifications,

different notification channels can be set, each one with specific settings. In Android, a notifica-

tion’s priority is used to determine how much of the user’s attention the notification should draw.

The clients were receptive to the idea of the alarms using both visual and auditory feedback, and

as a consequence, all the notifications are set as high priority/share the same channel.

Defining the notification priority to the highest level allows Android to show the notification

on the lock screen and guarantees that a sound beep will be played to alert the user if possible.

After a channel is created, the notification itself is created and a Pending Intent assigned to it.

Depending on the type of notification, different actions can be executed depending on the action

94 Implementation

buttons available or the objective that the notification serves. Each action button click or click

on the notification has a unique pending intent assigned to it. Whenever the user clicks on any

clickable element inside the notification, an intent is launched, which is then received by the

MainActivity class which handles the resulting actions depending on the type of received intent.

A description of the purpose of each method is detailed in the following list:

• MainActivity.kt: listens for intents, and handles the actions to be executed when the user

presses a notification/action button.

• AlarmReceiver.kt: BroadcastReceiver type class that ensures that whenever an alarm is trig-

gered, the associated notification will be shown at the time of the alarm.

• AlarmScheduler.kt: allows for the notification to be shown repeatedly over time, using the

AlarmManager feature present in Android was used and according to the frequency that is

defined in the reminder.

• BootReceiver.kt: reschedules alarms after the application is closed or the device suffers a

reboot.

5.5.4.4 Speech Recognition/Voice Commands

For the Speech Recognition service, the Android Speech library, by AlexGotev, was used [39].

This library is a wrapper for the package android.speech.SpeechRecognizer which enables voice

commands to be recognized by the OS. The Speech Recognition feature requires being run on the

main thread. It is necessary to declare a handler to start and stop the voice recognition feature when

needed.9 The Locale is also set to European Portuguese to make sure that both the Audio Hints and

Speech Recognition services can both speak and receive voice commands in Portuguese.10 Since

Android currently supports Brazilian Portuguese but not European Portuguese, that is the language

spoken by the synthesized voice. Later releases of Android may support European Portuguese, and

the application is already prepared to use that functionally should it be available in the future.

After the service has been executed for the first time, it is executed again using the han-

dler.postDelayed() method, inside onSpeechResult() method (called when the speech recognition

is stopped). This allows for continuous voice recognition. Each time this service is executed, a

string is created based on the assumption of words that the service assumes were spoken. The

method performActionWithVoiceCommand() is then executed, which compares substrings of the

character sequence received by the user input and compares it to a list of predetermined voice com-

mands different for each fragment. If there is a match between the words, the associated action

is started. Using a handler is necessary to use this service. The sendEmptyMessage(0) method

is used to keep track of running tasks in the thread. The speech recognition service is stopped

when the fragment is deleted/no longer visible by using the handler.removeCallbacks(runnable)

method.
9A handler allows taks which require heavy processing to be relegated to specific threads, in order to not compromise

perfomance and cause slowdowns to the app[35].
10The Locale object can be used to indicate a specific geographical, political, or cultural region[36].

5.5 Project Code and Structure Documentation 95

5.5.4.5 Audio hints

To implement the Audio Hints, the android.speech package was used. In each class that used the

service, a text-to-speech object was created. Each fragment has a specific predetermined voice

message specific to that fragment by instructing the user on how to better take advantage of the

voice commands capabilities of the application. This approach allows for contextual voice com-

mands to be explained to the user while concise and containing only the essential commands for

that context. multimodalOption() merges both services in the same method. However, it adds

another logic layer to ensure that both services do not overlap each other and never occur simulta-

neously. If both services ran simultaneously, the speech recognition would pick up words spoken

by the Audio Hints voice, possibly triggering unwanted events, with the added problem of having

the speech recognition sound beep occur over the initial voice message. In order to overcome this

issue, the UtteranceProgressListener (UPS) class was used. This class acts as a Listener for events

relating to the progress of an utterance through the synthesis queue. By associating an ID to each

Audio Hint message, the UPS tracks the message playing status. Several classes can be used:

• onStart(): called when utterance starts as perceived by the caller.

• onDone(): called when utterance stops.

• onError(): called when an error occurs during processing.

The startVoiceRecognition() method is only called inside the onDone() method, ensuring that

the speech recognition is only started after the message has finished playing and no overlaps occur.

5.5.5 Final deliverable

After completing the usability testing, the application was nearing completion. Given the small

time frame available after gathering the users’ feedback, modifications done to the application

were minor. In both prototypes, there were missing assets due to the unavailability of some de-

scriptive images. For example, the images related to the CRPG transports were not available

before the final user assessment. When the images were available, all of the image assets were

added correctly.

Another focus during the final sprint was on the optimization of the app. Using the “Inspect

Code” and “Code Cleanup” options on Android Studio, an analysis of the code is performed,

and possible optimization points/improvements are identified. This analysis encountered over

two hundred snippets of code which the IDE identified as the subject of possible improvements.

These suggestions were analyzed individually since some of them could compromise the normal

functioning of the application. The types of identified issues were, among others, the following:

• Incorrect Android Resources Validation.

• Unused resources.

• Deprecated API usage.

96 Implementation

• Performance optimizations.

The analysis of these issues allowed for the optimization of the performance of the application,

while reducing unused assets and cleaning up the code. The IDE also optimized the imports using

the “Optimize imports” option.

5.6 Summary

This chapter presents an overview of the implementation process. Technologies such as frame-

works and libraries were described, and justifications for their use were provided. Conversations

with CRPG representatives and clients throughout the process led to integrating new tools and

technologies not considered before.

A description of the work done for each prototype is detailed, accompanied by images rep-

resenting the screens for each feature, allowing for the assessment of the faithfulness to the non-

functional prototype design guidelines. While the initial design was maintained overall, several

requests by the staff and clients of CRPG led to updates on several screens and features.

On a more technical side, the options made regarding the structure of the project and software

design are also presented. The approach used for the project’s structure aims to help developers im-

prove the project in the future by quickly introducing/modifying features to the project. Inclusive

design methodologies, such as user-centred design, were also used, allowing users to participate

in the project actively: their opinions weighted on the modifications made to each prototype.

Chapter 6

System Testing and Validation

This chapter provides an overview into the tests which were carried out throughout the implemen-

tation of the app. The tests in the chapter can be split into two major groups: user testing, and

functional/non-functional testing. Section 6.1 details the procedures and results obtained in the

first validation session with participation from CRPG clients. The procedures and results related

to the usability testing can be seen in section 6.2. Validation of the system was done with users,

but also through tests during development. Other functional and non functional tests are detailed

and their results are presented in section 6.3. As mentioned in section 4.5, five participants agreed

to use and validate the app in two different sessions. Table 6.1 provides a background of the

participants who tested the app in the two testing sessions.

Table 6.1: Background of the participants (P).

P01 P02 P03 P04 P05

Age (in years) 40 55 50 27 43

Sex (M/F) M M F M M

Touchscreen/Peripheral use Touchscreen Touchscreen Touchscreen Touchscreen Touchscreen

Assistive software - - - - Reminder app

Used Operating System Android iOS Android Android iOS

Identified necessity - Visual impairment - - Vision impairment

97

98 System Testing and Validation

6.1 User tests: First prototype

After the development of the first prototype, it was necessary to evaluate the current state of the ap-

plication, in order to gather user feedback that would lead to improvements and problem fixes.The

tests were conducted under our supervision and a script in order to ensure equal conditions and

avoid inconsistencies between sessions. The sessions were initiated with an explanation of the

system, followed by delivery of a script which included the tasks that the participant was expected

to perform.

6.1.1 Procedures

After the development of the first prototype, it was necessary to evaluate the current state of the

application, in order to gather user feedback that would lead to improvements and problem fixes.

Of the seven participants which initially had agreed to take part in the validation and usability

testing sessions, two participants announced that they could not participate in any of the sessions.

As a result, testing of the application was done with five participants. All of the participants

interacted with the application on site at the CRPG premises.

In this first session the participants were able to experiment with the app individually. This

evaluation session had the following structure: an introduction was made regarding the application

and its objectives. The user was asked to interact with the application, guided by a series of orders

given by the supervisor. The orders were based on predetermined tasks which were created to

make the participants explore all the features of the app and seek possible issues that they could

find by navigating and assessing the visual elements in each screen.

During the interaction with the application, participants were incentivized to voice any thoughts

or difficulties that they were finding and suggest alternatives which could improve their experi-

ence. After all of the tasks had been completed, users were asked to complete a survey which was

divided into three sections.

The first ten questions are extracted and adapted from the System Usability Score (SUS),

which, while subjective, allows for some conclusions to be drawn regarding the user’s state of

mind when interacting with a application and if they felt the interaction was difficult or confusing.

The second section of the survey asked the participants to pinpoint the obstacles they found and

if those obstacles were consistent throughout the application or were more prominent in specific

features. The last three questions are related to the participants perception of the integration of

future modalities and their usefulness. The answers to the questions were evaluated on a scale

of one to five, where one corresponds to “fully disagree” and five being “fully agree”. Table 6.2

indicates the questions that were asked to the users in the survey.

6.1 User tests: First prototype 99

Table 6.2: Questions of the survey conducted after the users interacted with the app.

ID Question

1 I think that I would like to use this system frequently.

2 I found the system unnecessarily complex.

3 I thought the system was easy to use.

4 I think that I would need the support of a technical person to be able to use this system.

5 I found the various functions in this system were well integrated.

6 I thought there was too much inconsistency in this system.

7 I would imagine that most people would learn to use this system very quickly.

8 I found the system very cumbersome to use.

9 I felt very confident using the system.

10 I needed to learn a lot of things before I could get going with this system.

11
I think it would be useful to be able to use voice commands in order to execute

certain tasks in the application.

12
I think it would be useful for the application to present visual and auditory alerts

regarding specific upcoming events, such as meals and transportation, without

the need for user setting them.

13
I think it would be useful for the application to provide Audio Hints which could

help me execute certain tasks or provide useful hints while using the application.

6.1.2 Results

In general, feedback regarding the user experience of the application was positive. Participants

found the features helpful and, despite some points which needed further improvements, they

found the interface and design to be understandable and not confusing. One of the questions in the

survey allowed users to identify obstacles they had felt while using the application.

One of the main discussing points that all participants pinpointed was the structure of the

transport feature. When the user clicks on the transport car in the agenda they are redirected to

a screen which shows information regarding the schedules of the main CRPG bus. This was not

immediately evident to the participants, showing that the flow of this feature could be improved,

by allowing the user to select one of the types of transport before being shown a specific screen.

The Notes creation feature also was the subject of critique, which were mainly tied with lack

of labels and confusing icons on the buttons. This issue was especially prominent in the “Create

new Voice Note” feature, as the voice recording Section in the screen consists of three buttons: the

first to start the recording, the second to stop the recording, as the third to replay the recording.

The icons which were used are part of the material design icons group, and as such were in

conformity with the rest of the icons used in the application. However, given the difficulties in

identifying the content of each image, the icons were changed and text labels would be added later

in development. Other topic which the participants considered confusing was regarding the bottom

100 System Testing and Validation

Figure 6.1: Expected flow when the user presses a transport-related item in the Agenda Screen
(First prototype).

navigation bar. Two participants said navigation between features was somewhat confusing, as a

result of the lack of text labels for each button in the bottom navigation bar. The size of the icons

in the world was also found to be small and what the images represented was not immediately

evident to the participants. integrating labels and increasing the size of the images were suggested

to improve the navigation experience.

Lack of validation and visual feedback in specific areas of the application was also identified

as confusing three of the users. This occurred in the Reminders feature, two groups of buttons

Provided very subtle visual feedback when clicked, which made it difficult for users to understand

if the application had registered their click.

One of the participants mentioned that it was difficult to read some of the visual elements and

text in some screens due to reduced contrast between the text color and the background color.

This was most noticeable in cases where a lighter blue text was above a white background. This

participant considered the remainder of the colors and their contrast to be adequate.

After the participants identified some of their obstacles and struggles while using the applica-

tion, they were asked to fill the survey in order to gather more information which will be useful in

the following development stage. In the first section of the survey, Which was based on the scale

disability system, the response by the participants was mostly positive. The results of the survey

as summarized as follows (each list item is related to a question in the survey):

1. All of the participants fully agreed that they would like to use the application frequently.

2. All of the participants fully disagreed that they found the application unnecessarily complex.

3. All of the participants fully agreed that they found the application easy to use.

4. All of the participants fully disagreed with the idea of needing assistance from another

person to use the app.

6.1 User tests: First prototype 101

5. All of the participants fully agreed that they thought the features were well integrated.

6. All of the participants fully disagreed that there were inconsistencies in the application.

7. When the participants were asked if they thought most people would be able to learn how

to use a application quickly, there were mixed results. Because the CRPG community has

very different necessities, two participants said they neither fully agreed or disagreed, as

some people would probably have a harder time using the app. Three participants however

thought the application would be quickly assimilated by most members of the community.

8. All of the participants fully disagreed with the opinion that the application was cumbersome

to use.

9. Four of the participants fully agreed that they felt confident using the application, while one

participant somewhat agreed with this observation.

10. All of the participants fully disagreed with the thought of having to learn a lot of things

before being able to use the app.

In the last section of the survey, regarding the implementation of multimodal capabilities

into the application in the following phases of development, participants showed interest

in all of the proposed means of communication. The answers to these three questions are

detailed as follows:

11. All participants fully agreed that the ability to use voice commands to execute actions and

navigate to specific features inside the application would be appreciated.

12. All participants except for one (which responded with “Somewhat Agree”) said they Fully

agreed that they would enjoy the integration of visual and auditory alerts for specific up-

coming events.

