
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Automated Generic Optimization in
Real Time using Mutation Operators

Pedro Miguel Oliveira Carvalho da Silva

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: André Monteiro de Oliveira Restivo, Assistant Professor

Second Supervisor: Hugo José Sereno Lopes Ferreira, Assistant Professor

July 19, 2021

Automated Generic Optimization in Real Time using
Mutation Operators

Pedro Miguel Oliveira Carvalho da Silva

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Prof. Tiago Boldt Sousa

External Examiner: Prof. João Saraiva
Supervisor: Prof. André Restivo

Co-Supervisor: Prof. Hugo S. Ferreira

July 19, 2021

Abstract

Developing and maintaining a software project can be a lengthy and costly endeavor, especially on
bigger scales. However, and most prominently in schedule-driven environments, code efficiency,
energy costs, and other performance metrics are bound to be compromised to achieve the goals
and deliver within the deadlines. These compromises can have a serious impact on the quality and
health of the codebase and even the viability of the product in the future due to slow executions or
excessive energy costs.

Automated Programming (AP), by definition, is a type of computer programming that allows
a human to tell a computer what to do in a progressively more abstract way. Ultimately, it aims
to reduce the input from the developer, leading to a more automatized process. However, some
predict that in the future, automatic programming will be more about fixing mistakes rather than
having an autonomous machine do the work.

Automatic Programming Repair (APR) is a research area that aims to find and fix bugs. This
goal is generally accomplished by finding mutations of a segment of a program that fix what
is considered to be wrong based on an empirical source of truth, typically Unit Tests (UT) and
Property-Based Tests (PBT).

In this work, we propose a framework that is able to mutate programs with mutation operators
to find variant programs that are more optimal to a user-defined metric. The framework would
then suggest to the user, in real-time, how to optimize their code in a metric like speed, energy,
and program correctness (program repair). This will shorten the time to reach a patch during
development and thus shortening the length of development and consequently, its costs.

By implementing the described framework as a Visual Studio Code extension, and conducting
an empirical study with 14 participants, we conclude that there is significant evidence that partic-
ipants when using our tool, are significantly faster to reach a patch. Furthermore, we found that
there are some differences in code written by developers and the patches suggested by our tool.
Moreover, we established that users are not always critical when accepting the tool’s suggestions
which may lead to the code base becoming harder to interpret for developers when the suggestion
is not what it would be expected when translating the code to natural language.

i

ii

Resumo

Desenvolver e fazer manutenção de projetos de software é uma tarefa morosa e com custos altos,
especialmente em grande escala. Contudo, e mais evidente em ambientes guiados a objetivos,
a eficiência do código, o seu custo energético e outras métricas estão destinadas a serem com-
prometidas em detrimento dos objetivos serem alcançados. Estes compromissos têm um sério
impacto na qualidade e saúde do projeto e, consequentemente, até da sua viabilidade futura por
possíveis tempos de execução ou custos energéticos demasiado elevados.

Programação Automática (AP), por definição, é um tipo de programação que permite um ser
humano explicar a um computador o que fazer de uma forma progressivamente mais abstrata. Em
última análise, visa reduzir o input do programador, levando a um processo mais automatizado.
Contudo, alguns prevêem que, no futuro, a programação automática será mais sobre como corrigir
erros em vez de ter uma máquina autônoma que saiba programar.

Programação de Reparo Automático (APR) é uma área de pesquisa que visa encontrar e cor-
rigir bugs. Este objetivo é geralmente alcançado encontrando mutações de um segmento de um
programa que corrige o que é considerado errado com base numa fonte empírica de verdade, nor-
malmente através de testes unitários (UT) de testes baseados em propriedades (PBT).

Neste trabalho, propomos uma framework que é capaz de transformar um programa, através
de mutações, em variantes com melhores propriedades de acordo com a métrica definida pelo
utilizador. A framework depois sugeriria ao utilizador, em tempo real, como otimizar o seu código
mediante uma métrica como velocidade de execução, custo energético e correção do programa.
Este processo encurtará o tempo para chegar a um patch durante o desenvolvimento e, assim,
diminuirá a duração do desenvolvimento e, consequentemente, o seu custo.

Implementando a framework descrita como uma extensão para o Visual Studio Code, e con-
duzindo um estudo empírico com 14 participantes, concluímos que há indícios significativos de
que os participantes, ao usar a nossa ferramenta, foram significativamente mais rápidos para chegar
a um patch. Além disso, descobrimos que existem algumas diferenças no código escrito por pro-
gramadores e nos patches sugeridos pela nossa ferramenta. Adicionalmente, estabelecemos que
os usuários nem sempre são críticos ao aceitar as sugestões da ferramenta, o que pode fazer com
que o código se torne mais difícil de interpretar para futuros programadores quando a sugestão
aceite não é a que seria de se esperar ao traduzir o código para linguagem natural.

iii

iv

Acknowledgements

The completion of this work would not have been possible without the expertise of my supervisors,
Professors André Restivo and Hugo Sereno Ferreira.

I would also like to thank all my friends, for all the pointless never-ending arguments for
nothing other than the intellectual challenge. For all the moments of fun, for all the early mornings
and late nights of work. And especially for the afternoons solving chess puzzles and quizzes when
a break from work was needed.

To Catarina, my girlfriend, for the unconditional support, kindness, patience, and love, who, I
think unbeknownst to her, has taught me a great deal about life.

And last, but definitely not the least, to my family, there are no words to describe the gratitude
I have for all the support throughout my life, I’ll be forever grateful — Thank you.

Pedro Silva

v

vi

“Some people want it to happen,
some wish it would happen,

others make it happen.”

Michael Jordan

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Problem Definition . 2
1.4 General Goals . 2
1.5 Document Structure . 3

2 State of the Art 5
2.1 Methodology . 5
2.2 Automatic Programming . 6
2.3 Automated Program Repair . 6

2.3.1 Generate and Validate . 6
2.3.2 Semantics-Based Program Repair . 8

2.4 Localization Strategies . 9
2.5 Live Programming . 10
2.6 Summary . 15

3 Problem Statement 17
3.1 Problem Definition . 17
3.2 Main Hypothesis and Research Questions . 18
3.3 Validation . 19
3.4 Summary . 20

4 Framework Implementation 21
4.1 Architecture . 21

4.1.1 Overview . 21
4.1.2 Mutation Operators . 23
4.1.3 Environments . 26
4.1.4 Strategies . 27
4.1.5 Technical Challenges . 28

4.2 Visual Studio Code Extension . 29
4.3 Summary . 30

5 Empirical Evaluation 31
5.1 Methodology . 31

5.1.1 Plan . 32
5.1.2 Tasks . 34

5.2 Result Analysis . 36

ix

x CONTENTS

5.2.1 Background . 36
5.2.2 Practical Experiment . 39
5.2.3 Post-Test Survey . 45

5.3 Main Findings . 46
5.4 Threats to Validity . 48

5.4.1 Construct Validity . 48
5.4.2 Internal Validity . 49
5.4.3 External Validity . 49

5.5 Summary . 49

6 Conclusions 51
6.1 Conclusions . 51
6.2 Main Contributions . 52
6.3 Future Work . 52

A Code from Experiments 55
A.1 Task 1 . 55

A.1.1 Problem Set X . 55
A.1.2 Problem Set Y . 56

A.2 Task 2 . 56
A.2.1 Problem Set X . 56
A.2.2 Problem Set Y . 57

A.3 Task 3 . 59
A.3.1 Problem Set X . 59
A.3.2 Problem Set Y . 61

A.4 Task 4 . 62
A.4.1 Problem Set X . 62
A.4.2 Problem Set Y . 63

B Raw Data Collected 65

References 67

List of Figures

2.1 Generate-and-validate repair process . 7
2.2 Semantics-driven repair process . 8
2.3 Model-and-Code Checking framework overview. 13

3.1 Flowchart of pAPRika . 18

4.1 Sequence diagram of how a mutation is created and considered for an optimization 22
4.2 Sequence diagram of how a mutation is created and considered for program repair. 23
4.3 Code suggestion regarding a constant variable contraction. 29
4.4 Code suggestion regarding a declaration variable mutation. 29
4.5 Extension’s drop-down setting to select the strategy 29

5.1 Diagram of the empirical experiment methodology. 32
5.2 Histogram of the scores for the Background survey. 37
5.3 Stacked Bar Chart with frequencies of each Background survey answer. 38
5.4 Stacked Bar Chart with frequencies of each survey answer regarding Problem Set X. 43
5.5 Stacked Bar Chart with frequencies of each survey answer regarding Problem Set Y. 44
5.6 Stacked Bar Chart with frequencies of each survey answer regarding the Post Test

survey. 46

xi

xii LIST OF FIGURES

List of Tables

5.1 Statistical values and p− values for the answers of the Background section . . . 37
5.2 Statistical values for the times to reach patch . 40
5.3 Usage of the tool for each Task and Problem Set 45

B.1 Raw Data Collected from Group A experiments 65
B.2 Raw Data Collected from Group B experiments 65

xiii

xiv LIST OF TABLES

Abbreviations

AST Abstract syntax tree
AP Automated Programming
APO Automated Program Optimization
APR Automated Program Repair
CFG Control-Flow Graph
CPU Central Processing Unit
GPU Graphics Processing Unit
IDE Integrated Development Environment
LHS Left-Hand Side
LTS Long-Term Support
MCCCC Model-and-Code Consistency Checking
PBT Property-Based Testing
RAPL Running Average Power Limit
RHS Right-Hand Side
UT Unit Testing
VSCode Visual Studio Code

xv

Chapter 1

Introduction

1.1 Context . 1

1.2 Motivation . 2

1.3 Problem Definition . 2

1.4 General Goals . 2

1.5 Document Structure . 3

This chapter describes the context, problem definition and goals, motivation, and the structure

of the document. In Section 1.1 we contextualize our work, in Section 1.3 (p. 2) we explain our

problem and what we wish to achieve with this work. In Section 1.2 (p. 2), we elaborate on our

motivation to pursue this work and finally, in Section 1.5 (p. 3) we give a brief overview of the

document’s structure.

1.1 Context

Software development is an ever-growing area with great promise and already great results. How-

ever, its production and maintenance is limited by the amount and quality of the developers which

can be a very rare and expensive commodity.

With that in mind, a research field by the name of Automated Programming (AP) gained trac-

tion. Automated Programming involves the process of translation between the human language

and the language of machines [8]. In other words, with AP, the higher-level, human notation,

ideally simpler and quicker to write, is automatically translated to some conventional program-

ming language and thus shortens development life cycles and reduces overall costs in software

development.

A specific sub-area of research of AP is Automatic Programming Repair (APR), which aims

to identify, locate and fix bugs in code [27] by creating patches of code which by themselves may

improve the quality of the code, but it does not necessarily optimize its metrics like speed and

energy costs.

1

2 Introduction

Furthermore, and tightly connected to AP and APR, there is Live Programming [51], a research

area which focuses on how development environment can be smarter than traditional text editors,

and can provide valuable information to the developer in real-time about the program’s state and

other properties. This tight feedback loop between the developer and the live environment is

thought to lead to better results faster, especially in cases where exploration works better than just

forward engineering [4].

1.2 Motivation

A survey conducted by Jones [3] reported that the number of software maintenance profession-

als between the 1950s and the expected value for 2025 would drastically increase from 10% to

77%. Software maintenance includes the addition of new features, optimization of old features,

correction of errors, etc., and is reported to consume a major portion of the total cost of a software

project [32]. However, in this fast passed environment, the quality of the software is not always

the main priority and this can have dire consequences in later stages of development.

Facing this glaring problem, strides towards reducing software development costs have been

made in the areas of Automatic Programming and Automated Program Repair to automate the

process of developing code, finding and fixing bugs, and maintaining software.

If we could make significant code improvements without or minimizing the intervention of

the developers, not only the costs of the improvement would be significantly lower, but the conse-

quences of the new patches (i.e. more energy-friendly patch which reduces energy consumption

drastically) would also improve on the given metric having further benefits in the long term.

1.3 Problem Definition

Present-day real-time software development environments are mainly focused on solving a specific

problem or small set of problems as it will be further analyzed in Chapter 2 (p. 5) because of the

specific techniques used which are meant to best adapt to the goals of each projects.

In development tools like linters and code completion, developers are able to improve not only

the quality of the code, but also the speed in which they produce it. However, and like previously

mentioned, these are used for very specific applications such as syntax coherence.

In this dissertation, we aim to explore how an Automatic Programming Optimization tool can

be implemented in such a way that is able to be extended to support any generic optimization

metric and thus empower the developer to choose, in real-time which metric they value the most

in their software for each specific program.

1.4 General Goals

Considering that Automated Program Repair is mostly the act of optimizing a program correctness,

we aim to create an Automated Program Optimization (APO) tool that can take advantage of the

1.5 Document Structure 3

APR research on mutation operators. Combining it with a flexible evaluation system that allows

the tool to evaluate a program not only on its correctness but in any wanted metric, we get an APO

tool that is able to mutate programs and search, in the mutation space, for mutation with better

metrics.

To reach these goals, we set ourselves up to extend an APR tool originally created by Campos

[11], and later enhanced by Ramos [41] with the intent to generalize how a metric is recorded and

analyzed to be able to optimize any generic metric while still using some of the implemented APR

techniques. Since it’s not feasible to implement the infinite set of generic metrics one can think

of, we decided to focus on showing how our tool can implement three different metrics: (1) pro-

gram correctness, meaning does the program run the tests successfully, (2) program performance,

meaning the execution time of the program and finally, (3) power consumption, meaning the en-

ergy spent while running the program. These metrics were chosen due to their relevance in the

industry due to their associated costs as well as their inherent differences: metric (1) is related to

code semantics, metric (2) is related to how fast the program runs in comparison to the machine’s

system time and finally, metric (3) relates to the energy spent by the hardware of the machine when

running the program.

1.5 Document Structure

This document is divided into five chapters:

• Chapter 1 (p. 1), Introduction, which introduces the topic, the hypothesis, the goal and the

validation method;

• Chapter 2 (p. 5), State of the Art describes the current state of the art in automated program

repair strategies and performance bottleneck localization;

• Chapter 3 (p. 17), Problem Statement presents the solution we propose to the problem and

our plan to achieve it;

• Chapter 4 (p. 21), Framework Implementation, defaults the implementation of the Auto-

matic Program Optimization tool developed for this work;

• Chapter 5 (p. 31), Empirical Evaluation, explains the process and results of the empirical

tests undertaken;

• Chapter 6 (p. 51) Conclusions, which summarizes the findings and describes ho the future

work will be guided.

4 Introduction

Chapter 2

State of the Art

2.1 Methodology . 5

2.2 Automatic Programming . 6

2.3 Automated Program Repair . 6

2.4 Localization Strategies . 9

2.5 Live Programming . 10

2.6 Summary . 15

This chapter describes the methodology used in our literature review in Section 2.1. In Sec-

tion 2.2 (p. 6), we give a brief background information about Automatic Programming. Afterward,

in Section 2.3 (p. 6), we explore the techniques used in APR that may be of use when developing

an APO tool. In Section 2.4 (p. 9), we study localization strategies that may be implemented to

allow for the detection of the most expensive code segments in a program. We analyze some Live

Programming tools in Section 2.5 (p. 10) to understand how Live Programming tools work and

what their core techniques are and finally, in Section 2.6 (p. 15), we summary the contents of this

chapter.

2.1 Methodology

To collect information about the state of the art of the proposed topics an iterative approach was

followed. An initial set of keywords was defined based on the perceived domain. These keywords

were used to guide the search through various databases such as IEEE Xplore, ACM Digital Li-

brary, and Scopus.

