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Abstract

In recent years the industry has grown in many different ways, with new materials and

fabrication methods being developed. This, allied with the availability and lowering cost

of sensors has sparked the widespread use of Non-Destructive Testing, which has various

advantages over the more classic testing such as tensile, fracture or creep testing. There

is also a large advancement in the development of Structural Health Monitoring meth-

ods, that use different techniques, specifically Lamb Waves to ascertain the integrity of

engineering structures through the analysis of sampled responses to mechanical impulses.

The purpose of this project is to inspect the structural integrity of adhesive joints, as

their relevance in the industry expands, specially in the aeronautical and automotive, and

with the greater inclusion of composite materials in mechanical design. Methods utilizing

time series sensor data for damage detection have shown great promise in classifying the

extent of damage present in plate structures when used in union with machine learning

algorithms. Despite this success, there is still a lack of robust methods for choosing

features that optimize the learning process to classify any damage.

This project aims to assemble a multi-class classification pipeline that takes the raw

sensor data, obtained from finite element simulations, extracts features containing mean-

ingful information regarding the data, preprocesses this information, selecting the features

according to their significance relative to the classes, and uses them in machine learning

algorithms, that will predict the damage class for each instance of testing. The project

was developed with data obtained from simulated numerical models, because training and

testing machine learning algorithms requires large volumes of data, therefore it would be

impracticable to use experimental data. Nevertheless, these models are in every way pre-

pared to process real sensor data, as long as the information is presented in the proper

format.

After a brief introduction to adhesives, adhesive joints and their properties, and an

initial visualization of the sensor signals and some manually extracted features for context,

a powerful time series specialized feature extraction method is implemented, from which

over 75 different prominent features and their variations are extracted. Then, by utilizing

hypothesis tests, some are selected as relevant for the classification of each damage class,

and the Benjamini-Hochberg procedure is applied for the removal of false positives. After

this selection stage, the features are visualized with dimensionality reduction techniques,

namely Multidimensional Scaling, among others, and are inserted into supervised machine

learning algorithms, such as the Random Forest and Gradient Boosting classifiers, where

not only is it possible to achieve good classification metrics using all features, but also

reveal and isolate which features allow the best differentiation of each damage class.

This methodology accounts for robustness by utilizing different layers of selection and

classification, validating the feature relevance in relation to the appropriate set of classes.

As such, different damage types and ranges can be detected in this pipeline, as long as

the classes are properly defined.
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Resumo

Nos últimos anos a indústria tem vindo a evoluir em vários aspetos, com o desen-

volvimento de novos materiais e processos de fabrico. Aliada à maior disponibilidade

e decrescente custo de sensores, esta evolução potenciou a disseminação de Testes Não-

Destrutivos, que possuem diversas vantagens sobre testes mecânicos mais convencionais,

tais como ensaios de tração, fratura ou fluência. Existem também grandes progressos

no desenvolvimento de métodos de Monitorização de Integridade Estrutural, que utilizam

diferentes técnicas, especificamente Lamb Waves, entre outras, para verificar a integridade

de estruturas através da análise do sinal amostrado de resposta a impulsos mecânicos.

O propósito deste projeto é explorar Lamb Waves para monitorização e inspeção

da integridade estrutural de juntas adesivas, em virtude da sua crescente relevância na

indústria, sobretudo aeronáutica e automóvel, e com a ascendente inclusão de materiais

compósitos como solução de projeto mecânico. Métodos que utilizam séries temporais

de sensores para deteção de danos mostram grande potencial em classificar a extensão

dos danos presentes em estruturas em placa, quando usados em união com algoritmos de

machine learning. Apesar deste sucesso, há ainda uma falta de métodos robustos para

seleção de caracteŕısticas (features) que otimizem o processo de aprendizagem dos modelos

para classificar os danos.

Este projeto tem como objetivo construir uma progressão de classificação multi-class,

que inicia com os dados dos sensores em bruto, extrai features que contenham informação

significativa sobre os dados, efetua uma fase de pré-processamento em que são selecionadas

features que sejam relevantes para a triagem das classes, e utiliza-as em algoritmos de

machine learning supervisionados, que efetuam a previsão das classes de dano para cada

iteração de teste. Os dados usados para o desenvolvimento do projeto são obtidos por

modelos numéricos de simulação, pois treinar e testar algoritmos de machine learning

requer um extenso volume de dados, tornando impraticável o uso de dados experimentais.

Não obstante, estes modelos estão em todos os aspetos preparados para processar dados

de sensores reais, logo que estes sejam introduzidos com o formato adequado.

Após uma breve introdução a adesivos, juntas adesivas e as suas propriedades, e a

vizualização inicial dos sinais dos sensores e algumas features extráıdas manualmente

para contexto, é implementada uma poderosa ferramenta de extração de features espe-

cializada em séries temporais, da qual resultam acima de 75 features diferentes e as suas

variações para cada sensor. Estas passam por uma série de testes de hipótese, onde al-

gumas são selecionadas como relevantes para a previsão de cada classe, e é-lhes aplicado

o procedimento de Benjamini-Hochberg, para a remoção de falsos positivos. Após esta

fase de seleção, as features são visualizadas com técnicas de redução de dimensionalidade,

nomeadamente Multidimensional Scaling, entre outras, e são então inseridas em vários al-

goritmos de machine learning supervisionados tais como os classificadores Random Forest

e Gradient Boosting, onde não só é posśıvel atingir boas métricas de classificação, mas

também revelar e isolar quais as features que melhor diferenciam cada classe de dano.
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Esta metodologia apresenta robustez através da utilização de diferentes camadas de

seleção e classificação, validando a relevância das features em relação ao conjunto de

classes apropriado. Deste modo, diferentes tipos e intervalos de dano podem ser detetados

nesta progressão, logo que as classes sejam adequadamente definidas.
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1 Introduction

1.1 Background and motivation

This project has emerged as the continuation of the Advanced Joining Processes Unit’s

(AJPU at INEGI) long-standing research into the Structural Health Monitoring (SHM)

of surfaces and adhesive joints with the use of Non-Destructive Testing (NDT) methods,

specifically with the deployment of ultrasonic testing based on Lamb Waves (LW).

Research on LW - an elastic disturbance that propagates on thin plate structures

with shallow to no curvature - and their relevance to this application has been carried out

throughout the last few years, in a collective effort to increase the reliability, integrity and

durability of adhesive bonded structures [18], which are present and growing in popularity

in different industries, such as the aeronautical and automotive, due to their potential for

reduction of weight and cost in relation to mechanical fasteners [19]. As component

reliability and performance is paramount in these fields, the ability to identify and locate

defects without originating any damage to the structure or component under testing is

definitely worthy [20].

LW are a prime candidate for NDT, since they propagate over long distances with

slight attenuation and have the capability of interacting with various types of material

discontinuities and defects [21]. However, the intrinsic nature of LW propagation makes

the interpretation of their characteristics more difficult, since they invariably excite more

than one propagation mode at any given testing frequency [20], and interaction with

defects present in the medium results in very complicated time-based response signals

arising from the sensors. Hence, the opportunity to apply Machine Learning (ML) to the

time series signals should be explored, by extracting meaningful features and inputting

the information into classification algorithms, in order to train them to predict damage.

1.2 Objectives

As it was mentioned, this project is based on previous work developed by AJPU,

namely the development of finite element models with ABAQUS that simulate the propa-

gation of LW in designated media with different defects and damage types. The wave

signals are generated by a single piezoelectric actuator’s impulse, and whose resulting

responses - small mechanical vibrations - are measured with piezoelectric sensors with

specified positions. There are two main objectives to this project:

− Applying dimensionality reduction techniques in an automated manner, putting

in place an automatic feature extraction method that takes the raw time series,

resulting from the simulated LW response signals, and outputs a vector of features;

− With the extracted features, training and testing supervised machine learning (ML)

classification algorithms, that are designed to detect/predict which damage class

the signal originated from.

1
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The ultimate goal is to assemble a ML pipeline from start to finish, designed to

receive raw data from sensors, either from a testing setup or a structure, and classify

what type of damage they have, if any. The data used for the development of the project

is obtained from simulated numerical models, since training and testing ML algorithms

requires large volumes of data, and therefore it would be impracticable to use experimental

data. Nevertheless, these models are in every way prepared to operate with real sensor

data, as long they are properly preprocessed and presented in the same format.

1.3 Research methodology

The first part of the thesis, being a theoretical introduction to the subject of adhesives

and adhesive joints, followed a typical approach, with literature research and the review

of the state of the art on the specific topics of SHM, NDT and LW, and even some topics

on Data Science (DS) and ML that support the practical procedures ahead. As for the

implementation of the feature extraction and classification models, it was very much a

practical endeavor, using the Python open-source programming language on the Spyder

integrated development environment (IDE), and with a hands-on approach from beginning

to end, understanding the libraries and the inner workings of the IDE to program the

different parts originally planned. All of this information can be found online, through

the official documentation of the Python libraries used, which are very informative and

easy to absorb, and so that was the main source of information to the development of the

programming project itself. When in comes to the specific methods carried out throughout

the project, their statistic and scientific concepts were researched as they came up, and

so they are explained opportunely whenever they appear.

1.4 Thesis outline

This thesis is divided into six parts. The present introductory chapter contains a brief

description of the problem addressed and the tools used to approach it, as well as the

background and motivation of this project and its main objectives.

Chapter 2 contains a review on adhesive joints, SHM, NDT and LW.

Chapter 3 comprehends a review of the state of the art and use of DS methods and

concepts such as ML algorithms, Dimensionality Reduction techniques and the details

associated with handling large amounts of data, as well as some representation of the

signal data that will be processed.

Chapter 4 is the start of the practical part of the project, reporting the beginning of the

construction and implementation of the ML pipeline that processes the data, namely the

automated feature extraction and selection part. It also contains the theoretical support

of what is being done.

Chapter 5 presents the back-end of the pipeline, where the preprocessed and selected

features are inserted into several supervised ML algorithms that then predict the different

2
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damage classes. Also contains some theory behind the models.

Chapter 7 presents the main conclusions that resulted from the project’s development

and final results, and indicates some suggestions for further work on these topics, not only

what could be done to improve the results obtained, but also what lies ahead in terms of

expanding the scope of the project’s application.

3
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2 Strucutural Adhesives

2.1 History and introduction to adhesive joints

“When a plate of gold shall be bonded with a plate of silver or joined thereto, it is

necessary to beware of three things, of dust, of wind, and of moisture; for if any come

between the gold and silver they may not be joined together; and therefore it is necessary

to bond these two metals together in a full clean place and quiet.” [22]

The quote presented comes from a massive medieval encyclopedia, De Proprietatibus

Rerum - “The Properties of Things” - compiled around 1250 A.D., by Bartholomaeus

Angelicus, and it clearly shows that, even then, there was a concern about the effectiveness

of the adhesion phenomenon and the knowledge of some basic elements that undermine

the perfect conditions for a successful adhesive bond.

Adhesives have been known and used for centuries, the sensation of stickiness is among

the commonplace experiences of humanity, a phenomenon as natural as resin oozing from

a pine branch, that immediately presents itself as useful to join a tree branch to a stone

point and form a spear [23]. Until the beginning of the 20th century, adhesives obtained

from natural products, such as skins, fish, milk and plants, or natural materials that

intuitively present themselves as sticky. Nowadays, there are very few products anywhere

that do not use adhesives in some aspect, since they are found in all types of industries,

from automotive to construction, electronics and others. But its biggest advocate is the

aeronautic industry, that continuously expands its use, as more composite materials are

introduced [1].

An adhesive can be more formally defined as a material which, when applied to sur-

faces, can join them together and resist separation. Adhesive is, therefore, the general

term which covers materials like glue, cement, paste, and others [4]. As for adhesion as a

phenomenon, it is commonly described as a state where two bodies are stuck together, in

a simple and straightforward manner. Accepting the ASTM D 907 definition that incor-

porates more technical concepts, it is “the state in which two surfaces are held together

by interfacial forces, which may consist of valence or interlocking forces or both” [23],

and that state is in other words the attraction itself that results from intermolecular and

interatomic forces established between two surfaces at the interface [5].

Adhesives based on synthetic polymers, such as epoxy resins, have steadily been con-

sidered as design solutions in different industries, and were approached as a viable al-

ternative to methods such as bolting, riveting, welding and brazing, more traditionally

used, thanks to their ability to adhere to most materials easily. This process eventually

led to the development of this type of material, making them stronger and more reliable,

bringing forth the concept of structural adhesives, able to resist substantial loads and ac-

tively contribute to the stiffness and strength of the structure [4]. Apart from structural

applications, adhesives can also be considered as sealants, for instance in all sorts of liquid

4
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containers, as well as be used to attach surface coatings, like ceramic tiles [4].

An adhesive joint is the finished connection of two surfaces, made of similar or different

materials, through the use of adhesives. The materials that are bonded by the adhesive,

before bonding, are called substrates, and after bonding they are referred to as adherends,

a term first coined by de Bruyne in 1939 [4]. The region linking the adherend and the

adhesive is the interphase, whose chemical and physical characteristics critically influence

the mechanical properties of the adhesive bond itself. Not to be confused with the interface

also known as the boundary layer, that resides within the interphase (where various

interfaces connecting different materials can exist), which is the plane defined by the

contact between the surface and the two materials, where during the formation stages

of the bond, the intimate molecular contact is created. There is also the possibility of

applying a primer, a substance usually applied on the substrates in the surface preparation

steps, to protect them, to improve adhesion in general [1].

Adhesive joints provide a wide variety of advantages when compared to conventional

mechanical fasteners [1]:

− More uniform stress distribution along the bonded area - this leads to a good re-

sistance to dynamic solicitation as well as load transmission and higher stiffness, as

illustrated on Figure 1;

− Reduction of the weight on the structure and consequently, the cost;

− The ability to bond dissimilar materials, with different coefficients of thermal ex-

pansion;

− The ability to bond thin sheets of material - one of the major applications of adhe-

sives;

− Good damping properties, leading to high fatigue strength and good dynamic per-

formance;

− The possibility of automated adhesive application;

− Regular and seamless contours and finishes, due to the absence of drilled holes and

welding marks;

− Intimate contact of the bonded surfaces, protecting them from corrosion.

5
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Figure 1: Advantage of adhesively bonded joints in terms of stiffness (left) and stress

distribution (right), compared to riveted joints. [1].

However, some disadvantages should also be considered [1, 4]:

− The need to avoid peel and cleavage stress because they create a load concentration

in a small area, resulting in low strength in that area;

− Limited resistance to extreme environmental conditions, such as high temperature

and humidity, due to the polymeric nature of the adhesive;

− The necessity of fixing tools to maintain the substrates in position, since the bonding

is usually not instantaneous;

− The requirement of temperature for the hardening of a wide variety of adhesives;

− The necessity of extremely careful surface preparation to ensure good adhesion;

− Permanent solution, since one adhesive bond is not capable of being dismantled and

re-assembled;

− Designing adhesive joints tends to be a complex task, since there are no simple rules

such as in the use of mechanical fasteners;

− Difficult quality control - that could change with NDT techniques.

6



V. F. F. Loreiro Lamb Waves for damage detection in adhesive joints

(a) Normal. (b) Shear. (c) Cleavage. (d) Peel.

Figure 2: Types of stress on adhesive joints. Adapted from [2].

Different mechanical loads applied to the adhesive joint will cause different types of

stress, the usual ones being shown in Figure 2, of which the most common is shear,

because it is the best suited for adhesives having their highest performance, as opposed to

cleavage and peel, that should be avoided at all costs. “Peel is the hated enemy of the

joint designer” [4]. This can be achieved by altering the loading system, by changing the

adhesive joint’s configuration and geometry, improving the load-transfer and minimizing

stress concentrations and peel. Figure 3 shows some of the most frequently employed

joints.

Figure 3: Common engineering adhesive joints. Adapted from [3].

So it can be easily assessed that, if the choice to use an adhesive as a project solution is

correct, the main problems that arise from its use are related with the detail of preparation

and complex design needed, as well and the overall time and conditions indispensable to a

strong bond. The continuous evolution of automation technologies can be of great service
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to combat these problems, as well as a way to tackle the difficulties in quality control

through NDT, which in one of the main points addressed later in this report.

2.2 Classification of adhesives

The primary purpose of the adhesive is to be wetting and spread on the surfaces of the

substrates, fill the gap between them and subsequently form a permanent, coherent bond,

which implies that the first stage requires the adhesive to be applied in the liquid phase,

that then solidifies with certain mechanical characteristics. The main type of classification

of adhesives categorizes them based on the way that this phase transition happens [23],

but they are also defined and grouped by their chemical nature, among other criteria,

such as the nature and the functionality of the polymer base, or even the functional type,

that is the design purpose of the adhesive that determines the properties required to

be successful, since these can be adjusted even when formulated from the same type of

polymer.

Methods of phase change/ Setting mode

With the exception of pressure-sensitive adhesives which do not change phase during

application, adhesives are applied as low-viscosity liquids that wet the adherend surfaces.

These liquid state adhesives are usually obtained by three methods, that lead to different

ways of forming the solid adhesive bond: dispersing/dissolving the adhesive material in a

solvent, that then solidifies as the solvent evaporates; heating of the solid adhesive, that

then solidifies by cooling down; starting with and adhesive material as a liquid monomer,

that then polymerizes by chemical reaction [1].

These activation methods are the base of this classification scheme, that divides the

adhesives as follows [1, 23]:

− Solvent-based adhesives / Loss of solvent - The polymer or polymer blend is

eventually dissolved or dispersed in a solvent carrier. This solvent could be water,

amino-resins, starch or protein glues (among others), but it is more usual to use

organic solvents. An added advantage of an organic solvent is that it dries faster.

On the other hand, such solvents are more expensive than water, are generally

inflammable, irritant/toxic, and the release of solvents to the atmosphere, as well

as health and safety considerations have been accelerating a movement away from

these solutions;

− Hot melt adhesives / Cooling - The primarily mechanical mechanical bond

achieved with this types of adhesives results from solidification, since they usually

are solid below 79◦C. They are heated above this temperature, to the range of

149-188◦C when preparing for application, where they become viscous fluids and

easily wet the substrates, that have to withstand these high temperatures. Upon
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cooling, they solidify rapidly, and as they are mainly constituted of a thermoplastic

polymer (with possible added extenders/fillers), the melting/resolidification process

is repeatable, which allows a reworking of the bonded parts, if needed;

− Chemical Reaction - In this case, there is a chemical change rather than a phys-

ical one. Such reactive adhesives may be single-part reactive liquids and rapidly

convert to solids when exposed to designated energy sources, or two-part systems,

that require the reactants to be stored separately and be mixed shortly before appli-

cation. They will either require heating (Heat Activated adhesives) or exposure to

an electron beam (EB) radiation, or either ultraviolet (UV), visible or microwave ra-

diation (Radiation-Cured adhesives) to perform the reaction. These UV/EB-cured

adhesives have many advantages, like good heat, chemical and abrasion resistance,

dimensional stability, adhesion to a large spectrum of substrates, their rapid cure

at room temperature, that increases production rates, and the controllable depth of

curing penetration, a major advantage over thermal curing. However, EB and UV

equipment and maintenance are expensive.

Chemical/Polymer type

Even though the categorization of adhesives by hardening mechanism is more infor-

mative, a classification based on the chemical nature of the main polymer is often used,

due to the fact that such grouping is simple and requires little explanation. It is achieved

by ordering the materials by class of polymer first (thermoset, thermoplastic or elas-

tomeric), sometimes with a separate class of natural polymers, and then subdividing

these classes into more specific polymer families [1, 4, 23]:

− Thermosets - Thermosets are available in liquid, paste and solid forms, and are

converted to low molecular weight liquids (if not already) in early application stages.

They are subsequently cured by heat and/or chemical catalysts, turning them into

three-dimensional structures with a very high molecular weight. They do not sol-

vate easily, have low creep and survive fairly well in environments heated above

their cure temperature. They have outstanding mechanical strength, and through

modifications by addition of a second polymer they can be made to meet certain

requirements, and so evidently, with this properties and versatility, they are a prime

candidate to structural adhesive utilization. Epoxy adhesives are the most impor-

tant of this bunch: as thermosetting, cross-linked resins, they are strong and brittle,

but through a variety of procedures they can be made more flexible without loss

of tensile strength, bonding a vast span of substrates, in diverse cure temperatures

and humidity conditions;

− Thermoplastics - Thermoplastics are available in liquid and solid forms. Fre-

quently blended with other polymers in order to obtain specific properties such as
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tack or water resistance, their applications are wide-ranging, from packaging, book

binding and shoe-making to remoistenable adhesives (stamps), specific structural

metal bonds or even printed circuits. They and are capable of being softened and

hardened repeatedly with heat cycles around a transition temperature, particular

to each adhesive. Some widely used thermoplastic adhesives are Polyvinyl Acetate,

Polyimides and aromatic Polyamides, and also include Polyesters and Cyanoacry-

lates;

− Elastomers - Elastomers are polymers with rubberlike properties, where the “elas-

tic” portion of the word refers to the capacity to return to original dimension after

a mechanical load is removed. Polymer cross-linking, referred to as vulcanization

when applied to rubbers, was discovered in 1839 by Goodyear [24], and since then it

has become one of the most important topics in polymer technology, since the degree

of cross-linking achieved in the adhesive bond formation has a dominant effect on

the stiffness of the polymer.An important elastomer adhesive is the Polyurethane,

that can be used for applications requiring high toughness and resistance to tear

and abrasion;

− Natural Adhesives - These are polymers obtained from natural resources in many

forms: starch from carbohydrates, not recommended for humid service environ-

ments, protein based glues from animals, bitumen or resin, natural rubbers and

gums

Function

The end purpose of a material has a great effect on its required properties, and fortu-

nately, same polymeric material can be engineered to produce adhesive joints with differ-

ent properties. Adhesives typically have high tensile and shear strengths, while Sealants,

for example silicones, substitute this mechanical strength for impermeability, flexibility,

the capability to resist vibration or bond materials with different coefficients of thermal

expansion, in pursuit of optimal characteristics for filling gaps and cavities among two

substrates. They can also be used to protect electronic components [1].

Primers have the job of protecting the substrates’ surface and improving strength in

structural bonding, and are fundamentally adhesives in solution, usually sprayed on the

substrate. They protect the adherend from chemical reactions, attacks or contamination

between the surface preparation procedures and the bonding phase, reason why the primer

is usually based on the same chemicals as the adhesive that is being used [1].