13. All participants except for one (which responded with “Somewhat Agree”) said they Fully

agreed that they would enjoy the integration of a synthesized voice which could help the

user by providing suggestions and assisting the user in understanding the use of the voice

commands.

When questioned about other features that the participants consider that could be useful in the

app, one participant asked for real-time information regarding the transports, both of CRPG and

also public transports. Due to the fact that there is no information being recorded by the drivers or

the buses of CRPG, this idea was not viable to implement due to technical limitations. Regarding

the panic button, the idea was proposed to the CRPG representatives in order to assess its viability.

Fig.6.2 presents a graph that summarizes the results of the survey.

102 System Testing and Validation

0 1 2 3 4 5

1

2

3

4

5

6

7

8

9

10

11

12

13

Number of participants

Q
ue

st
io

n
#

Fully Disagree Disagree Neutral Agree Fully Agree

Figure 6.2: Answers to the survey (first prototype validation session).

6.2 User tests: Second prototype 103

6.2 User tests: Second prototype

After the development of the second prototype was finished, another meeting with the participants

was scheduled. The objective of this sessions was to perform usability tests with all of the users

who had taken part in the validation session. Subsection 6.2.1 details the procedures which were

followed during the usability testing sessions. Subsection 6.2.2 provides an overview of the results

of the tests.

6.2.1 Procedures

After the development of the app was finished, a more extensive phase of user testing was imple-

mented. Users executed six test cases, using the touch screen and after that using both Audio Hints

and voice commands. The sessions were initiated with an explanation of the system, followed by

delivery of a script which included the tasks that the participant was expected to perform. Each

user was asked to perform six test cases, using the touchscreen first, and a combination of the Au-

dio Hints and Voice commands after. Table 6.3 details the test cases executed for each application.

Each has six properties:

1. ID: identifies the test case.

2. Screen/Feature: identifies the screen/feature associated with the test.

3. Summary: describes the main objective that should be test case.

4. Preconditions: conditions that need to be met before the test case is executed.

5. Expected user flow: which details the minimum number of steps that the user needs to

perform to complete the test case (optimal user flow).

6. Expected results: details the events which occur after the execution of the test case.

While the user executed each task, measurements regarding different parameters were gath-

ered. For each test case, four parameters were measured:

• Time needed for completion: each case is timed from the moment the prerequisites are

met, and the supervisor indicates to the user that the task starts. The timer is stopped when

the user performs the last step of the flow.

• Assists: an assist is defined as a request for assistance by the user to the supervisor of the

tests.

• Deviations/non-critical errors: Deviations from the expected flow that the participant can

recover from. These errors result in an interruption to the normal flow of the test case, but

the user is not assisted unless requested. If the user is able to recover from the deviation, the

session continues until the user finishes the task.

104 System Testing and Validation

• Critical errors: deviations from the expected flow which will cause the participant to not

be able to finish the task. Includes navigating to a different feature, or submitting erroneous

information). A critical error is usually followed by an assist, since the user needs helps

from the supervisor to return to a previous state where the flow can be continued.

6.2
U

sertests:Second
prototype

105

Table 6.3: Description of the test cases for the usability testing.

ID Screen/Feature Summary Precondition Expected user flow (touchscreen) Expected user flow (voice commands) Expected Results

1 Date Selection

Selection of the
twenty-four of June
in the horizontal scroll list
and move to the Agenda screen.

1) The user
is on the Date Selection Screen.

1)The user scrolls
through the list
until a card
labelled "24" is visible.
2) The user clicks the specified card.
3) The user clicks
the select button.

1) The user utters
"24th of July".
2) The user utters
"Select".

1) The information
related to the
selected
date is loaded
into the application.

2 Public Transports
View the schedule
of public transports.

1) The user
is on
the Agenda Screen.

1) The user clicks
on the Transport item.
2) The user clicks on
"Public Transport".
3) The user clicks on
"View Schedules".
4) The user clicks on
button with the
"Outward" label.

1) The user clicks on the Transport item.
2) The user utters "Public Transport".
3) The user utters "View Schedules".
4) The user utters "Outward".

1) The selected
timetable is shown and can be zoomed in.

3 Meal Selection

Selection of the fish
dish in the meal
selection screen.
After saving, return
to the Agenda screen.

1) The user
is on
the Agenda Screen.

1) The user click on the "Fish" option.
2) The user clicks
on the button with the "Save" label

1) The user utters "Fish".
2) The user utters "Save".

1) The meal selection
is saved on the
database and
on the device.
2) The selected meal
is shown on the adequate item in the Agenda.

4 Meditation
Selection of the
"Confident" mood.

1) The user
is on the
Agenda Screen.

1) The user click on
the button labbeled "Confident".

1) The user utters "Confident". 1)The media player screen is shown.

5 Create new text note

1) Creation of a new text
note with the following characteristics:
1) No image is associated with the note;
2) The title should
be the letter a".
3) The content should
be the letter "b".

1) The user
is on the
Agenda Screen.

1) The user click on "Create New Text Note".
2) The user clicks on the title field.
3) The user sets the Title as "a".
4) The user clicks on the content field.
5) The user sets the content as "b".
6) The user click on the button labelled "save".

1) The user utters "Create New Text Note".
2) The user utters "Title".
3) The user sets the Title as "a".
4) The user utters "Content".
5) The user sets the Content as "b".
6) The user utters "save".

1) The text note is created
and stored on the device storage.

6 Create new reminder

1) Creation of a
new reminder
with the following characteristics:
1) The purpose of the reminder is to alert the user
of medication administration;
2) The alarm should be scheduled for 21h30;
3) The alarm should be
triggered on a daily basis;
4) the device should vibrate, but should not
play any auditory media
or ringtone;
5) the reminder does
not have any
note associated with it;

1) The user
is on the Agenda Screen.

1) The user expands all sections individually.
2) The user selects the "Administer medication" option.
3) The user sets the time to 21h30.
4) The user selects the "Everyday" option.
5) The user selects the "Vibrate" option.
6) The user clicks on the
"Save" button.

1) The user utters
"Expand all".
2) The user utters
"Administer medication".
2) The user utters
"nine and a half in the afternoon".
2) The user utters
"Everyday".
2) The user utters "Vibrate".
2) The user utters "Save".

1) The reminder is created
and stored on the device storage.

106 System Testing and Validation

During the execution of the tests, interaction with the supervisor was always considered an

assist request. The objective was to remove any source of ambiguity on declaring some interactions

as assists or not, even if they were not requests for help. Each of the five participants performed

the six tasks in both modalities; a total of sixty tests were performed. The TalkBack feature

integration was not tested due to limitations in the schedule of the participants. After the tests

had been performed, the users were shown the notifications feature using the following simulated

examples:

• The transport notification is shown, and the user could select one of the options to open the

adequate screen.

• The meal notification is shown, the user can select the meal by opening the meal selection

screen directly.

• The administer medication notification is shown, and the user can select one of the options

to indicate if the medication has been administered.

The session ended with the users answering a survey regarding their thoughts and feedback

on the different modalities of interaction presented in the session. Some questions were adapted

from the SUS survey done in the previous session. The purpose of the questions was to understand

if the users thought they were well implemented and intuitive and obtain general feedback. The

questions are described in Table 6.4.

6.2 User tests: Second prototype 107

Table 6.4: Questions of the survey conducted at the end of the usability test.

ID Question

1
I think the several modalities of interaction with the application
make interaction easier and more accessible.

2 I found the multiple modalities to be well integrated within the system.

3
I found the notifications with action buttons to improve the experience
of using the application.

4
I found the notifications with action buttons simplified accessing features
and performing certain tasks.

5 I believe I would use the notifications frequently.
6 I believe the notifications feature would be useful for the CRPG community.

7
I found that the Audio Hints integration improved the experience
of using the application.

8
I found that the Audio Hints integration was adequate at detailing
which voice commands to be uttered to perform certain tasks.

9
I felt I was faster at assimilating the existing commands due to
the Audio Hints feature.

10 I believe the Audio Hints feature would be useful for the CRPG community.

11
I felt more confident when using the voice commands for the second time, due
to having listened to the Audio Hints previously.

12 I believe I would use the Audio hints frequently.

13
I found that the voice commands integration improved the experience
of using the application.

14 I felt confident using the voice commands.

15
I felt using the voice commands was cumbersome or that I did not possess
enough information to use it.

16
I believe I would need assistance from another person to be
able to use the voice commands.

17 I believe most people would be able to learn how to use the voice commands.
18 I believe the voice commands feature would be useful for the CRPG community.
19 I believe I would use the voice commands feature frequently.

108 System Testing and Validation

6.2.2 Results

Given the considerable number of tests performed, the results presented in this subsection are sum-

marized. Instead of presenting data regarding each test, the sum of the values for each parameter

in each test is calculated. Detailed information for each individual test can be found in B. The first

metric to be analyzed is the accumulated elapsed time to complete each task (in seconds). Time

measurements help understand which modality allows users to perform tasks more quickly (less

time spent is better). The results, organized by participant and modality, can be seen in Fig. 6.3.

54321

0

200

400

600

Participant #

Se
co

nd
s

Speech Commands Touchscreen

Figure 6.3: Total elapsed time (sum of every test case elapsed time) for each modality, by partici-
pant.

As shown in Fig.6.3, four participants were able to complete the tasks faster using the touch-

screen. One participant was able to execute the task faster by using voice commands. The par-

ticipant who needed less time to complete all of the tasks using voice commands was also the

oldest in the group. The self-perceived dexterity of this participant was also considered average,

with occasional difficulties in daily use of the smartphone. Younger participants assessed their

dexterity as being more than sufficient to interact with their smartphones on a daily basis without

any issues. This may indicate that the speech command functionality may be more helpful to older

users or with lower dexterity levels in regards to touchscreen use. The following metric analyzed

is deviations, also known as non-critical errors. Results from testing can be seen in Fig. 6.4.

6.2 User tests: Second prototype 109

54321

0

2

4

6

8

Participant #

A
bs

ol
ut

e
V

al
ue

Speech Commands Touchscreen

Figure 6.4: Total non-critical errors/deviations (sum of the non-critical errors from each test case)
for each modality, by participant.

As can be seen in 6.4, only two participants had non-critical errors occurring during testing.

One of these participants had more deviations when using the touchscreen. The other participant

had more deviations when using the voice commands. The remaining three participants did not

have any difficulties executing the tasks in a way that followed the expected flow. The third

measurement is related to the critical errors. Results from testing can be seen in Fig. 6.5.

54321

0

0.2

0.4

0.6

0.8

1

Participant #

A
bs

ol
ut

e
V

al
ue

Speech Commands Touchscreen

Figure 6.5: Total critical errors (sum of the critical errors from each test case) for each modality,
by participant.

Only two occurrences of critical errors were found, both of them when two participants were

using the touchscreen. Both instances resulted from a wrong button press which led the partici-

110 System Testing and Validation

pants to another screen which they could not recover from. No critical errors occurred in any of

the tests in which voice commands were used.

Fig. 6.6 summarizes the results of the tests regarding the assists parameter. The speech com-

mands modality raised more questions from the participants, as compared to the touchscreen use.

It is difficult to pinpoint if these questions resulted from the implementation of the feature, or the

speech recognition limitations. During testing, it occurred several times that a user had said the

correct command, but the system registered another word, so no action was taken. Some users

repeated the command, which usually led to the correct recognition, but other participants were

confused and thought their commands were wrong, leading to requesting assistance from the su-

pervisor. It would be interesting to repeat the testing with an improved version of the software

recognition in future work and measure the number of assist requests with a higher percentage of

successful recognition of commands.

54321

0

2

4

6

Participant #

A
bs

ol
ut

e
V

al
ue

Speech Commands Touchscreen

Figure 6.6: Total assists (sum of the assists from each test case) for each modality, by participant.

Regarding the results of the survey, the overall feedback was very positive. The summary of

the answers can be found in the following list, organized by the ID of each question. The first two

questions were related to the overall experience of the users with the different modalities.

1. All participants (except one, who answered with "neither agree nor disagree") indicated that

the multiple modalities of interaction improved the user experience.

2. All participants said they fully agreed with the observation that the features were well inte-

grated.

The following section of the questionnaire focused on the notifications feature:

3. All participants said they fully agreed with the observation that the contextual notifications

with associated actions improved the user experience.

6.2 User tests: Second prototype 111

4. All participants said they fully agreed with the observation that the notifications simplified

accessing different features and performing specific tasks.

5. All participants fully agreed that they would use the notifications feature frequently.

6. All participants fully agreed that the notifications feature would be helpful for the CRPG

community.

After feedback from the notifications feature, the following answers were focused on the

Audio Hints feature:

7. One participant somewhat disagreed with the observation that the Audio Hints feature im-

proved the user experience. The other participants fully agreed with the observation.

8. There were mixed results regarding the eighth question regarding the adequacy of the Audio

Hints feature in guiding users in using the voice commands. Two participants said they fully

agreed with the observation, with another two participants saying they somewhat agreed; the

remaining participant did not agree or disagree with the remark.

9. Three participants said they fully agreed that the Audio Hints feature made assimilating the

voice commands easier. Between the other two participants, one somewhat agreed with the

remark, while the other did not agree nor disagree.

10. All of the participants fully agreed that the Audio hints feature could be helpful for the

CRPG community.

11. All of the participants, except one, fully agreed that they felt more confident using the voice

commands a second time after using the Audio Hints before. This assessment was later

confirmed, as all of the participants were asked to repeat the tasks a second time using voice

commands, and in most cases, there was a significant improvement in the time needed to

complete the tasks.

12. Three participants fully agreed that they would use the Audio Hints feature frequently, with

the remaining two participants saying they neither agreed nor disagreed with this remark.

Participants felt that the Audio Hints were not completely consistent, as the helpfulness of

the different messages was considered inconsistent. Despite these limitations, the partici-

pants still felt that these messages helped indicate which voice commands could be uttered.