To determine if an article was relevant, we analyzed its title, abstract, and conclusion individ-

ually. To expand the search as much as possible and make sure no synonyms or related topics

were missed, new-found terms and related articles were used as a way to find new articles and

5

6 State of the Art

branch to new topics. This strategy was loosely based on a bottom-up approach in which the lit-

erature results obtained from search queries are complemented with snowballing [55], a method

that explores related work to the found literature by analyzing the references of each result.

1. Search for a set of keywords in the title, abstract, and keywords in the Scopus database;

2. Refine the queries by including synonyms and removing keywords with a high intersection

with unwanted domains;

3. Manually analyze the documents for domain similarity based on abstract analyzes;

4. Use the newfound keywords and articles to repeat the process.

2.2 Automatic Programming

Automatic programming is an ever-changing concept that has evolved throughout time. In early

times, compute scientists used this term to refer to the ability to automatically generate machine

code from an assembly language [37] and similarly with regards to the creation of compilers [34].

It later developed into a higher-level concept which described automatic programming simply

as another layer of abstraction where a developer would describe almost in natural language the

specifications of the program and the computer would be able to generate it. This would be

famously stated by Arthur Samuel: "tell the machine what to do, not how to do it" [43].

2.3 Automated Program Repair

Software projects nowadays have strict deadlines and release requirements that impose short bug

fixing and maintenance cycles, putting significant pressure on the developers [18]. Automatic

program repair proposes solving that mistake by fixing these bugs automatically.

The process is mostly divided into three steps: locate where the bug is (1), generate potential

patches (2), and finally, make sure the suggested patch is good enough (3) to grant a suggestion or

even an automatic substitution.

Automated program repair aims to find human-made, non-malicious bugs [6] in programs and

through mutations [5, 38] find new programs which are similar to the original one without the bug

and still having the initial intended behavior [19]. In this section, we study what state-of-the-art

APR techniques exist and which may better suit our application.

2.3.1 Generate and Validate

Generate and validate, as seen in Figure 2.1, repairs are generally comprised of three main steps:

fault localization, candidate patch generation, and patch selection, and validation. In the first step,

the approach locates which are the program sections that are more likely to have bugs based on

passing and failing test-cases. In the second step, mutations are created from the original program

2.3 Automated Program Repair 7

to create alternatives that might correct the bugs described in the test suite. Finally, the mutation is

tested against the test-suite to make sure the bug was solved and that no other program functionality

was compromised [41].

Figure 2.1: Generate-and-validate repair process from [18]

2.3.1.1 Atomic Change Operators

GenProg [53] is an example of a generic method that takes as input a defective C program and

specifications in the form of test cases. It takes advantage of strategies of genetic programming

to search for program variants that are not vulnerable to the initial defects of the program but

keeps the desired functionality [26], the first variant to correct the defect and keep its original

functionality is the primary repair [17]. The variants are represented by their AST, similarly to

other approaches like Marriagent, RSRepair, and SCRepair [18], and a weighted program path and

may be modified using crossover and mutations [53].

After the alternative program is created, the repair is minimized using delta debugging and

tree-structured distance metrics, creating the minimized repair. The method has shown some

promising results on some instances (examples from the 3 first papers), however, it is subject

to weak test cases and to overfitting some test suites [48].

2.3.1.2 Pre-defined templates

Pre-defined template techniques take advantage of known snippets of code that can be used to re-

pair faulty code. There are two main strategies adopted: search-based and brute-force techniques.

8 State of the Art

Search-based is usually used in situations where multiple non-trivial changes need to be made

in multiple places in a systematic manner [18]. The search is appropriate since it must find and

replace specific patterns that occur repeatedly throughout the code. Since it has such a specific

use case, this approach has not been as explored as much as its counterpart and has been mostly

associated with its implementation on concurrency faults. For example, ARC [24] to generate

repair candidates for concurrency faults using pre-defined templates and genetic programming.

On the other hand, brute-force techniques use various pre-defined templates of various dif-

ferent types of fault and apply them to strategic locations until the program is fixed or times out.

By having a diverse set of examples, brute-force approaches are not as bounded to specific fault

models.

2.3.2 Semantics-Based Program Repair

Similarly to Generate and Validate, the repair process described in Figure 2.2 follows the same

structure: it starts out by analyzing the program to understand what its behaviors should and

should not be, it then uses the rules and constraints learned in the first step to generate potential

fixes which will finally be confirmed to be valid or not.

Unlike Generate and Validate, semantic-based program repair focuses on fixing smaller and

less generic bugs [41].

Figure 2.2: Semantics-driven repair process from [18]

2.4 Localization Strategies 9

2.4 Localization Strategies

To better decide where the mutations should be applied, this section describes tools and techniques

used to find the locations in which the mutations are more likely to produce favorable outcomes.

As previously mentioned, in Automated Program Repair, fault localization techniques are used

to find which code statements are the cause for the fault in the program. However, since our

scope focuses on generic optimization, we will analyze the tools and techniques designed for code

optimization. In software optimization, the most effective place to optimize is the process that is

the least optimized and thus considered its bottleneck. In this section, we will explore the tools

used to the location of these bottlenecks in programs.

Petsios et al. [39] show how worst-case scenario inputs can be found by using resource-usage-

guided evolutionary search techniques by creating SlowFuzz. Their goal is to find which

inputs trigger execution times with complexity much higher than the average case. To reach

that goal, SlowFuzz tests various inputs for their execution path length and uses these results

to guide the mutations for the next iteration. Furthermore, SlowFuzz is flexible enough to

take into account other metrics such as memory consumption and even energy costs related

to CPU usage.

Lemieux et al. [28] present PerfFuzz, designed and implemented a fuzz-based algorithm to find

worst-case scenario input for programs. The algorithm uses the control-flow graph (CFG)

of the input program and multiple initial inputs, called seeds, to find which sections of the

program are the most expensive for each specific input. In each iteration, PerfFuzz decides

whether a seed should be considered for mutational fuzzing. This decision is probability

and based on how the input affects the performance (e.g. if the input results in new code

coverage or if the number of edges visited increased). In comparison to the previously men-

tioned SlowFuzz which only produces one input from one parent input, PerfFuzz generates

thousands of inputs for each parent and decide which input to prioritize using the concept

of favored inputs, which are inputs that maximize the execution count of at least one CFG

edge. Furthermore, the two algorithms were tested against the same data set and PerfFuzz

outperformed SlowFuzz at finding hot spots, which was expected since its what it is tailored

for, and also outperformed SlowFuzz in finding inputs that maximize the total path length,

which is what SlowFuzz was made specifically for.

Poshyvanik et al. [20] present FOREPOST, a black-box software testing tool that extracts rules

from executing traces of programs using machine learning. FOREPOST then uses these

rules to guide the choosing of new inputs to find intensive paths with performance problems

[31].

Shen et al. [47] introduce GA-Prof, an approach to find performance bottlenecks automatically by

searching the input domain of the program. The main strategy used is to use a genetic pro-

gram over the input of the program to find which parameters maximize the fitness function

which, in this case, is the elapsed execution time of the application.

10 State of the Art

Toffola et al. [52] present PerfSyn, a generic framework that synthesizes a program to find a bot-

tleneck in a given method. To find these bottlenecks, PerfSyn runs five sequential steps: first,

it mutates the program, it then executes and gathers feedback, learns which of the mutations

influenced the method’s performance the most, and, finally, explores which new mutations

can be applied to find a better solution.

All of the discussed tools leverage input given to a program in order to find a possible bot-

tleneck in the program. Similarly, SlowFuzz and PerfFuzz use fuzzing techniques over the input

and assess a mutation’s quality based on the number of operations made from start to end. How-

ever, after running both algorithms over the same dataset, PerfFuzz outperformed SlowFuzz in

both inputs that find higher hot spots and inputs that maximize the total path length. Like the

previously mentioned algorithms, FOREPOST, GA-Prof and PerfSyn all search for the bottleneck

by finding new inputs. However, and different from the fuzz-based approach taken by SlowFuzz

and PerfFuzz, these algorithms take advantage of rules extracted from executing traces, genetic

programming and mutation operators, respectively.

2.5 Live Programming

Live programming, used interchangeably alongside the term real-time throughout this work, gen-

erally depicts an environment in which there is a constant feedback cycle where the environment

provides information to programmers about the program being developed [51, 4]. The goal of

this concept is to steer away from the traditional development cycle in which a developer needs

to compile and run the program to get feedback about the program’s behavior in run time. This

concept was initially applied in what was then regarded as an Interactive Environment for Lisp,

which took advantage of nonstandard program structures and program development methods [44],

Smalltalk [23] and visual languages [50, 51].

To further understand the core fundamentals of implementations of live development environ-

ments, this section will review recent implementations of live development environments to find

the most important aspects of these environments, their challenges, and their differences in regards

to more traditional development environments.

Lemma et al. [29] believe that existing IDEs are not ideal for live programming since they were

not created with this concept in mind. Consequently, they propose to concurrently develop

not only a programming language but also an environment that is designed with live pro-

gramming in mind, named Moon. To reach their final goal of a live programming environ-

ment, they present three key ideas: (1) Entities Visualization, which has as a goal to portray

entities of the program into Representations. These Representations represent the programs’

entities in a more human-perceptible format and it is intended for basic representations to

be integrated into the system while also giving the opportunity to users to create their new

custom representations; (2) State Visualization, they argue that information about the whole

state of the program is valuable to spot early errors.

2.5 Live Programming 11

In a prototype, the ecosystem takes advantage of real-time compilation to pinpoint the lo-

calization of the errors with the usage of syntax highlighting. They also suggest that the

approach can be significantly improved by making this analysis at every change in the ab-

stract syntax tree; (3) Evolution Visualization, which focuses on how, in a collaborative

setting, important it is to understand the overall evolution of the system.

Kulbeka et al. [25] conducted a study on an analysis of 17 programming sessions in Pharo [9]

conducted by 11 participants, composed by a Bachelor Student, a Master Student, Ph.D.

Students, Professors, and Professionals.

When analyzing how the participants engaged with Pharo, a maturer live programming envi-

ronment, Kulbeka et al. noted that some participants, despite using the liveness techniques,

were not successful either because they lost time waiting for feedback which was not re-

ceived, or by using an approach that ultimately would not be sufficient to solve the given

task. On the other hand, there were also cases where developers used liveness techniques

to check their assumptions while they were performing the tasks. There is even a report of

a participant which used the aforementioned techniques to check their progress after every

small change which would instantly give them feedback if the behavior was as expected or

not. Interestingly, they also found that the most advanced approaches available were the

most under-used whereas the most simpler tools, such as the inspector, a tool similar to

what is found in Google Chrome Development Tools1, and the playground, a tool to write

code snippets to explore their results, which were used by virtually all the participants.

To sum up, Kulbeka et al. concluded that liveness was used very frequently during the pro-

gramming sessions and that simpler approaches were favored in detriment to more advanced

and thus more technically challenging approaches.

Oney et al. [35] present a programming language and environment ecosystem, called InterState

that focuses on writing and reusing user interface code. InterState includes a live editor that

gives immediate feedback to the user regarding the state of the program to help program-

mers understand the program’s behavior in run-time. This ecosystem avoids the traditional

difficulties of real-time feedback through event-callback code by including state machines

and constraints as fundamental language constructs. To test the efficiency of this envi-

ronment, the authors conducted a comparative laboratory study in which they exposed 20

experienced programmers to two different implementation tasks, one in JavaScript and the

other in InterState.

Participants were more than twice as fast implementing the drag lock task in InterState com-

paring to the JavaScript alternative. For the second task, an image carousel, the participants

once again finished the task in less than half the time with InterState comparing to the time

it took to implement the image carousel in JavaScript. Users in the experiment described

the InterState’s visual notation as intuitive and clean and it is reported that nearly every user

1Google Chrome Development Tools: https://developer.chrome.com/docs/devtools/ Retrieved on 02/07/2021

https://developer.chrome.com/docs/devtools/

12 State of the Art

credited their quickness of debugging throughout the task to InterState’s ability to display

real-time application state and live property values.

Fischer [16] introduces Circa , a language, and platform designed specifically to take advantage

of having the state of a running program during the development process and use the infor-

mation to improve the ability to create and manipulate code. This environment specifically

focuses on dataflow-based programming model that works by representing the program as

a directed graph of terms.

With this representation, each term has a set of inputs and a function that specifies how to

calculate the output. Given this implementation, it is easy to backtrack a program result to

find which functions and inputs affect the final outcome of the program and consequently,

take advantage of visualization techniques to aid the user.

Riedl-Ehrenleitner et al. [42] define a novel approach to detect inconsistencies between design

models and source code. Model-Driven Engineering [45] promotes the abstraction of con-

cepts into model artifacts with the intent to simplify and express domain concepts efficiently.

Moreover, and similarly to traditional compilers, model-to-code transformations [46] can

be applied to these models to automatically generate source code, these transformations are

however not perfect [56]. To solve this discrepancy, the authors propose Model-and-Code

Consistency Checking (MCCC) to detect, in real-time, differences between consistency in

the source code and the model which the source code derives from.

Figure 2.3 illustrates the MCCC framework overview. Once the source code, the conceptual

models, and the consistency rules are defined, the Integration Layer can serve as an inter-

mediate level that abstracts the concepts from both the Model and the Code and allow the

Consistency Checker to apply the previously mentioned rules and check for discrepancies.

This check can be applied with different strategies, e.g, prompted manually, before a devel-

oper decides to public changes, at predefined intervals, or even with incremental checking

at the finest granularity by checking after every atomic change. Once the inconsistency is

detected, a automatically derived repair may be suggested directly to the developer.

Oney et al. [36] presents Euclase, a visual live development environment focused on creating in-

teractive web applications. This environment uses constraints combined with finite state

machines to define how an object in Euclase behaves. Being a live development environ-

ment, as a developer changes the source code of the program, the changes are immediately

reflected back to the developer since the program is always executing.

Regarding the importance of live environments, Oney et al.. found three reasons: (1) Be-

ginner friendliness, they argue there is a relevant barrier to beginner developers who are

more prone to make syntactic errors and often will lead to semantic errors. They further

hypothesize that by providing a live environment, we can help beginners better understand

their programs which is supported by their assumption that a beginner developer is likely to

become discouraged after facing a lot of errors upon code compilation; (2) Quick evaluation

2.5 Live Programming 13

Figure 2.3: Model-and-Code Checking framework overview from [42].

describes how important it is for designers to quickly have feedback regarding the applica-

tion’s feel, meaning not only taking int account the visual aspect but also the interaction

aspect, in contrast to its look which is, according to previous research [33], more effectively

done with sketches or drawing applications; finally, (3) Quick experimentation claims that

experimentation is crucial when designing an application. As previously mentioned, while

present-day’s development environments are great to draw and sketch the application’s look,

they do not offer good support regarding the application’s feel, [21] and this lack of support

is reflected in the lack of an environment which can be used to test the feel of the application

in real-time. The authors couple this reason with a simple yet powerful example to describe

this struggle: in a scenario in which a designer wants to tweak the scrolling "friction" to

better suit the interaction in the given context, the designer can use Euclase to iteratively

modify the friction parameter to see the results immediately in contrast to the traditional

tools in which the program would have to be re-run.

Finally, the authors reflect on the design challenges of a live environment and they found that

using a live development environment not always mean a quicker feedback loop between the

developer and the application. To back up this statement, they give the example of when a

user is working on a feature that requires the application to be loading, they do not have a

better way to force the application to load in comparison to the standard edit-run loop.

Following the literature review regarding Live Programming resulting in the presented analy-

sis, another work was suggested by experts in the studied field and is now analyzed.

