
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

User-Centered Classification of iOS
Vision Accessibility Problems

Diogo Pinto Soares de Melo

Mestrado em Engenharia de Software

Supervisor: Professora Ana Cristina Ramada Paiva

July 19, 2021

User-Centered Classification of iOS Vision Accessibility
Problems

Diogo Pinto Soares de Melo

Mestrado em Engenharia de Software

Approved in oral examination by the committee:

Chair: Professor Nuno Honório Rodrigues Flores

External Examiner: Professor Alberto Manuel Rodrigues da Silva

Supervisor: Professora Ana Cristina Ramada Paiva

July 19, 2021

Abstract

Ever-growing access to smartphones nowadays has drastically increased the importance of acces-
sibility in mobile apps. Such is reinforced by the legislative accessibility acts implemented in
the EU and USA. One out of seven people have a disability, and a quarter of the disabled people
are visually impaired. VoiceOver, the screen reader incorporated on Apple’s devices, has been
awarded by the American Foundation for the Blind for the groundbreaking impact of its iOS im-
plementation. In fact, accessible design drives innovation and improves overall user experience
and satisfaction, regardless of disabilities or social aspects.

Most studies on the subject investigate how accessibility problems reported by users are cov-
ered by accessibility guidelines. However, relating reported problems with the available guidelines
requires expertise and they do not take into account every problem reported by disabled users, fail-
ing to promote the comprehension of such problems. Thus, developers and testers do not find them
clear nor easy to understand, leading to social issues regarding accessibility, that, in turn, prompt
a minor focus on accessibility and a lower priority in fixing these issues. Researchers have shown
that, given the scarceness of accessibility focused reviews in official app stores, most investiga-
tions are based on individual interviews, differing significantly from how disabled users usually
report accessibility bugs - feedback forms, email or social media. The AppleVis Bug Tracker and
App Directory include user focused bug descriptions and user submitted app reviews concerning
vision accessibility on iOS.

This investigation proposes an user-centred classification of iOS vision accessibility bugs.
Resulting from an analysis of the data in the AppleVis Bug Tracker and based on the terminology
employed by visually impaired users, this classification typifies all the iOS vision accessibility
bugs analyzed and is also structured according to the available accessibility guidelines.

The classification was applied to a subset of inaccessible app reviews from AppleVis’ iOS
App Directory, effectively covering vision accessibility errors reported by users in iOS apps. It
was also the subject of a questionnaire targeting screen reader users. In fact, we are 95% confident
that the majority of visually impaired users will regard the proposed classification as intuitive.

This investigation deepens the state of the art by scientifically validating the completeness and
intuitiveness of a classification based on both the terminology and written means employed by
visually impaired iOS users to describe bugs, and also conforming to the available accessibility
guidelines. Therefore, we hope to contribute not only to the developers and testers’ comprehension
of bugs, facilitating their job of relating them with those guidelines, but also to users, once fixing
the accessibility bugs they face becomes faster and easier.

Keywords: Accessibility, Mobile Accessibility, Vision Accessibility, iOS, iOS Bugs, Accessibil-
ity Bugs, Bugs Classification, Classification

i

ii

Resumo

O crescente acesso a smartphones hoje em dia aumentou a importância da acessibilidade em apli-
cações móveis. Tal é reforçado pela legislação vigente na UE e nos EUA. 1 em cada 7 pessoas tem
deficiência e um quarto destas são deficientes visuais. O VoiceOver, leitor de ecrã incorporado
nos dispositivos da Apple, foi premiado pela American Foundation for the Blind pelo seu impacto
inovador em iOS. De facto, o design acessível impulsiona a inovação e melhora a experiência e
satisfação do utilizador, independentemente de deficiências ou aspectos sociais.

Os estudos na área tendem a investigar como os problemas de acessibilidade reportados são
cobertos pelos standards. No entanto, relacionar os problemas reportados com os standards
disponíveis requer especialização e estes não englobam todos os problemas reportados - não con-
tribuindo para a sua compreensão. Assim, os developers e os testers não os consideram claros,
levando a problemas sociais, que, por sua vez, levam a um menor foco na acessibilidade. Os
investigadores demonstram que, dada a escassez de análises focadas em acessibilidade nas app
stores oficiais, a maioria das investigações são baseadas em entrevistas individuais, diferindo sig-
nificativamente de como utilizadores com deficiência geralmente reportam bugs de acessibilidade
- formulários de feedback, e-mail ou redes sociais. O Bug Tracker e o App Directory do AppleVis
incluem descrições de bugs focadas no utilizador e app reviews submetidas por utilizadores sobre
acessibilidade visual em iOS.

Esta investigação propõe uma classificação de bugs de acessibilidade visual em iOS centrada
no utilizador. Resultante de uma análise dos dados do Bug Tracker da AppleVis e baseada na
terminologia empregue por deficientes visuais, esta classificação tipifica todos os bugs de aces-
sibilidade visual de iOS analisados, estando também estruturada de acordo com os standards de
acessibilidade disponíveis.

A classificação foi aplicada a um subconjunto de reviews de apps consideradas inacessíveis
do App Directory de iOS da AppleVis, cobrindo efetivamente os erros de acessibilidade visual
reportados por utilizadores em apps iOS. Foi também aplicado um questionário a utilizadores de
leitor de ecrã. De facto, prevemos, com 95% de confiança, que a maioria dos utilizadores com
deficiência visual considerará a classificação proposta intuitiva.

Esta investigação aprofunda o estado da arte ao validar cientificamente a classificação pro-
posta como completa e intuitiva. Trata-se de uma classificação baseada na terminologia e nos
meios escritos empregues por utilizadores de iOS com deficiência visual para descrever bugs. Si-
multaneamente, encontra-se em conformidade com os standards de acessibilidade disponíveis.
Por conseguinte, esperamos contribuir não apenas para a compreensão dos bugs por parte de de-
velopers e testers, facilitando o trabalho de os relacionar com esses standards, mas também para
os utilizadores, uma vez que corrigir os bugs de acessibilidade que enfrentam se torna mais rápido
e fácil.

Palavras-Chave: Acessibilidade, Acessibilidade em Dispositivos Móveis, Acessibilidade Visual,
iOS, Bugs em iOS, Bugs de Acessibilidade, Classificação de Bugs, Classificação

iii

iv

Acknowledgements

To my parents and sister, for their support throughout this long and demanding chapter of my life,
my most felt "thank you".

I am grateful beyond words to Inês for the help and reassurance, as well as all the unexpected
laughters in the most stressful times. My profound appreciation to Catarina, for being a comrade
in this insane experience of working and studying simultaneously. Without her, I would never have
concluded this degree. I am truly thankful for all the amazing friends and family I have, and with
whom I didn’t share the laughs, talks, walks and plans I desired for this 2 tiresome years. Also,
thanks to my MESW colleagues and friends who eased its hardest moments.

I want to thank my supervisor, Professor Ana Paiva, for accepting the challenge of guiding
me through this work, even though in an unfamiliar investigation area, and for the dedication and
trust she put in me. I would also like to express a special recognition to the professors and staff
members at FEUP’s MESW. As a blind person, it has been a challenging but rewarding journey to
become a Software Engineering at FEUP.

My deepest gratitude to Professor Paulo Teles, who taught me a decade ago in FEP, for reviving
my knowledge of statistics after all these years.

I would also like to acknowledge Critical Software for the incentive to enrole in this degree,
as well as to my work colleagues for their support in its most stressful moments, there and, more
recently, at Blip.

I also want to thank my guide-dog Fiona for her guidance and patience during countless hours
at FEUP.

Diogo Melo

v

vi

“Pursue happiness with diligence.”

Mastodon. (2011). The Sparrow. On The Hunter. Roadrunner Records.

vii

viii

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Problem . 3
1.3 Objective . 3
1.4 Structure . 4

2 State of the Art 5
2.1 Guidelines . 5

2.1.1 WCAG Mobile Guidelines . 5
2.1.2 BBC Mobile Accessibility Guidelines 9
2.1.3 Guideline Coverage . 12

2.2 Processes . 13
2.3 Tools . 17

2.3.1 Apple’s Solutions . 17
2.3.2 Accessibility Testing Tools . 17
2.3.3 Tools Coverage . 19

2.4 Discussion . 20

3 Background 23
3.1 iOS Vision Accessibility . 23

3.1.1 Zoom . 24
3.1.2 VoiceOver . 24

3.2 AppleVis . 26
3.2.1 Data Collection . 27

4 Proposed Classification 29
4.1 Subject - iOS Bug Tracker . 30
4.2 Bug Tracker Extension . 31
4.3 Classification . 35
4.4 Data Analysis . 41
4.5 Discussion . 48

5 Validation 49
5.1 Subject - iOS App Directory . 49
5.2 Experimental Setup . 51
5.3 Completeness Results . 53
5.4 Data Analysis . 54
5.5 Intuitiveness . 55

ix

x CONTENTS

5.6 Questionnaire Results . 57
5.7 Discussion . 58

6 Conclusions 61
6.1 Practical Contributions . 62
6.2 Theoretical Contributions . 62
6.3 Limitations . 63
6.4 Future Work . 63

A AppleVis Original Data 65

B Bug Tracker Extension and Classification 67

C App Directory Bugs and Respective Classifications 69

D Questionnaire 71

E Questionaire Correct Answers 87

F Questionnaire Exact Binomial Test Results 89

References 91

List of Tables

2.1 Accessibility Guidelines Covered by Testing Tools on iOS 20

4.1 Bug Tracker Extension – System Functions and App Related 43
4.2 Encountered and Fixed Bugs per iOS Version 44
4.3 Identified Problems . 45
4.4 Classification – Bug Types . 45
4.5 Classification – Subtypes . 46

5.1 App Reviews by Type . 54
5.2 App Reviews by Subtype . 55

E.1 Questionaire Correct Answers . 88

F.1 Questionnaire Exact Binomial Test Results . 90

xi

xii LIST OF TABLES

Abbreviations

API Application Programming Interface
BBC British Broadcasting Corporation
EU European Union
IDE Integrated Development Environment
KIF Keep It Functional
UI User Interface
USA United States of America
WAI Web Accessibility Initiative
WCAG Web Content Accessibility Guidelines
WHO World Health Organization

xiii

Chapter 1

Introduction

The present research work addresses the domain of Software Accessibility. The current introduc-

tory chapter overviews the context and motivation of this investigation, introduces the problem,

defines the objective and presents the overall structure of the document.

1.1 Context and Motivation

According to the World Health Organization (WHO) [45], more than 1 billion people live with

a disability, representing 15% of the global population [32]. There are various possible subdi-

visions of this vast and heterogeneous group, with the most common comprising 5 subgroups:

auditory; cognitive, learning and neurological; physical; speech; and visual disabilities [15]. As

such, worldwide approximately one out of every seven people has a disability or impairment,

which affects how they interact with the world and technology [8]. Within this 1 billion disabled

people, WHO [45] estimates that 285 million have visual impairments, of whom 39 million are

blind. Demographic changes also point to a significant growth in the elderly population [26].

Thus, addressing the accessibility needs of this ever growing and increasingly more technological

inclined group becomes of utmost importance [30].

Accessibility can be defined as a means or a facilitator of the full integration of all groups in

society, regardless of their disability. This goal of inclusion reinforces the duty to create and adapt

environments to allow access to all their aspects, for all intervenients, on an equal basis [30, 32].

Therefore, inclusion is considered a basic human right regardless of people’s impairments [2, 24].

Usability is a concept that is generally related with accessibility. It focuses on a product’s

quality and ease of use. Universal design is also frequently employed in the context of accessibility

and usability, as it preconizes the design of products and services to be usable by all people, to the

greater extent possible [26].

1

2 Introduction

The importance of accessibility in mobile apps and websites has drastically increased with the

growing usage of smartphones as a means of communication, education, entertainment, informa-

tion and business [2]).

The European Union (EU) adopted the European Accessibility Act in 2019, in order to set

common accessibility requirements in all EU member states. The European Accessibility Act im-

posed that, by June 23, 2021, all new and existing mobile apps had to conform to the accessibility

directives proposed [21]. However, these directives regarding mobile apps lack clarity. In fact,

besides to WAI [43] initiatives still in development, they also point to WCAG 2.0 and WCAG 2.1,

that do not encompass all the mobile related guidelines [21, 37, 41]. The United States’ Americans

with Disabilities Act also enforces accessibility on web and mobile apps [17].

Although the objective of these accessibility acts is to promote accessibility and nudge devel-

opers into improve their knowledge on the topic, some brands have opted for third-party solutions

that promise to automatically scan and reformat web pages to ensure they are accessible and able

to work with assistive technologies without requiring extra work from companies and their devel-

opers. Nonetheless, blind advocates claim that these solutions fail to make websites accessible,

even breaking accessibility in some cases, therefore urging brands to avoid website overlays due to

their inability to deliver the claimed accessibility. The deployment of this overlays, as "cheap, fake

short-cut" solutions, illustrates the lack of accessibility expertise in companies and the problems

that disabled users still face, damaging brands’ reputation [4].

Apple’s screen reader, Voiceover, has been acclaimed as a groundbreaking innovation that

improves the quality of life of blind people. Moreover, iOS is considered the most accessible

mobile platform in the market. As a result, Apple has received several awards from the American

Foundation for the Blind for its positive impact [22]. Regardless of the recognition and awards

inherent to this pledge to accessibility, Apple has deepened its commitment to this and other core

values for 2021 [20].

Nonetheless, there are accessibility problems with iOS itself and its native and third-party

apps. AppleVis, an online resource for blind and low vision users of Apple devices [14], pro-

vides a list of active and fixed iOS bugs and an app directory with accessibility focused iOS app

reviews [12, 13]. In this repositories several accessibility problems in iOS, native apps and devel-

oper apps can be scrutinized.

Beyond the aforesaid aspects, personal preference and my experience as a daily iOS and ma-

cOS user for the past 8 years influenced the choice for exploring Apple’s mobile operating system

on this investigation. Vision accessibility on iOS is of utmost importance in my life due to the in-

dependence I feel as a blind user since I started to enjoy the accessibility provided by VoiceOver.

After the impact I experienced by having accessibility incorporated on my devices, my career path

changed to informatics and researching this topic represents the confirmation of this change.

1.2 Problem 3

1.2 Problem

There are various studies regarding accessibility focused on accessibility barriers faced by visu-

ally impaired users. The most common objective is to investigate how WCAG guidelines cover

accessibility problems reported by users [3, 31].

However, not all problems reported by disabled users are taken into account in those guide-

lines [3, 19] and relating reported problems with them requires in depth knowledge of the guide-

lines, supporting documentation and prior experience [19]. There are also tools to automatically

verify the accessibility of applications. Nonetheless, they only cover a low percentage of the avail-

able guidelines [31, 37]. Furthermore, developers and testers do not find the guidelines clear nor

easy to understand [38].

The literature identified the need of a more user-centered approach to ensure that the many

problems faced by disabled users are taken into account and given the proper relevance [19].

Such need arises from the mismatching between the natural language employed by users to

report accessibility problems and the available guidelines. This mismatching further enhances the

difficulty of mapping problems reported by users with the guidelines, and those guidelines often

do not contribute to understand them [19].

Moreover, the lack of accessibility focused reviews in official app stores, due to the low per-

centage of disabled users [5], leads to investigations based on detailed individual interviews [3, 19],

which is not representative of how disabled users usually report accessibility bugs - feedback

forms, email or social media.

Consequently, when facing accessibility problems reported by users, and upon the absence of

resources to understand them, developers and testers get confused [19], leading to social issues

regarding accessibility [38]. In turn, this leads to a minor focus on accessibility [38] and a lower

priority in fixing accessibility issues [19].

1.3 Objective

Our thesis hypothesizes that we can propose an user-centered classification able to typify iOS bugs

reported by visually impaired users, in conformity with the guidelines available and the language

employed by users.

The aim of this work is to create an user-centered classification of iOS vision accessibility

bugs that is complete and intuitive.

This classification must be based on the language employed by users to report such bugs and

also structured in conformity to the available accessibility guidelines. To do so, the data available

at the AppleVis iOS Bug Tracker [13] and iOS App Directory [12], as well as WCAG [41, 42] and

BBC [16] guidelines, will be explored.

Hence, this classification can contribute to enhance the comprehensibility of iOS vision ac-

cessibility problems, promoting their easier and faster fixing, therefore ensuring usability for all

users.

4 Introduction

1.4 Structure

Chapter 2 presents the state of the art regarding software accessibility, focusing on mobile and

vision accessibility.

The Background Chapter 3 describes VoiceOver concepts and presents AppleVis [14] and its

repositories.

In Chapter 4, the proposed classification and the process that led to its construction are ex-

plained.

The penultimate Chapter, 5, covers the validation phase, comprising the assessment of the

classification’s completeness and intuitiveness.

Finally, Chapter 6 presents the conclusions of this investigation, its practical and theoretical

contributions, the limitations of the study as well as suggestions for future work.

Chapter 2

State of the Art

Software accessibility is addressed on diverse research papers. Several sets of keywords were

constructed by combining the terms accessibility or accessible with various other words (e.g. soft-

ware, technology, iOS, mobile, automation, checking, properties, guidelines, testing, processes,

etc). These sets were searched in specific and general search engines, such as Google Scholar,

Scopus and Engineering Village.

The investigations explored focus in three main areas: guidelines and best practices; improve-

ments to software development processes; and testing tools to automatically detect accessibility

bugs.

2.1 Guidelines

The most common accessibility guidelines mentioned in the literature are the WCAG guidelines

and, although not as often referred, the BBC Mobile Accessibility Guidelines have also been

referenced [37].

2.1.1 WCAG Mobile Guidelines

The W3C Web Accessibility Initiative (WAI) is finishing the 2.2 version of the Web Content Ac-

cessibility Guidelines (WCAG), which comprises, amongst others, new success criteria addressing

needs of users of mobile devices [43].

For as long as this new version is not finalized, there are available WAI guidelines describing

the application of the WCAG 2.0 and its principles, guidelines, and success criteria to web and

non-web mobile applications and content [41]. These recommendations take into account mobile

web content, mobile web apps, native apps, and hybrid apps using web components inside native

apps. They also include the Mobile Web Best Practices and the Mobile Web Application Best

Practices, offering general guidance to developers regarding the accessible creation of applications

and content targeting mobile devices [41, 43].

5

6 State of the Art

These guidelines are marked as a draft version since February 2015 and receiving feedback

as an essential component of its success. Some of these guidelines and associated success criteria

have already been incorporated into WCAG 2.1 [42], published on June 2018. However, the

document comprising these mobile guidelines presents itself as based on WCAG 2.0 [41]. It

mirrors its four principles [40], which can be summarized as:

I "Perceivable" – Information and user interface components must be presentable to users in

ways they can perceive – This principle encompasses:

• Providing text alternatives for non-text content, that can be changed into other forms

people need (e.g. large print, braille or speech);

• Alternatives for time-based media;

• Creating content presentable in different ways without losing information or structure;

• Presenting distinguishable visual and audio content, clearly separating foreground

from background;

II "Operable" – User interface components and navigation must be operable – This principle

contains:

• Making all functionality accessible using a keyboard;

• Allowing users enough time to read and use the content;

• Avoid content designs known to cause seizures;

• Help users in navigating and finding content, as well as in determining where they are

in the page.

III "Understandable" – Information and the operation of user interface must be understandable

– This principle includes:

• Making the text content readable and understandable;

• Making the contents appear and behave in predictable ways;

• Helping users avoid and correct mistakes, such as in filling forms.

IV "Robust" – Content must be robust enough that it can be interpreted reliably by a wide

variety of user agents, including assistive technologies – This principle is solely composed

of:

• Compatibility of the content with current and future user agents, including assistive

technologies, such as screen readers.

The recommendations from the WCAG mobile guidelines [41], grouped by the four previously

presented categories, are the following:

2.1 Guidelines 7

I "Perceivable" – Take into account the smaller screen size of mobile devices, considering the

available space instead of the high resolution to decide the amount of information to present

in a usable way. This recommendation also refers to the usage of screen magnification in

case of low vision users. The encouraged best practices comprise providing a dedicated mo-

bile version to smaller screens and implementing a responsive design, adapting the content

to have fewer modules, fewer images, or to focus on important mobile usage scenarios, as

well as collapsible navigation menus, touch controls with reasonable sizes and positioning

form fields below their label in portrait orientation.

Some recommendations regarding zoom, both to a wider audience and to assistive tech-

nology users, are also defined. The accessibility features taken into account in the article

include OS level features, such as the definition of the default text size, that can be found

on iOS’ Display Settings, and the zoom accessibility feature, that allows low vision users

to magnify the entire screen and horizontally and vertically pan around it to navigate the

magnified content. It also includes browser features, namely the definition of a default text

size of the text rendered in the browser’s viewport, the availability of reading mode, that

allows the user to see the main content at a pre-defined text size, and the usage of the pinch

to zoom gesture. The success criteria mention the requirement of text to be magnifiable to

200% of its size using assistive technology, content not deterring users from magnifying

it and the inclusion of techniques that allow the text size increasing by the system defined

settings (e.g. display size defined at the operating system level) or by users through on-page

controls.

Once mobile devices are used in very different environments, such as outdoors and other

venues where natural or artificial strong light sources can cause glare, the document ad-

vocates for the definition of good contrast in the user interfaces. Particularly, its aim is to

minimize the challenges that low vision users may face in such environments. The sugges-

tions regarding contrast comprise some ambiguous requirements, with the minimum text

contrast ratio ranging from 4.5:1 to 7:1 or from 3:1 to 4.5:1, for large-scale text. The exhor-

tation for developers is to use the lesser ratio only when text is equivalent to 1.2 times bold

or 1.5 times the size of default platform text.

II "Operable" – Although modern mobile devices are almost exclusively devoid of physi-

cal keyboards, the use of external physical keyboards is common by some disabled users,

mainly users with vision and motor disabilities. Therefore, the recommendations encompass

proper keyboard accessibility and control of applications.

Some directions are made regarding touch targets’ size and distance between elements,

namely the definition of a minimum height and width of 9 millimeters and the existent

of a small inactive space surrounding smaller elements.