Hot-Melt adhesives are one of the most versatile types, suitable for most substrate

materials and commonly found in applications not requiring the transfer of high loads,

namely industrial and assembly bonding such as packaging, book bonding, and general

household usage. Their rapid setting leads to very high production speeds, and their
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reduced space and maintenance requirements, in addition to indefinite shelf life, make

them a very economic solution [1, 23].

There are some applications that require specific properties: High-Temperature

Adhesives find their place in extreme environments, for instance advanced aircraft,

satellites, missiles, space vehicles, where they withstand steady temperatures of 260◦C,

reaching much higher temperatures for short periods of time ( 760◦C), and exposure to

abrasive and degrading substances like aircraft fuels, hydraulic fluids, etc. They are quite

expensive, require high cure temperatures and sometimes complicated cure schedules; as

for Conductive Adhesives, usually based on epoxy polymers, have as the focal require-

ment electrical or thermal conductivity, which use metallic or metal coated fillers for this

purpose, which end up raising the cost of this adhesive materials, as well as changing

some of the mechanical properties [1, 4, 23].

Finally, Structural Adhesives - Their main task is to transfer loads, either static

or dynamic, withstanding stresses that can be quite substantial between their adherends,

providing stiffness for the whole structure. In practical terms, this means bond strengths

of approximately 6-8 MPa, and lap shear strengths up to 70 MPa [23]. In the formation

of structural adhesives, hardening is almost always achieved by chemical reaction which

involves either Chain (addition) polymerization or Step (condensation) polymerization,

and cross-linking in certain adhesives. Typically cross-linked thermosetting resins are

used, even though some other types can be used, for example Acrylics, that are thermo-

plastics [23].

Structural adhesives find themselves in suitable applications such as components of air-

craft fuselage, construction, machinery and the automotive industry, or even the aerospace

industry, where their light weight, reliability and good fatigue resistance/vibration damp-

ing are of prime importance.

The principal disadvantage that prevents this technology from reaching further levels

is the lack of an universal method to detect damage and predict long-term behaviour, and

the pursuit of that is in itself the motivation for this whole project [1, 4, 23].

At this point, it needs to be said that it is not a trivial task to classify adhesives into

perfectly separate categories, and that is because there are cross-category characteristics

in display, clearly illustrated with some of the above listed examples: Epoxies, for instance,

are mentioned as one of the principal candidates for structural purposes, as thermosetting,

cross-linked resins; however, they also appear as a group of Elastomers, which have nitrile

rubber added, and are widely used in films and tapes. The term “Hot-melt” can designate

both a type of setting mode and a function.

Nevertheless, it is important to establish this classification framework in order to fa-

cilitate the selection of the the most suitable adhesive material to each design application.
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2.3 Problems associated with adhesive joints

Even if a certain adhesive is the perfect choice for a given application, its durability is

a function of the entire bonding system, that is, adhesion defects and other problems can

still arise and lead the joint to failures of different types when subjected to mechanical

stress, be it because of the lack of proper surface preparation, absence of a mandatory

primer or other environmental disturbances, such as high humidity.

Structural bonds, in particular, are expected to undergo some (possibly various)

form(s) of loading for a significant part of their service life, and so an understanding

of the bond failure and failure modes is critically important. It can occur in a number of

places within a bonded joint or structure, as illustrated in Figure 4 [1, 23]:

− Cohesively within the adherends;

− Interfacially between the adherend and an altered layer resulting from any pre-

treatment;

− Cohesively within an altered layer resulting from pre-treatment;

− Interfacially between pre-treatment and a primer, if present;

− Cohesively within a primer;

− Interfacially between a primer and the adhesive;

− Cohesively within the adhesive.

Figure 4: Types of failure within a bonded joint. Adapted from [1].
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Mixed failure modes resulting from a combination of the failures mentioned above are

commonly observed. Clearly, the first option should not occur with thick metal adherends,

or well designed structural parts, but this failure has nothing to do with the adhesive joint

itself. The other options occur when any of the adhesive layers is compromised cohesively,

or suffer interfacial disconnections from one another [23].

In the case of structural joints, cohesive failure of the adhesive is often observed. As

it has been mentioned throughout this chapter, structural adhesives are cured in order

to develop cross-linking among the polymers during the assembly of the joint, joining

the groups of atoms into large, three-dimensional structures, as shown in Figure 5 c),

accounting for a higher strength. If this hardening process fails or is somehow incomplete

or inadequate, zones with insufficient even voided of adhesion will appear in the joint.

Figure 5: Polymer structures: (a) Linear, (b) Branched, (c) Cross-linked. Adapted

from [4].

Internal defects, referred to as “bad/poor adhesion”, are very hard to assess, these

voids are not visible from the outside, and so advanced testing mechanisms should be

put in place to ensure that the adhesive structure is sound and reliable, adhesive joints

usually fail by the initiation and propagation of flaws, and if the flaw occurs next to a

void, there is a high stress concentration that will certainly lead to failure [1, 23].

There is standardized testing for adhesives and surface treatments, sanctioned by

organizations such as ISO, BSI and ASTM, put in place to understand the role that
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stress plays in the mode of failure, in addition to other tests concerning the material

properties (density, viscosity, etc.) or even curing/setting behaviour [23]. Conventional

failure strength tests are carried out in different joint specimens that are destroyed in

order to determine mechanical properties of the tested materials: tension and compression

testing is useful to determine the Young’s modulus and tensile stress-strain curve, one of

the staring points of any mechanical design project [1].

Figure 6: Schematic of tensile lap shear test. [5].

Shear testing is evidently one of the most common in adhesives, and there are many

varieties, for instance lap shear tests, represented on Figure 6, thick adherend shear tests,

pull out tests, and also torsion tests, which are very accurate because the stress concen-

trations are lower, but is not that common in laboratories [1]. Peel testing is also an

interesting class of fracture testing, and there is a multitude of tests designed to deter-

mine the peel strength, very dependant on temperature and pulling rate, and even more

specialized tests, like tack tests or impact tests, executed through special instruments,

such as the Split Hopkinson Pressure Bar, that help to learn how adhesives react when

exposed to loads abruptly [1, 5, 23].

Yet, even though all of these are relevant to gain knowledge about the mechanism

of adhesion, they all sacrifice the specimens and give us no assurance that any given

structural adhesive bond put in place will be complete and ready to operate at full capacity

without failing, for its whole service life. For that, the solution is a NDT approach.
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2.4 Non-Destructive Testing

Regrettably, there is still no way to determine the overall shear strength of structural

adhesive bonds through NDT, however, techniques that depend upon mechanical, physical

or chemical parameters, like the bond area, interfacial stiffness, elastic modulus or the

joint’s response to some specific impulses, which correlate directly to the strength of the

joint, can indicate “isolated phenomena”, referring to voids, cracks, porosity, second phase

material and so on, which will cause unwanted stress concentrations adversely affecting

the short and long-term strength of the joint, both cohesively on the polymeric adhesive

or adhesive failure at the interface [1,4,23]. Figure 7 illustrates some of the most common

adhesive bond defects.

Figure 7: Adhesive bond-line possible defects. From [6].

As to whether any of these defects are critical, it depends on their extent, position,

and the nature of the applied stress, but it is definitely important to notice them as early

as possible, in order to avoid severe damage.

There are two main regimes in which NDT is carried out: during manufacturing,

mainly related to surface analysis and quality control, and in-service use - SHM.

Before bonding, surface inspection is advised to properly prepare the adherend sur-

face and enhance its adhesive properties, starting by removing excess amounts of water

vapour, hydrocarbons or other contaminants. The wettability is tested, by evaluating

the behaviour of a water droplet: if the surface is clean, then the water will spread over

a large area, otherwise, if contaminated, the water will remain as droplets [4]. There

are a number of advanced surface characterization and analysis techniques, employed to

investigate the surface quality, namely the roughness, polarity, chemical composition and

surface free energy: [4, 5]

− Time-of-Flight secondary ion mass spectrometry (ToF-SIMS);

− X-ray photoelectron spectroscopy (XPS);
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− Atomic force microscopy (AFM);

− Scanning electron microscopy (SEM);

− Optical contact angle analysis;

− Attenuated total reflectance infrared spectroscopy (ATR-IR);

− Fokker contamination tester.

Nevertheless, the vast majority of NDT techniques associated with adhesive bonds

takes place after the joint has been made, either right after manufacturing or during

service, and they are mainly trying to identify voids or any of the aforementioned bond-

line defects [4].

The particular thing about SHM is that usually there is no need for any external

operator, as sensors/transducers are permanently attached to the examined structure,

collecting data continuously during the structure’s working hours (passive SHM), and

also being available to be plugged into proper instrumentation and carry out specific

tests, where the structure is actuated with some kind of disturbance or agitation and

the system response is monitored through the sensors (active SHM). It is of paramount

importance that the sensing devices are of high quality and reliability, great accuracy and

sensitivity, as they play a vital role in these procedures [25].

Apart from this network of sensors, on-board data and computing facilities are re-

quired to implement these techniques, along with algorithms that make use of that data,

comparing it to stored data from the pristine structure to calculate a damage index,

informing about existence, localization and type [26].

The subject of SHM is very broad, and it can include applications with different levels

of detail in the systems. According to Cawley, SHM techniques can be classified based on

purpose [27]:

− Machine condition monitoring - Not strictly concerned with structural health,

it uses passive SHM measurements and is routinely applied in the industry for reli-

ability’s sake, typically when it comes to rotating machinery, with many standards

available;

− Global monitoring of large structures - In practice, Structural identification,

the development of numerical models for large structures, such as bridges, to assure

their sustained integrity, also using passive SHM;

− Large area damage monitoring - A full volume coverage of a region of a large

structure, searching for broad damage using active SHM methods through a limited

number of sensors. There is often a trade off between sensor area coverage and

sensitivity, so full coverage of a large structure would require multiple of these

systems to be deployed;
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− Localised damage detection - Focused on small areas of the structure or known

damage hot-spots, scanning for cracks and corrosion with active SHM techniques is

a growing solution for specialized commercial applications, specially when it comes

to adhesive bonded structures;

There are a lot of NDT tests and techniques, but the majority of them can be classified

under the following types [4, 28]:

− Visual inspection;

− Ultrasonic testing;

− Magnetic particle testing;

− Eddy currents testing;

− Thermography / Thermal methods;

− Penetration testing;

− Radiography / X-Ray;

− Optical holography;

− Acoustic emission testing;

− Guided waves methods.

A lot can be said about all of these types of techniques: their properties and physical

phenomena involved, their strong points and most advantageous and typical applications

and so on; however, in the context of this project, the focus is Guided Waves, specifically

LW, which will be discussed next. It should be noted that no single method of detecting

internal structural defects is universally applicable. The type of testing environment (i.e

post-manufacture or SHM), paired with the properties of the structure/adhesive bond

to be tested and the size of the defect that is being sought after should determine what

technique to apply [29].

2.5 Lamb Waves

It was 1916 when Horace Lamb, F.R.S. published the article “On Waves in an Elastic

Plate”, in which he presents his considerations on the problem of two-dimensional waves in

a solid bounded by parallel planes, first approached by Lord Rayleigh, F.R.S in 1889 [30].

In fact, both Rayleigh and Lamb mention each other on different papers on the subject of

vibrations around this time [31], but in this paper in 1916, Lamb presents the equations

that characterize the propagation of this type of waves, that ended up with his name.
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LW techniques have proven capabilities to provide information about damage type,

severity and location ever since they were first used to detect damage in 1960 by Worlton

of the General Eletric Company. Since then, they have been employed in a variety of

fashions: from research conducted at NASA that demonstrated the possibility of using

LW to detect delamination in composite beams, to different groups at Imperial College,

working to optimize the generation of directional LW, among many others [32].

Assuming an infinite solid medium, elastic waves can propagate in two basic modes:

pressure (P) waves and shear (S) waves. Yet, if the medium is bounded, wave reflections

occur at the boundary, giving way for more complicated wave patterns. Guided Waves are

particularly interesting because they remain contained in a wave guide and can travel very

large distances with little amplitude attenuation, and are excellent for damage detection

due to the full cross-section interrogation of the material, assuring us that the wave will

interact with any possible defect. The sensitivity to different defects will however depend

on mode type and the location of the defect in the thickness of the structure. Examples

of Guided Waves are of course LW, and others, such as Love Waves, traveling in layered

materials, or Rayleigh Waves, constraint to the surface [33, 34]. These are actually the

typical seismic waves that propagate on the surface of the earth during an earthquake.

LW in specific are a form of elastic perturbation that propagates in a solid thin plate

with parallel free boundaries, but can also occur on shell-like structures with shallow

curvature, and they are made up of a superposition of longitudinal and shear modes,

whose characteristics vary with entry angle, excitation and structural geometry [35]. They

have two fundamental propagation modes: Symmetric (Sn) and Anti-symmetric (An), as

shown in Figure 8.

18



V. F. F. Loreiro Lamb Waves for damage detection in adhesive joints

Figure 8: Symmetric and Anti-symmetric LW modes. From [7].

This symmetry or anti-symmetry happens with respect to the plate’s mid-plane. Con-

sidering a plate with stress-free upper and lower surface, the outline of the equations for

a LW propagation, following Giurgiutiu, et al. and Su, et al., is presented [33, 35, 36]. It

can start by the equation of motion for an isotropic elastic medium, that describes the

displacement field by satisfying Navier’s displacement equation:

µ∇2u + (λ+ µ)∇∇ • u = ρ
∂2u

∂t2
(1)

where λ and µ are the Lamé constants, that is two material-dependent quantities that

arise from the study of elastic stress-strain relationships, ρ is the mass density, and u is

the displacement vector, given by:

u = ∇Φ +∇×Ψ (2)

where Φ and Ψ are the potential functions.

The wave equations can be written as a function of this potential functions, the mass

density, the Lamé constants, and the wavespeeds, both the pressure (L) wavespeed, given
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by c2L = (λ+ 2µ)/ρ, and the shear (T) wavespeed, given by c2T = µ/ρ:

∂2Φ

∂x2
+
∂2Φ

∂y2
+
ω2

c2L
Φ = 0

∂2Ψ

∂x2
+
∂2Ψ

∂y2
+
ω2

c2T
Ψ = 0

(3)

The time dependence for these waves is assumed harmonic, in the form eiωt, bringing

the general solution to Equation (3) as:

Φ = (A1 sin py + A2 cos py)ei(ξx−ωt)

Ψ = (B1 sin qy +B2 cos qy)ei(ξx−ωt)
(4)

where ξ = ω/c is the wavenumber and:

p2 =
ω2

c2L
− ξ2 , q2 =

ω2

c2T
− ξ2 (5)

The four integration constants, A1, A2, B1, B2 are to be obtained from the boundary

conditions. Getting the relations between the potential functions and the displacements,

stresses and strains:

ux =
∂Φ

∂x
+
∂Ψ

∂y
, τyx = µ(2

∂2Φ

∂x∂y
− ∂2Ψ

∂x2
+
∂2Ψ

∂y2
)

uy =
∂Φ

∂y
+
∂Ψ

∂x
, τyy = λ(

∂2Φ

∂x2
+
∂2Φ

∂y2
) + 2µ(

∂2Φ

∂x2
− ∂2Ψ

∂x∂y
)

εx =
∂ux
∂x

(6)

and plugging them into the general solution equations gets:

ux = [(A2iξ cos py +B1q cos qy) + (A1iξ sin py −B2q sin qy)]ei(ξx−ωt)

uy = [−(A2p sin py +B1iξ sin qy) + (A1p cos py +B2iξ cos qy)]ei(ξx−ωt)
(7)

For free wave motion, the homogeneous solution is derived by applying the stress-free

boundary conditions at the upper and lower surfaces (y = ±d), where d is half of the

plate thickness, obtaining the characteristic equations:

DS = (ξ2 − q2)2 cos pd sin qd+ 4ξ2pq sin pd cos qd = 0 (symmetric motion) (8)

DA = (ξ2 − q2)2 sin pd cos qd+ 4ξ2pq cos pd sin qd = 0 (anti-symmetric motion) (9)
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And finally, Equations (8) and (9) can be rewritten in the more compact form as the

Rayleigh-Lamb equation:

tan pd

tan qd
= −

[
4ξ2pq

(ξ2 − q2)2
]±1

(10)

where the exponent +1 corresponds to symmetric (S) motion and -1 to anti-symmetric

(A) motion. Equations (8) and (9) accept a number of eigenvalues, ξS0 , ξ
S
1 , ξ

S
2 , ..., and

ξA0 , ξ
A
1 , ξ

A
2 , ..., respectively. To each of those corresponds a set of eigencoefficients (A2, B1)

for the symmetric case and (A1, B2) for the anti-symmetric one, that can be plugged into

Equation (7) and yield the corresponding modes: S0, S1, S2, ..., Sn and A0, A1, A2, ..., An.

The coefficients p and q in Equations (8) and (9) are dependant on the angular fre-

quency ω, consequently the eigenvalues ξSi and ξAi will change accordingly, and since the

wavespeeds correspond to ci = ω/ξi, they will also change with frequency, and this change

produces the so-called wave dispersion.

LW are highly dispersive, meaning that the fundamental way to concretely describe

their propagation in a material is through their dispersion curves, that plot the phase and

group velocities against the excitation frequency (often shown as a product with thick-

ness), since for each frequency-thickness product, and each solution of the Rayleigh-Lamb

equation, one finds a corresponding LW mode [32, 36]. Figure 9 presents the dispersion

curves for each of the first modes.

Figure 9: Wave speed dispersion curves in plates: Symmetric LW (Sn); Anti-Symmetric

LW (An). From [8].

Where the Cp is the shear wave speed. A proper LW mode for damage detection
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should feature non-dispersion, low attenuation, high sensitivity, easy excitability and good

detectability. The best way to prevent wave dispersal is to have an input signal with a

narrow bandwidth, such as a windowed toneburst for instance, making it a more frequently

adopted input signal, rather than a pulse.

The generation of LW can be done through a variety of instruments, roughly grouped

under five categories [35]:

− Ultrasonic probes;

− Laser;

− Interdigital transducers;

− Optical fibre;

− Piezoeletric elements.

All of which have, of course, strengths and weaknesses. Piezoeletric, or lead zirconate

titanate (PZT) elements have advantages, since they can be used for both LW generation

and acquisition, delivering excellent performance, allied to their neglectable mass/volume,

effortless integration, outstanding mechanical strength, wide frequency response range,

low power consumption and acoustic impedance, and low cost, making them particularly

suitable for SHM applications as an in-situ generator/sensor. On the other hand, some

nonlinear behaviour and hysteresis under large strains/voltages, or at high temperatures

should be accounted for, and their brittleness and low fatigue life may cause concerns

or limit some applications. Importantly, PZT-generated LW unavoidably excite multiple

modes that generate complex response signals, requiring sophisticated signal processing

to successfully utilize them to detect and classify damage [35].
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3 Lamb Waves Signal Processing

3.1 Acquisition of simulation data

LW based NDT methods can detect incipient damage, often unnoticed by other tech-

niques, with the help of suitable electric signals applied to a PZT actuator that induces

that type of waves, translating into small mechanical vibrations to the structure subject

to testing, or specimen, in laboratorial context. Other PZT sensors, placed strategically in

the specimen, measure the vibrations and output electric signals, with distinct amplitude

and phase from the input, whose characteristics will depend on the existence and type of

damage in the structure.

As it was explained, the nature of LW dictates that these signals are complex, and

extracting meaningful information about the structures health necessitates advanced al-

gorithms to process the data, so naturally ML comes to mind: a rapidly emergent and

developing field of Data Science (DS) that has recently been applied to many different

fields involving data processing, that is intimately related to statistics, while making use

of nowadays computational power to analyse data and make predictions, which is exactly

what is needed. The tool used to develop these algorithms was Python, a general-purpose

and open-source programming language, with thousands of custom libraries and modules

made by the community, widespread documentation on the internet and very suitable

for DS endeavors. The IDE - integrated development environment - used was Spyder,

present on the Anaconda platform.

Be that as it may, data processing algorithms based on ML require large volumes of

data to be trained, therefore it would be impracticable to use experimental data in their

development. The alternative is to use simulation data from numerical models, generated

with finite element method (FEM) software - ABAQUS. For the purpose of this project, two

simulated specimens were modeled:

− Aluminium plate with 1 PZT actuator and 3 PZT sensors placed forming right angles

among each other, that can either be perfectly regular (no damage) or contain one

hole with size 2 mm, 6 mm or 10 mm, placed in a random spot in the plate and

marked with designated coordinates (x,y). Both the hole size and its position vary

with each test, if present. In Figure 10 the model of the aluminium plate used in

the simulations is presented, where the red squares represent the PZT sensors, and

the orange square is the PZT actuator.
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Figure 10: Model of the aluminium plate simulation setup.

From this simulation, data from 600 tests were used, totaling 600×3 sensors = 1800

time series;

− An adhesive joint among two 150 x 150 x 2 mm aluminium plates, with a single-lap

joint design with 25 mm overlap with varying degrees of adhesion strength on each

test (ranging from 600 to 270000 kPa), with 1 PZT actuator on the top plate and

1 PZT sensor on the lower plate, both centered on the plates and placed 30 mm

from the edge. The aluminium plate has a density ρ = 2500 kg/m3, Poisson ratio

ν = 0.33 and Young modulus E = 72.4 GPa. The chosen adhesive to simulate

was a 0.2 mm layer of Nagase T-836/R-810, as it has great potential for industrial

applications, specifically aeronautical and automotive. The simulated adhesive joint

is presented on Figure 11.
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Figure 11: Model of the adhesive joint simulation setup.

This simulation was run 900 times, and since it measures only one sensor’s displace-

ment, accounts for 900 time series.

The reason for having these 2 simulations was the fact that the first simulation was

already implemented and had results in the beginning of this project (although the results

were improved thanks to corrections to some parameters), and the base algorithms were

developed with those results. Then, they were adapted and applied to the adhesive

simulation data. Both simulations ran with a fixed time of 0.5 ms, as this is enough time

to have the waves interact with the defects / adhesive joint and arrive at the sensors

without receiving too many reflected waves from the opposite wall. The excitation signal

chosen was a 5-cycle Hanning-windowed sinusoidal tone burst with the central frequency

of 100 kHz, applied to the PZT elements, as it is narrow in terms of bandwidth, below

the frequencies in which multiple modes appear, but still large enough to detect damage.

The simulations themselves were not part of this project, only their results were ac-

counted for, as the starting point of the damage detection process. They were packaged

in a Comma Separated Value (.csv) file, containing the information for each test in rows,
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that begin with a few columns of the test specifications (hole size/location or adhesion

strength), followed by the values for the PZT sensor signal, each column with one value

for each time step.