The last section of the survey was related to the voice commands feature:

13. Four participants fully agreed that the voice commands improved the user experience. One

participant slightly agreed.

14. All of the participants fully agreed that they felt comfortable using the voice commands.

112 System Testing and Validation

15. All of the participants entirely disagreed with the observation that the feature was confusing

or that they lacked information in order to take full advantage of the capabilities properly.

16. All of the participants except for one (which neither agreed nor disagreed) said they dis-

agreed entirely with the observation that they would need assistance from another person in

order to be capable of using the voice command feature.

17. Three of the participants said they fully agreed that they felt most people in the CRPG

community would be able to use voice commands, with the remaining two participants

neither agreeing nor disagreeing with the remark.

18. All of the participants fully agreed the voice commands feature could be helpful for the

CRPG community.

19. When asked if they would use the voice command feature frequently, two of the partici-

pants said they fully agreed, one did not agree or disagree, and the remaining two said they

somewhat disagreed with the observation.

The results are displayed in Fig.6.7. The results of the tests were satisfactory overall. Due

to the small, and relatively homogeneous nature of the sample group, it is not easy to assess the

actual adequacy of the modalities when transposed into the scope of the entire CRPG community.

However, both modalities were well-received and considered adequate by the participants, and

the feedback was positive. Some participants mentioned that they had better results using the

touchscreen mainly due to their dexterity. Participants mentioned that the voice commands feature

would be helpful in cases where the client’s dexterity was limited or reduced. Notifications with

integrated buttons were also well received, being a tool that reminds clients of upcoming events

and quickly access associated features in the application.

6.2 User tests: Second prototype 113

0 1 2 3 4 5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Number of participants

Q
ue

st
io

n
#

Fully Disagree Disagree Neutral Agree Fully Agree

Figure 6.7: Answers to the survey (final prototype validation session).

114 System Testing and Validation

6.3 Functional and Non-Functional Testing

This section details the functional and non-functional tests which were performed, both as system

testing and accessibility testing. Regarding functional and non-functional testing, there are several

ways in which a system can be tested, such as:

• Unit testing: testing specific actions in the app, in a very narrow scope (ie. validating that

creating a reminder and clicking the save button effectively saves the reminder).

• Integration testing: assessment of flows in the app in a wider scope than unit tests, by

associating actions performed by several unit tests.

• System testing: effectively using the application in order to verify if the requirements were

met.

• Acceptance testing: testing user scenarios to verify if the system meets the customer re-

quirements.

In order to make sure the application provided a consistent experience across a wide range of

devices, three devices were used for testing. The devices spanned a five year time period of model

releases, with varying levels of processing power, display resolution and aspect ratio, and Android

releases. The following list details the models that were used for testing, and also details the year

of model release, the Android version present on the device and the resolution of the display:

• Motorola G (2015 / Android 6.0 / 1080 x 1920).

• Xiaomi 7 (2018 / Android 8.0 / 720 x 1520).

• Xiaomi Redmi 9 (2020 / Android 11.0 / 1080 x 2400).

The focus of the functional/non-functional section was on system and acceptance testing. This

focus is justified by the necessity of validating that the requirements were met, with a special focus

on accessibility testing, in order to guarantee that the application reaches the highest number of

clients possible. Validating the stability and performance of the application is also necessary.

Table 6.5 shows in detail each type of testing that was performed.

6.3 Functional and Non-Functional Testing 115

Table 6.5: Description of functional and non-functional types of tests.

Type Description

Functional
Tests

Functionality Testing

Consists of performing a set of planned test cases
to cover all the system requirements. This ensures
that the system specifications are implemented
and working properly.

Recoverability Testing
Verifying if the system is capable of dealing
with invalid or inconsistent inputs.

Ad-Hoc Testing
Trying to make an application stop
working with a fatal error, and validate
how the application responds in these scenarios.

Graphical User Interface Testing
Analyzing all visual interface elements
and verifying if they are working as expected.

Exception Handling Testing

Consists of verifying if the system is capable of
dealing with a fatal exception, display
an error message to the user
and keep working properly.

Non-Functional
Tests Compatibility Testing

Consists of testing if the system can be
adequately executed and provide
a consistent visual experience in multiple
devices with different specifications.
In this context it was necessary
to test devices with multiple Android releases,
processing power and displays
with different resolutions and aspect ratios.

Performance Testing
Consists of testing if the performance of the system
is fluid, regardless of the device
specifications and processing power.

Accessibility Testing
Ensures that the application being tested is usable
by people with disabilities,
different ages and other groups.

116 System Testing and Validation

6.3.1 Accessibility Testing

Regarding the assessment of the accessibility of the application, four areas were tested/analyzed

to see if they performed as expected.

6.3.1.1 Screen Readers

In order to assess the suitability of Talkback integration with the app, a test was performed to

ensure that the specified content descriptions were working as intended. Due to time constraints,

the screen readers were not tested with users. The testing was done manually, by following the

recommendations presented in the Android documentation[32]. The documentation recommends

swiping through each visual elements, and analyze the following topics:

• Does the spoken feedback for each element convey its content or purpose appropriately?

• Are announcements succinct, or are they needlessly verbose?

• Can the main workflows be completed easily?

• Can every element be reached by swiping?

• If alerts or other temporary messages appear, are they read aloud?

After interacting with the app and following the guidelines in all of the screens, the results

were satisfactory overall. The labels are succinct and clear as to describing the purpose of each

element, and all of the relevant elements have their content description done. All of the workflows

were completed with success, and every element could be reached. When an error message is

shown on screen, it is also read by the Talkback service.

6.3.1.2 Colour Contrast Analysers

The application uses a reduced number of colors. The text in the application is mostly black, if on

a white background, or white, if in a dark colored element. Apart from the background, which is

always white (#FFFFFF), the following colors were used (color code below each example):

Figure 6.8: Examples of the colors present in the color scheme of the application.

6.3 Functional and Non-Functional Testing 117

In order to guarantee the suitability of the color scheme and of the contrast between colors, a

Colour Contrast Analyzer (CCA) was used. Using this tool, it is possible to compare two different

colors. A value regarding the contrast between both colors is provided and its suitability compared.

Because the background color is always white, and text is always white, black or one of the above

depending on the background color, four combinations of colors were analyzed (also shown in

Fig.6.8). Black on white is by default the highest contrast possible so it was not tested. The

contrast level values between these colors allow for the assessment of the adequacy of these colors.

The following combinations were used:

• Dark blue on white background.

• Light blue on white background.

• Green on white background.

• Orange on white background.

Table 6.6 displays the results of the contrast checks. As seen in the table, the results were

satisfactory overall. The reduced color scheme proved to be a good choice, despite two of the

colors (light blue and green) not passing the more demanding test in which the contrast is validated

based on the WCAG AAA more rigorous standards. In order to overcome this issue, a darker shade

of each color can be used, which increases the contrast with the white background.

Table 6.6: Results of the contrast checking tool.

Normal Text Large Text
WCAG AA WCAG AAA WCAG AA WCAG AAA

Orange foreground

White background
Pass Pass Pass Pass

Dark blue foreground

White background
Pass Pass Pass Pass

Light blue foreground

White background
Pass Fail Pass Pass

Green foreground

White background
Pass Fail Pass Pass

118 System Testing and Validation

6.3.1.3 Inbuilt Accessibility Options

Android provides several native accessibility tools by default. Stock Android 11.0 release inte-

grates the following tools (other tools are available but interoperability was focused on these tools

as they were considered to be the most helpful to the CRPG clients):

• High Contrast Text: this feature fixes the text colour as either black or white, depending on

the original text colour. High contrast should improve readability of text, improving user

experience.

• Color correction: allows specific colors to be corrected in order to make visibility easier for

colorblind users.

• Magnification: allows the user to zoom in and out of specific areas of the screen, improving

visibility of specific visual elements.

The first tool to be tested was the High Contrast Text. All of the screens/features were explored

using this tool, with a 100% success rate, as no inconsistencies or visual issues were identified.

Fig. 6.9 illustrates the look of the Date Selection screen with the High Contrast Text tool activated.

Figure 6.9: Example of High Contrast Text tool in the Date Selection Screen.

The second tool to be used was the Color Correction tool. Due to reasons that were not fully

identified, usage of the tool proved to be inconsistent, as in some screens the tool could not be

activated, and in other cases visual elements were not present. Because the tool would cause

glitches even when the application was not being run, it is possible that the experimental nature

6.3 Functional and Non-Functional Testing 119

of this tool, or the specific release which was used for testing did not work fully as expected. In

the future, these tests could be performed again using different Android releases and an improved

version of the tool, in order to pinpoint the origin of the issues.

The last tool to be tested was the Magnification tool. All of the screens/features were also

explored using this tool, with a 100% success rate, as the Magnification tool was able to zoom in

on any specific area of the screen, and visibility was improved. Fig.6.10 illustrates usage of the

Magnification tool in the Date Selection screen.

Figure 6.10: Example of the Magnification tool in the Date Selection Screen.

120 System Testing and Validation

6.3.1.4 WCAG 2.1 Guidelines

As mentioned previously, WCAG 2.1 covers many different topics on accessibility in detail. It

is not possible to cover every single one in detail, so a paraphrased summary from the official

documentation is used to check the accessibility points of the app. In order to summarize the

numerous requirements into concise, more comprehensive list, W3C provides a web page with

thirteen topics which cover a wide range of areas of accessibility and requirements which need to

be met[92]. Table 6.7 presents each of the key topics, as well as the approach during development

to fulfill the requirements.

Table 6.7: WCAG summarized guidelines and approaches used to meet each one (adapted from
[92]).

ID Topics Approach

1 Text alternatives for non-text content should be provided.
All buttons and icons have a description tag

which describes its use.

2
Captions and other alternatives should

be provided for multimedia.
The meditation media player has content description tags.

3
Created content should be presented in different ways,

including by assistive technologies,

without losing meaning.

All of the created notes are described in

the consult reminder/note screens,

following the format in which Talkback describes them

is the recommended by the official documentation.

4 Make it easier for users to see and hear content.
Attention was directed to the size of visual elements and text,

in order to improve readability, as well as using concise content

description for the Talkback service to make comprehension easier.

5 Make all functionality available from a keyboard. Not implemented

6 Give users enough time to read and use content.
There are no timed messages or pop-ups, so the user

is free to take the time needed to read any content.

7
Content that causes seizures or physical

reactions should not be used.

None of the screens/features integrate content that

flickers, flashes, or blinks, which

could trigger photosensitive epilepsy.

8 Help users navigate and find content.
The bottom bar icon and labels have increase size in

order to help the users find the desired feature.

9 Make it easier to use inputs other than keyboard.
The use of the speech recognition commands, as well

as the gesture recognition by Talkback, provide the user

input alternatives.

10 Text should be readable and understandable.

Android reccomends the minimum font size to be 12px for user

with no impairments to the vision. Given the context, the minimum

text size in the application is 14px, but most text in the app ranges from

16-22px for normal text, and 25-35px for titles or subtitles.

11 Make content appear and operate in predictable ways.
The presentation of content follows the guidelines of

accesible mobile apps design, as well as input from the end

users from the CRPG community.

12 Help users avoid and correct mistakes.

Most screens allow the user to return to a previous screen

using both the app bar arrow, and screens which which require

considerable input from the user (such as create new Reminder)

provice a button which allows all fields to be cleared.

13
Maximize compatibility with current

and future user tools.

The application implementation followed the most modern Android’s

accessibility guidelines, and as such future Android updates should

maintain or even improve the accessibility level of the app.

6.3 Functional and Non-Functional Testing 121

6.3.2 Compatibility Testing

The application ran on all three devices without any issues or reported slowdowns. Some visual

inconsistencies in the screens with bigger resolution, like the Xiaomi Note Pro 9, were identified.

It is not uncommon for APK releases to feature different configurations, allowing multiple devices

to be supported. Due to time constraints, this configuration was not implemented. Still, the inter-

face implementation followed the guidelines for multiple device compatibility, and as a result the

application was always usable despite some visual inconsistencies.

Moto G Play Xiaomi Note 7 Xiaomi Note Pro 9

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

Figure 6.11: Compatibility testing results.

6.3.3 Performance Testing

The application performance was not influenced by the test environment, being uniform across the

three devices. The application was less responsive on the oldest phone when the application was

started, but it may be related to the fact that when the application is opened initially, a lot of data

is fetched from the database. After the data is on the device memory, no further slowdowns were

experienced.

122 System Testing and Validation

Moto G Play Xiaomi Note 7 Xiaomi Note Pro 9

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

Figure 6.12: Performance testing results.

6.3.4 Recoverability Testing

The application passed all recoverability tests without any reported errors. Issues with validation

of strings can happen when the edit field allows the user to have complete freedom on the type of

characters and length. Since the application limits the user in the type of characters used, and a

validation is being done even before the user submits the content that was written, the application

presents two layers of validation, one while editing and the other when submitting, which allows

the system to be less prone to errors from strings.

Validation

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

Figure 6.13: Recoverability Testing results.

6.3 Functional and Non-Functional Testing 123

6.3.5 Functionality Testing

All the functionalities worked properly when the users were experimenting with only the following

minor bugs/limitations reported:

1. Since the date selection screen only shows the dates for the current month, the user is not

able to see the next months dates.

2. If the user closes the Wi-fi connection when using the app, the application will still run but

the Audio Hints and Speech Recognition services will stop without notifying the user, as

they require an Internet connection to operate.

3. The speech recognition software is not fully accurate, as incorrect readings of the uttered

words were registered during testing. This is related to the capabilities/limitations of the

service which was used and is not associated with the implementation of the application.

Validation

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

Figure 6.14: Functionality testing results.