The touch gesture based navigation of modern mobile operating systems, ranging from sim-

ple taps to very complex multiple finger gestures and multiple taps and drawn shapes, can

cause problems or be impossible to use by users with disabilities. This particularly affects

8 State of the Art

screen reader users, when interaction modes are based on two-step processes for focusing

and activating elements instead of direct touch manipulation, and also users with motor or

dexterity impairments or who rely on devices in which multi touch gestures are impossible

to perform (e.g. head pointers or styluses). In some mobile operating systems, it is possible

to simulate complex gestures with simpler ones using on-screen menus (e.g. iOS’ Acces-

sibility Action). Recommendations in this matter involve giving the users the opportunity

to cancel an action before committing to it, by moving the cursor (or finger) to outside the

element. Another issue presented is the discoverability of such gestures, with the suggestion

of having some indicator to prompt the user to execute the necessary gesture to activate a

functionality.

Similarly, there are other gestures that entail physical device manipulation, such as shakes

and tilts of the mobile device, which may be challenging or impossible for users who have

difficulty or are unable to hold a mobile device.

Although some operating systems allow on-screen menus to perform those actions (e.g.

iOS’s Assistive Touch), it is recommended that developers provide touch and keyboard al-

ternative controls to features that rely on device manipulation. Similarly to the previous

point, discoverability is another problem of these device manipulation actions.

These guidelines also commend the placement of buttons on easily accessible screen areas

regardless of device orientation and positioning. Some mobile operating systems allow the

user to temporarily shift the display down or sideways for better screen access (e.g. iOS’s

Reachability on bigger iPhones), but it is recommended that layouts are designed with right

and left handed usage and different thumb range of motions in mind.

III "Understandable" – Applications should support all available screen orientations and inform

assistive technologies about device orientation changes. This is particularly important to

users who can’t rotate the screen to match orientation changes, such as users with their

smart phone mounted on the arm of a power wheelchair. Screen reader users also need to be

informed of screen orientation changes, because navigation gestures are screen orientation

sensitive and an incorrect gesture may be performed if the orientation is different than the

one perceived by the user.

Applications and pages should exhibit a consistent layout between screens and orientations

in components repeated throughout these different screens and orientations, which means

respecting the relative orders in which elements are sequenced in the various contexts in

which they appear. This requirement goes beyond WCAG 2.0 and relates to consistent

navigation and consistent identification.

Important page elements must be presented before scrolling down the page, as the small

screen on mobile devices limits the available information displayed in each page and some

users may only visualize one part of the screen at once (e.g. low vision users relying on

magnification).

2.1 Guidelines 9

Grouping elements that perform similar actions is also advocated. For example, a link

icon with a link text, both performing the same action or going to the same destination,

should be contained within the same actionable element. This increases the touch target size

and reduces the number of redundant focus targets, improving the experience for dexterity

impaired, external keyboard, switch control and screen reader users.

The clear indication of items’ actionability is also crucial to all users, disabled or not. These

elements (e.g. buttons, links) should be obviously distinguishable from elements that do not

trigger any change of action. By following existing interface design conventions, developers

can visually convey the actionability of these trigger elements by their shape, color, style,

positioning, label, and iconography. This information shall also be programmatically an-

nounced to users of screen reading technologies (e.g. through Accessibility Traits on iOS).

This guideline is also an addition since WCAG 2.0, as part of the consistent navigation and

consistent identification success criteria.

As previously mentioned, the usage of complex touch gestures and device manipulation

gestures can cause problems to some users. Besides performing the gestures themselves,

the discoverability of those gestures and their accessible alternatives shall also be taken into

account. Instructions, such as overlays, tooltips, tutorials and others, must be provided to

detail and explain the available gestures and accessible alternatives. Although these instruc-

tions shall be prominent on first use, they should always be easily accessible to all users.

IV "Robust" – The definition of alternative keyboards to the data type of the text field being

entered can be of assistance to users by avoiding mistakes and entering valid data by default.

Nonetheless, the common keyboard layouts shall be respected, since screen reader users

may feel confused with drastically different virtual keyboard layouts.

Reducing the amount of data entry the users need to do can also make their usage of an app

or page easier. This can be accomplished by providing select menus, radio buttons, check

boxes or by automatically entering known information, like date, time or location.

Supporting the accessibility features of each platform is also recommended, once most of

the work is already implemented by the operating system and only small programatic ad-

justments may be needed.

2.1.2 BBC Mobile Accessibility Guidelines

The British Broadcasting Corporation (BBC), the British public broadcaster, has also defined a set

of independent standards, the BBC Mobile Accessibility Guidelines [16, 37]. These guidelines

[16] are divided on eleven high-level topics, preceded by overall principles and followed by some

particular recommendations. The guidelines comprise technologically achievable best practices,

considering current mobile assistive technology, and are easily testable with specific objective

criteria - marked as "must" or "must not" - as well as other less testable recommendations that,

10 State of the Art

nonetheless, are of high importance in the accessibility of mobile websites and apps - marked as

"should" or "should not".

The three general principles encourage developers to use the platform and web standards as

they are intended to be used, base their apps on standard interface controls as much as possible

and support the specific platform accessibility features.

I "Audio and Video" – BBC exhorts the implementation of alternatives for embedded audio

and visual content, such as subtitles, sign language, audio description and transcripts. It

equally suggests that audio content must not play automatically, unless a button to pause,

stop or mute the audio is present and easily reachable or if the user is informed, by the app

or its natural flow, that audio content will be played.

It is also recommended that relevant metadata is available for all media, that background

music, ambient sounds, narrative and editorially significant sound effects have separated

volume controls and, in games or interactive media, that narrative audio does not overlap or

conflict with native assistive technology.

II "Design" – BBC advocates that the text and its background must have sufficient contrast,

that the meaning must not be conveyed solely based on color, that the main content must

still be accessible when styling is either not supported or has been removed, and that touch

targets must be large enough to being accurately pressed.

The spacing between actionable elements, the consistency of the users’ experience and ad-

justability of media by users based on their ability and preference are also suggested. Other

must success criteria are the capability of users to control font sizing and user interface

scaling - possible using operating system features; the clear distinguishability of actionable

items - such as links or buttons; and their visual state change when focused.

This list of design aspects also encompasses interfaces providing multiple ways to interact

with content and the prohibition of content to visibly or intentionally flicker or flash more

than three times per second.

III "Editorial" – It is advised that element labeling should be consistent both within applica-

tions and websites on their own and also across websites and native applications and, when

needed, applications should provide additional instructions to supplement visual and audio

cues. The active language on an application or page must be specified, and changes in the

active language must be indicated.

IV "Focus" – BBC urges developers to make all interactive elements focusable and the inactive

elements not focusable, ensure that screen reader focus does not stay trapped in a single

element and all temporary screen elements (e.g. on-screen keyboards) can be dismissed and

also, to order the content in a logical sequence.

The exhortation extends to a logical and meaningful sequence in the navigation of the ac-

tionable content, focus or context not automatically changing during user input, actions only

2.1 Guidelines 11

being triggered when the user undoubtedly commits to it in their specific input method and

the support of these alternative input methods.

V "Forms" – The document reinforces that all form controls must be labelled and that the label

must be close to the form control to which it refers and laid out appropriately. Controls,

labels and other form elements must be properly grouped and a default input format per

form field must be indicated and supported by the application or page.

VI "Images" – BBC advices that images containing relevant information or contextual meaning

must have an additional accessible alternative (e.g. accessibility label) and that images of

text (inaccessible to screen readers) should be avoided.

VII "Links" – The document states that for each link and navigation text there must be an explicit

description of the correspondent target or function. Links to alternative formats must also

indicate that an alternative is opening and when repeated links point to the same resource

they must be combined within a single link.

VIII "Notifications" – BBC suggests that notifications must be both visual and audio in order to

be inclusive and that, when available and appropriate, standard operating system notifica-

tions should be used. When an error occurs, the advice is to provide clear error messages

and, when a non-critical error occurs frequently, feedback or assistance should be provided.

IX "Scripts and Dynamic Content" – The guidelines reinforce that applications and websites

must be built to work in a progressive manner with the goal of providing a functional ex-

perience for all users (e.g. supporting previous operating system versions), that pages must

not be refreshed without warning, once the focus of a screen reader loses its position in such

refreshes, and that time outs must be adjustable to the time needed for each user to conclude

a given task.

Developers may also make available a pause, stop or hide control where either constantly

updating Media or animated content is present and support the adaptation of input controls.

X "Structure" – The document exhorts that each page and screen must have a unique title to

be clearly and uniquely identifiable, that the content must provide a logical and hierarchical

heading structure (essential to an efficient screen reader navigation) and that controls, ob-

jects and grouped interface elements must be represented as a single accessible component.

It also is suggested, if supported by the mobile platform, that containers and landmarks

should be used to describe page and screen structure.

XI "Text Equivalents" – The guidelines urge applications and pages to provide alternatives to

non-textual context (e.g. images, graphics, diagrams) that briefly describe the editorial intent

or purpose of such elements, as well as hiding from assistive technology decorative images

which content is irrelevant to the context (e.g. backgrounds).

12 State of the Art

It is also encouraged that tooltips do not repeat information already contained in the element

they refer to, that elements must have accessibility properties set appropriately and that

meaning must not be conveyed by visual formatting only.

The BBC Mobile Accessibility Guidelines close with some concrete recommendations, en-

couraging developers to offer a core accessible website, use progressive enhancement, link mobile

and desktop sites and minimize text fields.

Despite the vastness and detail of the BBC Mobile Accessibility Guidelines [16], there are

some recommendations missing when compared to the WCAG mobile guidelines [37, 41].

The design section is missing the WCAG indications regarding the minimization of the amount

of information on each page compared to the equivalent desktop or laptop version, the positioning

of important information to make it visible without requiring scrolling and providing labels or

instructions when content requires user input.

The forms section also does not mention the position of form fields below their labels instead

of beside them.

BBC’s guidelines do not mention specifically the ability to perform all functionality through

a keyboard interface [37], although it can be argued that the requirement of supporting various

input methods incorporates this WCAG requirement [16].

However, these guidelines do not take into account the complexity of multi touch gestures and

WCAG’s recommendation to make those as simple as possible and to provide simpler alternative

controls to assistive technology users, as well as the recommendation to support all screen ori-

entations and to inform programmatically about orientation changes to assistive technology users

[41].

2.1.3 Guideline Coverage

The studies that focus on guidelines analyze how thoroughly the available guidelines, usually

WCAG, can cover accessibility bugs reported by users. In her most recent study, Alajarmeh [3]

asked sixteen visually impaired users from the USA to navigate apps and websites on their mobile

devices to evaluate how WCAG 2.1 guidelines covered the problems found. From the 34 identi-

fied accessibility problems, 8 were not covered by WCAG 2.1 guidelines. Although WCAG 2.1

represents a positive evolution from WCAG 2.0, the author believes that the conformance level of

some success criteria is not adequate to the severity of the bugs that may result from disrespect-

ing those guidelines. The fact that 26 of the problems are covered by WCAG 2.1 guidelines also

demonstrates that developers and content providers continue to overlook accessibility practices, as

previous studies have also concluded [1, 18, 35].

Clegg-Vinell et al. [19] recognize the importance of guidelines to raise awareness of acces-

sibility and to provide a point of reference during the design, development and verification of a

website or app. However, and as explored by Alajarmeh [3], the authors emphasize that relying on

guidelines to understand the severity level of problems results in ratings very different than what

users perceive. Furthermore, the authors claim that reporting problems alongside guidelines can

2.2 Processes 13

prioritize the fix of the reported problem, but linking problems with guidelines often requires the

work of an accessibility consultant with in depth knowledge of the guidelines, supporting docu-

mentation and prior experience.

A thorough case study was conducted, involving several accessibility consultants and a broad

range of disabled users with various disabilities. The users were asked to perform several tasks in

a number of websites and apps in different platforms while the moderator monitored the problems

arising during the process. The severity of the problem was determined by its frequency, impact

and persistence. Then, each problem was classified according to if it was easily mappable to a

guideline, if the mapping was possible but only with knowledge from a specialist or if the problem

had impact but no mapping in the guidelines. The severity levels of the guidelines were considered

inadequate to classify the problems faced by those users and some of these reported issues were,

in deed, considered a significant barrier to more than one disability group. Clegg-Vinell et al.

[19] conclude that problems reported by users often do not relate to guidelines, which makes the

developers’ job of understanding said problems harder and more time-consuming.

Therefore, the authors advocate for guidelines that embrace a more user-centered approach to

ensure that problems with impact on users are given the proper relevance, as well as to incorporate

issues that have not been taken into account [19].

2.2 Processes

The research about developer processes introduces accessibility focused processes into teams to

evaluate their impact on the accessibility of the product developed.

Sánchez-Gordón and Moreno [39] proposed a proof of concept of the test process on the re-

quirements phase of accessibility development lifecycle, based on a proposal by Microsoft, defin-

ing how accessibility is incorporated into each phase of the software development process. This

later has been adapted to accessible Web development on an Agile environment [34].

On the requirements stage, engineers may generate personas that represent users with various

degrees and types of disabilities, create scenarios to define which design features could help those

users and illustrate how they will accomplish tasks by interacting with the product in an accessible

manner. Then each feature shall be prioritized and, in the end, all users must be able to complete

the proposed use cases.

On the testing stage, the proposed test process includes: during the planning and control of

tests, preparing the test strategy to include the satisfaction of accessibility standards; in the analysis

and design phase, deciding which and to what degree the accessibility tests should be automated

and which accessibility standards and guidelines are incorporated into the tests’ exit criteria; in the

implementation and execution phase, creating the test specifications to evaluate the satisfaction of

accessibility standards, evaluate the exit criteria and report them and the verification and validation

of the incorporation of accessibility guidelines and standards in the test plan and; finally, the test

closure phase incorporates the test summary activities from the testing metrics and lessons learned.

14 State of the Art

Steen-Hansen and Fagernes [38] proposed a series of processual guidelines in order to incor-

porate accessibility into the entire development and testing process of web applications, which

can be directly transposed to the development process of mobile applications. These guidelines

aim to make accessibility a natural part of the development process, not by certifying that the final

product meets certain standards or guidelines but making a statement that product development

process was based on an approach that has taken into account educated decisions regarding the

accessibility of the product.

The authors identified two main problem areas in the introduction of accessibility into de-

velopment processes, namely social and tool issues. Social issues concern the people involved

in the project and their priorities, expertise and pre-assumptions, while tool issues comprise the

availability and ease of use of tools to test and ensure accessibility [38].

The collective notion of accessibility’s minor importance is a common social issue amongst

development teams, management and clients, which can lead to lack of time and funding to focus

on the product’s accessibility. This pushes accessibility to the end of the development process,

turning it into an after-thought.

The vastness of the accessibility field, as presented priorly, and the lack of knowledge and

education in this area is also a social issue. Accessibility is considered an interdisciplinary field

that ranges from good coding, solid design practices, knowledge of specific tools to automate

accessibility testing and usability testing with disabled users. This vastness may overwhelm some

developers, leading to negative feelings about accessibility and its complexity and learning curve.

In turn, managers see it an expensive investment and postpone it until an accessibility-minded

client appears and catalyzes the learning process.

Moreover, a bigger problem is the fact that some people consider accessibility an unnecessary

and inappropriate endeavor, with some even considering it an intrusion to their aesthetic and graph-

ical design sensibilities. To solve this social issue, it is vital to enlighten developers, managers and

clients about the importance of accessibility and in what it consists.

Using tools and guidelines for manual and automatically test the accessibility of a product can

be useful, specially to help developers getting familiarized due to never before having had contact

with accessibility or not having a very deep knowledge about the topic.

However, tools and guidelines can be difficult to comprehend and time-consuming, and may

require accessibility expertise in order to be fully and effectively used. Additionally, despite being

helpful in finding the accessibility problems, tools may be unclear and confusing in the messages

they provide to describe and explain the accessibility issue and help the developer to fix it. Hence,

the size of the guidelines and their ambiguous nature may be a problem to developers, who favor

faster software development tools.

The proposed co-dependent process-oriented development guidelines to facilitate the develop-

ment of a more accessible product are as follows:

• Have Accessibility Expertise on the Team – Due to the complexity and vastness of the

theme, it should comprise at least one person with accessibility experience regarding knowl-

edge of legal requirements, good coding practices and more and less accessible technologies

2.2 Processes 15

and frameworks as well as familiarity with accessibility testing tools.

It is recommended that this person has experience doing usability testing with users that

require accessibility, knows how to argue with the team, management and client about the

importance of accessibility and is involved in the development process since the beginning

to avoid using less accessible technologies.

If no such person is available, the team should hire an accessibility expert to help in critical

moments of the project, such as the initial planning and design phase, to guide the team

in making accessible technological choices and in how to test for accessibility and to be

available if any further question arises.

• Communicate Accessibility within the Team – The knowledge of the accessibility expert,

regardless of being internal or external to the team, is not useful if it is not shared with the

team. The team should communicate how to work to ensure accessibility, ask questions and

hear the accessibility expert and share the responsibility of making an accessible product.

To do that, the management shall allow time to accessibility related meetings and discus-

sions and for the communication of accessibility requirements before the implementation

phase.

• Follow Existing Design Principles – As previously stated, accessibility and usability are

interrelated properties of software, therefore following known usability patterns, regarding

good design practices, well-written code, solid architecture, accessible form validation and

error recovery, can make software more accessible due to being more usable to everyone.

This allows the team to leverage on existing design and usability knowledge and combine it

with the knowledge of the accessibility expert, by designing the interface and deciding on

accessibility requirements in parallel.

• Test Accessibility at Key Stages – The importance of testing has been emphasised in both

literature and practice. Therefore, to ensure a properly accessible product there should be a

properly defined accessibility testing process since the beginning of the project.

The team should ensure that accessibility testing is performed at key stages in the product

cycle, such as when some new core feature has been designed or implemented, and the

testing should be automated and focused on small functionalities per test case.

The management should plan time for accessibility testing and the accessibility expert

should be responsible for the testing itself, deciding what to test and how to test it, taking

care of not generating false positives and to automate testing as much as possible, dissemi-

nating the knowledge to the rest of the team.

The tests should also encompass actual usability testing with disabled users whenever pos-

sible, as well as disability simulation by the team members, such as trying to use a screen

reader, using only a keyboard, disabling color and text styles or experimenting physical

16 State of the Art

simulations of disability (e.g. Cambridge Simulation Glasses) [15]. These guidelines in-

corporate Sanchez-Gordon and Moreno’s [39] test process on the requirements phase of

accessibility development lifecycle.

• Introduce Accessibility from the Beginning – This is the main pillar in which all this pro-

cess is based, as shown in the previous four processual guidelines. Finding accessibility

workarounds and fixes is harder and more time-consuming than integrating accessibility in

the product design, implementation and testing from the beginning. Choosing the right and

more accessible frameworks and technologies from the beginning ensures an effortlessly

more accessible product than than a need to change technology throughout or at the end of

the project if only then it becomes clear that users will not be able to use it. Accessibility

metrics should also be decided since the beginning of the project.

Luján-Mora, firstly with Masri [30] and then with Sanchez-Gordon [34], proposed the integra-

tion of accessibility on Agile methods that validates these processual guidelines. Such proposals

were centered on web accessibility, but they can directly be extrapolated to mobile accessibility.

Due to the Agile focus on interactions and collaborations between the different stakeholders and

their engagement with team members, it is suggested that Agile’s user-centered design needs to

incorporate accessibility user testing to meet the requirements of the stakeholders that rely on ac-

cessibility to use the product [30]. Since Agile’s primary measure of progress is working software,

and it is characterized by frequent deliveries, measured in weeks rather than in months, accessi-

bility testing should be performed since the beginning of the project, instead of being postponed

to its end. These tests should involve both user accessibility testing, performed frequently, and

the automation and continuously run of accessibility tests, in order to constantly detect arising

issues and ensure their immediate fixing. This approach is suitable to incorporate the testing ap-

proach proposed by Sanchez-Gordon and Moreno [39]. This ensures the satisfaction of the final

user, regardless of disability, and the capability to quickly react to changes in the product or in the

market [30].

Although these approaches are of a theoretical nature, some case studies [6] validate ap-

proaches based on the same principles: define a process, a set of tools and guidelines and obtain

more accessible results. These results are achieved due to the adopted process in the software

development and not based on focusing solely on the final product’s accessibility [6, 38].

The foundations of this success can be defined as:

• Ensure that accessibility is a constant concern throughout the development phase;

• Familiarization of developers with accessibility guidelines;

• Definition of accessibility metrics and control of those metrics during the development pro-

cess;

• Dissemination of expertise in using tools to ensure guidelines are being respected;

• Automating processes and tests.

2.3 Tools 17

The choice of technology and the accessibility evaluation tools was also considered an impor-

tant success factor in the analyzed case studies [6].

A crucial recommendation can be extracted from all the analyzed processes: regardless of how

many guidelines are written, how many guideline recommendations are checked and how many

automated tests are implemented, usability is always the ultimate goal [6, 15, 30, 33, 34, 37, 38,

39]. Since the success of a product can only be measured when it is used by the customer, the

accessibility of a product can only be confirmed or denied when the final user uses that product

with their assistive technology, given their accessibility needs.

2.3 Tools

In this section, the tools and frameworks to develop and test the accessibility of iOS applications

are scrutinized.

2.3.1 Apple’s Solutions

As responsible for the iOS operating system and the platforms needed to develop, test and deploy

iOS apps, Apple provides tools and frameworks to test apps and their accessibility.

Until 2014, Objective-C was the exclusive programming language used to develop iOS apps,

with UIKit being the only framework to implement the app’s user interface. In 2014, Apple

developed and posteriorly open sourced Swift, allowing iOS development with both Swift and

Objective-C in the same code base. Since 2019, Apple also included SwiftUI as a declarative UI

structure design framework supported in iOS development, in parallel with UIKit [9, 29].

Apple also offers Xcode, an Integrated Development Environment (IDE) to support all its

platforms and features, that can be freely downloaded and used on its macOS platform. Xcode

natively supports XCTest, a test framework also developed by Apple that is by default included in

every iOS project’s code base, with its own test navigator in the IDE to easily create, configure and

run tests. It includes unit, integration, performance and user interface testing, supports continuous

integration with Apple’s Xcode Server and is compatible with the latest versions of Objective-C

and Swift [11].

