
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Optimal Wheelchair Multi-LiDAR
Placement for Indoor SLAM

Paulo Rúben Alves Silva

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Professor Luís Paulo Gonçalves Reis

Co-Supervisor: Doutor Eurico Farinha Pedrosa

July 26, 2021

© Paulo Silva, 2021

Resumo

Com o objectivo de atingir navegação autónoma, têm sido desenvolvidos protótipos de cadeiras
de rodas inteligentes que tiram partido de recentes desenvolvimentos no campo da robótica móvel.
A implementação deste tipo de navegação, juntamente com métodos alternativos de controlo,
como por exemplo, comandos de voz e sinais cerebrais, expande a utilização deste tipo de equipa-
mento a pessoas que não são capazes de operar uma cadeira de rodas manualmente ou através de
controladores padrão. Neste contexto, o projecto Intellwheels 2.0 aparece como uma plataforma de
desenvolvimento de cadeira de rodas inteligentes com o fim de ser facilmente adaptada a qualquer
cadeira de rodas eléctrica comercial e ajudar qualquer pessoa com capacidades cognitivas e/ou
locomotoras limitadas, implementando diferentes métodos de controlo e navegação autónoma.

Uma das técnicas adaptadas do campo da robótica móvel está relacionada com o problema
SLAM, que é definido pela utilização de sensores como lasers e câmeras, instalados num robô,
para realizar um processo de localização e mapeamento simultâneo. Os algoritmos SLAM são,
normalmente, baseados em métodos probabilísticos e matemáticos, e distinguem-se entre si não só
pelos métodos que utilizam mas também pelo mapa que produzem. A forma como estas soluções
são implementadas reflecte-se, normalmente, no desempenho dos seus processos de localização e
mapeamento que, por sua vez, se reflecte nas capacidades autónomas de um robô.

Portanto, fazendo parte do projecto Intellwheels 2.0, uma parte desta dissertação foi dedi-
cada a explorar a integração de várias soluções populares de "open-source" 2D-SLAM, num mod-
elo de cadeira de rodas, e a analisá-las sob múltiplos cenários de navegação diferentes. O seu
desempenho foi analisado com a utilização de um número de métricas, uma centrada no erro local
gerado entre o verdadeiro movimento relativo da cadeira de rodas e o movimento relativo estimado
pela solução SLAM e outra baseada no erro entre a verdadeira posição global e a posição global
estimada pela SLAM da cadeira de rodas. Além disso, a drenagem computacional de cada uma das
soluções, durante cada experiência, foi analisada. A partir dos resultados obtidos, relativamente a
esta fase da dissertação, as soluções SLAM baseadas no uso de filtros de partículas ofereceram o
melhor desempenho, sob os cenários de navegação em que foram testadas.

A eficiência destas técnicas depende da combinação de robô, ambiente e sensores aos quais
é aplicada. Por isso, um aspecto importante é a colocação de sensores no próprio robô. Com
isto em mente, na segunda fase desta dissertação, foi desenvolvido um algoritmo de optimização,
baseado num algoritmo de optimização "steespest hill-climber". O principal objectivo aqui foi
encontrar a posição/configuração, num modelo de cadeira de rodas, de um ou vários sensores tipo
LiDAR, a fim de maximizar o desempenho de uma das soluções SLAM utilizadas na fase anterior.
Com os resultados obtidos, foi possível concluir sobre uma série de configurações diferentes que
alcançam um desempenho óptimo SLAM.

i

ii

Abstract

In order to achieve autonomous navigation, there have been developed intelligent wheelchairs
prototypes that take advantage of recent developments in the mobile robotics field. The implemen-
tation of this type of navigation, along with alternative control methods such as, voice commands
and brain signals, expands the usage of this equipment to people who are not capable of operating
a wheelchair manually or through standard controllers. In this context, the Intellwheels 2.0 project
appears as an intelligent wheelchair platform that strives to be capable of being easily adapted to
any commercial electric wheelchair, aiding any person with impairing cognitive and or locomotive
abilities by implementing different methods of inputs and autonomous navigation.

One of the techniques adapted is related to the SLAM problem, which is defined by the
usage of sensors like lasers and cameras, installed in a robot, to perform a process of simultaneous
localization and mapping. SLAM algorithms are, normally, based on probabilistic methods and
mathematics, and are distinguished between themselves not only by the methods they use but also
by the map they produce. The way these solutions are implemented is usually reflected in their
localization and mapping performance which, in turn, is reflected on the autonomous capabilities
of a robot.

Therefore, being part of the Intellwheels 2.0 project, a portion of this dissertation was ded-
icated to exploring the integration of a number of popular open-source 2D-SLAM solutions, on a
wheelchair model, and analyzing them under multiple different navigation scenarios. Their per-
formance was analysed by way of a number of metrics, one focused on the local error generated
between the true relative motion of the wheelchair and the relative motion perceived by the SLAM
solution and another based on the error between the true global position and the SLAM perceived
global position of the wheelchair. Furthermore, the computational resources consumption of each
of the solutions, during each experiment, was analysed. From the results gathered, regarding this
phase of the dissertation, the particle-filter based SLAM solutions offered the better performance,
under the navigation scenarios they were tested in.

The efficiency of these techniques is dependent on the combination of robot, environment,
and sensors to which it is applied to. So, an important aspect is the placement of sensors on the
robot itself. With this in mind, in the second phase of this thesis, an optimization algorithm, based
on a steepest-ascent hillclimber optimization algorithm, was designed. The main goal here was
to find the optimal sensor placement/configuration, on a wheelchair model, of one or multiple
LiDAR type sensors in order to maximize the performance of one of the SLAM solutions used
in the previous phase. With the results obtained, it was possible to conclude upon a number of
different configurations that achieve optimal SLAM performance.

iii

iv

Acknowledgements

I would like to first thank Prof. Luís Paulo Reis for the help given throughout this dissertation
and for providing me with the oportunity to work on the Intellwheels 2.0 project.

I would also like to thank Dr. Eurico Pedrosa for the vast knowledge he shared during this
dissertation and for going above and beyond in helping me complete it.

Finally, I express immense gratitude to my family and to all my close friends who have pro-
vided me with joy and laughter through these years of study in the city of Porto. This past year
(COVID) has made it very obvious how much I require these people around me and this work
would certainly have not been completed without them, so, again, a deep thank you to all of you.

Paulo Silva

v

vi

“Debugging is twice as hard as writing the code in the first place. Therefore, if you write the code
as cleverly as possible, you are, by definition, not smart enough to debug it.”

Brian W. Kernighan

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Context . 2
1.3 Goals and Contributions . 2
1.4 Document Structure . 3

2 Simultaneous Localization and Mapping 5
2.1 SLAM and Applications . 5
2.2 Mathematical Basis . 7
2.3 Common SLAM approaches . 10

2.3.1 Feature-Based SLAM . 11
2.3.2 Grid-Based SLAM . 12
2.3.3 Graph-Based SLAM . 14

2.4 Open Problems . 16
2.4.1 Robustness . 16
2.4.2 Scalability . 18
2.4.3 Map Representation . 19
2.4.4 Metric Map Models . 19
2.4.5 Semantic Map Models . 19

2.5 Optimal Sensor Placement . 20
2.5.1 Optimization Problems . 21

2.6 Summary . 26

3 Intelligent Wheelchairs 27
3.1 Common Characteristics . 28

3.1.1 Operating Modes . 29
3.2 Developed Prototypes . 29

3.2.1 Early Models . 29
3.2.2 Recent SLAM-based Models . 30

3.3 Multi-Robot Simulators . 35
3.4 Summary . 36

4 Simulation Environment 39
4.1 Intelligent Wheelchair Model . 40

4.1.1 Odometry Noise Modelling . 41
4.1.2 Sensors Used . 43

4.2 World Models . 45
4.3 2D SLAM Algorithms . 46

ix

x CONTENTS

4.3.1 Benchmarking Metrics . 48
4.4 Path Planning . 51

4.4.1 Cost maps . 52
4.4.2 Navigation Planners . 52
4.4.3 Goal Creation . 54

4.5 Optimization Process . 55
4.5.1 State Space . 57

4.6 Summary . 59

5 Experiments and Results 61
5.1 2D SLAM Analysis . 61

5.1.1 Exploration Circuits . 62
5.1.2 ROSBag Circuits . 68
5.1.3 Computational Resources Consumption 72

5.2 Optimal Sensor Placement . 74
5.2.1 Use Case 1: Single Sensor, Perimeter, FOV & Orientation 77
5.2.2 Use Case 2: Dual Sensors, Perimeter, FOV & Orientation 79
5.2.3 Use Case 3: Single Sensor, Perimeter, Limited FOV & Orientation 81
5.2.4 Use Case 4: Double Sensors, Perimeter, Limited FOV & Orientation . . . 83
5.2.5 Use Case 5: Single Sensor, Perimeter, FOV, Orientation & Range 84
5.2.6 Use Case 6: Dual Sensors, Perimeter, FOV, Orientation & Range 86

5.3 Summary . 89

6 Conclusion 91
6.1 Contributions . 92
6.2 Future Work . 92

References 95

List of Figures

2.1 Common robot localization approach [1] . 6
2.2 SLAM application Examples [2] . 7
2.3 Essential SLAM problem as described in [3] . 9
2.4 Full SLAM vs Online SLAM . 10
2.5 EKF-SLAM flowchart . 11
2.6 Grid-based SLAM mapping . 13
2.7 Graph-based SLAM . 15
2.8 3D points matching . 17
2.9 Semantic concepts examples . 20
2.10 Overview of VESPA framework [4] . 21
2.11 Classic salesman problem . 22
2.12 Objective function Vs state space . 23
2.13 Travelling salesman state (left) and neighbor (right) 23

3.1 Manual wheelchair . 28
3.2 Power wheelchair . 28
3.3 Intellwheels’ intelligent wheelchair . 28
3.4 FRIEND prototype . 30
3.5 NavChair prototype . 30
3.6 Tin Man I prototype . 30
3.7 IW developed in [5] . 31
3.8 IW sensor placement in [6] . 32
3.9 Different Intellwheels modules [7] . 33
3.10 Intellwheels MAS architecture [7] . 34
3.11 Intellwheels MR simulator architecture [7] . 35

4.1 Gazebo wheelchair model . 40
4.2 Real-world wheelchair model . 40
4.3 Wheelchair model TF tree . 42
4.4 Ground truth Vs noisy odometry example . 44
4.5 RPLiDAR sensor model . 44
4.6 Laser scan rviz representation . 44
4.7 Intel Research Lab model (left) & dataset (right) 46
4.8 ACES Building model (left) & dataset (right) 46
4.9 Univ. of Freiburg Building 079 model (top) & dataset (bottom) 46
4.10 Small room model . 47
4.11 Relative motion error effect [8] . 49
4.12 Navigation stack diagram . 52

xi

xii LIST OF FIGURES

4.13 Cost map of small room world model . 53
4.14 Navigation planners - local (red) & global (blue) 54
4.15 Frontier-based exploration example . 55
4.16 Explorer lite architecture . 55
4.17 Sensor placement wheelchair perimeter . 58
4.18 Sensor side position (1.30,90,180,20) . 58

5.1 Sensor position for SLAM comparison . 62
5.2 Sensor scan example for SLAM comparison . 62
5.3 SLAM Vs ground truth Vs odometry paths in Frei079 during exploration circuit . 63
5.4 SLAM Vs ground truth Vs odometry paths in Intel during exploration circuit . . 64
5.5 SLAM Vs ground truth Vs odometry paths in ACES during exploration circuit . . 64
5.6 Gmapping map generated in Frei079 during exploration circuit 66
5.7 Karto SLAM map generated in Frei079 during exploration circuit 66
5.8 Intel maps generated during exploration circuit 66
5.9 ACES maps generated during exploration circuit 67
5.10 SLAM Vs ground truth Vs odometry paths in Frei079 during ROSbag circuit . . 68
5.11 SLAM Vs ground truth Vs odometry paths in Intel during ROSbag circuit 69
5.12 SLAM Vs ground truth Vs odometry paths in ACES during ROSbag circuit . . . 69
5.13 Frei079 maps generated during ROSbag circuit 71
5.14 Intel maps generated during ROSbag circuit . 71
5.15 ACES maps generated during ROSbag circuit 72
5.16 Computational resources used by SLAM solutions in Frei079 73
5.17 Computational resources used by SLAM solutions in Intel 74
5.18 Computational resources used by SLAM solutions in ACES 74
5.19 Optimization loop circuit (Red Line) . 76
5.20 Benchmark metric results fluctuation between hillclimber iterations 76
5.21 Optimization circuit generated map (left figure) & path comparisons (right figure)

with benchmarking result of 10.1 . 77
5.22 Optimization circuit generated map (left figure) & path comparisons (right figure)

with benchmarking result of 14.2 . 77
5.23 All hillclimber results from use case 1 . 78
5.24 Sensor configurations with a benchmarking metric result below 13 in use case 1 . 78
5.25 Top 4 sensor positions/configurations in use case 1 79
5.26 All hillclimber results from use case 2 . 80
5.27 Sensor configurations with a benchmarking metric result below 10 in use case 2 . 80
5.28 Top 6 sensor configurations in use case 2 . 81
5.29 All hillclimber results from use case 3 . 82
5.30 Sensor configurations with a benchmarking metric result below 13 in use case 3 . 82
5.31 Top 6 sensor configurations in use case 3 . 83
5.32 All hillclimber results from use case 4 . 84
5.33 Sensor configurations with a benchmarking metric result below 10 in use case 4 . 84
5.34 Top 6 sensor configurations in use case 4 . 85
5.35 All hillclimber results from use case 5 . 86
5.36 Sensor configurations with a benchmarking metric result below 13 in use case 5 . 86
5.37 Top 6 sensor configurations in use case 5 . 87
5.38 All hillclimber results from use case 6 . 88
5.39 Sensor configurations with a benchmarking metric result below 10 in use case 6 . 88
5.40 Top 6 sensor configurations in use case 6 . 89

List of Tables

4.1 Sensor placement state space . 58
4.2 Sensor placement state space step size . 59

5.1 Relative motion metric results of the exploration circuits 65
5.2 Global position metric results of the exploration circuits 65
5.3 Relative motion metric results of the ROSbag circuits 70
5.4 Global position metric results of the ROSbag circuits 70

xiii

xiv LIST OF TABLES

Abreviaturas e Símbolos

IW Intelligent Wheelchair
PW Power Wheelchair
SLAM Simultaneous Localization and Mapping
iSAM Incremental Smoothing and Mapping
RBPF Rao-Blackwellized Filter
SIS Sequential Important Sampling
IMU Inertial Measurement Unit
IEEE Institute of Electrical and Electronics Engineers
RANSAC Random Sample Consensus
LIDAR Light Detection And Ranging
ROS Robotic Operating System
VO Visual Odometry
EKF Extended Kalman Filter
RGB Red Green Blue
VINS Visual Inertial Navigation System
RTAB Real-Time Appearance-Based Mapping
GPS Global Positioning System
LIAAC Laboratório de Inteligência Artificial e Ciência de Computadores
FEUP Faculdade de Engenharia da Universidade do Porto
RD Research and Development
MR Mixed Reality
XML Extensible Markup Language
SDF Simulation Description Format
URDF Unified Robot Description Format
YAML Yet Another Markup Language
API Application Programming Interface
LaMa Localization and Mapping
IRIS Intelligence Robotics and Systems
FOV Field of View
CPU Central Processing Unit
RAM Random Access Memory
PF Particle Filter
GB Gigabytes
APP Application

xv

Chapter 1

Introduction

1.1 Motivation

Currently, it is estimated that about 10% to 15% of the world population (1 billion people),

experience some kind of physical disability [9]. In this number, about 10% of all disabled people,

experience lower limb dysfunctions and require a wheelchair to move around [10]. These can be

caused by factors such as aging, accidents, wars, and various medical conditions and diseases that

affect a person’s movement such as multiple sclerosis, cerebral palsy, ataxia, dystonia, etc.

Today’s society is increasingly worried about developing methods and technologies that re-

turn autonomous and independent behavior to disabled and/or elderly citizens and, even though

the classic wheelchair and power wheelchairs have partially fulfilled this need, the increasing de-

velopment of autonomous technologies - in the last decade not only have computers and sensors

gotten faster but they have become cheaper and smaller - allowed for the introduction of a more

advanced type of wheelchair, the Intelligent Wheelchair (IW).

This equipment should fulfill the following needs: Localization, safe navigation avoiding ob-

stacles, intelligent interface - easy and adaptable to the user - and communication with other

devices. These needs can be included in one major domain in the autonomous vehicles industry,

specifically, autonomous navigation. Over the last few decades, IW prototypes have managed to

implement a number of autonomous navigation capabilities, ranging from simple obstacle avoid-

ance systems to much more complex path planning technologies. The most recent prototypes

have made use of simultaneous localization and mapping (SLAM) solutions fully expanding IW’s

capabilities to full autonomous navigation systems. Like a big chunk of autonomous navigation

technologies, SLAM solutions, specifically 2D SLAM, are reliant on data gathered by laser scan

rangers to perform their mapping and localization processes, which is itself influenced by both

the capabilities and the placement of said sensors. The latter is especially important in robotic

systems where the available footprint for placing the sensors is limited by either the robot frame

or the robot’s purpose.

This dissertation is then focused on studying and comparing different open-source 2D SLAM

solutions by using a benchmarking metric that should then be applicable in a standard optimiza-

1

2 Introduction

tion algorithm focused on maximizing the performance of said SLAM solutions, by searching for

the optimal placement/configuration of the laser scan rangers that are used, in an IW frame. The

framework developed to achieve this is part of the Intellwheels 2.0 project, which is a platform for

developing IW prototypes and researching multiple topics surrounding this concept.