124 System Testing and Validation

6.3.6 Ad-hoc Testing

In the ad-hoc testing, invalid values were defined in the editable text fields, and then the reaction

of the application was assessed when trying to validate these values. No crashes occurred and the

application was always able to throw an error message before any issue or crash occurred.

Validation

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

Figure 6.15: Ad-hoc testing results.

6.3.7 Graphical User Interface Testing

All the graphical user interface tests passed without any issues or visual inconsistencies in the

three tested devices.

Moto G Play Xiaomi Note 7 Xiaomi Note Pro 9

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

Figure 6.16: Graphical User Interface testing results.

6.3 Functional and Non-Functional Testing 125

6.3.8 Exception Handling Testing Testing

The application passed all the exception handling tests without the system stopping its execution.

All the exceptions reported were dealt with smoothly. On each of these instances, the application

throws an error message to the user and the system does not crash or become unusable. The

exceptions reported were the following:

• Fetching data from the database or local storage and an error occurs.

• Saving a reminder or a note with invalid/missing data.

• Trying to use the voice recognition or Audio Hints features and failing.

Validation

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

Figure 6.17: Exception Handling testing results.

126 System Testing and Validation

6.4 Conclusions

In general, the performed tests had positive results, despite limitations to the scope of testing, such

as the reduced number in available real devices for testing, and the small sample group of users.

Regarding the group of user testers, despite a wide range of ages between participants, all of the

participants displayed sufficient or above sufficient dexterity in the use of the smartphone, which

translated into a very homogeneous group. A more numerous and heterogeneous group would

allow for a more accurate representation of the CRPG community. The feedback from the users in

the first user session, in which some obstacles to the use of the application were identified, allowed

for several improvements to the second prototype. The users felt that the second prototype was

easier to use and some issues regarding visibility of certain visual elements or obstacles to the

navigation between features had been solved.

In the usability testing session, results were mixed, and did not allow to pinpoint a specific

modality as being better for every participant. The participants did however agree that the multiple

modalities in interaction with the app were positive and would allow the application to reach

more clients. Some participants mentioned that they would not use the voice commands on a

daily basis, due to the habit and comfort of using the touchscreen. Participants also found the

voice hints efficacy to be inconsistent, as the messages were considered to be more or less helpful

depending on the feature. The oldest participant, who mentioned occasional difficulties when

using the touchscreen was able to perform some tasks faster by using the voice commands. Despite

using voice commands to execute tasks not being common for the participants, they were able to

quickly assimilate the commands and when they performed the tasks a second time, they were

generally able to reach the goals more quickly and with less assistance when compared to the

initial try.

Functional and non-functional tests were also performed. Only three physical devices were

used, which makes assessing the true compatibility of the application in a wide range of models

difficult. The results were satisfactory overall, with the success rate being of 100% for most tests,

and a sub-par experience on one of the devices regarding the compatibility tests. The application

performed as expected (no significant slowdowns or crashes) even in a mid-range device released

in 2014.

Chapter 7

Conclusions

This chapter summarizes the results of the work in this project, the limitations that were identified

and possible improvements that could benefit future iterations of the application. In section 7.1,

the hypotheses that were made in chapter 1 are reviewed. Considerations regarding the limitations

of the project and future work can be found in sections 7.2 and 7.3.

7.1 Findings

In chapter 1, three research questions were presented:

• Can the non functional-prototype be adequately implemented, by using inclusive design

methodologies and approaches?

• Can assistive technologies and multimodality be integrated into the mobile application in a

way that specifically benefits the clients of CRPG?

• Do the multiple modalities of interaction benefit the clients of CRPG?

In order to answer the first hypothesis, user-centered design methodology was used to ensure

that the user feedback impacted the development of the application and improved following any

identified obstacles. The application was successfully implemented, as a multimodal Android

app. All of the initial requirements were integrated, as well as several others that appeared dur-

ing the development of the application. Regarding the non functional prototype, the design was

made consistent. Even on screens where high-fidelity design prototypes were not available, there

was an effort to maintain the visual identity of the application consistent and without significant

alterations. Due to restrictions in some of the development tools, visual fidelity was not totally

achieved, but an effort was made to keep the the layouts as close to the mock-ups as possible.

The feedback from both the CRPG clients and the representatives was that the application fulfilled

their requirements and was suitable for daily use. Despite the limitations to the application, such

as limited interoperability with assistive technologies, the first goal was accomplished, and acts as

the first step of many that can expand the application’s capabilities, in future work.

127

128 Conclusions

For the second hypothesis, the clients of CRPG were inquired regarding the obstacles they

faced when interacting with their smartphones. Because vision impairments and short-term mem-

ory loss were identified, the focus on multimodality prioritized tools that help users with these

types of characteristics. In addition, modalities such as the integration of text-to-speech as a syn-

thesized voice and the ability to send voice commands to the app increased the application’s reach

for a higher number of users. The users praised the integrated modalities, as they felt these fea-

tures would be useful in the context of the CRPG community. As with the previous point, there

are limitations and it is not possible to guarantee that 100% of the clients would be able to use

the application. However, given the time frame available for the development of the app, it was

necessary to focus work on a limited number of modalities that were considered to be of signifi-

cant relevance in the context of the CRPG community. In future work, it would be interesting to

integrate interoperability with other assistive technologies such as mechanical devices, like point-

ers and keyboards. After considering every factor, it seems that the answer to this question is

also positive, as the included modalities were based on the feedback of the CRPG clients and

representatives.

In order to assess the truthfulness of the third and last hypothesis, an usability testing session

was organized to allow users to experiment using the app with the different interaction modalities.

In this session, clients were asked to perform a series of tasks inside the application, using both

the touch screen on the phone, and afterwards using both the audio hints and voice commands.

The results of the measured parameters show that depending on the user’s dexterity, the use of

different modalities can benefit the user experience. Adding to the results of the measurements,

answers to the survey also pointed in the same direction. Participants in general said that they

felt the features were well-implemented and thought the multiple options available of interaction

would be beneficial for the CRPG community.

7.2 Limitations 129

7.2 Limitations

All of the main objectives and requirements regarding this project were fulfilled. Despite the

overall satisfaction in reaching the proposed objectives, some issues and limitations occurred. For

example, the initial work plan was altered due to the consequences of the Covid-19 pandemic

that were undergoing during the writing of this dissertation. One of the drawbacks regarding

implementation of the functional prototype is the fact that it was not possible to achieve complete

consistency between some visual aspects in the app and in the non-functional prototype. This

was primarily due to technical limitations or obstacles to which there were no available solutions

during the implementation period.

In order to accommodate interactions with both prototypes by the clients, the work plan was

altered to discard the first session with users (initially three were planned), and postpone the second

session at the CRPG premises. To prevent this alteration of impacting negatively later development

cycles, the first prototype included all of the functionalities, lacking only the integration of multiple

interaction modalities. This decision was beneficial because it allowed all of the users to interact

with a prototype in an advanced state, but was also not as adequate as the initial planning, because

user feedback was only gathered around one month after than initially scheduled.

Development for both Android and iOS operating systems was discarded early on, due to lack

of documentation on accessibility capabilities of hybrid frameworks. The decision to focus the

development just on Android allowed the study to occur on the intricacies of this specific system

and to take advantage of its capabilities.

Since twelve clients of CRPG were initially asked to participate in this process, having just

five participants at the end fell below the expectations of what was initially planned. Despite a

wide range of ages between participants, all showed a very high dexterity in the use of the smart-

phone, which translated into a very homogeneous group. A more numerous and heterogeneous

group, featuring users with little experience in using smartphones, or which use other assistive

technologies, would allow for a more accurate representation of the CRPG community.

On the subject of functional and non-functional testing, it should be noted that testing was

performed on only three physical devices. Despite the differences between the devices which

suggest that the application performs well on devices with different specifications, it would be

interesting to perform tests on more devices with even more differences between them.

130 Conclusions

7.3 Future Work

Although all of the method requirements have been successfully implemented, the application

could benefit from the several following improvements, detailed in the following list:

• Integrating the application with the existing CRPG database was impossible, as there was no

API available to fetch the data. The technical department of the CRPG could not develop an

API that would allow the application to access data during the available development period.

It was necessary to create a new independent database using Firebase real-time database. In

future iterations of the project, integration with the existing database would reduce extra

work by the staff (by not adding data to the database manually) and financial costs.

• As a result of the approach mentioned in the previous topic, the management of data has to

be done using the Firebase console. CRPG already uses Excel files to organize data, some

of which is then ported to the database. If the CRPG database remains inaccessible in the

future, it would be advantageous to have a back-office in-built to the application. The back-

office area would allow the staff to manage data or provide a feature allowing data from

Excel files to be converted and uploaded to the database.

• Due to the time constraints and technical differences between Android and iOS operating

systems, the application only runs on Android. It would be beneficial if the application

could be adapted to run in the iOS operating system.

• As mentioned in chapter 2, the assistive technologies field is vast and complex. Many factors

have an impact on the way individuals with disabilities interact with smartphones. Some as-

sistive technologies are purpose-built to the necessity of a single user, which makes ensuring

accessibility for these cases even more difficult. These circumstances make achieving total

accessibility for 100% of the users virtually impossible. The focus on specific modalities

of interaction was based on the assessment of common requests and necessities of CRPG

clients in the RAC-LCA program. The requests were primarily related to memory and vi-

sual limitations instead of the use of hardware technologies. Future iterations of this project

should include increased compatibility with more devices and other alternative assistive

technologies.

• Initially, the non-functional prototype included an additional feature in the Transports sec-

tion, which allowed users to find a walking path between their current location and the

CRPG using the Google Maps API. After discussing this topic with the CRPG representa-

tives, it was decided that this feature would be discarded in the final release due to security

and financial costs. Alternative APIs may be studied in future iterations to allow this feature

to be implemented without privacy issues.

• In the Public Transports Screen, the solution that was used in order for the users to see

timetables is not ideal, as the amount of content present in the images can be overwhelming.

7.3 Future Work 131

Due to time constraints and lack of a prototype for this specific feature, this was the selected

approach, but in future iterations a more suitable solution could be implemented to improve

user experience.

• While not present in the initial list of requirements, during the development of the appli-

cation CRPG representatives requested using the Excel files that were already being used

to organize data in the institution to insert data into the database. Because this information

was only disclosed in a later stage of the development, this possibility was not included. The

data has to be introduced manually in the application through the Firebase console. Future

iterations of the application could benefit from data insertion using the Excel file as a source

or through the back office.

• While there was an effort to support the different screens and devices, the tools used for

development, such as Android Studio and its emulator, do not fully guarantee that the dis-

plays will be appropriately displayed on all devices. The application layouts were tested

on resolutions and form factors common in the smartphone market. In some screens above

or below a certain resolution aspect ratio, the layouts can present visual inconsistencies or

have visual elements cut out. While more problematic in more extreme cases like tablets and

very old phones, future work could include improved consistency across a broader range of

devices.

132 Conclusions

References

[1] Definition and overview. URL: http://universaldesign.ie/what-is-
universal-design/definition-and-overview/ [cited 2021-02-10].

[2] Getting Started About Version Control. URL: https://git-scm.com/book/en/v2/
Getting-Started-About-Version-Control.

[3] GSON User Guide. URL: https://github.com/google/gson/blob/master/
UserGuide.md [cited 2021-06-04].

[4] Kotlin vs Java: Which is Better for Android App Development? URL: https://
www.xenonstack.com/blog/kotlin-andriod/ [cited 2021-06-04].

[5] Licenses. URL: https://choosealicense.com/licenses/ [cited 2021-06-04].

[6] Material Design. URL: https://material.io/design [cited 2021-01-21].

[7] The 7 Principles. URL: http://universaldesign.ie/what-is-universal-
design/the-7-principles/ [cited 2021-02-10].

[8] Wrapper - Definition. URL: https://techterms.com/definition/wrapper [cited
2021-06-04].

[9] Apple. Vision - VoiceOver, 2021. URL: https://www.apple.com/accessibility/
vision/ [cited 2021-01-14].

[10] K Beck. Extreme Programming Explained: Embrace Change. 2000.

[11] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunningham, Mar-
tin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian
Marick, Robert C Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, and Dave Thomas.
Agile Manifesto, 2001. URL: http://agilemanifesto.org/.

[12] Stefan Becker, Andreas Kribben, Sven Meister, Clarissa Jonas Diamantidis, Nicole Unger,
and Anna Mitchell. User profiles of a smartphone application to support drug adherence–
experiences from the iNephro project. PloS one, 8(10):e78547, 2013. doi:10.1371/
journal.pone.0078547.

[13] Herbert D. Benington. Production of Large Computer Programs. Annals of the History of
Computing, 5(4):350–361, 1983. doi:10.1109/MAHC.1983.10102.

[14] Andreas Biorn-Hansen, Tim A. Majchrzak, and Tor-Morten Gronli. Progressive Web Apps
for the Unified Development of Mobile Applications, pages 64–86. 06 2018. doi:10.1007/
978-3-319-93527-0_4.

133

http://universaldesign.ie/what-is-universal-design/definition-and-overview/
http://universaldesign.ie/what-is-universal-design/definition-and-overview/
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://github.com/google/gson/blob/master/UserGuide.md
https://github.com/google/gson/blob/master/UserGuide.md
https://www.xenonstack.com/blog/kotlin-andriod/
https://www.xenonstack.com/blog/kotlin-andriod/
https://choosealicense.com/licenses/
https://material.io/design
http://universaldesign.ie/what-is-universal-design/the-7-principles/
http://universaldesign.ie/what-is-universal-design/the-7-principles/
https://techterms.com/definition/wrapper
https://www.apple.com/accessibility/vision/
https://www.apple.com/accessibility/vision/
http://agilemanifesto.org/
https://doi.org/10.1371/journal.pone.0078547
https://doi.org/10.1371/journal.pone.0078547
https://doi.org/10.1109/MAHC.1983.10102
https://doi.org/10.1007/978-3-319-93527-0_4
https://doi.org/10.1007/978-3-319-93527-0_4

134 REFERENCES

[15] David Britch. Visual representation of the MVVM architecture pattern., 2017.
URL: https://docs.microsoft.com/en-us/xamarin/xamarin-forms/
enterprise-application-patterns/mvvm [cited 2021-06-04].