2.3.2 Accessibility Testing Tools

The following tools and frameworks can be used by iOS testers to test the accessibility of their

iOS applications:

• Accessibility Inspector

Developed by Apple and part of Xcode’s application set, this native Mac app inspects each

element of an app and displays accessibility information about each element present in the

user interface. The analysis can be performed manually by testers, to check accessibility

properties in a per element basis, or by activating the Accessibility Verifier, which can iden-

tify non-textual elements of the interface lacking an alternative description.

18 State of the Art

This tool is classified as a dynamic blackbox tool that uses a manual approach to accessibil-

ity bug detection [37].

• Mobile Web Accessibility Checker

This mobile application can evaluate the accessibility of mobile websites on an iOS device.

It does so by reporting on design accessibility flaws, such as interface color contrast, and

also reports if elements have accessibility labels that allow them to be read by screen reading

technology.

This tool is also considered a dynamic blackbox tool that uses a manual approach to acces-

sibility bug detection [37].

• XCUI

This native Xcode solution is based on two core technologies, the XCTest framework and

Accessibility. Once it is developed by Apple, it offers advantages such as full integration

with Apple’s continuous integration and continuous deployment solutions (Xcode Server

and xcodebuild) and its compatibility is up to date with the latest versions of both Objective-

C and Swift. It uses the core Accessibility framework, including a rich set of semantic

data about the user interface, to identify and find UI elements and simulate user actions’

performance on them [11]. It has no specific implementation to automatically test the

compliance with any Accessibility guidelines, but its foundation components can be used

by testers to implement accessibility tests on their apps [44].

It is an automated dynamic black box framework that has been used in some of the tools

presented below.

• EarlGrey

Developed by Google, with native Xcode integration, EarlGrey is a white-box functional UI

testing framework for iOS that can perform accessibility property checks on iOS apps using

Unit Testing.

Accessibility checkers can be turned on on a test class basis to verify if any component

activated on a test fails to comply with the accessibility properties, automatically raising an

exception in such cases [36, 37]. It is capable of detecting several types of accessibility

defects, such as the lack of alternative text for non-textual components, duplicate alternative

texts, insufficient color contrast, inadequate touch target size, overlapping of actionable

elements and clickable spans, like actionable words within a text.

EarlGrey represents a dynamic white box framework that uses test scripts to accessibility

bug detection [37].

• KIF

KIF, an acronym for Keep It Functional, is an integration test framework that can be inte-

grated into Xcode [27]. Like XCUI [11], it also leverages on the accessibility attributes

2.3 Tools 19

that iOS makes available to Voiceover, allowing testers to write tests that simulate real user

input with accessibility-checking capabilities. However, due to the usage of undocumented

Apple APIs, the KIF team states that, despite safe for testing purposes, KIF tests are not

recommended to be committed into production, as it can get the app submission denied by

Apple. According to the KIF documentation, this problem is common in most iOS testing

frameworks, however this disclaimer was not found in other frameworks analyzed [25].

KIF is capable of detecting the same types of accessibility defects EarlGrey does, such as

the absence of alternative text in non-textual components, duplicate alternative texts, lack

of sufficient color contrast, problems with touch target size, overlapping of actionable ele-

ments and clickable spans [37]. KIF also represents a dynamic white box framework that

uses test scripts to accessibility bug detection.

• A11yUITests

A11yUITests is a Testing library for accessibility based on Apple’s XCUI User Interface

test framework. It is implemented as an extension to XCTestCase that adds tests for com-

mon accessibility issues that can be run as part of an XCUITest suite. It follows WCAG

guidelines and Apple’s own recommendations on accessibility, also leveraging on the ac-

cessibility information available to Voiceover using the app’s accessibility tree, turning any

well-defined XCUITest into an accessibility test [44]. A11yUITests is able to detect some

accessibility defect types similar to what EarlGrey and KIF do [37], such as lack of accessi-

bility labels, duplicated accessibility labels, problems with touch target size and overlapping

of actionable elements. This framework, however, goes beyond what EarlGrey and KIF can

do, verifying the adequacy of labels following Apple’s guidelines, such as nonredundant

information about element types in labels, the length of labels and alerting if an image has

its name as its accessibility label. Notwithstanding, the A11yUITests developer recognizes

some limitations in the tool, like only verifying redundant element types in accessibility

labels of buttons and not in other element types, the inability to check if the element type

is present as an accessibility trait and some speed problems, as well as the current inabil-

ity to integrate the tests in Continuous Integration and Continuous Delivery pipelines [44].

Nonetheless, it is a valuable contribution to accessibility testing in iOS going beyond other

tools in some regards. It represents an automated dynamic white box framework of accessi-

bility bug detection.

2.3.3 Tools Coverage

The investigation about tools consists in evaluating how thoroughly those tools cover accessibility

guidelines, usually WCAG, or accessibility bugs reported by users.

Silva et al. [37] studied the accessibility testing tools available on each mobile operating sys-

tem and analyzed the extent of BBC and WCAG 2.0 guidelines that they were able to cover. For

20 State of the Art

Table 2.1: Accessibility Guidelines Covered by Testing Tools on iOS

Tools Mobile Web Accessibility Checker Mobile Web Accessibility Checker EarlGrey KIF
Color Contrast X X X
Touch Target Size X X
Spacing X X
Actionable X X
Visible X
Keyboard X
Consistency X
Alternatives for Non-Text X X X X

Adapted from [37]

iOS, the authors identified Accessibility Inspector and Mobile Web Accessibility Checker as dy-

namic manual blackbox tools. On the other hand, EarlGrey and KIF were identified as dynamic

script based automated white box tools that detect accessibility problems on iOS.

Nonetheless, the coverage of guidelines that these tools can perform is below 13%. Mateus

et al. [31] analyzed the performance of two automated accessibility evaluation tools, MATE [23]

and Accessibility Scanner, with 415 instances of accessibility problems encountered by visually

impaired users on four mobile applications. The research found that more than 70% of accessi-

bility problem types could only be detected by users, more than 20% could only be detected by

the tools and 6% of them could be identified by both users and tools. These results confirmed the

aforementioned recommendation of involving users in accessibility testing throughout the project

to find and solve eventual accessibility problems.

Table 2.1 illustrates, amongst the guidelines covered, which tools are capable of detecting if a

given guideline is covered.

2.4 Discussion

From the state of the art, we conclude that several aspects converge towards the challenging na-

ture of detecting and understanding accessibility problems, which inherently imposes a need for

solutions. The tools to verify accessibility cover only a low percentage of the available guidelines

[31, 37] and not all problems reported by disabled users are taken into account in those guidelines

[3, 19]. Additionally, relating reported problems with the guidelines requires expertise [19] and

developers and testers do not find the guidelines very clear nor easy to understand [38].

Therefore, there is a need of a more user-centered approach to ensure that the many problems

faced by disabled users are taken into account and given the proper relevance [19].

Although most disabled users are not experts in accessibility guidelines, they are able to use

software in their daily lives. When facing accessibility problems, they report them in their natural

language, perhaps influenced by the knowledge dissemination amongst their disability groups (e.g.

blind users), and that is the language they employ when reporting to developers bugs they need

to be fixed. However, developers are not familiar with the common terms used by accessibility

2.4 Discussion 21

groups to describe the problems they face and, as aforesaid, mapping the problems to the existing

guidelines requires expertise and most times does not contribute to understand the problem [19].

This sets users apart from developers as if they communicated in different languages, which

can lead to social issues regarding accessibility [38]. The mismatching of realities between bug

reports and guidelines confuses developers [19], consequently leading to a minor focus on acces-

sibility [38] and a lower priority in fixing accessibility issues [19]. Some studies refer the lack of

accessibility focused reviews in official app stores due to the low percentage of disabled users [5].

Most of the studies base their investigations on individual interviews with disabled users [3, 19],

in which the users can narrate live and even demonstrate thoroughly the accessibility problems

they face during the process. Although useful in the context of these studies, this method is not

representative of how disabled users usually report accessibility bugs, which commonly is through

written text on feedback forms, via email or in social media.

Given these premisses, we propose a user-centered solution that could help developers in under-

standing accessibility problems reported by users that consists in a classification based on the

language employed by users to report such problems, structured around the available accessibility

guidelines. This classification can contribute to enhance such problems’ comprehensibility, pro-

moting their easier and faster fixing, ensuring usability for all users. The scope of this investigation

will be vision accessibility problems and the iOS operative system. This option was based on the

shortage of time, the prior existence of a broad range of workable data regarding iOS bugs and the

author’s own familiarity and experience with vision accessibility on iOS.

22 State of the Art

Chapter 3

Background

The aim of this chapter is to contextualize the topic of vision accessibility on iOS, to explain how

the Zoom magnification feature and, specially, VoiceOver work and to present the repositories that

will be used throughout this work.

As a blind person with over 8 years of experience using VoiceOver on iOS, I consider myself

an expert. Both in personal and professional matters, I have found myself in a position in which I

had to explain and demonstrate VoiceOver countless times. Thus, I employed that knowledge to

supply a description of VoiceOver in the following section, aiming to provide a proper context to

anyone, regardless of having prior contact with a screen reader or not.

3.1 iOS Vision Accessibility

Apple incorporates a vast set of accessibility features as part of its operating systems, ranging

from vision to hearing and physical/motor. Every Apple device comes with this features and users

can activate them if needed. The devices also allow the configuration of one or more accessibility

features to be quickly triggered when an accessibility shortcut is performed (e.g. triple tap the side

button in modern iOS devices or the Home button in old ones, double or triple tap the back of a

recent iPhone or press the control key and triple tap the power button in modern Macs).

In iOS, the main vision accessibility features are Zoom and VoiceOver. Due to their complex-

ity, these features change the gestures with which users interact with the iOS device. One could

mention other features regarding vision accessibility on iOS, but they are toggles and settings that

merely change the system appearance or add functionality, with no impact on the device operation,

unlike Zoom and VoiceOver. As examples of these simpler kinds of features in iOS 14 there are

adjustments to apply bold formatting to text, increase the text size, reduce transparency, reduce the

intensity of bright colors, increase contrast, not rely on color to convey meaning, color filters and

invert screen colors (with or without inverting colors of media elements - classic or smart invert,

23

24 Background

respectively). Moreover, there are features to decrease the use of motion throughout the user in-

terface, activate audio description when available in media, use the device’s camera as a magnifier

and read aloud text when desired.

3.1.1 Zoom

Zoom allows the display to be magnified to up to 15 times the content’s normal size, in either

full screen or window zoom, and the application of color filters while doing so. Besides keyboard

shortcuts, Zoom can be controlled with touch gestures as follows:

• Double tap three fingers to activate and deactivate Zoom;

• Drag three fingers around the screen to move the zoomed region - naturally, as the zoom

increases and the screen display remains the same size, the visible magnified content is a

fraction of the normal user interface. Therefore, the user has to pan the zoom focus around

the screen to see all the interface elements;

• Double tap with three fingers and then drag to change the zoom level: the drag gesture must

be performed upwards to increase the magnification and downwards to decrease it.

3.1.2 VoiceOver

VoiceOver is a screen reader that allows users to use their iOS device without seeing the display.

It provides feedback in a digital voice of what is happening in the screen and allows the user to

hear the screen content before activating any control. It also enables the user to receive feedback

and navigate the interface using an external keyboard or a Braille display. The navigation with

VoiceOver is based on controlling the VoiceOver focus, a rectangle that marks which element is

selected and can be activated at a given moment. When using VoiceOver, touching the screen

will not directly activate any element - unlike during regular iOS operation. Instead, touching the

screen becomes a means to explore the user interface without risk of undesirable item activation.

One of the main features of VoiceOver is the Rotor. The Rotor is a virtual dial that allows users

to control the type of item they navigate by at a given moment (i.e. characters, words, headings or

links), as well as to perform quick changes (i.e. change speech language, speaking rate or typing

mode). Since the amount of touch screen gestures is limited, at least without stretching the levels

of complexity and memorization, the existence of a Rotor enables not only several navigation

options in different contexts but also changing between them (known as Rotor items). The Rotor

can be customized and the Rotor item can be quickly switched at any time, ensuring a fast and

fluid navigation.

VoiceOver comprises a wide range of settings and customizations. Considering the default

settings, the main touch gestures to control its operation are the following [10]:

• Touch with one finger:

3.1 iOS Vision Accessibility 25

VoiceOver moves the VoiceOver cursor to the item touched and reports it to the user. It

doesn’t activate the selected item, as iOS usually does when VoiceOver is not active. The

user can touch the screen in one point, move the finger continuously through the screen and

VoiceOver will report in real time each element the user’s finger passes by;

• Double tap with one finger:

Activates the currently selected item selected by the VoiceOver cursor. It performs the same

action as touching the screen during regular iOS operation, without Voiceover turned on;

• One finger flick left or right:

Moves the VoiceOver cursor to the previous or next user interface item, respectively. The

flick consists in briefly touching the screen with one finger and then move it quickly to the

left or right;

• One finger flick up or down:

To move focus to the next or previous element of the selected Rotor item, respectively;

• Two finger rotate clockwise:

This gesture switches the Rotor to the next Rotor item, affecting the navigation performed by

the one finger flick up or down gesture. This rotation gesture can be compared to increasing

the volume in a virtual volume dial, or the equivalent of rotating an image to the right with

VoiceOver turned off;

• Two finger rotate counter-clockwise:

This gesture switches the Rotor to the previous Rotor item, affecting the navigation per-

formed by the one finger flick up or down gesture. This rotation gesture can be compared to

decreasing the volume in a virtual volume dial, or the equivalent of rotating an image to the

left with VoiceOver turned off;

• Three finger flick up, down, left or right:

To scroll to the next visible area of a page following natural direction. In other words, to

scroll one page down, up, right or left, respectively. The flick consists in briefly touching the

screen with three fingers and then move them quickly up, down, to the left or to the right;

• Two finger double tap:

This gesture, also known as magic tap, allows the user to quickly stop or play audio or video,

to accept incoming calls or to end calls in progress;

Some advanced gestures encompass:

26 Background

• Split tap:

Item activation can also be performed with what is called the split tap, that consists in touch-

ing an item with one finger and then, without lifting it, touch the item with another finger.

This alternative activation gesture merges the item selection and activation by requiring less

steps to activate an item. So, users can activate an item immediately after realizing they

have located the desired element;

• Two finger scrub:

This gesture is used to perform a properly configured back gesture, which is equivalent to

the one achieved by dragging one finger from the left side of the screen during regular iOS

operation. A VoiceOver user can perform it with a two finger scrub, i.e. touching the screen

with two fingers and drawing a letter "Z";

• One finger double tap and hold:

The user is given the option to temporarily bypass VoiceOver gestures. After performing a

one finger double tap and hold, the device will register the continuation of this gesture as if

VoiceOver was not turned on (i.e. touch a slider, perform the double tap and hold and then

move the finger right to increase the slider value);

• Two finger flick up or down:

VoiceOver reads continuously all the interface’s content from the beginning or from the

current focused element, respectively. This command is usually performed to read a web

page or document, so the user does not need to constantly flick right to advance on the

content. Also referred to as Say All, the continuous reading is interrupted when the user

touches an element or performs another gesture.

Depending on the iOS device (namely on the existence of a Home button), there are also spe-

cific gestures to open the notification centre and the control center. In addition, VoiceOver offers

several typing modes, like direct touch typing that allows the use of the keyboard as if VoiceOver

was turned off (for faster typing), options to input text by handwriting or to type simulating an

on-screen Braille keyboard. VoiceOver also allows the user to turn on the screen curtain (with

a three finger triple tap), turning the screen black for increased privacy (e.g. typing passwords,

reading private messages).

3.2 AppleVis

To the best of our knowledge, the only repository of accessibility data of iOS applications can be

found at AppleVis.com. Its publicly available iOS bug and app repositories were never explored in

an academic context and they are an excellent source of information to analyze the state of vision

accessibility in the iOS ecosystem.

3.2 AppleVis 27

AppleVis is a website that presents itself as the leading online resource for blind and low

vision users of Apple devices [14]. Although it is community based and independent from Apple,

AppleVis is a recommended resource on Apple’s official page dedicated to vision accessibility

[7].

Counting on a large and active worldwide user base, AppleVis grounds its contribution on the

combination of the knowledge and experience of the individuals in the community with the goal

of leading every member to greater fulfillment and independence, by taking advantage of Apple

devices’ accessibility features [14].

From getting started guides to product reviews, feature requests, idea discussions and advanced

tutorials, AppleVis presents a variety of resources to the blind and low vision community of Apple

users.

No statistics are provided about the percentage of low vision and fully blind users who are

registered on AppleVis. However, due to the focus on Voiceover Performance, we extrapolate that

most of the users are fully blind and rely on VoiceOver to use their Apple devices.

Finally, AppleVis also makes available a Bug Tracker and an App Directory. The Bug Tracker

is a registry of every active and fixed vision accessibility related bug in iOS and macOS, focusing

on both the operating system and native apps [13]. It is maintained and updated by the AppleVis

editorial team. The App Directory, with repositories for every Apple operating system (iOS/iPa-

dOs, macOS, watchOS and tvOS), presents a list of user submitted app reviews focusing on the

app’s accessibility and usability from the perspective of a user with vision disabilities [12].

Since the focus of this investigation is on iOS, analyzing the iOS Bug Tracker and App Directory

has been of utmost importance for the consecution of the objectives defined.

3.2.1 Data Collection

Given the relevance of the data present on the AppleVis Bug Tracker and App Directory for the

purpose of this work, the website administration was requested such data. Once this information

could not be provided in any aggregated format besides the html content of the web pages them-

selves, a web scraping project was undertaken to gather all the data needed for a proper analysis

in an efficient and automated way.

Although the data is public and anyone can access it, AppleVis was asked permission for the

automation of the web scraping process to collect the data and its subsequent use in this investi-

gation. The permission was granted by the website administrators, under the compromise of not

exploring the personal information of the AppleVis’ users.

The web scraping project was developed using Python and Beautiful Soup. The content of

each bug report and app review, except user information and forum comments, were downloaded,

aggregated and converted to a JSON list of unstructured data, comprising only the title and relevant

html content of the page.

28 Background

After downloading the information, a small program was built to treat the data and convert the

raw html content into properly defined objects, only containing the relevant data for the analysis.

Upon treatment, the data was subsequently parsed to a duly formatted CSV file in order to be

imported to other tools and analyzed, as either a spreadsheet or a panda data frame.

The content of the downloaded iOS Bug Tracker and App Directory can be found in Ap-

pendix A, in the respective sheets. The only addition to this data has been the automatically

generated ID column.

In the following two chapters, the Bug Tracker and App Directory, respectively, will be further

scrutinized and explored in the context of this work’s objective.

Chapter 4

Proposed Classification

The process followed in this investigation involved two different stages: firstly, the construction

of the classification of iOS vision accessibility errors; and secondly, the validation of such created

classification.

To construct the classification of iOS accessibility errors, the following steps were performed:

• Analysis of the information in the iOS Bug Tracker;

• Extension of the Bug Tracker’s data by grouping bugs into similar problems in order to

understand their scope;

• Mapping the identified problems from the bugs with the existing accessibility guidelines to

create distinct types of errors;

• Exploration of the defined types of errors in finer detail to identify specific error subtypes;

• Inspection of the extended information to a further understanding of iOS bugs.

In turn, the steps taken to validate the created classification were the following:

• Analysis of the information in the iOS App Directory;

• Classification of a subset of the reported accessibility problems according to the proposed

classification, creating new types or subtypes if needed;

• Aggregation of the information in the iOS App Directory and analysis of the classification’s

comprehensiveness;

• Development of a questionnaire to validate if the classification is intuitive for screen reader

users;

• Analysis of the questionnaire results.

29

30 Proposed Classification

4.1 Subject - iOS Bug Tracker

The iOS Bug Tracker is a registry of every active and fixed vision accessibility related bug present

in iOS since iOS 8, focusing on both the operating system and native apps.

The bug reports, submitted by the AppleVis editorial team, concern single bugs and contain

detailed steps to reproduce them and possible workarounds. Fixed bugs are marked as inactive,

usually upon the release of a new iOS version, and they are accompanied by a post detailing

the new and fixed accessibility bugs in each iOS version. Users may consult this information to

decide whether they should update to a new iOS version or wait for the following one - in case

some important feature is not working from an accessibility perspective.

On January 29, 2021, the iOS Bug Tracker consisted of 249 bug reports, of which 23 were ac-

tive in iOS 14.4 and 226 had already been fixed in the current or previous iOS versions (AppleVis:

Bug Tracker, 2021). The earliest bugs in the repository date from iOS 8.0, released in 2014 [13].

From the reports aggregated by the Bug Tracker, several information can be consulted about

each reported bug:

• Title – A summary of the bug;

• Description – A more detailed explanation of the bug;

• Steps to Reproduce – Details about how to reproduce the encountered bug;

• Severity – The degree of severity of the encountered bug, regarding impact in the user ex-

perience, which can only assume the values Serious, Moderate and Minor;

• Category – AppleVis categorization of bugs (discussed below);

• First Encountered – The first iOS version in which the bug was found;

• Devices Encountered – The device in which the user found and tested the bug;

• How Often – The frequency in which the bug occurs, assuming only the values Always,

Sometimes and Infrequently;

• Workaround – When existent, how to avoid the bug;

• Apple Feedback # – The identifier of the bug when reported to Apple;

• Status – If the bug is active or fixed;

• Fixed In – When the bug’s status is fixed, in which iOS version the fix occurred.