As it would be expected, the first procedure was to import those signals into the

programming environment and represent them in a graph, in order to easily visualize

them. Evidently, the number of examples shown will be kept to a minimum, not to

overcrowd the report. From this point forward, all the results presented are directly

extracted from the developed Python code, which will be presented in its entirety as an

Appendix.

Figure 12: Representation of a random aluminium plate test, with a signal from each of

the 3 PZT sensors. Hole size = 2 mm; Hole position (x,y) = (194,209) mm.

From just looking at Figure 12, the chaotic nature of these signals is rapidly assessed.

They are certainly different from each other, due to the sensor’s position on the plate, the

interaction of the LW with the defect and so on, but definitely nothing can be concluded

from observing their format. Nevertheless, this is just a representation of the signal, the

real problem now is how to handle these large amounts of information.

3.2 Concept of features

Even with the powerful tools that ML has to offer, it is difficult for ML algorithms to

produce proper results if the input is rough data that is not preprocessed. In this case,

there could exist outliers (tests that did not go as planned and/or yielded strange results)

that need to be discarded, missing values on tests that should be eliminated or appended

with accordingly interpolated values [37]. It is also important to make the tests uniform in

terms of array size, so that all signals are in a vector of equal dimension. That is achieved
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by interpolating the whole original array of values, imposing a fixed time step to fit an

array of predetermined size - 5000 steps in this case to be exact, meaning 5000 values at

constant time intervals. This preprocessing is fundamental in every DS project, even more

so if the data is obtained from real life sensors, that might contain noise and interference

effects that should be minimized, or malfunctions that should be accounted for. Such is

not the case in the present project, as all the data is obtained from simulations, so the

preprocessing stage has a lighter overall significance.

Still, after the first cleaning of the data, there is still a tremendous amount of it to

deal with. Despite only 2 dimensions existing at the core of the problem (displacement as

a function of time), a large number of observations for that dependable variable are reg-

istered, turning the whole data set into a high-dimensional one. It is important to reduce

this dimensionality in order to handle the data adequately, and use it successfully in ML

algorithms. Ideally, the reduced representation should have a dimensionality that corre-

sponds to the intrinsic dimensionality of the data, the minimum number of parameters

needed to account for the observed properties [38].

But notice, one needs to differentiate between the number of cases (observations) in

a large data set, and the number of variables available for each case - these variables

comprise specific information about the data and are referred to as “features”. There

are none of these in the original data set, only raw test data in the form of time series,

so putting in place a mechanism that can analyse this raw data and extract meaningful

features, to be used later in ML algorithms, was a priority in this project. This procedure

can be viewed as ”nontrivial extraction of implicit, previously unknown and potentially

useful information from data, or the search for relationships and global patterns that exist

in databases” [39].

Feature Engineering plays a vital role in ML algorithms and big data analytics. Indeed,

little can be achieved if there is a short amount of features to represent the underlying

data objects, and the quality of the results obtained in those algorithms will reflect the

quality of the available features themselves. It encompasses the generation, extraction,

transformation, selection, analysis and evaluation of features - attributes of data that are

relevant to a ML process [40,41].

Feature Engineering is often data specific and application dependent, which means that

different data types - text, images, streaming data, social media data - require specialized

techniques [40]. This project is based on time series that are not in any way correlated

with date or time, like many literature’s time series examples are - price evolution of

some product/stock, temperature variation in a sensor over a time period, etc. - there

is no need to recognize features in typical categories such as Date-Related, Lag Features,

or Rolling Window Features, since these are mainly used to predict the next values of a

given time series, accounting for trend and seasonality for example, which is a common

motivation for time series analysis (weather forecasting, econometrics, etc.) [42,43].

In this case, the sensor signals are time series that stand alone in time, and the
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information extracted from them is destined to predict not their next values, but an

intrinsic property - damage - that can influence the signals (expanded upon later on).

3.3 Manual feature extraction

In the early phases of this project there was an interest in discovering these features,

their types and how to categorize them appropriately in the context of the project, how

to visualize them, represent them, and to have a greater grasp of what they mean. The

way to obtain them manually is to apply, for the most part, mathematical and statistical

operations to the signal data.

It is useful to distinguish three main types of features, besides simple Statistical

Features (which can also be significant), based on the domain their information is in,

namely Time Domain, Frequency Domain and Time-Frequency Domain:

Statistical features

These are the simplest, obtained directly from the signal by statistical analysis, they

represent basic information about the data. Some examples are the Mean, Variance,

Standard Deviation, Skewness, Kurtosis and higher order moments, and even Maximum

and Minimum values (Peaks), among many others. Even though they do not result from

complex analysis and advanced methods, their information can be really valuable for ML

algorithms [44].

Figure 13: Representation of an adhesive joint test, with a signal from the PZT Sensor

and the top 10 peaks marked. Adhesion strength = 900 kPa.

For example in Figure 13 only the top 10 peaks were marked directly on the time series
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plot, but the values of all the local minima and maxima of the entire domain is saved in

a variable, for each of the tests - a statistical feature.

To have a comparison, Figure 14 is the signal from a test with a higher adhesion

strength in the joint.

Figure 14: Representation of an adhesive joint test, with a signal from the PZT Sensor

and the top 10 peaks marked. Adhesion strength = 50100 kPa.

Significantly different response between the two signals, it is immediately perceptible

that the second signal comes from a stronger, firmer and more consistent medium, as

the LW propagates and arrives at the sensor more smoothly. The average displacement

measured on the sensor is higher, and all of the 10 peaks appear above the 1 × 10−5 m

mark, while on the first test, the single highest peak falls short of that mark, being the

only one that surpasses 0.75× 10−5 m.

Time domain features

Even though the objective is not to predict future values for the signals using typical

time based models, like the Autoregressive (AR), Integrated (I) and Moving Average

(MA) models, that can be fused together in the ARIMA model first introduced by Box

and Jenkins [45], some orders/parameters of these models can be used as a feature in

itself, as well as the Auto-Correlation dimensions of the signal (where it is compared to

itself with a small delay). The Auto-Correlation coefficients produced a by the vibration

of a healthy structure could be different than those from a faulty one. From the ML

algorithms viewpoint, these features are just arrays of organized information to be used

in a specific task, with no connection to the time-based models that originated them, or

their purpose.
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Frequency domain features

Frequency domain analysis is arguably the most far-reaching set of mathematical tools

utilized in engineering, specially signal analysis, and its cornerstone is the Fourier Trans-

form (FT). It is based on the premise that every function - no matter how complex it

looks - can be decomposed into a sum of simpler functions, a concept proposed by Joseph

Fourier in 1822 in his publication The Analytical Theory of Heat, that far transcended

the particular subject of heat conduction [46,47].

Taking f(t) as a time-dependant input signal, that may be composed by harmonic

and/or periodic elements, its Fourier Transform F (ω) is called the signal’s spectrum, and

can be viewed as the frequency response - a transformation of the time signal into a sum

of basis functions (sinusoidal) of various frequencies, which the original signal contains as

periodic components, where [46,48,49]:

F (ω) =

∫ ∞

t=−∞
f(t)e−jωt dt (11)

with j =
√
−1 and the complex exponentials as the sinusoids: ejθ = cos θ + j sin θ. A

Fourier Transform pair is often written f(t) ↔ F (ω). The Inverse Fourier Transform is

also applicable, changing the content from the frequency to the time domain:

f(t) =
1

2π

∫ ∞

ω=−∞
F (ω)ejωt dω (12)

F (ω) written as a complex number in terms of its magnitude and phase, ultimately

tells how much content the original signal has at any frequency ω. The integral operator on

the equations automatically conveys the notion of a continuous input function. However,

as is the case with most of the real-life signals, the input functions tend to be discrete, by

nature of the sampling process that occurs on sensors and transducers, in this instance

simulated. This results in a discrete signal with finite duration, presented as an array

of values sampled at a designated frequency fs, and so the Discrete Fourier Transform

(DFT) is the indicated tool to obtain its spectrum Xk.

Supposing the signal is xn of length N , for n = 0...N − 1, the spectrum Xk, which

ends up being a sequence of N complex numbers, comes [49]:

Xk =
N−1∑

n=0

xne
−jKω0n where ω0 =

2π

N
(13)

Similarly to the FT, the DFT also indicates the “amount” of frequency kω0 contained

in the original signal. The DFT is considered a real workhorse in the computational signal

analysis world, due to a fast and efficient algorithm for calculating it called the Fast Fourier

Transform (FFT), and is the de facto standard to calculate a Fourier Transform, present

in almost any scientific computing libraries and packages, in every programming language,

including Python [46, 49].
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Figure 15 shows the FFT, from the SciPy library [9], applied to an adhesive joint

test, programmed to retrieve the frequency-based information of its component, with the

top 5 highest frequency amplitudes marked, as well as the phase content, shifting the

zero-frequency component to the center of the spectrum:

(a) Amplitude

(b) Phase

Figure 15: Fast Fourier Transform representation of an adhesive test signal with the top

5 peaks marked. Adhesion strength = 50100 kPa.

The frequency content of the signal is expectedly diverse, with the main frequency

response band around 100 kHz (the excitation frequency), mainly between 75 and 125 kHz,

but with some residual spectral content across the whole range. Again, the top frequencies

corresponding to the highest amplitudes are marked and saved as a feature, but a lot of

other frequency domain features can be constructed from the spectral information, such

as the FFT phase angle content, the Power Spectral Density (PSD), Spectral Moment,

etc.;
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Time-Frequency domain features

It is clear that the Fourier Transform is of great use to transform a signal into the

frequency domain, where it has great resolution, at the expense of the time domain

information, as it contains none. In other words, it is known at which frequencies the

signal oscillates, but not at which time these oscillations occur. So if a signal has a

dynamic frequency spectrum, i.e. the frequency content changing over time or frequencies

appearing abruptly for a short period of time, the Fourier Transform will not expose them.

For that, the Time-Frequency domain is approached, specially through the Short-Time

Fourier Transform (STFT) or the Wavelet Transform, among others, like the Hilbert-

Huang Transform [46].

The STFT can be used as a way of quantifying the change of a non-stationary signal’s

frequency and phase content over time, by dividing a time based signal into shorter

segments of equal length and then computing the Fourier Transform in each of those

segments separately, therefore keeping in the results of the magnitude and phase content

for each point in time. The use the Fast Fourier Transform on these segments yields the

discrete-time STFT, expressed as:

STFTx(k)(m,n) =
L−1∑

k=0

x(k)g(k −m)e−j2πnk/L (14)

where x(k) denotes the discrete time signal, that is multiplied by g(k), an L-point window

function with a fixed size n, that will divide the signal into chunks as it slides through

the signal with m amount of shift. The FFT is then applied to each of these chunks to

compute the STFT [50, 51]. The Hamming window, a smooth, “bell-shaped” curve is a

popular choice for the window function employed, shown on Figure 16. The STFT can

also be called a Gabor transform, if the window used is a Gaussian function [52].

Figure 16: Hamming Window function. From [9].
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The STFT is utilized to construct what is called the Spectrogram, a 2-D visualiza-

tion that plots, in a logarithmic scale, the normalized, squared magnitude of the STFT

coefficients [50,53]. There are some limitations, however, to this operation. The fact that

the window function has a fixed size (frequency modulation bandwidth) causes a constant

time-frequency resolution, and as Heisenberg stated in his classical Uncertainty Principle

in 1927, the position and the velocity (in this case, frequency) of an object cannot both be

measured at the same time, even in theory [54]. This means that there is a trade-off in

resolution, having a narrow-width window promotes great resolution in the time domain,

but poor resolution in the frequency domain, and vice-versa [50]. In addition, using a fixed

window length, the STFT still cannot capture events with different duration or when the

signal contains fast (sharp) events [51]. Thus, finding a suitable window function and

time-frequency parameters a priori for an ideal STFT implementation on an arbitrary

non-stationary signal can be rough and unpractical [55].

Another transformation from the original time signal to the time-frequency domain is

the Wavelet Transform, a powerful variant of the Fourier Transform that tries to mitigate

the STFT limitations. Starting by defining wavelets, a concept first introduced in 1982

by french geophysicist Jean Morlet [56], they are a family of functions obtained from a

single prototype, a special basis function called “mother wavelet” ψ(t) - a small, time-

bound, wave-like oscillation that decays quickly. This basis function is drawn from a large

dictionary of possibilities, has both temporal and frequential components, and the family

of wavelets is obtained by dilations and contractions (scaling) in addition to translations.

They are defined by [56]:

ψa,b(t) =

(
1√
|a|

)
ψ

(
t− b
a

)
(15)

The parameters a, b ∈ R, with a(6= 0) being the scaling parameter, measuring the

degree of compression, and b the translation parameter, that determines the time location

of the wavelet. This results in time-widths that are adapted to the wavelet frequencies,

if |a| < 1, then we have a compressed version of the mother wavelet, that will correspond

mainly to higher frequencies, while |a| > 1 makes for a ψa,b(t) with a larger time-width

than the mother, corresponding to lower frequencies. This is the main reason for the

success of the Wavelet analysis, as it creates a multiresolution analysis of the signal [52].

To better understand this reason with an analogy, the wavelet analysis can be com-

pared with a microscope. First, one chooses the magnification, a large wavelet. Then one

moves to the chosen location, the translation parameter, then small steps in reduction of

magnification (shorter wavelets from the family) are used to catch small details, creating

a coarse to fine gradient of analysis [52].

Given the family of affine wavelets, any signal f(t) ∈ L2(R) can be expressed as the
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wavelet series of f :

f(t) =
∑

k

∑

l

dk,lψk,l(t), (16)

where the wavelet coefficient comes:

dk,l = 〈f(t), ψk,l(t)〉 =

∫ ∞

−∞
f(t)ψ(t)dt (17)

These coefficients are really the principal takeaway from the whole operation, and are

kept as a feature. In the context of this project, for each parameter combination on the

Ricker Wavelet, an array of coefficients (one for each test) calculated with the Continuous

Wavelet Transform, is saved.

A typical choice for a family of wavelets, specially for the Continuous Wavelet Trans-

form (CWT), is the Ricker Wavelet, shown in Figure 17. It is the negative normalized

second derivative of a Gaussian function, also known as the Marr Wavelet or the “Mexican

Hat” Wavelet in the Americas, for its resemblance with a “sombrero” hat [57]:

Figure 17: Ricker Wavelet. From [9].

The Wavelet Transform is without question a remarkable tool for analysis of non-

stationary data, assuredly more versatile than the Short-Time Fourier Transform. Nev-

ertheless, both are linear decompositions, thus suffering from problems that arise form

the Uncertainty Principle. Moreover, their basis functions are established a priori, mak-

ing them prone to spurious harmonics or ultimately incorrect interpretations of the data.

To overcome these drawbacks, methods like the Hilbert-Huang Transform (HHT), an

“empirical mode decomposition” method with which any complicated data set can be

decomposed into a finite and often small number of “intrinsic mode functions”, but in an

adaptive way, based on the local characteristic time scale of the data [55,58].

It is easily perceived how the manual feature extraction process is difficult, time con-

suming and sometimes inaccurate, or just not worth the effort for a single feature that

might not be useful at all for a given ML algorithm. So ways of generating features from
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original time series data must be developed, in a better, more efficient manner, extract-

ing the highest number of features possible in a short amount of time, that can then be

processed and chosen from with purpose.

3.4 Visualization techniques

Up until now, all the feature extraction procedures or plots that were shown, either

original time-based signals from the sensors or their frequency domain transforms, per-

tained to one single testing instance. But if a classification based on those signals is to be

made, at some point the various instances of testing have to be compared in some way,

and the first step on that comparison is through the visualization of the signals as an

aggregated group. This is not trivial for the sensor data, as it is well understood by now,

this data set is a time-dependant one, composed of a large number of observations for each

test (resulting in a high-dimensional collection of real vectors). So, just as in the concept

of features, dimensionality reduction must be applied; but instead as a way of extracting

information from the data as unidimensional features, it needs to be applied as a proce-

dure to create projections of that data, mapping it into a low dimensional space, in order

to enable an insightful view into how each case relates to the others, namely the appear-

ance of structures such as high local density, interesting relations between observations

and the presence of clusters [59,60].

Time-oriented data visualization is a widely researched topic, and according to Aigner,

et al., visualization techniques can be categorized in many ways, for instance the structure

of time itself (linear, cyclic or branched), the frame of reference (spatial or abstract), the

number of variables that are time-dependant, and the dimensionality that is to be obtained

(2D or 3D, since those are the intuitively understood by the human brain). Most of the

approaches published in recent years are specific to a particular problem, but there are

also generic ones suitable for simple tasks [61].

At this stage, two of the most widespread visualization techniques are implemented for

the projection and visualization of the time series themselves, and will also be applied to

some select features later on. They are Multidimensional Scaling (MDS), and t-distributed

Stochastic Neighbor Embedding (t-SNE).

It is a common procedure in data mining and DS methods to transform the raw data

formats into more suitable and consistent ones, through processes like smoothing, gener-

alization and normalization. Normalization is likely to improve accuracy and efficiency

of classification algorithms, and for distance-based methods in particular it prevents at-

tributes with initially large value ranges from outweighing those with smaller ranges,

uniforming the importance of any given testing instance the while keeping the intrinsic

information intact. Among others, data normalization methods include Min-Max normal-

ization, used in this project, Z-Score normalization, l2 normalization and normalization

by decimal scaling [62,63].

Min-Max normalization performs a linear transformation on the original data. If an
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attribute A has a range of values of [amin, amax], Min-Max normalization maps a value x

of A, to its counterpart x’ in the new predetermined range [a′min, a
′
max] by computing [62]:

x′ =
x− amin

amax − amin
× (a′max − a′min) + a′min (18)

where, in this case, the new selected range was [a′min, a
′
max] = [0, 1], a common, practical

choice.

From the scikit-learn library in Python [64], code for the computation of not only

the Min-Max Scaler, but also the MDS and t-SNE tools to be implemented, is available

and well documented.

Multidimensional Scaling (MDS)

Multidimensional Scaling is a multivariate statistical method that represents measure-

ments of proximity/similarity (or dissimilarity) among pairs of objects geometrically, as

distances between points of a low-dimensional space. It has its origins in psychometric

analysis, where it was introduced to help understand people’s judgements of the similar-

ity among members of a set of objects. Torgerson proposed the first MDS method and

coined its name, Multidimensional Scaling, that can also be known as Principal Coordi-

nates Analysis (PCoA) or even Torgerson Scaling, in his honour [65].

In its application at this stage of the project, it shows the correlations among instances

of the simulation tests, displaying each of these tests as a point on a plane, so that the

closer together the points are, the more positively the respective tests are correlated,

turning the data from immense arrays of numbers to an accessible visual representation,

for easy inspection and exploration [66].

This application of MDS, like most in the research community, is exploratory, designed

to uncover the data elements accounting for the proximity of the data, rather than test

a priori hypothesis about the existence and properties of those elements [67]. The vastly

used family of procedures known as Principal Components Analysis (PCA), which should

not be mistaken with PCoA, is closely related to MDS in function, but differs in some

key aspects, the principal being the fact that MDS starts with a matrix of similarities

between a set of individuals, while PCA starts directly with the initial data matrix, but

in many cases Euclidean distances are used, their output will be similar [68,69].

MDS models are defined by the similarity or dissimilarity of data - the proximity

indexes pij between pairs (i, j) of objects, that construct an n× n matrix C, being n the

total number of objects - and how those proximity indexes are mapped into distances of

an m-dimensional MDS space configuration: X. In classic MDS, C is symmetric, with

pij > 0 for i 6= j and pii = 0, and its main diagonal is composed of “1” [60].

The mapping is given by a representation function f(pij), that specifies how the prox-

imities should be related to the distances dij(X), seeking the configuration (in a given

dimensionality m) whose distances satisfy f as closely as possible. The condition “as
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closely as possible” is quantified by a badness-of-fit measure, what’s called a loss function

- an expression that aggregates the representation errors : eij = f(pij)−dij(X). The most

common loss function in MDS is named raw-Stress (ρ), also known as “Kruskal stress”

due to its creator [68], a normed sum-of-squares of these pairwise errors, and minimizing

this function leads to the most accurate representation of the data. Stress varies between

0 and 1, with values near 0 evidently indicating a better fit [66,70].

ρ = [f(pij)− dij]2, i, j = 1, ..., n (19)

Shepard plots are also used to evaluate the fit of the mapping, by comparing dij versus

pij for a given value of m. A narrow scatter of points, resembling a smooth straight line

without sudden steps indicates a successful representation [66,68,70].

The m-dimensional MDS space configuration always refers to a coordinate system,

customarily a set of m directed axes, perpendicular to each other and intersecting in one

point, the origin. If the value for m is chosen to be 2, for example, this would define

a Cartesian plane. Since the MDS interpretation is based on the emerging clusters and

distances between points in the mapping, rather than on their absolute coordinates, the

units of the axes are meaningless, and so the MDS map can be rotated and translated, as

the distances between points remain the same [60,66]. As for the distances’ definition, the

most natural and frequently used is the Euclidean distance, corresponding to the length

of the straight line segment connecting i and j, computed by the formula [66]:

dij(X) =
√

(xi1 − xj1)2 + (xi2 − xj2)2 (20)

Thus, dij(X) equals the square root of the sum of the intradimensional differences

xia−xja, which in plain terms is the Pythagorean theorem for the length of the hypotenuse

of a right triangle. Generalizing to the m-dimensional case, yields:

dij(X) =

[
m∑

a=1

(xia − xja)2
]1/2

(21)

The dissimilarity matrix C can adopt different measures, such as the so-called Can-

berra and Manhattan distances among others. It should be noted that the use of alter-

native measure methods within the MDS is a common procedure, often having distinct

representations of the same data set, that view phenomena with different perspectives,

opening up the possibility of choosing the MDS charts that yield better visualizations [70].

For this project however, only the Euclidean distance was used, since this method was

only used as a preliminary visualization tool, and is not really included in the classification

algorithm beyond that.

The results for the MDS application for the LW response signal data sets, for both the

aluminium plate and adhesive joint simulations, will be displayed now in a 2-dimensional

configuration. It is important to point out that the axes in the plot have no units nor a

physical meaning, they represent just the values of a Cartesian plane.
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Figure 18: 2-D MDS Visualization of the aluminium plate with holes simulation tests

(only damaged tests).