Campos et al. [11] hypothesize that using a live Automated Program Repair improves the speed

and final results of code patches as well as present pAPRika, an Automated Program Repair

tool that is implemented as a Visual Studio Code and, automatically, proposes semantic code

suggestions by leveraging existing unit tests as specifications. To guide their research, the

authors focused on answering three research questions: (1) Do developers fix an error faster

14 State of the Art

when using a live APR tool?, (2) Do developers write solutions that are significantly differ-

ent from those generated by our approach?, and finally (3) Do developers understand why

solutions generated by live APR tools work before accepting them?. To test their hypothesis

and answer their research questions, and using the tool implemented for this purpose, the

authors conducted a preliminary empirical study with 16 participants in a crossover design.

The implementation of the extension relies on unit tests as specifications and uses a mutation-

based approach, like the one used by Debroy et al. [13], to generate variants that are then

tested against the specifications to assess if the mutation is valid or not. A patch, to be

considered valid, has to pass all the test cases which make all the suggestions generated

complete patches.

In the empirical study, the authors constructed a dataset of problems originally from the

comments of the r/dailyprogrammer subreddit and created the complementary test suit.

The problems in question were classified into one of the following three types: (1) imme-

diate task where a bug is present in the code and a patch is immediately found by the tool;

(2) nonimmediate task where a bug which is present but the tool can only detect it after a

missing functionality is written (which is a direct consequence of the tool only suggesting

complete patches; and finally, (3) nonpresent task where a bug is not present in the code,

but the participant is required to write some code which might contain a bug that the tool

may be able to fix. When analyzing the empirical study’s results, the authors found that

users are faster to reach a solution when using an Automated Program Repair tool. When

analyzing whether the solutions from developers are any different from the automatically

generated ones, the authors found that the solutions are sometimes different and have iden-

tified situations in which the solution generated by the APR tool is considered to be worse

in terms of its naturalness [22]. Finally, regarding whether the participants understood the

patches suggested by the APR tool, their findings were counter-intuitive since the results

from a survey that was coupled with the tasks directly contradicted their own observations.

To sum up, the authors consider having strong evidence supporting their main hypothesis

due to the positive results regarding the speed of the participants.

Live development environments provide a powerful feedback loop between the developer and

the environment. Environments such as Moon [29], InterState [35], Circa [16] and Euclase [36]

heavily rely on visual representations of the program’s state or other characteristics which may

be edited in real-time to allow the user to get instant feedback on those changes. This feedback

may include information such as if the program is running successfully or it can even be as sub-

tle as getting a real-time feel of how the changes in the source code affect the how a user may

interact with the program. On the other hand, environments like Pharo used in [25], the MCCC

implementation [42], and pAPRika [11] rely more on code suggestions and text feedback, either

by exposing additional information or facilitating an interactive interface that can be used to query

the program’s state and other characteristics.

2.6 Summary 15

Finally, despite the conventional definition of live programming being generally referred as the

ability to edit an executing program, tools like pAPRika [11] and the seen MCCC implementation

[42] skew away from this definition by implementing triggers that can be set off by the developers

at any time to run an instance of the analysis engine and then give feedback. One downside of

this approach is that if the process of generating feedback is too slow, the real-time part of live

programming may be jeopardized.

2.6 Summary

Section 2.1 (p. 5) describes the methodology used for this literature review, including the databases

and the procedure used.

Section 2.2 (p. 6) and Section 2.3 (p. 6) present a brief overview of some strategies used in Au-

tomatic Programming and Automated Program Repair which may be useful when implementing

an Automatic Program Optimization tool. In Section 2.4 (p. 9), we analyze localization strate-

gies that are used to locate the code statements which are more likely to be the bottleneck of the

program.

Finally, in Section 2.5 (p. 10), we analyze tools and environments that implement some notion

of live programming.

16 State of the Art

Chapter 3

Problem Statement

3.1 Problem Definition . 17

3.2 Main Hypothesis and Research Questions 18

3.3 Validation . 19

3.4 Summary . 20

This chapter details our problem. In Section 3.1, we define our problem and we make a brief

reference to how pAPRika, a real-time APR tool works. Secondly, in Section 3.2 (p. 18), we

present the main hypothesis we aim to validate as well as the main research questions that guide

this work. Finally, in Section 3.3 (p. 19), we outline the methodology we will use to validate our

work.

3.1 Problem Definition

The majority of tools and techniques for code optimization are very specific to what they are trying

to optimize. This specification often brings the best results possible, however, it makes the tool’s

ability to be extended a considerable limitation.

This dissertation aims to create an engine that explores the mutation space around an already

functional software with the intention to find mutations that may improve the code.

In order to achieve this goal, we will extend a tool created by Campos in [11] because not only

it is a live programming environment based on mutation operators, but it is also followed with an

empirical study that shows evidence that the environment leads developers to faster development

times. The Visual Studio Code extension developed in the previously mentioned work, pAPRika,

uses mutation operators in semantically incorrect programs in the hopes to find a variant of the

program that passes all the given sources of truth, in this case, unit tests.

As described in Figure 3.1, once the extension is activated and the tests fail, mutations are

generated and tested to check if the tests started passing. Once a valid mutation is found, the

mutation is suggested to the developer which decides if the patch should be accepted or not.

17

18 Problem Statement

However, this extension was made purely for APR and is not prepared to include other metrics

other than program correctness.

Figure 3.1: Flowchart of pAPRika from [10]

3.2 Main Hypothesis and Research Questions

To understand the impact of automated programming in a developer workflow, we intend to study

how an Automated Program Optimization tool can impact the speed of both correcting programs

with bugs and optimizing them in order to mitigate the significant maintenance costs. Conse-

quently, The goal of the work of this dissertation is to validate the following hypothesis:

“Using a real-time Automatic Program Optimization tool improves the speed and

final result of code solutions.”

A mutation-based real-time Automated Program Optimization tool should be able to find mu-

tations that are semantically equivalent to the original code and be able to decide which changes

it should apply and which it should not base on the priority that the user gives to the input metrics

while still being able to behave as an Automated Program Repair tool.

3.3 Validation 19

To support the presented hypothesis, the following research questions were identified to guide

the research:

RQ1: Are users faster in reaching a patch when using a real-time Automatic Program Optimiza-

tion tool?

To understand if the usage of an Automatic Program Optimization tool really contributes

towards the cut in development and maintenance costs we need to first understand if its

usage has a significant impact in a developer’s workflow. Consequently, we aim to find if

the usage of an APO tool makes the developers faster and thus more efficient leading to

lower development and maintenance costs. We aim to study this by challenging developers

with similar technical knowledge and experience with tasks and study the difference in times

between developers using an APO tool with times of developers without such a tool.

RQ2: Are users aware of the rationale suggestions generated by an Automatic Program Opti-

mization tool before accepting them?

Despite the speed of development being a very important metric when trying to optimize

the process of software development and maintenance, the health and sustainability of the

project is a necessity for long-term projects. To understand how the usage of an APO tool

may affect the sustainability of a project, we want to find out if a developer using an APO

tool understands the patches proposed before accepting them. By understanding the patch

we assume that a developer is not inserting in the codebase patches that are hard to under-

stand for future developers and maintainers and thus not as sustainable in long term.

RQ3: Are solutions programmed by human developers different from the solutions generated by

an Automatic Program Optimization tool?

To understand the quality of the suggestions made by an APO tool, we plan to study the

differences between patches generated by developers without the tool and patches generated

by an APO tool. With this in mind, we intend to expose developers with similar technical

knowledge and experience to some coding challenges and study the difference between

solutions that developers create and the solutions generated by an APO tool.

3.3 Validation

To evaluate the proposed hypothesis, we plan to conduct an empirical experiment with around 20

participants. These participants are to be divided into two groups to understand the differences

between how developers perform when using an Automated Programming Optimization tool and

when not using an APO tool.

With this experiment, we plan to study the differences in times to reach a valid patch to a

proposed task between developers using an APO tool and those not using it, considering a valid

patch a change to the code that either turns a semantically incorrect program to a correct one

20 Problem Statement

(program repair) or attempts to optimize the program (for other metrics like energy consumption,

performance, memory usage, etc...).

Moreover, we want to understand if the developers are aware of the meaning of the suggestions

provided by the APO tool. With that in mind, we compare the answers regarding the understand-

ing of patches from the surveys with the final code solutions submitted by the participants. If

both the survey answers show positive feedback from the developers and the final code solutions

suggest that the patches are read and understood before being accepted, we can claim that there is

significant evidence that the users understand the feedback from the APO tool.

Finally, to study if the human developers produce different solutions from the patches gen-

erated by an APO tool, we use the final code submissions from the participants and analyze the

differences between solutions generated by developers using the tool with solutions when the de-

velopers have no access to the tool. By making this comparison, and taking in mind the list of

proposed solutions by the APO tool, we can study how these suggestions impact the decision

process of the developer regarding the final code solution.

3.4 Summary

In Section 3.1 (p. 17), we detail the problem definition and frame our work in regards to the work of

Campos Campos19. In Section 3.2 (p. 18), we propose our hypothesis and the research questions,

as well as a brief explanation for each question, that guide this work. Finally, in Section 3.3 (p. 19),

we explain how we intend to validate our work and justify why our methods may be used to answer

our research questions, and consequently assess our hypothesis.

Chapter 4

Framework Implementation

4.1 Architecture . 21

4.2 Visual Studio Code Extension . 29

4.3 Summary . 30

This chapter describes the details of the implementation, it contains both an overview of the

Architecture design in Subsection 4.1.1 as well as their component details in Subsection 4.1.2,

Subsection 4.1.3 and Subsection 4.1.4. Furthermore, it presents a description of how the user

interacts with the application in Section 4.2 (p. 29).

4.1 Architecture

Despite our research in Localization Strategies, the scope of this work focuses on challenges that

are simple enough that localization improvements are not significant and thus are not considered.

The implementation of the framework is mainly divided into three distinct components: operators,

environments, and strategies.

4.1.1 Overview

In order to have multiple functions and files being mutated at the same time, instances of mutations

must be able to be tested simultaneously. Therefore, a Mutation Instance is defined as a data

object with the necessary information to process a mutation. The life cycle of these objects in

optimization strategies, where the program is already semantically correct, is documented in the

sequence diagram found in Figure 4.1.

Once the user triggers the extension to search for mutations, the original code is executed

and it is confirmed that it passes all the tests, the process stops if they do not. Afterward, and

according to which operators were assigned to the current strategy, mutations of the original code

are created and hence the start of the Mutation Instances. Asynchronously, mutations are generated

21

22 Framework Implementation

by the Strategy and sent back to the server to make sure the new mutations still pass the tests, the

mutations which do not are automatically discarded. The mutations are then sent back to the

Strategy as a valid mutant (i.e. is semantically equivalent), now the strategy must measure if the

mutation is good enough to be suggested. With that in mind, the mutation is sent to a previously

defined environment which will run the mutation 10 times in conditions that enable a metric to be

evaluated. Once the score is recorded, the mutation, and the newly recorded score, is sent back to

the strategy which now has the to make an informed decision on accepting or not the suggestion.

In this work, this decision is made by the means of a t-test where it is evaluated if the new score is

statistically better than the previous best mutation found for this function.

StrategyServerExtension Environment

Run
Trigger

getMutations()

mutations

runTests()

[Tests Pass]

runTests()

validMutant()
getScore()

score
suggest()

show()

User

[Tests Pass]

opt [Best so far]

loop

opt

Figure 4.1: Sequence diagram of how a mutation is created and considered for optimization with
the score being decided by a predefined run-time environment.

Optimizing the program correctness has a very similar life cycle with the exceptions of some

smart optimizations that can be made. Contrarily to the previous optimizations, for a program

repair to be useful, the original program must not be semantically correct, therefore the program

is initially tested to make sure it fails in at least one test. The rest of the process is equal to the

previously mentioned process with the exception that in program repair the scale for the score is

binary, either the program is repaired or not. Therefore, once validMutant() is called, there is no

need to check its score, because it is already known to be maximal. Consequently, the mutations

can be directly suggested to the end-user without further need of a specific run-time environment.

4.1 Architecture 23

StrategyServer

suggest()

Extension

Run
Trigger

getMutations()

mutations

runTests()

[Tests Pass]

runTests()

validMutant()

show()

User

[At least one

failing test]

loop

opt

Figure 4.2: Sequence diagram of how a mutation is created and considered for program repair.

4.1.2 Mutation Operators

An operator is a mutation operator rule that defines how to modify certain features of the artifact

undergoing mutations [14]. The goal of these operators is to create versions of the original program

that only differ by one small change [49].

In this tool, the program follows the same strategy as pAPRika (cf. Section 2.3, p. 6), the code

is traversed over through its Abstract Syntax Tree (AST) representation, and the mutations are

applied in the nodes.

The traversal follows the TypeScript Compiler API 1 which allows to programmatically tra-

verse the TypeScript Nodes and apply mutations. For each node, and to preamble the follow-

ing implemented operators, we have access to its left-hand side and right-hand side children,

node.LHS and node.RHS respectively, as well as other information about the node itself such as

which keyword it represents.

In this work, we use the concept of Replacement as an object with the information needed

to apply a mutation in the source code. This object contains information about the start and

end position of the code in the original code that will be replaced once the mutation is applied.

1https://github.com/microsoft/TypeScript/wiki/Using-the-Compiler-API Retrieved on: 29/06/2021

https://github.com/microsoft/TypeScript/wiki/Using-the-Compiler-API

24 Framework Implementation

Moreover, the Replacement keeps information about the oldText and newText which is the string

comprised from start and end and the newly generated mutation that will replace the oldText,

respectively. Finally, the Replacement has a code as an identifier for implementation details (e.g.,

the name of the file of the variation will depend on the mutation’s identifier).

The goal with this work is not to get the best performance with the best mutation operators,

the goal is to study how suggestions made an APO tool improve one’s development workflow.

Consequently, our mutations were loosely based on concepts from Bentley’s work [7]. In his work,

Bentley provides a pragmatic treatment of program efficiency divided into 6 major sections: Space-

for-Time Rules, Time-for-Space Rules, Loop Rules, Logic Rules, Procedure Design Rules and,

Expression Rules. However, some of these rules are not suitable for mutation-based operations.

For example, Loop Rules describe strategies such as Loop Unrolling which rely on the fact that a

large cost of short loops are caused by modifying the loop indexes and a solution for that would

be to unroll smaller loops. Nonetheless, creating a mutation to translate this process would be a

significant technical challenge and thus not suitable for this work.

In the following subsections, we present which mutations were implemented and our thought

process behind the decisions made.

4.1.2.1 Contraction of constant variables

Based on Exploit Algebraic Identities, a strategy from Expression Rules, which consists of re-

placing a costly expression with one that is algebraically equivalent but cheaper, we developed a

mutation that contracts constants.

The contraction of literal constants, exhibited in Algorithm 1, are made by recursively finding

instances where both child nodes are able to be simplified (line 13), and then simplify said node.

This operator only simplifies literal values and property access expressions (i.e. constants that

require access to resolve).