In the AppleVis Bug Tracker, the Category attribute can assume the following values:

4.2 Bug Tracker Extension 31

• Low Vision:

Bugs related with visual problems that affect users with low vision;

• VoiceOver Announcements/Feedback:

Bugs that affect VoiceOver users and cause erroneous or lack of VoiceOver output in a

certain situation;

• VoiceOver Speech/Voices:

Problems that affect the VoiceOver voices, in terms of pronunciation and content being read

inaccurately;

• Braille:

Problems that affect VoiceOver users that rely on Braille input (e.g. external Braille key-

boards and on-screen Braille input) and/or output (e.g. external Braille displays);

• Mail:

Bugs related with iOS’s native Mail app;

• Messages:

Bugs related with iOS’s native Messages app;

• Phone:

Bugs related with iOS’s native Phone app and with receiving and making phone calls;

• Safari:

Bugs related with iOS’s native Safari web browser;

• Bluetooth:

Bugs related with BlueTooth devices (e.g. BlueTooth speakers);

• Miscellaneous:

Bugs of other nature that do not belong to the previous categories.

4.2 Bug Tracker Extension

As explained by Clegg-Vinell et al. [19], relating problems to the existing guidelines is a chal-

lenging task that requires deep knowledge on those guidelines, on the supporting documentation

and also, prior experience. After researching the guidelines, verifying the information available in

the iOS Bug Tracker and dissecting the title, category, description and steps to reproduce of each

bug, the utter complexity of establishing a direct link between each bug report and the guidelines

becomes evident.

32 Proposed Classification

In her study, Alajarmeh [3], after collecting a number of problems from users, combined

and aggregated them into a reduced list summarizing the major problems found. Although Bug

Tracker displays a list of categories, they are not particularly informative about the major problem

presented in each bug.

Nevertheless, the complexities of understanding the major problem each bug represents may

be mitigated by the additional information one can extrapolate from the original data.

Analyzing the categories available in the iOS Bug Tracker revealed that they can be grouped into

two distinct main areas:

• Bugs Related with Specific Apps – The Mail, Messages, Safari and, to some extent, Phone

categories are related with specific iOS native apps. When explored thoroughly, more spe-

cific app related bugs can be found on this bug tracking list, such as bugs related to the

Music, Weather or Calendar apps, amongst others;

• Global Operating System Bugs – Including the Braille, Low Vision, BlueTooth and Voiceover

specific bug categories, which can be felt throughout the whole iOS experience.

These bugs affect vision impaired users in different ways. While bugs related to the whole

operating system are felt globally when using the device, regardless of the app, bugs specific to

certain apps and contexts concern a single app. The former can only be solved by fixing the

operating system, but the latter only affects the user interface elements of a certain app. Thus,

by concerning an isolated app, the bugs present in the iOS Bug Tracker offer valuable insights to

interpret the bugs reported in the iOS App Directory, as a directory that deals with apps developed

by independent developers that use specific iOS APIs and are not able to change the operating

system.

Considering their major and important dissimilarity, an App Related attribute was constructed.

It consists in a boolean value classifying a bug as related to a specific app (True) or to the iOS

usability as a whole, therefore felt in all the system’s apps (False).

A System Function attribute was also created, in order to group bugs by the app or context in

which they are encountered, such as the aforementioned Mail, Messages and Safari categories, but

also by other apps, (e.g. Music or Weather), and by system functionalities, such as notifications,

Home screen, Lock screen, Siri, amongst others. This attribute has been crucial to group the bugs

by app and clearly understand the problems within their context.

Another singularly informative attribute was extracted from the data available in the iOS Bug

Tracker. For bugs already fixed, with the Fixed In attribute present, we were able to calculate how

many iOS versions were needed in order to fix the bug. This attribute is called Gap to Fix and it

expresses how many major and minor iOS versions were needed to fix a bug. We considered that

the unit would represent major versions whilst the decimal would reflect minor ones. For instance,

a bug first encountered in iOS 9.0 and fixed in iOS 9.3 represents a gap to fix value of 0.3, whereas

4.2 Bug Tracker Extension 33

a bug first encountered on iOS 12.0 and fixed in iOS 13.4 has a gap to fix of 1.4. Thus, on the latter

example, one major version and 4 minor ones were needed to fix the bug. This value correlates

positively with the time a bug took to be fixed.

To simplify the data analysis process, a boolean Is Active column was also generated, classi-

fying the active bugs as True and the fixed ones as False. The closed textual attributes Severity and

How Often were also converted to numeric scales, in which an increase represents a less accessible

situation (e.g.: Severity - 1: Minor, 2: Moderate and 3: Serious; and How often - 1: Infrequently,

2: Sometimes and 3: Always).

After creating the App Related and System Function attributes (Appendix B), all bug reports

were analyzed and classified according to the their accessibility problem. Identifying the acces-

sibility problems described in the bug reports was accomplished by reading the bug’s title, de-

scription and steps to reproduce, actively searching for common aspects or patterns that somehow

associated some of them.

Re-categorizing such problems was an iterative process. A first iteration was accomplished

ordering the bugs by category. Another iteration grouped them by System Function and then,

three more iterations were performed, ordering the list by the problems previously identified.

Once the list comprised more than 200 elements (249 in the last iteration, since new iOS versions

were released during the corse of this investigation and new bugs were added), each iteration was

performed in no more than three days and with a five day break between iterations, to allow a more

distanced approach in each.

The final list of problems comprised the following 16 elements 1:

I Announcements – When VoiceOver either talks but is not supposed to, does not talk but is

supposed to or provides incorrect information;

II Audio – Bugs related to incorrect sound output;

III Bluetooth – Bugs related to output to BlueTooth devices;

IV Braille – Problems related to navigation or reading using Braille displays;

V Braille Typing – Problems related to typing Braille, with external Braille displays or the

Braille Screen Input functionality;

VI Color Accommodations – Bugs related to the OS color accessibility features (Invert Colors

and Dark Mode);

VII Customizing – Bugs referring to the iOS Home screen customization and widgets;

VIII Keyboard Navigation – Bugs related to navigation with an external keyboard;

IX Labeling – Bugs related to unlabeled or incorrectly labeled elements;

1As presented in Appendix B

34 Proposed Classification

X Low Vision – Bugs related to low vision functionalities that affect the expected size of the

content;

XI Low Vision/Responsiveness – Bugs related to low vision functionalities that make the sys-

tem unresponsive;

XII Navigation – Bugs that affect the structured navigation through the interface or make actions

inexecutable;

XIII Responsiveness – Bugs that make the system lag or crash;

XIV Typing – Bugs related to entering text in the system;

XV VoiceOver Sounds – When specific sounds (that represent common actions) are not out-

putted or are wrongly outputted by VoiceOver;

XVI Voices – Bugs specifically related to VoiceOver voices configuration, performance and pro-

nunciation.

Finally, these identified problems were mapped with the guidelines present in the standards

previously exposed, namely with the principles from the WCAG mobile guidelines [41] and the

high-level topics from the BBC Mobile Accessibility Guidelines [16]. For the purpose of this

investigation, instead of only focusing on one of them, both sets of guidelines were included, due

to WCAG’s completeness and BBC’s intuitiveness.

The process to accomplish this mapping involved analyzing each of the aforementioned prob-

lems and verifying if there were any WCAG principle and BBC high-level topic that mentioned

them. The WCAG principle and BBC high-level topic in which the match could be found were

registered. Then, every bug description the problem encompassed and respective steps to repro-

duce were dissected to test if they matched any of the the recommendations that principle and

topic comprehend. If they did, the mapping was confirmed and we proceeded to the next problem.

Otherwise, we searched for other principle or topic that covered that bug’s information.

The mapping (Appendix B) was also an iterative process. The first iteration was accomplished

ordering the bugs by problem and the second one ordering the list by such mapping. Each iteration

was performed in no more than three days and with a five day break between iterations. After the

process, some bugs initially classified with the same problem turned out to map to guidelines from

different WCAG principles or BBC topics. This was particularly noticeable on bugs pertaining to

the Navigation problem, once it incorporated a broad range of issues, but also on Typing, Respon-

siveness and Labeling. Nonetheless, most of the problems were narrower and mapped entirely to

the same guideline group.

Hence, a new attribute was created and named Type. The naming of this new feature’s values

was mostly based on the guidelines - despite having also been influenced twice by Bug Tracker

categories and once by an identified problem.

4.3 Classification 35

4.3 Classification

After the mapping with the guidelines, the following bug types were established:

I Alternative Interaction – Bugs related to accessible alternative interaction modes, such as

alternatives to complex gestures, keyboard navigation and Braille display navigation, output

and input. Mapped from WCAG’s principle Operable and partially from BBC’s Design;

II Contextual Notifications – Bugs related to voice, audio effects or vibration feedback that

Voiceover provides to replace visual cues. Mapped from WCAG’s Robust and from BBC’s

Notifications and Audio and Video;

III Focus and Structure – Bugs related to VoiceOver focus’ behavior and the user interface’s

natural interaction flow. Mapped from WCAG’s principle Understandable and BBC’s Focus,

Links, Scripts and Dynamic Content, and Structure;

IV Low Vision – Bugs related to visual aspects of the interface that affect low vision users.

Mapped from WCAG’s Perceivable and BBC’s Design;

V Responsiveness – Bugs that lead VoiceOver or the system to become unresponsive or crash.

There was no guideline covering this type of bugs;

VI Speech Output – Specific bugs related to the available VoiceOver text to speech (voice)

engines, such as pronunciation, misread words or delays. There was no guideline covering

this type of bugs;

VII Text Equivalents – Bugs related to providing alternative textual description of non-textual

elements, such as buttons, images, graphics or inaccessible text. Mapped from WCAG’s

principle Perceivable and BBC’s Editorial, Images, and Text Equivalents;

VIII User Input – Bugs related to the user input of text or other information. Mapped from

WCAG’s Robust and BBC’s Forms.

The bug types covered all the WCAG principles and BBC topics. Despite not being extensive

on a guideline to guideline basis, the mapping to all the high-level elements provides confidence

about the coverage of our classification.

The Responsiveness type could not be mapped. Within the scope of this investigation, we were

led to assume that the bugs this type encompass, theoretically, would not happen if the guidelines

had been met. The Speech output was not mapped once it is a specific problem of the screen reader

operation, and the guidelines are oriented to developing accessible software and its interaction with

assistive technology, not to the operation of such assistive technology.

After a more thorough inspection of the bugs grouped by type and the guideline mapping

process in its origin, as well as considering the previously obtained problems, this classification

was further scrutinized into a more granular level of detail.

36 Proposed Classification

Thus, a new attribute, called Subtype, emerged. It identifies specificities in each bug type

that sustain a clearer classification of accessibility errors. The names of the subtypes were based

on WCAG and BBC guidelines, bug report categories, frequently reported issues and even on an

accessibility property in SwiftUI’s API [13]. However, some subtypes were conceived based on

directly sub-grouping reported causes (e.g. Braille Typing, Wrong Label), exhaustively analyz-

ing the problem and its context (e.g. Unreachable Elements, subtypes from Responsiveness) or

even understanding the intent of the VoiceOver functionality affected by the bug (e.g. Automated

Functionality, Fast Navigation), as detailed in Appendix B.

The subtypes, grouped by type and followed by a brief explanation and some bug exemples,

are presented below:

I Alternative Interaction

• Automated Functionality – Operations that VoiceOver automates

Examples:

Audio destination incorrectly appears in the Rotor with Apple AirPods;

The performance of VoiceOver’s Recognition features is inconsistent and unreliable.

• Braille – Reading and navigating using a braille display

Examples:

The Detected Text feature that is part of the VoiceOver Recognition features does not

work with Braille displays;

Extraneous feedback given to Braille users when navigating the Mail app;

Problems pairing and re-pairing the Freedom Scientific Focus line of Braille displays.

• Braille Typing – Inputing text using a Braille display or the Braille Screen Input

Examples:

Braille Screen Input cannot be used to type text on webpages;

Text input with a Braille display is unreliable when typing quickly;

While typing using a braille display, if a notification or other flash message comes in,

the cursor will jump to another random point in the text field.

• Fast Navigation – VoiceOver Rotor options to jump between dynamic interface ele-

ments

Examples:

You cannot use the VoiceOver Rotor to navigate by line when composing an email in

the Mail app;

The Misspelled Words tool is available from the VoiceOver Rotor in Safari text fields,

but does not work.

• Gesture Alternatives – VoiceOver Rotor actions that replace complex gestures

Examples:

4.3 Classification 37

When re-ordering widgets on the Today View, occasionally, selecting the Drop Before

option in the VoiceOver Rotor will create a widget stack instead;

When listening to an audio file in the Files app, flicking up or down on the playback

scrubber control does not rewind or fast forward playback;

The VoiceOver Rotor no longer consistently switches to the Actions Rotor item when

VoiceOver focus lands on an element which has actions available;

The Mark Read/Unread Flags do not stick in the Mail app if set with Rotor actions;

The Scrub gesture does not work in Settings > iCloud > Storage > Buy More Storage.

• Keyboard Navigation – Navigation using an external keyboard

Examples:

On occasion, pressing VO+Space on an external keyboard will trigger the Context

Menu rather than activate the item VoiceOver focus is on;

Unable to access the Status Bar with the VoiceOver keyboard shortcut.

II Contextual Notifications

• Announcements – Reporting an action that is performed or related to notifications

Examples:

VoiceOver fails to indicate Touch ID unavailability upon first restart of a device;

VoiceOver may not always automatically announce the time when you press the Power

button to wake your device;

During a Say All, VoiceOver does not ignore incoming text messages.

• Sound Hints – Sounds that replace visual indicators

Examples:

The audible tone used by Safari to indicate that a webpage is loading may continue to

play after the page has completed loading;

Misleading sound and haptic feedback when deleting characters in some text fields;

Missing audible tone after your device has been successfully unlocked with Face ID.

III Focus and Structure

• Extraneous Elements – When elements that are supposed to be hidden or covered

appear in the interface while using Voiceover

Examples:

VoiceOver finds and reads elements on the Mini Player of the Music app, which are

not visually present or actionable;

Duplicated Heading at the top of the For You tab of the native News app.

• Focus – When the VoiceOver focus moves to an interface element without the user’s

intent

38 Proposed Classification

Examples:

VoiceOver focus will occasionally jump to the Status Bar when swiping the screen;

VoiceOver focus may move to the first UI element on the screen after you have inter-

acted with another element on the screen;

Banner notifications may, on occasion, stay on screen even though banner style is set

to temporary.

• Item Activation – When an item is not activated after the user performs the activation

gesture

Examples:

On occasion, it is not possible to expand grouped notifications in Notification Center

when VoiceOver is enabled;

When editing a video in the Photos app, the Done button becomes unavailable after

editing the start or end point of the video using the adjustable action in the VoiceOver

Rotor.

• Navigation – When the page navigation controls do not work as expected

Examples:

In the native Music app, navigating by Heading is unreliable for VoiceOver users;

Ability to scroll the screen up and down is missing on some occasions on the Today

screen.

• Unreachable Elements – When Voiceover can not detect an element of the user inter-

face

Examples:

Title button for group message conversations not detected by VoiceOver;

On some devices VoiceOver users are not able to locate by touch the Status Bar after

one app has opened a second app; Problems locating attached files when composing a

new email in the Mail app.

IV Low Vision

• Color Accomodations – When the Invert Colors option does not work as expected

Example:

Smart Invert and Classic Invert may not behave reliably or consistently.

• Low Vision – Misrepresentation of visual elements

Example:

The VoiceOver cursor will occasionally disappear or become very large.

• Responsiveness – When the Low Vision commands do not perform the desired actions

Examples:

4.3 Classification 39

Multitouch gestures are inconsistent and unreliable when both VoiceOver and Zoom

are enabled;

You cannot enter Edit mode on the Home screen when both VoiceOver and Zoom are

enabled.

V Responsiveness

• Audio – When audio output fails or is unresponsive

Examples:

Audio may, on occasion, breakup and crackle;

Audio does not always return to correct level after being interrupted by VoiceOver

when audio ducking is enabled.

• Context Crash – When an app or VoiceOver crash but the device operation continues

Examples:

The Settings app crashes when trying to add or edit email signatures;

A two finger swipe down,"read all from current position", in the News app may cause

VoiceOver to crash;

Utilizing the Back button in Safari causes VoiceOver to become unusable.

• Context Inoperability – When an action is not performed after the user performs the

needed steps

Examples:

Screen auto-locks while VoiceOver is reading text;

Siri may not respond if you invoke it whilst VoiceOver focus is in a text field and

Direct Touch Typing is selected;

Issues using two finger double tap gesture to answer or end a phone call.

• Global Crash – When the whole system crashes and the device needs to be restarted

Examples:

Device may crash and respring when using the VoiceOver actions menu to close the

last used app via the app switcher;

VoiceOver may become unresponsive after ending a call in the Phone or FaceTime

apps.

• Temporary Inoperability – When VoiceOver has a temporary delay and recovers after

a short period of time

Examples:

Device freezes for a short period after exiting an app;

VoiceOver may on occasions become unresponsive and need to be restarted.

VI Speech Output

40 Proposed Classification

• Voices – When the VoiceOver voices do not read as expected

Examples:

Prices preceded by the British pound symbol are not spoken correctly by VoiceOver;

There are several pronunciation and inflection issues with the new Irish Siri Female

voice when it is used with VoiceOver;

Enhanced quality voices will occasionally revert to the default variant and require a

re-download.

VII Text Equivalents

• Incomplete Information – When Voiceover reads some but not all the visually available

information

Examples:

VoiceOver may not announce new item badges on Home screen icons;

VoiceOver does not speak all of the information from the Playback Destination button

when audio is routed to an external device;

When viewing a list of articles in the native News app, VoiceOver does not always

correctly indicate those which have been read.

• Label with Extraneous Text – When the element is correctly labeled but some unde-

sired extra text is part of the label

Examples:

Various UI elements in Today View widgets have their VoiceOver label prepended

with the extraneous text "today";

Voiceover announces "new line" when announcing a language with multiple variants

in the Translate application;

On the native Weather widget, VoiceOver speaks the word "degrees" twice.

• Unclear Label – When the label is not clear about which action it triggers

Examples:

The button when adding a new event to the Calendar app needs a more concise label;

The selection status of the Dark/Light Mode toggle in the Control Centre needs to be

more accurately stated to VoiceOver users.

• Unlabeled Element – When an element is not labeled and Voiceover users can not

know its intent

Examples:

Voiceover encounters an unlabelled element when navigating in the Listen screen of

the Translate application;

VoiceOver does not read all of the Screen Time data presented as charts in the Settings

app;

4.4 Data Analysis 41

The buttons for the two personalised music playlists new to Apple Music in iOS 10

are unlabelled;

When using the Measure app on an iPhone 12 Pro or 12 Pro Max to automatically

measure a person’s height, the result is not recognized or spoken by VoiceOver;

Contact labels not spoken in app switcher.

• Unspoken Selection – When Voiceover reports the element but not its selection status

Examples:

No feedback on current selection status when editing the list of mailboxes/folders to

be displayed in the native Mail app;

VoiceOver does not announce the current selection status of the Love and Dislike

buttons in the Music app.

• Wrong Label – When the available label does not represent truthfully the type, status

or action of the item

Examples:

VoiceOver wrongly announcing the contents of the App Store search field after it has

been cleared;

Incorrect labels for "Clear Section" buttons in Notification Center;

VoiceOver will on occasions wrongly indicate that some blocks of text are editable

text fields.

VIII User Input

• Typing – Problems related to the input of text or other information

Examples:

On occasions, you may not be able to locate by touch the Space key on the on screen

keyboard;

Can not edit the name of lists in the Reminders app;

VoiceOver not recognizing the input of text in some text fields on web pages.

By grouping the existent bug information to these types and subtypes, each bug type and

subtype’s frequency, severity and gap to fix can also be inferred.

4.4 Data Analysis

After the performed extension of the iOS Bug Tracker, we proceeded to the analysis of the most

common and impactful bugs visually impaired iOS users face.

According to the App Related attribute, among the 249 bugs considered, 141 (57%) occurred

globally throughout the operating system, whereas 108 (43%) arose solely in the context of an

app.

42 Proposed Classification

Table 4.1 presents the distinct system functions 2 classified in the Bug Tracker extension, their

occurrences and the extent of their impact.

The most frequent operating system functionality affected by vision accessibility bugs has

been the Home screen, comprising 29 bugs, followed by VoiceOver commands (20), problems

with Text fields (18) and with the Lock screen (12).

Regarding native iOS apps, the Mail app (20), Settings (13) and Music app (13), as well as

Messages app (10) are the most affected by accessibility problems. Although most of its bugs

occur locally, Settings bugs also impact the overall usage of the operating system, besides the

highlighted bug related to VoiceOver voices.

Considering the two subsets of local app and global operating system bugs, we conclude that

almost every system function is exclusively related to one of them. This clearly defined boundary

is only trespassed by 3 of the identified system functions, specifically the aforementioned Settings

but also Lock screen, containing one bug related to interacting with notifications from Messages,

and Phone Calls, with two bugs that relate to the Phone app itself.

Table 4.2 shows, for each iOS version, how many bugs have been disclosed, how many were

fixed and their severity, frequency and longevity (Gap to Fix).

iOS 13 is the version with more vision accessibility bugs reported, either on the operating

system or native apps, comprehending 58 new bugs. Following it, iOS 8, 14 and 11 were the

versions with more new bugs. Elseways, iOS 12 and 14 only introduced 14 and 23 new ones,

respectively.

Regarding the severity of those bugs, a slight decrease can be discerned in iOS since iOS 12,

with the bugs being classified between Minor and Moderate.

The frequency of the bugs has no recognizable pattern in their evolution, with the bugs being,

on average, registered as Always regarding how often they occur.

The bugs’ longevity, measured by the Gap to Fix attribute, has been slowly decreasing since

iOS 8 - although iOS 12 presents itself as an outlier, with the bugs encountered in this version

taking more iOS updates to be fixed. Nonetheless, from iOS 11 to iOS 13, the mean gap to fix

has decreased almost 2 iOS minor versions. As the latest and currently available, iOS 14 is the

version with less fixed bugs - the only ones considered to compute the Gap to Fix attribute. Thus,

we opted to exclude it from this specific analysis.

In what concerns iOS bugs fixed in each version, besides iOS 8, each iOS version fixes roughly

the same bugs as it introduces. Regarding the bugs’ severity and frequency, no recognizable pat-

terns of evolution were found. On average, bugs were classified between Minor and Moderate in

their severity and as Always regarding how often they occur.

iOS 12 stands out as the version that solved the more severe, frequent and long standing

problems. Moreover, being also the version with fewer bugs introduced, it may be regarded as the

best iOS version for visually impaired users thus far.