The MDS plot in Figure 18, retrieved from the PZT2 sensor (diagonally opposed

from the PZT actuator), each of the points displayed represents one single test, coloured

according to the respective size of the hole present on the test, either 2mm, 6mm or 10mm,

not containing the tests with no hole. Please note that the MDS plots from the other two

sensors, PZT1 and PZT3 are extremely similar to this one in every aspect, and if all three

sensors’ signals were represented, the plot would be redundant and three times denser.

The representation shows clearly that the relation between signals is not random, there

are definitely grounds to assume that they differentiate themselves distinctively according

to a pattern: the 2mm hole class can easily be distinguished from the other two, since

all the 2mm hole tests stand together, with minimal distance from each other; it can also

be told that the pairwise distance between tests from the 6mm hole class is shorter than

that of a pair from the 10mm hole class.
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Figure 19: 2-D MDS Visualization of the aluminium plate with holes simulation tests (all

tests).

In Figure 19, now including the tests with no damage (take into account that the

simulations are deterministic, so the simulations without any damage will always return

the same resulting signal every time), it is visible that the respective time series also

distance themselves significantly from all the remaining, which is very promising for a

simple damaged vs not-damaged classification.

However, these results should be taken carefully, as the mapping does not show a

clear-cut division in three well separated clusters, which would be an ideal scenario. On

the contrary, the most distant pairs of tests are part of the same class, 10mm hole. That

may very well be caused by the fact that the hole position on the plate, while not directly

represented on the plot, is a greater influence on the signal if the hole size is larger,

which actually makes sense intuitively, as the propagation of the LW is less affected if the

material void is smaller, wherever it may be encountered.
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Figure 20: 2-D MDS Visualization of the adhesive joint simulation tests.

Considering now the adhesive joint testing MDS chart in Figure 20, the absence of

legend is due to the fact that the results are not shown per class, but directly using the

adhesion strength value, from the weakest adhesion being the deepest blue to the strongest

adhesion in the dark red, yielding the direct realization that the LW propagation signals

are as closely related as the adhesion strength itself, more so on the strongest end of the

range, where an increase in strength doesn’t raise the tests pairwise distance as much as

the same increment of strength in the medium-lower range. For the construction of this

data visualization plot, there was no need to employ three dimensional MDS, since the

added dimension’s values would not vary, and the 2-D visualization is perfectly suited to

illustrate the relations among the data.

t-distributed Stochastic Neighbor Embedding (t-SNE)

Stochastic Neighbor Embedding (SNE), as originally presented by Hinton and Roweis

[71], is a probabilistic approach to the task of placing objects, from high-dimensional

vectors or by pairwise dissimilarities, in a low-dimensional space in such a way that

preserves neighbor identities. It serves the same purpose, but unlike MDS, which is a

linear technique that operates without requiring statistical distribution assumptions, SNE

makes use of a Gaussian distribution, centered on each object of the high dimensional

space, and the densities under this Gaussian are used to define a probability distribution

over all the potential neighbors of the object [68, 71].

Briefly, it starts by converting the high-dimensional Euclidean distances between dat-

apoints, xj and xi into conditional probabilities pj|i, representing the probability that xi

would pick xj as its neighbor, if neighbors were picked in proportion to their probability
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density under a Gaussian centered at xi. This probability will be high for nearby points,

and almost infinitesimal for widely separated ones.

Now for their low-dimensional counterparts, yi and yj, a similar conditional probability

is computed (but with a fixed variance), denoted by qj|i. If these conditional probabilities

are equal, in other words, if the distributions are matched, the model is correctly mapping

the data [71,72].

So, the aim of the embedding is to match the distributions as well as possible, which is

achieved, in a similar fashion to MDS, by minimizing a cost function. A natural measure

of the faithfulness with which the probabilities match is the Kullback-Leibler divergence,

therefore, a cost function C is defined by a sum of the Kullback-Leibler divergences

between the original (pj|i) and the induced (qj|i) distributions over neighbors for each

object. SNE minimizes C using a gradient descent method [71,72].

C =
∑

i

∑

j

pj|i log
pj|i
qj|i

(22)

The t-SNE is a variation of SNE, with two important differences, aiming to alleviate

two problems with the SNE method [71,72]:

− Because the Kullback-Leibler divergence is not symmetric, different types of error

in the pairwise distances in the low-dimensional map are not weighted equally, for

instance, there is a large cost for using widely spaced map points to represent nearby

datapoints, but a small cost for using neighboring map points to represent datapoints

that are far apart. In t-SNE, conditions to this function are applied to ensure that it

is symmetrized, eliminating that problem, and also, since its gradient has a simpler

form, is faster to compute. It is said to be symmetric because it has the property

that pij = pji and qij = qji, ∀i, j, hereby named joint probabilities;

− The issue known as the “Crowding Problem”, lies in the fact that if small distances

are to be accurately mapped, the moderately distanced datapoints will be placed

much too far away in the representation. As a solution, in t-SNE, instead of us-

ing a Gaussian distribution on both the high and low-dimensional probabilities, it

is swapped by the heavy-tailed Student t-distribution with one degree of freedom

(also known as Cauchy distribution) on the low-dimensional map, qij, using the

mismatched tails on the distribution to compensate the mismatched dimensional-

ities on the data. It also speeds up the computation of the process since Student

t-distribution does not involve an exponential.

There are various parameters that can be tinkered with in a t-SNE application in order

to optimize the cost function gradient descent, some of which are the number of iterations,

early exaggeration, learning rate and perplexity, interpreted as a smooth measure of the

effective number of neighbors; so adjusting all these parameters yields different results

even for the same data set [72].
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Figure 21: 2-D t-SNE Visualization of the aluminium plate with holes simulation tests.

The mapping on Figure 21 is the standard t-SNE plotting of the tests. Again, please

note that the axes in the plot have no units. The parameters were tinkered with during the

implementation, but they did not yield any particular pattern, not any glaring evidence

of clustering or orientation, apart from the unequivocal separation of the tests with no

damage. Notice that they are not condensed into a single point as in the MDS, since this

method is not strictly dependent on Euclidean distanced. The tests from the 2mm hole

size class are generally closer together, and considerably distanced from the rest. There

are some local structures, particularly in the 10mm hole class, where sets of 3-5 tests

forming a straight line, that also happens in the other two sensors’ representations, and

that remain even with heavy variations of the t-SNE parameters, but not much can be

inferred.

42



V. F. F. Loreiro Lamb Waves for damage detection in adhesive joints

Figure 22: 2-D t-SNE Visualization of the adhesive joint simulation tests.

Figure 22 presents the application of bi-dimensional t-SNE to the adhesive joint testing

data, following the color map convention used on the MDS visualization, and the result

has the same overall character, with a steady evolution of distances following the adhesion

strength increase, maybe even more smoothly than on the MDS, and with a .

The amount of methods and techniques to visualize high-dimensional data in low-

dimensional maps preserving the data’s intrinsic structure is huge, both linearly and non-

linearly, with various distances, loss functions, optimization parameters, etc. Obviously

not all of them are suitable for every application, and exhaustively going through them

one by one and scrutinizing their results on the same database does not seem practical

nor rewarding in any way, since a consistent, clean, and properly preprocessed data set

will be fairly well visualized in most of them.

Be that as it may, both the MDS and t-SNE applications on the original time based

signals were great for a preliminary observation of the whole data set, and actually quite

insightful in some aspects, but further analysis must be developed to successfully establish

a damage classification framework.
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4 Automatic Feature Extraction

4.1 Projecting a machine learning pipeline

After defining the concept of feature and presenting its value to a ML algorithm, the

main body of the project and the approach that was taken to process the data can be

presented - the construction of an automatic feature extraction tool.

Viewed as one of the general topics of feature engineering, Automatic Feature Extrac-

tion is a methodology capable of automatically generating a large number of features from

a data set and subsequently selecting an effective subset of these features to be applied in

the ML algorithms. To have the most number of features possible being initially extracted

from the time series is the best way to differentiate the information within the signals,

compiling it in all the domains discussed in the previous chapter, and then choosing the

best, most meaningful and adequate to the problem at hand, so that ML algorithms can

use them in the most effective way possible to detect damage [40].

The feature extraction process is only the first step (after first cleaning and preprocess-

ing of the raw data) in what will be the automated data analysis and damage detection

pipeline. Figure 23 shows the general workflow of an SHM method, which perfectly fits

this project’s essence:

Figure 23: Damage Detection ML Pipeline. From [10].

Level 1 is concerned with the first analysis of the system’s response to the mechanical

actuation, through LW generation and propagation, much like the analysis conducted and

presented in Chapter 3, as well as the feature extraction process, that will be discussed

in the current section of the report.

Levels 2 and 3 are both involved with taking those features and applying them as

the input to classification ML algorithms. Level 2 really comes down to answering the

question: “Does any damage exist within the structure”. If the answer is no, then it would

be safe to assume the failure probability is low, and that would be the end of the inspection.

If the answer is yes, however, then Level 3 is called upon, to retrieve information regarding

the damage, its location and characterization, answering the questions: “Where, what

kind, and how severe is the concerned damage?”.

Level 4 would go beyond these questions, being the stage where an evaluation is made,
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following perhaps a protocol or standards based on previous experience and testing, to try

to approximate the residual lifetime and failure probability, given the information coming

from Levels 2 and 3. It falls outside of the scope of this project, which focuses on Levels

1 and 2.

The automation of the feature extraction process was really the key, the main point of

emphasis of the whole project, and so, a research on the state of the art of feature engi-

neering Python programming libraries and modules was in order. A few candidates were

tried out before fully implementing the most suitable one - tsfresh. But before detailing

its characteristics and implementation, an acknowledgement is made to all the potential

libraries that could have been used for this purpose, as well as the basic, commonly used

libraries that allowed for the handling, preparation and representation of the data within

Python.

4.2 Programming libraries

Python programming is very much reliant on community developed libraries and pack-

ages that specialize on certain tasks, than can easily be called upon and incorporated into

personal functions and scripts. They play a vital role in the development of code in

Python, whether for data science, ML, or really any other area.

The following packages were imported and used extensively along the development of

the project [73]:

− Matplotlib - Uses Python Script to write and represent 2-D and 3-D graphs and

plots, with a MATLAB-like interface [74]. All the graphs and plots presented in this

report were generated using this tool;

− NumPy - Popular, fast and efficient array processing package, having the tools to

manage and operate arrays and matrices, facilitating the data managing [75];

− pandas - Purposefully written for Python language, it is a must learn package for

data science endeavors, setting up an intuitive and adjustable platform for the ma-

nipulation and organization of structured data, e.g. time series [76]. The DataFrame

format with smart indexing and data labeling were crucial to the data organization

in the feature extraction process;

− SciPy library - A collection of numerical algorithms and domain-specific tool-

boxes, essential for signal processing, statistics, interpolation, linear algebra, among

others [9];

− scikit-learn - Simple and useful ML library, sklearn (as it is abbreviated) works

in complete harmony with NumPy and SciPy. Very clean and neat Application Pro-

gramming Interface (API), contains a variety of ML algorithms and procedures, from
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dimensionality reduction to clustering, classification and regression, with excellent

documentation making it very beginner-friendly [64].

All of these (except for sklearn) are actually a collection of core packages belonging

to the SciPy ecosystem, pretty much the gold standard end effectively the cornerstone of

advanced Python programming, since the vast majority of the community libraries and

packages are built upon the structures and platforms provided by this core.

As for the automatic feature extraction, some prospects were initially identified as

potential candidates to integrate the classification pipeline as feature extractor, namely

hctsa (on MATLAB), featuretools, FATS, Cesium, TSFEL and tsfresh. Most of these

specialize in time series feature extraction, and the first one to be tried out was TSFEL

(Time Series Feature Extraction Library). Developed by Fraunhofer AICOS Portugal,

this package provides exploratory feature extraction tasks on time series without requir-

ing significant programming effort, automatically extracting over 60 different features on

the statistical, temporal and spectral domains [77]. It was successfully implemented on

the aluminium plate with holes testing data set, extracting the complete set of features.

Having that working solution to fall back on, the next candidate was tested, which ulti-

mately ended up being the chosen one for its outstanding performance and far-reaching

package.

4.3 tsfresh

The Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh)

is a Python package developed by Christ et. al [11], designed to spare data scientists and

engineers of the multifarious task of considering dozens of signal processing algorithms and

time series analysis, by combining different time series characterization methods and using

them to compute features, with and added tool of feature selection based on statistical

significance for predicting a target.

Figure 24: tsfresh three-step process for feature extraction and selection. From [11].

Figure 24 illustrates the three-step progression of the tsfresh algorithm. The first

step is the feature extraction from the time series, resulting in a M×N matrix, where the

M rows correspond to the time series, identified by their id, while each of the N columns
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correspond to an extracted feature, with a unique identification composed by: the kind

of time series (which sensor) that originated the data, followed by the feature calculator

name, and lastly the key-value pairs of parameters configuring the respective feature cal-

culator. So, for instance, a column named “zt3 spkt welch density coeff 5” would contain

the values of the estimates for the cross power spectral density at a designated frequency

(“coeff = 5”), extracted from the time series signals of sensor PZT3. A sample of the

feature matrix is shown on Figure 25:

Figure 25: tsfresh feature matrix sample.

The second step, which can be run separately, in parallel with any other ongoing fea-

ture extraction thread, is the estimation of each feature’s relevance to a given ML task,

through hypothesis tests and calculation of the respective p-values. The hypothesis tests

are automatically configured depending on the type of supervised ML problem (classifi-

cation/regression) and feature type (categorical/continuous). The third step involves a

multiple testing procedure, utilizing an instrument called Benjamini-Hochberg Method to

control the false discovery rate (FDR). These two steps comprise the feature selection

component, and will be expanded upon just ahead.

The second and third steps’ runtime is negligible compared to the first one. The

feature extraction process, both on the adhesive joint and aluminium plate with holes

data sets, took several hours to conclude.

The complete list of features from the feature extraction module and their meaning

will be added as an Appendix at the end of the report.

Data preparation

The tsfresh package makes use of standard APIs and core packages of Python (e.g

pandas and scikit-learn), allowing for a straight forward implementation. By deploying

the pandas.DataFrame data structure as input and output objects, the only concern is

that the data has to be prepared before undergoing the extraction process, since the

output will always be returned in the same format, just like the sample shown above.
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The input DataFrame has four important column types that must be correctly orga-

nized for a successful extraction [78]:

− column id - indicates which entities the time series belong to, in this project’s

context, each test/simulation. Features will be extracted individually for each entity

id, and the resulting feature matrix will contain one row per id;

− column sort - contains the values that sort the time in the time series, that is, the

array of time steps. It is not necessary, but recommended that every time series has

the same amount of equidistant time steps. Such measure was already taken in the

preprocessing of the data through an interpolation function with 5000 time steps;

− column kind - indicates the names of the different series types (sensors). For each

kind, the features will be calculated individually and independently;

− column value - presents the actual values of the time series, the measurements

taken by each sensor.

It should be noted that none of the columns is allowed to contain any NaN (Not a Num-

ber/null), Inf or -Inf (Infinity) values. This was also taken care of in the preprocessing

phase. The input DataFrame will the be organized as follows on Table 1:

Table 1: The tsfresh Feature Extraction input DataFrame matrix

id time kind value

1 t1 pzt1 pzt1(1,t1)

1 t2 pzt1 pzt1(1,t2)

1 ... pzt1 pzt1(1,...)

1 t5000 pzt1 pzt1(1,t5000)

1 t1 pzt2 pzt2(1,t1)

1 ... pzt2 pzt2(1,...)

1 t5000 pzt2 pzt2(1,t5000)

1 t1 pzt3 pzt3(1,t1)

1 ... pzt3 pzt3(1,...)

2 t1 pzt1 pzt1(2,t1)

2 ... pzt1 pzt1(2,...)

... ... ... ...

M t1 pzt3 pzt3(M,t1)

M ... pzt3 pzt3(M,...)

M t5000 pzt3 pzt3(M,t5000)

The time series of a data set are stacked vertically, with repetitive patterns on the

first three columns, and the values of each time series in the fourth.

48



V. F. F. Loreiro Lamb Waves for damage detection in adhesive joints

Feature selection

The effectiveness of a feature is ultimately measured in terms of its performance to

the ML task at hand, and whether or not it improves its metrics. In other words, whether

or not the feature has relevance to the problem at hand [40].

An important aspect of feature selection concerns the computational power involved,

and ultimately the time that it takes to complete a feature extraction process for a large

data set. From a business perspective, it makes sense to restrict the feature extraction to

the reduced, most meaningful pool of features, leaving apart the redundant, unnecessary

and often detrimental ones, while speeding up the extraction process, saving time and

resources.

For classification and regression tasks, the significance of extracted features is of par-

ticular importance, owning to the fact that too many irrelevant and redundant features

will likely result in overfitting - a fundamental issue in supervised ML, where a possible

number of reasons, like presence of noise, limited size of the training data set, or complex-

ity of classifiers, impair the ability of the algorithm to generalize beyond the training data

set. In other words, the model performs perfectly on the training set, while fitting poorly

on the testing one, because it has “memorized” all the data on the training set, instead

of learning the discipline hidden behind the data. For a well-functioning algorithms, this

phenomenon must be avoided [79]. Underfitting is also a possible danger, namely if the

model is not able to capture the dynamics shown by the training set (often because it is

too limited).

The feature selection module of the tsfresh package contains a two-step method to

evaluate the importance of different extracted features:

1. Univariate Hypothesis Testing;

2. Benjamini-Hochberg Procedure.

Firstly, the influence of each extracted feature on the target is evaluated, through a

univariate hypothesis test, with the calculation of the respective p-values. To do so, the

target vector must be defined, according to the intended ML task - either classification

or regression. This topic will be further expanded on Chapter 5, but for this purpose,

and since the ML algorithms that will be used are of the classification kind, the target

vectors for both the adhesive joint and aluminium plate with holes testing can be promptly

established.

All time series were generated on simulations ran with predetermined specifications -

the adhesion strength of the joint, and the size/position of the hole present in the plate

- with different values for this specifications, in order to construct a diverse data set.

These values are fundamentally the needed target, the classes in which the data set can

be divided into. They are the characteristic that is subject to analysis, and that the

ML algorithms are being trained to predict. For the aluminium plate, the intention is
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to classify the damage by predicting the hole existence/size (the position is disregarded

in this project), so the target vector is simply composed by four classes: 0, 2, 6, and

10. Note that these do not represent integers with intrinsic value, they are just unique

labels that describe the data, that is, one class label for each hole size present (none,

2mm, 6mm, and 10mm). For the classification of adhesion data however, considering that

the adhesion strength value varies from 600 to 270000 kPa, five classes were arbitrarily

assumed, by dividing that range in five equal intervals, intended to illustrate qualitatively

the data: 1 - Very Low Adhesion Force; 2 - Low Adhesion force; 3 - Medium Adhesion

force; 4 - High Adhesion force; 5 - Very High Adhesion force; The target vectors are then

composed by the corresponding time series id, that should be consistent with the features

id, of its respective class. An example is represented in Table 2:

Table 2: The tsfresh target vector examples for classification-task oriented feature se-

lection

Plate with Holes Adhesive Joint

id target Hole Size id target Adhesion Strength

1 2 2mm 1 1 600 - 54480 kPa

2 6 6mm 2 3 108360 - 162240 kPa

3 6 6mm 3 4 162240 - 216120 kPa

4 2 2mm 4 2 54480 - 108360 kPa

5 10 10mm 5 3 108360 - 162240 kPa

6 0 none 6 5 216120 - 270000 kPa

7 10 10mm 7 1 600 - 54480 kPa

... 6 6mm ... 4 162240 - 216120 kPa

The features’ relevance will be tested individually with respect to each and every class

contained on the given target vector, according to the specified ML task. To accomplish

this, for each feature from the DataFrame, a univariate significance test is conducted.

An hypothesis test is a statistical inference procedure with the fundamental objective of

assessing the plausibility of an assumption regarding a population parameter. Population

is a pool of sampled data, in this case generated data. In other words, whether or not the

data supports a claim made about a populational parameter. The test invariably leads to

a positive or negative assessment of that claim, based on statistical characteristics of the

data, either rejecting or failing to reject the given hypothesis. However, this defines what

is called a parametric test, because the hypothesis must be explicitly about a parameter

of the population, and it only works with continuous data, assuming it has an underlying

statistical distribution [80]. Nonparametric tests, on the other hand, do not need to

meet those criteria, and so, they can be applied to other data types such as ordinal or

nominal/categorical data, as is the case. There are other differences between them, one
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of which is the statistical test employed. Nevertheless, the structure of the procedure is

the same for both, and can be decomposed in four steps [80,81]:

− Hypothesis Definition - The first step is to determine the conjecture that will be

tested. For this, two complementary claims are designated:

• H0 = the feature is not relevant and should be discarded;

• H1 = the feature is relevant and should be kept;

In other words, if the Null Hypothesis (H0) is not rejected, the feature and the

target are assumed to be independent, meaning that the feature has no influence on

the target’s class. If however, the Null Hypothesis (H0) is rejected, the Alter-

native Hypothesis (H1) is assumed to be true, meaning the target and feature

are associated/dependent;

− Statistical Test Selection and Calculation - The test statistic is a summary

of the information contained in the data. The data that is being worked is of the

categorical type, which means non-parametric statistical tests must be employed.

The tsfresh automatically decides between four test settings, depending if the

features and target are binary or not. The four possible statistical tests are:

• Two-sided Univariate Fisher Exact Test - Used when both the feature and the

target are binary;

• Mann-Whitney U or Kolmogorov-Smirnov - Used when testing the significance

of a real-valued feature to a binary target;

• Kolmogorov-Smirnov - Used when testing the significance of a binary feature

to a real-valued target;

• Kendall’s Tau - Used when both the feature and the target are real-valued;

The value of the statistical test must be calculated in order to make a decision about

the null hypothesis;

− Significance Level Specification (α) - The significance level α is an arbitrar-

ily defined value (typically 0.05 or 0.01) that will dictate the decision rule after

identifying the value of the statistical test, and guarantee that the rule is applied

consistently throughout the data set. What the significance level represents is the

probability (risk) of rejecting the null hypothesis when it is true (desig-

nated a type I error). So if the α is set to 0.05, that means there is a 5% chance of

wrongfully rejecting the null hypothesis. The value of each statistical test (ST) is

compared to the value of ST (α), named critical value, and from that comparison a

decision is made. Obviously, the smaller α is, the more confidence of not committing

a type I error exists;
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− Statistical Test Result Evaluation - The last phase of the process corresponds

to the application of the decision rule, considering the result of the statistical test,

of whether or not to reject the null hypothesis. This dichotomy is actually artificial,

since the significance level is frankly arbitrary, and the data can contradict the null

hypothesis to a greater or lesser extent. The exact level of that extent is called the

p-value - the probability of obtaining test results at least as extreme as the results

actually observed, under the assumption that the null hypothesis is correct. The

smaller the p-value is, the higher is the belief that the null hypothesis is contradicted,

because that means that such an extreme observed outcome would be exceptionally

unlikely if the null hypothesis were to be true (the probability of committing a type

I error is minuscule).