[16] Cloudfare. Backend-as-a-Service. URL: https://www.cloudflare.com/learning/
serverless/glossary/backend-as-a-service-baas/ [cited 2021-06-04].

[17] European Comission. European Disability Strategy 2010-2020: A Renewed Com-
mitment to a Barrier-Free Europe, 2010. URL: https://ec.europa.eu/social/
main.jsp?catId=1484&langId=en [cited 2021-01-12].

[18] CRPG. O CRPG - História, 2020. URL: https://www.crpg.pt/o-crpg/historia/
[cited 2021-01-11].

[19] Bertrand Damiba. Introducing Voice Actions for Android, 2011. URL: http:
//googlemobile.blogspot.com/2011/09/introducing-voice-actions-
for-android.html [cited 2021-06-04].

[20] Dan Wilson. App Accessibility in NativeScript, 2016. URL: https://
nativescript.org/blog/app-accessibility-in-nativescript/ [cited 2021-
01-29].

[21] Brad E Dicianno, Bambang Parmanto, Andrea D Fairman, Theresa M Crytzer, Daihua X
Yu, Gede Pramana, Derek Coughenour, and Alan A Petrazzi. Perspectives on the Evolution
of Mobile (mHealth) Technologies and Application to Rehabilitation. Physical Therapy,
95(3):397–405, 2015. doi:10.2522/ptj.20130534.

[22] Inc. Drifty. Ionic Documentation Overview, 2016. URL: https://
ionicframework.com/docs{%}0Ahttp://ionicframework.com/docs/
overview/ [cited 2021-01-21].

[23] R. et al. Cugelman, B. Cugeman. Color psychology, 2019. URL: https:
//www.alterspark.com/color-psychology/visual-hierarchy [cited 2021-01-
29], doi:10.1007/978-3-642-27851-8_228-2.

[24] European Commission. DIRECTIVE (EU) 2016/2102 OF THE EUROPEAN PARLIA-
MENT AND OF THE COUNCIL of 26 October 2016 on the accessibility of the web-
sites and mobile applications of public. Document 32016L2102 sector bodies., 2016. URL:
http://data.europa.eu/eli/dir/2016/2102/oj [cited 2021-01-12].

[25] Andrea D Fairman, Erika T Yih, Daniel F McCoy, Edmund F Lopresti, Michael P Mc-
Cue, Bambang Parmanto, and Brad E Dicianno. International journal of telerehabilitation,
8(1):11–20, 2016. doi:10.5195/ijt.2016.6194.

[26] American Foundation for the Blind. Screen Reading Technology and Refreshable Braille
Displays, 2020. URL: https://www.afb.org/blindness-and-low-vision/
using-technology/assistive-technology-videos/screen-reading-
technology [cited 2021-01-26].

[27] Erich Gamma. Design Patterns - Repository Pattern. URL: https://archive.org/
details/designpatternsel00gamm/page/127(accessedon05/06/2021)
[cited 2021-06-04].

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/mvvm
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/mvvm
https://www.cloudflare.com/learning/serverless/glossary/backend-as-a-service-baas/
https://www.cloudflare.com/learning/serverless/glossary/backend-as-a-service-baas/
https://ec.europa.eu/social/main.jsp?catId=1484&langId=en
https://ec.europa.eu/social/main.jsp?catId=1484&langId=en
https://www.crpg.pt/o-crpg/historia/
http://googlemobile.blogspot.com/2011/09/introducing-voice-actions-for-android.html
http://googlemobile.blogspot.com/2011/09/introducing-voice-actions-for-android.html
http://googlemobile.blogspot.com/2011/09/introducing-voice-actions-for-android.html
https://nativescript.org/blog/app-accessibility-in-nativescript/
https://nativescript.org/blog/app-accessibility-in-nativescript/
https://doi.org/10.2522/ptj.20130534
https://ionicframework.com/docs{%}0Ahttp://ionicframework.com/docs/overview/
https://ionicframework.com/docs{%}0Ahttp://ionicframework.com/docs/overview/
https://ionicframework.com/docs{%}0Ahttp://ionicframework.com/docs/overview/
https://www.alterspark.com/color-psychology/visual-hierarchy
https://www.alterspark.com/color-psychology/visual-hierarchy
https://doi.org/10.1007/978-3-642-27851-8_228-2
http://data.europa.eu/eli/dir/2016/2102/oj
https://doi.org/10.5195/ijt.2016.6194
https://www.afb.org/blindness-and-low-vision/using-technology/assistive-technology-videos/screen-reading-technology
https://www.afb.org/blindness-and-low-vision/using-technology/assistive-technology-videos/screen-reading-technology
https://www.afb.org/blindness-and-low-vision/using-technology/assistive-technology-videos/screen-reading-technology
https://archive.org/details/designpatternsel00gamm/page/127(accessed on 05/06/2021)
https://archive.org/details/designpatternsel00gamm/page/127(accessed on 05/06/2021)

REFERENCES 135

[28] Paul S Ganney, Sandhya Pisharody, and Edwin Claridge. Chapter 9 - Software engi-
neering. In Azzam Taktak, Paul S Ganney, David Long, and Richard G Axell, editors,
Clinical Engineering (Second Edition), pages 131–168. Academic Press, second edition
edition, 2020. URL: http://www.sciencedirect.com/science/article/pii/
B9780081026946000097 [cited 2021-01-09], doi:https://doi.org/10.1016/
B978-0-08-102694-6.00009-7.

[29] Gartner. SDK (Software Development Kit), 2021. URL: https://www.gartner.com/
en/information-technology/glossary/sdk-software-development-kit
[cited 2021-01-27].

[30] Github. Github. URL: https://github.com/ [cited 2021-06-04].

[31] Google. Android Studio. URL: https://developer.android.com/studio [cited
2021-06-04].

[32] Google. Android’s "Test your app accessibility". URL: https://
developer.android.com/guide/topics/ui/accessibility/testing [cited
2021-06-04].

[33] Google. Data and file storage overview. URL: https://developer.android.com/
training/data-storage [cited 2021-06-04].

[34] Google. Firebase Guide. URL: https://firebase.google.com/docs/guides [cited
2021-06-04].

[35] Google. Handler. URL: https://developer.android.com/reference/android/
os/Handler [cited 2021-06-04].

[36] Google. Locale. URL: https://developer.android.com/reference/java/
util/Locale [cited 2021-06-04].

[37] Google. Material Design Introduction. URL: https://material.io/design/
introduction [cited 2021-06-04].

[38] Google. Flutter for Android Devs, 2020. URL: https://flutter.dev/docs/get-
started/flutter-for/android-devs [cited 2021-01-21].

[39] Alex Gotev. Android Speech. URL: https://github.com/gotev/android-speech
[cited 2021-06-04].

[40] Muhammed Salih Guler. A deep dive into Flutter’s accessibility widgets, 2019. URL:
https://medium.com/flutter-community/a-deep-dive-into-flutters-
accessibility-widgets-eb0ef9455bc [cited 2021-01-29].

[41] Jerry Hildenbrand. What is Google TalkBack?, 2014. URL: https://
www.androidcentral.com/what-google-talk-back [cited 2021-01-12].

[42] Robert T Hughes. Project Management Software. In Robert A Meyers, editor, Ency-
clopedia of Physical Science and Technology (Third Edition), pages 139–153. Academic
Press, New York, third edition edition, 2003. URL: http://www.sciencedirect.com/
science/article/pii/B0122274105008528 [cited 2021-01-12], doi:https://
doi.org/10.1016/B0-12-227410-5/00852-8.

http://www.sciencedirect.com/science/article/pii/B9780081026946000097
http://www.sciencedirect.com/science/article/pii/B9780081026946000097
https://doi.org/https://doi.org/10.1016/B978-0-08-102694-6.00009-7
https://doi.org/https://doi.org/10.1016/B978-0-08-102694-6.00009-7
https://www.gartner.com/en/information-technology/glossary/sdk-software-development-kit
https://www.gartner.com/en/information-technology/glossary/sdk-software-development-kit
https://github.com/
https://developer.android.com/studio
https://developer.android.com/guide/topics/ui/accessibility/testing
https://developer.android.com/guide/topics/ui/accessibility/testing
https://developer.android.com/training/data-storage
https://developer.android.com/training/data-storage
https://firebase.google.com/docs/guides
https://developer.android.com/reference/android/os/Handler
https://developer.android.com/reference/android/os/Handler
https://developer.android.com/reference/java/util/Locale
https://developer.android.com/reference/java/util/Locale
https://material.io/design/introduction
https://material.io/design/introduction
https://flutter.dev/docs/get-started/flutter-for/android-devs
https://flutter.dev/docs/get-started/flutter-for/android-devs
https://github.com/gotev/android-speech
https://medium.com/flutter-community/a-deep-dive-into-flutters-accessibility-widgets-eb0ef9455bc
https://medium.com/flutter-community/a-deep-dive-into-flutters-accessibility-widgets-eb0ef9455bc
https://www.androidcentral.com/what-google-talk-back
https://www.androidcentral.com/what-google-talk-back
http://www.sciencedirect.com/science/article/pii/B0122274105008528
http://www.sciencedirect.com/science/article/pii/B0122274105008528
https://doi.org/https://doi.org/10.1016/B0-12-227410-5/00852-8
https://doi.org/https://doi.org/10.1016/B0-12-227410-5/00852-8

136 REFERENCES

[43] Kyle Jablonski. Android Notifications Tutorial: Getting Started, 2019. URL:
https://www.raywenderlich.com/1214490-android-notifications-
tutorial-getting-started [cited 2021-06-04].

[44] Alejandro Jaimes and Nicu Sebe. Multimodal human–computer interaction: A survey.
Computer Vision and Image Understanding, 108(1):116–134, 2007. URL: https:
//www.sciencedirect.com/science/article/pii/S1077314206002335,
doi:https://doi.org/10.1016/j.cviu.2006.10.019.

[45] JetBrains. Kotlin Programming Language, 2018. URL: https://kotlinlang.org/
docs/faq.html [cited 2021-06-04].

[46] Simeon Keates, P Clarkson, and Peter Robinson. Developing a practical inclusive interface
design approach. Interacting with Computers, 14:271–299, 2002. doi:10.1016/S0953-
5438(01)00054-6.

[47] Ben Kitpitak. Reasons to use Android single activity architecture with navigation component,
2020. URL: https://oozou.com/blog/reasons-to-use-android-single-
activity-architecture-with-navigation-component-36 [cited 2021-06-04].

[48] Mike Korn, Peter, Loïc Martínez Normand Pluke, Andi Snow-Weaver, and Gregg Vander-
heiden. Guidance on Applying WCAG 2.0 to Non-Web Information and Communications
Technologies (WCAG2ICT), 2013. URL: https://www.w3.org/TR/wcag2ict/ [cited
2021-01-09].

[49] P Kraft and Jorgen P Bansler. The Collective Resource Approach: the Scandinavian Experi-
ence. Scand. J. Inf. Syst., 6:4, 1994.

[50] DON & MELBA RUGG ASSISTIVE TECHNOLOGY LAB. Assistive Technology,
2021. URL: https://craighospital.org/services/assistive-technology
[cited 2021-01-27].

[51] Ovidiu Latcu. Android Repository Pattern using RX Room. URL: https:
//medium.com/corebuild-software/android-repository-pattern-
using-rx-room-bac6c65d7385 [cited 2021-06-04].

[52] Roman Leventov. Single Responsibility Principle. URL: https://reflectoring.io/
single-responsibility-principle/ [cited 2021-06-04].

[53] Lawrence Lewandowski, Whitney Wood, and Laura A. Miller. Chapter 3 - technological
applications for individuals with learning disabilities and adhd. In James K. Luiselli and
Aaron J. Fischer, editors, Computer-Assisted and Web-Based Innovations in Psychology, Spe-
cial Education, and Health, pages 61–93. Academic Press, San Diego, 2016. URL: https:
//www.sciencedirect.com/science/article/pii/B9780128020753000036,
doi:https://doi.org/10.1016/B978-0-12-802075-3.00003-6.

[54] William. Lidwell, Kritina. Holden, and Jill. Butler. Universal principles of design. 2003.
doi:https://doi.org/10.1075/idj.14.2.11byr.

[55] Johannes Link. The Role of Unit Tests in the Software Process. In Jo-
hannes Link, editor, Unit Testing in Java, The Morgan Kaufmann Series in
Software Engineering and Programming, page iv. Morgan Kaufmann, San Fran-
cisco, 2003. URL: http://www.sciencedirect.com/science/article/pii/

https://www.raywenderlich.com/1214490-android-notifications-tutorial-getting-started
https://www.raywenderlich.com/1214490-android-notifications-tutorial-getting-started
https://www.sciencedirect.com/science/article/pii/S1077314206002335
https://www.sciencedirect.com/science/article/pii/S1077314206002335
https://doi.org/https://doi.org/10.1016/j.cviu.2006.10.019
https://kotlinlang.org/docs/faq.html
https://kotlinlang.org/docs/faq.html
https://doi.org/10.1016/S0953-5438(01)00054-6
https://doi.org/10.1016/S0953-5438(01)00054-6
https://oozou.com/blog/reasons-to-use-android-single-activity-architecture-with-navigation-component-36
https://oozou.com/blog/reasons-to-use-android-single-activity-architecture-with-navigation-component-36
https://www.w3.org/TR/wcag2ict/
https://craighospital.org/services/assistive-technology
https://medium.com/corebuild-software/android-repository-pattern-using-rx-room-bac6c65d7385
https://medium.com/corebuild-software/android-repository-pattern-using-rx-room-bac6c65d7385
https://medium.com/corebuild-software/android-repository-pattern-using-rx-room-bac6c65d7385
https://reflectoring.io/single-responsibility-principle/
https://reflectoring.io/single-responsibility-principle/
https://www.sciencedirect.com/science/article/pii/B9780128020753000036
https://www.sciencedirect.com/science/article/pii/B9780128020753000036
https://doi.org/https://doi.org/10.1016/B978-0-12-802075-3.00003-6
https://doi.org/https://doi.org/10.1075/idj.14.2.11byr
http://www.sciencedirect.com/science/article/pii/B9781558608689500249
http://www.sciencedirect.com/science/article/pii/B9781558608689500249

REFERENCES 137

B9781558608689500249 [cited 2021-01-29], doi:https://doi.org/10.1016/
B978-1-55860-868-9.50024-9.