The contraction of literal constants, as exhibited in Algorithm 1, is made to reduce the number

of operations that the program must compute in order to reach a constant value in run-time. As

described in the pseudo-code, a mutation is generated once the function associated with the muta-

tion, SimplifyMathConstants(), is called. This function takes the current node information

and the list with the replacements generated so far in the search. Right away, an auxiliary function

named GetConstantValue() is called with the information regarding the current node. The

node will be analyzed and there will be an attempt to simplify the children nodes in a recursive

fashion:

First of all, if the node is already a numeric literal and thus a constant, the node is returned right

away as seen in line 8. Secondly, it is checked if the node is a math operator (line 10) which boils

down to checking if the node is one of the following operators: / for division, * for multiplication,

- for subtraction, + for addition and % for the remainder. If the node coincides with one of the

considered math operators, two recursive calls, one on each child node, are called to query the

constant values of the node’s children. If both these values are numeric literals (line 13), the new

constant value is calculated and a new node created and returned, otherwise, the NULL is returned

4.1 Architecture 25

to inform the node’s parent that this node cannot be further simplified. Finally, in line 18, it is

known that the node is not a numeric literal nor its children can be simplified into numeric literals

and thus the function returns NULL for this node.

Algorithm 1 Contract simple Mathematical constants

1: procedure SIMPLIFYMATHCONSTANTS(node,replacementList)
2: newNode← getConstantValue(node)
3: if newNode then
4: replacement← Replacement(node,newNode)
5: replacementList.push(replacement) . Save mutation
6: return replacementList
7: procedure GETCONSTANTVALUE(node)
8: if isNumericLiteral(node) then
9: return node

10: else if isMathOperator(node) then
11: le f tNode← getConstantValue(node.LHS)
12: rightNode← getConstantValue(node.RHS)
13: if isNumericLiteral(le f tNode) and isNumericLiteral(rightNode) then
14: newValue← calculate(le f tNode,node.op,rightNode)
15: return Node(newValue)
16: else
17: return NULL
18: else . Not literal nor Math Operation
19: return NULL

4.1.2.2 Keyword Mutation

Despite Bentley’s Rules focusing on language-independent optimizations, there are also some

language-dependent operators which take advantage of the different properties of syntax with

similar behaviors. Loosely based on the concepts from Space-for-Time Rules which argue for ad-

ditional information or by changing the information within a data structure, we decided to explore

how different declaration keywords in JavaScript behave differently.

This operator explores the differences between the keywords const, let, and var. The main

difference between these keywords is that const declares read-only constant, var declares a vari-

able, which might be initialized and, let is similar to var with the exception that its scope is limited

to the block where it is defined [1]. Consequently, when we have loops that are traversed a large

amount of times with a let or const variable inside, the variable is created and destroyed each

time the loop is traversed. On the other hand, since a var variable is global, it is not created and

destroyed each time, it is only updated, which is cheaper than searching for all the variables in

the scope for simpler programs. It is important to notice that these are not necessarily equivalent

mutations since it depends on the non-existence of variables with the same name in wider scopes.

26 Framework Implementation

The mutation itself is detailed in Algorithm 2. Whenever a variable declaration keyword is

found, the operator creates two mutations by replacing the current keyword with the other two

possible keywords from the previously mentioned pool.

More specifically, whenever a variable declaration node is found and this mutation is acti-

vated, the function SwitchVariableDeclarationKeyword() is called with both the node

information and the current list of the replacements found so far. Out of the possible declara-

tion keywords that the node may have: const, let, and var, the algorithm will create two

new replacement mutations for each of the two declaration keywords that are not the node’s key-

word. A new node is then created by copying the original node and replacing the keyword used as

described in the function VariableDeclarationExp(). Lastly, the newly generated replace-

ment is saved in replacementList and returned back to be used in the future.

Algorithm 2 Mutate the Declaration Keyword

1: declarationKeywords← [const, let,var]
2: procedure SWITCHVARIABLEDECLARATIONKEYWORD(node,replacementList)
3: for keyword ∈ declarationKeywords do
4: if keyword 6= node.keyword then
5: newKeywordNode←VariableDeclarationExp(node,keyword)
6: replacement← Replacement(node,newKeywordNode)
7: replacementList.push(replacement) . Save mutation
8: return replacementList
9: procedure VARIABLEDECLARATIONEXP(node,keyword)

10: newNode← node.copy()
11: newNode.keyword← keyword
12: return newNode

4.1.3 Environments

An environment is where the quality of the program, according to a given metric, will be evaluated.

Once a Strategy sends a valid mutation to an environment, the code is either statically analyzed,

or ran multiple times to get a sense of its behavior in run-time.

Our concept of Environment is specialized for situations where, for each consecutive running

instance, there are three function calls: (1) one before the test is run, (2) then after the test is run,

and finally, (3) a function that is able to interpret the collected data and calculate a meaningful

score from it. However, to accommodate environments that either need to interpret run-time data

differently or that require static analysis, the main Environment class can be extended indepen-

dently.

For this work, two environments were implemented, one to measure the performance of a pro-

gram evaluated in run-time and, likewise, an environment to evaluate the power consumption from

running the tests. Regarding the performance environment, we use the Performance API 2 which

2Performance API: https://developer.mozilla.org/en-US/docs/Web/API/Performance Retrieved on 02/07/2021

https://developer.mozilla.org/en-US/docs/Web/API/Performance

4.1 Architecture 27

provides information about timing-related performance. Specifically, and considering the previ-

ously mentioned functions defined for environments: (1) before running the tests the time elapsed

since a reference instant, saved as t0, is recorded using performance.now(). Likewise, (2) the

time is recorded once more after the test is run, saved as t1. Finally, (3) the score for a single run of

the test is calculated by subtracting the two reference times previously recorded, t1-t0. Concerning

the power consumption environment, the environment takes advantage of the powercap inter-

face provided by the Running Average Power Limit (RAPL) [12], an interface that uses software

power models to estimate energy usage based on hardware performance counters and I/O models.

Specifically, in machines with processors that implement this interface, a file named energy_uj

can be found in /sys/class/powercap/intel-rapl:0 where intel-rapl:0 is the name

of the device. Similar to the performance environment, an initial value for energy consumption

is recorded before the test is run, and a final one is recorded after the test finishes. Lastly, these

values are subtracted from each other to calculate the energy consumption during the execution

of the test in micro joules. It is worth mentioning that some activities using this interface advise

caution regarding the overflow of this measurement in samples taken more than 60 seconds apart

[2]. Due to the simple nature of our problems, the tests run much faster, and consequently, this

threat was not considered however, in future work with more lengthy tests this should be taken

into account.

Finally, since the time elapsed and the energy consumption is not measurements only regarding

the tests in our extension but rather are metrics of the performance of the whole machine, for

these values to be consistent, the variation of the number of computationally demanding processes

running simultaneously should be kept to a minimum to assure the quality of the measurements.

4.1.4 Strategies

A Strategy defines how the server will apply mutation operators over the program and, after get-

ting valid mutations of the original program, will decide if each mutation is good enough to be

suggested to the end-user or not.

To implement a Strategy, one must implement a set of defined functions and callbacks defined

by an interface to assure it behaves according to the system specifications:

• getMutations() The Strategy must define which of the operators available in the Operators

module it should apply in the program to create a set of Replacements which will, later

on, be used to create variants to be evaluated. It is worth mentioning that by adding more

operators, although the Strategy becomes more powerful and more likely to find wanted

variants, it also makes the search universe bigger;

By implementing a new Strategy one must aware of these advantages and disadvantages and

choose the operators according to the goals of the Strategy. For example, in this work, there

is a very clear difference between the operators used in optimizing energy and performance

and those used for program repair. Given that the goal of program repair is to create a

new version where the program passes the tests, its semantic meaning must be changed.

28 Framework Implementation

However, in the case of the strategies that optimize energy and performance, the goal is to

create equivalent variations that have better quality metrics;

• validMutant() When the Strategy gets a valid program variant, meaning a mutation that

passes all tests, it must decide whether it is worth being suggested to the end-user or not.

In this function, it is expected for the Strategy to ask an Environment how well the new

variation performs and then comparing the results with other variants’ performance before

making any suggestion or to directly suggest the mutation to the end-user;

• evaluateScore() Working as a callback to the Environment ′s getScore(), in evaluateScore()

the Strategy has the chance to compare the score of a new variant with any information it

might have stored previously about the performance of variations that have already been

generated.

In this work, we use a one-tail t-test over the set of scores returned by the Environments to

assure that there is a statistical difference between the two variants and that one variation does

not just perform better by chance. After running the t-test, if the p-value is lower than 0.05,

we can reject the null hypothesis that both results are derived from two programs with similar

performance.

4.1.5 Technical Challenges

As the number of mutation operators added to the extension increases, so does the number of

variations and consequently, the time spent evaluating said mutations. Due to the simplicity of the

empirical tests designed for this work, the maximum number of mutations per task was reasonable

for the computing power of the used machine. However, for bigger programs with more nodes to

be mutated, the number of variation files created and tested can easily prove to be too demanding

for an average machine, making the use of the tool for the average developer unreasonable. More-

over, once the extension crashes from the overload of work, the residual files may affect future

uses of the tool. To tackle these potential downfalls, we advise future researchers, who may want

to create or extend a mutation-based framework, to create a management component to make sure

the extension is as stable as possible.

Considering the aforementioned two factors, we advise for the creation of a mutation pool,
which asynchronously takes information about which mutations to apply and is responsible to run

them. Based on the design pattern Object Pool, this component could take advantage of the slow

process of creating, editing, closing, and deleting files and could simplify the whole process by

keeping a pool file descriptors that are used to test variations. With this method, we can do without

the creation and deletion of a new file for each variant and we can easily assure that the maximum

number of mutations being generated at the same time is manageable according to the systems’

capabilities. This change would allow for quicker mutation testing and consequently the increase

of the number of mutations being tested as well as the additional stability from the management of

4.2 Visual Studio Code Extension 29

resources. Furthermore, this component, by defining specific file descriptors in every run, would

guarantee that past crashes would not have considerable impacts in future uses of the extension.

4.2 Visual Studio Code Extension

Our tool is extended from the work of Campos [11] and thus already has a way to suggest a

mutation to the user and a simple way for them to accept the suggestion. In Figure 4.3 and Figure

4.4, we can see how a user, after hovering over an underlined section of the code, is able to read

what the extension is suggesting and also accept the suggestion by clicking on Quick Fix... which

automatically approves the patches and updates the code.

In Figure 4.3, we can see a suggestion of a constant variable contraction, as described in

Subsection 4.1.2.1, where the expression 9.8 / 2 can be contracted to 4.9. The Figure 4.4

illustrates the extension displaying multiple suggestions generated with the Switch Variable Dec-

laration Keyword mutation, found in Subsection 4.1.2.2 where it suggests that keywords const

and var have better properties than the current keyword, let, regarding the active Strategy.

Figure 4.3: Code suggestion regarding
a constant variable contraction.

Figure 4.4: Code suggestion regarding
a declaration variable mutation.

To accommodate the new changes which allow users to change between strategies, a new

setting called strategy has been implemented. This option can be changed by browsing the ex-

tension’s settings and using the toggle to change between Program Repair, Energy Optimizer and

Performance Optimizer as seen in Figure 4.5. Once the strategy is set, the user only has to save

the file by pressing CTRL+S for the extension to run and look for suggestions.

Figure 4.5: Extension’s drop-down setting to select the strategy

30 Framework Implementation

4.3 Summary

This chapter describes the proposed solution and the details of its implementation including the

framework architecture overview and the VSCode extension. In Section 4.1 (p. 21), we explain the

general architecture of the framework by explaining its components, the Mutation Operators, the

Strategy and the Environments and how they interact in order to reach the end goal of making a

valid suggestion to the end-user.

Finally, in Section 4.2 (p. 29), it is described the functionalities already implemented in Cam-

pos’ work [11], and the features implemented to integrate our Automated Program Optimization

through Visual Studio Code.

Chapter 5

Empirical Evaluation

5.1 Methodology . 31

5.2 Result Analysis . 36

5.3 Main Findings . 46

5.4 Threats to Validity . 48

5.5 Summary . 49

This chapter focuses on presenting the empirical evaluation of the tool developed in this work.

The methodology used in this study is presented in Section 5.1. Secondly, the results of the

experiments are presented in Section 5.2 (p. 36) where the results are exposed, analyzed, and

discussed. Finally, the threats to validity are presented in Section 5.4 (p. 48) and the section is

summarized in Section 5.5 (p. 49).

5.1 Methodology

The goal of the study is to evaluate the performance of developers during their workflow when

using our Visual Studio Code extension and to compare it to the performance of a similar workload

without the use of the tool. This evaluation is made by measuring the time taken to solve each

problem, recording the usage or not of our tool, and assessing the final code for each task.

As illustrated in Figure 5.1, participants start off with the Setup of the experiment. In this

stage, the participant is given a brief overview of the structure of the experiment with details

regarding how the practical experiment is divided into two parts and that there will be is of surveys

interspersed with the practical activities. The instructions are simple: one only has to follow the

steps in the surveys. The survey will eventually redirect the participant towards the tasks, once

the tasks are finished, return to the survey to continue. Still, during setup, it is explained to the

users what our Automated Program Optimization tool does, and how to use it. Furthermore, it is

indicated in which half of the practical experiment the participant has access to the extension and

which one they do not. Finally, the participant is instructed to install RustDesk, the remote desktop

31

32 Empirical Evaluation

software used in this experiment, and to connect to the test machine. Afterward, the user is given

access to Background survey and the experiment officially starts.

During the Background Survey, the users are asked about their technical knowledge and

levels of comfort regarding the techniques and technologies used during the experiment (cf. Sub-

section 5.2.1, p. 36). Afterward, the participant is instructed to go to RustDesk and solve the tasks

from the Practical Experiment: Problem Set X. Once the tasks are solved and the participant

goes back to the survey to answer to Practical Survey: Problem Set X which is a section re-

garding the problem set just solved. At the end of this section, the user is redirected back to the

practical environment to solve the tasks from Problem Set Y. Likewise, the practical experiment of

Problem Set Y is followed with a survey regarding the undertaken experiment. A brief overview

of the tasks can be found in Subsection 5.1.2 and the tasks can be found in Appendix A (p. 55).

Finally, the user is asked to answer the Post-Test Survey which collects the overall feedback from

the experiment (cf. Subsection 5.2.3, p. 45). Once the Post-Test Survey is answered, the experiment

is over, it is assured that the surveys were answered and submitted, the final solutions are archived

and lastly, after some words of appreciation, the remote software connection can be terminated.

Background
Survey

Practical Experiment:
Problem Set X

Practical Survey:
Problem Set X

Practical Experiment:
Problem Set Y

Practical Survey:
Problem Set Ỹ

Post-Test
Survey

During Practical
Experiments, we
collect the time to
reach patch and if
the tool was used.

Start End

Setup

Figure 5.1: Diagram of the empirical experiment methodology conducted in this work. During
the practical experiments, the raw data regarding time to reach patch and the tool usage, found in
Table B.1 and B.2, was collected.

5.1.1 Plan

Participants — All the participants must be enrolled in university in a computer science-related

field of study at the time of the test. Furthermore, it is required that all the participants

had some previous experience with JavaScript to reduce the impact of having to learn new

language-specific syntax during the experiment;

Duration — The estimated duration for the experiment, including both taking the survey and

finishing the tasks, is 30 to 40 minutes. However, each task has a timeout set at 7 minutes

to prevent the experiment from taking too long and compromising the users’ participation

quality;

5.1 Methodology 33

Environment — To lessen the potential danger the volunteers would be exposed to by mak-

ing these experiments live in person during a global pandemic, this empirical test is to be

performed online. Consequently, by having a mandatory standardized development envi-

ronment, the setup requirements substantially increase and therefore decrease the number

of volunteers that are able to perform the experiment. Furthermore, one of the strategies

of the tool requires a specific Intel Linux Driver that provides live information about the

hardware energy consumption, which is not a standardized interface among the hardware

manufacturers and is likely to reduce the volunteer pool even further.