1.2 Context

The Intellwheels 2.0 project, an iteration of the previous project, Intellwheels 1.0, has been

carried out by researchers from the Universities of Porto and Aveiro, alongside three additional

companies with experience in the areas of medical informatics, simulation and serious games, and

assistive equipment, with emphasis on wheelchairs. This project will follow its previous iteration

by consolidating its respective innovative ideas and developing four fully functional products:

• IW framework/kit, which allows for the transformation of different types of commercial

wheelchairs into IWs, with minimum hardware changes, reduced costs, and low visual and

ergonomic impact. It will include all hardware and software, specific to the robotics area, to

solve the problems of sensing, mapping, localization, control, navigation, and planning on

a wheelchair.

• A realistic virtual reality IW simulator, with a 3D interface, that includes three instructional

serious games with the intent to train the user on how to control the wheelchair.

• A totally configurable interface that is adaptable to the special needs of the user.

• Complete IW prototypes with the above features included.

1.3 Goals and Contributions

While there has been much research done on comparing different SLAM solutions in different

scenarios, there does not seem to be any publicly available investigations regarding the maximiza-

tion of the performance of said solutions by altering the placement of the sensors used to perform

SLAM. With this in mind, this dissertation strives to offer a step in the exploration of this topic,

with a few goals being set:

• Gather knowledge of the SLAM concept, the different types of solutions, and the problems

associated with it, along with a general study on the different IW prototypes that employ

this concept.

• Develop a simulation environment that includes:

– Multiple SLAM solutions integrated into the previously developed wheelchair model

and navigation stack.

1.4 Document Structure 3

– An odometry noise model that adds sufficient noise to distinguish the performance

between the different SLAM solutions.

– Distinct indoor environments that are identifiable by the robotics community.

– A benchmarking metric capable of accurately representing SLAM performance.

– A steepest-ascent hillclimber adapted to the simulation environment created that tries

to maximize SLAM performance by changing laser scan rangers configurations and/or

placement around the wheelchair model.

• Compare the 2D SLAM solutions in the indoor environments developed using the bench-

marking tool.

• Apply the optimization algorithm considering different variables regarding the placement/configurations

of the sensor(s).

1.4 Document Structure

The first chapter corresponds to chapter 2, and it comprises of the description of the navigation

problem that will be tackled in this dissertation, namely, what actually defines this problem both

theoretically and mathematically, and why it is important to solve the problem. It contains some

examples of the state-of-the-art solutions to the SLAM problem and a short taxonomy of the issues

that still remain unsolved. Additionally, research on optimal sensor placement techniques, applied

in similar fields, is offered, specifically, the application and adaptation of optimization algorithms.

The following chapter, chapter 3, offers a definition of the intelligent wheelchair concept along

with a description of state-of-the-art prototypes developed in the market, focusing on the ones

that have employed SLAM algorithms. A detailed description of the project Intellwheels is also

included. In chapter 4 the simulation enviroment developed is described in detail while in chapter

5 the results of the experiments made are displayed and discussed.

Finally, chapter 6 states the conclusions and contributions made during the development of

the dissertation and offers a quick view into the possible future work and improvements on the

research conducted.

4 Introduction

Chapter 2

Simultaneous Localization and
Mapping

In the modern era, intelligent mobile robots are often used to autonomously achieve various

tasks like material transportation, surveillance duties, space exploration, etc. To accomplish this,

a robot must be able to freely navigate dynamic and/or static environments.

For a robot to correctly perform this navigation, it must be able to localize itself in an en-

vironment. Consequently, to achieve localization, a map of the environment must be provided. If

the robot has access to a prior map, the localization problem, usually, becomes much simpler by

taking advantage of commonly used sensors such as wheel encoders and IR sensors, to keep track

of its movement and compare its visual measurements to the pre-existing map. However, if no

prior map is provided, a robot must then be able to explore the environment and execute a process

of mapping, using visual sensors (sonar sensors, LIDAR sensors, cameras). The issue here is that,

for a robot to perform mapping it needs to know its position, and for a robot to perform localization

it needs access to a map. In the robotics community, this problem is referenced to as Simultane-

ous Localization and Mapping or, SLAM. As the name suggests, it deals with methods that are

used in the autonomous robots industry that allow them to perform mapping while simultaneously

localizing themselves within said map.

2.1 SLAM and Applications

Localization is one of the main pillars supporting robot navigation. Robot localization often

involves identifying the absolute position of a robot with respect to its target environment. The

environment highly conditions the localization methods that are able to be used. If one could attach

an accurate GPS (global positioning system) sensor to a robot, most of the localization problem

would be solved. However, as we know, modern GPSs can only be used outdoors and, even when

used outside, they still may have errors in the range of several meters. To mitigate this, a robot

is often fitted with sensors that offer it some kind of perception of the world and of the state of

the robot. Sensors like wheel encoders, IMUs, and compasses supply the robot with information

5

6 Simultaneous Localization and Mapping

about its movement while laser range finders, cameras, and other visual sensors, offer insight into

the surrounding environment.

Typically, if a map is provided, the robot can estimate its position, in reference to the map,

by using information about its own movement and then performing corrections on this positioning

by comparing its perception with the given map (figure 2.1) This is typically done with methods

such as landmark Kalman Filter Localization or Monte Carlo Localization [1].

Figure 2.1: Common robot localization approach [1]

However, if no prior map is provided the robot must be able to build one. This process is

called mapping. Mapping is a discipline related to computer vision and it stands for the ability to

construct a map using the robot’s perception of a given environment. Mapping can either be done

in 2D using, for example, an IR sensor or, in 3D, using cameras or 3D IR sensors. Additionally,

there are several ways to represent this map, which are further discussed in the following sections.

This mapping cannot be separated from the localization process. If we can’t locate our robot while

mapping is being performed, it would be impossible to correlate different observations made at

different locations.

These two concepts, localization and mapping, are deeply connected, which is why SLAM

is such a complicated problem to solve.

Finding a solution to the SLAM problem is an important basis for extending the variety of

robotic applications. Currently, mobile robots are already being used in many different situations,

respectively:

• At home: vacuum cleaners, lawnmower;

• Airborne: Surveillance with aerial vehicles;

• Underwater: Reef monitoring;

2.2 Mathematical Basis 7

Figure 2.2: SLAM application Examples [2]

• Underground: Mine exploration;

• Space: Terrain mapping and exploration;

As a very simple example, we can look at early models of autonomous vacuum cleaners.

They would only employ sensors to avoid obstacles or inaccessible areas like stairs while moving

through an area at random, within a certain amount of time, in hopes of guaranteeing they have

cleaned the whole area they’ve been assigned to [11]. While this is a solution for this problem, it

is very limited in its success as a lot of power is wasted since the robot would often end up visiting

already cleaned areas due to the inability to track its own position. Currently, modern models are

now able to employ SLAM technologies giving the robot the ability to map rooms and keep track

of its position in said rooms making them more efficient and truly making them autonomous in

the completion of their task [12].

Through this example it is possible to see why the solution to the SLAM problem is seen

in the mobile robotics community as the "holy grail" [3] and, while it has been solved in a vast

number of different set environments, there still remain many questions, such as how to develop a

more general SLAM solution and also in how to build detailed and semantic rich maps.

2.2 Mathematical Basis

Usually, in a SLAM problem, we have a robot that is equipped with a combination of propri-

oceptive (visual, laser, etc.) and exteroceptive sensors (wheel encoders, IMUs, etc) and, using

these, we try to estimate the robot’s pose (position and orientation) and build a representation of

its surrounding environment [3]. Let’s consider a mobile robot, equipped with a laser sensor and

8 Simultaneous Localization and Mapping

wheel encoders, moving through an environment and taking measures of surrounding landmarks -

typically walls and other day-to-day objects. In this situation, we want to know the position of our

robot (equation 2.1) and the map of the surrounding environment (equation 2.2), given observa-

tions made by our IR sensor (equation 2.3) and the movement of our robot returned by the wheel

encoders (equation 2.4).

Mathematically, we can define the following sets that include, until time constant t, the

vector pose of the robot, xt , the vector control actions applied to the robot, ut , the vector containing

locations of the ith landmarks, mi, and, finally, the vector containing the observations of the ith

landmark at time t, zt .

Wanted

• Path of the robot

X0:t = {x0,x1, ...,xt}= {X0:t−1,Xt} (2.1)

• Map of the landmarks

m = {m1,m2, ...,mn} (2.2)

Given

• Landmark observations

Z0:t = {z0,z1, ...,zt}= {Z0:t−1,Zt} (2.3)

• Robot’s control inputs

U0:t = {u0,u1, ...,ut}= {U0:t−1,Ut} (2.4)

Most onboard sensors used in the mobile robotics industry have some kind of accumulative

error associated with their measurements so we must not assume we know the exact position of the

elements and, instead, make an estimation of these. With these errors, uncertainty has to be associ-

ated with every measurement and every robot position. To represent this, in figure 2.3 we can see

that every robot position (triangle) x and landmark position (star) m is represented by two figures.

To name a few of these error sources, they can be caused by wheel slippage and poor calibration of

kinematic models due to inaccurate measurement of the robot’s characteristics (distance between

wheels, the diameter of wheels, etc) affecting the measurements taken by encoders [13], noise

populated readings in lasers [14], camera lens distortion in visual sensors [15] and many others.

Therefore, to perform these estimations we usually employ a number of probabilistic methods.

Probabilistic Framework

First introduced in the 1986 IEEE Robotics and Automation Conference, the description of

the SLAM problem with probabilistic tools is used in most types of SLAM algorithm developed.

2.2 Mathematical Basis 9

Figure 2.3: Essential SLAM problem as described in [3]

In the probabilistic form, solving SLAM now consists of estimating the posterior probability of

the state of the robot x and the map of the landmarks m given all the sensor measurements z0:t , all

the control inputs u0:t and the initial position of the robot, x0 at every time constant t.

p(x,m|z0:t ,u0:t ,x0) (2.5)

Note here that no mention was made of when the robot pose is calculated. This is because we

must first distinguish between two types of SLAM, full SLAM, and online SLAM. Full SLAM

computes the whole trajectory of the robot, x0:t , along with the map of the environment.

p(x0:t ,m|z0:t ,u0:t ,x0) (2.6)

On the other hand, online SLAM is a subset of the above solution as it only computes the

posterior of the robot’s current pose along with the map.

p(xt ,m|z0:t ,u0:t ,x0) (2.7)

This is done by recursively integrating, tth−1 number of times, the data from the full SLAM

approach, which allows the discarding of past pose information of the robot.

p(xt ,m|z0:t ,u0:t ,x0) =
∫ ∫

...
∫

p(x0:t ,m|z0:t ,u0:t ,x0)dx0,dx1...dxt−1 (2.8)

In any case, to compute these probabilities we need to define the motion and observation

10 Simultaneous Localization and Mapping

Figure 2.4: Full SLAM vs Online SLAM

models of our robot of choice since both of these depend on its on-board sensors. The motion

model of a robot is the probability distribution of the current position xt given the past position

xt−1 and the control input ut .

p(xt |xt−1,ut) (2.9)

Similarly, the observation model is the probability distribution of making an observation zt

given the current robot position xt and the state of the map m.

p(zt |xt ,m) (2.10)

For a more detailed explanation of how these probabilistic methods work please refer to [16].

2.3 Common SLAM approaches

Other than the distinction made on 2.2 between full SLAM and online SLAM there are many

subsets of these approaches to the SLAM problem. Usually, on a general level, we can differ-

entiate between SLAM algorithms by the way that they solve the posterior probabilistic problem

but also by how they represent the solution, specifically, by how the map is built and presented.

As theorized in [17], the metric representation that is chosen for SLAM is very important as it

impacts many other surrounding aspects such as long-term navigation, physical interaction with

the environment, and human-robot interaction.

Generally, mapping in the SLAM context is either done in 2D or 3D. The most prominent

representations are feature-based maps and occupancy grids and they are also by far the most ma-

ture representations having recently been released a standardization for these two by the IEEE RAS

Map Data Representation Working Group. Aside from them, graph-based portrayals, topological

mapping and semantic mapping are types of mapping still in their infancy, in terms of research,

but are quickly becoming state-of-the-art solutions. The concept of mapping is later discussed in

section 2.4.3.

2.3 Common SLAM approaches 11

Figure 2.5: EKF-SLAM flowchart

2.3.1 Feature-Based SLAM

Feature-based SLAM or, as it also is recognized, landmark-based mapping, is by far the most

widespread approach to mapping in the mobile robotics industry, and it is based on using sensor

measurements to identify landmarks and build a map with the location of said landmarks.

2.3.1.1 EKF-SLAM

As mentioned in 2.2 there is always an error associated with the measurements taken by our

robot’s sensors. In a situation where we have access to our robot’s odometry along with sensor

measurements of the surrounding environment, we may implement an algorithm that recursively

makes corrections to the robot’s state space based on comparing the measurements by these two

types of sensors. In this context, the usage of the Extended Kalman Filter in a SLAM system, is

one of the most common solutions and it works by implementing a recursive process of prediction

(robot moves) and correction (robot measures). In figure 2.5 we have a simple flowchart describing

the whole process.

12 Simultaneous Localization and Mapping

Whenever we receive a measurement from the odometry sensors we make a prediction about

our state space, as per equations 2.11 and 2.12, where f (xt−1,ut) and h(xt ,m), stand as our motion

model and observation model, respectively, and wt and vt are our, previously mentioned, additive

errors which, in this context, are represented by zero-mean Gaussian noises related to each sensor.

P(xt |xt−1,ut) ⇐⇒ xt = f (xt−1,ut)+wt (2.11)

P(zt |xt ,m) ⇐⇒ zt = h(xt ,m)+ vt (2.12)

On the other hand, whenever we receive measurements about the environment (in the case of

this flowchart, from an IR sensor), we check to see if the landmark measurement has already been

mapped or not. If it hasn’t, we use this observation to update the map, but if it has, we use it to

correct our current state space of the robot. This step of checking if the surrounding environment

has been mapped or not is called, Data Association and stands as one of the most important phases

in any SLAM algorithm, later described in section 2.4.1.1.

Overall, the EKF-SLAM solution has been deeply studied and applied resulting in similar

benefits and problems as the standard EKF solutions to navigation. Since EKF-SLAM employs

linearized models of nonlinear motions and observation models, this solution can still lead to un-

expected results. On top of that, the EFK correction step requires that all landmarks be updated

whenever there is a new observation. As expected, this leads to a massive computational require-

ments growth as the landmarks keep increasing in number, having already been a lot of effort put

in to develop efficient variants that avoid this problem [18]. Finally, this solution typically has

problems with incorrect association of observations to already existing landmarks. EKF-SLAM

is especially vulnerable to this problem since it employs Stochastic Mapping, which provides

metrically accurate navigation but, since it incorporates no other information other than distance

measurements, data association becomes particularly hard [19].

2.3.2 Grid-Based SLAM

As the name suggests, grid-based SLAM divides the created map into small individual areas,

usually squares. These squares can either be filled, empty, or partially filled, representing the state

of occupancy of the grid in that location. Comparatively, grid-based algorithms tend to require a

higher computational effort than the landmark-based approaches mentioned in the previous sec-

tion, however, they are able to represent arbitrary locations and provide detailed representations,

while feature-based mapping methods are preferred because of their lower-resource requirements

[20]. One of the most common algorithms developed using Grid-Based SLAM is GMapping and

it uses a concept known as particle filtering.

2.3 Common SLAM approaches 13

Figure 2.6: Grid-based SLAM mapping

2.3.2.1 GMappping

Instead of focusing on improving the performance of EKF, GMapping takes a different approach

to the recursive probabilistic problem. The main basis of the technology is particle filtering, and it

consists of the estimation of internal states in dynamic systems from observations made, consid-

ering random perturbations present in sensors and in the environment itself. The advantage here

is that these perturbations are not considered to be exclusively Gaussian.

GMapping uses an improved adaptation of the standard particle filter, the Rao-Blackwellized

Filter (RBPF) [21]. The usage of RBPF allows for the splitting of the aforementioned joint state

posterior probability into two separate posterior probabilities, one regarding the path of the robot

and another regarding the map, as seen in equation 2.13.

p(x0:t ,m|z0:t ,u0:t) = p(x0:t |z0:t ,u0:t)p(m|z0:t ,u0:t) (2.13)

Thus, the essential structure of GMapping, is an RBPF state, where the trajectory of the

robot is represented by weighted particles and the map is computed analytically. Our joint state

then becomes represented by the following set:

{w(i)
t ,x(i)0:t ,P(m|x

(i)
0:t ,z

(i)
0:t}

N
i (2.14)

Each particle has its own map - in this case, a grid-based map - predicted using the robot’s

measurements z0:t and the trajectory x0:t corresponding to each particle. The actual particle filter-

ing algorithm is based on the popular Sequential Important Sampling (SIS) [22]. At each time step

t, particles are drawn from a proposal distribution π(xt |x0:t−1,z0:t) which is an approximation of

the actual distribution P(xt |x0:t−1,z0:T). The samples are then given importance weights according

to the error between these two distributions. This error increases over time which will increase the

variation between existing sample weights, where the particles that have the least discrepancy will

have the higher the weights and vice-versa. A resampling step then occurs reinstating the uniform

sampling.