The output of the series of hypothesis tests performed on the data is an array of p-

values, which form the relevance table, for each class of the target vector, all the p-values

corresponding to each of the features are displayed. The distributions of p-values for each

class are presented next in form of histogram, both for the adhesive joint and aluminium

plate with holes data.

Figure 26: The p-value Histogram - Aluminium Plate Hole Size Classes

The most meaningful aspect of the histograms in Figure 26 is the first bar, corre-

sponding to the smallest p-values (≤ 0.05). So, from an original pool of 2328 extracted
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features, it can be noticed that the no damage class has the highest count of features with

p-values under 0.05, with 1958, followed by the 2mm class, counting 1707 features, the

10mm class, with 1610, and finally the 6mm class, with 1467. Hence, there is an early

indication that the 6mm class is the hardest to distinguish based on the available features

by a slight margin.

Figure 27: p-value Histogram - Adhesive Joint Strength Classes

For the adhesion strength classes, the histograms presented in Figure 27 are not only

more uniform across classes, but also a larger percentage of the original 788 features

were deemed statistically significant for the classification of each class, with the count of

p-values ≤ 0.05 being, from class 1 to class 5, 681, 636, 599, 598, 590, respectively.

In any case, there is always the possibility of mistakes and wrong decisions being

made, not only through type I errors, already discussed, but also type II errors - H0 in

not rejected, when in fact the alternative hypothesis H1 is true [80].

But the probability of making mistakes is specially true in this testing environment,

referred to as “multiple testing”, due to the fact that several different hypotheses are

being tested simultaneously. If decisions about the individual hypotheses are based on

the unadjusted marginal p-values obtained, then there is typically a large probability that

some of the true null hypotheses will be rejected just from chance alone, meaning that

some features will be deemed relevant, when in fact they are not [82].

For this reason, after the p-values relevance table is set, the tsfresh package executes

the Benjamini-Hochberg Procedure, that is a multiple test procedure that decides which

features to keep and which to cut off by controlling the False Discovery Rate (FDR),

a concept formally described by Yoav Benjamini and Yosef Hochberg in 1995 [17]. To

define the FDR, one starts by inspecting the possible outcomes of a generic multiple

testing instance, demonstrated on Table 3:
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Table 3: Possible outcomes when testing multiple null hypotheses. From [17].

Test declared

non-significant

Test declared

significant

Total

True H0 U V m0

Non-true H0 T S m−m0

m - R R m

Considering a situation where m (null) hypotheses, known in advance, are being tested,

of which m0 are true, but unknown, and m − m0 is the number of true alternative hy-

potheses one has [17]:

• V - the number of false positives (type I error, also called “false discoveries”);

• S - the number of true positives (also called “true discoveries”);

• T - the number of false negatives (type II error);

• U - the number of true negatives;

• R = V +S - the number of rejected null hypotheses (also called “discoveries”, either

true or false).

The symbol R is an observable random variable, and S, T, U, and V are unobservable

random variables. The proportion of errors committed by falsely rejecting null hypotheses

can be viewed through the random variable Q = V/(V + S), since V is the number of

null hypotheses erroneously rejected. The variable is defined to be 0 if R = 0.

On account of the fact that both V and S are unobserved random variables, their

values cannot be known, and so the False Discovery Rate is defined as being the expectation

of Q [17]:

FDR = Qe = E(Q) = E

(
V

V + S

)
= E

(
V

R

)
(23)

The goal of the Benjamini-Hochberg (BH) Procedure is to keep the FDR below a given

threshold q. For that effect, let p(1) ≤ p(2) ≤ ... ≤ p(m) be the ordered observed p-values.

Define:

k = max

{
i : p(i) ≤

i

m
q

}
, (24)

and simply reject all hypotheses H0i, i = 0, 1, 2, ..., k for which pi ≤ pk [17]. If no such i

exists, reject no hypothesis. The inequality:

E(Q) ≤ m0

m
q ≤ q (25)
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is also verified [83].

Through this final method, the pool of extracted features considered relevant by the

univariate hypothesis testing was filtered, leaving only the hereinafter called “selected

features”, those that have remained relevant for the classification task of at least one

class. Table 4 shows the feature filtering process results.

Table 4: tsfresh classification-task oriented feature filtering steps results

Plate with Holes Adhesive Joint

Classes none 2mm 6mm 10mm 1 2 3 4 5

Extracted features 2328 788

Features with

p-value ≤ 0.05

1958 1707 1467 1610 681 636 599 598 590

Benjamini-Hochberg

Selected features

1856 1539 1189 1383 657 559 555 571 571

Top features: B-H

relevant for all classes

447 244

Even though the Benjamini-Hochberg procedure reduced the feature number on all

classes across the board, the most accentuated reduction is on the 6mm and 10mm hole

class features for the aluminium plate classification, that had the least number of statis-

tically significant features to start with. It should not be worrying at all, since there are

plenty of features to identify all classes. The “Top” features are those considered relevant

for all classes simultaneously.

To finalize this ever so important feature selection portion of the report, it is fair to

mention that this automated feature selection module of tsfresh is just as appropriate

and decisive as the feature extraction module itself. The fact that they work together

so seamlessly and elegantly, allowing for the whole direct data processing, from prepro-

cessed time series to finely selected, ML-task oriented features, made for an easy choice of

implementation on this classification pipeline project. It is worthy to point out that the

actual procedure implemented in the module is the Benjamini-Yekutieli procedure, in ev-

ery way similar to the Benjamini-Hochberg procedure that was just described, but where

the calculation of the parameter k is generalized to allow for correlation among features,

as opposed to the Benjamini-Hochberg procedure where all features are assumed to be

independent [83].

Having said that, if the feature selection module was not available, the sklearn library

provides a repository of various sorts of selection techniques, some of the most popular

developed to date, including univariate filter selection methods and recursive feature elim-

ination algorithms, that could have been inserted into the pipeline at this stage. It should

also be mentioned that the tsfresh package itself calls on sklearn functions, namely the

statistical tests employed on the hypothesis tests, as well as borrowing the code for the
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Benjamini-Hochberg Procedure from the statsmodels library.

4.4 Visualizing features

To end this chapter and move on to the classification of the time series based on

their selected features, the techniques presented in Chapter 3 are used to visualize some

of the features that resulted from the selection process. Please note that these are not

being applied in a dimensionality reduction context - the features are already arrays

of values, one for each time series, constituting a low dimensional data set. They are

being applied in a data representation context, a way to portray the data’s structure in

a spatial fashion easily assimilated by the relatively untrained human eye. According to

Young [84], multidimensional scaling may be applied to a very wide range of types of data.

“Technically, any matrix of some raw or transformed data is a candidate for analysis by

some type of multidimensional scaling method, if the elements of the data matrix indicate

the strength or degree of relation between the objects or events represented by the rows

and columns of the data matrix.”

With that being said, the following figures represent the MDS and t-SNE plots of some

of the top features, for both data sets, that will be processed by the algorithms in Chapter

5. Each point of the plots represents the calculated feature value of the corresponding

test signal, ultimately representing the signal itself, hence the points color map associated

with the hole size/adhesion strength of the signal.

For this purpose, the 3-dimensional mapping was chosen on both the MDS and t-SNE

visualization of the features, unlike what was initially applied to the time series, as it

brought no advantages in the visualization of those. These however, are snapshots of

representations on a static position, where a good angle is shown, but the superlative

thing about this type of representation is that it can be turned around, rotated about the

three Cartesian axes without the data being changed, because the Euclidean distances are

always kept, and so, there are different perspectives of the data to be appreciated with

this procedure.

56



V. F. F. Loreiro Lamb Waves for damage detection in adhesive joints

Figure 28: MDS 3-D Aluminium Plate Feature: “zt2 fft coefficient attr abs coeff 63”

Figure 28 represents a 3-D MDS mapped feature, related with the FFT values of the

PZT2 signals from the aluminium plate data set. A large number of features will resemble

this one, having the tests disposed in a fairly straight line, where the upper damage classes

tend to diverge from the lower damage classes, but not in a perfectly separated manner.

In this concrete example, the tests with 0 mm and 2 mm holes are neighboring on the top

end of the line, and most of the 10 mm hole tests are placed towards the bottom, some

of them dispersing quite a bit. The 6 mm hole class tests seems to appear all throughout

the distribution.
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Figure 29: MDS 3-D Adhesive Joint Feature:

“value agg linear trend attr intercept chunk len 10 f agg var”

On Figure 29, now referring to the adhesive joint data set, a more complex feature,

calculated from a linear least-squares regression of the time series values, is represented in

MDS mapping. The differentiation among classes is evident here, with the sole exception

of class number 2 (low adhesion strength), that does not stand on its own, isolated from

the others.
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Figure 30: MDS 3-D Aluminium Plate Feature: “zt3 benford correlation”

Lastly, Figures 30 and 31 represent the same feature from the PZT3 sensor data: the

correlation values from first digit distribution when compared to the Newcomb-Benford’s

Law distribution, useful for anomaly detection applications. The difference is that one is

mapped with the 3-D MDS technique, and the other employs the 3-D t-SNE. The MDS

representation follows the same tendency that was pointed out on Figure 28, while the

t-SNE displays a different arrangement, with the tests from class 0 forming a cluster, the

2 mm class tests disposed in a curved line, and the of 6 / 10 mm forming another curved

line. Both mappings separate the low damage classes from the high damage classes, but

do it in a different manner.
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Figure 31: t-SNE 3-D Aluminium Plate Feature: “zt3 benford correlation”

There are hundreds of top features that could be represented with these techniques,

and in each one some specific differentiation among classes is perceptible, even to an

untrained eye. In this light, the prospect of combining and inputting all of them into the

ML algorithms becomes rather promising, as they stand to benefit from the information

contained in each one to make the best possible prediction.
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5 Classification Algorithms

5.1 Artificial Intelligence / Machine Learning

In the mid-twentieth century, Alan Turing originated the concept of intelligent ma-

chines, when he envisioned the possibility of machines capable of thinking. Since then,

the Artificial Intelligence (AI) branch of computer science has been steadily expanding,

from the creation of neural network models in 1943. From that point until the present

day, the evolution of this field has been rapidly growing, following the improvements of

computational power and its availability over the last two decades [85,86].

Nowadays, AI is regarded as a general term, designating the field of computer sci-

ences that studies “intelligent agents”: any device that perceives its environment and

takes actions that maximize its chance of success at some goal. It can be subdivided in

various research topics, often overlapping in some aspects, that broadly encompass: ML,

Neural Networks, Deep Learning, Natural Language Processing, Computer Vision, among

others, and the application and evolution of spawned technologies like self-driving cars

and intelligent routing in content delivery networks [86]. Numerous research articles have

been published about AI in all of its facets, and each of the methods is the best suited for

different applications. Nevertheless, the focus now will be put on ML, as it is a central

instrument to the presented project.

ML is the subfield of AI that gives “computers the ability to learn without being

explicitly programmed” [86]. Evolved from the study of pattern recognition, ML explores

the construction and optimization of algorithms that can learn from, and make predictions

on data. They operate by building and improving models from sample inputs, making

data-driven decisions instead of following strict program instructions. It is closely related

to (and often overlaps with) computational statistics, making regular use of mathematical

and statistical methods.

ML algorithms are organized into four main types, based on the desired outcome of

the algorithm [86]:

− Supervised learning - One of the most adopted ML methods, with about 70

percent employment rate, supervised learning algorithms are trained using labeled

data, meaning that inputs are used where the desired output is known. The learning

algorithm receives a set of inputs along with the correct outputs, and compares

the generated outputs with the correct outputs, adjusting itself accordingly on the

process, using the underlying patterns, to then predict the values of the label on

additional unlabeled data subject to testing. If the output is a continuous value

label, the procedure is called regression (not addressed in this project); if the output

is a discrete number of categorical class labels, it is called classification;

− Unsupervised learning - Accounting for 10 to 20 percent usage rate, unsuper-

vised learning is used on data that has no labels, so the system is not told “the
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right answer”, and the objective is not to explicitly find a correct answer. It is an

exploratory procedure, in which the model must figure out what is being shown on

its own, so the goal is to explore the data and find some structure within, ideally

separating it into distinct categories (clustering);

− Semi-supervised learning - Semi-supervised learning is used for the same ap-

plications as supervised learning, but it uses both labeled and unlabeled data for

training, meaning a small amount of labeled mixed with a large amount of unlabeled

data, to be used in situations where the cost associated with labeling is too high to

allow for a fully supervised program;

− Reinforcement learning - Often used for robotics and navigation, reinforcement

learning is all about discovering which actions yield the greatest rewards through

trial and error. This type of learning has three primary components: the agent (the

learner or decision maker); the environment (everything the agent interacts with);

and the actions (what the agent can do). The goal is for the agent to choose the

actions which maximize the expected reward over a given time.

Figure 32: ML categories. From [12].

Figure 32 represents the relationship between this ML types and some possible appli-

cations of each one.

Every step of the process up until this point, as the pipeline flowchart in the beginning

of Chapter 4 illustrates, is conducive to have the best damage detection and classification

performance possible on supervised ML algorithms, since the data used was generated

through well defined simulations, and so, obviously, all the necessary labels for each

instance are known.
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5.2 Supervised Machine Learning

At this stage of the project, it is time to “conclude” the classification pipeline by

making predictions on damage / adhesion strength class on the respective data sets, as

well confirming whether or not the feature extraction and selection that was carried out

to such effect was productive.

It is now understandable why the tsfresh selection module, as it was mentioned in

Chapter 4, required the definition of a target vector for that selection to be made, taking

in consideration the classes present on that target. The target vector is nothing more

than an array of classification labels corresponding to the damage class present in each

time series, that the model will use to compare its results with the target and discover

the patters responsible for it in order to improve the classification accuracy. That same

exact target vector will be used in the training part of the algorithm.

When a classification problem has multiple output classes, it is said to be a multi-class

problem, and there are two main possible strategies to approach it [16]:

− One-vs-all - The most common strategy, widely adopted by most algorithms, in-

cluding this project. If there are n output classes, n classifiers are trained in parallel,

considering a separation between an actual class and the pool of remaining ones. It

is the default choice for its relatively light complexity O(n), since at most (n − 1)

checks are needed to find the right class;

− One-vs-one - The alternative trains a model for each pair of classes, making the

complexity no longer linear O(n2), and the right class is determined by majority

vote. If possible, it is preferable not to choose this strategy, unless a specific dis-

tinction between two classes is to be made.

Damage detection - classification algorithms

The time series extracted/selected features were put to the test through the use of 4

different classification algorithms:

− Gaussian Naı̈ve Bayes;

− K-Nearest Neighbors Classifier;

− Gradient Boosting Classifier;

− Random Forest Classifier.

The code for all of these algorithms is provided by the scikit-learn library [64].
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For each feature x, the Naı̈ve Bayes approach to classification is to formulate a prob-

abilistic model to estimate the posterior probability P (y|x) of the different classes y, and

to predict the one with the largest posterior probability. By the Bayes’ Theorem, it comes:

P (y|x) =
P (x|y)P (y)

P (x)
, (26)

where P(y) can be estimated by counting the proportion of class y in the training set,

and P(x) can be ignored since we are comparing different y on the same x; thus, the

only component that needs to be considered is P (x|y). If an accurate estimate for P (x|y)

is obtained, that will correspond to the Bayes optimal classifier, with the smallest

theoretical error rate. Estimating P (x|y) is not straightforward, given that it involves

the estimation of exponential numbers of joint-probabilities of the features. That can be

avoided by assuming that in each class label, the n features are independent of each other,

and so we can estimate the conditional probability by:

P (x|y) =
n∏

i=1

P (xi|y) (27)

In the training stage, these probabilities are estimated, and then in the testing stage,

a feature x will be predicted as label y, if y leads to the largest value of:

P (y|x) ∝ P (y)
n∏

i=1

P (xi|y) (28)

The different Naı̈ve Bayes classifiers differ mainly by the assumptions they make

regarding the distribution of P (xi|y), in this case, a Normal (Gaussian) distribution is

appointed [13].

As for the k-Nearest Neighbors (KNN) algorithm, it relies on the simple principle that

objects similar in the input space will also be similar in the output space. It is considered

a lazy learning approach, known as instance based or non-generalizing learning, as it does

not have an explicit training process nor does it attempt to construct a general internal

model. It merely stores the instances of the training set. In training, the KNN model

will pick out the k instances from the training set that are closer to the test instance,

in terms of a certain distance (Euclidean, Manhattan, etc.). Then, for classification, the

test instance will be classified to the majority class among the k instances, with k being

a value specified by the user. The basic KNN uses uniform weights: the value assigned to

a query point is computed from a simple majority vote of the nearest neighbors. Under

some circumstances, it is better to weigh the neighbors such that the nearer neighbors

contribute more to the fit [13,64].

The remaining two algorithms, Gradient Boosting and Random Forest are from the

same category, designated Ensemble Methods. Ensemble methods are state-of-the-
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art ML approaches that train multiple learners to solve the same problem and combine

their results, significantly improving the accuracy compared to a single learner model.

Ensemble learning is also called committee-based learning or multiple classifier systems.

They are constructed in two steps: generating the base models, that should be as accurate

and diverse as possible, and then combining them, as shown in Figure 33 [13].

Figure 33: A common ensemble method architecture. From [13].

The ensemble contains a number of learners called base learners, generated from the

training data by a base algorithm, which can be decision trees, neural networks or other

kinds of models. All of the three ensemble methods mentioned are based on the decision

tree model, and by using a single base algorithm, they produce homogenous base learners,

leading to homogenous ensembles. That implies that heterogeneous ensembles also

exist, using various learning algorithms that get the name individual/component learners,

instead of base learners [13]. Before expanding on ensemble methods, defining the used

base learner is in order.

A Decision Tree is a non-parametric model made up of tree-structured decision tests,

working in a divide-and-conquer way, as exemplified in Figure 34, predicting the value

of a target variable by learning simple decision rules inferred from the data features. It

starts on the root node and from there each non-leaf node is associated with a feature test,

also called a split. Data falling into the node will be split into subsets according to their

different results on the feature test, eventually landing in a leaf node, associated with

a classification label to which that instance will be assigned. Decision Tree learning

algorithms are generally recursive processes, since in each step a data set is given and

a split is selected, then acting as the given data set for the next step. The key of the

decision tree algorithm is in the selection criteria of the splits. Typical ones include the

“information gain” or the Gini criteria [13].
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Figure 34: Decision Tree model example. Adapted from [14].

Decision tree models are prone to overfitting, by creating over-complex trees that

do not generalise the data well. Mechanisms such as pruning, setting the minimum

number of samples required at a leaf node or setting the maximum depth of the tree

are necessary to avoid this problem. Decision tree learners can also create biased trees

if some classes dominate. It is therefore recommended to balance the data set in terms of

class representation prior to fitting with the decision tree [13, 64].

The ensemble methods will combine different decision tree classifiers, improving the

generalization ability of a single decision tree model. It is noteworthy that, as a general

rule, the computational cost of constructing an ensemble is not much larger than the

one involved when employing a single learner, so there are no serious disadvantages in

selecting the former. A final distinction among ensemble methods has to do with how the

base learners are generated, divided in two paradigms, roughly speaking [13]:

− Boosting - Refers to a family of algorithms that convert “weak learners” to “strong

learners” by having the weak models working together. Characterized by being

sequential ensemble methods, where the base learners are generated in succession,

exploiting the dependence between them and boosting overall performance in a

residual-decreasing way. Gradient Boosting is a representative of this kind;

− Bagging - Exploits the independence between base learners by setting them up

parallel to each other, reducing the error by combining them and averaging out the

results. To have independent base learners, one possibility is to apply bootstrap

sampling (the bagging name derives from “bootstrap aggregating”), that means

training those base models with non-overlapped subsets of the training data pool.
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Not only does bagging improve performance, but also decreases variance and helps

handling overfitting. Random Forest represents this kind.

According to Zhou [13] for many tasks, “the best off-the-shelf learning technique at

present is an ensemble method such as Random Forest, facilitated with feature engineer-

ing which constructs/generates usually an overly large number of new features rather than

simply working on the original features.”

5.3 Classification metrics and evaluation

In ML, the algorithm’s performance is presented and analysed through the results’

metrics. Numerous metrics exist, specifically designed to evaluate certain aspects of

each ML category (classification, regression, clustering, etc.), that can go from a broad

assessment of the algorithms’ behaviour, to very particular measurements that could be

of special interest.

Having said that, prior to the models being put into practice, the data set must be

split into two parts: the training / testing sets. In this split, a ratio must be chosen

between the data to which the model will be fitted to (trained on), and the data left aside

to be used in the class prediction (tested on). There is no ideal ratio, it varies with data

type, data set size, and the model(s) to be used. Having said that, typical ratios used by

researchers are 80/20, if the data set has a large size, or 70/30 for smaller ones. On this

project, the 70% training / 30% testing ratio was adopted, as illustrated in Figure 35.

It is also common to have a “validation set”, a sample from the training set to perform

prediction, useful to fine tune the model, check if the classifier can reproduce the known

output, and also to compare against the actual testing set - if the results are fantastic

on the training set, but poor on the testing set, it means the model is overfitting, for

example [87].

Figure 35: Supervised ML Train/Test Data Split. From [15].

While splitting, the properties of the original data set should be kept as much as pos-

sible, otherwise the validation results could be misleading (by chance of a really favorable

or really poor split/sampling). To avoid that, a commonly used validation method is

called k -fold cross-validation: the original data set is partitioned into k equal sized

disjoint subsets, and then k runs of fitting/predicting are performed. For any iteration of
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this process, k−1 subsets are randomly chosen as the training set, and the model predicts

the remaining one, as illustrated on Figure 36. The average results of the k runs’ metrics

are taken as results of the cross-validation [13, 87]. A usual configuration is the 10-fold

cross validation, adopted in this project to validate the best results, shown ahead.

Figure 36: k -fold cross-validation testing iterations. From [16].