Finally, and to reduce the resistance one might have to install Remote Desktop Software,

we use RustDesk′s 1 solution because it is multi-platform and open-source. These deci-

sions are made to minimize the variables in the experiment, which are further explored in

Section 5.4 (p. 48).

Every volunteer uses the same machine running Ubuntu 20.04.2 LTS with an Intel (R) Core

(TM) i7-8700 CPU @ 3.20GHz, Visual Studio Code version 1.57.1, the tool resulting from

this work and has access and permission to browse the Internet;

Procedure — To compare how developers perform with the tool and without it, we divide the 14

participants into two groups of 7 members. Since there are no guarantees that all developers

have the same degree of technical knowledge, the two groups have both to be tested using

the tool and not using the tool to have comparable data. Moreover, to assure that the previous

usage of the tool does not affect future behavior, the two groups use the extension in different

stages of the experiment. While one group uses the tool after being exposed to a problem

set without using the tool, the other group starts the experiment using the tool and finishes

it by solving a problem set without using the tool. To accommodate all these requirements,

we divide the test into two parts per the following structure:

First Part:

• Group A attempts to solve the tasks from Problem Set X without the VSCode tool.

• Group B attempts to solve the tasks from Problem Set X with the VSCode tool.

Second Part:

• Group A attempts to solve the tasks from Problem Set Y with the VSCode tool.

• Group B attempts to solve the tasks from Problem Set Y without the VSCode tool.

Collected Data — During the empirical evaluation, three things are to be recorded for each task:

(1) the time it takes developers from when they are introduced to the new task until they

reach either a solution or an initial optimization, and, for the tasks the users are allowed to

use our tool, (2) if they use any suggestion made by the tool. Finally, after the evaluation is

over, (3) all the solutions for the tasks are saved;

1RustDesk — An open-source remote desktop software, https://rustdesk.com/

https://rustdesk.com/

34 Empirical Evaluation

Survey — To have accurate and continuous insight from the user during the evaluation, a survey

is carried out alongside the tasks. The survey is divided into four main sections:

1. Background Focuses on gathering information about the expected technical knowl-

edge of the user as well as their experience using the tools required in the experiment.

2. Practical: Part1 To be answered directly after finishing the tasks from Part 1, this

section is meant to understand the users’ perspective of the problems and their perfor-

mance in the test.

3. Practical: Part2 Similarly to Practical: Part1, this section is meant to better under-

stand the users’ perspective on the tasks but from the second half.

4. Post-test After finishing all the tasks from Practical: Part 2, the user is asked about

their overall satisfaction and experience when using the extension, as well as their

opinion on what is more important in the tool and what they would like improved.

Depending on which group the user is assigned to (A or B), the Practical sections will

be slightly different depending on the usage or not of the tool to get further insight on its

usability and performance. To measure the participants feedback to each statement, they

are required to react to each statement in a 5 point Likert scale [30] comprised by: Strongly

Disagree, Disagree, Neutral, Agree and Strongly Agree.

5.1.2 Tasks

We created a dataset specifically for this study to evaluate the tool’s impact on a developer’s

workflow. There are plenty of benchmarks for both program repair 2 and program optimization
3 however, these were created to access the quality of the solutions designed whereas the goal

of this work is to study the utility of real-time suggestions during the development workflow.

Consequently, the tasks in the experiment are either a simplification of the optimization problems

[15] (Tasks 3) or adaptations from simple program repair tasks already curated by Campos in [11]

(Tasks 1, 2, and 4).

Task 1
The first task is meant to introduce the user to the extension. The user is asked to implement

a version of either slice or substring but with slightly different interval restrictions.

In Problem Set X, the user is asked to implement a version of JavaScript ′s substring where

the second index should be included.

In Problem Set Y, the user should implement a version of slice where the second index

should be included in the final array.

2http://program-repair.org/benchmarks.html Retrieved on: 29/06/2021
3https://www.mcs.anl.gov/~more/cops/ Retrieved on: 29/06/2021

http://program-repair.org/benchmarks.html
https://www.mcs.anl.gov/~more/cops/

5.1 Methodology 35

Task 2
The second task presents to the user an already fully working program. Again, the goal

of the volunteer is to optimize the performance of the given function. For these tasks, it is

expected for the users to use a Declaration Keyword Mutation.

In Problem Set X, we introduce a fully working Bubble Sort implementation where every

variable is defined with the let keyword. The user is expected to either define len or tmp

as const or realize that the usage of var, despite not as safe because of its global scope,

prevents the variable from being defined on every single loop interaction and result in faster

mutations for the variables i and j.

In Problem Set Y, the problem is adapted from [11] where the function calculates a set of

scores based on a string originally from the /r/dailyprogrammer subreddit4. Analogous to

its counterpart from Problem Set Y, the goal is to induce the user to take advantage of the

different properties of the Declaration Keywords.

Task 3
The goal for the third task is to evaluate how comfortable the user is to optimize a given

function regarding its energy cost.

Pinto et al. [40] identified eight general strategies to reduce energy, but most of the strategies

are too complex to be improved through the use of simple mutation operators and often use

hardware-only concepts, which are out of scope for this work. Therefore, considering the

limitations of mutation operators and assuming the energy consumption of our program is

limited to the sum of the costs of its operations, the users are introduced to programs with a

lot of operations, with the goal of simplifying the instructions and thus saving energy.

In Problem Set X, the user is asked to optimize a function that calculates the positions of

an object in a specified interval. By rearranging the expression and/or simplifying some

constants, reducing the number of operations necessary to execute the program is possible.

In Problem Set Y, the goal is to optimize a function that calculates the area of the Gabriel’s

Horn, a geometric figure with an infinite surface area but finite volume [54]. Following the

same rationale as in the previous Problem Set, the instructions can be rearranged, and some

operations can be simplified.

Task 4
For the fourth and final task, the users are asked to finish implementing a function. How-

ever, following the instructions to finish the implementation is insufficient as there is an

underlying bug in the program. Both tasks are adapted from Campos’ work [11].

4https://www.reddit.com/r/dailyprogrammer/comments/8jcffg/20180514_challenge_361_easy_tally_program/ Re-
trieved on 29/06/2021

https://www.reddit.com/r/dailyprogrammer/comments/8jcffg/20180514_challenge_361_easy_tally_program/

36 Empirical Evaluation

In Problem Set X, the problem is adapted with the goal of doing the reverse of a factorial,

meaning that if n! = m, then n is the reverse factorial of m. This problem can be found in

the /r/dailyprogrammer subreddit5.

In Problem Set Y, we challenge the user with a problem originally from the /r/dailypro-

grammer subreddit6 that calculates the number of coins necessary to reach the desired

amount. The function is given an ordered list of coins and the desired amount.

5.2 Result Analysis

In this section, we will analyze and discuss the collected background information from the partic-

ipants in Subsection 5.2.1. Secondly, in Subsection 5.2.2, we will go over the performance of the

participants during the experiment itself. These results are divided into four subsections: (1) the

Time to Reach Patch meaning the time the participants take to find a valid patch for the tasks, (2)

Code where we analyze the final code solutions submitted by the participants at the end of the ex-

periment, (3) the Survey subsection which reflects the feedback the user gives, through the survey,

in parallel with the practical experiments and finally, (4) in Tool Usage, how often the participants

use our extension. Lastly, in Section 5.2.3 (p. 45), we outline the feedback from the participants

after the completion of all the tasks in the practical experiment.

5.2.1 Background

To better get to know the participants of this experiment, a Background section with Likert-type

statements are given to the volunteers before starting the experiment. This survey inquires the

participants about their technical knowledge, their comfort with the experiment environment tech-

nologies, and their confidence in skills like debugging and problem-solving. This section is com-

prised of 8 questions denominated from B1 to B8.

B1: I have considerable experience with JavaScript;

B2: I have considerable experience with Testing Frameworks;

B3: I have considerable experience with Visual Studio Code (VSCode);

B4: I regularly use tools that offer suggestions to help me code (linters, code completion, etc);

B5: I feel comfortable understanding code I have not seen before;

B6: I feel comfortable in identifying bugs in code I have not seen before;

B7: I feel comfortable in fixing bugs in code I have not seen before;

5https://www.reddit.com/r/dailyprogrammer/comments/55nior/20161003_challenge_286_easy_reverse_factorial/
Retrieved on: 29/06/2021

6https://www.reddit.com/r/dailyprogrammer/comments/7ttiq5/20180129_challenge_349_easy_change_calculator/
Retrieved on: 29/06/2021

https://www.reddit.com/r/dailyprogrammer/comments/55nior/20161003_challenge_286_easy_reverse_factorial/
https://www.reddit.com/r/dailyprogrammer/comments/7ttiq5/20180129_challenge_349_easy_change_calculator/

5.2 Result Analysis 37

B8: I feel comfortable in optimizing code I have not seen before.

Figure 5.2: Histogram of the scores for the Background survey.

To calculate the score for each participant, we use the average of the score for each item

where each statement is rated on a scale of 1 (Strongly Disagree through 5 (Strongly Agree).

Consequently, the minimum and maximum values are 1 and 5, respectively, and the average is 3.

To analyze the scores of both groups, we plot the scores of the participants in Figure 5.2.

Despite the values showing a tendency for scores slightly above the average, both groups seem to

follow this trend meaning there is no apparent significant difference between the groups’ technical

knowledge in this histogram.

Table 5.1: Statistical values and p−values for hypothesis testing the answers from the Background
survey.

Group Size Mean Std. Deviation Shapiro-Wilk (p) Levene (p) t-test (p)

A 7 3.37 0.38 0.33
0.24 0.41

B 7 3.21 0.32 0.89

To further study potential background differences between the groups and check if there is

any evidence that they are statistically different, we test the null hypothesis for both groups being

sampled from a population with an equal mean.

As seen in Table 5.1, both groups have a higher mean than the average of 3. Furthermore, and

to evaluate if there is any statistically relevant difference between the two groups, we use Levene’s

test for equality of variances, the Shapiro-Wilk test, and finally, the Student’s t-test.

38 Empirical Evaluation

For the Levene’s test for equality of variances, we test for the null hypothesis that both groups

derive from a population with equal variances. After finding the p-value of 0.24, which is substan-

tially bigger than the significance level of 0.05, we cannot reject the null hypothesis.

Secondly, we test the null hypothesis to understand if the groups derive from a population with

a normal distribution. With this in mind, we use the Shapiro-Wilk test. The resulting p-value from

this test is also significantly bigger than the significance level of 0.05, and therefore we cannot
reject the null hypothesis.

Finally, we use the Student’s t-test to test the null hypothesis that the means of the populations

from which group are sampled are the same. After obtaining the p-value of 0.41, which is signif-

icantly bigger than the significance level of 0.05, we cannot reject the null hypothesis. We thus

can conclude that there is no statistical difference between the groups.

Figure 5.3: Stacked Bar Chart with the frequencies for Group A (left) and Group B (right) for the
answers of the Background survey section.

Moreover, we can analyze the specific answers for each item to find interesting trends. Figure

5.3 shows, for each Background item, the frequency of each answer for each group. Items B1,

B3 and B4 show that both groups are generally comfortable with the environment used in the

experiments by agreeing they were familiarized using JavaScript (B1), V SCode (B3) and external

tools that offer suggestions (B4):

B1: I have considerable experience with JavaScript;

B3: I have considerable experience with Visual Studio Code (VSCode);

B4: I regularly use tools that offer suggestions to help me code (linters, code completion, etc).

On the other hand, the users disagree the most with items B2, B8 and, to a lower extent, B7
which show a lack of experience using testing frameworks as well as some unease to fix bugs
or optimize code never seen before.

5.2 Result Analysis 39

B2: I have considerable experience with Testing Frameworks;

B7: I feel comfortable in fixing bugs in code I have not seen before;

B8: I feel comfortable in optimizing code I have not seen before.

5.2.2 Practical Experiment

For this empirical work, the volunteers are required to solve 2 ProblemSets with 4 Tasks each. To

measure their performance during these tasks, and as mentioned in Subsection 5.1.1, three metrics

are recorded:

• the time to reach the first patch;

• the code of the final solution;

• whether or not a suggestion was accepted.

5.2.2.1 Time to Reach Patch

The Table 5.2 shows the Mean and StandardDeviation for each task and group. Except for Task

4 from Problem Set X, we can see that every mean for the time to reach a patch with the use of

the extension is smaller than without its use which would hint that, by using the tool, in aver-

age, a user is faster in completing the assignment. Furthermore, tasks 2 and 3 show the biggest

difference in their means, which is according to our expectations since the users show a lack of

confidence in their skills to optimize unseen code in the answers to Background question B8 (cf.

Subsection 5.2.1, p. 36) and, with the use of the tool, a suggestion would be immediate.

However, to evaluate if the difference in time to reach patch by using the tool is statistically

different, we decide to do a two-sided Mann-Whiney U test for each task to test if the time spent

when using the extension is significantly higher or lower than without its use. With these tests, we

want to assess the following hypothesis:

H0 (Null Hypothesis): The distributions of the populations from which each group was sampled

are identical.

H1 (Alternate Hypothesis): The distributions of the populations from which each group was sam-

pled are not identical.

According to the values in Table 5.2, most p-values of the Mann-Whiney U test are smaller

than the standard threshold of 0.05 defined. These underlined values for tasks 2 and 3 from both

problem sets and task 1 from problem set X as well as task 4 from problem set y show that we can

reject the Null Hypothesis that the distributions of the populations are identical for these tasks. On

the other, for the remainder of the assignments, we cannot reject the Null Hypothesis. Therefore

we are not able to confirm any statistical evidence that the groups performed differently.

40 Empirical Evaluation

Table 5.2: Statistical values and the Mann-Whiney U p-value for the times to reach patch for each
group and task

Task Set Tool Mean Std. Deviation Mann-Whiney U p-value

1
X

Yes 02:07 00:23
0,00058

No 03:19 00:17

Y
Yes 01:26 00:41

0,14130
No 01:54 00:35

2
X

Yes 01:47 00:25
0,00408

No 03:48 01:06

Y
Yes 01:55 00:27

0,01748
No 02:49 00:44

3
X

Yes 01:41 00:26
0,00233

No 03:45 01:28

Y
Yes 01:24 00:38

0,00699
No 02:41 00:38

4
X

Yes 06:22 00:33
0,24810

No 05:24 01:28

Y
Yes 03:35 00:38

0,00116
No 05:50 01:27

5.2.2.2 Code

Although the time to reach a patch is a significant metric to analyze the effects of the tool in a

participant’s workflow, we ought to understand how the suggestions from the extension may affect

the quality and readability of the code. Considering the inherent freedom one has when asked

to optimize a program on a metric other than its correctness (program repair), the participants’

solutions show significantly different patches for these two types of tasks.

Program Repair: In Task 4 of Problem Set Y, after the user follows the instructions to update the

value of map.total, the program still has a bug in an i f condition. The bug happens because

the program continues to add coins while the total is less than the wanted instead of while

the total is less or equal to consider the final iteration. The bug is found in the following

condition:

5.2 Result Analysis 41

1 // From Problem Set Y, Task 4, line 22

2 if (coin + map.coinTotal < change)

The extension suggests four different possible patches:

1 // Patch 1

2 if ((coin - 1) + map.coinTotal < change)

3 // Patch 2

4 if (coin + (map.coinTotal - 1) < change)

5 // Patch 3

6 if (coin + map.coinTotal <= change)

7 // Patch 4

8 if (coin + map.coinTotal < (change + 1))

Despite each patch being semantically equivalent, one might claim that the 3rd Patch is a

better portrait of what the condition is meant for and thus a better solution. When analyzing

the participants’ solutions, we find that from all the participants that do not use the
extension, every participant fixes the program using Patch 3. In contrast, participants
using our tool select the first patch on the suggestion list, the Patch 1, except for one

user that finished the Task by using the Patch 3;

Program Optimization: Within program optimization, participants show a clear distinction be-

tween patches accepted from the extension and human-generated patches.