2Each of these system functions is more detailed in Appendix B

4.4 Data Analysis 43

Table 4.1: Bug Tracker Extension – System Functions and App Related

System Function Total App Related
App Store 4 Local
Audio 8 Global
Braille 4 Global
Calendar app 1 Local
Control Center 2 Global
Files app 2 Local
Find my app 2 Local
Global 11 Global
Home app 2 Local
Home screen 29 Global
Lock screen 12 Global (and 1 related to Messages app)
Mail app 20 Local
Mail/Notes apps 2 Local
Measure app 1 Local
Messages app 10 Local
Music app 13 Local
News app 8 Local
Notes app 2 Local
Notifications 8 Global
PDF 1 Global
Phone app 4 Local
Phone Calls 7 Global (and 2 related to Phone app)
Photos app 3 Local
Podcasts app 1 Local
Reading 8 Global
Real-Time Text 1 Global
Reminders app 2 Local
Safari browser 7 Local
Settings 13 Local (and 1 related to VoiceOver voices with global impact)
Shortcuts 1 Local
Siri 2 Global
Status bar 6 Global
TV app 1 Local
Text fields 18 Global
Translate app 3 Local
VoiceOver commands 20 Global
Watch app 1 Local
Weather app 3 Local
Web content 5 Global
iPad specific 1 Global

44 Proposed Classification

Table 4.2: Encountered and Fixed Bugs per iOS Version

iOS 8 iOS 9 iOS 10 iOS 11 iOS 12 iOS 13 iOS 14
Encountered Bugs 44 26 33 36 14 58 38
Severity 1.66 1.65 1.61 1.69 1.57 1.50 1.47
Frequency 2.64 2.46 2.42 2.58 2.71 2.48 2.61
Gap to Fix 0.60 0.55 0.54 0.53 0.64 0.34 0.18
Fixed Bugs 28 32 29 37 13 51 35
Severity 1.68 1.59 1.72 1.59 1.85 1.57 1.40
Frequency 2.75 2.41 2.59 2.38 2.85 2.57 2.51
Gap to Fix 0.30 0.54 0.51 0.44 0.73 0.50 0.43

*Severity and Frequency range between 1 and 3.

Furthermore, given the longevity of the fixed bugs per version, one can extrapolate that near

half the bugs are only fixed in the following major iOS version. In fact, every version fixes as

many bugs as it introduces (except iOS 8) and there are still active bugs.

Table 4.3 scrutinizes the overall distribution of the problems identified, as well as their occur-

rence at a global operating system level or in isolated apps.

The Navigation problem was the most frequently found in this repository of iOS bugs, catego-

rizing one third of the total bugs, with 84 occurrences. The Labeling problem represents 18% of

the bugs, with 46 occurrences, while Responsiveness bugs (21) are the third most representative

problem (8%). The following 3 problems, Braille Typing (16), Braille (14) and Typing (14) can

be grouped in two different ways. If considered as a whole, all Braille problems represent 12%

of the bugs, whereas all Typing problems represent 11% of all the bugs. Regardless, any of those

groupings would be the third most prevalent problem.

Concerning only the problems verified at the operating system level (Global), Navigation is

also the most represented, registering 37 bugs (26%). It is followed by 15 Responsiveness bugs

(10%) and 13 Labelling and Braille bugs (9% each). As aforementioned, grouping all Braille

bugs would represent 17% of the operating system bugs - which would turn them into the second

problem users face the most across iOS.

Scrutinizing native apps only, the problem Navigation accounts for almost half the bugs re-

ported (43%), registering 47 bugs. Labeling bugs represent almost a third of the total (30%), with

33 instances. The third most prevalent problem at the app level, considerably less incident than

the previous, is Typing, with 8 instances (7%). Discernibly, regarding the native iOS apps, the

bugs are concentrated on Labeling and Navigation, jointly responsible for slightly less than three

quarters (73%) of all bugs registered locally on the system apps.

As stated in Section 4.2, these two problems are very broad and encompass a variety of bugs.

Nevertheless, with the creation of the Type and Subtype features, they became increasingly more

detailed and dissectible. A complete analysis of the aggregated longevity, severity and frequency

is only applicable after the segregation of these problems.

4.4 Data Analysis 45

Table 4.3: Identified Problems

Problem Total % Global % Local %
Announcements 12 5.06% 9 6.82% 3 2.86%
Audio 3 1.27% 3 2.27% 0 0.00%
Bluetooth 1 0.42% 1 0.76% 0 0.00%
Braille 14 5.91% 13 9.85% 1 0.95%
Braille Typing 16 6.75% 11 8.33% 5 4.76%
Color Accommodations 2 0.84% 2 1.52% 0 0.00%
Customizing 8 3.38% 7 5.30% 1 0.95%
Keyboard Navigation 5 2.11% 4 3.03% 1 0.95%
Labeling 46 19.41% 13 9.85% 33 31.43%
Low Vision 1 0.42% 1 0.76% 0 0.00%
Low Vision/Responsiveness 2 0.84% 2 1.52% 0 0.00%
Navigation 84 35.44% 37 28.03% 47 44.76%
Responsiveness 21 8.86% 15 11.36% 6 5.71%
Typing 14 5.91% 6 4.55% 8 7.62%
VoiceOver Sounds 8 3.38% 5 3.79% 3 2.86%
Voices 12 5.06% 12 9.09% 0 0.00%

Table 4.4 displays the bugs’ distribution by Type, those types’ distribution by the global or

local contexts as well as their severity, longevity and frequency.

Alternative Interaction is the most common bug type (31%), followed by Focus and Structure

(20%) and Text Equivalents (18%). The bugs of these types differ in how they are distributed.

While Alternative Interaction bugs are predominantly felt through the operating system, Text

Equivalents bugs are mostly present in the iOS native apps. Only the Focus and Structure and

the User Input types register the same trend as the latter, whereas the other types are more repre-

sented in the operating system. Particularly, Speech Output and Low Vision types register bugs

only at the operating system level.

With the highest severity level, Low Vision bugs are the ones with more impact on users,

followed by User Input and Responsiveness. Text Equivalents are, in turn, the least severe bug

type.

Table 4.4: Classification – Bug Types

Type Total % Global % Local % Severity Gap to Fix Frequency
Alternative Interaction 78 45.61% 53 60.23% 25 30.12% 1.74 0.55 2.65
Contextual Notifications 20 11.70% 14 15.91% 6 7.23% 1.40 0.56 2.30
Focus and Structure 52 30.41% 21 23.86% 31 37.35% 1.50 0.46 2.62
Low Vision 6 3.51% 6 6.82% 0 0.00% 2.17 0.66 2.00
Responsiveness 26 15.20% 19 21.59% 7 8.43% 1.92 0.57 2.04
Speech Output 12 7.02% 12 13.64% 0 0.00% 1.33 0.42 2.33
Text Equivalents 45 26.32% 12 13.64% 33 39.76% 1.20 0.27 2.82
User Input 10 5.85% 4 4.55% 6 7.23% 2.00 0.41 2.50

*Severity and Frequency range between 1 and 3.

46 Proposed Classification

Table 4.5: Classification – Subtypes

Code Type Subtype Total % Global % Local % Severity Gap to Fix Frequency
1.1 Alternative Interaction Automated Functionality 3 1.22% 3 2.17% 0 0.00% 1.33 1.10 2.67
1.2 Alternative Interaction Braille 13 5.28% 12 8.70% 1 0.93% 2.08 0.45 3.00
1.3 Alternative Interaction Braille Typing 17 6.91% 12 8.70% 5 4.63% 2.18 0.79 2.65
1.4 Alternative Interaction Fast Navigation 7 2.85% 1 0.72% 6 5.56% 1.43 0.52 2.86
1.5 Alternative Interaction Gesture Alternatives 33 13.41% 21 15.22% 12 11.11% 1.45 0.44 2.58
1.6 Alternative Interaction Keyboard Navigation 5 2.03% 4 2.90% 1 0.93% 2.00 0.70 2.00
2.1 Contextual Notifications Announcements 12 4.88% 9 6.52% 3 2.78% 1.42 0.55 2.25
2.2 Contextual Notifications Sound Hints 8 3.25% 5 3.62% 3 2.78% 1.38 0.57 2.38
3.1 Focus and Structure Extraneous Elements 6 2.44% 3 2.17% 3 2.78% 1.00 0.60 2.67
3.2 Focus and Structure Focus 24 9.76% 9 6.52% 15 13.89% 1.54 0.54 2.46
3.3 Focus and Structure Item Activation 4 1.63% 2 1.45% 2 1.85% 2.00 0.35 2.50
3.4 Focus and Structure Navigation 9 3.66% 5 3.62% 4 3.70% 1.56 0.34 2.78
3.5 Focus and Structure Unreachable Elements 9 3.66% 2 1.45% 7 6.48% 1.44 0.30 2.89
4.1 Low Vision Color Accommodations 2 0.81% 2 1.45% 0 0.00% 2.50 1.00 2.00
4.2 Low Vision Low Vision 1 0.41% 1 0.72% 0 0.00% 1.00 1.00 1.00
4.3 Low Vision Responsiveness 3 1.22% 3 2.17% 0 0.00% 2.33 0.43 2.33
5.1 Responsiveness Audio 5 2.03% 5 3.62% 0 0.00% 1.60 0.76 2.20
5.2 Responsiveness Context Crash 7 2.85% 2 1.45% 5 4.63% 2.14 0.34 2.29
5.3 Responsiveness Context Inoperability 5 2.03% 4 2.90% 1 0.93% 1.80 0.70 2.00
5.4 Responsiveness Global Crash 3 1.22% 3 2.17% 0 0.00% 2.67 0.10 1.67
5.5 Responsiveness Temporary Inoperability 6 2.44% 5 3.62% 1 0.93% 1.67 0.78 1.83
6.1 Speech Output Voices 12 4.88% 12 8.70% 0 0.00% 1.33 0.42 2.33
7.1 Text Equivalents Incomplete Information 9 3.66% 1 0.72% 8 7.41% 1.22 0.30 2.67
7.2 Text Equivalents Label with Extraneous Text 6 2.44% 1 0.72% 5 4.63% 1.00 0.30 2.67
7.3 Text Equivalents Unclear Label 3 1.22% 1 0.72% 2 1.85% 1.00 0.23 3.00
7.4 Text Equivalents Unlabeled Element 18 7.32% 6 4.35% 12 11.11% 1.17 0.27 2.89
7.5 Text Equivalents Unspoken Selection 3 1.22% 0 0.00% 3 2.78% 1.67 0.27 3.00
7.6 Text Equivalents Wrong Label 6 2.44% 3 2.17% 3 2.78% 1.33 0.24 2.83
8.1 User Input Typing 10 4.07% 4 2.90% 6 5.56% 2.00 0.41 2.50

*Severity and Frequency range between 1 and 3.

In what concerns longevity, Low Vision bugs are also the ones which fixing takes more iOS

versions to be implemented, followed by Responsiveness, Contextual Notifications and Alternative

Interaction. Logically, Text Equivalents is the type that takes less versions to be fixed, since these

bugs are solvable by merely changing the elements’ label.

As predictable, since the behavior of labels is usually immutable, Text Equivalents is also the

bug type with highest frequency. Alternative Interaction and Focus and Structure also registered

relatively high frequencies. Nonetheless, all bug types, on average, register a frequency equal or

above Sometimes. The bugs that affect users least frequently belong to the Responsiveness and

Low Vision types.

The analysis of the mean severity, longevity and frequency tends to even out the values in the

types with more bug instances. The scrutiny of those values becomes clearer and more useful

considering the bug subtypes.

Therefore, Table 4.5 presents the subtypes proposed within the scope of this investigation

grouped by their respective types (as exhibited in Table 4.4), as well as the severity, longevity and

frequency of each3.

Gesture Alternatives is the subtype with more bug instances in the Bug Tracker, representing

13% of the registered bugs. Focus (9%) is the second most commonly found bug, whereas Braille

typing (6%) and Braille (5%) are also abundant subtypes.

3The Code attribute comprises the arabic number that uniquely represents the type, corresponding to the roman
number presented in Section 4.3, followed by a "." and the arabic number representing the alphabetic order of each
subtype within its type.

4.4 Data Analysis 47

Considering the subtypes experienced at the operating system level, Gesture Alternatives is

the most common (15%), followed by Braille, Braille Typing and Voices (8.5% each).

As previously stated, this confirms the plentifulness of Alternative Interaction bugs on both

the overall and operating system levels, as three of the four most common subtypes belong to this

bug type. At the native app level, Focus bugs are the most common (14%), followed by Unlabeled

Elements and Gesture Alternatives (both with 11%).

Not surprisingly, Global Crash bugs represent the most severe subtype, as they force the user

to restart the device. Perhaps as a consequence of this severity, Global Crash bugs register the

lowest longevity - being fixed approximately one minor iOS version after being encountered. Un-

expectedly, according to the implied by Table 4.4, the Context Crash subtype is the only other

subtype in the Responsiveness type that registers a severity near Serious, whereas the remaining

Responsiveness subtypes’ severities are below Moderate.

The subtypes from the Low Vision bug type are in opposite sides of the severity spectrum, as

Color Accommodations and Responsiveness are, respectively, the second and third more severe

bug subtypes, while the only Low Vision bug (code 4.2) is among the least severe. Although

not so discrepantly, the subtypes from the Focus and Structure and Text Equivalent types also

register dissimilar severities. In the former, Item Activation bugs exhibit a Moderate severity,

Navigation, Focus and Unreachable Elements range from Moderate to Minor while Extraneous

Elements register a Minor severity. Among Text Equivalents subtypes, Label with Extraneous Text

and Unclear Label exhibit a Minor severity, while Incomplete Information, Unlabeled Element and

Wrong Label register a slightly higher severity and Unspoken Selection shows a severity closer to

Moderate.

The Alternative Interaction subtypes’ severities are evenly distributed, near Moderate, while

the Contextual Notifications subtypes are closer to the lowest value of the interval.

Besides the aforementioned Global Crash, the following bug subtypes that took less time to

fix were all those belonging to the Text Equivalents type. The Context Crash subtype took 3 minor

iOS versions to be fixed. Nonetheless, the remaining Responsiveness subtypes took longer to be

solved, with at least 7 minor versions needed to these bugs’ resolution.

Within the Focus and Structure type, the Unreachable Elements, Navigation and Item Activa-

tion subtypes registered 3 minor iOS versions of longevity, while Focus and Extraneous Elements

bugs took longer (6 minor versions) to be fixed. This dissimilarity within a same type was also

noticeable in the Low Vision and, specially, the Alternative Interaction types. Both types comprise

subtypes that took near 1 major version to be fixed, while the other subtypes took almost 5 minor

versions.

Regarding the frequency of the bugs, only Low Vision, Global Crash and Temporary Inoper-

ability occur less than Sometimes. Indeed, all other bug subtypes were encountered more often by

visually impaired users. Such fact supports the trend made evident when the classification’s types

were explored.

48 Proposed Classification

4.5 Discussion

By following the process described throughout this chapter, a classification of iOS vision acces-

sibility bugs was developed. The process started with the data available at the AppleVis iOS

Bug Tracker, that comprised bugs described by the AppleVis editorial team and shared with the

community of visually impaired iOS users on the website [14].

From these data, the system functions in which the bugs were felt and the distinction between

bugs felt in the operating system or only in the context of an app were extracted. The identification

of common aspects between bugs led to the extrapolation of the problems experienced by users.

By mapping these problems with the accessibility guidelines from WCAG [41] and BBC [16],

the Type attribute was created. Then, from the patterns discerned in the mapping process, the prob-

lems previously identified and common specificities common to some bugs, the Subtype feature

was developed.

All these new attributes provided insights about the distribution, severity, longevity and fre-

quency of iOS bugs, contributing to a deeper understanding of the state of vision accessibility on

the platform.

Since the classification was created and named based on the user-centered information present

in the AppleVis iOS Bug Tracker and classifies all bugs described, we can surmise that it typifies

iOS accessibility bugs reported by visually impaired users.

Furthermore, as the WCAG [41] and BBC [16] guidelines were used to group the bugs into

Types, we can also conclude that the proposed classification conforms to the available accessibility

guidelines.

This proximity to the terminology employed by users to describe vision accessibility bugs and

adherence to the guidelines can improve developers’ understanding of bugs reported by users but

also facilitate relating bugs with the existing guidelines.

The following section proceeds to the validation of this classification.

Chapter 5

Validation

To assess the classification’s completeness and comprehensibility, the data available in AppleVis’

iOS App Directory were employed. More specifically, an experimental process and a survey were

applied aiming to answer the following research questions:

RQ1: Can the proposed classification effectively cover vision accessibility errors reported by

users in iOS apps?

RQ2: Is the proposed classification perceived similarly by several visually impaired users?

5.1 Subject - iOS App Directory

The iOS App Directory presents a list of app reviews focused on their accessibility and usability,

from a vision disabled users’ perspective [12]. Any AppleVis user can submit this information,

at any time, and regarding any app available on the iOS App Store. Thus, these reviews usually

comprise an overall description of the app, all the accessibility problems faced by the reviewer as

well as personal remarks relating to the experience with the app, the experience reporting eventual

bugs to the app’s developers, or both.

On January 8, 2021, the iOS App Directory comprised 2229 user submitted app reviews. Since

then, AppleVis’ editorial team has deleted some older or outdated reviews, reducing the number

of available reviews. In order to include a broader data set, this investigation made use of the

information downloaded on that date.

The iOS App Directory comprises the following information:

• Title – The name of the reviewed app;

• Last Modified – When the review was lastly modified;

• Category – The category of the app (e.g. Books, News, Weather);

49

50 Validation

• Version – The version of the app;

• Free or Paid – If the app is free, paid or free with in-app purchases;

• Device Tested On – The device in which the user tested the app;

• iOS Version – The iOS version in which the app was tested;

• Accessibility Comments – The user’s comments regarding the app’s accessibility;

• VoiceOver Performance – How VoiceOver performs in the app (values shown below);

• Button Labeling – How many buttons had clear labels (values listed below);

• Usability – The most relevant accessibility measure, describing how easy the app was to use

(values detailed below);

• Other Comments – Diverse user comments on the app. Mostly, regarding the app’s func-

tionality, but also relevant accessibility related information.

In the iOS App Directory, the VoiceOver Performance attribute can only assume the following

values:

– VoiceOver reads all page elements;

– VoiceOver reads most page elements;

– Not applicable for this app;

– VoiceOver reads a few page elements;

– VoiceOver reads no page elements.

Likewise, The Button Labeling attribute can solely assume the following values:

– All buttons are clearly labeled;

– Most buttons are clearly labeled;

– Not applicable for this app;

– Few buttons are clearly labeled;

– No buttons are clearly labeled.

In turn, the Usability attribute can exclusively assume the following values:

– The app is fully accessible without the use of VoiceOver;

– The app is fully accessible with VoiceOver and is easy to navigate and use;

– The app is fully accessible with VoiceOver, but the interface could be easier to navigate;

– There are some minor accessibility issues with this app, but they are easy to deal with;

– There are some accessibility issues with this app, but it can still be used if you are willing to

tolerate these issues and learn how to work around them;

– The app is fully accessible with VoiceOver, but the interface makes the app very difficult to

use;

5.2 Experimental Setup 51

– Some parts of the app are accessible with VoiceOver, but not enough to make it usable;

– The app is totally inaccessible.

5.2 Experimental Setup

To evaluate the classification’s completeness and answer RQ1, a subset of the AppleVis’ iOS App

Directory app reviews was classified. The procedure involved analyzing the information available

in the Accessibility Comments and Other Comments for each app review and finding the most

adequate subtype classification to the problems the the reviewer reported. In the presence of

reviews comprising more than one bug, multiple classifications were attributed to each review.

If a problem reported could not be mapped with any of the subtypes on the classification, A

new category, able to express it, was created. On the other hand, if the information available was

too short or vague to be mapped to any classification, or if an app had no accessibility problems

reported, those two scenarios representing absence of relevant bug information were registered

separately.

The iOS App Directory’s subset of reviews was selected based on two criteria: the least ac-

cessible apps and the iOS version being equal or posterior to iOS 8.0, as it was the earliest iOS

version in the bug reports from which the classification was attained.

The data preparation included the construction of numeric scales for the attributes with closed

values, namely VoiceOver Performance, Button Labeling and Usability. In this regard, the more

negative the values are, the less accessible the scenario is. Whereas zero represents the most

neutral scenario and positive values represent increasingly more accessible scenarios.

For VoiceOver Performance and Button Labeling the new scale was a mere transposition of the

aforementioned textual values to numeric values, ranging from -2 to 2, according to the levels of

accessibility they expressed. However, for the Usability attribute, that relied on an even number of

possible values (therefore, lacking a middlepoint) - contrarily to the advised for Likert scales [28]

- the codification was more intricate despite having followed the same standards as the previous

ones.

The final scales were as follows:

• VoiceOver Performance:

2 – VoiceOver reads all page elements;

1 – VoiceOver reads most page elements;

0 – Not applicable for this app;

-1 – VoiceOver reads a few page elements;

-2 – VoiceOver reads no page elements.

• Button Labelling:

52 Validation

2 – All buttons are clearly labeled;

1 – Most buttons are clearly labeled;

0 – Not applicable for this app;

-1 – Few buttons are clearly labeled;

-2 – No buttons are clearly labeled.

• Usability:

3 – The app is fully accessible without the use of VoiceOver;

2 – The app is fully accessible with VoiceOver and is easy to navigate and use;

1 – The app is fully accessible with VoiceOver, but the interface could be easier to navigate

and use;

0 – There are some minor accessibility issues with this app, but they are easy to deal with;

-1 – There are some accessibility issues with this app, but it can still be used if you are

willing to tolerate these issues and learn how to work around them;

-2 – The app is fully accessible with VoiceOver, but the interface makes the app very difficult

to use;

-3 – Some parts of the app are accessible with VoiceOver, but not enough to make it usable;

-4 – The app is totally inaccessible.