14 Simultaneous Localization and Mapping

The general form of an RBPF particle for SLAM is divided into 4 steps and works as follows

[3]. Assuming that at a time t−1 our joint state is represented by {w(i)
t−1,x

(i)
0:t−1,P(m|x

(i)
0:t−1,z

(i)
0:t−1}N

i .

1. Sampling: Obtain our set of particles {xt}i by sampling from the distribution:

x(i)t ∼ π(xt |x(i)0:t−1,z0:t ,ut) (2.15)

2. Importance Weighting: Weight samples according to the importance function:

w(i)
t = w(i)

t−1
P(zt |x(i)0:t ,z0:t−1)P(x

(i)
t |x

(i)
t−1,ut)

π(xt |x(i)0:t−1,z0:t ,ut)
(2.16)

where the numerator is both the observation and motion model, respectively.

3. Resampling: Done by selecting particles, with replacement, from the set {x(i),w(i)}i=0,...,N ,

including their associated maps, where the probability of each particle being picked is pro-

portional to the their weight w(i)
t . The selected take on a uniform weight, w(i)

t = 1/N.

4. Map Estimation: For each particle x(i)t , perform an update of the map m(i)
t according to

p(m(i)
t |x

(i)
0:t ,z0:t).

It should be noted that when to perform the resampling step is still an open problem, not only

for this algorithm but for most others that use the RBPF filter. Some implementations of GMapping

resample at every time-step, others after a fixed number of time-steps, and others once their weight

variance exceeds a threshold. We can see that each variation looks to decrease the number of

resampling steps which consequently reduces the computational effort of the algorithm. Another

big problem for particle filtering based SLAM encompasses the number of particles that are used

in each sampling cycle. Typically, A high number of particles will result in better performance,

however, it will also lead to higher computational requirements. To diminish this effect, GMapping

and many other RBPF algorithms, introduce an additional action before the filtering process called

scan-matching, which is a method that can efficiently estimate the rigid transformation of a robot

between two poses [23]. This allows the algorithm to take into account the last reading when

creating a new particle, and to have a much more precise estimate of the evolution of the system

decreasing the number of particles created.

2.3.3 Graph-Based SLAM

This method revolves around building a graph whose nodes represent the robot’s poses and the

landmarks observed. These nodes are then connected through constraints that are either sensor

measurements or odometry commands. However, as discussed before, these measurements are

often populated with errors so, once a final graph is built, we try to find the best configuration

of nodes that is consistent with the measurements taken, which involves solving a complex error

minimization problem [24]. Thus, graph-based SLAM can be divided into two tasks:

2.3 Common SLAM approaches 15

1. Graph-Construction: Building the graph from the raw sensor measurements;

2. Graph-Optimization: Determining the most likely configuration of the poses given the edges

of the graph.

This approach is actually quite old, having been introduced in 1997 [25]. Despite this, it took

several years for this formulation to become popular due to the high complexity of the minimiza-

tion problem that this solution is based on. With recent developments in the sparse linear algebra

field, the problem at hand has been optimized to the point where graph-based SLAM methods

have undergone a renaissance, and currently belong to the state-of-the-art techniques with respect

to speed and accuracy.

Figure 2.7: Graph-based SLAM

Let x = (x1, ...,xt)
(t) be a vector of our robot poses and zi j and Ωi j be our mean and informa-

tion matrix of our virtual measurements, computed by our observation model p(zt ,xt ,m), between

node i and j, respectively. These virtual measurements are seen as a possible transformations that

makes the observation acquired at time i maximally overlap with the observation at time j. Addi-

tionally, let z̄(xi,x j) be the prediction of the virtual measurement given the nodes xi and x j, the log

likelihood li j of a measurement zi j will be:

li j ∝ [zi j− z̄(xi,x j)]
t
Ωi j[zi j− z̄i j(xi,x j)] (2.17)

With this in mind, e(xi,x j,zi j) will be the function that computes the error between the ex-

pected observation z̄i j and the real observation zi j gathered by the robot. Finally, the goal of this

SLAM approach is to find the configuration of nodes x∗ that minimizes the negative log-likelihood

F(x) of all the observations.

F(x) = ∑
(i, j)

et
i jΩi jei j (2.18)

16 Simultaneous Localization and Mapping

Therefore, we are looking to compute the following equation:

x∗ = argmin
x

F(x) (2.19)

What differentiates many of the graph-based SLAM algorithms is the technique used to

minimize the function described in equation 2.18. As an example, we have GraphSLAM [26]

that applies variable elimination techniques to reduce the dimension of the problem and the work

done in iSAM [27], that presents an online version of this method, exploiting partial reorderings

to compute the sparse factorization.

2.4 Open Problems

The question, "is SLAM solved?" is often asked within the robotics community. This is quite

a difficult question to answer as SLAM has become a very broad topic and it is used in a great

number of different robot/environment/performance combinations and while, for some of these,

there have been developed quite satisfactory solutions, there still remain many combinations that

require a substantial amount of research.

For instance, as mentioned in section 2.1, the problem regarding a small vision-based slow-

moving robot in a home environment has largely been solved. Another example of a solved prob-

lem is NASA’s Mars Rovers, which are, used outside of a home environment. On the other hand,

when we flip this combination, namely, a fast vision-based robot in a highly dynamic environment,

current SLAM algorithms still lead to undesirable results. In this section, we will distinguish some

of the issues that are still prevalent in the SLAM world, namely, open problems dealing with the

Robustness, Scalability, and Map Representation of modern SLAM technologies.

2.4.1 Robustness

There are two main aspects that contribute to the fragility of a SLAM system, particularly,

the hardware associated with it or the algorithm used. The first usually comes from inaccurate

sensor measurements and hardware degradation, while, the second, is an outcome of limitations

in the mathematical methods used to design the algorithm. Addressing these issues is key to

designing a long-term robust SLAM system that no longer needs to make strict assumptions about

the environment and can fully rely on its on-board sensor capabilities.

2.4.1.1 Data Association

One of the main sources of algorithmic failures is data association. As mentioned in section

2.3.1.1, this is a prevalent phase in all SLAM algorithms, where sensor measurements are matched

with previous measurements taken. The presence of unmodeled dynamics in an environment,

say, different weather conditions, and also the false assumption that the world is always static

makes data association especially hard, as these variables often lead to incorrect associations or

the rejection of accurate measurements.

2.4 Open Problems 17

Figure 2.8: 3D points matching

Data association from a short-term perspective is the easiest to tackle. This is the case for

visual odometry, where a robot estimates its velocity through the association of data (pictures)

acquired from a visual sensor in a short time frame. If the camera has a high enough frame-rate

compared to the dynamics of the robot we can easily track corresponding features between frames

[28] resulting in reliable tracking. Unfortunately, data association in a long-term scenario is much

more challenging, involving the process of loop closure which in itself is divided into two main

phases, detection and validation. Regarding detection, previous methods of detecting features

in current data and simply matching them with previous features have become quite inefficient.

Currently, Bag-of-Words models [29] are used to avoid this previous unruliness as they enable

the quantification of feature spaces which provides more efficient searches. Beyond this, these

models have been further optimized [30, 31] to be able to deal with environmental variations

such as illumination. The loop closure validation phase consists of supplementary measures that

are taken to guarantee the quality of the loop closure. Again, considering visual-based systems,

RANSAC algorithms are commonly used for geometric verification and outlier rejection [28].

Despite this effort, it is still unavoidable that wrong loop closures occur. This can severely

compromise our map estimate and, in order to deal with this problem, recent lines of research

have proposed various techniques [32, 33]. Other than data association there still remain a few

open problems requiring further research [17]:

Failsafe SLAM and recovery: Because most SLAM techniques are based on iterative op-

timization two main issues are established. First, the outlier rejection outcome is highly reliant

on the initial guess provided to the iterative process and second, the inclusion of a single outlier

heavily degrades the estimation capability of a SLAM algorithm. Ideally, our system should be

aware that these failures might occur and be able to recover from the inclusion of these outliers.

Currently, there are no SLAM implementations that deal with this.

Hardware failure detection: The failure and degradation of our hardware due to aging,

malfunctions, and malpractice is undoubtedly unavoidable and results in inaccurate measurements

which obviously affect our SLAM performance. Naturally, questions of how our system can

autonomously detect this degradation are crucial in the development of long-term reliable SLAM

technologies.

18 Simultaneous Localization and Mapping

Deformable maps: As mentioned before, most SLAM methods work under the assump-

tion that the environment surrounding the system is static and rigid. However, as we know, the

real world is non-rigid and dynamic. An ideal SLAM solution should be able to identify these

dynamics and be able to generate "all-terrain" maps in real-time.

Automatic Parameter Tuning: This is a crucial step for a SLAM system to be able to adapt

to arbitrary scenarios since most of these require extensive parameter tuning to achieve satisfiable

performance in a given scenario. To achieve true autonomous behavior, the SLAM system should

be able to perform this tuning automatically.

2.4.2 Scalability

As mentioned before, the SLAM problem has been successfully solved for most indoor appli-

cations, however, in many other endeavors, robots must be able to operate for a prolonged period

of time over areas of a larger scale. Accordingly, the information gathered by our SLAM system.

represented, in the case of a graph-based SLAM system explained in section 2.3.3, by the number

of nodes and edges, can grow unbounded due to the long-term exploration cycles associated with

these prolonged scenarios. Since the computational time and memory available is bounded to our

robot’s resources, it’s important to design SLAM methods that also fixate the computational and

memory requirements within the bounds set by the hardware being used.

The most recent methods aimed at reducing the scope of this problem, still with a factor-graph

based approach in mind, focus on reducing the complexity of factor graph optimization using

sparsification methods that are mostly focused on decreasing the number of nodes and edges added

to the system. Other more non-conventional methods like parallel SLAM split the computation and

memory effort among multiple processors. These approaches are often mentioned as sub mapping

algorithms. An example of this is [34], which proposes a hierarchy of sub-maps. Specifically,

whenever an observation is acquired at the highest level then only the sub-maps that are affected

by this change are altered. Another solution to mapping a large scale environment is to use multiple

robots doing SLAM, dividing the scenario into smaller areas, each one of them being mapped by

a different robot.

Despite these efforts to reduce the complexity of SLAM systems, there still remain some

unexplored areas when it comes to this issue [17], namely:

Map Representation: How to efficiently store a map, even when there no are no memory

constraints, for example, when data is stored in the cloud, is still a vastly unexplored concept. In

this vein, another idea that remains uncharted is when and how to decide to erase data that is no

longer representative of the environment in order to decrease memory requirements.

Resource Constraints: Another problem to consider is how to adapt existing SLAM tech-

nologies to hardware that is limited in its computational and memory resources.

Distributed mapping: This last scalability related problem is applied to the case of when we

are using multiple robots employing SLAM. While approaches for outlier rejection, as mentioned

in the previous section, have been proposed for the case of a single robot, there has not been much

research tackling a system composed of multiple robots.

2.4 Open Problems 19

2.4.3 Map Representation

As said in section 2.3, there are many ways to model the geometry of the environment built by

a SLAM algorithm and since this mapping often has effects on other robotic fields, it’s important

to discuss the many different approaches that exist and the problems still associated with them and

this concept in general.

2.4.4 Metric Map Models

In section 2.3.1 it was already mentioned one of the most popular types of mapping, landmark-

based mapping. The biggest issue with this type of mapping is that it assumes that all the land-

marks are distinguishable from each other which is not always the case. Contrary to landmark-

based representations, dense representations, attempt to provide high-resolution models of the

environment in 3D, through raw representations of 3D data gathered by cameras, namely, point

clouds. In comparison with the previous mapping, this depiction is better suited for obstacle avoid-

ance. Furthermore, we have spatial dense representations extending the usage of point clouds to

actually represent surfaces and volumes of the objects in the environment through boundary rep-

resentations that define 3D objects in regards to their surface boundary [35, 36].

As per identified in [17] there are areas that remain unexplored regarding metric models,

specifically:

High Level, expressive representations: The previous point cloud-based models mentioned

are very wasteful regarding memory conservation and, while they provide an accurate model of

the surrounding environment, they offer no high-level understanding of the environment, that is,

they make no distinction between types of environments say a room versus a corridor. This type

of knowledge would lead to many advantages as it would allow for easier loop closure and data

association, new tools for compact representations, and integration with existing map tools.

Optimal and Automatic Representation: Similar to the concept of automating tuning told

in section 2.4.1, developing a method to autonomously decide the better representation to use

considering the properties of the surrounding space would be highly beneficial.

2.4.5 Semantic Map Models

To mitigate some of the shortcomings that metric map models have, semantic map models,

as the name suggests, work by associating semantic concepts to geometric entities in a robot’s

surroundings, for example. being able to identify a muddy road and giving the robot the ability to

understand that crossing that road would affect its movement. The complexity associated with this

type of mapping is directly dependent on the number of concepts we want to be able to identify

and also the relationship between these (see figure 2.9).

Currently, there are 3 ways that this type of mapping has been implemented [17], namely,

by simply building a map through SLAM, analyzing it, and associating semantic concepts to the

map, for example, by running an offline classification algorithm on the metric map model [37].

Another way researched flips this previous idea and uses already existing semantic classes to

20 Simultaneous Localization and Mapping

Figure 2.9: Semantic concepts examples

identify objects with prior knowledge of their geometry, during the actual mapping process [35].

Finally, we can actually use semantic inference during the mapping process by taking advantage

of state-of-the-art object recognition algorithms used on cameras.

Since this type of mapping is still in its infancy not only development wise but research-

wise, some open problems moving forward have been identified [17]:

Consistent semantic fusion: Incorporating semantic information with the metric informa-

tion coming from measurements taken at differing time frames presents a big issue.

Adaption: The system should be able to not only work with previous existing semantic

classes, but it should also be capable of building new semantic classes.

Semantic Based Reasoning: As humans we can use our understanding of semantic rela-

tionships to speed-up our reasoning and, similarly, introducing this ability into a SLAM system

would also improve its mapping capabilities.

2.5 Optimal Sensor Placement

The performance of a SLAM algorithm is highly dependent on the perception of our environ-

ment, as the quality of the robot’s visual coverage will reflect on the quality of the localization

and mapping processes. This is influenced by the location and orientation, in respect to its robot

model, of the visual sensors that are used to obtain the measurements that are then computed by

the SLAM solutions. In turn, this will impact the efficiency of our robot’s navigation. Dynamic

environments are often populated with challenging geometry and visual occlusions, so it is essen-

tial to have a sensor network that is placed accordingly in order to maximize the performance and

efficiency of the SLAM algorithm being used.

Some research has been done on developing algorithms that deal with the maximization

of quality of visual coverage by simply altering the position of onboard sensors. In the self-

driving automobile industry, sensors are used to implement advanced driver assistance systems

2.5 Optimal Sensor Placement 21

like adaptive cruise control and automatic parking. To improve these abilities, research has been

done regarding the placement of the sensors used.

In the Colorado State University, researchers proposed the framework VESPA [4], which is

able to explore the design space of sensor placement locations and orientations to find the optimal

sensor configuration for 2 different vehicles. By defining a few metrics representative of the sen-

sor’s performance, for example, the position error of the automobile when performing automatic

parking, a cost function was created that included these metrics. Then, several state space search

algorithms were used to minimize this cost function, essentially turning the sensor placement op-

timization into a local minima problem. When comparing the results of this framework with a

sensor configuration designed by a vehicle expert, the performance of the sensors was much more

effective when using the VESPA framework.

Figure 2.10: Overview of VESPA framework [4]

Similarly in [38], the optimal placement of 3 3D LIDAR sensors was found by the usage

of a concept named LIDAR occupancy grid. This grid was used to represent the area that each

LIDAR sensor was able to cover. The combination of the LIDAR occupancy grids of the 3 sensors

quantifies the full perception that the vehicle has of the environment. In this way, the sensor

optimization problem was turned into the maximization of the area that is covered by these sensors.

To apply this maximization, a recursive method, based on the Genetic algorithm, also a state-space

search algorithm, was successfully developed.

Interestingly, there has not been much, if any, at least publicly available, research on optimal

sensor placement for SLAM systems. Since this is the case, this dissertation will look to apply

these same concepts, specifically, turning sensor placement into an optimization problem with the

objective of minimizing/maximizing a cost function that is reflective of SLAM performance and

efficiency, by making alterations to the used sensors’ configurations.

2.5.1 Optimization Problems

An optimization problem is nothing more than looking for the maximum/minimum value of a

function. Say, a classical example of this is the traveling salesman problem. Imagine we have

22 Simultaneous Localization and Mapping

a delivery company with a single delivery truck that needs to complete a fixed number of deliv-

eries scattered around different cities. A typical optimization problem would be to minimize the

delivery time by exploring the different combinations of cities we can visit until we find the one

that minimizes said delivery time and, in turn, maximizes the delivery efficiency of the delivery

company. In figure 2.11 we can see the representation of 2 possible solutions to a classic traveling

salesman problem. The nodes represent the cities that must be completed while the arrows be-

tween the nodes represent the order in which the cities were visited with their respective time of

travel. Usually, there are also a number of constraints that need to be considered. In this example,

these could be some sort of fuel consumption limit, velocity limit, etc.

Figure 2.11: Classic salesman problem

Mathematically, we can define this problem the following way:

• Objective Function

f0 : Rn→ R (2.20)

• Controllable Variables (State Space)

x = {x0,x1, ...,xn} (2.21)

• Constraints (Heuristics)

gI : Rn→ R : (I = 1, ...,n) (2.22)

In the Traveling salesman problem, our objective function f0 (also known as cost function,

energy function, or fitness function) would represent the time of travel for the combination of

visited cities, x, taking into account the full list of constraints gn. To solve an optimization problem

there are a number of techniques that can be used, each with its own drawbacks and advantages.