Despite also following the same logic of minimizing the number of operations made, users

tend not to introduce new constant variables. Instead, they prefer rewriting the formulas

when not using our tool.

For example, in Task 3 of Problem Set X, for the following code snippet:

1 // From Problem Set X, Task 3

2 for(var t = 0; t < interval; t++) {

3 var newY = posY + velY*t - (9.8/2)*t*t;

4 answer.push(newY);

5 }

When using the tool, every user accepts the suggestion made to simplify the constant value

from (9.8/2) to (4.9). This pattern is also seen in the analogous task from Problem Set

Y where developers simplify (Math.Pi/3) to (1.0471975511965976) despite their

behavior showing some hesitance and even having 2 cases where a new constant variable is

made to explain the meaning of this number.

42 Empirical Evaluation

On the other hand, when not using the tool, 6 out of the 7 users decide that the better solution

to minimize the number of operations in this loop is to to rearrange the operations like in

the following example:

1 // From Problem Set X, Task 3

2 for(var t = 0; t < interval; t++) {

3 var newY = posY + ((velY - (9.8/2)*t))*t;

4 answer.push(newY);

5 }

One other interesting sight was that, in Group A, which does not have access to the tool in

the first half of the experiment, only one user out of seven substitutes one of the keywords
with the intent to improve the performance of the program. On the other hand, in Group B,

the group which does have access to the tool in the first half, every user changes at least
one instance of a keyword for another one in the hopes to optimize the code, which hints

to the fact that the users from Group B learn that these substitutions are a possible way to

optimize the code.

5.2.2.3 Survey

After solving each Problem Set, the participants are asked to fill a survey about the freshly done

tasks to get a feel of their immediate feedback.

P1: The bugs were easy to identify;

P2: The solutions were straightforward;

P3: I feel like I spent more time in identifying the bugs than in solving them;

P4: I was able to confidently make improvements in the code;

P5: The extension was faster in identifying fixes than me;

P6: I used the fixes suggested by the extension. (correctness only, not regarding optimization

suggestions);

P7: I understood the fixes suggested by the extension;

P8: I used the improvement suggestions by the tool;

P9: I tried to understand the improvements suggested before accepting them;

P10: The difficulty of the problems were similar.

Depending on whether the user has access to our tool or not, and depending on the Problem

Set, the survey is slightly different to accommodate for the different environment and context.

5.2 Result Analysis 43

Items from P1 through P4 are asked in every stage since they are only meant to judge the

users’ perspectives on the tasks. However, in sections where the user has access to the extension,

they are also presented with P5 through P9. Finally, P10 is available at the beginning of the second

half of the survey to minimize the time from completing the tasks to answering this item and thus

have the best possible comparison.

Problem Set X: As seen in Figure 5.4, there are no significant differences between the answers

in common for both groups. There is, however, a small skew to the right for the Group

B which is the group using the tool in this stage. This skew may be influenced by the

tool’s availability, making the problems seem easier when solving them with the extension.

Moreover, one may argue the skew on P4 is slightly bigger, which, as long as the users trust

the tool, would be according to expectations since there is considerable unease in optimizing

code (cf. Subsection 5.2.1, p. 36).

Regarding the extension-specific questions, the users show very positive reactions regarding

the extension speed in identifying fixes (P5), usage, and attempt to understand the proposed

patches (P6 and PX7) and the adhesion of the tool for optimization purposes (P8). There is,

however, more receptive feedback from the user regarding understanding the improvements,

this might be because the suggestions went against some coding guidelines the user follows

(cf. Subsection 5.2.2.2, p. 40) or maybe, the user does not understand the reason why the

patch is considered to have better metrics;

Figure 5.4: Stacked Bar Chart with the frequencies for Group A (left) and Group B (right) for the
answers of the survey section regarding Problem Set X

Problem Set Y: As for Problem Set Y, as seen in Figure 5.5, three of the first four items in Group

B, P1, P2 and P4, show a considerable skew to the left suggesting that members of Group B

found the bugs from this set harder to identify, with not so straightforward solutions and had

44 Empirical Evaluation

overall less confidence in their improvements. This is counter-intuitive since we expect the

group to have learned some tips and tricks from the previous problem set. However, there

is a strong similarity between the results from both groups when not using the tool, which

further hints that the problems are perceived to be easier when using the tool.

The results from Group A are also positive when using the extension. Moreover, this group

is more critical to accept suggestions from the tool without understanding them. We believe

this is due to some intellectual curiosity this group might have from finally discovering if

their performance in the previous section (in Problem Set X) is up to what was expected or

not by critically comparing the suggestions to their previous improvements.

Figure 5.5: Stacked Bar Chart with the frequencies for Group A (left) and Group B (right) for the
answers of the survey section regarding Problem Set Y

Finally, according to P10, and to make sure these results are comparable, we ask the participants if

they feel that the analogous problems from the different problem sets are similar, which the users

strongly agree with.

5.2.2.4 Usage of Extension

During the experiment stage, in which the participants can use the extension, the user has to choose

to either accept or not the suggestion. However, for both of Tasks 4, since bugs are only detected

by the tool after everything else is correct, if a user corrects the present bug before finishing the

implementation, the extension does not give any suggestion throughout the task. Nonetheless, for

each task from each problem set, we record if the user accepts a suggestion or not. A suggestion is

considered accepted if the participant uses the native V SCode Quick Fix option or if the user, after

reading the suggestions given, opts into using the concept of one of the patches suggested.

5.2 Result Analysis 45

Table 5.3: Usage of the tool for each Task and Problem Set

Task Problem Set Usage (%)

1
X 85.7

Y 71.4

2
X 100.0

Y 100.0

3
X 100.0

Y 100.0

4
X 71.4

Y 100.0

To understand the results from the Table 5.3, we need to understand the characteristics of the

tasks and how they may influence the results. Considering all of the tasks 2 and 3 refer to the

optimization of code after it being semantically correct, something found in Section 5.2.1 (p. 36)

that participants are not too comfortable with, all of the users accept the immediate suggestion

provided by our tool. The only variations seen are from users on Task 3 of the Problem Set Y who,

after getting the suggestion of substituting Math.PI/3 for 1.0471975511965976, decide to

create a variable with this constant to clarify its meaning.

For Tasks 1, there is a slightly lower number for Problem Set Y which might be evidence that

two of the seven users from Group A, after debugging and solving an identical problem in the

previous problem set are expecting a similar solution.

Finally, by comparing the two results from Task 4, it seems that the extension does better

with the assignment from Problem Set X. However, the 0,29% of participants that do not use the

extension in this task, fix the bug before finishing implementing the function. We believe that this

may have happened because the bug present in the first set is more likely to catch a developer’s

attention than its analogous since the remainder of an operation is usually not negative, especially

in the context of factorial numbers, which are usually positive.

1 // Bug found on Task 4, Problem Set X

2 if (num % cand < 0)

3 // Bug found on Task 4, Problem Set Y

4 if (coin + map.coinTotal < change)

5.2.3 Post-Test Survey

After all the tasks are completed, the users are asked to fill a final survey, the Post-Test survey.

With this survey, we want to understand the overall perspective of the participants towards the

effect of our tool during the experiment. The Post-Test had the following 5 statements:

46 Empirical Evaluation

PT1: The tool was simple to use;

PT2: This tool can positively impact my development workflow;

PT3: I would consider using this tool;

PT4: A tool like this is likely to distract me from my development;

PT5: I would trust the tool.

Figure 5.6: Stacked Bar Chart with the frequencies for the answers of the survey section regarding
the Post Test.

The participants are in great agreement with the statements PT1, PT2, PT3 and PT5 indicating

that the tool is simple to use, could positively impact developers’ workflow. Moreover, users agree

they would consider using the tool and that they trust the tool output.

5.3 Main Findings

With the experiments finished and the results recorded, we expect to answer our Research Ques-

tions previously made in Section 3.2 (p. 18):

RQ1: Are users faster in reaching a patch when using a real-time Automatic Program Optimiza-

tion tool?

On the one hand, when comparing the time to reach a patch in Subsection 5.2.2.1, we note

that for tasks 2 and 3, where a user is asked to optimize a program in a metric other than

5.3 Main Findings 47

program correctness, we can reject the null hypothesis that there is no statistical difference

between the results seen. Therefore there is evidence supporting our assumptions regarding

RQ1 for optimizations on energy and speed.

On the other hand, tasks 1 and 4, specifically meant for optimizing the program correctness,

do not have conclusive results. For tasks 1, we believe the discrepancy seen is caused

by the similarity and simplicity of the two tasks, which may lead the developers to learn

the solution during the first section (in Problem Set X) and then be considerably faster,

and thus more consistent, in the task of the Problem Set Y. On both tasks 4, we find that

developers spend more time understanding the rationale behind the recursive call than fixing

the underlying bug. Conversely, for task 4 in Problem Set Y, a direct instruction to update a

variable was given, and the core rationale of the algorithm is already written.

Nevertheless, the observed differences of the means between analogous tasks when using

our tool and when not using it are significant. We see that times to reach a patch with our

extension are consistently lower than its counterpart in 75% of our assignments. For that

reason, we argue that there is significant statistical evidence to support that users are faster
at reaching a patch when using an Automatic Program Optimization tool.

RQ2: Are users aware of the rationale suggestions generated by an Automatic Program Opti-

mization tool before accepting them?

Regarding RQ2, we ask our participants, after answering each problem set using our tool,

if they understand the suggestion given. The answers are overwhelmingly positive for both

Group A and Group B despite being more so for Group A, which we suspect is caused by

some curiosity one might have to compare their previous solutions without the extension

with the patches suggested by our tool.

However, the final solutions are not as conclusive. Despite their final code for Tasks 2 and

3 supporting our claim since every user on Problem Set Y from Group B, who has access to

the extension in the first stage, uses an identical mutation learned in the previous problem

set as observed in Subsection 5.2.2.2. When faced with a problem with a different rationale,

like Task 4 from Problem Set Y, participants using our extension overwhelmingly accept

patches that are deemed not as human friendly, which suggests that our survey answers may

be skewed by the willingness of the participants to agree with what they may think is our

hypothesis.

While it is possible that despite the users not accepting what we consider is the most human-

friendly option and thus consistent with the survey feedback, we believe that there is enough

evidence suggesting otherwise. Therefore, it’s not conclusive that the users understand the

rationale behind the suggestions made by the tool.

RQ3: Are solutions programmed by human developers different from the solutions generated by

an Automatic Program Optimization tool?

48 Empirical Evaluation

As seen in Subsection 5.2.2.2, there is a consistent difference between the patch found

in Task 4 from Problem Set Y between participants using the tool and those who do not.

Related to our RQ2, we believe that users with the tool, by not completely understanding the

rationale behind the suggestion, steer towards picking the first seen suggested patch rather

than choosing the alternative that most closely resembles what we consider to be the best

natural language representation of the condition. Hence, we find that solutions generated by

an Automatic Program Optimization are mostly different.

5.4 Threats to Validity

Every empirical study suffers from threats to validity that must be studied and considered when

defining the structure and environment of the experiment and how to interpret the results criti-

cally. For each of the following validity threats: Construct Validity, Internal Validity and External

Validity, we analyze what they are and how they may affect our experiment.

5.4.1 Construct Validity

Construct validity refers to how well our assumptions and overall construction of the environment

were made. In this study, it would include the tasks, environment, and collected data.

Validity of the Problem Sets
To assure the fidelity of the experiment, the problems must represent realistic problems that

a developer is likely to face during their professional work. To mitigate this threat, we use

either existing code the program repair tasks and try to simplify optimization problems to

make them manageable for our time constraints and context.

Furthermore, the assumptions made from comparing the results from analogous tasks from

different problem sets assume that the problems are of similar difficulty. To understand if

this would be a serious factor, we ask our users what their perception is after finishing all

the tasks. The participants’ responses show that the problems from the different sets are not

significantly different as seen in the answers to P10 in Subsection 5.2.2.3.

Hypothesis Guessing
As a threat to the quality of our tool usage metrics, it is possible that users do not just

passively participate in the experiment but also are actively trying to guess our hypothesis.

This may have resulted in higher values of tool usage percentage since it is the most notable

difference in the environment between the two stages of the experiment.

Environment and Data Collecting
Despite the environment being constant since every experiment is done remotely on the

same machine, the variable delay in the remote connection may have some impact on users’

rhythm and performance. Furthermore, our definition of a valid patch is of a patch that

either improves the program correctness in the APR tasks or introduces optimization for

5.5 Summary 49

tasks 2 or 3. Since we are not studying the objective improvement in optimization, this

process becomes somewhat subjective. Consequently, the times to reach the patch were

recorded by observation which may introduce some error in the collected data.

5.4.2 Internal Validity

Internal validity pertains to the security in inferring conclusions from a set of independent variables

and the effects observed.

Motivation of the Participants
In these experiments, we try to study if the usage of our tool impacted the time a user takes

to reach a patch. However, since the tasks are comprised of a single-function problem and

there is no concept of ownership or maintenance (i.e., the user is not expected to maintain

this codebase in the future), one can hypothesize that the patches found are not sustainable

and therefore would not be found in a professional setting.

Physical Environment
As a consequence of the experiments being fully remote and the user not being required to

have nor a microphone nor a camera turned on at all times, the control of the environment

not only is impossible to enforce but is harder to record. Our strategy to mitigate this factor

is to inform the users, before the experiment, that they should be alone in a room for 30 to

40 minutes to be considered available for this experiment.

5.4.3 External Validity

Finally, external validity reflects how well the findings of a study can be generalized to different

samples of participants and settings.

Sample Size
There were 14 participants in this study’s experiment, divided into two groups. In the future,

this should be taken into account, and more users should be tested for the mean values to be

more accurate and to decrease the impact of possible outliers in the study.

5.5 Summary

In Section 5.1 (p. 31), we start off by outlining the process in which the experiments were con-

ducted, including the ideal participant profile and the environment in which the tests take place.

We further detail the tasks included in the experiment and their characteristics.

In Section 5.2 (p. 36), we analyze the answers from the surveys taken by the participants, the

characteristics of their final solutions to our tasks, and finally, we discuss how these findings fit in

our Research Questions. Lastly, in Section 5.4 (p. 48), we go over the main threats to the validity

of our study and experiments and the steps taken to mitigate them.

50 Empirical Evaluation

Chapter 6

Conclusions

6.1 Conclusions

In this work, we explore the effects of the usage of an Automated Program Optimization tool

during the workflow of a developer in order to test our hypothesis:

“Using a real-time Automatic Program Optimization tool improves the speed and

final result of code solutions.”

To validate our hypothesis, we extended a Visual Studio Code created by Campos for [11]

in order to not only assess the performance of developers when using a program-repair oriented

extension but also for other, more generic, metrics that one might value. In this case, we used

program repair, energy cost optimization, and performance optimization as our tested metrics.

Afterward, we carried out an empirical study to evaluate the performance of software developers

during their workflow in order to compare the performances both with the extension and without

it. The aforementioned experiment was carried out to validate our hypothesis and answer our

Research Questions:

RQ1: Are users faster in reaching a patch when using a real-time Automatic Program Optimiza-

tion tool?

According to the study performed, a user was faster to reach a patch with the extension ver-

sus its counterpart in 75% of the assignments that we tested the participants on. Therefore,

we claim that users are faster to reach a patch when using a real-time Automatic Program

Optimization tool.