Besides the iOS version criteria, the apps were filtered by either having a non positive VoiceOver

Performance or Button Labeling or an Usability evaluation ranging from totally inaccessible (-4)

to recognizing that the interface could be improved (1).

The filtering criteria can be expressed as: iOS Version ≥ "iOS 8.0" and (VoiceOver Perfor-

mance ≤ 0 or Button Labeling ≤ 0 or Usability ≤ 1).

After the application of these criteria, the assessment was performed on a subset of the 640

least accessible apps since iOS 8.0, representing 28.7% of the initial universe of 2229 app reviews.

The analysis was manual, throughout 7 days in blocks of no more than 50 apps at a time.

The attribute Classification registered the ID of the type and subtype identified, as well as

lack of information or new problems. When various subtypes or problems were found, they were

registered separated by a "; ".

When the Classification contained several values, the analysis script created one instance of

that review for each subtype classified. The variable Is Original registers if the review was from

the initial classification (True) or if it has been processed by our script (False), for auditing reasons.

The Type and Subtype attributes were automatically generated based on the classification.

The classification of the subset of app reviews and the list of all identified bug subtypes can be

found in Appendix C.

5.3 Completeness Results 53

5.3 Completeness Results

After aggregating the generated information, the following findings are revealed:

As portrayed by Appendix C, from the 640 reviewed apps, 82 (12.8%) had no accessibility

problems reported, while 85 (13.28%) did not contain enough detail to extract any relevant infor-

mation pertaining our classification. We assume the absence of accessibility problems in the app

reviews may have been influenced by the criteria defined for this investigation. Notwithstanding,

in the latter case, such incidence relates to lack of information provided in the review itself, such

as "the interface is a little confusing", "the app used to work great but now it doesn’t" or "some

improvements are needed to make the app work better". In both cases, no information regarding

the problem could be inferred.

On the other hand, from the remaining 473 app reviews, 793 different bug classifications were

extracted. We found that 263 app reviews registered a single bug classification and the remaining

210 registered two or more classifications, yielding 530 bugs, approximately two thirds of the

totality of bugs identified.

From the bug types summarized in the previous chapter, only the Low Vision category had no

representation in the analyzed app reviews. Most of AppleVis’ users being fully blind, in accor-

dance with the priorly stated in Section 3.2), supports the conclusion that Low Vision problems

are the least commonly found in these app reviews.

From the previously classified subtypes, and besides those relative to Low Vision bugs, few

were not found in this analysis:

• Alternative Interaction: Braille – Braille is usually implemented on the screen reader level.

Thus, when used in apps, the screen reader translates the interface to Braille from the same

information it uses to output as speech. This substantiates that no specific problems related

to Braille were found at the app level, as in the Bug Tracker only 1 out of 13 Braille bugs

was registered in the scope of a native app;

• Responsiveness: Global Crash – No reviews have registered that the device crashed while

using an app with VoiceOver. This confirms the information from the Bug Tracker, that only

registered this subtype on a global operating system level.

Two new bug types were found during this process:

In 11 instances, users have reported problems with inaccessible maps. Classified as a subset

of the Focus and Structure type, these bugs’ behavior resembles Unreachable Elements’, howbeit

affecting the reading and interaction with maps. This was not part of the initial classification

because Apple’s native Maps app is accessible for VoiceOver users.

In 43 instances, the reviewers reported that an app was fully inaccessible with VoiceOver. This

problem could not be grouped in any of the previously presented types, as it represents the total

inaccessibility of an app to a VoiceOver user. Therefore, to insert this Completely Inaccessible

subtype on, another type, called "Unusable", was added. This was not part of the initial classifica-

tion because there was no instance of completely inaccessible apps on the iOS native apps.

54 Validation

Table 5.1: App Reviews by Type

Types Total % Local % App Reviews %
Alternative Interaction 78 31.33% 25 23.15% 38 4.79%
Contextual Notifications 20 8.03% 6 5.56% 15 1.89%
Focus and Structure 52 20.88% 31 28.70% 257 32.41%
Low Vision 6 2.41% 0 0.00% 0 0.00%
Responsiveness 26 10.44% 7 6.48% 32 4.04%
Speech Output 12 4.82% 0 0.00% 2 0.25%
Text Equivalents 45 18.07% 33 30.56% 385 48.55%
User Input 10 4.02% 6 5.56% 21 2.65%
Unusable 0 0.00% 0 0.00% 43 5.42%

5.4 Data Analysis

Table 5.1 presents a comparison of the types considering the total amount of bugs in the Bug

Tracker (Total), the bugs related with iOS native apps in the Bug Tracker (Local) and the findings

this investigation was able to obtain from the app reviews:

Almost half of the classified bugs from the app reviews were classified as Text Equivalents

(48.55%), followed by almost a third of apps with Focus and Structure bugs (32.41%).

Although the latter corresponds to roughly the same percentage as in the iOS native apps

(28.70%), the percentage of Text Equivalents bugs is considerably higher in developer apps than

in Apple’s own native apps (30.56%).

The third most common bug type was Unusable apps (5.42%), which attests that some devel-

opers still do not take accessibility into account.

The app reviews’ percentages of Responsiveness, User Input and Contextual Notifications

show a small decrease when comparing to their percentage in iOS native apps, and Low Vision

and Speech Output are practically inexistent in both app sets. Contrarily, Alternative Interaction

displays a drastic difference. Representing almost a quarter of the bugs in native apps (23.15%),

its weight diminishes to less than 5% in the app reviews. Since we analyzed the theoretically least

accessible apps, this may reflect a predominance of bugs in basic functionality and a shortage of

more advanced accessibility functions that, if problematic, could have been represented by this

type of bugs.

Table 5.2 outlines a comparison of the subtypes considering the total amount of bugs in the

Bug Tracker (Total), the bugs related with iOS native apps in the Bug Tracker (Local) and the

results extrapolated from the app reviews’ analysis.

From this table, we conclude that the most common subtype of error is Unlabeled Elements,

representing almost a quarter of all the classified errors in app reviews (23.96%). In the native

apps, it was the second most found bug with half of this percentage (11.11%). Unclear Labels

(13.87%) and Unreachable Elements (10.47%) are clearly the other most commonly found bugs

in this evaluation. In fact, Unclear Labels registers a much higher percentage than the one verified

in the native apps (1.85%). These three most frequent bugs represent 48% of all the bugs found in

the app reviews.

5.5 Intuitiveness 55

Table 5.2: App Reviews by Subtype

Code Type Subtype Total % Local % % Type App Reviews % % Type
1.1 Alternative Interaction Automated Functionality 3 1.20% 0 0.00% 0.00% 3 0.38% 7.89%
1.2 Alternative Interaction Braille 13 5.22% 1 0.93% 4.00% 0 0.00% 0.00%
1.3 Alternative Interaction Braille Typing 17 6.83% 5 4.63% 20.00% 4 0.50% 10.53%
1.4 Alternative Interaction Fast Navigation 7 2.81% 6 5.56% 24.00% 2 0.25% 5.26%
1.5 Alternative Interaction Gesture Alternatives 33 13.25% 12 11.11% 48.00% 28 3.53% 73.68%
1.6 Alternative Interaction Keyboard Navigation 5 2.01% 1 0.93% 4.00% 1 0.13% 2.63%
2.1 Contextual Notifications Announcements 12 4.82% 3 2.78% 50.00% 12 1.51% 80.00%
2.2 Contextual Notifications Sound Hints 8 3.21% 3 2.78% 50.00% 3 0.38% 20.00%
3.1 Focus and Structure Extraneous Elements 6 2.41% 3 2.78% 9.68% 39 4.92% 15.18%
3.2 Focus and Structure Focus 24 9.64% 15 13.89% 48.39% 34 4.29% 13.23%
3.3 Focus and Structure Item Activation 4 1.61% 2 1.85% 6.45% 42 5.30% 16.34%
3.4 Focus and Structure Navigation 9 3.61% 4 3.70% 12.90% 48 6.05% 18.68%
3.5 Focus and Structure Unreachable Elements 9 3.61% 7 6.48% 22.58% 83 10.47% 32.30%
NA Focus and Structure Inaccessible Maps 0 0.00% 0 0.00% 0.00% 11 1.39% 4.28%
4.1 Low Vision Color Accomodations 2 0.80% 0 0.00% NA 0 0.00% NA
4.2 Low Vision Low Vision 1 0.40% 0 0.00% NA 0 0.00% NA
4.3 Low Vision Responsiveness 3 1.20% 0 0.00% NA 0 0.00% NA
5.1 Responsiveness Audio 5 2.01% 0 0.00% 0.00% 8 1.01% 25.00%
5.2 Responsiveness Context Crash 7 2.81% 5 4.63% 71.43% 6 0.76% 18.75%
5.3 Responsiveness Context Inoperability 5 2.01% 1 0.93% 14.29% 6 0.76% 18.75%
5.4 Responsiveness Global Crash 3 1.20% 0 0.00% 0.00% 0 0.00% 0.00%
5.5 Responsiveness Temporary Inoperability 6 2.41% 1 0.93% 14.29% 12 1.51% 37.50%
6.1 Speech Output Voices 12 4.82% 0 0.00% NA 2 0.25% 100.00%
7.1 Text Equivalents Incomplete Information 9 3.61% 8 7.41% 24.24% 29 3.66% 7.53%
7.2 Text Equivalents Label with Extraneous Text 6 2.41% 5 4.63% 15.15% 10 1.26% 2.60%
7.3 Text Equivalents Unclear Label 3 1.20% 2 1.85% 6.06% 110 13.87% 28.57%
7.4 Text Equivalents Unlabeled Element 18 7.23% 12 11.11% 36.36% 190 23.96% 49.35%
7.5 Text Equivalents Unspoken Selection 3 1.20% 3 2.78% 9.09% 28 3.53% 7.27%
7.6 Text Equivalents Wrong Label 6 2.41% 3 2.78% 9.09% 18 2.27% 4.68%
8.1 User Input Typing 10 4.02% 6 5.56% 100.00% 21 2.65% 100.00%
NA Unusable Completely Inaccessible 0 0.00% 0 0.00% NA 43 5.42% 100.00%

In the 10 most frequent found bugs in the app reviews, only the Completely Inaccessible apps

(5th) were not part of the Text Equivalents or Focus and Structure types.

Immediately after the top 10, Gesture Alternatives bugs are the first entry not pertaining to the

two previously mentioned most frequent bug types, with less than a third (3.53%) of the percentage

it had on the native apps (11.11%), in which it was the third most common bug. The Focus subtype

was the most frequent bug in native apps (13.89%) and, although on the top 10, it is the least

frequent within the Focus and Structure type bugs found in the app reviews.

Excluding the aforesaid three most common bugs, the following 10 most frequent bugs com-

prise 41.62% of the total, each representing more than 2%. From these latter (7 of which are part

of the previously mentioned top 10), only Completely Inaccessible, Gesture Alternatives and Typ-

ing were not part of the two aforementioned most frequent bug types - Text Equivalents and Focus

and Structure.

5.5 Intuitiveness

To test the intuitiveness of the classification and answer RQ3, we created a questionnaire to be

shared online amongst screen reader users.

Although this investigation and specifically RQ2 mention visually impaired users, the predom-

inance of VoiceOver bugs in the AppleVis database implies screen reader knowledge to respond

to this questionnaire (as detailed below), thus excluding low vision users who do not use a screen

56 Validation

reader. Despite the reduction in the pole of potential visually impaired respondents, the question-

naire can reach a broader set of users by not imposing that the respondents have to be visually

impaired, as its target can include people who have knowledge about using a screen reader for

professional reasons.

Given the substantial size of the classification, specially considering its sub types, we opted

to exclude the types and subtypes with no representation in the classified app reviews as well as

types with no mapping to guidelines. Consequently, only the Alternative Interaction, Contextual

Notifications, Focus and Structure, Text Equivalents and User Input types were included in the

questionnaire. Within these types, only the Automated Functionality subtype (from the Alternative

Interaction type) was excluded.

Each question consisted in a bug description to which the respondents were asked to select,

from the multiple choices available, the most suitable type or subtype to classify it. Based on exist-

ing bugs from both the iOS Bug Tracker and iOS App Directory, every question embraced one real

bug description. However, after pretesting the questionnaire (described below), the urges to clarify

some text and disconnect some descriptions from the original app in which they appeared were

evident. The classification of the original bugs description was used as the correct answer, and

the questionnaire hypothesis considers that the classification is more intuitive as the probability of

responses identical to that classification increases.

The questionnaire was subdivided in 6 groups of questions. In the first section, the types were

summarized and the respondents were asked to attribute a type to a given bug. In the following 4

sections, information about the subtypes of each of the aforementioned types (except User input,

since it only has one subtype) was presented and respondents were asked to select the most appro-

priate subtype to the bug description. Every type and sub type was represented in the questions, in

some cases more than once, and all 28 questions were mandatory.

Since we firstly found a proper type to describe the bug and only then scrutinized the details

and found the sub type, this process mirrors the reasoning followed during the construction of the

classification and the validation phase. Moreover, this prevented the survey from being too tire-

some or time-consuming, which is supposed to inhibit the dropout rate. A section concerning the

sociodemographic data of the respondents closed the questionnaire, with no mandatory questions.

The objective of including this section was to enable us to detect some trends or patterns in case

the answers diverged considerably from the desired intuitiveness.

A first version of the questionnaire was pretested with a subgroup of 2 users with no prior

knowledge of the theme. Feedback on the difficulty level and the time needed was collected. The

questionnaire was adjusted to be shorter, linguistically more accessible and retested favorably with

another subset of 3 users. The questionnaire, as presented in Appendix D, was hosted in Google

Forms and made available from May 17, 2021 to June 23, 2021. Once our target were screen

reader users, the questionnaire was divulged online in blindness related groups and associations

during such period - including AppleVis, Guide-Dog Owners and a blind programmers mailing

list, among others.

5.6 Questionnaire Results 57

5.6 Questionnaire Results

In total, 37 responses were registered during the questionnaires availability period. The list of

questions grouped by section, each representing a bug, and their correct classification can be found

in Appendix E.

The aforementioned questionnaire hypothesizes that the classification is more intuitive as the

probability of responses identical to the classification of the original bug increases. To express a

success measure, we defined a minimum lower limit of 50% and a higher limit of at least 85% for

confidence intervals.

To calculate the probability of a correct answer, R’s Exact Binomial Test function (binom.test)

was used, computing, per question, the number of success cases and the number of trials (37).

In Appendix F, all questions grouped by section, the number of correct answers, the estimated

probability of success and the upper and lower limits of the confidence interval, with a 95% con-

fidence level, are presented.

From the 28 bugs respondents were asked to classify, 26 registered a confidence interval with

a lower value greater than 50%.

The two bugs that exhibited a value inferior to 50% both reached a lower limit of 39.49% and

16 wrong answers. They were the following:

Q2: The Misspelled Words option in the Rotor does not work in the compose message text

field;

Q3: To make adjustments on the equalizer knobs, you have to double tap and hold the desired

knob and simulate a rotation motion as if you were turning a real knob. It can be done but you

have to go by trial and error and read the new value after you perform this manual gesture.

Regarding Q2, for which the correct classification was Alternative interaction, the majority

of wrong answers were User Input (12). The Misspelled Words option is a Rotor item that only

appears when editing text. Therefore, respondents may consider more intuitive classifying all text

editing problems as User Input.

No other pattern is discernible in the responses to Q2, as they do not seem to correlate with

age, screen reader experience or nationality.

Meanwhile, concerning Q3, in which the correct answer was Alternative Interaction as well,

the majority of wrong answers was also User Input (14). Since the question is related to a common

scenario in music production, in which the described knobs mimic real knobs on physical ampli-

fiers’ equalizers, to a certain extent, it implies music knowledge that many users may not have. We

surmise that respondents interpreted the change of knob values as the user inputing a new value,

therefore classifying it as User Input.

By scrutinizing the distribution of Q3 answers per nationality, a pattern becomes clear. Within

the 14 respondents that classified the problem as User Input, 12 were Latin languages native speak-

ers. As a result, we assume the root of misinterpreting this more complex English written scenario

may be related to cultural perceptions or the phrasing employed itself.

58 Validation

Besides the previously presented bugs, both with upper values of the confidence interval of

72%, the following bug recorded an upper limit of the confidence interval of 84% and 11 wrong

answers:

Q6: When scanning a new document, VoiceOver won’t give any feedback to help you align

the page.

In this case, no pattern could be perceivable concerning the distribution of wrong responses

and no correlation with sociodemographic aspects could be established.

On the contrary, the upper limit of the confidence interval is greater than 85% in 25 of the 28

bugs - surpassing our success criteria.

Furthermore, with the exception of Q2 (56%), Q3 (56%) and Q6 (70%), 25 out of the 28

bugs in analysis exhibit an estimated probability of success, or point estimate, greater than 75%.

Moreover, also considering the fact that 23 questions present upper limits of the confidence interval

above 90%, the level of concordance with the proposed classification is reinforced.

Consequently, we can conclude, with a confidence level of 95%, that the majority of screen

reader users would classify these bugs correctly.

5.7 Discussion

The validation of the proposed classification was performed in two stages.

Firstly, the classification’s completeness was assessed. A sample of the 640 theoretically least

accessible apps from the AppleVis iOS App Directory was selected. The user submitted Accessi-

bility Comments and Other Comments from each selected app were explored, and every described

bug was classified according to the classification proposed in Chapter 4. From the 640 apps, 473

included detailed information that led to the identification of 793 bug instances.

Excluding the types Low Vision and Speech Output, which were practically inexistent in this

sample due to their specific operative system nature, all other bug Types were recorded in this

validation stage. Text Equivalents and Focus and Structure were the more predominantly identified

bug types.

Notwithstanding, the emergence of completely inaccessible apps led to the creation of the a

new bug type to express this complete lack of accessibility, named Unusable, and incorporating

the subtype Completely Inaccessible. Since Unusable was the third most prominent bug type, this

investigation attests that some developers still do not take accessibility into account.

The subtypes Unlabeled Elements, Unclear Labels and Unreachable Elements were the most

abundant in the scrutinized app reviews, representing almost half of the classified bugs. These

subtypes represent the bugs more easily relatable with the explored guidelines [16, 42] and the

ones all testing tools detect [37]. Thus, this substantiates that developers are confused by the

ambiguous nature of guidelines and the complexity of available tools [38]. Nonetheless, these

bug subtypes are among the fastest to fix, according to the information from the iOS Bug Tracker

extension (analyzed in Section 4.4).

5.7 Discussion 59

The subtype Inaccessible Maps was also added to the Focus and Structure type, representing

accessibility problems in maps that were not previously found in the iOS Bug Tracker data.

Consequently, we can answer the first research question positively:

RQ1: Can the proposed classification effectively cover vision accessibility errors reported by

users in iOS apps?

Since the proposed classification was applied to the subset of the 640 least accessible apps on

the AppleVis iOS App Directory, which comprises user submitted reviews, and was able to iden-

tify 793 bug instances, we conclude that it does indeed cover vision accessibility errors reported

by users in iOS apps. Furthermore, by creating the Unusable type and also incorporating the Inac-

cessible Maps subtype on the Focus and Structure type, the proposed classification becomes even

more effective in covering vision accessibility bugs on iOS apps.

The classification’s intuitiveness was also evaluated.

A questionnaire was developed, presenting the classification to screen reader users and asking

them to classify bug descriptions based on the available types and subtypes. On total, 28 bugs were

described, with 5 types and 18 subtypes presented to respondents. The classification subsetting

was based on the types’ representativeness on guidelines and the subtypes’ predominance on the

previous validation stage.

Each question was based on the description of a bug previously classified from the AppleVis

iOS Bug Tracker or App Directory. The original classification of the bug was considered the

correct answer to each question.

The questionnaire received 37 responses. The number of correct answers was calculated per

question and the confidence interval, with a confidence level of 95%, was computed for each one.

This investigation defined a confidence interval with a minimum lower limit of 50% and a

higher limit of, at least, 85% as a measure of the questionnaire’s intuitiveness.

Hence, we can address RQ2 approvingly:

RQ2: Is the proposed classification perceived similarly by several visually impaired users?

Once 26 out of the 28 questions presented a lower limit of the confidence interval superior to

50% - representing the majority of users - as well as the 25 questions exhibiting an upper limit of

the confidence interval superior to 85% - indeed, 23 of them were greater than 90%, we conclude,

with a 95% level of confidence, or a 5% level of significance, that the proposed classification is

perceived similarly by several visually impaired users.

Furthermore, the aforementioned 25 questions displayed an estimated probability of success

greater than 75%.

Notwithstanding, some of the questions failing to reach the established confidence interval

provide some insights regarding improvements in the classification. In the two questions with

60 Validation

the lowest percentage of correct answers, respondents opted for the type User Input instead of

Alternative Interaction.

In one of the questions (Q3), this may be due to linguistic reasons, as the bug description

was particularly long and the majority of wrong answers was given by Latin languages native

speakers. Besides, the question described a very specific music production scenario, and perhaps

not all respondents were familiar with such terminology.

However, in the former question (Q2), the User Input answers can be attributed to the fact that

the described functionality, the Misspelled Words Rotor item, is only available during text input.

Thus, the classification’s intuitiveness may be further improved by grouping into User Input all

bugs related to text input.

Chapter 6

Conclusions

The present investigation arose from the need of a more user-centered approach to ensure that

accessibility problems faced by disabled users were given the proper relevance [19].

Relating reported problems with the available accessibility guidelines requires expertise [19]

and the existent tools to automatically verify the accessibility of applications only cover a low

percentage of the available guidelines [31, 37]. Moreover, the existing guidelines do not take into

account all problems reported by disabled users [3, 19], failing to promote the comprehension

of such problems [19]. Thus, developers and testers do not find them very clear nor easy to

understand [38].

Disabled users commonly report accessibility problems in written text - on feedback forms,

email or in social media. However, the literature mentions a scarceness of accessibility focused

reviews in app stores [5].

The mismatching between the terminology employed by users to report accessibility problems

and the available guidelines further bewilders developers and testers [19], leading to social issues

regarding accessibility [38]. Consequently, this leads to a minor focus on accessibility [38]and a

lower priority in fixing these issues [19].