2.5.1.1 Hill-Climbing

Hill-climbing is one of the most popular and simple optimization techniques. Categorized as

a greedy local search algorithm, hill-climbing is an iterative method that starts by selecting a

2.5 Optimal Sensor Placement 23

Figure 2.12: Objective function Vs state space

random solution to an optimization problem and proceeds by performing incremental changes to

the referenced random solution until it finds a better performing one.

Figure 2.13: Travelling salesman state (left) and neighbor (right)

In the case of the traveling salesman problem, the hill-climber would select a random com-

bination of deliveries, which would represent our state. Next, it should perform some kind of

simple modification to the combination, for example, switching the order of visits between two

cities. This modification to the current state is usually named as a neighbor of our current state

(figure 2.13) and all of the possible neighbors represent our neighborhood. If said change leads to

a better result then the algorithm selects this as its new state and performs a new modification. If

none of the neighbors do offer a better solution then the algorithm will return the current solution

as the best solution. This concept is demonstrated pseudo-code 1.

24 Simultaneous Localization and Mapping

Algorithm 1 Steepest Ascent Hill-Climber Pseudo-Code

1: function STEEPESTHILLCLIMBER(ObjectiveFunction, StateSpace)
2: state = Generate random state within StateSpace
3: while True do
4: initial_solution = Ob jectiveFunction(state)
5: neighborhood = GetNeighborhood(state)
6: while neighbor = neighborhood[i] != None do
7: if ObjetiveFunction(neighbor) > ObjectiveFunction(state) then
8: best_solution = Ob jectiveFunction(neighbor)
9: state = neighbor

10: end if
11: end while
12: if best_solution == initial_solution then
13: return state
14: end if
15: end while
16: end function

There are also different types of Hill-Climbing algorithms based on the state space and

neighborhood that the algorithm can explore and evaluate, specifically:

1. Basic Hill-Climber - The algorithm goes over the neighbors of the state until it finds a better

solution. Once it does, it changes state and creates a new neighborhood. This is the most

basic of the hill-climbing algorithms to program. As it does not require a full exploration of

all possible neighbors, it is faster than the Steepest Ascent Hill-Climber but it also reaches

less optimal solutions.

2. Steepest Ascent Hill-Climber - Very much the same as the basic hill-climber but, instead

of changing state immediately as it finds a better solution, all of the neighbor states are first

explored and then the best solution is picked. Again if none of the neighbors present a better

alternative to the initial solution, then the algorithm stops and returns its current solution.

3. Stochastic Hill-Climber - Similar to the steepest ascent hill-climber, this variation also ex-

plores the full neighborhood. However, it randomly picks between the states that represent

an uphill movement, where, the steepest incline neighbor has the best chance to be picked.

Even with the existing variations of the hill-climber algorithm, there are still reasons to

consider using completely different optimization algorithms. Looking at figure 2.12, it’s possible

to see a situation where all the variations of the hill-climber would actually fail at finding the best

state of the cost function. Looking at the initial state in that figure, we see that any of the hill-

climbing algorithms would eventually lead to the local maximum of the cost function and not its

global maximum.

The hill-climber algorithm is highly dependent on the "landscape" of the cost function it is

applied to. The higher the number of local maximums the harder it will be for the algorithm to find

2.5 Optimal Sensor Placement 25

the global maximum. A solution to this problem, applied specifically to hill-climber algorithms,

is to run the algorithm multiple times starting at different locations.

2.5.1.2 Simulated Annealing

Simulated annealing is a probabilistic optimization algorithm inspired by the real-world, met-

allurgy industry technique of annealing. The main difference between this algorithm and a basic

hill-climber is that, in simulated annealing, there is a chance that, during the convergence of the

algorithm, worse solutions may be explored.

With the introduction of the temperature parameter, T , whenever the worst solution is found

by the algorithm there is a probability, defined by the difference between the neighbor solution, sn,

and current solution, sc divided by the current temperature (equation 2.23), that said the solution

may be accepted.

P = e(sn−sc)/T (2.23)

Like its real-world counterpart, simulated annealing introduces a notion of slow cooling which,

in this context, means that the temperature decreases over time (usually decreases every time a new

state is explored) which, in turn, also decreases the chance of accepting a worse solution over time.

This means that the chance of accepting worse solutions is considerably higher at the beginning

of the run time of the algorithm than in the ending stages. In fact, it is near impossible to accept

worse solutions once the temperature value is low enough.

Algorithm 2 Simulated Annealing Pseudo-Code

1: function SIMULATEDANNEALING(ObjectiveFunction,StateSpace,Temperature,RefreshCondition)
2: state = Generate random state within StateSpace
3: neighborhood = GetNeighborhood(state)
4: best_solution = ObjectiveFunction(state)
5: while iterations <= 10 000 do
6: Temperature = RefreshCondition(Temperature)
7: neighbor = RandomNeighbor(Neighborhood)
8: diff = ObjectiveFunction(neighbor) - ObjectiveFunction(state)
9: prob = e(diff/Temperature)

10: if ObjetiveFunction(neighbor) > ObjectiveFunction(state) Or prob > random(0,1) then
11: best_solution = Ob jectiveFunction(neighbor)
12: state = neighbor
13: neighborhood = GetNeighborhood(state)
14: end if
15: end while
16: end function

This method is also widely used as, it is not only simple to implement but, is also known

to consistently solve many practical problems by converging to approximate solutions of the

global maximum/minimum of an objective function. The fact that it allows for the acceptance

of worse conditions largely eliminates the previously mentioned issue of getting stuck in local

26 Simultaneous Localization and Mapping

maximum/minimum, especially in the early stages of the algorithm run time, as the chance to

accept worse solutions is significantly high.

Even so, there are some drawbacks to using simulated annealing, the main ones being that

its convergence efficiency is highly dependent on how the exploration is defined, specifically, it

depends on how the neighborhood is delimited and on the initial value of the temperature param-

eter and the decreasing condition associated with it. Furthermore, it is also a quite slow algorithm

(loops can be over 10 000) which can become quite impractical in situations where the objective

function may have a running time associated with it.

2.6 Summary

Over the last 30 years, the SLAM problem has seen great progress which has lead to the develop-

ment of a plethora of different techniques used to solve it. By employing a number of probabilistic

tools, state-of-the-art sensors and, sensor measurement processing mechanisms, the SLAM re-

search community has been able to increasingly improve the autonomous navigation capabilities of

mobile robots. Regardless, there is no absolute solution that solves every issue as the problems that

SLAM presents are still highly dependent on the combination of robot/environment/performance.

On a mathematical basis, state-of-the-art SLAM implementations like graph-based imple-

mentations have increased the reliability of SLAM in large-scale environments while grid-based

implementations like GMapping are still very popular due to their robustness and low computa-

tional requirements. Beyond this, research on map representation of SLAM algorithms has made

new strides by incorporating more advanced features other than just metric measurements. The

ability to categorize and differentiate between mapped rooms offers high-level expressive repre-

sentations. Also, the association of semantic concepts to objects looks to extend the understanding

of the environment and offer semantic-based reasoning to navigation.

Optimization algorithms are actively used to facilitate and solve sensor placement problems

in various industries. In the automobile industry, by modeling objective functions that are rep-

resentative of technologies that are dependent on information gathered by exteroceptive sensors

like smart parking and obstacle avoidance, researchers have been able to reach interesting sensor

placement solutions that are typically better than human-designed ones. Similarly, since SLAM

systems are also dependent on the data gathered by these type of sensors, if one could model an

objective function that translates SLAM performance to the placement of sensors in a robot, an

optimization algorithm, like a hill-climber, could be used to explore the effect of different sensor

positions on a SLAM system.

With this in mind, this dissertation will look to use typically used SLAM evaluation metrics

to compare a number of SLAM solutions. That metric will then be used as the objective function

of an optimization algorithm with the objective of maximizing the performance of said SLAM

solutions.

Chapter 3

Intelligent Wheelchairs

A recent study from the World Bank Group [9] found that about 10% to 15% of the world

population suffer from some kind of physical ability. Additionally, 10% of this previous number

includes people that endure a lower limb dysfunction preventing self-sufficient locomotion which,

ultimately, requires the users to use a wheelchair [10] to fulfill this need.

A wheelchair is, in its very basic shape, a chair with wheels (figure 3.1) that is powered

manually. The use of this mobility aid has been traced back to ancient Greek culture, however, it

is considered that the first manual wheelchair was made in Spain in 1595 [39]. Since then, there

has been the introduction of the Power Wheelchair (PW). This type of wheelchair usually includes

battery-powered motors that provide self-propellant movement (figure 3.2). Furthermore, users are

able to operate this movement through the usage of standard controllers such as hand joysticks,

chin joysticks, sip-n-puff, and head joysticks. This extends the utilization of this equipment to

users that were previously unable to operate a manual wheelchair. Despite these additions, PWs

still show a lack of maneuverability in daily tasks and also remain inoperable to people who lack

the motor control to operate a standard controller, such as users who suffer from arthritis or motor

neuron degenerative diseases.

To accommodate this need, the concept has further evolved with the introduction of the

Intelligent Wheelchair (IW) [40]. This type of wheelchair (figure 3.3) adds to the capabilities of a

standard PW, taking advantage of state-of-the-art developments in standard robotics technologies.

The adaption of these technologies in this market will provide automation to the navigation and

control features of regular PWs, thus reducing the physical, perceptual, and cognitive requirements

to operate this instrument. Typically, this is achieved through the addition of sensors connected to

a computer that is able to properly process the measurements taken by the sensors and generate

commands to the wheelchair.

This field has suffered a lot of research, as explored in the following sections, which has

allowed for SLAM techniques to be applied to these types of equipment, helping in the need to

automate their navigational capabilities.

27

28 Intelligent Wheelchairs

Figure 3.1: Manual wheelchair Figure 3.2: Power wheelchair

Figure 3.3: Intellwheels’ intelligent wheelchair

3.1 Common Characteristics

Most IW prototypes use a PW as a basis for implementation [40, 5, 41, 42], so it’s important to

name the characteristics [39, 40] that differentiate an IW from a PW.

• Autonomous Navigation: The ability to safely navigate an environment avoiding obsta-

cles. This extends from simple obstacle avoidance algorithms to much more complex meth-

ods employing the previously explained SLAM algorithms, and path planning algorithms.

However complex the navigation technique used, it usually calls for the marriage of state-

of-the-art proprioceptive and exteroceptive sensors.

• Intelligent Interface: As the IW looks to accommodate heavily physically impaired users,

its interface must be easy to use and adaptable to the type of disabilities that the user may

suffer from. Therefore, there may be the need to incorporate alternative controllers such as

fingertip control, brain-computer interfaces (BCI), touch screens, etc;

• Device Communication: The ability to communicate with other devices such as automatic

doors and other IWs.

3.2 Developed Prototypes 29

3.1.1 Operating Modes

As mentioned, this type of wheelchair must be adaptable. Not only must it be able to satisfy

constraints imposed by the user’s disease but also by their surrounding environment. As an ex-

ample, regarding the latter, a user may find themselves in a fixed environment, say their home,

and, ideally, the wheelchair should be able to map and locate itself in the environment and switch

to an operation mode that allows for fully autonomous navigation through the surroundings. On

the other hand, if the user is just temporarily passing through an environment, a semi-autonomous

mode of navigation would be more appropriate. Per [40], these operating modes include but are

not restricted to:

• Machine Learning: Some IWs employ the use machine learning algorithms to detect ob-

stacles and plan trajectories;

• Following: The ability to follow human or animal companions;

• Localization and Mapping: The main topic of this dissertation. This is achieved by using

measurements obtained from proprioceptive and exteroceptive sensors and applying them

to SLAM algorithms;

• Navigational Assistance: Semi-autonomous mode that provides features such as collision

detecting, path-planners, and prompters.

Each operating mode mentioned has advantages and disadvantages depending on the com-

bination of environment and user needs it is applied to.

3.2 Developed Prototypes

The production of functioning IW prototypes dates back to about 30 years. Earlier models were

originally equipped with rudimentary and costly hardware and software which offered very limited

navigation and control techniques. With recent developments in the mobile robotics community,

the technology used to develop IWs has progressed into using cheaper hardware and extensively

more complex software, in particular, SLAM methods.

3.2.1 Early Models

The first-ever IW was proposed by Madarasz [39] in 1986. This model was equipped with

a micro-computer, a digital camera, and an ultra-sound scanner with the intent to offer obstacle

avoidance. In 1995 the KISS institute introduced the Tin Man I [43] (figure 3.6) which was a low-

cost robot wheelchair equipped with an IR sensor, motor encoders, contact sensors, sonar range

finders, and a compass that managed to provide limited autonomous navigation. In particular, this

chair was able to navigate through corridors and hallways and perform obstacle avoidance. The

30 Intelligent Wheelchairs

Figure 3.4: FRIEND prototype Figure 3.5: NavChair prototype

Figure 3.6: Tin Man I prototype

Tin Man II, developed 3 years later, was a cleaned-up version of this original chair adding a me-

chanical joystick interface. Also in 1995, the NavChair [44] (figure 3.5) was introduced as an as-

sistive wheelchair navigation system. Equipped with 12 proximity sonar sensors, and an interface

composed of a power modulator and a joystick, this chair was also able to navigate corridors and

doorways, but, additionally, possessed a follow wall mode. The FRIEND [45] (figure 3.4) robotic

wheelchair, developed in 1999, is equipped with a MANUS robot arm. Both the wheelchair nav-

igation and the robotic arm are controlled by the user through voice commands. This feature

extends the usage range of the former intelligent wheelchair prototypes as its alternative control

method is adaptable to users that are unable to use their upper limbs.

3.2.2 Recent SLAM-based Models

All of the following IW projects, including the one associated with this dissertation, are imple-

mented using the Robotic Operating System (ROS) and make use of some sort of SLAM solution.

ROS [46] is an open-source framework used to write robot software. It is based on services, topics,

3.2 Developed Prototypes 31

messages, and nodes. Nodes communicate between each other through messages, topics are pub-

lished and subscribed by nodes and services are, essentially, a pair of messages. This is a widely

used tool in the robotics community due to its compatibility and modularity.

Equipped with the visual sensor Microsoft’s Kinect V2, wheel encoders, and an on-board

computer, researchers at the University of Toronto [5] have built a relatively cheap and portable

IW framework focusing on a particular case of wheelchair navigation, the traversal of narrow

doorways. The system architecture uses the open-source RGB-D SLAM ROS package. RGB-D

SLAM is a graph-based SLAM approach capable of building 3D maps using images taken by

Kinect-style cameras. In this case, the 3D map was converted to a 2D map using the ROS package

PointCloudToLaserScan.

Figure 3.7: IW developed
in [5]

Additionally, while this SLAM algorithm also offers visual odom-

etry (VO), the authors opted to use the odometry generated from the

wheel encoders, since only one camera was used and the environment

often consisted of areas with insufficient visual features to properly

perform VO. Given that only one camera was used, during the explo-

ration of the environment, the wheelchair would often have to perform

360º rotations in the corners of a room to properly perform data as-

sociation. To fix this issue a rear-facing camera is a possible solution

although, the processing of the data would lead to higher computa-

tional requirements, which would increase the cost of the IW.

Similarly, [41] developed an IW using identical hardware and

open-source software. Here, the developers used the Percipio RGB-D

camera, only in this case, VO from the camera was used. Regarding

the SLAM algorithm, they opted for the previously described open-

source ROS package of GMapping (section 2.3.2.1). A mobile APP

interface was also developed for the control of the wheelchair which included the functions of

remote control through a virtual joystick, visualization of map and position of the wheelchair, and

access to color images taken by the camera. The camera used was found to be better suited than

the standard Kinect camera as it is smaller in size and can be powered through a USB connection,

being more suitable for integration in mobile robots.

The research conducted in [6] is aimed at comparing different open-source SLAM algorithms

applied to an IW. The hardware kit added to the original power wheelchair was composed of wheel

encoders, a Kinect camera, a SLAMTEC RPLIDAR-A3-LiDAR, and an IMU unit connected to a

RaspberryPi model b+ placed as seen in figure 3.8. The following open-source SLAM algorithms

were used:

• GMapping: Already explained in section 2.3.2.1;

• HectorSLAM: A LIDAR-based 2D mapping SLAM algorithm based on a Gauss-Newton

approach for scan matching;

32 Intelligent Wheelchairs

• RTAB MAP: Similar to the RGB-D SLAM approach, Real-Time Appearance-Based Map-

ping is an RGB-D, Stereo, and LIDAR graph-based SLAM approach;

• RBG-D SLAM: Already explained in this same section;

• VINS-Mono: Visual Inertial Navigation System - Monocular is a SLAM algorithm based

on visual-inertial odometry.

According to the tests performed in [6], it was found that, among the visual SLAM methods

used, VINS-Mono was computationally more expensive than the other two and, at higher speeds

(over 1 m/s) RTAB MAP was found to have more errors than the others. Regarding the laser only

SLAM approaches HectorSLAM and GMapping, the latter proved to build more accurate maps

and had less error in its pose estimate. Although HectorSLAM was found to be a pretty light

algorithm it was bound to not be very optimal since it was using no odometry at all to locate the

wheelchair.