RQ2: Are users aware of the rationale suggestions generated by an Automatic Program Opti-

mization tool before accepting them?

Due to inconsistencies between the users’ feedback through the surveys, where participants

strongly agreed that they understood the suggestions, their actual behavior, and their final

code solutions, we believe users may have tried guessing our hypothesis when answering

51

52 Conclusions

the surveys. Findings in the final code solutions suggest that participants without the ex-

tension find solutions that best describe the solution in natural language whereas we believe

most users with the extension accept suggestions as long as they are semantically correct.

Therefore, we believe our findings were not conclusive.

RQ3: Are solutions programmed by human developers different from the solutions generated by

an Automatic Program Optimization tool?

Although we do not claim the energy and speed optimization mutations are objectively the

best (since they were generated from trial and error via mutations), we found evidence that

solutions generated by our tool are significantly different from solutions proposed by our

participants. Furthermore, we argue that the natural language meaning of the solutions

suggested by our tool is often very different from the human-written solutions which might

be an indicator that the solutions are not as easy to interpret.

To sum up, we claim that the usage of an Automated Program Optimization tool significantly
decreases the time to find a patch. Furthermore, we found evidence that solutions generated by

our tool were different from the solutions generated by our participants when not using the

extension. However, since this experiment was only partaken by 14 participants, may not portrait

the reality and in the future new experiments should be made with this in mind.

6.2 Main Contributions

The main contributions of this work can be summarized in the following two items:

• A Visual Studio Code implementing a real-time Automated Program Optimization tool,

which is composed of three main components that are easily extendable to increase the type

of operators used, the strategy in which the extension chooses what operators to use and

which mutations to accept and finally, environments that can be defined to evaluate in either

run-time or statically the score of a specific mutation;

• An empirical study with 14 participants to assess the usefulness of the extension developed

by dividing the participants into two groups which had to finish a total of 8 tasks. The tasks

themselves were divided into two problem sets, with analogous tasks of similar difficulty, in

which we could further evaluate the impact of the tool.

6.3 Future Work

Despite the extension being ready to be extended with the addition of new mutation operators,

new strategies, and new environments to evaluate new metrics, there are still features that can be

implemented and tested for:

6.3 Future Work 53

• Creating another component directed towards bottleneck localization would decrease the

number of positions in which the mutations are applied and consequently increase the num-

ber of mutations that can be applied without losing the real-time aspect of the suggestions;

• As seen in this work, one of the struggles this technology may face in future adoption relies

on developers not understanding the meaning of the suggestion. Therefore, we believe there

is great value in creating a system that is coupled with the operators that may provide some

insight on why the mutation might have better characteristics;

• Organize more experiments taking into account the recommendations given previously in

Section 5.4 (p. 48) to further explore how Automated Program Optimization can be used in

the development workflow.

• Finally, we believe that an Automated Program Optimization tool should be able to give

a confidence level on the suggestion it gives to the user to help the developer make their

decision.

54 Conclusions

Appendix A

Code from Experiments

This appendix is divided into 4 sections, one for each pair of Tasks. For each Task, two listings

can be found: the first for Problem Set X and the second for Problem Set Y.

A.1 Task 1

A.1.1 Problem Set X

1 let assert = require(’assert’)

2
3 /*

4 Problem 1: Substring

5
6 Given a string a and two indexes, find the substring contained within those two

indexes.

7
8 The usage of your function should be:

9
10 mySubstring(’Mozilla’, 1, 2) = ’oz’

11 mySubstring(’Mozilla’, 3, 3) = ’i’

12
13 Use the JavaScript substring function (usage: stringVariable.substring(num1, num2))

.

14 */

15
16 function mySubstring(str, i1, i2) {

17 return str

18 }

19
20 describe(’mySubstring’, function() {

21 it(’should return a substring. #fix {mySubstring} (1)’, function() {

22 assert.strictEqual(mySubstring(’This is a string.’, 1, 2), ’hi’)

23 })

55

56 Code from Experiments

24
25 it(’should return a substring. #fix {mySubstring} (2)’, function() {

26 assert.strictEqual(mySubstring(’This is a string.’, 6, 8), ’s a’)

27 })

28 })

A.1.2 Problem Set Y

1 let assert = require(’assert’)

2
3 /*

4
5 Problem 1: Splice

6
7 Given an array a and two indexes, find the slice contained within those two indexes

(both included).

8
9 The usage of your function should be:

10
11 mySlice([’a’, ’b’, ’c’, ’d’], 1, 2) = [’b’, ’c’]

12 mySlice([’a’, ’b’, ’c’, ’d’], 3, 3) = [’d’]

13
14 Use the JavaScript Slice function (usage: arrayVariable.slice(num1, num2)).

15 */

16
17 function mySlice(arr, i1, i2) {

18 return arr

19 }

20
21 describe(’mySlice’, function() {

22 it(’should return reverse factorial. #fix {mySlice} (1)’, function() {

23 assert.deepStrictEqual(mySlice([’a’, ’b’, ’c’, ’d’], 1, 2), [’b’, ’c’])

24 })

25
26 it(’should return reverse factorial. #fix {mySlice} (2)’, function() {

27 assert.deepStrictEqual(mySlice([’a’, ’b’, ’c’, ’d’], 3, 3), [’d’])

28 })

29 })

A.2 Task 2

A.2.1 Problem Set X

A.2 Task 2 57

1 var assert = require(’assert’)

2
3 /*

4
5 Problem 2: Optimize the bubble sort algorithm to make it run as fast as possible.

6 https://en.wikipedia.org/wiki/Bubble_sort

7 */

8 function bubbleSort(inputArr) {

9 let len = inputArr.length

10 for (let i = 0; i < len; i++) {

11 for (let j = 0; j != len; j++) {

12 if (inputArr[j] > inputArr[j + 1]) {

13 let tmp = inputArr[j]

14 inputArr[j] = inputArr[j + 1]

15 inputArr[j + 1] = tmp

16 }

17 }

18 }

19 return inputArr

20 }

21
22 describe(’bubbleSort’, function() {

23 it(’should return sorted array. #fix {bubbleSort} (1)’, function() {

24 assert.deepStrictEqual(bubbleSort([10]), [10])

25 })

26
27 it(’should return sorted array. #fix {bubbleSort} (2)’, function() {

28 assert.deepStrictEqual(bubbleSort([1, 2, 3, 4]), [1, 2, 3, 4])

29 })

30
31 it(’should return sorted array. #fix {bubbleSort} (3)’, function() {

32 assert.deepStrictEqual(bubbleSort([4, 2, 4, 1, 2, 2]), [1, 2, 2, 2, 4, 4])

33 })

34 })

A.2.2 Problem Set Y

1 let assert = require(’assert’)

2
3 let gen = require(’random-seed’)

4
5 /*

6
7 Problem 2: Some Friends (a, b, c, d, e, ..., z) are playing a game and need to keep

track of the scores.

8 Each time someone scores a point, the letter of his name is typed in lowercase.

58 Code from Experiments

9 If someone loses a point, the letter of his name is typed in uppercase.

10
11 Optimize the following algorithm to make it run as fast as possible.

12
13 abcde:

14 {

15 a: 1

16 b: 1

17 c: 1

18 d: 1

19 e: 1

20 }

21
22 dbaCEDbacB:

23 {

24 a: 2

25 b: 1

26 c: 0

27 d: 0

28 e: -1

29 }

30
31 */

32
33
34 function tallyScore(n, seed) {

35 let rand = gen.create(seed)

36 let tally = {}

37
38 for (let i = 0; i < n; i++) {

39 let charCode = rand(58) + 65

40 while (charCode >= 91 && charCode <= 96) {

41 charCode = rand(58) + 65

42 }

43 assert(charCode >= 65 && charCode <= 122)

44 let currentChar = String.fromCharCode(charCode)

45
46 let lower = currentChar.toLowerCase()

47 let point = tally[lower] || 0

48
49 if (charCode >= 97) {

50 tally[lower] = point + 1

51 } else {

52 tally[lower] = point - 1

53 }

54 }

55
56 return tally

57 }

A.3 Task 3 59

58
59 describe(’tallyScore’, function () {

60
61 it(’should return the score.. {tallyScore} (1)’, function () {

62 const result = {

63 c: 195,

64 v: -2,

65 f: 179,

66 s: 226,

67 z: -289,

68 h: -16,

69 g: 75,

70 y: -7,

71 l: 182,

72 w: 264,

73 i: 194,

74 j: -22,

75 e: -413,

76 t: -393,

77 p: -330,

78 u: 81,

79 a: -245,

80 n: -400,

81 k: -91,

82 b: -68,

83 x: -157,

84 r: -33,

85 m: 5,

86 q: 92,

87 d: -77,

88 o: 14

89 };

90
91 assert.deepStrictEqual(tallyScore(1000000, "first-test"), result);

92 })

93 })

A.3 Task 3

A.3.1 Problem Set X

1 let assert = require(’assert’)

2
3 /*

4 Problem 2: The following function calculates the vertical position of a body after

getting thrown in the air

60 Code from Experiments

5 If possible, attempt to optimize this function so that it consumes the least

amount of energy

6 */

7
8 // A weight is thrown in the air, calculate its posY in the first ’interval’ second

9 function positionCalculator(posY, velY, interval) {

10 var answer = []

11
12 for (var t = 0; t < interval; t++) {

13 var newY = posY + velY * t - (9.8 / 2) * t * t;

14 answer.push(newY);

15 }

16
17 return answer;

18 }

19
20 function areSimilar(preCalculated, newCalc) {

21 assert.strictEqual(preCalculated.length, newCalc.length)

22 for (let i = 0; i < newCalc.length; i++) {

23 assert.ok(Math.abs(preCalculated[i] - newCalc[i]) < 0.001)

24 }

25 }

26
27 describe(’positionCalculator’, function () {

28 it(’should return the position of the body. #fix {positionCalculator} (1)’,

function () {

29 const preCalculated = [0, 95.1, 180.4, 255.9, 321.6, 377.5, 423.6, 459.9,

486.4, 503.09999999999997, 510, 507.0999999999999, 494.4, 471.9,

439.5999999999999, 397.5, 345.5999999999999, 283.89999999999986,

212.39999999999986, 131.0999999999999, 40, -60.90000000000009,

-171.60000000000036, -292.0999999999999, -422.4000000000001,

-562.5000000000005, -712.4000000000001, -872.1000000000004,

-1041.6000000000004, -1220.9000000000005, -1410, -1608.9000000000005,

-1817.6000000000004, -2036.1000000000004, -2264.4000000000005, -2502.5,

-2750.4000000000005, -3008.1000000000004, -3275.6000000000004,

-3552.9000000000005, -3840, -4136.9, -4443.6, -4760.1,

-5086.4000000000015, -5422.500000000002, -5768.4, -6124.1, -6489.6,

-6864.9000000000015, -7250.000000000002, -7644.9, -8049.6,

-8464.100000000002, -8888.400000000001, -9322.5, -9766.400000000001,

-10220.1, -10683.600000000002, -11156.900000000001, -11640,

-12132.900000000001, -12635.600000000002, -13148.100000000002,

-13670.400000000001, -14202.5, -14744.400000000001,

-15296.100000000002, -15857.600000000002, -16428.9, -17010, -17600.9,

-18201.600000000002, -18812.100000000002, -19432.4, -20062.5, -20702.4,

-21352.100000000002, -22011.600000000002, -22680.9, -23360, -24048.9,

-24747.6, -25456.100000000006, -26174.4, -26902.500000000007, -27640.4,

-28388.1, -29145.600000000006, -29912.9, -30690.000000000007,

-31476.9, -32273.6, -33080.100000000006, -33896.4, -34722.50000000001,

-35558.4, -36404.1, -37259.600000000006, -38124.9];

A.3 Task 3 61

30 const newCalc = positionCalculator(0, 100, 100)

31 areSimilar(preCalculated, newCalc)

32 })

33
34 it(’should return the position of the body. #fix {positionCalculator} (2)’,

function () {

35 const preCalculated = [0, 45.1, 80.4, 105.9, 121.6, 127.5, 123.6,

109.89999999999998, 86.39999999999998, 53.099999999999966, 10,

-42.90000000000009, -105.60000000000002, -178.10000000000002,

-260.4000000000001, -352.5, -454.4000000000001, -566.1000000000001,

-687.6000000000001, -818.9000000000001, -960, -1110.9,

-1271.6000000000004, -1442.1, -1622.4, -1812.5000000000005, -2012.4,

-2222.1000000000004, -2441.6000000000004, -2670.9000000000005, -2910,

-3158.9000000000005, -3417.6000000000004, -3686.1000000000004,

-3964.4000000000005, -4252.5, -4550.400000000001, -4858.1, -5175.6,

-5502.900000000001, -5840, -6186.9, -6543.6, -6910.1,

-7286.4000000000015, -7672.500000000002, -8068.4, -8474.1, -8889.6,

-9314.900000000001, -9750.000000000002, -10194.9, -10649.6,

-11114.100000000002, -11588.400000000001, -12072.5,

-12566.400000000001, -13070.1, -13583.600000000002,

-14106.900000000001, -14640, -15182.900000000001, -15735.600000000002,

-16298.100000000002, -16870.4, -17452.5, -18044.4, -18646.100000000002,

-19257.600000000002, -19878.9, -20510, -21150.9, -21801.600000000002,

-22462.100000000002, -23132.4, -23812.5, -24502.4, -25202.100000000002,

-25911.600000000002, -26630.9, -27360, -28098.9, -28847.6,

-29606.100000000006, -30374.4, -31152.500000000007, -31940.4, -32738.1,

-33545.600000000006, -34362.9];

36 const newCalc = positionCalculator(0, 50, 90)

37 areSimilar(preCalculated, newCalc)

38 })

39 })

A.3.2 Problem Set Y

1 let assert = require(’assert’)

2
3 /*

4 Problem 3: The following function calculates the volume of Gabriel’s Horn, decribed

as the circular volume following 1/x from 1 to infinity

5 If possible, attempt to optimize this function so that it consumes the least

amount of energy

6 */

7
8 function gabrielHornVolume(delta) {

9
10 var INF = 1e5;

62 Code from Experiments

11 var volume = 0;

12 for(var i = 1.0; i < INF; i += delta) {

13 var h1 = 1.0/i;

14 var h2 = 1.0/(i+delta)

15 volume += Math.PI/3*delta*(h1*h1+h1*h2+h2*h2)

16 }

17
18 console.log(volume);

19 return volume

20 }

21
22 describe(’gabrielHornVolume’, function() {

23 it(’should return the volume of the horn. #fix {gabrielHornVolume} (1)’,

function() {

24 const volume1 = gabrielHornVolume(0.01)

25 assert.ok(Math.abs(Math.PI-volume1) < 0.001)

26
27 const volume2 = gabrielHornVolume(0.009)

28 assert.ok(Math.abs(Math.PI-volume2) < 0.001)

29 })

30 })

A.4 Task 4

A.4.1 Problem Set X

1 let assert = require(’assert’)

2
3 /*

4
5 Problem 4: Reverse Factorial

6
7 Everyone knows 5! corresponds to 5 * 4 * 3 * 2 * 1 = 120. In this problem, you need

to write a function which, given

8 120, returns 5 - the reverse factorial.

9
10 If there is no number possible, return -1.