This investigation’s focus on iOS vision accessibility led to the identification of the AppleVis

repositories as excellent sources of information. Its publicly available iOS Bug Tracker and App

Directory, to the best of our knowledge, were never explored in an academic context and their

user focused bug descriptions and user submitted app reviews proved to be invaluable sources of

information throughout this work.

By exploring and extending the AppleVis iOS Bug Tracker, as well as mapping the identified

problems with the available accessibility guidelines, a classification of iOS vision accessibility

bugs was proposed. The exploration of the available data, grouped by the proposed classification

types and subtypes, provided a deeper comprehension of the severity and longevity of these kinds

of bugs on iOS.

61

62 Conclusions

Once the proposed classification was based on user-centered information and classified all

bugs in scrutiny, we conclude that it typifies iOS accessibility bugs reported by visually impaired

users. Moreover, as the WCAG and BBC guidelines were used to group the bugs into Types, we

also surmise that the classification conforms to the available accessibility guidelines.

Hence, our thesis’ hypothesis is validated.

The completeness and intuitiveness of the proposed classification were validated. The 640

least accessible app reviews on the AppleVis iOS App Directory were scrutinized and 793 bug

instances were categorized according to the proposed classification. Two additions were made

to the classification. Namely, the subtypes Completely Inaccessible - classified with the type

Unusable, and Inaccessible Maps - in the Focus and Structure type, were incorporated into the

classification. Therefore, the proposed classification effectively covered vision accessibility errors

reported by users in iOS apps, approvingly answering RQ1, and reinforcing its completeness.

The classification’s intuitiveness was tested through a questionnaire, in which 37 respondents

classified 28 bug descriptions. With a confidence level of 95%, 26 of the 28 bugs exhibited a

lower limit of the confidence interval above 50% and 25 of those displayed an upper limit superior

to 85%. Thus, we conclude that the majority of screen reader users would classify these bugs

correctly, with a confidence level of 95%.

Accordingly, the proposed classification is perceived similarly by several visually impaired

users, answering favorably to RQ2.

6.1 Practical Contributions

By validating an user-centered classification of iOS vision accessibility problems that conforms

to the available accessibility guidelines and is both complete and intuitive, this work improves the

current tools available to both users and developers.

On one hand, users gain the possibility of categorizing their bug reports according to a clas-

sification based on terms they frequently employ. On the other hand, developers who receive

unclassified accessibility bug reports are also able to explore the classification and feasibly deduce

in which type and subtype each bug can be framed.

A proper classification contributes to the developers’ comprehension of bugs, facilitating their

job of relating them with the existing guidelines, as well as to establish connections to past bugs

previously faced or solved. Consequently, fixing accessibility bugs becomes faster and easier [19],

benefiting developers and users simultaneously.

6.2 Theoretical Contributions

The present work ameliorates the state of the art in accessibility, by proposing and validating

an user-centered classification able to relate with the available guidelines. To the best of our

knowledge, no previous study had proposed a classification of accessibility bugs based on the

terminology employed by a specific disability group to describe problems they frequently face.

6.3 Limitations 63

Furthermore, this terminology was obtained in written format, replicating the most common

way in which disabled users submit bug reports. This ensures that developers will encounter a

terminology similar to one employed in the accessibility bug reports they receive. In turn, social

issues regarding accessibility can be minimized [38], decreasing the time needed to fix bugs [19].

By resorting to data available on AppleVis for the consecution of this investigation, we aimed

to fill the gap in the literature denoted by Alshayban et al. [5] and, ultimately, revealed the useful-

ness of the information available at disability related repositories.

6.3 Limitations

Nevertheless, some limitations can be identified in this investigation.

The focus on vision accessibility restricts the impact of the proposed classification to visually

disabled users or researchers on the area. Indeed, its transposition to accessibility problems faced

by other disability groups is not easily attainable.

Although some vision accessibility problems are similarly experienced on other operating

systems, touch or mouse-based, there are specificities of touch-based operating systems - some

of them regarding iOS in particular (e.g. Rotor), that may limit the scope of application of the

proposed classification to iOS. Furthermore, as stated in Chapter 3.2, the data in AppleVis in-

cluded predominantly VoiceOver bugs, with Low Vision problems being noticeably less repre-

sented. Thus, the proposed classification reflects this bias and emphasizes VoiceOver bugs while

displaying less details and instances of Low Vision related problems.

Due to the shortage of time, the validation stage did not encompass testing the proposed clas-

sification with developers. Considering that the questionnaire was shared in a forum of blind

developers, some of the respondents may have been developers, as well as screen reader users.

Notwithstanding, the questionnaire was created assuming screen reader knowledge and it would

not be suitable for developers that lacked such knowledge.

Once one of the objectives of the investigation was to test how intuitive the questionnaire was,

we opted to enquire screen reader users first, which exhausted the time and possibilities to develop

an usefulness test to assess how the classification could facilitate developers’ jobs.

6.4 Future Work

This investigation can be refined in future works.

For instance, the classification may be improved with the findings of the questionnaire, spe-

cially in what concerns classifying all text editing related bugs as User Input. Although the ma-

jority of users classified the second question, regarding the Misspelled Words option in the Rotor,

correctly, the high percentage of User Input responses suggests that the classification’s intuitive-

ness could be further enhance with this change. Thus, performing this change and developing a

new questionnaire to uphold its impact would be an immediate future development of this work.

64 Conclusions

To test the classification’s intuitiveness in conditions similar to the ones users face on their

usual interaction with technology, we believe developing an app with purposely injected acces-

sibility bugs would represent an amelioration of the questionnaire method employed in this in-

vestigation. This app would present users with the materialization of the bugs described on the

questionnaire, or other more complex ones, and allow users to report them using the proposed

classification. This would eliminate possible language barriers and allow users to experience the

bugs directly, and then, replicate the common process of reporting bugs or writing reviews on the

AppleVis App Directory.

Another suggestion for future work concerns the creation of an open-source code repository

with implementation examples of non-purposeful accessibility bugs and proposals for fixes. This

repository would be structured based on the proposed classification and, for each bug subtype,

contain one or more code examples portraying how the bug usually occurs. This extension of

the classification would supply a valuable resource to developers, since they would be able, after

identifying a bug’s type and subtype, to explore possible fixes, improving and accelerating the bug

fixing process, therefore enhancing accessibility for all users.

Finally, we also believe this investigation should be replicated on other platforms, such as

Android, macOS, Chrome OS or Windows. Concomitantly, applying the same methodology on

wider repositories of Low Vision problems, as well as to other disability groups - auditory; cog-

nitive, learning and neurological; physical; speech; disabilities [15] - would also represent a great

opportunity for making technology more accessible to everyone.

Appendix A

AppleVis Original Data

The linked Excel file comprises the original data from the AppleVis iOS Bug Tracker and App

Directory.

https://docs.google.com/file/d/1bDkjzzVAsUZSwKpNNabwkN0XYazQQvIR/edit?

usp=docslist_api&filetype=msexcel

65

https://docs.google.com/file/d/1bDkjzzVAsUZSwKpNNabwkN0XYazQQvIR/edit?usp=docslist_api&filetype=msexcel
https://docs.google.com/file/d/1bDkjzzVAsUZSwKpNNabwkN0XYazQQvIR/edit?usp=docslist_api&filetype=msexcel

66 AppleVis Original Data

Appendix B

Bug Tracker Extension and
Classification

The linked Excel file contains the list of all Bug Tracker bugs and the respective new values cre-

ated during the Bug Tracker extension. It also comprises other sheets summarizing all the new

attributes’ possible values, namely System Function; Problems; the mapping process to create the

Type; and Subtype.

https://docs.google.com/file/d/1FiOx_Ze3iX-cMjQjIkIcaS4ADG7qqzPS/edit?

usp=docslist_api&filetype=msexcel

67

https://docs.google.com/file/d/1FiOx_Ze3iX-cMjQjIkIcaS4ADG7qqzPS/edit?usp=docslist_api&filetype=msexcel
https://docs.google.com/file/d/1FiOx_Ze3iX-cMjQjIkIcaS4ADG7qqzPS/edit?usp=docslist_api&filetype=msexcel

68 Bug Tracker Extension and Classification

Appendix C

App Directory Bugs and Respective
Classifications

The linked Excel file presents the subset of App Directory app reviews and their classification.

The "Original Classification" sheet contains the validation process as it was performed, in some

cases containing multiple classifications per app, while the "Processed Bugs" sheet contains the

result of the analysis script, presenting the list of all identified bug subtypes.

https://docs.google.com/file/d/1NGcOCEw9kM2p2cCArd5vTT7UH7KA735b/edit?

usp=docslist_api&filetype=msexcel

69

https://docs.google.com/file/d/1NGcOCEw9kM2p2cCArd5vTT7UH7KA735b/edit?usp=docslist_api&filetype=msexcel
https://docs.google.com/file/d/1NGcOCEw9kM2p2cCArd5vTT7UH7KA735b/edit?usp=docslist_api&filetype=msexcel

70 App Directory Bugs and Respective Classifications

Appendix D

Questionnaire

71

27/06/2021 Validation of a Vision Accessibility Bugs Classification

https://docs.google.com/forms/d/1yW24YLgx-OLZr3cLLdE_bFAz-sLh3j4-aSURWaII36s/edit 1/14

1.

Mark only one oval.

I agree to voluntarily participate in the study

Validation of a Vision Accessibility Bugs
Classification
This questionnaire is part of an academic investigation.

My goal with this work is to bridge the gap between the language employed by users to
report vision accessibility bugs and the guidelines available to developers. To do so, I am
proposing a new categorization of iOS vision accessibility bugs.

Now, I need your help to test if everyone can classify the bug descriptions in the same way.

In the following sections, firstly, I will present you the possible options and an explanation
for each. Then, given a list of bug descriptions, you are asked to select the option you
consider more adequate to classify each one.

Filling this questionnaire takes approximately 10 minutes and the only requirement for
answering is to have ever used a screen reader.

In case you would like to receive the results of this study or if you need help to clarify any
question, please contact me at up200802385@edu.fe.up.pt.

Thanks for your collaboration!

Diogo Melo

Masters in Software Engineering - Faculty of Engineering of University of Porto (FEUP)

* Required

All data is confidential and used for the purpose of this study only. You are free to
cease your participation at any moment. *

27/06/2021 Validation of a Vision Accessibility Bugs Classification

https://docs.google.com/forms/d/1yW24YLgx-OLZr3cLLdE_bFAz-sLh3j4-aSURWaII36s/edit 2/14

Categories

The 5 main categories are as follows:

1 - Alternative interaction

Problems with either:

- Keyboard navigation;

- Braille navigation and input;

- Alternatives to complex gestures (e.g. drag and drop) or;

- Fast navigation options (e.g. navigate by Lines, Misspelled words, links).

2 - Contextual notifications

When activated actions or displayed visual cues are not properly reported by spoken
announcements or sound hints.

3 - Focus and structure

Either when:

- Available elements can not be focused;

- Unavailable elements can be focused;

- Items can not be activated or;

- It is not possible to navigate the interface as expected (e.g. change page or
navigate by heading)

4 - Text equivalents

Unclear, inexistent or inaccurate labels of non textual elements (e.g. buttons, images,
badges).

5 - User input

Problems related to the input of text or other information formats (e.g. pickers,
sliders).

2.

Mark only one oval.

Alternative interaction

Contextual notifications

Focus and structure

Text equivalents

User input

Despite being available, the Save button can not be found with VoiceOver. *

27/06/2021 Validation of a Vision Accessibility Bugs Classification

https://docs.google.com/forms/d/1yW24YLgx-OLZr3cLLdE_bFAz-sLh3j4-aSURWaII36s/edit 3/14

3.

Mark only one oval.

Alternative interaction

Contextual notifications

Focus and structure

Text equivalents

User input

4.

Mark only one oval.

Alternative interaction

Contextual notifications

Focus and structure

Text equivalents

User input

5.

Mark only one oval.

Alternative interaction

Contextual notifications

Focus and structure

Text equivalents

User input

The Misspelled words option in the Rotor does not work in the compose message
text field. *

To make adjustments on the equalizer knobs, you have to double tap and hold the
desired knob and simulate a rotation motion as if you were turning a real knob. It
can be done but you have to go by trial and error and read the new value after
you perform this manual gesture. *

VoiceOver will read several Headings, but if you try to navigate using the
Headings option in the Rotor VoiceOver won't scroll past the page visible on the
screen. *

27/06/2021 Validation of a Vision Accessibility Bugs Classification

https://docs.google.com/forms/d/1yW24YLgx-OLZr3cLLdE_bFAz-sLh3j4-aSURWaII36s/edit 4/14

6.

Mark only one oval.

Alternative interaction

Contextual notifications

Focus and structure

Text equivalents

User input

7.

Mark only one oval.

Alternative interaction

Contextual notifications

Focus and structure

Text equivalents

User input

8.

Mark only one oval.

Alternative interaction

Contextual notifications

Focus and structure

Text equivalents

User input

When inserting the name of a new contact, the usual keyboard typing options do
not work and you have to double tap each letter to insert it. *

When scanning a new document, VoiceOver won’t give any feedback to help you
align the page. *

You can define your status as Online, Away or Do not disturb. However, there is no
label for the selected status. *

27/06/2021 Validation of a Vision Accessibility Bugs Classification

https://docs.google.com/forms/d/1yW24YLgx-OLZr3cLLdE_bFAz-sLh3j4-aSURWaII36s/edit 5/14

9.

Mark only one oval.

Alternative interaction

Contextual notifications

Focus and structure

Text equivalents

User input

Focus &
Structure

In this category you have 5 options, representing some frequent scenarios.

1 - Extraneous elements

If VoiceOver allows the selection of elements that are not visible.

2 - Focus

When the VoiceOver cursor moves to an element without the user's intent.

3 - Item activation

When you perform the activation gesture but the item is not activated.

4 - Navigation

When navigation controls don't work as expected (e.g. heading navigation, page
navigation).

5 - Unreachable elements
When Voiceover can not detect an element present in the user interface.

10.

Mark only one oval.

Extraneous elements

Focus

Item activation

Navigation

Unreachable elements

You can't read an email using a Braille display. *

You can not activate the Save button with a double tap. *

27/06/2021 Validation of a Vision Accessibility Bugs Classification

https://docs.google.com/forms/d/1yW24YLgx-OLZr3cLLdE_bFAz-sLh3j4-aSURWaII36s/edit 6/14

11.

Mark only one oval.

Extraneous elements

Focus

Item activation

Navigation

Unreachable elements

12.

Mark only one oval.

Extraneous elements

Focus

Item activation

Navigation

Unreachable elements

13.

Mark only one oval.

Extraneous elements

Focus

Item activation

Navigation

Unreachable elements

You can not find the controls to bookmark a page with VoiceOver turned on. *

When selecting a payment method, the VoiceOver cursor moves to the first
listed method every time you flick. *

The playlist selection page is properly labeled. However, navigating by heading is
unreliable. *

27/06/2021 Validation of a Vision Accessibility Bugs Classification

https://docs.google.com/forms/d/1yW24YLgx-OLZr3cLLdE_bFAz-sLh3j4-aSURWaII36s/edit 7/14

14.

Mark only one oval.

Extraneous elements

Focus

Item activation

Navigation

Unreachable elements

15.

Mark only one oval.

Extraneous elements

Focus

Item activation

Navigation

Unreachable elements

Contextual
Notifications

There are only two choices in this category:

1 - Announcements

Absence of spoken announcements when an action is performed or some
written cue is updated.

2 - Sound hints

Absence of sound hints that replace visual indicators (e.g. when the device is
unlocked with biometric authentication).

16.

Mark only one oval.

Announcements

Sound hints

VoiceOver finds and reads elements on the Profile tab which are not visually
present or actionable. *

Sometimes, when you swipe, the VoiceOver cursor won't advance and, other
times, it ignores the following item, skipping to the next one. *

During a game, VoiceOver doesn't announce when your opponent plays and you
have to scan the whole board to find out what piece was moved and to where. *

27/06/2021 Validation of a Vision Accessibility Bugs Classification

https://docs.google.com/forms/d/1yW24YLgx-OLZr3cLLdE_bFAz-sLh3j4-aSURWaII36s/edit 8/14

17.

Mark only one oval.

Announcements

Sound hints

18.

Mark only one oval.

Announcements

Sound hints

Alternative
Interaction

The five options in this category are the following:

1 - Braille

Any problem related to reading or navigating while using a Braille display.

2 - Braille typing

Related to text input with Braille displays or Braille Screen Input.

3 - Fast navigation

Rotor options are having an inconsistent behaviour when navigating between
dynamic interface elements (e.g. navigate by Lines, Misspelled words, links).

4 - Gesture alternatives

Inexistent or flawed Rotor actions to replace complex gestures (e.g. drag and drop).

5 - Keyboard navigation

Problems when navigating via external keyboard.

VoiceOver won't play a sound when you start to reorder your reminders. *

When taking a photo to create a new avatar, VoiceOver won't automatically read
the cues to position yourself. You have to constantly touch the bottom of the
screen to get updated feedback. *

27/06/2021 Validation of a Vision Accessibility Bugs Classification

https://docs.google.com/forms/d/1yW24YLgx-OLZr3cLLdE_bFAz-sLh3j4-aSURWaII36s/edit 9/14

19.

Mark only one oval.

Braille

Braille typing

Fast navigation

Gesture alternatives

Keyboard navigation

20.

Mark only one oval.

Braille

Braille typing

Fast navigation

Gesture alternatives

Keyboard navigation

21.

Mark only one oval.

Braille

Braille typing

Fast navigation

Gesture alternatives

Keyboard navigation

During a game, the only way to move your pieces in the board is to double tap
and hold and then drag them to where you want to play. *

When you are navigating with a Braille display, the AI generated GIF description
is not presented, despite being read by VoiceOver. *

When reading a post, you can not navigate by Lines in the Rotor options. *

27/06/2021 Validation of a Vision Accessibility Bugs Classification

https://docs.google.com/forms/d/1yW24YLgx-OLZr3cLLdE_bFAz-sLh3j4-aSURWaII36s/edit 10/14

22.

Mark only one oval.

Braille

Braille typing

Fast navigation

Gesture alternatives

Keyboard navigation

23.

Mark only one oval.

Braille

Braille typing

Fast navigation

Gesture alternatives

Keyboard navigation

Text
Equivalents

In this final category, there are six options regarding specific scenarios of improper
or incomplete element labeling.

1 - Incomplete information

VoiceOver reads some but not all the relevant visually available information.

2 - Label with extraneous text

The element is clearly labeled but some non-informative extra text is part of the
label.

3 - Unclear label

When the label is not clear about what the item represents or what action it triggers.

4 - Unlabeled element

When an element is not labeled and users can not know its intent.

5 - Unspoken selection

When Voiceover reports the element but not its selection status (e.g. check boxes,
multi selection menus).

6 - Wrong label

The label is clear but represents erroneously the type, status or action of the item.

You can not type a reply to a comment with a Braille display. *

You can not activate the Send button with an external keyboard. *

27/06/2021 Validation of a Vision Accessibility Bugs Classification

https://docs.google.com/forms/d/1yW24YLgx-OLZr3cLLdE_bFAz-sLh3j4-aSURWaII36s/edit 11/14

24.

Mark only one oval.

Incomplete information

Label with extraneous text

Unclear label

Unlabeled element

Unspoken selection

Wrong label

25.

Mark only one oval.

Incomplete information

Label with extraneous text

Unclear label

Unlabeled element

Unspoken selection

Wrong label

26.

Mark only one oval.

Incomplete information

Label with extraneous text

Unclear label

Unlabeled element

Unspoken selection

Wrong label

The buttons for the modulation effects don't have labels. *

The Stop button is read as Pause. *

VoiceOver will read "img_meteorstatus_" before each weather forecast for the
next 24 hours. *

27/06/2021 Validation of a Vision Accessibility Bugs Classification

https://docs.google.com/forms/d/1yW24YLgx-OLZr3cLLdE_bFAz-sLh3j4-aSURWaII36s/edit 12/14

27.

Mark only one oval.

Incomplete information

Label with extraneous text

Unclear label

Unlabeled element

Unspoken selection

Wrong label

28.

Mark only one oval.

Incomplete information

Label with extraneous text

Unclear label

Unlabeled element

Unspoken selection

Wrong label

When choosing your opponent, VoiceOver will read the username and country
but won't read the player name, age and ranking that is visually present on the
screen. *

Before making a call, there are options to select audio or video but there is no
feedback about which one is selected. *

27/06/2021 Validation of a Vision Accessibility Bugs Classification

https://docs.google.com/forms/d/1yW24YLgx-OLZr3cLLdE_bFAz-sLh3j4-aSURWaII36s/edit 13/14

29.

Mark only one oval.

Incomplete information

Label with extraneous text

Unclear label

Unlabeled element

Unspoken selection

Wrong label

Sociodemographic
Data

Thanks for your help!

The following questions are not mandatory but they would help me to
understand some trends in the results. The data will not be treated
individually. The processing will be purely statistical.

If you do not wish to answer them, please proceed to the next page and
submit.

30.

31.

32.

Mark only one oval.

Other:

I don’t use any mobile screen reader

VoiceOver on iOS

TalkBack on Android

When you want to share your photos, you have to change to Rotor Character
navigation to understand the sharing options, because the buttons are labeled
as "share" followed by the first letter of the social network, like "sharet", "sharey",
"sharei" and "sharef". *

Where are you from?

What is your age?

What mobile screen reader do you use?

27/06/2021 Validation of a Vision Accessibility Bugs Classification

https://docs.google.com/forms/d/1yW24YLgx-OLZr3cLLdE_bFAz-sLh3j4-aSURWaII36s/edit 14/14

33.

Mark only one oval.

Less than 1 year

1 - 3 years

4 - 6 years

7 - 10 years

More than 10 years

Thanks for
your
collaboration
:)

Your participation is very important!

If you know anyone who may also contribute, please don't hesitate to share with
them.

Please let me know if you have any doubts or suggestions to improve this
classification (e.g. more categories, name changes, …). Leave your comments
below or reach me at up200802385@edu.fe.up.pt.

34.

This content is neither created nor endorsed by Google.