[56] Brian Marick. Exploration Through Example. URL: http://www.exampler.com/old-
blog/2003/08/22/#agile-testing-project-2 [cited 2021-06-04].

[57] Robert C. Martin. Dependency Inversion Principle.

[58] Robert C. Martin. Interface Segregation Principle. URL: https://web.archive.org/
web/20150905081110/http://www.objectmentor.com/resources/
articles/isp.pdf [cited 2021-06-04].

[59] Robert C. Martin. Liskov Substitution Principle. URL: https://web.archive.org/
web/20150905081111/http://www.objectmentor.com/resources/
articles/lsp.pdf [cited 2021-06-04].

[60] Robert C. Martin. Open-closed principle. URL: https://web.archive.org/web/
20150905081105/http://www.objectmentor.com/resources/articles/
ocp.pdf [cited 2021-06-04].

[61] Robert C. Martin. Agile Software Development, Principles, Patterns, and Practices. Prentice
Hall, 2003.

[62] Steve McConnell. Code Complete: A Practical Handbook of Software Construction. 2004.

[63] Alexander Mertens, Christopher Brandl, Talya Miron-Shatz, Christopher Schlick, Till Neu-
mann, Andreas Kribben, Sven Meister, Clarissa Jonas Diamantidis, Urs-Vito Albrecht,
Peter Horn, and Stefan Becker. A mobile application improves therapy-adherence rates
in elderly patients undergoing rehabilitation: A crossover design study comparing docu-
mentation via iPad with paper-based control. Medicine, 95(36):e4446, sep 2016. doi:
10.1097/MD.0000000000004446.

[64] Felix Mohammadi Kho’i and Jawed Jahid. Comparing Native and Hybrid Applications
with focus on Features. 2016. URL: https://www.diva-portal.org/smash/get/
diva2:944058/FULLTEXT02 [cited 2021-01-21].

[65] React Native. Accessibility - React Native, 2020. URL: https://reactnative.dev/
docs/accessibility{#}accessibility-properties [cited 2021-01-29].

[66] Donald A Norman and Stephen W Draper. User Centered System Design; New Perspectives
on Human-Computer Interaction. L. Erlbaum Associates Inc., USA, 1986. doi:10.1201/
b15703.

[67] Z Obrenovic, Julio Abascal, and Dusan Starcevic. Universal accessibility as a multimodal
design issue. Commun. ACM, 50:83–88, 2007. doi:10.1145/1230819.1241668.

[68] Tom Occhino. React Native: Bringing modern web techniques to mobile,
2015. URL: https://engineering.fb.com/2015/03/26/android/react-
native-bringing-modern-web-techniques-to-mobile/ [cited 2021-01-12].

[69] HARI Lab University of Pittsburgh. iMHere 2.0 App. URL: https://
imhere.pitt.edu/ [cited 2021-01-21].

http://www.sciencedirect.com/science/article/pii/B9781558608689500249
http://www.sciencedirect.com/science/article/pii/B9781558608689500249
https://doi.org/https://doi.org/10.1016/B978-1-55860-868-9.50024-9
https://doi.org/https://doi.org/10.1016/B978-1-55860-868-9.50024-9
http://www.exampler.com/old-blog/2003/08/22/#agile-testing-project-2
http://www.exampler.com/old-blog/2003/08/22/#agile-testing-project-2
https://web.archive.org/web/20150905081110/http://www.objectmentor.com/resources/articles/isp.pdf
https://web.archive.org/web/20150905081110/http://www.objectmentor.com/resources/articles/isp.pdf
https://web.archive.org/web/20150905081110/http://www.objectmentor.com/resources/articles/isp.pdf
https://web.archive.org/web/20150905081111/http://www.objectmentor.com/resources/articles/lsp.pdf
https://web.archive.org/web/20150905081111/http://www.objectmentor.com/resources/articles/lsp.pdf
https://web.archive.org/web/20150905081111/http://www.objectmentor.com/resources/articles/lsp.pdf
https://web.archive.org/web/20150905081105/http://www.objectmentor.com/resources/articles/ocp.pdf
https://web.archive.org/web/20150905081105/http://www.objectmentor.com/resources/articles/ocp.pdf
https://web.archive.org/web/20150905081105/http://www.objectmentor.com/resources/articles/ocp.pdf
https://doi.org/10.1097/MD.0000000000004446
https://doi.org/10.1097/MD.0000000000004446
https://www.diva-portal.org/smash/get/diva2:944058/FULLTEXT02
https://www.diva-portal.org/smash/get/diva2:944058/FULLTEXT02
https://reactnative.dev/docs/accessibility{#}accessibility-properties
https://reactnative.dev/docs/accessibility{#}accessibility-properties
https://doi.org/10.1201/b15703
https://doi.org/10.1201/b15703
https://doi.org/10.1145/1230819.1241668
https://engineering.fb.com/2015/03/26/android/react-native-bringing-modern-web-techniques-to-mobile/
https://engineering.fb.com/2015/03/26/android/react-native-bringing-modern-web-techniques-to-mobile/
https://imhere.pitt.edu/
https://imhere.pitt.edu/

138 REFERENCES

[70] Oracle. Java - Language Environment. URL: https://www.oracle.com/java/
technologies/language-environment.html [cited 2021-06-04].

[71] World Health Organization. What do we mean by self-care? URL: https:
//www.who.int/reproductivehealth/self-care-interventions/
definitions/en/ [cited 2021-01-09].

[72] Page Laubheimer. Cards: UI-Component Definition, 2016. URL: https://
www.nngroup.com/articles/cards-component/ [cited 2021-01-25].

[73] Anastasia Panfilova, Carolina Vaz-pires, and Darth Silveira. Creating a Mobile Application
for people with brain injuries. Technical report, 2020.

[74] Aymeric Parant, Sandrine Schiano-Lomoriello, and Francis Marchan. How would I live with
a disability? Expectations of bio-psychosocial consequences and assistive technology use.
Disability and Rehabilitation: Assistive Technology, 12(7):681–685, 2017. doi:10.1080/
17483107.2016.1218555.

[75] Troy Patrick. The Relationship Between Android and Java. URL: https://
theiconic.tech/android-java-fdbd55aadc51 [cited 2021-06-04].

[76] John Smith Paul Stovell. Model-View-ViewModel (MVVM). URL: https://
groups.google.com/g/wpf-disciples/c/P-JwzRB_GE8?pli=1.

[77] Joe Petrakovich. Why should you use the repository pattern? URL: https:
//makingloops.com/why-should-you-use-the-repository-pattern/ [cited
2021-06-04].

[78] Phabricator. Arcanist User Guide: Lint. URL: https://secure.phabricator.com/
book/phabricator/article/arcanist_lint/ [cited 2021-06-04].

[79] Presidência do Conselho de Ministros. RCM n.º 97/99, 1999. URL: https://dre.pt/
application/conteudo/428656 [cited 2021-01-09].

[80] Presidência do Conselho de Ministros. Decreto-Lei n.º 83/2018, 2018. URL: https://
dre.pt/application/file/a/116734886 [cited 2021-01-09].

[81] Progress. What is NativeScript?, 2020. URL: https://nativescript.org/faq/
what-is-nativescript/ [cited 2021-01-21].

[82] Leah Reeves, Jennifer Lai, James Larson, Sharon Oviatt, T Balaji, Stéphanie Buisine, Penny
Collings, Philip Cohen, Ben Kraal, Jean-Claude Martin, Michael Mctear, T Raman, Kay
Stanney, Hui Su, and Qian Wang. Guidelines for multimodal user interface design. Commun.
ACM, 47:57–59, 2004. doi:10.1145/962081.962106.

[83] Stanley Shyiko. ktlint. URL: https://github.com/pinterest/ktlint [cited 2021-
06-04].

[84] Juan M. Silva, Alain Mouttham, and Abdulmotaleb El Saddik. Ubimeds: A mobile appli-
cation to improve accessibility and support medication adherence. In Proceedings of the 1st
ACM SIGMM International Workshop on Media Studies and Implementations That Help Im-
proving Access to Disabled Users, MSIADU ’09, page 71–78, New York, NY, USA, 2009.
Association for Computing Machinery. doi:10.1145/1631097.1631109.

https://www.oracle.com/java/technologies/language-environment.html
https://www.oracle.com/java/technologies/language-environment.html
https://www.who.int/reproductivehealth/self-care-interventions/definitions/en/
https://www.who.int/reproductivehealth/self-care-interventions/definitions/en/
https://www.who.int/reproductivehealth/self-care-interventions/definitions/en/
https://www.nngroup.com/articles/cards-component/
https://www.nngroup.com/articles/cards-component/
https://doi.org/10.1080/17483107.2016.1218555
https://doi.org/10.1080/17483107.2016.1218555
https://theiconic.tech/android-java-fdbd55aadc51
https://theiconic.tech/android-java-fdbd55aadc51
https://groups.google.com/g/wpf-disciples/c/P-JwzRB_GE8?pli=1
https://groups.google.com/g/wpf-disciples/c/P-JwzRB_GE8?pli=1
https://makingloops.com/why-should-you-use-the-repository-pattern/
https://makingloops.com/why-should-you-use-the-repository-pattern/
https://secure.phabricator.com/book/phabricator/article/arcanist_lint/
https://secure.phabricator.com/book/phabricator/article/arcanist_lint/
https://dre.pt/application/conteudo/428656
https://dre.pt/application/conteudo/428656
https://dre.pt/application/file/a/116734886
https://dre.pt/application/file/a/116734886
https://nativescript.org/faq/what-is-nativescript/
https://nativescript.org/faq/what-is-nativescript/
https://doi.org/10.1145/962081.962106
https://github.com/pinterest/ktlint
https://doi.org/10.1145/1631097.1631109

REFERENCES 139

[85] Timothy Stephen Springer. European Union Accessibility Requirements. URL: https:
//www.levelaccess.com/european-union-accessibility-requirements/
[cited 2021-01-12].

[86] Tom McFarlin. Repository Pattern Benefits. URL: https://tommcfarlin.com/
repository-pattern-benefits [cited 2021-06-04].

[87] Jakob Trischler, Simon Pervan, Stephen Kelly, and Don Scott. The Value of Codesign: The
Effect of Customer Involvement in Service Design Teams. Journal of Service Research,
21:75–100, 2018. doi:10.1177/1094670517714060.

[88] Bill Venners. Inside Java virtual machine. URL: https://www.artima.com/
insidejvm/ed2/index.html [cited 2021-06-04].

[89] W3. Web Content Accessibility Guidelines (WCAG) Overview. URL: https://
www.w3.org/WAI/standards-guidelines/wcag/ [cited 2021-01-12].

[90] W3C. Mobile Accessibility at W3C. URL: https://www.w3.org/WAI/standards-
guidelines/mobile/ [cited 2021-01-21].

[91] W3C. W3C MISSION. URL: https://www.w3.org/Consortium/mission [cited
2021-01-12].

[92] W3C. WCAG 2.1 at a Glance, 2018. URL: https://www.w3.org/WAI/standards-
guidelines/wcag/glance/ [cited 2021-06-04].

[93] W3Schools. Java Encapsulation. URL: https://www.w3schools.com/java/
java_encapsulation.asp [cited 2021-06-04].

[94] W3Schools. JSON - Introduction, 2018. URL: https://www.w3schools.com/js/
js_json_intro.asp [cited 2021-06-04].

[95] Wunder. Physical Pointers. URL: https://wunder.io/wunderpedia/
accessibility/digital-assistive-technologies/physical-pointers/
[cited 2021-01-14].

[96] D. Yu, B. Parmanto, V. Watzlaf, B. Dicianno, and K. Seelman. Accessibility needs and chal-
lenges of a mHealth system for patients with dexterity impairments. Disability and Rehabil-
itation: Assistive Technology, 12(1), 2017. doi:10.3109/17483107.2015.1063171.

https://www.levelaccess.com/european-union-accessibility-requirements/
https://www.levelaccess.com/european-union-accessibility-requirements/
https://tommcfarlin.com/repository-pattern-benefits
https://tommcfarlin.com/repository-pattern-benefits
https://doi.org/10.1177/1094670517714060
https://www.artima.com/insidejvm/ed2/index.html
https://www.artima.com/insidejvm/ed2/index.html
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/mobile/
https://www.w3.org/WAI/standards-guidelines/mobile/
https://www.w3.org/Consortium/mission
https://www.w3.org/WAI/standards-guidelines/wcag/glance/
https://www.w3.org/WAI/standards-guidelines/wcag/glance/
https://www.w3schools.com/java/java_encapsulation.asp
https://www.w3schools.com/java/java_encapsulation.asp
https://www.w3schools.com/js/js_json_intro.asp
https://www.w3schools.com/js/js_json_intro.asp
https://wunder.io/wunderpedia/accessibility/digital-assistive-technologies/physical-pointers/
https://wunder.io/wunderpedia/accessibility/digital-assistive-technologies/physical-pointers/
https://doi.org/10.3109/17483107.2015.1063171

140 REFERENCES

Appendix A

Code Fragments

A.1 Notifications

1

2 /**

3 * NotificationsManager.kt

4

5 Creates a high-priority notification channel which is used by all of the

notifications. Setting the notification as high-priority instructs Android to

grab the user’s attention using not only visual cues, but also sound signals

if possible.