11
12 Hint: The strategy is pretty straightforward, just divide the term "num" by

successively larger terms until you get to "1" as the resultant:

13 */

14
15 function unfactorial(num, cand = 1) {

16 let isCand = num === cand

17 if (isCand) return cand

18 if (num % cand < 0) return -1

A.4 Task 4 63

19
20 // Implement Recursive call

21 }

22
23 describe(’unfactorial’, function() {

24 it(’should return reverse factorial. #fix {unfactorial} (1)’, function() {

25 assert.equal(unfactorial(120), 5)

26 })

27
28 it(’should return reverse factorial. #fix {unfactorial} (2)’, function() {

29 assert.equal(unfactorial(150), -1)

30 })

31 })

A.4.2 Problem Set Y

1 let assert = require(’assert’)

2
3 /*

4
5 Problem 4: Finish this partial implementation of a change processing function.

6
7 As an input, you’re given an array with the coins you have, as well as the desired

change to give. You must

8 output the smallest number of coins possible to return the correct value of change.

9
10 Assume the array is ordered from largest to smallest.

11
12 */

13
14 function processChange(arr, change) {

15 if (arr.length === 0) {

16 return -1

17 }

18
19 let result = arr.reduce(

20 (map, num) => {

21 let coin = parseInt(num)

22 if (coin + map.coinTotal < change) {

23 map.coinTotal += coin

24 map.coins.push(coin)

25 // Update the "total" value

26 }

27 return map

28 },

29 { total: 0, coinTotal: 0, coins: [] }

64 Code from Experiments

30)

31
32 arr.splice(0, 1)

33
34 return result.coinTotal === change ? result.total : processChange(arr, change)

35 }

36
37 describe(’processChange’, function () {

38 it(’should return change. #fix {processChange} (1)’, function () {

39 assert.equal(processChange([100, 50, 50, 50, 50], 150), 2)

40 })

41
42 it(’should return change. #fix {processChange} (2)’, function () {

43 assert.equal(processChange([2, 4, 5], 10), -1)

44 })

45 })

Appendix B

Raw Data Collected

This appendix comprises the information collected during the practical experiments. Table B.1

and Table B.2, for Group A and Group B respectively, display the information for each task from

Problem Set X and Problem Set Y for each participant. Participants are represented by the con-

catenation of their assigned group, A or B, and their chronological order, 1 through 7 (i.e. A3 was

the third participant from Group A.)

Table B.1: Raw Data Collected from Group A experiments. Values with an asterisk represents
users that do not use the tool, only applicable to the section in which the user has access to the
tool.

Group A A1 A2 A3 A4 A5 A6 A7

Problem Set X
(without tool)

Task 1 190 217 166 216 208 197 200
Task 2 230 320 223 287 189 238 115
Task 3 133 369 307 128 195 243 200
Task 4 357 420 291 165 420 323 292

Problem Set Y
(with tool)

Task 1 75 97 174 65 58 83 54
Task 2 80 161 139 118 99 108 100
Task 3 59 103 36 68 156* 91 75
Task 4 234 225 235* 169 277 191 230

Table B.2: Raw Data Collected from Group B experiments. Values with an asterisk represents
users that do not use the tool, only applicable to the section in which the user has access to the
tool.

Group B B1 B2 B3 B4 B5 B6 B7

Problem Set X
(with tool)

Task 1 95 136 152 111 128 109 159
Task 2 143 125 104 72 118 77 111
Task 3 79 155 96 109 99 100 75
Task 4 334 377 418* 406* 348 420* 371

Problem Set Y
(without tool)

Task 1 102 57 109 164 97 153 117
Task 2 134 128 259 148 170 158 190
Task 3 168 161 243 143 140 130 148
Task 4 279 295 337 269 370 521 382

65

66 Raw Data Collected

References

[1] Developer Mozilla reference statements declarations in javascript. https://developer.mozilla.
org/en-US/docs/Web/JavaScript/Reference/Statements#declarations. Accessed: 2020-06-
29.

[2] Rapl on linux. http://web.eece.maine.edu/~vweaver/projects/rapl/. Accessed: 2021-02-07.

[3] Abstract the economics of software maintenance in the twenty first century, 2006.

[4] Ademar Aguiar, André Restivo, Filipe Figueiredo Correia, Hugo Sereno Ferreira, and
João Pedro Dias. Live software development: Tightening the feedback loops. In Proceed-
ings of the Conference Companion of the 3rd International Conference on Art, Science, and
Engineering of Programming, Programming ’19, New York, NY, USA, 2019. Association
for Computing Machinery.

[5] Sérgio Almeida, Ana CR Paiva, and André Restivo. Mutation-based web test case generation.
In International Conference on the Quality of Information and Communications Technology,
pages 339–346. Springer, 2019.

[6] A. Avizienis, J. . Laprie, B. Randell, and C. Landwehr. Basic concepts and taxonomy of de-
pendable and secure computing. IEEE Transactions on Dependable and Secure Computing,
1(1):11–33, 2004.

[7] Jon Louis Bentley. Writing Efficient Programs. Prentice-Hall, Inc., USA, 1982.

[8] Alan W. Biermann. Approaches to automatic programming. volume 15 of Advances in
Computers, pages 1–63. Elsevier, 1976.

[9] Andrew Black, Stéphane Ducasse, Oscar Nierstrasz, Damien Pollet, Damien Cassou,
and Marcus Denker. Pharo by example. square bracket associates, 2009. URL
http://pharobyexample. org.

[10] Diogo Campos. Tests as specifications towards better code completion. 2019.

[11] Diogo Campos, André Restivo, Hugo Sereno Ferreira, and Afonso Ramos. Automatic pro-
gram repair as semantic suggestions: An empirical study. In 2021 14th IEEE Conference on
Software Testing, Verification and Validation (ICST), pages 217–228, 2021.

[12] Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna, and Christian Le. Rapl:
Memory power estimation and capping. In 2010 ACM/IEEE International Symposium on
Low-Power Electronics and Design (ISLPED), pages 189–194, 2010.

[13] Vidroha Debroy and W. Eric Wong. Using mutation to automatically suggest fixes for faulty
programs. In 2010 Third International Conference on Software Testing, Verification and
Validation, pages 65–74, 2010.

67

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements#declarations
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements#declarations
http://web.eece.maine.edu/~vweaver/projects/rapl/

68 REFERENCES

[14] Richard A DeMillo, Richard J Lipton, and Frederick G Sayward. Hints on test data selection:
Help for the practicing programmer. Computer, 11(4):34–41, 1978.

[15] E D Dolan, J J More, and T S Munson. Benchmarking optimization software with cops 3.0.
5 2004.

[16] Andrew Fischer. Introducing circa: A dataflow-based language for live coding. In 2013 1st
International Workshop on Live Programming (LIVE), pages 5–8, 2013.

[17] Stephanie Forrest, ThanhVu Nguyen, Westley Weimer, and Claire Le Goues. A genetic
programming approach to automated software repair. In Proceedings of the 11th Annual
Conference on Genetic and Evolutionary Computation, GECCO ’09, page 947–954, New
York, NY, USA, 2009. Association for Computing Machinery.

[18] L. Gazzola, D. Micucci, and L. Mariani. Automatic software repair: A survey. IEEE Trans-
actions on Software Engineering, 45(1):34–67, 2019.

[19] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. Automated program repair.
Commun. ACM, 62(12):56–65, November 2019.

[20] Mark Grechanik, Chen Fu, and Qing Xie. Automatically finding performance problems
with feedback-directed learning software testing. In Proceedings of the 34th International
Conference on Software Engineering, ICSE ’12, page 156–166. IEEE Press, 2012.

[21] Valentina Grigoreanu, Roland Fernandez, Kori Inkpen, and George Robertson. What de-
signers want: Needs of interactive application designers. In Proceedings of the 2009 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC), VLHCC ’09,
page 139–146, USA, 2009. IEEE Computer Society.

[22] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu. On the
naturalness of software. In Proceedings of the 34th International Conference on Software
Engineering, ICSE ’12, page 837–847. IEEE Press, 2012.

[23] Alan C. Kay. The early history of smalltalk. SIGPLAN Not., 28(3):69–95, March 1993.

[24] David Kelk, Kevin Jalbert, and Jeremy S. Bradbury. Automatically repairing concurrency
bugs with arc. In João M. Lourenço and Eitan Farchi, editors, Multicore Software Engi-
neering, Performance, and Tools, pages 73–84, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[25] Juraj Kubelka, Romain Robbes, and Alexandre Bergel. The road to live programming: In-
sights from the practice. In 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE), pages 1090–1101, 2018.

[26] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A generic method for auto-
matic software repair. IEEE Transactions on Software Engineering, 38(1):54–72, 2012.

[27] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer. A system-
atic study of automated program repair: Fixing 55 out of 105 bugs for $8 each. In 2012 34th
International Conference on Software Engineering (ICSE), pages 3–13, 2012.

[28] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. Perffuzz: automatically
generating pathological inputs. pages 254–265, 07 2018.

REFERENCES 69

[29] Remo Lemma and Michele Lanza. Co-evolution as the key for live programming. In 2013
1st International Workshop on Live Programming (LIVE), pages 9–10, 2013.

[30] Rensis Likert. A technique for the measurement of attitudes. Archives of psychology, 1932.

[31] Q. Luo, D. Poshyvanyk, A. Nair, and M. Grechanik. Forepost: A tool for detecting perfor-
mance problems with feedback-driven learning software testing. In 2016 IEEE/ACM 38th
International Conference on Software Engineering Companion (ICSE-C), pages 593–596,
May 2016.

[32] Ruchika Malhotra and Anuradha Chug. Software maintainability: Systematic literature re-
view and current trends. International Journal of Software Engineering and Knowledge
Engineering, 26:1221–1253, 10 2016.

[33] Brad Myers, Sun Young Park, Yoko Nakano, Greg Mueller, and Andrew Ko. How designers
design and program interactive behaviors. In 2008 IEEE Symposium on Visual Languages
and Human-Centric Computing, pages 177–184, 2008.

[34] Michael O’Neill. Automatic Programming in an Arbitrary Language: Evolving Programs
with Grammatical Evolution. PhD thesis, University Of Limerick, Ireland, August 2001.

[35] S. Oney, B. Myers, and J. Brandt. Interstate: A language and environment for expressing
interface behavior. pages 263–272, 2014.

[36] Stephen Oney, Brad A. Myers, and Joel Brandt. Euclase: A live development environment
with constraints and fsms. In 2013 1st International Workshop on Live Programming (LIVE),
pages 15–18, 2013.

[37] Michael O’Neill and Lee Spector. Automatic programming: The open issue? Genetic
Programming and Evolvable Machines, 21, 06 2020.

[38] Ana CR Paiva, André Restivo, and Sérgio Almeida. Test case generation based on mutations
over user execution traces. Software Quality Journal, 28(3):1173–1186, 2020.

[39] Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman Jana. Slowfuzz: Au-
tomated domain-independent detection of algorithmic complexity vulnerabilities. CoRR,
abs/1708.08437, 2017.

[40] Gustavo Pinto, Fernando Castor, and Yu David Liu. Mining questions about software energy
consumption. In Proceedings of the 11th Working Conference on Mining Software Repos-
itories, MSR 2014, page 22–31, New York, NY, USA, 2014. Association for Computing
Machinery.

[41] Afonso Jorge Ramos. Property Tests as Specifications Towards Better Code Completion.
2020.

[42] M. Riedl-Ehrenleitner, A. Demuth, and A. Egyed. Towards model-and-code consistency
checking. pages 85–90, 2014.

[43] A. L. Samuel. Some studies in machine learning using the game of checkers. IBM Journal
of Research and Development, 3(3):210–229, 1959.

[44] Erik Sandewall. Programming in an interactive environment: The “lisp” experience. ACM
Comput. Surv., 10(1):35–71, March 1978.

70 REFERENCES

[45] D.C. Schmidt. Guest editor’s introduction: Model-driven engineering. Computer, 39(2):25–
31, 2006.

[46] S. Sendall and W. Kozaczynski. Model transformation: the heart and soul of model-driven
software development. IEEE Software, 20(5):42–45, 2003.

[47] Du Shen, Qi Luo, Denys Poshyvanyk, and Mark Grechanik. Automating performance bot-
tleneck detection using search-based application profiling. In Proceedings of the 2015 In-
ternational Symposium on Software Testing and Analysis, ISSTA 2015, page 270–281, New
York, NY, USA, 2015. Association for Computing Machinery.

[48] Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. Is the cure worse than
the disease? overfitting in automated program repair. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015, page 532–543, New
York, NY, USA, 2015. Association for Computing Machinery.

[49] Joanna Strug. Mutation testing approach to negative testing. Journal of Engineering,
2016:6589140, Jul 2016.

[50] Steven L. Tanimoto. Viva: A visual language for image processing. Journal of Visual
Languages & Computing, 1(2):127–139, 1990.

[51] Steven L. Tanimoto. A perspective on the evolution of live programming. In 2013 1st
International Workshop on Live Programming (LIVE), pages 31–34, 2013.

[52] Luca Della Toffola, Michael Pradel, and Thomas R. Gross. Synthesizing programs that
expose performance bottlenecks. In Proceedings of the 2018 International Symposium on
Code Generation and Optimization, CGO 2018, page 314–326, New York, NY, USA, 2018.
Association for Computing Machinery.

[53] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. Automatically
finding patches using genetic programming. In Proceedings of the 31st International Con-
ference on Software Engineering, ICSE ’09, page 364–374, USA, 2009. IEEE Computer
Society.

[54] Chanakya Wijeratne and Rina Zazkis. On painter’s paradox: Contextual and mathematical
approaches to infinity. International Journal of Research in Undergraduate Mathematics
Education, 1:163–186, 2015.

[55] Claes Wohlin. Guidelines for snowballing in systematic literature studies and a replication
in software engineering. In Proceedings of the 18th International Conference on Evaluation
and Assessment in Software Engineering, EASE ’14, New York, NY, USA, 2014. Association
for Computing Machinery.

[56] Yongjie Zheng and Richard N. Taylor. Enhancing architecture-implementation conformance
with change management and support for behavioral mapping. In Proceedings of the 34th
International Conference on Software Engineering, ICSE ’12, page 628–638. IEEE Press,
2012.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Problem Definition
	1.4 General Goals
	1.5 Document Structure

	2 State of the Art
	2.1 Methodology
	2.2 Automatic Programming
	2.3 Automated Program Repair
	2.3.1 Generate and Validate
	2.3.2 Semantics-Based Program Repair

	2.4 Localization Strategies
	2.5 Live Programming
	2.6 Summary

	3 Problem Statement
	3.1 Problem Definition
	3.2 Main Hypothesis and Research Questions
	3.3 Validation
	3.4 Summary

	4 Framework Implementation
	4.1 Architecture
	4.1.1 Overview
	4.1.2 Mutation Operators
	4.1.3 Environments
	4.1.4 Strategies
	4.1.5 Technical Challenges

	4.2 Visual Studio Code Extension
	4.3 Summary

	5 Empirical Evaluation
	5.1 Methodology
	5.1.1 Plan
	5.1.2 Tasks

	5.2 Result Analysis
	5.2.1 Background
	5.2.2 Practical Experiment
	5.2.3 Post-Test Survey

	5.3 Main Findings
	5.4 Threats to Validity
	5.4.1 Construct Validity
	5.4.2 Internal Validity
	5.4.3 External Validity

	5.5 Summary

	6 Conclusions
	6.1 Conclusions
	6.2 Main Contributions
	6.3 Future Work

	A Code from Experiments
	A.1 Task 1
	A.1.1 Problem Set X
	A.1.2 Problem Set Y

	A.2 Task 2
	A.2.1 Problem Set X
	A.2.2 Problem Set Y

	A.3 Task 3
	A.3.1 Problem Set X
	A.3.2 Problem Set Y

	A.4 Task 4
	A.4.1 Problem Set X
	A.4.2 Problem Set Y

	B Raw Data Collected
	References