Figure 3.8: IW sensor placement in [6]

3.2.2.1 Vulcan - Intelligent Robotic Wheelchair [42]

The Vulcan robotic wheelchair is an adaptive IW framework currently being used as a research

platform at the Michigan State University. This project is focused on the study and development of

assistive navigational technologies for IWs targeted to a campus-like environment, which includes

indoor and outdoor areas connected through paths and hallways. The framework in question,

called Hybrid Spatial Semantic Hierarchy, has 3 different objectives:

• Map natural human environments through computer-vision;

• Adapt this mapping to natural language voice commands;

• Develop effective human-robot interaction that maximizes the above.

3.2 Developed Prototypes 33

With this in mind, the first wheelchair model developed in this project stood as a hybrid of

laser and vision-based models capable of building 2D metric maps that incorporated information

about potential hazards in the environment [47]. To achieve this, a grid-based SLAM algorithm

using two 2D LIDAR lasers was used to perform the metric mapping while a stereo camera was

used to obtain 3D information about the environment, allowing for the incorporation of hazard

assessments into the map itself.

Further work on this project has upgraded the mapping performed to include semantic clas-

sification [48] (discussed in section 2.4.5) allowing the robot to make distinctions between dif-

ferent types of rooms. It has also included the addition of dynamic elements of the environment

(e.g people) into its map. The most recent research done, studies the inclusion of "socially-aware

navigation" [49] into the autonomous navigation feature of the wheelchair.

3.2.2.2 Intellwheels

Intellwheels originated in the Faculty of Engineering of the University of Porto in 2007 and is

an ongoing research project aimed at developing a platform used for the production of intelligent

wheelchairs [50]. In 2015 a new iteration of this project was introduced, Intellwheels 2.0, with

the intent to use the concepts developed in the first iteration to produce fully functioning products.

These products include an IW framework/kit, a realistic IW simulator, and a multi-modal IW

control interface.

Intellwheels 1.0

The concept behind the project is not to just develop an IW wheelchair but to create a dynamic

platform that facilitates the development of IWs. To achieve this, regarding software, the platform

uses a multi-agent system (MAS) paradigm. On the other hand, addressing the hardware aspect, a

generic hardware framework is used that is designed to fit in most powered wheelchairs.

The multi-agent system enables the easy integration of a wide range of sensors, actuators,

user interfaces, navigation technologies, path planning techniques, and cooperation methodologies

by dividing these features into separate modules as presented in figure 3.9.

Figure 3.9: Different Intellwheels modules [7]

34 Intelligent Wheelchairs

Furthermore, these modules belong to the different agents of the MAS. The agents communi-

cate with each other following the communication standards set by the Foundation for Intelligent

Physical Agents (FIPA) (figure 3.10).

Figure 3.10: Intellwheels MAS architecture [7]

Regarding the simulator module, a mixed reality (MR) simulator was developed using an adap-

tation of the "Cyber-Mouse" simulator. The simulator produced is able to create a virtual world

to easily and inexpensively run experiments with developed IWs. Additionally, it also enables the

communication between simulated agents and real-world agents (for example, a real wheelchair

agent communicating with a virtual wheelchair agent or virtual door agents). This MR concept

stretches the Intellwheels simulator’s capabilities beyond testing algorithms as, through its usage,

we can evaluate the performance of a real IW in dynamic simulated environments (figure 3.11).

Since a lot of the work done in this dissertation will be done using simulators, additional existing

simulators are explored in section 3.3. Later, this module was upgraded to IntelSim, a simulator

developed based on the existing USARSim 3D simulator.

In 2011, Intellwheels presented a functioning prototype of an IW (figure 3.3) with the fol-

lowing integrated sensor hardware module installed on a commercial power wheelchair. A U-

shaped bar with a set of 8 ultrasound sensors and 12 infrared sensors, 2 wheel encoders, and 2

webcams, one directed at the floor and the other one at the user’s face (to read facial expressions).

Through the module, this wheelchair was capable of performing semi-autonomous actions [50].

Using probabilistic models for the odometry motion model the wheelchair was able to perform

active localization with a prior map. Consequently, path planning through A* algorithms was also

achieved.

Intellwheels 2.0

3.3 Multi-Robot Simulators 35

Figure 3.11: Intellwheels MR simulator architecture [7]

As mentioned, this next iteration of the Intellwheels project is focused on developing fully

functional products. Specifically, it aims to produce the following:

• A dynamic low-cost IW framework/kit that is able to transform different types of powered

wheelchairs into intelligent wheelchairs with minimum hardware changes and low visual

and ergonomic impact. It will include all hardware and software, specific to the robotics

area, to solve the problems of sensing, mapping, localization, control, navigation, and plan-

ning on a wheelchair.

• A realistic IW simulator, with a 3D interface, virtual reality that includes three instructional

serious games with the intent to train the user on how to control the wheelchair.

• A totally configurable interface that is adaptable to the special needs of the user.

• Complete IW prototypes with the above features included.

This dissertation is included in the first item above. This framework will work to build upon

the semi-autonomous navigation features of the previous Intellwheels iteration IW prototype by

implementing state-of-the-art hardware and SLAM software. This will allow the wheelchair to

perform SLAM in unknown dynamic environments eliminating the previous need for prior maps.

This feature, together with a path planning algorithm and a configurable interface could extend the

navigation capabilities of an IW to a near fully autonomous state.

3.3 Multi-Robot Simulators

Robotic systems are often difficult and costly to deploy in the real world due to their complex-

ity, so researchers often look to perform development and validation of real-world technologies

on virtually simulated environments. Similarly, most of the work done during this dissertation

will be done in a simulated robotic environment. As later discussed in this document, performing

36 Intelligent Wheelchairs

the experiments done during this project in a real-life wheelchair would lead to very high time-

consuming efforts which do not satisfy the time restrictions set on a regular dissertation. There-

fore, choosing an appropriate and realistic environment is an important task. All of the following

simulators can be fully integrated with ROS.

Gazebo [51]

Gazebo is an open-source 3D multi-robot simulator, programmed in C++, that relies on the

Open Dynamics Engine and the Object-Oriented Graphics Rendering Engine to provide simulated

3D robots and environments. Among other characteristics, the simulated objects in the world have

friction and mass. Access to multiple shapes along with different joints is also available making

it possible to design simulated robots. Gazebo is by far the most used simulator in the robotics

community [52].

USARSim [53]

The Unified System for Automation and Robot Simulation (USARSim) is a 3D simulator

based on the Unreal Tournament game engine. USARSim was originally developed to simulate

multiple robots in search and rescue missions. It supports sound sensors, touch sensors, lasers,

odometry, and cameras. Additionally, the Intellwheels simulator IntelSim is also adapted from

USARSim.

MORSE [52]

The Modular Open Robots Simulation Engine (MORSE) is based on the open-source project

Blender, a 3D game engine. It supports any 3D model, so any 3D model can be imported for use.

MORSE operates from a command line and it was implemented using Python.

Webots [54]

Webots is also an open-source simulator used to simulate, model, and program mobile

robots in 3D environments. The usage of the ODE library allows it to simulate rigid body dy-

namics and associate attributes to objects such as mass, shape, and texture. It supports a wide

range of programming languages to build robots, specifically, Java, C++, C, Python, and MAT-

LAB. It is also compatible with different sensors frequently used by the robotics community such

as light sensors, proximity sensors, GPS, touch sensors, lasers, and accelerometers.

3.4 Summary

The evolution of wheelchairs over the years along with state-of-the-art technologies in modern

robotics has allowed for the introduction of the Intelligent Wheelchair. Previous wheelchair mod-

3.4 Summary 37

els have provided people with lower-limb dysfunctions with locomotion by offering either manual

or powered control of wheelchairs. Most intelligent wheelchairs aim to expand upon this, by of-

fering the user alternative control methods and equipping powered wheelchairs with autonomous

navigation methods. To achieve this, a large number of prototypes developed have used SLAM

technologies to deal with the mapping and localization problems of their navigation.

These prototypes have taken advantage of the commonly used robotics software ROS for

their implementations. Specifically, using ROS, there are many open-source packages like GMap-

ping, RGB-D SLAM, RTAB MAP, and VINS-Mono that have been used to implement SLAM

with limited computational efforts and sensors. During this dissertation, we will evaluate the per-

formance of similar open-source SLAM packages, in the Intellwheels project context. To perform

this testing, there are many 3D simulators available, like gazebo and webots, that are able to repli-

cate the wheelchair and the sensors models onto different simulated environments, which allow

researchers to perform testing in a cheap and convenient way.

38 Intelligent Wheelchairs

Chapter 4

Simulation Environment

In the previous chapter, it was mentioned that researchers in the robotics industry often perform

initial research and tests under simulated environments because of the shortcomings that come

with deploying robotic systems in the real world (monetary costs and elevated time consumption).

As said, the work done in this dissertation follows in the same footsteps. Therefore, this chapter

is dedicated to the detailing of the elements present in the simulated environment that was used.

Some of the work used, like the wheelchair model and the navigation stack, was developed in the

previous research done along the Intellwheels project, while, on the other hand, elements such as

the odometry noise model, SLAM evaluation metrics, world models, and optimization algorithms

were all fully developed during the course of this project.

Both the wheelchair model and the navigation stack were implemented using the previously

mentioned middleware, ROS. So, all the framework developed in this project is also fully compat-

ible with ROS.

Overall, the whole project is divided into various ROS packages containing each of the

elements used, some of them newly developed, like the odometry noise model, optimization loop,

and benchmarking tools, while others were either existing open-source ROS packages, like all of

the SLAM solutions used, or packages developed in previous iterations of the project, like the

wheelchair description and the navigation stack. Nonetheless, ROS packages are able to include

dependencies from different packages so all the framework used here was condensed down to two

different ROS packages, namely:

• intellwheels_project - This is the main package of the project and it is used to launch all of

the required tools since it has dependencies on all of the other used packages. Furthermore,

it also contains the developed scripts to the nodes used for the benchmarking metric, the

optimization loop, and the noisy odometry model.

• intellwheels_desc - This package contains the wheelchair description used to spawn the

wheelchair and all of its additional elements like the laser sensors used and the navigation

stack.

39

40 Simulation Environment

Figure 4.1: Gazebo wheelchair model

Figure 4.2: Real-world wheelchair model

4.1 Intelligent Wheelchair Model

Developed by [55], the model in figure 4.1 is a 6-wheeled motorized wheelchair model inspired

by the real-world wheelchair presented in figure 4.2. While obviously not being a 1:1 representa-

tion of its real-world inspiration, the wheelchair model is still able to faithfully depict the actual

footprint of a wheelchair. Furthermore, a definitive wheelchair model has yet to be associated with

the project, so it make sense to conduct research on a "standard" wheelchair model since, more

specific models, may have additional "quirks" that may restrict some portion of the research.

This initial prototype was created in the Simulation Description Format (SDF) using the

Blender software along with the Phobos1 plugin. Models using this format are both compatible

with ROS and the Gazebo multi-robot simulator mentioned in 3.3. An SDF model is a modified

Extensive Markup Language (XML) format that is able to describe objects and environments

for robot simulators, visualization, and control. When used to describe a robot, SDF is mainly

composed of three tags.

• Links - These represent every visual element that is seen in the robot model such as the arms

rests, wheels, chair, etc. Usually, but not necessarily, each link has an underlying collision,

inertial, and mesh tag.

• Joints - The joint component creates connections between links by establishing parent-child

relationships. This connection makes it possible to see how a child link moves relative to its

parent link.

• Plugins - This final element allows for the integration of external components such as driver

plugins and sensor plugins that offer additional functionalities to robot models. It is also

compatible with a number of tools in ROS.

1https://github.com/dfki-ric/phobos

https://github.com/dfki-ric/phobos

4.1 Intelligent Wheelchair Model 41

Even though SDF offers quite an effective compatibility with Gazebo and ROS, there still

remain some functionalities that are unmet with the usage of this format. Specifically, ROS’ rviz2

visualization tool, which enables the visual interpretation of most data published in a ROS frame-

work, is only able to work with robot models in the Unified Robot Description Format (URDF),

which, similarly to SDF, is also a modified XML format. It also follows the same principles as the

SDF with the usage of links, joints and plugins.

The visualization of data in a ROS framework is quite useful as it enables for a much more

convenient debugging process which will become quite important once the SLAM solutions are

implemented and working, as it will be possible to actually see the localization and mapping

processes taking place in real-time. So, since Gazebo is also compatible with URDF, researchers

in the Intellwheels project, have made an effort to convert the wheelchair model description from

SDF to URDF. In addition, the URDF files were also converted to the Xacro3 format.

Xacro is a scripting mechanism that allows more modularity and code re-use when defining

a URDF model. It also is compatible with the usage of math constants, equations, and loading

YAML files as dictionary data structures. This last aptitude will become quite useful in the opti-

mization portion of the project explained further in section 4.5.1.

Furthermore, we can divide the Gazebo program into two separate sub-programs, gzserver and

gzclient. Respectively, the first is basically the core of the program, where the communications and

physics engine are started and maintained, while the second is the visualization tool of Gazebo.

The Gazebo visualization tool consumes considerably more computational resources than rviz, as

gzclient renders all of the 3D models present in the simulation. Since we only need gzserver to

create and handle the actual physics simulation, gzclient was replaced altogether by rviz, reducing

the overall computational consumption of the simulation environment. Gazebo allows the physics

engine to be sped up/slowed down, however, it is dependent on the computational resources avail-

able. For reasons further discussed in section 5.2, it is advantageous to reduce the computational

of the simulation environment as minimum as possible.

4.1.1 Odometry Noise Modelling

The real wheelchair moves as a differential drive robot with motors placed in the center of

two wheels. To replicate this in the wheelchair model, the libgazebo_ros_diff_drive.so plugin is

used. There are two important features which this plugin offers. It controls the actual movement

of the wheelchair by using all of the data published to the ROS topic /cmd_vel, which contains

information about the linear and angular velocity that the wheelchair should take. This data can

either be published manually by the user, by some sort of controller, or by using a navigation

stack that is able to translate world goals to /cmd_vel topics. More importantly, the plugin is

also able to simulate the behavior of odometry sensors by publishing to the TF tree (figure 4.3),

the transform between the odometry frame and the wheelchair base frame. This transform is

what ROS-based SLAM solutions use to get odometry data. Unfortunately, the transform that is

2http://wiki.ros.org/rviz/UserGuide
3http://wiki.ros.org/xacro

http://wiki.ros.org/rviz/UserGuide
http://wiki.ros.org/xacro

42 Simulation Environment

published by the plugin includes next to no noise and offers no way to add any. This fact stands as

an issue because, as explained in chapter 2, most SLAM systems rely on both odometry and visual

sensors to perform localization and mapping. If one of these sensors is 100% correct, the SLAM

algorithm will end up making all localization predictions based on that sensor data, which, since

there is noise to deal with, will also be 100% correct.

Figure 4.3: Wheelchair model TF tree

The nonexistence of noise would make it next to impossible to make any distinctions be-

tween the SLAM systems’ performance since all of them are quite capable of using accurate

odometry data to perform exact localization predictions. To deal with this issue, the noisy_odom

node, contained in the script noisy_odom.py was created. This node takes the ground truth infor-

mation of the robot location, adds noise to it, and replaces the original odometry to robot base

transform. This is possible, as the differential drive plugin allows the original transform not to be

published, while still maintaining its other functionalities. The original transform is then replaced

by the noisy odometry data coming from the noisy_odom node by using the tf2_ros python API,

which has methods included in it for publishing transforms to the ROS TF tree.

By adding the plugin libgazebo_ros_p3d.so, which publishes the exact location of the robot

to topic /ground_truth/state, at a rate of 100 Hz, the displacement, (dx,dy), and rotation, ∆rot,

is calculated between the current position, rpost , and the past position, rpost−1. This displace-

ment/rotation is then multiplied by a scaling factor, α1, which alters the magnitude of the displace-

ment/rotation along with addition of Gaussian noise, G(0,σ), that is also subject to the magnitude

of displacement/rotation between t and t−1.

rpos−1
t−1 · rpost =

cos(rott−1) −sin(rott−1) xt−1

sin(rott−1) cos(rott−1) yt−1

0 0 1

−1

·

cos(rott) −sin(rott) xt

sin(rott) cos(rott) yt

0 0 1

 (4.1)

4.1 Intelligent Wheelchair Model 43

rpos−1
t−1 · rpost =

cos(∆rot) −sin(∆rot) dx

sin(∆rot) cos(∆rot) dy

0 0 1

 (4.2)

 noisy_dx

noisy_dy

noisy_∆rot

= α1×

 dx

dy

∆rot

+

 g(0,σx)

g(0,σy)

g(0,σrot)

 (4.3)

 σx

σy

σrot

=

a1|dx|+0.3a1|dy|+a2|∆rot|
a1|dy|+0.3a1|dx|+a2|∆rot|

a3|∆rot|+a4
√

dx+dy

 (4.4)

As seen in equations 4.3 and 4.4, both the scaling factor α1 and the standard deviations re-

lated to the Gaussian noise make it so the actual noise that is added is always related to the amount

of displacement/rotation that has occurred between the time frame of t and t − 1. Additionally,

the set of variables (a1,a2,a3,a4), dictate the effect that those displacement/rotations have on the

normal distribution that is sampled to generate the Gaussian noise.

After several tests were performed, with a range of values for (α1,a1,a2,a3,a4), it was found

that the combination (0.75,0.2,0.2,0.2,0.2) creates a considerable amount of noise, at least, enough

to facilitate the distinction between the different SLAM systems that were tested. In figure 4.4 we

can see the difference between the ground truth path of the wheelchair and the path obtained

from the noisy odometry. From the starting position (x,y) = (0,0) it is possible to see that the

ground truth and noisy odometry data remain similar for some distance. However, from (20,0)

onwards, the odometry data becomes completely unreliable, on a long-term scale, which, in a

real-life scenario, is expected.