6 */

7 fun createNewNotificationChannel(context: Context, importance: Int, showBadge:

Boolean, name: String, description: String) {

8 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {

9 val channelId = "${context.packageName}-$name"

10 val channel = NotificationChannel(channelId, name, importance)

11 channel.description = description

12 channel.setShowBadge(showBadge)

13

14 val notificationManager = context.getSystemService(NotificationManager

::class.java)

15 notificationManager.createNotificationChannel(channel)

16 }

17 }

141

142 Code Fragments

1 /**

2 * NotificationsManager.kt

3

4 Creates a notification associated with a meal selection event.

5 */

6 fun createNewMealNotification(

7 context: Context, title: String,

8 message:

9 String,

10 autoCancel: Boolean,

11){

12 val channelId = "${context.packageName}-${context.getString(R.string.

app_name)}"

13

14 val notificationBuilder = NotificationCompat.Builder(context, channelId).

apply {

15 setSmallIcon(R.drawable.ic_notification_meal)

16 setContentTitle(title)

17 setContentText(message)

18 priority = NotificationCompat.PRIORITY_HIGH

19 setAutoCancel(autoCancel)

20

21 val intent = Intent(context, MainActivity::class.java)

22 intent.putExtra("id", "meal")

23 intent.flags = Intent.FLAG_ACTIVITY_NEW_TASK or Intent.

FLAG_ACTIVITY_CLEAR_TASK

24

25 val uniqueID = System.currentTimeMillis().toInt()

26 val pendingIntent = PendingIntent.getActivity(context, uniqueID, intent

, 0)

27 setContentIntent(pendingIntent)

28 }

29

30 val notificationManager = NotificationManagerCompat.from(context)

31 notificationManager.notify(1003, notificationBuilder.build())

32

33 }

A.1 Notifications 143

1 /**

2 * MainActivity.kt

3

4 Handles the action that is performed when the user clicks on the notification or

in one of the notification action buttons. In this case, clicking the

notification instructs the MainActivity to replace the existing fragment with

the Meal Selection fragment (if the platform is running), or opens the

platform before if it is not running.

5 */

6 private fun handleMealsReminderNotificationClick() {

7 val current = intent

8 val name = current.getStringExtra("id")

9

10 if (current != null && name == "meal") {

11 val bundle = Bundle()

12 bundle.putBoolean("isLunch", true)

13 val fragment: Fragment = MealsFragment()

14 fragment.arguments = bundle

15 val fragmentManager: FragmentManager = this.supportFragmentManager

16 val fragmentTransaction: FragmentTransaction = fragmentManager.

beginTransaction()

17 fragmentTransaction.replace(R.id.nav_host_fragment, fragment)

18 fragmentManager.popBackStack()

19 fragmentTransaction.addToBackStack(null)

20 fragmentTransaction.commit()

21 }

22 }

1

2 /**

3 * AlarmReceiver.kt

4 Listens to thrown Intents by any class. If the intent is of the notification type,

executes the method defineAlarmTypeAndCreateAlarm which identifies the type

of reminder and associates the an alarm with the reminder.

5 */

6 class AlarmReceiver : BroadcastReceiver() {

7

8 private val TAG = AlarmReceiver::class.java.simpleName

9

10 override fun onReceive(context: Context?, intent: Intent?) {

11 Log.d(TAG, "onReceive() called with: context = [$context], intent = [

$intent]")

12 if (context != null && intent != null) {

13 NotificationsManager.defineAlarmTypeAndCreateAlarm(context,intent) }

14 }

15 }

144 Code Fragments

1

2 /**

3 * AlarmScheduler.kt

4

5 Schedules an alarm associated with a specific reminder, sharing the reminder’s

date, time and frequency.

6 */

7 private fun scheduleAlarm(dayOfWeek: Int, repeats: Boolean, reminder: Reminder,

8 alarmIntent: PendingIntent?, alarmMgr:

AlarmManager) {

9

10

11 // Set up the time to schedule the alarm

12 val datetimeToAlarm = Calendar.getInstance(Locale.getDefault())

13

14 //sets date and hours for alarm depending

15 on the data associated with the reminder

16 datetimeToAlarm.timeInMillis = System.currentTimeMillis()

17 datetimeToAlarm.set(DAY_OF_WEEK, reminder.selectedDay)

18 datetimeToAlarm.set(HOUR_OF_DAY, reminder.hours)

19 datetimeToAlarm.set(MINUTE, reminder.mins)

20 datetimeToAlarm.set(SECOND, 0)

21 datetimeToAlarm.set(MILLISECOND, 0)

22

23 // Compare the datetimeToAlarm to today

24 val today = Calendar.getInstance(Locale.getDefault())

25

26 when(reminder.alarm_freq){

27 AlarmFrequency.TODOS_OS_DIAS -> { alarmMgr.setRepeating(

28 AlarmManager.RTC_WAKEUP,

29 datetimeToAlarm.timeInMillis, (1000 * 60 * 60 * 24 * 7).toLong()

, alarmIntent

30)}

31 AlarmFrequency.HOJE ->

32 alarmMgr.set(AlarmManager.RTC_WAKEUP, datetimeToAlarm.timeInMillis,

alarmIntent);

33 }

34

35

36 }

A.1 Notifications 145

1 /**

2 * BootReceiver.kt

3 Receives the BOOT_COMPLETED action and schedules the alarms after reboot.

4 */

5 class BootReceiver : BroadcastReceiver() {

6

7 override fun onReceive(context: Context?, intent: Intent?) {

8 if (context != null && intent?.action.equals("android.intent.action.

BOOT_COMPLETED")) {

9 // Reschedule every alarm here

10 AlarmScheduler.scheduleAlarmsForAllReminder(context)

11 }

12 }

13 }

146 Code Fragments

A.2 Modality Settings

1

2 private var textToSpeech: TextToSpeech? = null

3 private val handler = Handler(Looper.getMainLooper())

4 private var runnable: Runnable by Delegates.notNull()

5 private val myLocale = Locale("pt_PT", "POR")

1 private fun requestMultiModalitySettings() {

2 val sharedPreferences = getSharedPreferences("MODALITY", Context.MODE_PRIVATE)

3 val editor = sharedPreferences.edit()

4

5 MaterialAlertDialogBuilder(this, android.R.style.Theme_Material_Dialog_Alert)

6 .setTitle("Permitir Sugestoes de Audio")

7 .setMessage("Prima o bot o \"Permitir\" para ativar as sugestoes de

audio.")

8 .setPositiveButton("Permitir") { dialog, which ->

9 editor.putBoolean("TTS", true).apply()

10 }

11 .setNegativeButton("Recusar"){ dialog, which ->

12 editor.putBoolean("TTS", false).apply()

13 }.show()

14

15 MaterialAlertDialogBuilder(this, android.R.style.Theme_Material_Dialog_Alert)

16 .setTitle("Permitir Comandos de Voz")

17 .setMessage("Prima o bot o \"Permitir\" para ativar o reconhecimento

de comandos por voz.")

18 .setPositiveButton("Permitir"){ dialog, which ->

19 editor.putBoolean("SR", true)

20 }

21 .setNegativeButton("Recusar"){ dialog, which ->

22 editor.putBoolean("SR", false)

23 }.show()

24 }

1

2 private fun defineModality(ttsFlag: Boolean, srFlag: Boolean, hasRun: Boolean) {

3

4 if (!hasRun){

5 when{

6 ttsFlag && !srFlag -> { startTTS() }

7 !ttsFlag && srFlag -> { startVoiceRecognition() }

8 ttsFlag && srFlag ->{ multimodalOption() }

9 }

A.2 Modality Settings 147

10 }

11

12 if(hasRun){

13 when{

14 !ttsFlag && srFlag -> { startVoiceRecognition() }

15 ttsFlag && srFlag ->{ startVoiceRecognition() }

16 }

17 }

18

19 }

148 Code Fragments

1

2 private fun multimodalOption() {

3 if (!onResumeFlag) {

4 textToSpeech = TextToSpeech(context) { status ->

5 if (status == TextToSpeech.SUCCESS) {

6 val ttsLang = textToSpeech!!.setLanguage(myLocale)

7 if (ttsLang == TextToSpeech.LANG_MISSING_DATA

8 || ttsLang == TextToSpeech.LANG_NOT_SUPPORTED) {

9 Log.e("TTS", "The Language is not supported!")

10 } else {

11 Log.i("TTS", "Language Supported.")

12 }

13 Log.i("TTS", "Initialization success.")

14

15 val speechListener = object : UtteranceProgressListener() {

16 @Override

17 override fun onStart(p0: String?) {}

18

19 override fun onDone(p0: String?) {

20 if(activity != null && isAdded) {

21 startVoiceRecognition()

22 }

23 }

24

25 override fun onError(p0: String?) {}

26 }

27

28 textToSpeech?.setOnUtteranceProgressListener(speechListener)

29

30 val speechStatus = textToSpeech!!.speak("Selecione um dos

estados", TextToSpeech.QUEUE_FLUSH, null, "ID")

31

32 } else {

33 Toast.makeText(context, "TTS Initialization failed!", Toast.

LENGTH_SHORT).show()

34 }

35 }

36 }

37

38 }

A.3 Text-To-Speech 149

A.3 Text-To-Speech

1

2 private fun startTTS() {

3 textToSpeech = TextToSpeech(context) { status ->

4 if (status == TextToSpeech.SUCCESS) {

5 val ttsLang = textToSpeech!!.setLanguage(myLocale)

6 if (ttsLang == TextToSpeech.LANG_MISSING_DATA

7 || ttsLang == TextToSpeech.LANG_NOT_SUPPORTED) {

8 Log.e("TTS", "Unsupported language!")

9 }

10 val speechStatus = textToSpeech!!.speak("Selecione um estado",

TextToSpeech.QUEUE_FLUSH, null, "ID")

11 } else {

12 Toast.makeText(context, "TTS Initialization failed!", Toast.

LENGTH_SHORT).show() }

13 }

14 }

150 Code Fragments

A.4 Speech Recognition

1 fun startVoiceRecognition(){

2 if(isAdded && isVisible && getUserVisibleHint()) {

3 runnable = Runnable {

4 handler.sendEmptyMessage(0);

5 Speech.init(requireActivity())

6 try {

7 Speech.getInstance().startListening(object : SpeechDelegate {

8 override fun onStartOfSpeech() {}

9 override fun onSpeechRmsChanged(value: Float) {}

10 override fun onSpeechPartialResults(results: List<String>) {

11 val str = StringBuilder()

12 for (res in results) {

13 str.append(res).append(" ")

14 }

15 performActionWithVoiceCommand(results.toString())

16 Log.i("speech", "partial result: " + str.toString().trim { it <= ’

’ })

17 }

18

19 override fun onSpeechResult(result: String) {

20 Log.d(TAG, "onSpeechResult: " + result.toLowerCase())

21 val handler = Handler()

22 if (activity != null && isAdded) {

23 handler.postDelayed({

24 try {

25 if(isAdded && isVisible && getUserVisibleHint()) {

26 Speech.init(requireActivity())

27 Speech.getInstance().startListening(this)

28 }

29 } catch (speechRecognitionNotAvailable:

SpeechRecognitionNotAvailable) {

30 speechRecognitionNotAvailable.printStackTrace()

31 } catch (e: GoogleVoiceTypingDisabledException) {

32 e.printStackTrace()

33 }

34 }, 100)}

35 }})} catch (exc: SpeechRecognitionNotAvailable) {

36 Log.e("speech", "Speech recognition is not available on this device

!")