For how long have you been using a screen reader?

 Forms

86 Questionnaire

Appendix E

Questionaire Correct Answers

87

88
Q

uestionaire
C

orrectA
nsw

ers
Table E.1: Questionaire Correct Answers

Section Question Correct Answer
Q1

Types

Despite being available, the Save button can not be found with VoiceOver. Focus & Structure
Q2 The Misspelled words option in the Rotor does not work in the compose message text field. Alternative Interaction

Q3
To make adjustments on the equalizer knobs, you have to double tap and hold the desired knob and simulate a rotation motion as if you were
turning a real knob. It can be done but you have to go by trial and error and read the new value after you perform this manual gesture.

Alternative Interaction

Q4
VoiceOver will read several Headings, but if you try to navigate using the Headings option in the Rotor VoiceOver won’t scroll past the page
visible on the screen.

Focus & Structure

Q5 When inserting the name of a new contact, the usual keyboard typing options do not work and you have to double tap each letter to insert it. User Input
Q6 When scanning a new document, VoiceOver won’t give any feedback to help you align the page. Contextual Notifications
Q7 You can define your status as Online, Away or Do not disturb. However, there is no label for the selected status. Text Equivalents
Q8 You can’t read an email using a Braille display. Alternative Interaction
Q9

Focus &
Structure

You can not activate the Save button with a double tap. Item Activation
Q10 You can not find the controls to bookmark a page with VoiceOver turned on. Unreachable Elements
Q11 The playlist selection page is properly labeled. However, navigating by heading is unreliable. Navigation
Q12 VoiceOver finds and reads elements on the Profile tab which are not visually present or actionable. Extraneous Elements
Q13 When selecting a payment method, the VoiceOver cursor moves to the first listed method every time you flick. Focus
Q14 Sometimes, when you swipe, the VoiceOver cursor won’t advance and, other times, it ignores the following item, skipping to the next one. Focus

Q15
Contextual
Notifications

During a game, VoiceOver doesn’t announce when your opponent plays and you have to scan the whole board to find out what piece was
moved and to where.

Announcements

Q16 VoiceOver won’t play a sound when you start to reorder your reminders. Sound Hints

Q17
When taking a photo to create a new avatar, VoiceOver won’t automatically read the cues to position yourself. You have to constantly touch
the bottom of the screen to get updated feedback.

Announcements

Q18

Alternative
Interaction

During a game, the only way to move your pieces in the board is to double tap and hold and then drag them to where you want to play. Gesture Alternatives
Q19 When you are navigating with a Braille display, the AI generated GIF description is not presented, despite being read by VoiceOver. Braille
Q20 When reading a post, you can not navigate by Lines in the Rotor options. Fast Navigation
Q21 You can not type a reply to a comment with a Braille display. Braille Typing
Q22 You can not activate the Send button with an external keyboard. Keyboard Navigation
Q23

Text
Equivalents

The buttons for the modulation effects don’t have labels. Unlabeled Element
Q24 The Stop button is read as Pause. Wrong Label
Q25 VoiceOver will read "img_meteorstatus_" before each weather forecast for the next 24 hours. Label with Extraneous Text

Q26
When choosing your opponent, VoiceOver will read the username and country but won’t read the player name, age and ranking that is visually
present on the screen.

Incomplete Information

Q27 Before making a call, there are options to select audio or video but there is no feedback about which one is selected. Unspoken Selection

Q28
When you want to share your photos, you have to change to Rotor Character navigation to understand the sharing options, because the buttons
are labeled as "share" followed by the first letter of the social network, like "sharet", "sharey", "sharei" and "sharef".

Unclear Label

Appendix F

Questionnaire Exact Binomial Test
Results

89

90 Questionnaire Exact Binomial Test Results

Table F.1: Questionnaire Exact Binomial Test Results

Section Correct Confidence Interval (Upper) Point Estimate Confidence Interval (Lower)
Q1

Types

28 88.23% 75.68% 58.80%
Q2 21 72.90% 56.76% 39.49%
Q3 21 72.90% 56.76% 39.49%
Q4 33 96.97% 89.19% 74.58%
Q5 31 93.81% 83.78% 67.99%
Q6 26 84.13% 70.27% 53.02%
Q7 29 90.17% 78.38% 61.79%
Q8 31 93.81% 83.78% 67.99%
Q9

Focus & Structure

32 95.46% 86.49% 71.23%
Q10 28 88.23% 75.68% 58.80%
Q11 36 99.93% 97.30% 85.84%
Q12 32 95.46% 86.49% 71.23%
Q13 33 96.97% 89.19% 74.58%
Q14 31 93.81% 83.78% 67.99%
Q15

Contextual Notifications
34 98.30% 91.89% 78.09%

Q16 33 96.97% 89.19% 74.58%
Q17 29 90.17% 78.38% 61.79%
Q18

Alternative Interaction

33 96.97% 89.19% 74.58%
Q19 35 99.34% 94.59% 81.81%
Q20 32 95.46% 86.49% 71.23%
Q21 30 92.04% 81.08% 64.84%
Q22 34 98.30% 91.89% 78.09%
Q23

Text Equivalents

33 96.97% 89.19% 74.58%
Q24 33 96.97% 89.19% 74.58%
Q25 32 95.46% 86.49% 71.23%
Q26 33 96.97% 89.19% 74.58%
Q27 30 92.04% 81.08% 64.84%
Q28 31 93.81% 83.78% 67.99%

References

[1] P. Acosta-Vargas, L. Salvador-Ullauri, J. Jadán-Guerrero, C. Guevara, S. Sanchez-Gordon,
T. Calle-Jimenez, P. Lara-Alvarez, A. Medina, and I. L. Nunes. Accessibility Assessment in
Mobile Applications for Android. In Isabel Nunes, editor, Advances in Human Factors and
Systems Interaction. AHFE 2019. Advances in Intelligent Systems and Computing, volume
959. Springer, Cham, 2020. doi:10.1007/978-3-030-20040-4_25.

[2] A. A. Al-Subaihin, A. S. Al-Khalifa, and H. S. Al-Khalifa. Accessibility of Mobile Web
Apps by Screen Readers of Touch-Based Mobile Phones. In M. Matera and G. Rossi,
editors, Trends in Mobile Web Information Systems. MobiWIS 2013. Communications in
Computer and Information Science, volume 183. Springer, Cham, 2013. doi:10.1007/
978-3-319-03737-0_5.

[3] N. Alajarmeh. The Extent of Mobile Accessibility Coverage in wcag 2.1: Sufficiency of
Success Criteria and Appropriateness of Relevant Conformance Levels Pertaining to Acces-
sibility Problems Encountered by Users Who Are Visually Impaired. Univ Access Inf Soc,
2021. doi:10.1007/s10209-020-00785-w.

[4] G. Alexiou. Largest U.S. Blind Advocacy Group Bans Web Accessibility Overlay Giant
AccessiBe. Forbes. Retrieved June 27, 2021, from https://cutt.ly/SmiuJPP, June
2021.

[5] A. Alshayban, I. Ahmed, and S. Malek. Accessibility Issues in Android Apps: State of Af-
fairs, Sentiments, and Ways Forward. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ICSE ’20, pages 1323–1334, New York, NY, USA,
2020. Association for Computing Machinery. doi:10.1145/3377811.3380392.

[6] W. T. Andrade, R. G. de Branco, M. I. Cagnin, and D. M. B. Paiva. Incorporating Ac-
cessibility Elements to the Software Engineering Process. Advances in Human-Computer
Interaction, 2018. doi:10.1155/2018/1389208.

[7] Apple. Vision. For Every Point of View. Retrieved January 8, 2021, from https://www.
apple.com/accessibility/vision/.

[8] Apple Developer. Human Interface Guidelines. Accessibility. Retrieved
January 8, 2021, from https://developer.apple.com/design/
human-interface-guidelines/accessibility/overview/introduction/.

[9] Apple Developer. Swift. Retrieved January 8, 2021, from https://developer.apple.
com/swift/.

[10] Apple Developer. Type Property isSelected. Retrieved January 8, 2021, from https:
//developer.apple.com/documentation/swiftui/accessibilitytraits/
isselected.

91

https://doi.org/10.1007/978-3-030-20040-4_25
https://doi.org/10.1007/978-3-319-03737-0_5
https://doi.org/10.1007/978-3-319-03737-0_5
https://doi.org/10.1007/s10209-020-00785-w
https://cutt.ly/SmiuJPP
https://doi.org/10.1145/3377811.3380392
https://doi.org/10.1155/2018/1389208
https://www.apple.com/accessibility/vision/
https://www.apple.com/accessibility/vision/
https://developer.apple.com/design/human-interface-guidelines/accessibility/overview/introduction/
https://developer.apple.com/design/human-interface-guidelines/accessibility/overview/introduction/
https://developer.apple.com/swift/
https://developer.apple.com/swift/
https://developer.apple.com/documentation/swiftui/accessibilitytraits/isselected
https://developer.apple.com/documentation/swiftui/accessibilitytraits/isselected
https://developer.apple.com/documentation/swiftui/accessibilitytraits/isselected

92 REFERENCES

[11] Apple Developer. User Interface Testing. Retrieved January 8, 2021, from
https://developer.apple.com/library/archive/documentation/
DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_
testing.html.

[12] AppleVis. iOs and iPadOS Apps. Retrieved January 8, 2021, from https://www.
applevis.com/apps/ios/browse.

[13] AppleVis. The AppleVis Bug Tracker. Retrieved January 8, 2021, from https://www.
applevis.com/bugs.

[14] AppleVis. Welcome to AppleVis. Retrieved January 8, 2021, from https://www.
applevis.com/.

[15] A. Bai, K. Fuglerud, R. Skjerve, and T. Halbach. Categorization and Comparison of Ac-
cessibility Testing Methods for Software Development. Studies in Health Technology and
Informatics, 256:821–831, 2018.

[16] BBC. Accessibility for Products. Retrieved January 4, 2021, from https://www.bbc.
co.uk/accessibility/forproducts/guides/mobile/summary/.

[17] Blank Rome. New Ruling Reiterates That Websites and Mobile Apps Need to Be ADA Com-
pliant. Retrieved January 11, 2021, from https://cutt.ly/amiuBKB, January 2019.

[18] M. C. N. Carvalho, F. S. Dias, A. G. S. Reis, and A. P. Freire. Accessibility and Usabil-
ity Problems Encountered on Websites and Applications in Mobile Devices by Blind and
Normal-Vision Users. In Proceedings of the 33rd Annual ACM Symposium on Applied Com-
puting, SAC ’18, pages 2022–2029, New York, NY, USA, 2018. Association for Computing
Machinery. doi:10.1145/3167132.3167349.

[19] R. Clegg-Vinell, C. Bailey, and V. Gkatzidou. Investigating the Appropriateness and Rel-
evance of Mobile Web Accessibility Guidelines. In Proceedings of the 11th Web for All
Conference, W4A ’14, New York, NY, USA, 2014. Association for Computing Machinery.
doi:10.1145/2596695.2596717.

[20] G. Dean. Apple Could Cut, or Raise, Executive Bonuses by 10 per cent Based on their Per-
formance on Environmental and Social Issues in 2021. Business Insider. Retrieved January
11, 2021, from https://cutt.ly/8miu42I, January 2021.

[21] Deque. EU Web Accessibility Compliance and Legislation. Re-
trieved January 11, 2021, from https://www.deque.com/blog/
eu-web-accessibility-compliance-and-legislation/, January 2020.

[22] D.E. Dilger. Apple VoiceOver Accessibility receives award from American Foundation for
the Blind. AppleInsider. Retrieved January 10, 2021, from https://cutt.ly/Qmiiqf4,
May 2015.

[23] M. M. Eler, J. M. Rojas, Y. Ge, and G. Fraser. Automated Accessibility Testing of Mobile
Apps. In 2018 IEEE 11th International Conference on Software Testing, Verification and
Validation (ICST), pages 116–126, 2018. doi:10.1109/ICST.2018.00021.

[24] European Commission. United Nations Convention on the Rights of Persons with Disabili-
ties. Retrieved January 11, 2021, from https://ec.europa.eu/social/main.jsp?
catId=1138&langId=en.

https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html
https://www.applevis.com/apps/ios/browse
https://www.applevis.com/apps/ios/browse
https://www.applevis.com/bugs
https://www.applevis.com/bugs
https://www.applevis.com/
https://www.applevis.com/
https://www.bbc.co.uk/accessibility/forproducts/guides/mobile/summary/
https://www.bbc.co.uk/accessibility/forproducts/guides/mobile/summary/
https://cutt.ly/amiuBKB
https://doi.org/10.1145/3167132.3167349
https://doi.org/10.1145/2596695.2596717
https://cutt.ly/8miu42I
https://www.deque.com/blog/eu-web-accessibility-compliance-and-legislation/
https://www.deque.com/blog/eu-web-accessibility-compliance-and-legislation/
https://cutt.ly/Qmiiqf4
https://doi.org/10.1109/ICST.2018.00021
https://ec.europa.eu/social/main.jsp?catId=1138&langId=en
https://ec.europa.eu/social/main.jsp?catId=1138&langId=en

REFERENCES 93

[25] GitHub. KIF. Retrieved January 10, 2021, from https://github.com/
kif-framework/KIF.

[26] E. G. Hansen, R. J. Mislevy, L. S. Steinberg, M. J. Lee, and D. C. Forer. Accessibility of
Tests for Individuals with Disabilities within a Validity Framework. System, 33(1):107–133,
2005. doi:10.1016/j.system.2004.11.002.

[27] V.-V. Helppi. Getting Started with KIF for Functional iOs UI Testing. Bit-
Bar. Retrieved January 10, 2021, from https://bitbar.com/blog/
getting-started-with-kif-for-functional-ios-ui-testing/.

[28] J. A. Krosnick. Survey Research. Annual Review of Psychology, 50(1):537–567, 1999.
doi:10.1146/annurev.psych.50.1.537.

[29] J. Lewkowicz. WWDC: Apple introduces new way to build UIs using Swift.
SD Times. Retrieved January 8, 2021, from https://sdtimes.com/apple/
wwdc-apple-introduces-new-way-to-build-uis-on-apple-using-swift/,
June 2019.

[30] S. Luján-Mora and F. Masri. Integration of Web Accessibility into Agile Methods. In ICEIS
2012 - Proceedings of the 14th International Conference on Enterprise Information Systems,
2012. doi:10.5220/0004095001230127.

[31] D. A. Mateus, C. A. Silva, M. M. Eler, and A. P. Freire. Accessibility of Mobile Applications:
Evaluation by Users with Visual Impairment and by Automated Tools. In Proceedings of
the 19th Brazilian Symposium on Human Factors in Computing Systems, IHC ’20, New
York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/3424953.
3426633.

[32] J. M. Mucha. Combination of Automatic and Manual Testing for Web Accessibility. Master’s
thesis, University of Agder, 2018. URL: https://uia.brage.unit.no/uia-xmlui/
handle/11250/2563326.

[33] U. Paz. Weaving Web Accessibility With Usability. Smashing. Retrieved Jan-
uary 13, 2021, from https://www.smashingmagazine.com/2020/11/
weaving-web-accessibility-usability/, November 2020.

[34] S. Sanchez-Gordon and S. Luján-Mora. A Method for Accessibility Testing of
Web Applications in Agile Environments. 7th World Congress for Software Quality
(WCSQ 2017). Lima, Peru., mar, 2017. URL: https://www.researchgate.net/
publication/318214191_A_Method_for_Accessibility_Testing_of_Web_
Applications_in_Agile_Environments.

[35] L. C. Serra, L. P. Carvalho, L. P. Ferreira, J. B. S. Vaz, and A. P. Freire. Accessibility
Evaluation of E-Government Mobile Applications in Brazil. Procedia Computer Science,
67:348–357, 2015. doi:10.1016/j.procs.2015.09.279.

[36] M. Shcheglov. UI Testing iOS Application with EarlGrey. On Swift Wings. Re-
trieved January 8, 2021, from https://www.onswiftwings.com/posts/
ui-tests-earlgrey/#:~:text=EarlGrey%20is%20a%20white%2Dbox,
maintain%20(no%20waiting%20clauses), May 2020.

https://github.com/kif-framework/KIF
https://github.com/kif-framework/KIF
https://doi.org/10.1016/j.system.2004.11.002
https://bitbar.com/blog/getting-started-with-kif-for-functional-ios-ui-testing/
https://bitbar.com/blog/getting-started-with-kif-for-functional-ios-ui-testing/
https://doi.org/10.1146/annurev.psych.50.1.537
https://sdtimes.com/apple/wwdc-apple-introduces-new-way-to-build-uis-on-apple-using-swift/
https://sdtimes.com/apple/wwdc-apple-introduces-new-way-to-build-uis-on-apple-using-swift/
https://doi.org/10.5220/0004095001230127
https://doi.org/10.1145/3424953.3426633
https://doi.org/10.1145/3424953.3426633
https://uia.brage.unit.no/uia-xmlui/handle/11250/2563326
https://uia.brage.unit.no/uia-xmlui/handle/11250/2563326
https://www.smashingmagazine.com/2020/11/weaving-web-accessibility-usability/
https://www.smashingmagazine.com/2020/11/weaving-web-accessibility-usability/
https://www.researchgate.net/publication/318214191_A_Method_for_Accessibility_Testing_of_Web_Applications_in_Agile_Environments
https://www.researchgate.net/publication/318214191_A_Method_for_Accessibility_Testing_of_Web_Applications_in_Agile_Environments
https://www.researchgate.net/publication/318214191_A_Method_for_Accessibility_Testing_of_Web_Applications_in_Agile_Environments
https://doi.org/10.1016/j.procs.2015.09.279
https://www.onswiftwings.com/posts/ui-tests-earlgrey/#:~:text=EarlGrey%20is%20a%20white%2Dbox,maintain%20(no%20waiting%20clauses)
https://www.onswiftwings.com/posts/ui-tests-earlgrey/#:~:text=EarlGrey%20is%20a%20white%2Dbox,maintain%20(no%20waiting%20clauses)
https://www.onswiftwings.com/posts/ui-tests-earlgrey/#:~:text=EarlGrey%20is%20a%20white%2Dbox,maintain%20(no%20waiting%20clauses)

94 REFERENCES

[37] C. Silva, M. M. Eler, and G. Fraser. A Survey on the Tool Support for the Automatic Evalua-
tion of Mobile Accessibility. In Proceedings of the 8th International Conference on Software
Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion,
DSAI 2018, pages 286–293, New York, NY, USA, 2018. Association for Computing Ma-
chinery. doi:10.1145/3218585.3218673.

[38] L. Steen-Hansen and S. Fagernes. The Importance of Process-Oriented Accessibility Guide-
lines for Web Developers. Studies in Health Technology and Informatics, 229:439–449,
2016.

[39] M.-L. Sánchez-Gordón and L. Moreno. Toward an Integration of Web Accessibility into
Testing Processes. Procedia Computer Science, 27:281–291, 2014. doi:10.1016/j.
procs.2014.02.031.

[40] W3C. Web Content Accessibility Guidelines WCAG 2.0. Retrieved January 2, 2021, from
https://www.w3.org/TR/WCAG20/, December 2008.

[41] W3C. Mobile Accessibility: How WCAG 2.0 and Other W3C/WAI Guidelines
Apply to Mobile. Retrieved January 2, 2021, from https://www.w3.org/TR/
mobile-accessibility-mapping/, February 2015.

[42] W3C. Web Content Accessibility Guidelines WCAG 2.1. Retrieved January 9, 2021, from
https://www.w3.org/TR/WCAG21/, June 2018.

[43] W3C. W3C Accessibility Standards Overview. Retrieved January 2, 2021, from https:
//www.w3.org/WAI/standards-guidelines/, April 2021.

[44] R. Whitaker. A11yUITests: An XCUI Testing Library for Accessibility. MobileA11y. Re-
trieved January 10, 2021, from https://mobilea11y.com/blog/a11yuitests/.

[45] World Health Organization. Global Data on Visual Impairment 2010. Retrieved Jan-
uary 10, 2021, from https://www.who.int/news-room/fact-sheets/detail/
blindness-and-visual-impairment.

https://doi.org/10.1145/3218585.3218673
https://doi.org/10.1016/j.procs.2014.02.031
https://doi.org/10.1016/j.procs.2014.02.031
https://www.w3.org/TR/WCAG20/
https://www.w3.org/TR/mobile-accessibility-mapping/
https://www.w3.org/TR/mobile-accessibility-mapping/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/WAI/standards-guidelines/
https://www.w3.org/WAI/standards-guidelines/
https://mobilea11y.com/blog/a11yuitests/
https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment
https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment

	Front Page
	Table of Contents
	List of Tables
	1 Introduction
	1.1 Context and Motivation
	1.2 Problem
	1.3 Objective
	1.4 Structure

	2 State of the Art
	2.1 Guidelines
	2.1.1 WCAG Mobile Guidelines
	2.1.2 BBC Mobile Accessibility Guidelines
	2.1.3 Guideline Coverage

	2.2 Processes
	2.3 Tools
	2.3.1 Apple’s Solutions
	2.3.2 Accessibility Testing Tools
	2.3.3 Tools Coverage

	2.4 Discussion

	3 Background
	3.1 iOS Vision Accessibility
	3.1.1 Zoom
	3.1.2 VoiceOver

	3.2 AppleVis
	3.2.1 Data Collection

	4 Proposed Classification
	4.1 Subject - iOS Bug Tracker
	4.2 Bug Tracker Extension
	4.3 Classification
	4.4 Data Analysis
	4.5 Discussion

	5 Validation
	5.1 Subject - iOS App Directory
	5.2 Experimental Setup
	5.3 Completeness Results
	5.4 Data Analysis
	5.5 Intuitiveness
	5.6 Questionnaire Results
	5.7 Discussion

	6 Conclusions
	6.1 Practical Contributions
	6.2 Theoretical Contributions
	6.3 Limitations
	6.4 Future Work

	A AppleVis Original Data
	B Bug Tracker Extension and Classification
	C App Directory Bugs and Respective Classifications
	D Questionnaire
	E Questionaire Correct Answers
	F Questionnaire Exact Binomial Test Results
	References