In sum, all the experiments were performed with the following odometry noise model: noisy_dx

noisy_dy

noisy_∆rot

= 0.75×

 dx

dy

∆rot

+

 g(0,σx)

g(0,σy)

g(0,σrot)

 (4.5)

 σx

σy

σrot

=

0.2|dx|+0.06|dy|+0.2|∆rot|
0.2|dy|+0.06|dx|+0.2|∆rot|

0.2|∆rot|+0.2
√

dx+dy

 (4.6)

4.1.2 Sensors Used

As stated previously, SLAM systems depend on the information obtained from both exterocep-

tive sensors and interoceptive sensors. In section 4.1.1, it was explained how the odometry sensors

and odometry data are modeled in our simulated environment. Regarding the exteroceptive infor-

mation in our model, all information will come from a single (or multiple) infrared sensor visually

modeled after the RPLidar A3 (figure 4.5).

44 Simulation Environment

Figure 4.4: Ground truth Vs noisy odometry example

Figure 4.5: RPLiDAR sensor model Figure 4.6: Laser scan rviz representation

Again, Gazebo already has available plugins that are able to model the behavior of general

laser sensors. The plugin libgazebo_ros_laser.so has the ability to spawn and simulate customiz-

able 2D laser sensors into Gazebo simulations and to publish the laser scan obtained from the

sensors to ROS topics. The SLAM solutions subscribe to the topic to gather all of the laser scan

data.

Like the rest of the wheelchair model, the sensor model is also defined within URDF files

containing the link and joint parameters specifying the position and orientation of the sensor in re-

lation to the wheelchair model. The customization aspect comes in the form of various changeable

tags that are related to the standard characteristics of 2D laser sensors, specifically.

• Min/Max Range - Defines the distance interval that the lasers are able to cover.

4.2 World Models 45

• Field of View - The field of view of the sensors in radians.

• Update Rate - The rate of the messages published to the specified ROS topic.

• Resolution - The distance between the emitted laser scans.

• Gaussian Noise - Models the Gaussian noise that is added to the laser scan figures. Both

the mean and the standard deviation can be changed in this parameter.

Most of the sensor configurations will be changed during the experiments conducted, how-

ever, the Gaussian noise will remain defined as (µ,σ) = (0.0,0.03), which means that all the laser

scan data gathered will have an added Gaussian noise with a mean of 0 and a standard deviation

of 0.03.

In reality, even though the sensors are visually modeled after the RPLIDAR A3, at no point

will any of the sensors used have any of the capabilities of its real-life counterpart. The usage

of this visual model was done for convenience sake, as, in this case, the visual component of the

sensor has no drawbacks on the experiments made.

Additionally, at some point during the experiments 2 laser sensors will be used, which

publish their data to different ROS topics. This stands as an issue as most SLAM ROS packages

only take into account a single topic. To solve this, whenever multiple laser sensors were required,

the ira_laser_tools ROS package, developed by [56], was used to merge multiple laser scan topics

into a single one.

4.2 World Models

To analyze the SLAM systems, 3 different buildings were modeled using Gazebo’s building

editor. These models were created using real-world laser scan data, made available by a consor-

tium of robotics researchers, in the radish robotics repository [57], who have deployed their own

robotic systems into these environments. The goal in using this data is that that the results gath-

ered in these experiments are transparent enough to be analyzed alongside other research, as these

specific datasets are commonly used and recognized by the SLAM community [8, 58, 59].

The Univ. of Freiburg Building 079 (figure 4.9) is the smallest of the worlds, at a size of

76x28 meters, being mostly composed of small rooms connected by a long corridor in the middle.

On the other hand, the largest world is the ACES building (figure 4.8), at a size of 115x106 meters.

Finally, at 57x58 meters, Seattle’s Intel Research Lab (figure 4.7) is a "middle-ground" between

the two previous models in respect to the overall size.

Each of these worlds has interesting discrepancies that distinguish them from one another

which, in turn, will allow the comparison between different SLAM systems under different con-

ditions. For example, the ACES building, theoretically, should be the hardest world to perform

SLAM in, as most of the map is composed of extremely long corridors with very limited con-

nections between them. This should not only make the loop closing processes of SLAM difficult

but also, traveling long corridors is a known nuisance for most SLAM systems as, if the distance

46 Simulation Environment

Figure 4.7: Intel Research Lab model (left)
& dataset (right)

Figure 4.8: ACES Building model (left) &
dataset (right)

Figure 4.9: Univ. of Freiburg Building 079
model (top) & dataset (bottom)

covered by the exteroceptive sensors does not contain the end of the corridor (which would typi-

cally contain a perpendicular wall to the robot traveling orientation), the algorithm relies mostly

on the odometry information which is not dependable for long spans of time. In contrast, the

Univ. of Freiburg building should stand as the opposite, as the world is considerably smaller and a

large number of the rooms are connected, which should make for a much smoother mapping and

localization process. The Intel research lab has a considerable amount of different rooms, how-

ever, there is no common connection between them, in fact, the world is really just a long corridor

folded up into a square, which, since it is not as big as the ACES building nor as small as Frei079,

it should stand as good "middle-ground" between the other two buildings.

Additionally, a small room, similar to one of the rooms in the Univ. of Freiburg model, with

a size of 20x8 meters, was modeled (figure 4.10) to be used in the sensor placement optimization

phase of the dissertation. The point in using such a small world in this specific case is to keep

the run-time of the optimization algorithm as low as possible while also still applying the SLAM

solution to a real-world scenario.

4.3 2D SLAM Algorithms

All of this projects’ framework is implemented using ROS, so, consequently, all of the SLAM

algorithms that are compared must have a ROS wrapper. Given these requirements, there are

4.3 2D SLAM Algorithms 47

Figure 4.10: Small room model

many SLAM projects implemented in ROS. This section offers a brief description of each of the

algorithms (all of them being 2D SLAM solutions) that were picked to be compared.

A. HectorSLAM4 - HectorSLAM is a solution developed with the intent to be used in Urban

Search and Rescue (USAR) missions. To achieve this, the authors of [60], offer a light

online SLAM solution capable of learning occupancy grid maps, by taking advantage of the

high update rate and low distance measurement noise of modern LIDARs and by using a fast

approximation of map gradients and a multi-resolution grid. Pose estimation is based on the

optimization of the alignment of beam endpoints with the current map, while, to solve scan

matching, a Gaussian-Newton method is used to find the rigid transformation that matches

the laser beams with the map. This solution is meant to be used in environments where hard

loop closures are not present so it should work best in small indoor environments or in an

outdoor setting.

B. KartoSLAM5 - KartoSLAM is a graph-based SLAM solution. As explained in section

2.3.3, these types of SLAM solutions revolve around building a graph whose nodes repre-

sent the robot’s positions and landmarks observed and the connections between these nodes

are either odometry data or laser sensor measurements. Solving SLAM then turns into a

graph optimization problem to determine the most likely configuration of the poses given

the edges of the graph. In this case, KartoSLAM uses the Sparse Pose Adjustment (SPA)

method for both scan-matching and loop-closure. In graph-based SLAM fashion, the big-

ger the environment the higher the number of nodes, which in turn, increases the process’

computational requirements. It should be noted, that the available ROS implementation of

this solution is hard-coded to not accept laser scans with a higher range of measurement of

12 meters.

C. SLAM Toolbox6 - SLAM Toolbox is also a graph-based SLAM, in fact, developed on top

of a highly modified version of KartoSLAM. This solution was designed to work in large

and dynamic spaces such as large retails stores and warehouses without any additional help

from a user. As stated in [61], a lot of modifications were made to the legacy version of

4http://wiki.ros.org/hector_slam
5http://wiki.ros.org/slam_karto
6https://github.com/SteveMacenski/slam_toolbox

http://wiki.ros.org/hector_slam
http://wiki.ros.org/slam_karto
https://github.com/SteveMacenski/slam_toolbox

48 Simulation Environment

KartoSLAM, specifically, scan matching was sped-up by enabling multi-threaded process-

ing, SPA optimization was replaced with Google Ceres, providing faster and more flexible

optimization settings. Additionally, serial and deserialization support was added for saving

and reloading functionalities between mapping sessions. Finally, processing modes were

added along with a K-D tree-search to process measurements.

D. Gmapping7 - Gmapping, thoroughly described in section 2.3.2.1, is a particle filter based

SLAM solution. Even though it the most widely used open-source SLAM package, it is

known to require some tuning to be able to work properly, especially in large-scale environ-

ments. It is also a very high demanding solution in terms of computational resources.

E. LaMa Online SLAM8 - The Localization and Mapping (LaMA) library, developed at the In-

telligence Robotics and Systems (IRIS) of the University of Aveiro, provides two solutions

to the SLAM problem. The LaMa Online SLAM [59] version offers a fast scan match-

ing approach to robot localization supported by a continuous likelihood field paired with

a Sparse-Dense Mapping (SDM) framework [62] used for efficient implementation of 3D

volumetric grids. Its main feature is efficiency, boasting very low computationally effort

and low memory usage when possible.

F. LaMA Particle Filter SLAM - The second version, LaMa Particle Filter SLAM, is an ex-

tension of the previous version. Like Gmapping, it offers a SLAM solution based on the

Rao-Blackwellized particle filter with the support of a similar fast scanning method of the

Online SLAM version used for pose refinement and a flexible space management data struc-

ture. Additionally, by taking advantage of independence between particles its computational

efficiency is further improved through multi-threading [63].

Note that all of these solutions are heavily modifiable by changing the parameters associated

with their ROS implementations. These can go from the number of particles that are used in the

RBPF-based SLAM solutions, to the max range of the laser readings that are allowed to be used in

the solutions. As further detailed in 5.1, some of these parameters were changed in order to keep

all of these solutions as close as possible in terms of acting conditions.

4.3.1 Benchmarking Metrics

Benchmarking SLAM systems is, unfortunately, not a straightforward task as all of these so-

lutions are affected by the customizable parameters available in their implementations along with

the computational resources available for usage. An example of this is in the multi-threading op-

tion that some of these solutions offer. To solutions that use this approach, such as the LaMa and

SLAM Toolbox, the number of threads available will have a considerable impact on the perfor-

mance of these implementations whereas, on others, like Gmapping, not so much. This to say, that

7http://wiki.ros.org/gmapping
8https://github.com/iris-ua/iris_lama_ros

http://wiki.ros.org/gmapping
https://github.com/iris-ua/iris_lama_ros

4.3 2D SLAM Algorithms 49

not only the SLAM solutions are often heavily customizable, their performance is also reliant on

the system they are operated from.

On top of that, even though there have been multiple solutions proposed to solving the

SLAM problem, there still hasn’t been developed a gold standard on how to compare these solu-

tions. In the community of feature-based SLAM techniques, researchers often present benchmark-

ing results based on the euclidean distance between the estimated landmark location and its true

location. On the other hand, in the area of grid-based implementations, the most common method

is to use visual inspection to compare the maps generated by the SLAM solutions to the original

blueprint of the environment. However, both of these methods have their drawbacks as they both

rely on either a global appreciation of the map or subjective inference, respectively.

This idea is exemplified in figure 4.11. In (a) we have the original topology of a given map,

which is just a long corridor with multiple doors on each side. In (b) we have the position where

the measurements were taken by the robot and in (c) we have the actual map estimate returned by

a SLAM algorithm. Even though the quality of the map (c) has obviously decreased in regards to

the map in (a), the original topology of the map, that is, the correct length of the corridor the same

number of doors on each side, is still accurately depicted. This means that even with the reduction

of quality in the map estimate, which these two previous metrics would reflect, it is actually still

usable for robot navigation.

Figure 4.11: Relative motion error effect [8]

In an effort to mitigate this issue, we will be comparing the SLAM solutions based on a

number of different metrics. The first one will be applied by using the SLAM Benchmarking Tool.

Researchers in [8] believe they have developed a metric that is able to objectively represent the

performance of different SLAM systems, regardless of the type of techniques they use, by basing

the performance of the SLAM system on the error between the robot local poses perceived by the

SLAM solution and the actual robot poses (ground truth). Specifically, this benchmark is based on

comparing the relative ground truth motions, δ ∗i, j, between the robot poses i and j and the relative

50 Simulation Environment

motion perceived by our SLAM algorithm, δi, j. Thus, equation 4.7 renders the benchmark, where

N is the number of relative motions (relations) that occurred within a given time frame.

ε(δ) =
1
N ∑

i, j
(δi, j−δ

∗
i, j) (4.7)

This relative motion can actually be split into the translation and rotation that may have

happened between i and j.

ε(δ) =
1
N ∑

i, j
(trans(δi, j−δ

∗
i, j)+ rot(δi, j−δ

∗
i, j)) (4.8)

The usage of this tool requires two input files. A SLAM log file containing all of the

robot poses returned by our SLAM solution and a relations file that includes the ground truth

relative translations and rotations. To achieve this, the node slam_benchmarking, contained in the

slam_benchmarking.py python script, was created to calculate the relative ground-truth motion of

the wheelchair and to monitor all the robot poses returned by SLAM. The robot poses are recorded

by obtaining the transform between the map frame and the odometry frame, seen in figure 4.3,

which is published by the SLAM solution chosen. For the ground truth relations, similar to what

was done for adding the noise into the odometry data in equation 4.3, the libgazebo_ros_p3d.so

plugin is used to obtain the robot poses i and j which are then used to calculate the displacement

and rotation between the two robot poses. Also, the relations recorded are based on the relative

motion that occurs every 0.5 seconds.

However, as will be seen when discussing the results, this metric also has its drawbacks,

especially, in large maps. since this metric focuses on errors occurring locally. Over time, the

motion errors may accumulate and cause inaccurate results in both the mapping and localization

results of SLAM.

So, another metric was introduced based on a global reference. Specifically, this bench-

marking technique is based on the error, ε(r), between the ground truth position of the wheelchair

in relation to a global frame, rt,t , the map frame, and the robot position estimate returned by the

SLAM solution, rs,t , at time t, rendered by equation 4.9. Since these errors are based on a global

reference, the accumulated error over time will be taken into account.

ε(r) =
1
N

t

∑
t=0
|rt,t − rs,t | (4.9)

ε(r) =
1
N

t

∑
t=0

(xt,t − xs,t ,yt,t − ys,t)| (4.10)

The node responsible for calculating this error is also the aforementioned slam_benchmarking

node contained in the slam_benchmarking.py python script. Similar to how it performs to gener-

ate the benchmarking files for the SLAM Benchmarking tool, it keeps track of all the ground truth

robot positions returned by the libgazebo_ros_p3d.so ROS plugin and the robot SLAM estimated

positions, returned by the map frame to odometry frame transform. The positions recorded along

4.4 Path Planning 51

with the difference between the SLAM estimate and the ground truth positions are then saved

in the compare_positions.txt file which is then parsed by the same python script using the pan-

das’ python library. Using this library the mean of the error between the two saved positions is

calculated and used as the final benchmarking metric.

It should be noted that the transform between the map and robot frame only monitors the

SLAM perceived poses in real-time. Full-SLAM solutions, which is the case for all of the solutions

considered here, except for LaMa 2D and Hector SLAM, when loop closing, have the ability to

perform adjustments on both the perceived global path of the robot and the map recorded based

on the optimization occurring in the loop closing phases. Unfortunately, both Karto SLAM and

Gmapping do not publish this information to ROS topics, and, in an effort to maintain the analysis

performed equal across all of the solutions, it was chosen to not include these adjustments into the

recorded data. Since this metric uses the transform named, the errors that are generated do not

consider the adjustments to the robot poses made in the past. Essentially, the metric analyses all of

the SLAM solutions as Online-SLAM solutions, so both metrics will not reflect the adjustments

that may occur on the Full-SLAM solutions. As such, the maps will also be analyzed visually.

Finally, the computational resources consumed by these solutions, during the deployment,

will also be evaluated using the psrecord9 python package, which allows the monitoring of CPU

(%) and RAM consumption of given Linux programs.

In sum, 2 metric SLAM benchmarking metrics are used to compare the performance of the

SLAM solutions, one based on the relative motion perceived by the SLAM solutions and another

based on the global error of the robot position also perceived by the SLAM solution. The fact that

there is access to the ground truth robot positions makes the usage of these benchmarking metrics

quite simple, which would not be the case if these experiments were done in a real-life scenario,

where the true robot positions would most likely need to be tracked "by hand".

4.4 Path Planning

Having implemented the wheelchair model along with the SLAM system responsible for our

robot’s mapping and localization needs, our wheelchair is now ready to perceive the world models

described in 4.2. However, there still remains the issue of how it will intelligently navigate its

environment. To do this, a modified version of the ROS 2D Navigation Stack, contained in the

move_base node, developed by researchers10 in the Intellwheels project, was used.

The navigation stack is fairly simple on a conceptual level. As can be seen in figure 4.12, it

receives a navigation goal (like most data in ROS, this is sent through a topic, specifically to the

/move_base/simple_goal topic) and uses data from the odometry source, exteroceptive sensors,

and the global and local cost maps to create a path to the navigation goal. Finally, to command the

robot to follow the path the move_base node publishes velocity commands to the /cmd_vel topic.

9https://pypi.org/project/psrecord/
10https://github.com/siferati

https://pypi.org/project/psrecord/
https://github.com/siferati

52 Simulation Environment

Figure 4.12: Navigation stack diagram

4.4.1 Cost maps

In a nutshell, cost maps are created by using sensor and map data (coming from the SLAM

system used) to generate, in this case, a 2D occupancy grid that contains the cost (difficulty) of

traversing different areas of a given map. For example, in the case of a ground robot working on

rough terrain, the cost map would be a 2D cost map with lower values where the ground is flat and

safe and the higher cost values would be associated with areas where the ground is rough/sloping.