For this project, the most mainstream and widely used classification metrics were

examined [64,88]:

− Confusion Matrix - Also known as an error matrix, a confusion matrix is a square

table layout that allows for the visualization of the performance of an algorithm.

Each row of the matrix represents the instances in an actual class while each column

represents the instances in a predicted class. Evidently there are as many rows and

columns as there are classes, and the diagonal represents the instances that were

properly classified. The name stems from the fact that it makes it easy to see

whether the system is confusing two classes (i.e. commonly mislabeling one as

another);

− Accuracy Score (acc) - The accuracy metric measures the ratio of correct pre-

dictions over the total number of instances evaluated:

acc =
tp+ tn

tp+ fp+ tn+ fn
; (29)

− Precision Score (p) - Ratio of correctly predicted positive observations to the

total number of positive observations. Intuitively, it is the ability of the classifier

not to label as positive a sample that is negative:

p =
tp

tp+ fp
; (30)
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− Recall Score (r) - Ratio of correctly predicted positive observations to all obser-

vations in actual class. Intuitively, it is the ability of the classifier to find all the

positive samples:

r =
tp

tp+ fn
; (31)

− F1 Score (F1) - Also known as balanced F-score or F-measure, is a weighted

average of recall and precision, that is a parameter of great importance when having

an uneven class distribution in data:

F1 =
2× precision× recall
precision+ recall

; (32)

Despite having a fairly balanced class distribution, it is not perfectly balanced, so

measuring the F1 score is valid.

The symbols tp, fp, tn and fn signify true positive, false positive, true negative and

false negative respectively. All classification scores are calculated by averaging the results

for each class, and using the range from 0 being the worst possible and 1 being a perfect

score.

The metrics are expected not only to evaluate the algorithms’ performance, but are

also advantageous to assess if the feature selection process was successful, by fitting (train-

ing) each of the models with each of the data sets (plate with holes / adhesive joint), split

in a way that can assess the features’ impact on classification: the full set, containing

all the successfully features initially extracted, the selected set, containing the features

selected by the tsfresh selection module and the top set, containing the features consid-

ered relevant for all classes simultaneously. Needless to say, the score metrics are easily

displayable in a table, as shown in Table 37, but when it comes to the confusion matrices,

there is just no way of presenting all of them.

Figure 37: Confusion Matrix - Plate with holes, selected feature subset - Gaussian Naı̈ve

Bayes classifier prediction

The confusion matrix on Figure 37, representing the Gaussian Naı̈ve Bayes model

predicting the classes of the plate with holes, with a selected feature data testing set, was
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chosen as an example because it illustrates some interesting and diversified metrics, so that

they can be understood: class 0 has perfect accuracy, precision and recall, all tests from

class 0 were correctly classified as such, and no tests from other classes were inaccurately

predicted as part of this class; class 2 has perfect recall, as no tests from other classes were

incorrectly predicted as class 2, but has a lower precision p = 49/(0+49+21+9) = 0.62,

since a number of false positives appear, that is instances where tests belonging to that

class were mistakenly predicted as other classes; in class 6 and class 10 the metrics

fall down steeply, as not even the majority of the tests were predicted as their respective

classes.

Table 5: Classification algorithms’ metrics - Hole size prediction on aluminium plate -

70/30 data split

Aluminium Plate Data Set

Models Full Features Selected

Features

Top Features

Gaussian

Näıve

Bayes

acc 0.594 0.594 0.583

p 0.639 0.639 0.696

r 0.641 0.641 0.618

F1 0.579 0.579 0.569

k-Nearest

Neighbors

acc 0.483 0.483 0.461

p 0.533 0.533 0.507

r 0.531 0.531 0.511

F1 0.531 0.531 0.508

Gradient

Boosting

acc 0.944 0.950 0.911

p 0.952 0.956 0.926

r 0.952 0.956 0.922

F1 0.950 0.955 0.920

Random

Forest

acc 0.900 0.939 0.895

p 0.917 0.948 0.905

r 0.907 0.943 0.906

F1 0.908 0.944 0.905

Looking at the model results on Table 5, that present all the metrics for each

model in the aluminium plate data set, it is clear that the ensemble methods, Gradient

Boosting and Random Forest are head and shoulders above the Gaussian Naı̈ve Bayes

and k-Nearest Neighbors in all accounts, showing metrics consistently above 90%, which

are great results, for models that were not even fine-tuned as exhaustively as they would

be if they were to be fully implemented in some real-life project. The Gaussian Naı̈ve

Bayes and k-Nearest Neighbors might be suffering from the feature sets being too large

which is a known disadvantage of both, specially for Bayesian models. The KNN’s per-
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formance could also be impaired by a poor choice of the k value, as it is a very sensitive

parameter for the model [89].

Focusing on the ensemble methods, in terms of the feature subset differences, there is

a steady improvement from the full to the selected set, across all metrics, which is a good

sign. It means that the selection is effective in disposing of redundant and insignificant

features that might be hurting the algorithms’ performance. When it comes to the top

features, there is a slight decline across the board as well, understandable considering that

the number of significant features was reduced, and so, inevitably, relevant information

was lost. Even if it was only relevant to classify one or two of the four classes, those features

could - and did - make the difference in some cases. In any case, if time/computational

power was a concern, this reduced number of features (447 as opposed to 2328) could be

the only set initially extracted, avoiding a long and drawn-out extraction and selection

process, and still yielding a more than satisfactory classification, specially because the

errors will most likely occur, as Figure 38 indicates, among the classes 6 and 10, that is,

those that represent meaningful damage, so a red flag would be raised in either case.

Figure 38: Confusion Matrix - Plate with holes, selected feature subset - Random Forest

classifier prediction

The results of the ensemble models were validated through the k -fold cross-validation

method, in order to make sure they were legitimate. Table 6 presents the values for

accuracy and F1 scores for both the Gradient Boosting and Random Forest models.

The metrics are solid, including one instance in each model, where 100% classification

accuracy is reached. It is also very common for both of the models to have similar, almost

identical metrics in the k -fold instances.

To finalize the classification procedures, the adhesive joint strength classification re-

sults are shown in Table 7, that are undoubtedly great results. The ensemble algorithms

are utilizing the available features perfectly, the k -fold cross-validation shows 98-100%

accuracy on all the 10 running instances, so they are pretty much as successful as one can

be with this data set. More interesting is to evaluate the Gaussian Naı̈ve Bayes and

k-Nearest Neighbors models, as the first one shows a major improvement if compared
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Table 6: Gradient Boosting and Random Forest k -fold cross-validation

metrics (acc/F1)

Gradient Boosting Random Forest

accuracy F1 score accuracy F1 score

0.967 0.964 0.933 0.939

0.950 0.957 0.967 0.975

0.950 0.956 0.950 0.958

0.983 0.982 0.983 0.982

0.967 0.971 1.00 1.00

0.967 0.961 0.983 0.984

1.00 1.00 0.900 0.891

0.967 0.975 0.983 0.980

0.983 0.984 0.983 0.982

0.933 0.946 0.967 0.973

with the aluminium plate data set. Note that the model parameters are exactly the same,

so the features are definitely responsible for that improvement, either they represent the

time series better, or maybe the fact that the simulations themselves represent even steps

of the adhesion strength progression, it is easier to predict a given time series range. As

for the KNN, it shows major improvement as well, but only with the top features subset,

that contains 244 features. It is possible that some sort of “maximum features” threshold

was preventing the model from scoring higher.

Be that as it may, it is fair to say that the classification tasks were a success, but there

is always room for improving and strengthening of the pipeline, be it through fine tuning

of the ML algorithms parameters, or further selection of the feature set employed.
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Table 7: Classification algorithms’ metrics - Adhesion strength prediction on single lap

joint - 70/30 data split

Adhesive Joint Data Set

Models Full Features Selected

Features

Top Features

Gaussian

Näıve

Bayes

acc 0.948 0.948 0.981

p 0.952 0.952 0.981

r 0.945 0.945 0.982

F1 0.948 0.948 0.982

k-Nearest

Neighbors

acc 0.552 0.552 0.982

p 0.566 0.566 0.981

r 0.550 0.550 0.980

F1 0.555 0.555 0.982

Gradient

Boosting

acc 0.996 1.00 0.993

p 0.997 1.00 0.993

r 0.996 1.00 0.993

F1 0.996 1.00 0.993

Random

Forest

acc 1.00 1.00 1.00

p 1.00 1.00 1.00

r 1.00 1.00 1.00

F1 1.00 1.00 1.00
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6 Summary of appended paper

In recent years the aeronautical industry has grown with new materials and fabrica-

tion methods being developed. This has caused the use of Structural Health Monitoring

methods (SHM), more specifically Lamb Waves, to become more prevalent as regulations

become more severe [1]. Methods utilizing time series sensor data for damage detection

have shown great promise in classifying the extent of damage present in plate structures

when used in union with machine learning algorithms. Despite this success, there is still

a lack of a robust method for choosing features that optimize the learning process to clas-

sify any damage [2]. In this paper a powerful time-series specialized feature extraction

method is implemented. Initially over 75 different prominent features and their variations

are extracted from each sensor’s raw data. Then, by utilizing the Benjamini-Hochberg

procedure some are selected as relevant for a damage classification problem. After the

initial selection, the features are inserted into supervised machine learning methods such

as Random Forest and Näıve Bayes classifiers, where not only is it possible to achieve

high classification metrics using all features, but also reveal and isolate which features

allow the best differentiation of each damage class. This selection methodology accounts

for robustness by utilizing different layers of selection and classification, validating the

feature relevance in relation to the appropriate set of classes. As such, different damage

types and ranges can be utilized in this multi-class classification pipeline.
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7 Conclusions and Future work

A Structural Health Monitoring method, based on a Machine Learning classification

pipeline, was successfully assembled, taking as inputs raw vibration signals from sensors,

in a time series format, that originated from Finite Element Model simulations of a Lamb

Wave propagating through a solid medium: either an aluminium plate with a defect (a hole

of variable diameter and position), or a single-lap adhesive joint (with variable adhesion

strength). After preprocessing, the relation between the time series was visualized through

the employment of dimensionality reduction techniques.

Those time series signals were then subject to an automated feature extraction and

selection procedure, where a large pool of features - attributes that characterize those

signals in various domains (time, frequency, time-frequency, statistical) - were derived

from the time series, and filtered through statistical methods, according to their relevance

to the classification task.

Finally, those features were used to train Supervised Machine Learning algorithms,

making them capable of predicting the diameter of the hole on the aluminium plate, or

the approximate adhesion strength of the single-lap adhesive joint, with great accuracy.

The principal conclusions drawn from this project are:

− Lamb Waves are a very promising tool for Structural Health Monitoring/Non-

Destructive Testing purposes;

− The feature extraction process was successful, capable of originating features that

properly represent the sensor data in a low dimensional space;

− Feature selection is a crucial part of any Machine Learning project that involves

feature engineering, as the best results will emerge from the algorithms when the

best possible set of features is available;

− More training data generally means better performance of the algorithms, so the

working data set should be as big as possible;

− Ensemble methods are the best off-the-shelf ML algorithms in terms of classification

performance, specially if applied along with feature engineering.

Despite the project success revealed by the classification metrics, there is still an

extensive margin for improvement, not only of this ML pipeline as it stands, through

additional advanced feature selection and fine tuning of the implemented classification al-

gorithms, but also through the expansion of the project, using this established framework

as the cornerstone for growth, expanding the type of data used, adding other types of ML

algorithms, and eventually test them with real data. Some possible approaches could be:

− The addition of noise to the signals, to approximate them to real-life sensor data;
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− Alternating the excitation signal/position of the sensors in the simulations and eval-

uating their impact on the data and classification results;

− Using regression algorithms to predict the position of the hole on the aluminium

plate, not only its diameter. Using regression to predict the exact value of the

adhesion strength;

− Merging the two simulations into one: that is, a single-lap joint with variable adhe-

sion strength, that contains a void (hole) of variable size and position. Predicting

those characteristics;

− Experimental testing, with data obtained in laboratorial context, ideally preparing

the pipeline for real life deployment applications.

76



V. F. F. Loreiro Lamb Waves for damage detection in adhesive joints

References
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Appendices

A tsfresh List of Feature Calculators

tsfresh.feature extraction.feature calculators module

feature calculator Designation

abs energy(x) Returns the absolute energy of the time series

which is the sum over the squared values.

absolute maximum(x) Calculates the highest absolute value of the

time series x.

absolute sum of changes(x) Returns the sum over the absolute value of

consecutive changes in the series x.

agg autocorrelation(x, param) Descriptive statistics on the autocorrelation

of the time series.

agg linear trend(x, param) Calculates a linear least-squares regression

for values of the time series that were aggre-

gated over chunks versus the sequence from

0 up to the number of chunks minus one.

approximate entropy(x, m, r) Implements a vectorized Approximate en-

tropy algorithm.

ar coefficient(x, param) This feature calculator fits the unconditional

maximum likelihood of an autoregressive

AR(k) process. The k parameter is the max-

imum lag of the process.

augmented dickey fuller(x, param) Does the time series have a unit root? The

Augmented Dickey-Fuller test is a hypothe-

sis test which checks whether a unit root is

present in a time series sample. This feature

calculator returns the value of the respective

test statistic.

autocorrelation(x, lag) Calculates the autocorrelation of the speci-

fied lag.

benford correlation(x) Useful for anomaly detection applications.

Returns the correlation from first digit dis-

tribution when compared to the Newcomb-

Benford’s Law distribution.

binned entropy(x, max bins) First bins the values of x into max bins

equidistant bins.

c3(x, lag) Uses c3 statistics to measure non linearity in

the time series.
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change quantiles(x, ql, qh, isabs, f agg) First fixes a corridor given by the quantiles

ql and qh of the distribution of x.

cid ce(x, normalize) This function calculator is an estimate for a

time series complexity (a more complex time

series has more peaks, valleys etc.).

count above(x, t) Returns the percentage of values in x that

are higher than t.

count above mean(x) Returns the number of values in x that are

higher than the mean of x.

count below(x) Returns the percentage of values in x that

are lower than t.

count below mean(x) Returns the number of values in x that are

lower than the mean of x.

cwt coefficients(x, param) Calculates a Continuous Wavelet Transform

for the Ricker wavelet family. This feature

calculator takes three different parameter:

widths, coeff and w. The feature calculator

takes all the different widths arrays and then

calculates the cwt one time for each different

width array. Then the values for the different

coefficient for coeff and width w are returned.

energy ratio by chunks(x, param) Calculates the sum of squares of chunk i out

of N chunks expressed as a ratio with the sum

of squares over the whole series.

fft aggregated(x, param) Returns the spectral centroid (mean), vari-

ance, skew, and kurtosis of the absolute

Fourier transform spectrum.

fft coefficient(x, param) Calculates the Fourier coefficients of the

one-dimensional discrete Fourier Transform

for real input by Fast Fourier Transforma-

tion algorithm. The resulting coefficients

will be complex, this feature calculator can

return the real part (attr==”real”), the

imaginary part (attr==”imag), the absolute

value (attr=””abs) and the angle in degrees

(attr==”angle).

first location of maximum(x) Returns the first location of the maximum

value of x, relatively to the length of x.

first location of minimum(x) Returns the first location of the minimal

value of x, relatively to the length of x.
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fourier entropy(x, bins) Calculate the binned entropy of the power

spectral density of the time series (using the

welch method).

friedrich coefficients(x, param) Coefficients of polynomial h(x), which has

been fitted to the deterministic dynamics of

Langevin model.

has duplicate(x) Checks if any value in x occurs more than

once.

has duplicate max(x) Checks if the maximum value of x is observed

more than once.

has duplicate min(x) Checks if the minimal value of x is observed

more than once.

index mass quantile(x) Calculates the relative index i of time series

x where q% of the mass of x lies left of i. For

example for q = 50% this feature calculator

will return the mass center of the time series.

kurtosis(x) Returns the kurtosis of x (calculated with the

adjusted Fisher-Pearson standardized mo-

ment coefficient G2).

large standard deviation(x, r) Does time series have large standard devia-

tion? Boolean variable denoting if the stan-

dard dev of x is higher than ‘r’ times the

range = difference between max and min of

x. According to a rule of the thumb, the

standard deviation should be a forth of the

range of the values.

last location of maximum(x) Returns the relative last location of the max-

imum value of x. The position is calculated

relatively to the length of x.

last location of minimum(x) Returns the last location of the minimal

value of x. The position is calculated rela-

tively to the length of x.

lempel ziv complexity(x, bins) Calculate a complexity estimate based on the

Lempel-Ziv compression algorithm.

length(x) Returns the length of x.

87



linear trend(x, param) Calculate a linear least-squares regression for

the values of the time series versus the se-

quence from 0 to length of the time series

minus one. This feature assumes the signal

to be uniformly sampled. It will not use the

time stamps to fit the model. The parame-

ters control which of the characteristics are

returned.

linear trend timewise(x, param) Calculate a linear least-squares regression for

the values of the time series versus the se-

quence from 0 to length of the time series

minus one. This feature uses the index of the

time series to fit the model, which must be of

a datetime dtype. The parameters control

which of the characteristics are returned.

longest strike above mean(x) Returns the length of the longest consecutive

subsequence in x that is bigger than the mean

of x.

longest strike below mean(x) Returns the length of the longest consecu-

tive subsequence in x that is smaller than

the mean of x.

matrix profile(x, param) Calculates the 1-D Matrix Profile[1] and re-

turns Tukey’s Five Number Set plus the

mean of that Matrix Profile.

max langevin fixed point(x, r, m) Largest fixed point of dynamics estimated

from polynomial h(x), which has been fitted

to the deterministic dynamics of Langevin

mode.

maximum(x) Calculates the highest value of the time series

x.

mean(x) Returns the mean of x.

mean abs change(x) Average over first differences. Returns the

mean over the absolute differences between

subsequent time series values.

mean change(x) Average over time series differences. Returns

the mean over the differences between subse-

quent time series values which.

mean n absolute max(x,number of maxima) Calculates the arithmetic mean of the n ab-

solute maximum values of the time series.
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mean second derivative central(x) Returns the mean value of a central approx-

imation of the second derivative.

median(x) Returns the median of x.

minimum(x) Calculates the lowest value of the time series

x.

number crossing m(x, m) Calculates the number of crossings of x on

m. A crossing is defined as two sequential

values where the first value is lower than m

and the next is greater, or vice-versa. If you

set m to zero, you will get the number of zero

crossings.

number cwt peaks(x, n) Number of different peaks in x. To esti-

mamte the numbers of peaks, x is smoothed

by a Ricker Wavelet for widths ranging from

1 to n. This feature calculator returns the

number of peaks that occur at enough width

scales and with sufficiently high Signal-to-

Noise-Ratio (SNR)

number peaks(x, n) Calculates the number of peaks of at least

support n in the time series x. A peak of

support n is defined as a subsequence of x

where a value occurs, which is bigger than

its n neighbours to the left and to the right.

partial autocorrelation(x, param) Calculates the value of the partial autocorre-

lation function at the given lag.

percentage of reocurring datapoints

to all datapoints(x)

Returns the percentage of non-unique data

points. Non-unique means that they are con-

tained another time in the time series again.

The ratio is normalized to the number of data

points in the time series.

percentage of reocurring values

to all values(x)

Returns the percentage of values that are

present in the time series more than once.

The percentage is normalized to the number

of unique values.
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permutation entropy(x, tau, dimension) Calculate the permutation entropy, by

chunking the data into sub-windows of length

D starting every tau, replacing each D-

window by the permutation that captures the

ordinal ranking of the data, and counting the

frequencies of every permutation, returning

their entropy (by using loge and not log2).

quantile(x, q) Calculates the q quantile of x. This is the

value of x greater than q% of the ordered

values from x.

query similarity count(x, param) This feature calculator accepts an input

query subsequence parameter, compares the

query (under z-normalized Euclidean dis-

tance) to all subsequences within the time

series, and returns a count of the number of

times the query was found in the time series

(within some predefined maximum distance

threshold).

range count(x, min, max) Count observed values within the interval

[min, max).

ratio beyond r sigma(x, r) Ratio of values that are more than r * std(x)

( r times sigma) away from the mean of x.

ratio value number to time series lenght(x) Returns a factor which is 1 if all values in the

time series occur only once, and below one if

this is not the case.

root mean square(x) Returns the root mean square (rms) of the

time series.

sample entropy(x) Calculate and return sample entropy of x.

set property(key, values) This method returns a decorator that sets

the property key of the function to value.

skewness(x) Returns the sample skewness of x (calculated

with the adjusted Fisher-Pearson standard-

ized moment coefficient G1).

spkt welch density(x, param) This feature calculator estimates the cross

power spectral density of the time series x

at different frequencies. To do so, the time

series is first shifted from the time domain

to the frequency domain. Returns the power

spectrum of the different frequencies.

standard deviation(x) Returns the standard deviation of x.
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sum of reocurring data points(x) Returns the sum of all data points, that are

present in the time series more than once.

Every reocurring value is counted as many

times as it appears.

sum of reocurring values(x) Returns the sum of all values, that are

present in the time series more than once.

Each reocurring value is only counted once.

sum values(x) Calculates the sum over the time series val-

ues.

symmetry looking(x, param) Boolean variable denoting if the distribution

of x looks symmetric.

time reversal asymmetry statistic(x, lag) Returns the time reversal asymmetry statis-

tic.

value count(x, value) Count occurrences of value in time series x.

variance(x) Returns the variance of x.

variance larger than standard deviation(x) Is variance higher than the standard devia-

tion? Boolean variable denoting if the vari-

ance of x is greater than its standard devi-

ation. Is equal to variance of x being larger

than 1.

variation coefficient(x) Returns the variation coefficient (standard

error / mean, give relative value of variation

around mean) of x.

For a more complete description of each procedure, please refer to the tsfresh docu-

mentation website (https://tsfresh.com).