37 } catch (exc: GoogleVoiceTypingDisabledException) {

38 Log.e("speech", "Google voice typing must be enabled!")

39 }

40 }

41 handler.post(runnable) }

42 }

A.4 Speech Recognition 151

1 Speech.init(this)

2

3 try {

4 Speech.getInstance().startListening(new SpeechDelegate() {

5 //Allows an action to be performed when the recognition starts

6 fun onStartOfSpeech() {}

7

8 //Updates the string with the user commands as they are uttered

9 fun onSpeechPartialResults(List<String> results) {

10 StringBuilder str = new StringBuilder();

11 for (String res : results) {str.append(res).append(" "); }}

12

13 //Receives string with commands and executes an action to ti

14 fun onSpeechResult(String result) {}});

15

16 } catch (SpeechRecognitionNotAvailable exc) {

17 Log.e("speech", "Speech recognition is not available on this device!");

18 // Redirects user to the Google App page on Play Store

19 SpeechUtil.redirectUserToGoogleAppOnPlayStore(this);

20 } catch (GoogleVoiceTypingDisabledException exc) {

21 Log.e("speech", "Google voice typing must be enabled!");

22 }

1 fun performActionWithVoiceCommand(command: String) {

2 when {

3 command.contains("Relaxado", true) -> button_mood_relaxed.performClick()

4 command.contains("Feliz", true) -> button_mood_happy.performClick()

5 command.contains("Com Sono", true) -> button_mood_sleepy.performClick()

6 command.contains("Confiante", true) -> button_mood_confident.performClick()

7 command.contains("Querido", true) -> button_mood_loved.performClick()

8 command.contains("Mente Sa", true) -> button_mood_mindful.performClick()

9 }

10 }

1 override fun onDestroy() {

2 super.onDestroy ();

3 handler.removeCallbacksAndMessages(null)

4

5 if(handler.hasMessages(0)) handler.removeCallbacks(runnable)

6

7 if (textToSpeech != null) {

8 textToSpeech!!.stop()

9 textToSpeech!!.shutdown() }

10 }

152 Code Fragments

A.5 Recycler View Item Binding

1 when(timeLineModel.type){

2 EventType.ACTIVITY -> {

3 holder.itemView.card_background_image.setBackgroundResource(R.drawable.

crpg_background)

4 holder.itemView.card_center_icon.setBackgroundResource(R.drawable.maos)

5 holder.itemView.text_timeline_title.text = "ACTIVIDADE"

6 holder.itemView.text_timeline_info.text = timeLineModel.info.toUpperCase()

7 }

8 EventType.MEAL -> {

9 holder.itemView.card_background_image.setBackgroundResource(R.drawable.

background_dieta)

10 holder.itemView.card_center_icon.setBackgroundResource(R.drawable.meal_icon

)

11

12 when (timeLineModel.title) {

13 "ALMO O" -> if (timeLineModel.chosen_meal.isNullOrBlank()) {

14 holder.itemView.text_timeline_info.text = "CLIQUE AQUI PARA

SELECIONAR ALMO O"

15 } else {

16 holder.itemView.text_timeline_info.text = timeLineModel.chosen_meal

17 }

18

19 "JANTAR" -> if (timeLineModel.chosen_meal.isNullOrBlank()) {

20 holder.itemView.text_timeline_info.text = "CLIQUE AQUI PARA

SELECIONAR JANTAR"

21 } else {

22 holder.itemView.text_timeline_info.text = timeLineModel.chosen_meal

23 }

24

25 }

26

27 }

28 EventType.TRANSPORTS -> {

29 holder.itemView.text_timeline_info.text = "CLIQUE AQUI PARA MAIS

INFORMA ES"

30 holder.itemView.card_background_image.setBackgroundResource(R.drawable.

stcp_background)

31 holder.itemView.card_center_icon.setBackgroundResource(R.drawable.bus_icon)

32 }

33 }

A.5 Recycler View Item Binding 153

1

2 if (listData[position].tipo == NoteType.VOICE) {

3 val uri: Uri = Uri.parse(listData[position].voiceNotePath)

4 val player = SimpleExoPlayer.Builder(ctx).build()

5 holder.itemView.note_item_player_view.player = player

6 val mediaItem: MediaItem = MediaItem.fromUri(uri)

7 player.setMediaItem(mediaItem)

8 }

9

10

11 holder.itemView.note_delete_icon.setOnClickListener{

12 listData.removeAt(holder.adapterPosition)

13 removedPosition = holder.adapterPosition

14 notifyDataSetChanged()

15 onChange(listData)

16 }

17

18 holder.itemView.note_card_main.setOnClickListener {

19 if (listData[position].tipo == NoteType.TEXT) {

20 MaterialAlertDialogBuilder(ctx, android.R.style.

Theme_Material_Dialog_Alert)

21 .setTitle(listData[position].titulo)

22 .setMessage(listData[position].info)

23 .setNegativeButton("Fechar") { dialog, which -> }.show()

24 }

25 }

154 Code Fragments

A.6 Interaction with Firebase API

1

2 fun writeNewMealWithTaskListeners(data: String, carne: String, peixe: String, dieta

: String, vegetariano: String) {

3

4 val meal = Meal(data,carne,peixe,dieta,vegetariano)

5

6 database.child("data").child(data).child("meal").setValue(meal)

7 .addOnSuccessListener {

8 println("Write was successful!")

9 }

10 .addOnFailureListener {

11 println("Error during write to DB :(")

12 }

13

14 }

1

2 fun addPostEventListener() {

3

4 val postListener = object : ValueEventListener {

5 override fun onDataChange(dataSnapshot: DataSnapshot) {

6 // Get Post object and use the values to update the UI

7 val post = dataSnapshot.getValue<Meal>()

8 }

9

10 override fun onCancelled(databaseError: DatabaseError) {

11 // Getting Post failed, log a message

12 Log.w(TAG, "loadPost:onCancelled", databaseError.toException())

13 }

14 }

15 database.addValueEventListener(postListener)

16 }

A.6 Interaction with Firebase API 155

1 fun getMealFromSpecificDate(data: String,snapshot: DataSnapshot){

2

3 database.child("meals").child(data).get().then(function(snapshot) {

4 if (snapshot.exists()) {

5 console.log(snapshot.val());

6 }

7 else {

8 console.log("No data available");

9 }

10 }).catch(function(error) {

11 console.error(error);

12 });

13

14 }

156 Code Fragments

A.7 Event Data Class

1 data class Event(

2 var title: String,

3 var info: String,

4 var type: EventType,

5 var start_time: String,

6 var end_time: String,

7 var date: String,

8 var notes: String,

9 var chosen_meal: String,

10 var isLunch: Boolean,

11 var meal_int: Int

12){

13 override fun toString(): String {

14 return "EVENT: title: ${this.title}, info: ${this.info},

15 type: ${this.type},start_time:${this.start_time},end_time:${this.end_time},

16 date: ${this.date}, chosen_meal: ${this.chosen_meal},

17 isLunch: ${this.isLunch}, meal_Int: ${this.meal_int} \\n"

18 }

19 }

20

21 enum class EventType {

22 @SerializedName("ACTIVITY")

23 ACTIVITY,

24 @SerializedName("MEAL")

25 MEAL,

26 @SerializedName("TRANSPORT")

27 TRANSPORTS

28 }

Appendix B

Usability Tests Results

B.1 Test Case #1

Table B.1: Test Case #1 (touchpad modality).

Participant # Task time (min:ss.cs) Deviations Errors Assists

P1 00:12.58 0 0 0

P2 00:35.99 0 0 0

P3 00:16.28 0 0 0

P4 00:10.51 0 0 0

P5 00:20.13 0 0 0

Table B.2: Test Case #1 (voice commands modality).

Participant # Task time (min:ss.cs) Deviations Errors Assists

P1 01:44.64 3 0 1

P2 00:39.49 1 0 1

P3 00:51.50 0 0 1

P4 00:14.10 0 0 0

P5 00:15.70 0 0 0

157

158 Usability Tests Results

B.2 Test Case #2

Table B.3: Test Case #2 (touchpad modality).

Participant # Task time (min:ss.cs) Deviations Errors Assists

P1 01:22.31 2 1 1

P2 02:26.76 2 0 2

P3 01:12.85 0 0 2

P4 00:38.45 0 0 1

P5 00:54.80 0 0 1

Table B.4: Test Case #2 (voice commands modality).

Participant # Task time (min:ss.cs) Deviations Errors Assists

P1 02:10.78 1 0 3

P2 00:48.50 1 0 1

P3 00:47.50 0 0 1

P4 01:04.05 0 0 1

P5 00:40.06 0 0 1

B.3 Test Case #3 159

B.3 Test Case #3

Table B.5: Test Case #3 (touchpad modality).

Participant # Task time (min:ss.cs) Deviations Errors Assists

P1 00:20.50 0 0 0

P2 00:34.48 0 0 0

P3 00:31.85 0 0 0

P4 00:09.06 0 0 0

P5 00:13.56 0 0 0

Table B.6: Test Case #3 (voice commands modality).

Participant # Task time (min:ss.cs) Deviations Errors Assists

P1 00:36.90 1 0 0

P2 00:39.06 0 0 0

P3 00:35.42 0 0 0

P4 00:12.72 0 0 0

P5 00:18.62 0 0 0

160 Usability Tests Results

B.4 Test Case #4

Table B.7: Test Case #4 (touchpad modality).

Participant # Task time (min:ss.cs) Deviations Errors Assists

P1 00:42.68 1 0 0

P2 01:39.42 0 0 1

P3 00:09.89 0 0 0

P4 00:07.24 0 0 0

P5 00:07.38 0 0 0

Table B.8: Test Case #4 (voice commands modality).

Participant # Task time (min:ss.cs) Deviations Errors Assists

P1 00:32.66 1 0 0

P2 00:36.32 0 0 0

P3 00:09.89 0 0 0

P4 00:11.28 0 0 0

P5 00:10.93 0 0 0

B.5 Test Case #5 161

B.5 Test Case #5

Table B.9: Test Case #5 (touchpad modality).

Participant # Task time (min:ss.cs) Deviations Errors Assists

P1 01:11.75 2 0 1

P2 02:23.07 1 1 1

P3 01:03.60 0 0 1

P4 00:14.83 0 0 0

P5 00:32.79 0 0 0

Table B.10: Test Case #5 (voice commands modality).

Participant # Task time (min:ss.cs) Deviations Errors Assists

P1 01:40.50 1 0 2

P2 02:00.76 0 0 2

P3 01:23.37 0 0 2

P4 00:47.67 0 0 1

P5 00:48.95 0 0 0

162 Usability Tests Results

B.6 Test Case #6

Table B.11: Test Case #6 (touchpad modality).

Participant # Task time (min:ss.cs) Deviations Errors Assists

P1 01:37.43 0 0 1

P2 02:00.67 0 0 1

P3 00:55.12 0 0 1

P4 00:34.53 0 0 1

P5 00:55.08 0 0 0

Table B.12: Test Case #6 (voice commands modality).

Participant # Task time (min:ss.cs) Deviations Errors Assists

P1 02:51.12 1 0 3

P2 01:37.96 0 0 2

P3 01:25.23 0 0 2

P4 01:05.50 0 0 1

P5 01:16.25 0 0 1

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Questions, Goals and Challenges
	1.3 Expected Results
	1.4 Document Structure

	2 State of the Art
	2.1 Previously developed work
	2.1.1 Requirements
	2.1.2 Workflow and wireflow definition
	2.1.3 High-fidelity prototype
	2.1.4 User feedback and proposed improvements
	2.1.5 Discussion

	2.2 Related Work - Health Management Platforms
	2.2.1 iMHere (interactive Mobile Health and Rehabilitation)
	2.2.2 Medication Plan
	2.2.3 UbiMeds
	2.2.4 Discussion

	2.3 Design guidelines for multimodal applications
	2.3.1 Discussion

	2.4 Methodologies and approaches to Software Development
	2.4.1 Agile Methodology
	2.4.2 Waterfall Approach
	2.4.3 Incremental Approach
	2.4.4 SOLID Principles
	2.4.5 Discussion

	2.5 Inclusive Design Methods
	2.5.1 Participatory Design
	2.5.2 User-Centered Design
	2.5.3 Universal Design
	2.5.4 Inclusive Design Cube
	2.5.5 Discussion

	2.6 Summary

	3 Technologies
	3.1 Accessibility standards and guidelines
	3.2 Frameworks/Programming Languages
	3.2.1 Overview
	3.2.2 React Native
	3.2.3 Flutter
	3.2.4 NativeScript
	3.2.5 Ionic
	3.2.6 Java
	3.2.7 Kotlin
	3.2.8 Frameworks/Programming Languages Comparison

	3.3 Assistive Technologies
	3.3.1 Prosthesis and physical mechanisms
	3.3.2 Screen Readers

	3.4 Summary

	4 Proposed Solution
	4.1 Platform Overview
	4.1.1 Use Cases

	4.2 Requirements
	4.2.1 Functional Requirements
	4.2.2 Non-functional Requirements
	4.2.3 Technical Requirements Update

	4.3 Software Architecture
	4.4 Methodology and Work Plan
	4.4.1 Deliverables description

	4.5 Assistive Technologies Use Survey
	4.6 Summary

	5 Implementation
	5.1 Technologies and Development Tools
	5.1.1 Firebase
	5.1.2 Material Design
	5.1.3 JSON/GSON
	5.1.4 Ktlint
	5.1.5 Google Voice Search
	5.1.6 Testing related dependencies
	5.1.7 Other tools

	5.2 Restrictions to Development
	5.2.1 Software Compatibility
	5.2.2 Data Storage and Security

	5.3 First Prototype Overview
	5.3.1 Login
	5.3.2 Date Selection
	5.3.3 Agenda
	5.3.4 Create Reminder
	5.3.5 Transports
	5.3.6 Meal Selection
	5.3.7 Meditation
	5.3.8 Consult/Create Note

	5.4 Second Prototype Overview
	5.4.1 Speech Recognition/Voice Commands
	5.4.2 Audio Hints
	5.4.3 Talkback
	5.4.4 Contextual Notifications

	5.5 Project Code and Structure Documentation
	5.5.1 Architectural Patterns
	5.5.2 File Structure and Description
	5.5.3 First Prototype
	5.5.4 Second prototype
	5.5.5 Final deliverable

	5.6 Summary

	6 System Testing and Validation
	6.1 User tests: First prototype
	6.1.1 Procedures
	6.1.2 Results

	6.2 User tests: Second prototype
	6.2.1 Procedures
	6.2.2 Results

	6.3 Functional and Non-Functional Testing
	6.3.1 Accessibility Testing
	6.3.2 Compatibility Testing
	6.3.3 Performance Testing
	6.3.4 Recoverability Testing
	6.3.5 Functionality Testing
	6.3.6 Ad-hoc Testing
	6.3.7 Graphical User Interface Testing
	6.3.8 Exception Handling Testing Testing

	6.4 Conclusions

	7 Conclusions
	7.1 Findings
	7.2 Limitations
	7.3 Future Work

	References
	A Code Fragments
	A.1 Notifications
	A.2 Modality Settings
	A.3 Text-To-Speech
	A.4 Speech Recognition
	A.5 Recycler View Item Binding
	A.6 Interaction with Firebase API
	A.7 Event Data Class

	B Usability Tests Results
	B.1 Test Case #1
	B.2 Test Case #2
	B.3 Test Case #3
	B.4 Test Case #4
	B.5 Test Case #5
	B.6 Test Case #6