In the case of the modeled environments used in this project, the only obstacles available in the

environments are the walls created in the worlds, so the higher values here are associated with

the exact position of the walls and they decrease the further we are from those walls. The values

held in a cost map are usually abstract and don’t directly represent any measurement of the world,

they are simply used to guide a route planning algorithm to find efficient and safe routes across

the ground. An example of a cost map of the aforementioned small room world is in figure 4.13,

where the colors surrounding the buildings represent the level of cost decreasing the further away

we are from the walls.

4.4.2 Navigation Planners

The planners shown in 4.12 calculate the best path to the goal provided, taking into account the

values of the cost map. There are two types of planners, global and local planners.

4.4 Path Planning 53

Figure 4.13: Cost map of small room world model

4.4.2.1 Global Planner

The global planner is what actually creates the specific plan from the current position of the

wheelchair to the navigation goal that is given. The global planner developed uses the ROS

global_planner package, which enables the application of either Dijkstra’s algorithm or A* on

the created 2D occupancy grid cost maps to find the minimum cost plan from the start position to

the end goal. In this case, the algorithm used is Dijkstra’s.

4.4.2.2 Local Planner

Given the plan created by the global planner, the local planner is what generates the velocity

commands to the wheelchair in order to keep it on the path. The local planner used here is the

teb_local_planner11 ROS package. Using this package, the initial trajectory created by the global

planner is optimized during run time in order to minimize the trajectory execution time, separation

from obstacles, and compliance with the max angular and linear velocities that are set.

4.4.2.3 Recovery Behaviours

Finally, the last element in a navigation stack is the recovery behavior. Whenever the wheelchair

is perceived as being stuck or cannot obtain a path to the desired location the /move_base package

allows for the implementation of recovery behaviors that try to fix the situation before actually

just quitting on the objective. There can also be multiple recovery behaviors that are activated

sequentially. In the implementation used, whenever the wheelchair is stuck it performs multiple

360º rotations, If this does not work the navigation simply gives up on the goal and waits for a new

one.

11http://wiki.ros.org/teb_local_planner

http://wiki.ros.org/teb_local_planner

54 Simulation Environment

Figure 4.14: Navigation planners - local (red) & global (blue)

Again, the navigation stack used was already implemented by researchers in the Intellwheels

project and it is fully available in this Github12 repository.

4.4.3 Goal Creation

With the navigation stack properly set up, all that is required for the robot to navigate the

environment is a goal. In some of the experiments conducted, the exploration ROS package ex-

plorer_lite was used to automatically generate goals based on a greedy frontier logic.

4.4.3.1 Explorer Lite

The explorer_lite13 ROS package provides frontier based automated exploration of environ-

ments. With the package implemented in a robotic system, it makes use of the map information

coming from the SLAM system to greedily explore the environment until no frontiers are found.

This stands as the sister package to the explorer ROS package, but unlike the former, explorer_lite

makes use of either the existing cost map of the navigation stack or SLAM map data, which makes

it much easier to configure and more efficient (lighter on resources). In this case, the package was

configured to take in the data coming from the SLAM system.

As we can see in figure 4.15, the package creates frontiers (blue lines), which is the line

between the unknown area (dark grey area) and the already mapped areas (lighter grey). Based on

the length of these frontier lines, the package generates goal messages to be read by the move_base

node which, in turn, will generate a path from the position of the wheelchair to the goal and control

12https://github.com/siferati/intellwheels_nav
13http://wiki.ros.org/explore_lite

https://github.com/siferati/intellwheels_nav
http://wiki.ros.org/explore_lite

4.5 Optimization Process 55

Figure 4.15: Frontier-based exploration example

said wheelchair until it reaches that position. Once that frontier has been explored the package will

generate another goal based on the next biggest frontier on the map. This architecture is shown in

figure 4.16.

Figure 4.16: Explorer lite architecture

4.5 Optimization Process

In the second and final phase of this project, a steepest-ascent hill-climber was applied to op-

timize the sensor placement of one and two laser sensors in order to maximize the performance

of one of the SLAM solutions picked from the previous phase. The objective function used is a

modified version of the two previous SLAM benchmarking metrics developed.

To do this, it was required to develop and adapt the optimization algorithm to the Gazebo

and ROS configurations, meaning that, since our objective function will be dependent on the data

acquired (relative motion and global position) from the wheelchair completing a designed course

in a created environment in Gazebo, each time the objective function is called, the actual optimiza-

tion algorithm has to wait for the circuit to be completed. So, the loop_master node, included in

the loop_master.py python script, was created and it’s responsible for controlling each step of the

optimization algorithm put in place. Additionally, exploring the state space is also not just a matter

of simply changing variables like the position, orientation, and configuration of the sensors since

they actually have to be changed directly in the wheelchair description files. The full optimization

process is shown in pseudo-code 3.

56 Simulation Environment

Algorithm 3 Sensor Placement Steepest Ascent Hill-Climber Pseudo-Code

1: function SENSORPLACEMENTOPTIMIZER(ObjectiveFunction, StateSpace)
2: rand_times = 0
3: while rand_times < 80 do
4: if rand_times != 0 then
5: SaveHillclimbRun(visited_positions)
6: end if
7: rand_times += 1
8: ClearPreviousRun(visited_positions)
9: state = Generate random state within StateSpace

10: while True do
11: if NOT CheckVisitedPositions(visited_positions,state) == True then
12: UpdateSensor(state)
13: initial_bench = Ob jectiveFunction(state)
14: UpdateVisitedStates(visited_positions,state,initial_bench)
15: else
16: initial_bench = GetVisitedSolution(state)
17: end if
18: best_bench = initial_bench
19: neighborhood = GetNeighborhood(state)
20: while neighbor = neighborhood[i] != None do
21: UpdateSensor(neighbor)
22: neighbor_bench = Ob jectiveFunction(neighbor)
23: UpdateVisitedState(visited_positions,neighbor,neighbor_bench)
24: if neighbor_bench < best_bench then
25: state = neighbor
26: best_bench = neighbor_bench
27: end if
28: end while
29: if best_bench == initial_bench then
30: break
31: end if
32: end while
33: end while
34: end function

4.5 Optimization Process 57

The code shown here is a modification of pseudo-code 1, designed to adapt to the previously

discussed simulation conditions. First, a random state, contained in the limits of the variables set in

table 4.1, is initiated. Depending on the state space, further discussed in sub-section 4.5.1, this can

be the position and orientation of one or multiple sensors with various configurations (max range

and FOV). Now, a new procedure was added to the optimization algorithm. Instead of risking the

chance that the state space exploration may lead to already visited positions, the functions Check-

VisitedPositions(), GetVisitedPositions(), UpdateVisitedPositions() were created to keep track of

already visited states, saving each of them in the dictionary data structure, visited_positions. This

was done to minimize the run-time of each iteration of the hill-climbing algorithm. So, if the state

has not yet been visited then, the objective function is called.

The performance of the SLAM algorithm chosen will be our objective function, which is

rendered in equations 4.11 and it stands as the weighted sum of our two previously implemented

metrics, the error between the relative motion estimate, δ ∗i, j and the ground truth relative motion,

δi, j plus the error between the global position estimate, rs,t and the ground truth position, rt,t , given

the position/orientation/configuration of 1 or 2 sensors, defined by the variable state. Naturally,

as we want to maximize the performance of the SLAM system we want to find the state that

minimizes both of these errors.

ε(state) =
1
2 ∑

i, j
trans(δi, j−δ

∗
i, j)+

1
2

N

∑
t=0

rt,t − rs,t (4.11)

Again, this objective function can only be called after the wheelchair has completed its

predefined course and gathered all of the required data, so the function itself ends up being re-

sponsible for an array of additional functionalities in the ROS framework. Specifically, once the

objective function is called its first order of business is to initiate the Gazebo world and spawn the

wheelchair model along with all of the required nodes responsible for the circuit to be completed

and monitored. With everything spawned, the objective function will block the main algorithm

until the circuit has ended and the slam_benchmarking node has created the file with the required

data for the metric computation. Once all the data is gathered, the metric is calculated and the

state, along with its corresponding metric is saved onto the visited_positions dictionary. On the

other hand, if the state has already been visited then the initial_bench variable is updated with the

corresponding state benchmark, using the GetVisitedSolutions function.

Following this, the neighborhood is obtained with the GetNeighborhood function, which

should generate all of the available neighbors of the current state that are included in the defined

state space.

4.5.1 State Space

In this case, the state space is defined as the possible positions/orientations that the sensor can

take along with all of the possible configurations, considering a number of restrictions. Specif-

ically, the variables that are included in the state space are the x,y positions of the sensor, its

58 Simulation Environment

orientation, their covered field of view, and finally, the max range of their laser readings (table

4.1).

Perimeter(m) Orientation(º) FOV(º) Range(m)

[0.00, 0.72] [-90, 90] [40,180] [4,20]
]0.72, 1.61] [0,180] [40,180] [4,20]
]1.61, 2.33] [90, 270] [40,180] [4,20]
]2.33, 3.22] [180,360] [40,180] [4,20]

Table 4.1: Sensor placement state space

The positions that are tested all belong to a rectangular perimeter with a length of 3.22

meters defined around the wheelchair just above the wheels (figures 4.17 and 4.18), so, really, the

x and y variables actually become one, the perimeter variable. The position of the sensor also

causes some restrictions on the other variables, specifically, the orientation of the sensor, since, for

example, it would not make sense to have a sensor placed on the front of the wheelchair but have it

pointing backward. In figure 4.18 we have an example of a possible sensor position/configuration.

The sensor is sitting in the perimeter position 1.20 meters with a 90º orientation, a field of view of

180º, and a max range of 20 meters.

Figure 4.17: Sensor placement wheelchair
perimeter

Figure 4.18: Sensor side position
(1.30,90,180,20)

The GetNeighborhood() function returns all of the possible neighbors of the state. Each

neighbor is defined as a step-sized positive or negative iteration of one of the variables in the cur-

rent state. For example, a possible neighbor of the (1.30,90,180,20) state would be (1.40,90,180,20)

as it stands as a positive iteration to the perimeter variable. So, since we have 4 changeable vari-

ables each with the possibility to offer 2 neighbors (± step_size) there are, most of the time, 8

4.6 Summary 59

possible neighbors if we are using only 1 sensor. In the case of 2 sensors, this number doubles to

16 possible neighbors as the number of sensor variables also doubles.

neighbor = state± step_size (4.12)

Variables Step Size

Perimeter(m) ±0.1
Orientation(º) ±10

FOV(º) ±10
Range(m) ±2

Table 4.2: Sensor placement state space step size

Note that each the time the objective function is called, the tags associated with these sensor

parameters in the description files of the wheelchair have to be changed. So, the update_sensor

function is always called before the objective function. This function exploits the fact that the

xacro URDF type files can import dictionary data structures from Yet Another Markup Language

(YAML) files. Instead, of parsing the main configuration files each time a sensor parameter is

changed, the update_sensor simply creates a new sensor_config.yaml file with a dictionary con-

taining all of these sensor parameters. So each time the wheelchair is spawned, the configuration

files import the sensor parameters from the sensor_config.yaml.

Finally, the objective function is called for all the possible neighbors, and their solutions are

compared with the initial_bench. Since this is the steepest-ascent version of a hill-climber algo-

rithm, all of the neighbors are explored before moving on to a new state. If one of the neighbors

has a lower cost value (in this case, the aim is to minimize the objective function), then that neigh-

bor becomes the new current state. This iteration of the hill-climber continues until initial_bench

is the minimum value found among the neighbors. When this happens, this solution is saved as

the best solution found in this iteration of the hill-climber.

As mentioned in section 2.5.1.1, the hill-climber algorithm has a chance to get stuck on

local minima, so to mitigate this, loop_master initiates a new hill-climber iteration each time one

has ended it until it has ran at least 80 times.

4.6 Summary

Conducting experiments under a real-life scenario can be quite a costly operation, both in terms

of monetary and time costs. This is true in the context of this dissertation, especially since an

optimization algorithm is employed to recursively change the positions, orientations, and config-

urations of multiple sensors in a wheelchair model. With the number of variables considered,

it simply would not make sense to perform this optimization in the real wheelchair. So, taking

advantage of previous research done in the Intellwheels project, a simulated environment was de-

signed with the purpose of performing the planned experiments while keeping the aforementioned

60 Simulation Environment

costs to a minimum and also maintaining a decent degree of fidelity to the hardships that a robotic

system may encounter in a real-life scenario.

First, a number of 2D-SLAM algorithms were implemented, into the existing wheelchair

model and navigation stack, along with a frontier-based exploration package used for goal gener-

ation. To analyze these algorithms a number of metrics based on relative motion errors and global

position errors were also implemented.

To accentuate the differences between the SLAM solutions’ performances an odometry

noise model was added, as the original differential driver plugin did not add enough noise to

the odometry data published, for the SLAM solutions to generate any errors. Furthermore, a

number of distinguishable world models, designed using laser scan data gathered on real-life en-

vironments, were created in order to analyze the performance of the given SLAM systems, under

different conditions.

Lastly, to perform the actual sensor placement optimization, a steepest hill-climbing algo-

rithm, using the benchmarking metrics as the objective function, was adapted to the ROS frame-

work.

Chapter 5

Experiments and Results

Given the simulation environment properly set up, along with the required tools needed to moni-

tor the performance of the SLAM solutions, it is now possible to discuss the experiment procedures

and results. The objective of these experiments was to use the benchmarking metric developed to

compare and analyze the performance of the mentioned 2D SLAM solutions in distinct navigation

scenarios, and to find the optimal place/configuration of sensors that maximizes the performance

of said solutions by employing a steepest ascent hillclimber algorithm. For reference, all of the

experiments detailed were conducted in an Acer Aspire V5-591G-55T2 laptop with an Intel Core

i5-6300HQ CPU @ 2.30GHz processor and 8GB of RAM running on Linux’s Ubuntu 18.04.

This chapter is then divided into two sections, each of them dedicated to each of the experi-

ments, detailing both how they were conducted and discussing their results.

5.1 2D SLAM Analysis

To compare the SLAM solutions between each other, the first thing done was to adjust the most

relevant parameters of each of these solutions to be as close as possible, namely, the max range

of the laser scan readings, and the accumulated translation, and rotational motions required before

each scan processing procedure takes place. In this vein, all of the SLAM solutions were adjusted

to only take laser readings that have no more than 18 meters of range, in the two smallest worlds,

and then changed to 25 meters for the biggest world. The accumulated translations and rotations,

before scans are processed, were adjusted for 0.5 meters and 0.25 radians, respectively, for each

of the SLAM solutions. Additionally, for the particle filter SLAM solutions, LaMa Particle Filter,

and Gmapping, the number of particles was adjusted to 30. Regarding the actual wheelchair, it

will move at a max linear velocity of 0.4 m/s and an angular velocity of 0.3 m/s.

In this phase only one sensor was used, supported by a FOV of 180º and a max range of

either 18 meters or 25 meters, depending on the testing environemnt. Additionally, it was placed

in the front of the wheelchair pointing in the same direction as the forward movement direction of

the wheelchair as shown in figure 5.1.

61

62 Experiments and Results

Figure 5.1: Sensor position for SLAM
comparison

Figure 5.2: Sensor scan example for
SLAM comparison

As explained in section 4.3.1, three different benchmarking metrics will be used. The first,

based on the relative motion of the robot (translation and rotation error), should be able to inter-

pret if the SLAM solution is able to faithfully maintain the correct topology of the environment.

The metric based on the global position errors between the SLAM solution and the ground truth

should, in this case, represent the accuracy of both the localization and mapping processes in a

less forgiving way as the quality of the map will be taken into account. The last metric will be

based on the computational resources consumed by the SLAM solution during its run-time.

With the solutions used adjusted, they were applied to map and explore the three main

worlds models discussed in section 4.2, where two different types of navigation scenarios were

used, one based on the exploration package explorer_lite and another based on teleoperation of

the wheelchair model.

5.1.1 Exploration Circuits

In the first case, the exploration package does not guarantee the exact same experiment circum-

stances to be performed, since it generates goals based on the highest value frontier, which in turn

is obtained from the map generated by the SLAM solution. So, in this case, goals generated from

the exploration package may be different which will also cause the path generated by the naviga-

tion stack to also be different. Even though the same experiment conditions will not be maintained

between the SLAM solutions (since their navigation goals will likely be different), this is still an

interesting experiment to conduct since this exploration phase is a very likely real life scenario.

As an example, let’s imagine a setting where the wheelchair robotic system is deployed

in a hospital for transportation of patients that are unable to sufficiently operate the wheelchair.

5.1 2D SLAM Analysis 63

The first other of business, before actually performing this navigation, would be to deploy the

wheelchair with an exploration algorithm combined with a SLAM solution and let it explore and

map the hospital environment. With this example, it is possible to see why analyzing the perfor-

mance of SLAM solutions under this scenario could be useful.

The wheelchair system with the different SLAM solutions and the exploration package were

then deployed into the 3 different worlds. Also, again, in an effort to maintain experiment cir-

cumstances for all of the SLAM solutions tested, each exploration cycle was limited to a certain

time-frame, meaning once the robot exploration begins it has a limited time-frame to perform

said exploration. So, the smallest of worlds, the Univ. of Freiburg Building 79 was restricted to

20 min, the second largest one, the Intel’s Research Lab, to 30 minutes, and, at last, the largest,

ACES Building, at 40 min.