91



B Python Code Script

92



93



94



95



96



97



98



99



100



101



102



103



104



105



106



107



C Paper

108



Feature Extraction and Visualization for
Damage Detection on Adhesive Joints,
Utilizing Lamb Waves and Supervised
Machine Learning Algorithms

Journal Title
XX(X):1–14
©The Author(s) 2021
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Vasco F.F. Loreiro1 and Gabriel M. F. Ramalho1 and A. Francisco G. Tenreiro2 and António
M. Lopes1,2 and Lucas F. M. da Silva1,2

Abstract
In recent years, the aeronautical industry has grown with new materials and fabrication methods being developed.
This has caused the use of Structural Health Monitoring methods, more specifically Lamb Waves, to become more
prevalent as regulations become more severe. Methods utilizing time series sensor data for damage detection have
shown great promise in classifying the extent of damage present in plate structures when used in union with machine
learning algorithms. Despite this success, there is still a lack of a robust method for choosing features that optimize the
learning process to classify any damage.
In this paper a powerful time series specialized feature extraction method is implemented. Initially over 75 different
prominent features and their variations are extracted from each sensor’s raw data. Then, by utilizing the Benjamini-
Hochberg procedure some are selected as relevant for a damage classification problem. After the initial selection, the
features are inserted into supervised machine learning methods, such as Random Forest and Naı̈ve Bayes classifiers,
where not only is it possible to achieve high classification metrics using all features, but also reveal and isolate which
features allow the best differentiation of each damage class. This selection methodology accounts for robustness by
utilizing different layers of selection and classification, validating the feature relevance in relation to the appropriate set
of classes. As such, different damage types and ranges can be utilized in this multi-class classification pipeline.

Keywords
Lamb Waves, Adhesive Joint, Weak Adhesion, Structural Health Monitoring, Nondestructive Testing

Introduction

Research on LW - an elastic disturbance that propagates
on thin plate structures with shallow to no curvature -
and their relevance to this application has been carried out
throughout the last few years, in a collective effort to increase
the reliability, integrity and durability of adhesive bonded
structures (1), which are present and growing in popularity in
different industries, such as the aeronautical and automotive
industries/sectors, due to their potential for reduction of
weight and cost in relation to other joining methods, such as
screwed, riveted or welded connections (2). As component
reliability and performance is paramount in these fields, it is
necessary to be able to identify and locate defects without
causing the destruction of the structure or component under
test/examination/inspection, which ultimately is the aim of
all NDT (3).

LW are a prime candidate for NDT, since they propagate
over long distances with minimal attenuation and have
the capability of interacting with various types of material
discontinuities and defects (4). However, the intrinsic
nature of LW propagation makes the interpretation of their
characteristics more difficult, since they invariably excite
more than one propagation mode at any given testing
frequency (3), and interaction with defects present in the
medium results in very complicated time-based response
signals arising from the sensors. Hence, the opportunity to

apply Machine Learning (ML) to the time series signals
should be explored, by extracting meaningful features and
inputting the information into classification algorithms, in
order to train them for damage detection.

The paper is divided into five parts: firstly the
introduction, secondly a literature review of the subjects
addressed in this paper, namely LW, adhesive joints and
defects associated with them and data visualization/machine
learning techniques. Then an explanation of the project’s
structure and development, followed by the presentation
and discussion of the obtained results, ending with the
conclusion.

The main objective of this paper is to present the
development of a machine learning pipeline designed to take
raw LW response vibration signals measured in a single-lap
adhesive joint, and, through feature engineering and machine
learning algorithms, predict the degree of adhesion strenght
in that joint.
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Literature Review
This section is an overview of the topics covered in this
paper, namely the theoretical support and definition of LW,
a review on adhesion technology and considerations on
the data visualization techniques and ML algorithms to be
implemented, including the mathematical concepts and tools
involved.

Lamb Waves
It was 1916 when Horace Lamb. published the article
“On Waves in an Elastic Plate”, in which he presents his
considerations on the problem of two-dimensional waves
in a solid bounded by parallel planes, first approached by
Lord Rayleigh in 1889 (5). In fact, both Rayleigh and
Lamb mention each other on different papers on the subject
of vibrations around this time (6), but in this paper in
1916, Lamb presents the equations that characterize the
propagation of this type of waves, that ended up with his
name.

LW techniques have proven capabilities to provide
information about damage type, severity and location ever
since they were first used to detect damage in 1960 by
Worlton of the General Eletric Company. Since then, they
have been employed in a variety of fashions, from research
conducted at NASA that demonstrated the possibility of
using LW to detect delamination in composite beams, to
different groups at Imperial College, working to optimize the
generation of directional LW, among many others (7).

Assuming an infinite solid medium, elastic waves can
propagate in two basic modes: pressure (P) waves and shear
(S) waves. Yet, if the medium is bounded, wave reflections
occur at the boundary, giving way for more complicated
wave patterns. Guided Waves are particularly interesting
because they remain contained in a wave guide and can
travel very large distances with little amplitude attenuation.
As such, they are excellent for damage detection due to
the full cross-section interrogation of the material, assuring
that the wave will interact with any possible defect. The
sensitivity to different defects will depend on mode type and
the location of the defect in the thickness of the structure.
Examples of Guided Waves are LW, and others, such as Love
Waves, which travel in layered materials, or Rayleigh Waves,
which travel in a constrained manner the surface (8; 9). These
are actually the typical seismic waves that propagate on the
surface of the earth during an earthquake.

LW in specific are a form of elastic perturbation that
propagates in a solid thin plate with parallel free boundaries,
but can also occur on shell-like structures with shallow
curvature, and they are made up of a superposition of
pressure modes, whose characteristics vary with entry angle,
excitation and structural geometry (10). They have two
fundamental propagation modes: Symmetric (Sn) and Anti-
symmetric (An).

This symmetry or anti-symmetry happens with respect to
the plate’s mid-plane. Considering a plate with stress-free
upper and lower surface, the outline of the equations for a
LW propagation, following Giurgiutiu, et al. and Su, et al.,
is presented(8; 10; 11). Consider the equation of motion for
an isotropic elastic medium, that describes the displacement
field by satisfying Navier’s displacement equation:

µ∇2u + (λ+ µ)∇∇ • u = ρ
∂2u
∂t2

(1)

where λ and µ are the Lamé constants, which are two
material-dependent quantities that arise from the study of
elastic stress-strain relationships, ρ is the mass density, and
u is the displacement vector, given by:

u = ∇Φ +∇×Ψ (2)

where Φ and Ψ are the potential functions.
The wave equations can be written as a function of this

potential functions, the mass density, the Lamé constants,
and both the longitudinal (L) wavespeed, given by c2L =
(λ+ 2µ)/ρ, and the transversal (T) wavespeed, given by
c2T = µ/ρ:

∂2Φ

∂x2
+
∂2Φ

∂y2
+
ω2

c2L
Φ = 0

∂2Ψ

∂x2
+
∂2Ψ

∂y2
+
ω2

c2T
Ψ = 0

(3)

The time dependency for these waves is assumed
harmonic, in the form eiωt, bringing the general solution to
equation (3) as:

Φ = (A1 sin py +A2 cos py)ei(ξx−ωt)

Ψ = (B1 sin qy +B2 cos qy)ei(ξx−ωt)
(4)

where ξ = ω/c is the wavenumber and:

p2 =
ω2

c2L
− ξ2 , q2 =

ω2

c2T
− ξ2 (5)

The four integration constants, A1, A2, B1, B2 are to be
obtained from the boundary conditions. Getting the relations
between the potential functions and the displacements,
stresses and strains:

ux =
∂Φ

∂x
+
∂Ψ

∂y
(6a)

τyx = µ

(
2
∂2Φ

∂x∂y
− ∂2Ψ

∂x2
+
∂2Ψ

∂y2

)
(6b)

uy =
∂Φ

∂y
+
∂Ψ

∂x
(6c)

τyy = λ

(
∂2Φ

∂x2
+
∂2Φ

∂y2

)
+ 2µ

(
∂2Φ

∂x2
− ∂2Ψ

∂x∂y

)
(6d)

εx =
∂ux
∂x

(6e)

and plugging them into the general solution equations
gets:

ux = [(A2iξ cos py +B1q cos qy)+

(A1iξ sin py −B2q sin qy)]ei(ξx−ωt) (7)

uy = [−(A2p sin py +B1iξ sin qy)+

(A1p cos py +B2iξ cos qy)]ei(ξx−ωt) (8)
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For free wave motion, the homogeneous solution is
derived by applying the stress-free boundary conditions at
the upper and lower surfaces (y = ±d), where d is half of
the plate thickness, obtaining the characteristic equations:

DS = (ξ2 − q2)2 cos pd sin qd+

4ξ2pq sin pd cos qd = 0 (9a)

DA = (ξ2 − q2)2 sin pd cos qd+

4ξ2pq cos pd sin qd = 0 (9b)

And finally, equations (9a) and (9b) can be rewritten in the
more compact form as the Rayleigh-Lamb equation:

tan pd

tan qd
= −

[
4ξ2pq

(ξ2 − q2)2

]±1
(10)

where the exponent +1 corresponds to symmetric (S) motion
and -1 to anti-symmetric (A) motion. Equations (9a) and
(9b) accept a number of eigenvalues, ξS0 , ξ

S
1 , ξ

S
2 , ..., and

ξA0 , ξ
A
1 , ξ

A
2 , ..., respectively. Each parameter corresponds to

a set of eigencoefficients (A2, B1) for the symmetric case
and (A1, B2) for the anti-symmetric one, that can be plugged
into equations (7) and (8) and yield the corresponding modes:
S0, S1, S2, ..., Sn and A0, A1, A2, ..., An.

The coefficients p and q in equations (9a) and (9b) are
dependant on the angular frequency, ω, and, consequently,
the eigenvalues ξSi and ξAi will change accordingly, and
since the wavespeeds correspond to ci = ω/ξi, they will also
change with frequency, and this change produces the so-
called wave dispersion.

LW are highly dispersive, meaning that the fundamental
way to concretely describe their propagation in a material is
through their dispersion curves, that plot the phase and group
velocities against the excitation frequency (often shown as a
product with thickness), since, for each frequency-thickness
product, and each solution of the Rayleigh-Lamb equation,
one finds a corresponding LW mode (7; 11).

A proper LW mode for damage detection should
feature non-dispersion, low attenuation, high sensitivity, easy
excitability and good detectability. The best way to prevent
wave dispersal is to have an input signal with a narrow
bandwidth, such as a windowed toneburst which is a more
frequently adopted input signal.

The generation of LW can be done through a variety
of instruments, roughly grouped under five categories,
ultrasonic probes, laser, interdigital transducers, optical
fibre, piezoeletric elements (10). All of these methods
have strengths and weaknesses. Piezoeletric, or lead
zirconate titanate (PZT) elements have advantages, since
they can be used for both LW generation and acquisition,
delivering excellent performance, allied to their neglectable
mass/volume, effortless integration, outstanding mechanical
strength, wide frequency response range, low power
consumption and acoustic impedance, and low cost, making
them particularly suitable for SHM applications as an in-
situ generator/sensor. On the other hand, some nonlinear
behaviour and hysteresis under large strains/voltages, or
at high temperatures should be accounted for, and their

brittleness and low fatigue life may cause concerns or
limit some applications. Importantly, PZT-generated LW
unavoidably excite multiple modes that generate complex
response signals, requiring sophisticated signal processing to
successfully utilize them for damage detection (10).

Adhesive Joints and Defects
An adhesive is formally defined as a material which, when
applied to surfaces, can join them together and resist
separation. Adhesive is, therefore, the general term which
covers materials like glue, cement, paste, among others (12).
An adhesive joint is the finished connection of two surfaces,
made of similar or different materials, through the use of
adhesives. The materials that are bonded by the adhesive,
before bonding, are called substrates, and after bonding,
they are referred to as adherends (12). The region linking
the adherend and the adhesive is the interphase, whose
chemical and physical characteristics critically influence the
mechanical properties of the adhesive bond itself. Not to
be confused with the interface also known as the boundary
layer, that resides within the interphase (where various
interfaces connecting different materials can exist), which
is the plane defined by the contact between the surface and
the two materials, where, during the formation stages of the
bond, the intimate molecular contact is created (13).

Adhesive joints provide a wide variety of advantages when
compared to conventional mechanical fasteners, according
to (13): more uniform stress distribution along the bonded
area, that leads to a good resistance to dynamic solicitation as
well as load transmission and higher stiffness, as well as the
reduction of the weight on the structure and consequently, the
cost; The possibility of automating the adhesive application
is also appealing.

However, some disadvantages should also be considered,
like the need to avoid peel and cleavage stress because
they create a load concentration in a small area, resulting
in low strength in that area, limited resistance to extreme
environmental conditions, such as high temperature and
humidity, and the difficult quality control, since there is
no expeditious way to assess the integrity of the bond -
that could change with non-destructive testing techniques
(12; 13).

Even if a certain adhesive is the perfect choice for a given
application, its durability is a function of the entire bonding
system, that is, adhesion defects and other problems can still
arise and lead the joint to failures of different types when
subjected to mechanical stress, be it because of the lack of
proper surface preparation, bad chemical formulation of the
adhesive, incomplete curing cycle or other environmental
disturbances, such as high humidity.

Structural bonds, in particular, are expected to undergo
some form of loading for a significant part of their service
life, and so, an understanding of the bond failure and failure
modes is critically important. It can occur in a number
of places within a bonded joint or structure, as reported
by (13; 14), cohesively within the adherends, interfacially
between the adherend and the adhesive layer or cohesively
within the adhesive. The bond might also contain ”isolated
phenomena” that compromises its structural integrity, such
as voids, debonds, porosity or cracks within the adhesive
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layer, and these should be detected as soon as possible to
avoid serious damage or failure of the bond.

Data Visualization Techniques
Data visualization regards the manipulation of sampled and
computed data for comprehensive display, conducive to
a deeper understanding of the data and highlighting the
underlying physical laws and properties. It is an important
tool that helps the data scientist in different stages of a
project, by pointing out useless, incorrect or inconsistent
information that can be eliminated, and assessing the results,
to expose dynamics and help define the focus points and
regions of interest (15).

Dimensionality reduction is applied as a procedure
to create projections of the data, mapping it into a
low dimensional space, in order to enable an insightful
view of how data instances relate to each other, namely
the appearance of structures such as high local density,
interesting relations between observations and the presence
of clusters (16; 17).

Time-oriented data visualization is a widely researched
topic, and according to Aigner, et al. (18), visualization
techniques can be categorized in many ways, such as the
structure of time itself (linear, cyclic or branched), the frame
of reference (spatial or abstract), the number of variables
that are time-dependant, and the dimensionality that is to be
obtained (2D or 3D, since those are intuitively understood by
the human brain).

It is a common procedure in data science to transform
the raw data formats into more suitable and consistent
ones before applying any further techniques, through
processes like smoothing, generalization and normalization.
Normalization is likely to improve accuracy and efficiency
of classification algorithms, and for distance-based methods
in particular, it prevents attributes with initially large
value ranges from outweighing those with smaller ranges,
uniforming the importance of any given testing instance,
while keeping the intrinsic information intact. Among others,
data normalization methods include Min-Max normalization,
Z-Score normalization, l2 normalization and normalization
by decimal scaling (19; 20).

Min-Max normalization performs a linear transformation
on the original data. If an attribute A has a range of values
of [amin, amax], Min-Max normalization maps a value x
of A, to its counterpart x’ in the new predetermined range
[a′min, a

′
max] by computing: (19)

x′ =
x− amin

amax − amin
× (a′max − a′min) + a′min (11)

where, in this case, the new selected range was
[a′min, a

′
max] = [0, 1].

Two of the most widespread visualization techniques,
Multidimensional Scaling (MDS), and t-distributed Stochas-
tic Neighbor Embedding (t-SNE), are implemented for the
projection and visualization of the time series themselves and
also to visualize some features later on.

Multidimensional Scaling (MDS) MDS is a multivariate
statistical method that represents measurements of proxim-
ity/similarity (or dissimilarity) among pairs of objects geo-
metrically, as distances between points of a low-dimensional

space. Torgerson proposed the first MDS method and coined
its name, Multidimensional Scaling, that can also be known
as Principal Coordinates Analysis (PCoA) or even Torgerson
Scaling (21).

MDS shows the correlations among instances of the data,
displaying each of these as a point on a plane, so that
the closer together the points are, the more correlated the
respective instances are, turning the data from immense
arrays of numbers to an accessible visual representation, for
easy inspection and exploration (22).

The application of MDS is exploratory, so as to uncover
the data elements accounting for the proximity of the data,
rather than to test a priori hypothesis about the existence and
properties of those elements (23). The vastly used family of
procedures known as Principal Components Analysis (PCA),
which should not be mistaken with PCoA, is closely related
to MDS in function, but differs in some key aspects, the
principal being the fact that MDS starts with a matrix of
similarities between a set of individuals, while PCA starts
directly with the initial data matrix (24; 25).

MDS models are defined by the similarity or dissimilarity
of data - the proximity indexes pij between pairs (i, j)
of objects, that construct an n× n matrix C, being n the
total number of objects - and how those proximity indexes
are mapped into distances of an m-dimensional MDS space
configuration: X. In classic MDS, C is symmetric, with
pij > 0 for i 6= j and its main diagonal is composed of “1”
(17).

The mapping is given by a representation function f(pij),
that specifies how the proximities should be related to
the distances dij(X), seeking the configuration (in a given
dimensionality m) whose distances satisfy f as closely as
possible. The condition “as closely as possible” is quantified
by a badness-of-fit measure, also called a loss function - an
expression that aggregates the representation errors : eij =
f(pij)− dij(X). The most common loss function in MDS
is named raw-Stress (ρ), also known as “Kruskal stress”
(24). It varies between 0 and 1, with values near 0 evidently
indicating a better fit (22; 26).

ρ = [f(pij)− dij ]2, i, j = 1, ..., n (12)

Shepard plots are also used to evaluate the fit of the
mapping, by comparing dij versus pij for a given value of m.
A narrow scatter of points, resembling a smooth straight line
without sudden steps indicates a successful representation
(22; 24; 26).

The m-dimensional MDS space configuration always
refers to a coordinate system, customarily a set of m directed
axes, perpendicular to each other and intersecting in one
point, the origin. If the value for m is chosen to be 2, for
example, this would define a Cartesian plane. Since the
MDS interpretation is based on the emerging clusters and
distances between points in the mapping, rather than on their
absolute coordinates, the units of the axes are meaningless,
and so, the MDS map can be rotated and translated, as the
distances between points remain the same (17; 22). As for the
distances’ definition, the most natural and frequently used is
the Euclidean distance, corresponding to the length of the
straight line segment connecting i and j, computed by the
formula (22):
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dij(X) =
√

(xi1 − xj1)2 + (xi2 − xj2)2 (13)

Thus, dij(X) equals the square root of the sum of
the intradimensional differences xia − xja, which, in plain
terms, is the Pythagorean theorem for the length of the
hypotenuse of a right triangle. Generalizing to the m-
dimensional case, yields:

dij(X) =

[
m∑

a=1

(xia − xja)2

]1/2
(14)

The dissimilarity matrix C can adopt different measures,
such as the so-called Canberra and Manhattan distances,
among others. It should be noted that the use of alternative
measure methods within the MDS is a common procedure,
often having distinct representations of the same data set,
that view phenomena with different perspectives, opening up
the possibility of choosing the MDS charts that yield better
visualizations (26).

t-distributed Stochastic Neighbor Embedding Stochastic
Neighbor Embedding (SNE), as originally presented by
Hinton and Roweis (27), is a probabilistic approach to the
task of placing objects, from high-dimensional vectors or by
pairwise dissimilarities, in a low-dimensional space in such
a way that preserves neighbor identities. It serves the same
purpose as MDS, dimensionality reduction, but unlike MDS,
SNE makes use of a Gaussian distribution, centered on each
object of the high dimensional space, and the densities under
this distribution are used to define a probability distribution
over all the potential neighbors of the object (24; 27).

Briefly, it starts by converting the high-dimensional
Euclidean distances between datapoints, xj and xi into
conditional probabilities pj|i, representing the probability
that xi would pick xj as its neighbor, if neighbors were
picked in proportion to their probability density under a
Gaussian centered at xi. This probability will be high for
nearby points, and almost infinitesimal for widely separated
ones.

pj|i =
exp (−||xi − xj ||2/2σ2

i )∑
k 6=i exp (−||xi − xk||2/σ2

i )
(15)

where σi is the variance of the Gaussian distribution centered
around xi. Now for their low-dimensional counterparts, yi
and yj , a similar conditional probability is computed (but
with a fixed variance), denoted by qj|i. If these conditional
probabilities are equal, in other words, if the distributions are
matched, the model is correctly mapping the data (27; 28).

So, the aim of the embedding is to match the distributions
as well as possible, which is also achieved by minimizing
a cost function. A natural measure of the faithfulness
with which the probabilities match is the Kullback-Leibler
divergence. Therefore a cost function C is defined by a sum
of the Kullback-Leibler divergences between the original
(pj|i) and the induced (qj|i) distributions over neighbors
for each object. SNE minimizes C using a gradient descent
method (27; 28).

C =
∑

i

∑

j

pj|i log
pj|i
qj|i

(16)

The t-SNE is a variation of SNE, with two important
differences, which aim to solve some shortcomings of the
SNE method (27; 28).

Firstly, since the Kullback-Leibler divergence is not
symmetric, different types of error in the pairwise distances
present in the low-dimensional map are not weighted equally.
For instance, there is a large cost for using widely spaced
map points to represent nearby datapoints, but a small cost
for using neighboring map points to represent datapoints.
In t-SNE, conditions to this function are applied to ensure
that it is symmetrized, eliminating that problem. It is said to
be symmetric because it has the property that pij = pji and
qij = qji, ∀i, j, hereby named joint probabilities. The new
cost function C comes:

C =
∑

i

∑

j

pij log
pij
qij

(17)

and this cost function is minimized by the gradient descent
method given by:

Cyi = 4
∑

j

(pij − qij)(yi − yj)(1 + ||yi − yj ||2)−1 (18)

The issue known as the ”Crowding Problem”, lies in the
fact that if small distances are to be accurately mapped, the
moderately distanced datapoints will be placed much too far
away in the representation. As a solution, in t-SNE, instead
of using a Gaussian distribution, it is swapped by the heavy-
tailed Student t-distribution with one degree of freedom (also
known as Cauchy distribution) on the low-dimensional map,
qij . The mismatched tails on this distribution compensate the
mismatched dimensionalities on the data.

There are various parameters that can be tinkered with in
a t-SNE application to optimize the cost function gradient
descent, some of which are the number of iterations, early
exaggeration, learning rate and perplexity, interpreted as a
smooth measure of the effective number of neighbors; so
adjusting all these parameters yields different results even
for the same data set (28).

Machine Learning and Features
ML is the subfield of AI that gives ”computers the ability to
learn without being explicitly programmed” (29). Evolved
from the study of pattern recognition, ML explores the
construction and optimization of algorithms that can learn
from, and make predictions on data. They operate by
building and improving models from sample inputs, making
data-driven decisions instead of following strict program
instructions. It is closely related to (and often overlaps with)
computational statistics, making regular use of mathematical
and statistical methods.

Even with the powerful tools that ML has to offer, it is
difficult for ML algorithms to produce proper results if the
input is not preprocessed. There could exist outliers that
need to be discarded, missing values on tests that should be
eliminated or appended with accordingly interpolated values
(30). This preprocessing is fundamental, even more so if the
data is obtained from real life sensors, that might contain
noise and interference effects that should be minimized, or
malfunctions that should be accounted for. Such is not the
case in the present project, as all the data is obtained from
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simulations, so the preprocessing stage has a lighter overall
significance.

If a large number of observations are registered, the whole
data set turns into a high-dimensional one. It is important
to reduce this dimensionality in order to handle the data
adequately, and use it successfully in ML algorithms. Ideally,
the reduced representation should have a dimensionality that
corresponds to the intrinsic dimensionality of the data, the
minimum number of parameters needed to account for the
observed properties (31).

However, one needs to differentiate between the number
of cases (observations) in a large data set, and the number of
variables available for each case - these variables comprise
specific information about the data and are referred to as
”features”. These features are not present in the original
measurements, but signal processing tools can extract these
from the raw data, enabling a more efficient use of ML
algorithms. This procedure can be viewed as ”nontrivial
extraction of implicit, previously unknown and potentially
useful information from data, or the search for relationships
and global patterns that exist in databases” (32).

Feature Engineering plays a vital role in ML algorithms
and big data analytics, encompassing the generation,
extraction, transformation, selection, analysis and evaluation
of features. Indeed, little can be achieved if there is a short
amount of features to represent the underlying data objects,
and the quality of the results obtained in those algorithms
will reflect the quality of the available features themselves
(33; 34).

Feature Engineering is often data specific and application
dependent, which means that different data types - text,
images, streaming data, social media data - require
specialized techniques (33).

It is useful to distinguish three main types of features,
besides simple Statistical Features (which can also be
significant), based on the domain their information is in,
namely Time Domain, Frequency Domain and Time-
Frequency Domain:

Statistical features are the simplest form of features,
obtained directly from the signal by statistical analysis, and
represent basic information about the data. Some examples
are the Mean, Variance, Standard Deviation, Skewness,
Kurtosis and higher order moments, and even Maximum
and Minimum values (Peaks). Even though they do not
result from complex analysis and advanced methods, their
information can be valuable (35).

Time domain features, are typically used to predict
future values for signals using time-based models like the
Autoregressive (AR), Integrated (I) and Moving Average
(MA) models, that can be fused together in the ARIMA
model first introduced by Box and Jenkins (36). However,
some orders/parameters of these models can be used as a
feature in itself, as well as the Auto-Correlation dimensions
of the signal (where it is compared to itself with a small
delay). The Auto-Correlation coefficients produced a by the
vibration of a healthy structure could be different than those
from a faulty one. From the ML algorithms viewpoint, these
features are just arrays of organized information to be used in
a specific task, with no connection to the time-based models
that originated them, or their purpose;

Frequency domain features are based on the frequency
domain analysis, which is is arguably the most far-reaching
set of mathematical tools utilized in engineering, specially
signal analysis, and its cornerstone is the Fourier Transform
(FT). It is based on the premise that every function - no
matter how complex it looks - can be decomposed into a sum
of simpler functions, a concept proposed by Joseph Fourier
in 1822 (37; 38).

Taking f(t) as a time-dependant input signal, that may be
composed by harmonic and/or periodic elements, its Fourier
Transform F (ω) is called the signal’s spectrum, and can
be viewed as the frequency response - a transformation of
the time signal into a sum of basis functions (sinusoidal)
of various frequencies, which the original signal contains as
periodic components, where (37; 39; 40):

F (ω) =

∫ ∞

t=−∞
f(t)e−jωt dt (19)

with j =
√
−1 and the complex exponentials as the

sinusoids: ejθ = cos θ + j sin θ. A Fourier Transform pair is
often written f(t)↔ F (ω). The Inverse Fourier Transform
is also applicable, changing the content from the frequency
to the time domain:

f(t) =
1

2π

∫ ∞

ω=−∞
F (ω)ejωt dω (20)

F (ω), which is written as a complex number in terms of
its magnitude and phase, ultimately tells how much content
the original signal has at any frequency ω;

The necessity for Time-Frequency domain features
arises from the fact the the Fourier Transform is of great
use to transform a signal into the frequency domain, where
it has great resolution, at the expense of the time domain
information, as it contains none. In other words, it is known
at which frequencies the signal oscillates, but not at which
time these oscillations occur. So if a signal has a dynamic
frequency spectrum, i.e. the frequency content changing over
time or frequencies appearing abruptly for a short period
of time, the Fourier Transform will not expose them. For
that, the Time-Frequency domain is approached, specially
through the Short-Time Fourier Transform (STFT), the
Wavelet Transform or the Hilbert-Huang Transform, among
others (37).

The STFT can be used as a way of quantifying the change
of a non-stationary signal’s frequency and phase content over
time, by dividing a time-based signal into shorter segments
of equal length and then computing the Fourier Transform in
each of those segments separately, therefore keeping in the
results of the magnitude and phase content for each point in
time. The use the Fast Fourier Transform on these segments
yields the discrete-time STFT, expressed as:

STFTx(k)(m,n) =

L−1∑

k=0

x(k)g(k −m)e−j2πnk/L (21)

where x(k) denotes the discrete time signal, that is multiplied
by g(k), an L-point window function with a fixed size n,
that will divide the signal into chunks as it slides through
the signal with m amount of shift. The FFT is then applied
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to each of these chunks to compute the STFT (41; 42).
The Hamming window, a smooth, “bell-shaped” curve is
a popular choice for the window function employed. The
STFT can also be called a Gabor transform, if the window
used is a Gaussian function (43).

The STFT is utilized to construct what is called the
Spectrogram, a 2-D visualization that plots, in a logarithmic
scale, the normalized, squared magnitude of the STFT
coefficients (41; 44).

Machine Learning pipeline

Acquisition of simulation data
LW based NDT methods can detect incipient damage, often
unnoticed by other techniques, with the help of suitable
electric signals applied to a PZT actuator which induces
the propagation of this type of waves on the structure or
specimen. Other PZT sensors, placed strategically in the
specimen, measure the vibrations and output electric signals,
with distinct amplitude and phase from the input, and whose
characteristics will depend on the existence and type of
damage in the structure.

Data processing algorithms based on ML require large
volumes of data to be trained and, therefore, it would be
impracticable to use experimental data in their development.
The alternative is to use simulation data from numerical
models, generated with finite element method (FEM)
software - ABAQUS. For the purpose of this project, an
adhesive joint simulated specimen was modeled.

An adhesive joint among two aluminium plates, with a
single-lap joint design with varying degrees of adhesion
strength on each test (ranging from 600 to 270000 kPa),
with 1 PZT actuator on the top plate and 1 PZT sensor
on the lower plate. The aluminium plate has a density ρ =
2500 kg/m3, Poisson ratio ν = 0.33 and Young modulus
E = 72.4 GPa. The chosen adhesive to simulate was a
0.2 mm layer of Nagase T-836/R-810, as it has great
potential for industrial applications, specifically aeronautical
and automotive. The simulated adhesive joint is presented on
Figure 1.

This model was run 900 times, and since it measures only
one sensor’s displacement as a function of time, accounts for
900 time series. All signals obtained were made uniform as
a vector of equal dimension, achieved by interpolating the
whole original array of values, imposing a fixed time step of
5000 to fit an array of predetermined size. The simulation ran
with a fixed time of 0.5 ms, as this is enough time to have the
waves interact with the defects / adhesive joint and arrive
at the sensor without receiving too many reflected waves
from the opposite wall. The excitation signal chosen was a
5-cycle Hanning-windowed sinusoidal tone burst with the
central frequency of 100 KHz, applied to the PZT elements.

As an example, two signals from different tests are shown
in Figure 2, and 3, a test with a higher adhesion strength in
the joint:

In Figure 2 only the top 10 peaks were marked directly on
the time series plot, but the values of all the local minima and
maxima of the entire domain are saved in an array, for each
of the tests - a statistical feature.

It is perceptible that the second signal comes from a
stronger, firmer and more consistent medium, as the LW

Figure 1. Model of the adhesive joint simulation setup.

propagates and arrives at the sensor more smoothly, creating
a more balanced response. The average displacement
measured on the sensor is higher, and all of the 10 peaks
appear above the 1× 10−5 m mark, while on the first test,
the single highest peak falls short of that mark, being the
only one that surpasses 0.75× 10−5 m.

Automatic Feature Extraction
Viewed as one of the general topics of feature engineering,
Automatic Feature Extraction is a methodology capable of
automatically generating a large number of features from a
data set and subsequently selecting the most effective subset
of these features to be applied in the ML algorithms. The best
way to differentiate the information within the signals is to
have the highest possible number of features being initially
extracted from the time series, in all the domains discussed
in the previous chapter, and then choosing the best, most
meaningful and adequate subset to the problem at hand, so
that ML algorithms can use it in the most effective way
possible to detect damage (33).

The automation of the feature extraction process was
key, and for that effect, tsfresh - Time Series FeatuRe
Extraction on basis of Scalable Hypothesis - a Python
package developed by Christ et. al (45), was implemented,
comprised of two main steps: the feature extraction and
feature selection.

The first step is the feature extraction from the time series,
resulting in a M ×N matrix, where the M rows correspond
to the time series, identified by their id, while each of the N
columns correspond to the extracted features, characterized
by the kind of time series (which sensor) that originated
the data, followed by the feature calculator itself and lastly
the key-value pairs of parameters configuring the respective
feature calculator. A sample of the feature matrix is shown
on Figure 4:

The second step, which can be run separately, in parallel
with any other ongoing feature extraction thread, is the
estimation of each feature’s relevance to a given ML task,
through hypothesis tests and calculation of the respective
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Figure 2. Representation of an adhesive joint test test, with a signal from the PZT Sensor and the top 10 peaks marked. Adhesion
strength = 900 kPa.

Figure 3. Representation of an adhesive joint test test, with a signal from the PZT Sensor and the top 10 peaks marked. Adhesion
strength = 50100 kPa.

Figure 4. tsfresh feature matrix sample.

p-values. The hypothesis tests are automatically configured
depending on the type of supervised ML problem (classifi-
cation/regression) and feature type (categorical/continuous).
It also involves a multiple testing procedure, utilizing an
instrument called Benjamini-Hochberg Method, which is
designed to control the false discovery rate (FDR). This

feature selection step is crucial, as the effectiveness of a
feature is ultimately measured in terms of its performance
to the ML task at hand, and whether or not it improves
its metrics, in other words, whether or not the feature has
relevance to the problem at hand (33).
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Table 1. tsfresh classification-task oriented feature filtering
steps results

Adhesive Joint
Classes 1 2 3 4 5

Extracted features 788
Features with
p-value ≤ 0.05

681 636 599 598 590

Benjamini-
Hochberg
Selected features

657 559 555 571 571

Top features 244

Through this selection method, the pool of extracted
features considered relevant by the univariate hypothesis
testing (those that scored p-values lower or equal to 0.05)
is filtered, leaving only the so called “selected features”,
which have remained relevant for the classification task of
at least one class. Table 1 shows the feature filtering process
results. The “Top” features are those considered relevant
for all classes simultaneously. It is fair to mention that this
automated feature selection module of tsfresh is just as
appropriate and decisive as the feature extraction module
itself. They work together seamlessly and elegantly, allowing
for the whole direct data processing, from preprocessed time
series to finely selected, ML-task oriented features.

Results and Discussion

Visualization of the data / Features
The results of the application of MDS and t-SNE is now
presented, both to the signals’ original time series and the
extracted/selected features.

The chart in Figure 5 represents the MDS applied to the
time series themselves. The absence of legend is due to the
fact that the results are not shown per class, but directly
using the adhesion strength value, from the weakest adhesion
being the deepest blue to the strongest adhesion in the dark
red, yielding the direct realization that the LW propagation
signals are as closely related as the adhesion strength itself.

Figure 6 presents the t-SNE mapping of the data. It follows
the color map convention used on the MDS visualization,
and the result has the same overall character, with a
steady evolution of distances following the adhesion strength
increase in a smother trend than with the results obtained
using MDS.

For the visualization of features, considering that the
adhesion strength value varies from 600 to 270000 kPa, five
classes were arbitrarily assumed, by dividing that range in
five equal intervals, intended to illustrate qualitatively the
data: 1 - Very Low Adhesion Force; 2 - Low Adhesion force;
3 - Medium Adhesion force; 4 - High Adhesion force; 5
- Very High Adhesion force; The target vectors are then
composed by the corresponding time series id, that should
be consistent with the features id, of its respective class.

In Figure 7, a feature calculated from a linear least-squares
regression of the time series values, is represented in MDS
mapping. The differentiation among classes is evident here,
with the sole exception of class number 2 (low adhesion
strength), that does not stand on its own, isolated from the
others.

Supervised Machine Learning - Classification
Algorithms
Naı̈ve Bayes For each feature x, the Naı̈ve Bayes approach
to classification is to formulate a probabilistic model that
estimates the posterior probability, P (y|x), of the different
classes, y, and to predict the one with the largest posterior
probability. According to Bayes’ Theorem, one has that:

P (y|x) =
P (x|y)P (y)

P (x)
(22)

where P(y) can be estimated by counting the proportion of
class y in the training set, and P(x) can be ignored since
we are comparing different y on the same x; thus, the only
component that needs to be considered is P (x|y). If an
accurate estimate for P (x|y) is obtained, that will correspond
to the Bayes optimal classifier, with the smallest theoretical
error rate. Estimating P (x|y) is not straightforward, given
that it involves the estimation of exponential numbers of
joint-probabilities of the features. That can be avoided
by assuming that, in each class label, the n features are
independent of each other, and so we can estimate the
conditional probability by:

P (x|y) =
n∏

i=1

P (xi|y) (23)

In the training stage, these probabilities are estimated, and
then in the testing stage, a feature x will be predicted as label
y, if y leads to the largest value of:

P (y|x) ∝ P (y)
n∏

i=1

P (xi|y) (24)

The different Naı̈ve Bayes classifiers differ mainly in the
assumptions made regarding the distribution of P (xi|y). In
this case, a Normal distribution is appointed (46).

k-Nearest Neighbors In the k-Nearest Neighbors (KNN)
classification algorithm, one relies on the simple principle
that objects similar in the input space will also be similar in
the output space. It is considered a lazy learning approach,
known as instance based or non-generalizing learning, as it
does not have an explicit training process nor does it attempt
to construct a general internal model. It merely stores the
instances of the training set. In training, the KNN model
will pick out the k instances from the training set that are
closer to the test instance. Then, for classification, the test
instance will be classified to the majority class among the k
nearest instances, with k being a value specified by the user.
The basic KNN uses uniform weights: the value assigned
to a query point is computed from a simple majority vote
of the nearest neighbors. Under some circumstances, it is
better to weigh the neighbors such that the nearer neighbors
contribute more to the fit (46; 47).

Ensemble methods Ensemble methods are state-of-the-
art ML approaches that train multiple learners to solve
the same problem and combine their results, significantly
improving the accuracy compared to a single learner model.
Ensemble learning is also called committee-based learning
or multiple classifier systems. They are constructed in two
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Figure 5. 2-D MDS Visualization of the adhesive joint simulation tests.

Figure 6. 2-D t-SNE Visualization of the adhesive joint simulation tests.

steps: generating the base models, that should be as accurate
and diverse as possible, and then averaging their results (46).

The ensemble contains a number of learners called
base learners, generated from the training data by a base
algorithm, which can be decision trees, neural networks or
other kinds of models. All of the three ensemble methods
mentioned are based on the decision tree model, and by using
a single base algorithm, they produce homogenous base
learners, leading to homogenous ensembles. That implies
that heterogeneous ensembles also exist, using various
learning algorithms that get the name individual/component
learners, instead of base learners (46). Before expanding on
ensemble methods, defining the used base learner is in order.

A Decision Tree is a non-parametric model made up
of tree-structured decision tests, working in a divide-and-
conquer way, predicting the value of a target variable by
learning simple decision rules inferred from the data features.
It starts on the root node and from there each non-leaf node is
associated with a feature test, also called a split. Data falling
into the node will be split into subsets according to their

different results on the feature test, eventually landing in a
leaf node, associated with a classification label to which that
instance will be assigned. Decision Tree learning algorithms
are generally recursive processes, since, in each step, a data
set is given and a split is selected, then acting as the given
data set for the next step. The key of the decision tree
algorithm is in the selection criteria of the splits. Typical split
criteria include the “information gain” or the Gini criteria
(46).

A final distinction among ensemble methods is required on
how the base learners are generated, which can be divided in
two paradigms (46):

− Boosting - Refers to a family of algorithms that
convert “weak learners” to “strong learners” by having
the weak models working together. Characterized
by being sequential ensemble methods, where the
base learners are generated in succession, exploiting
the dependence between them and boosting overall
performance in a residual-decreasing way. Gradient
Boosting is a representative of this kind;
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Figure 7. MDS 3-D Adhesive Joint Feature: “value agg linear trend attr intercept chunk len 10 f agg var”.

− Bagging - Exploits the independence between base
learners by setting them up parallel to each other,
reducing the error by combining them and averaging
out the results. To have independent base learners,
one possibility is to apply bootstrap sampling. That
means training those base models with non-overlapped
subsets of the training data pool. Not only does
bagging improve performance, but also decreases
variance and helps handling overfitting. Random
Forest represents this kind.

According to Zhou (46), for many tasks, “the best off-the-
shelf learning technique at present is an ensemble method
such as Random Forest, facilitated with feature engineering
which constructs/generates usually an overly large number
of new features rather than simply working on the original
features.”

Classification Metrics and Evaluation
In ML, the algorithm’s performance is presented and
analysed through the results’ metrics. Numerous metrics
exist, specifically designed to evaluate certain aspects of each
ML category (classification, regression, clustering, etc.), that
can go from a broad assessment of the algorithms’ behaviour,
to very particular measurements that could be of special
interest. The most mainstream and widely used classification
metrics were examined, as presented by (47; 48): Confusion
Matrix, also known as an error matrix, a confusion matrix
is a square table layout that allows for the visualization of
the performance of an algorithm. Each row of the matrix
represents the instances in an actual class while each column

represents the instances in a predicted class. Evidently there
are as many rows and columns as there are classes, and
the diagonal represents the instances that were properly
classified. The name stems from the fact that it makes it
easy to see whether the system is confusing two classes (i.e.
commonly mislabeling one as another). Figure 8 represents
one of the confusion matrices obtained from the K-Nearest
Neighbors algorithm, using the Top Features data subset. The
accuracy is almost perfect, only missing the prediction of a
few tests.

The Accuracy Score (acc) measures the ratio of correct
predictions over the total number of instances evaluated:

acc =
tp+ tn

tp+ fp+ tn+ fn
(25)

Precision Score (p) is the ratio of correctly predicted
positive observations to the total number of positive
observations. Intuitively, it is the ability of the classifier not
to label as positive a sample that is negative:

p =
tp

tp+ fp
(26)

Recall Score (r) is the ratio of correctly predicted positive
observations to all observations in actual class. Intuitively, it
is the ability of the classifier to find all the positive samples:

r =
tp

tp+ fn
(27)

F1 Score (F1), also known as balanced F-score or F-
measure, is a weighted average of recall and precision, that
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is a parameter of great importance when having an uneven
class distribution in data:

F1 =
2× p× r
p+ r

(28)

Despite having a fairly balanced class distribution, the
dataset is not perfectly balanced, so measuring the F1 score
is valid.

The symbols tp, fp, tn and fn signify true positive, false
positive, true negative and false negative respectively. All
classification scores are calculated by averaging the results
for each class.

Figure 8. Confusion Matrix - KNN Classifier - Top Features
data set.

Prior to the models being put into practice, the data set
must be split into two parts: the training / testing sets. In
this split, a ratio must be chosen between the data to which
the model will be fitted to (trained on), and the data left aside
to be used in the class prediction (tested on). In this work, the
70% training / 30% testing ratio was adopted.

While splitting, the properties of the original data set
should be kept as much as possible, otherwise the results
could be misleading (by chance of a really favorable or
really poor split/sampling). To avoid that, a commonly used
validation method is called k-fold cross-validation: the
original data set is partitioned into k equal sized disjoint
subsets, and then k runs of fitting/predicting are performed.
For any iteration of this process, k − 1 subsets are randomly
chosen as the training set, and testing of this fold is done
with the remaining subset. The average results of the k runs’
metrics are taken as results of the cross-validation (46; 49).
A usual configuration is the 10-fold cross validation, which
has been adopted in this work.

The adhesive joint strength classification results are
shown in Table 2. The ensemble algorithms are utilizing
the available features perfectly, the k-fold cross-validation
shows 98-100% accuracy on all the 10 running instances,
so they are as successful as one can be with this data
set. Evaluating the Gaussian Naı̈ve Bayes and k-Nearest
Neighbors models, the first one shows a major excellent
metrics also, although not as perfect as the Random Forest
Classifier. As for the KNN, it shows major improvement
on the top features subset, that contains 244 features. It is
possible that some sort of feature number threshold was
preventing the model from scoring higher.

Conclusions
A Structural Health Monitoring method, based on a Machine
Learning classification pipeline, was successfully assembled,
taking as inputs raw vibration signals from sensors, in a time
series format. These signals originated from Finite Element

Model simulations of a Lamb Wave propagating through a
solid medium - a single-lap adhesive joint (with variable
adhesion strength). After preprocessing, the relation between
the time series was visualized through the employment of
dimensionality reduction techniques.

Those time series signals were then subject to an
automated feature extraction and selection procedure, where
a large pool of features - attributes that characterize the
signals in various domains (time, frequency, time-frequency,
statistical) - were derived from the time series, and filtered
through statistical methods, according to their relevance to
the classification task.

Finally, those features were used to train Supervised
Machine Learning algorithms, making them capable of
predicting the approximate adhesion strength of the single-
lap adhesive joint with great accuracy.

The principal conclusions drawn from this project are:

− Feature selection is a crucial part of any Machine
Learning project that involves feature engineering, as
the best results will emerge from the algorithms when
the best possible set of features is available;

− More training data generally means better perfor-
mance of the algorithms, so the working data set
should be as big as possible;

− Ensemble methods are the best off-the-shelf ML
algorithms in terms of classification performance,
specially if applied along with feature engineering.
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