In figures 5.3, 5.4 and 5.5 we can see the actual path completed by the wheelchair compared

with the path completed perceived by the SLAM solution and the path returned solely by the

odometry data. With this, it’s possible to see if there is a difference between both paths and also

conclude that the odometry noise model was successfully implemented as it is unreliable in long

spans of time.

Figure 5.3: SLAM Vs ground truth Vs odometry paths in Frei079 during exploration circuit

5.1.1.1 Relative Motion Metric

We can see in table 5.1, that the metric based on relative motion, stays pretty consistent across

all of the SLAM solutions, except for Hector SLAM in the ACES building model. Apart from

64 Experiments and Results

Figure 5.4: SLAM Vs ground truth Vs odometry paths in Intel during exploration circuit

Figure 5.5: SLAM Vs ground truth Vs odometry paths in ACES during exploration circuit

this outlier, this means that all solutions should be able to keep up with the relative motion that

occurs in the wheelchair with a mean error value in the low centimeters range, in the case of the

5.1 2D SLAM Analysis 65

translation error, and in the low radians range (all mean rotational errors are below 0.010). The

translation errors also seem to get higher across all of the solutions when comparing the results

from the ACES building with the other two. This is most likely due to the original topology of the

world being mostly composed of extremely long corridors which could be taking its toll on the

performance of the scan matching processes of the SLAM solutions.

As can be seen in figures, 5.3, 5.4 and 5.5 even though, in some cases, there is clearly

some displacement between the ground truth path and the SLAM path, the length of both paths

stays mostly the same. However, this metric may not be fully representing the performance of the

solutions for a number of reasons. Since it focuses on local errors that occurred, it provides no data

about the fact that the SLAM solutions may or may have not been able correct the accumulated

error that is being produced in each motion. This could cause inconsistencies in the generated map

that may inhibit its later usage for navigation.

Translation Error (m) Gmapping LaMa PF LaMa 2D Karto SLAM SLAM Toolbox Hector SLAM
Frei079 0.04 ± 0.02 0.04 ± 0.02 0.04 ± 0.02 0.03 ± 0.02 0.04 ± 0.02 0.04 ± 0.02

Intel 0.04 ± 0.02 0.04 ± 0.02 0.04 ± 0.02 0.04 ± 0.02 0.04 ± 0.02 0.04 ± 0.02
Aces 0.05 ± 0.01 0.07 ± 0.01 0.05 ± 0.01 0.05 ± 0.01 0.05 ± 0.02 0.11 ± 0.15

Rotational Error (rad)
Frei079 0.06 ± 0.08 0.06 ± 0.08 0.07 ± 0.09 0.07 ± 0.09 0.09 ± 0.16 0.06 ± 0.08

Intel 0.06 ± 0.08 0.07 ± 0.09 0.07 ± 0.09 0.07 ± 0.09 0.09 ± 0.12 0.05 ± 0.07
Aces 0.04 ± 0.05 0.03 ± 0.06 0.05 ± 0.03 0.04 ± 0.06 0.04 ± 0.06 0.04 ± 0.06

Table 5.1: Relative motion metric results of the exploration circuits

5.1.1.2 Global Position Metric

In the errors generated based on the the global position metric, which are displayed in table 5.2,

there are some much more clear discrepancies among the performance results of each solution.

X-Axis Position Error (m) Gmapping LaMa PF LaMa 2D Karto SLAM SLAM Toolbox Hector SLAM
Frei079 0.11 ± 0.10 0.28 ± 0.16 0.50 ± 0.19 2.19 ± 0.81 0.33 ± 0.19 0.12 ± 0.09

Intel 0.27 ± 0.23 0.26 ± 0.23 0.51 ± 0.31 1.55 ± 1.13 1.12 ± 0.72 0.29 ± 0.24
Aces 0.33 ± 0.37 0.087 ± 0.095 0.14 ± 0.23 2.3 ± 1.5 0.95 ± 1.2 2.6 ± 2.4

Y-Axis Position Error (m)
Frei079 0.10 ± 0.12 0.68 ± 0.36 0.70 ± 0.41 0.11 ± 0.08 0.24 ± 0.18 0.53 ± 0.40

Intel 0.40 ± 0.34 0.14 ± 0.10 0.23 ± 0.16 1.30 ± 1.20 1.40 ± 0.85 0.23 ± 0.17
Aces 0.25 ± 0.32 0.092 ± 0.09 0.14 ± 0.11 2.0 ± 2.01 2.8 ± 1.11 2.0 ± 2.0

Table 5.2: Global position metric results of the exploration circuits

Looking at the smallest of the worlds, the better performing solution was Gmapping, al-

though, except for Karto SLAM, the remaining solutions were all very interchangeable. The high

error values produced in the case of Karto SLAM appear, in the quality of the map produced, as

overlapping walls, as we can see in figure 5.7. Although this inconsistency exists, it could be

argued that the map is more than sufficient to be used in navigation.

In the following world, Intel’s research lab, LaMa’s particle filter version was the better

performing solution, while Karto SLAM and SLAM Toolbox offer the worst results. Again, these

66 Experiments and Results

Figure 5.6: Gmapping map generated in
Frei079 during exploration circuit

Figure 5.7: Karto SLAM map generated in
Frei079 during exploration circuit

high values are both translated in the difference between the global path taken (seen in figure 5.4)

but also through the quality of the maps generated. Looking at the maps in both figures 5.8b and

5.8c it is also possible to see some of the apparent drawbacks of using this metric. By comparing

these two maps with the one generated by LaMa’s particle filter, in figure 5.8a, we can see that

the two worst ones seem to be slightly rotated. This is one of the issues of using a performance

metric based on a global fixated frame. While from a global perspective that rotation represents a

feasible decrease in quality of the mapping and localization, it could be argued that, if that was the

only inconsistency with the map, both maps could still be used to perform navigation.

´

(a) LaMa’s particle filter

´

(b) SLAM Toolbox

´

(c) Karto SLAM

Figure 5.8: Intel maps generated during exploration circuit

Regardless of the quality of the map, all of the SLAM solutions, up until now, were able

to fully explore and map the worlds models, to an acceptable degree. However, in the last and

largest world, the ACES building, some of the SLAM solutions fell short of this capability. In this

last model, only Gmapping, LaMa PF, and LaMa 2D were able to faithfully explore and create

an acceptable map, with LaMa’s particle version having the better results. In the case of the last

remaining solutions, the quality of the maps being generated during run-time ended being poor to

the point that the environments were unable to be fully explored, as seen in the following figures

5.9b, 5.9c and 5.9d. From the mapping errors seen in the figures, the overlapping walls included

in the maps have made it impossible for the wheelchair to correctly traverse the map as both the

exploration algorithm and the navigation stack make use of this map to employ proper navigation.

In the case of the graph-SLAM solutions, Karto SLAM, and SLAM toolbox, this is most likely due

to increased need in loop closing of the solutions, which in this environment, the opportunity to

5.1 2D SLAM Analysis 67

perform this process is greatly reduced due to the long corridors and lack of connection between

them. Hector SLAM, offers no loop closing solution so the accumulated error gathered in said

corridors likely caused this end result and its scan matching may not be as reliable as the other

Online SLAM solution, LaMa 2D.

(a) LaMa’s particle filter

(b) SLAM Toolbox

(c) Karto SLAM (d) Hector SLAM map

Figure 5.9: ACES maps generated during exploration circuit

From these results, both particle-filter-based solutions seem to be the more robust of the

ones that were picked. Consistently, Karto SLAM was the worst-performing solution across all

of the exploration phases, most likely due to its hard-coded limitation, of only accepting sensor

readings below the length of 12 meters. In actuality, both graph-based solutions do not seem good

choices in a scenario like this, as they are both reliant on loop closure for graph optimization. The

exploration algorithm used does not take this into account, since it is solely focused on exploring

the areas of the map with a higher value frontier which may not include a navigation path that

actually has loop-closing opportunities. Regarding the Online SLAM solutions, both have similar

performances on the smallest maps, however, Hector SLAM fell short on mapping the biggest.

68 Experiments and Results

5.1.2 ROSBag Circuits

In this second navigation experiment, the performance of the SLAM solutions is tested in a

much more controlled scenario, where the wheelchair was teleoperated using the teleop_twist_keyboard1

ROS package. In this case, each of the environments was explored "by hand" while all the ROS

topics regarding the odometry, ground truth, and laser scan data were saved into ROSbags2. ROS-

bag is a set of tools that enables the recording and the playing back of data stored in ROS topics.

By using this tool we are able to replay the ROSbags gathered using the different SLAM solutions

which, in a nutshell, enables all of the SLAM solutions to be tested using the exact same data.

Also, by using a predefined route controlled by the user, the dependency on the map generated

during navigation for the navigation itself is negated, which will likely make it easier for the solu-

tions to perform loop closing in a case where the map generated may inhibit that (which is what

happened in the last environment in the exploration circuits). Essentially, we are performing what

is called offline SLAM. The respective ground truth, odometry, and SLAM paths are shown in

figures 5.10, 5.11 and 5.12. As seen, the ground truth and odometry data are exactly the same for

each of the testing worlds.

Figure 5.10: SLAM Vs ground truth Vs odometry paths in Frei079 during ROSbag circuit

1http://wiki.ros.org/teleop_twist_keyboard
2http://wiki.ros.org/rosbag

http://wiki.ros.org/teleop_twist_keyboard
http://wiki.ros.org/rosbag

5.1 2D SLAM Analysis 69

Figure 5.11: SLAM Vs ground truth Vs odometry paths in Intel during ROSbag circuit

Figure 5.12: SLAM Vs ground truth Vs odometry paths in ACES during ROSbag circuit

70 Experiments and Results

5.1.2.1 Relative Motion Metric

The results obtained from this metric shows us mostly the same as the other experiment as all

of the solutions have similar results in each of the environments tested. By using the same data we

are able to conclude here that all of the solutions show similar performance in predictions made

about the relative motion of the wheelchair. This similarity in the results both across the ROSbag

and the exploration circuits could also be suggesting that the noise added in both the odometry

data and laser scan data is not sufficient to see any difference between the local SLAM solution’s

motion predictions.

Translation Error (m) Gmapping LaMa PF LaMa 2D Karto SLAM SLAM Toolbox Hector SLAM
Frei079 0.05 ± 0.02 0.05 ± 0.01 0.05 ± 0.01 0.05 ± 0.01 0.05 ± 0.01 0.05 ± 0.02

Intel 0.05 ± 0.01 0.05 ± 0.01 0.05 ± 0.02 0.05 ± 0.01 0.05 ± 0.01 0.05 ± 0.02
Aces 0.05 ± 0.02 0.05 ± 0.01 0.05 ± 0.01 0.05 ± 0.01 0.05 ± 0.01 0.05 ± 0.02

Rotational Error (rad)
Frei079 0.05 ± 0.09 0.05 ± 0.09 0.05 ± 0.09 0.05 ± 0.09 0.05 ± 0.09 0.05 ± 0.09

Intel 0.06 ± 0.09 0.06 ± 0.09 0.06 ± 0.09 0.06 ± 0.09 0.06 ± 0.09 0.06 ± 0.09
ACES 0.01 ± 0.03 0.02 ± 0.03 0.02 ± 0.03 0.01 ± 0.03 0.01 ± 0.03 0.01 ± 0.03

Table 5.3: Relative motion metric results of the ROSbag circuits

5.1.2.2 Global Position Metric

In table 5.4 it is possible to see the results of the global metric in the ROSbag circuits.

X-Axis Position Error (m) Gmapping LaMa PF LaMa 2D Karto SLAM SLAM Toolbox Hector SLAM
Frei079 0.49 ± 0.3 0.16 ± 0.11 1.7 ± 2.3 1.1 ± 1.1 0.94 ± 0.61 0.11 ± 0.08

Intel 0.24 ± 0.14 1.1 ± 0.37 0.96 ± 0.38 0.98 ± 0.75 0.95 ± 0.57 1.13 ± 1.11
Aces 0.24 ± 0.24 0.47 ± 0.37 0.47 ± 0.37 4.4 ± 3.4 0.9 ± 0.72 1.7 ± 1.3

Y-Axis Position Error (m)
Frei079 1.7 ± 1.0 0.21 ± 0.20 0.27 ± 0.27 0.48 ± 0.37 1.1 ± 0.84 0.3 ± 0.17

Intel 0.25 ± 0.22 0.49 ± 0.33 0.46 ± 0.28 1.5 ± 1.24 0.68 ± 0.58 0.73 ± 0.51
Aces 0.18 ± 0.14 0.55 ± 0.40 0.55 ± 0.4 2.6 ± 2.3 0.63 ± 0.51 3.1 ± 2.4

Table 5.4: Global position metric results of the ROSbag circuits

In the first world, most of the SLAM solutions obtained sufficient results, with Hector

SLAM having less error in the x-axis position and LaMa’s PF in the y-axis. In the case of the

worst-performing SLAMs using this metric, we can see that there is either a slight bend in the

map generated and/or multiple overlapping walls in all of remaining maps presented in figure

5.13.

Even though our metric reflects these inconsistencies, it could be argued that all of the maps

shown here could still be used for navigation.

In the second world, the best performing solution was Gmapping. However, in this case,

looking at the quality of the maps generated in figure 5.14, contrary to what is suggested in the

metric, both Karto SLAM and LaMa particle filter have managed to produce maps without any

obvious shortcomings. Again, this reflects on another drawback of our benchmarking tool, which

5.1 2D SLAM Analysis 71

(a) Gmapping (b) LaMa’s particle filter (c) LaMa 2D

(d) Karto SLAM (e) SLAM Toolbox (f) Hector SLAM

Figure 5.13: Frei079 maps generated during ROSbag circuit

is evaluating these solutions as they were all Online SLAM algorithms. What most likely happend

is that Karto SLAM and LaMa’s PF were able to perform loop closing and correctly adjust their

final map and path.

(a) Gmapping (b) LaMa’s particle filter (c) LaMa 2D

(d) Karto SLAM (e) SLAM Toolbox (f) Hector SLAM

Figure 5.14: Intel maps generated during ROSbag circuit

Finally, in the last and biggest world, the results suggest that the best solution is Gmapping,

however, LaMa’s PF solution seems to have produced the best map, as seen in figure 5.15. Both

Karto SLAM and Hector SLAM, did not come close to producing an accurate map and deviated

immensely from the original path when navigating the environment.

From results gathered in the ROSbag circuits, the particle-filter-based SLAM solutions still

72 Experiments and Results

remain the more robust solutions. Among the graph-based ones, they have had a slight increase in

performance most likely due to the increase in loop closing opportunities. Regarding the Online

SLAM solutions, LaMa 2D also remained the better performing one of the two.

(a) Gmapping (b) LaMa’s particle filter (c) LaMa 2D

(d) Karto SLAM (e) SLAM Toolbox (f) Hector SLAM

Figure 5.15: ACES maps generated during ROSbag circuit

5.1.3 Computational Resources Consumption

The computational resources spent, in terms of CPU (%) consumption and RAM megabytes

consumption, of all of the SLAM solutions for each of the models tested in, are presented in fig-

ures 5.16, 5.17 and 5.18, where the x-axis represents the time-frame of the recorded consumption

and the y-axis displays both the CPU’s percentage consumption (left side) and the RAM usage

shown in megabytes (right side). Also, for convenience sake, the results shown here are all gath-

ered during the ROSbag circuits, as the ones gathered in the exploration circuits lead to the same

conclusion.

In the case of Frei079’s circuit, regarding the CPU (%) usage, it is clear that the Online-

SLAM options, LaMa 2D and Hector SLAM, are the least expensive, with similar results, whereas,

both Karto SLAM and Gmapping are the most expensive. To distinguish the best solutions, in this

case, it is possible to see that LaMa 2D uses much less RAM than Hector, which makes it the least

economical solution overall. Analyzing both the graph-mapping solutions we can also see that,

5.1 2D SLAM Analysis 73

(a) Gmapping (b) LaMa’s particle filter (c) LaMa 2D

(d) Karto SLAM (e) SLAM Toolbox (f) Hector SLAM

Figure 5.16: Computational resources used by SLAM solutions in Frei079

as time goes on, they increase their performance cost (almost to a linear pattern). This is most

likely due to the increase in the number of nodes, as more data is gathered, in the graph, which

requires a higher computational power to optimize and also leads to a higher memory requirement

as the data saved increases. For the particle filters we can see there is a trade-off between the RAM

consumption and CPU usage for both solutions as Gmapping makes complete usage of the CPU

power, while LaMa PF trades this for higher usage of the memory capabilities.

In Intel’s circuit, the results gathered display mostly the same conclusions as in the last case,

where LaMa 2D continues as the least consuming across all of the solutions.

Lastly, in the ACES circuit, again we see the same trends as in the previous models, except

with some increase in the memory consumption as the world is much bigger than the other two.

However, LaMa 2D still comes as the best option.

In sum, gathering all of the results from the previous metrics, we can see that both particle

filters consistently go "toe-to-toe" regarding the two initial metrics, which makes them both robust

solutions for performing SLAM. Picking between these two would end coming down to the com-

putational resources that are available for usage, where LaMa’s PF trades more RAM consumption

for less CPU (%), while, Gmapping works the other way around. Following that, the graph-based

solutions are inconsistent in their performance metrics as the maps generated in the small worlds

tend to have discrepancies and, in the case of the exploration circuits, they were unable to map all

of the environments, specifically, the ACES’ Building. Regarding the least economical solutions,

LaMa 2D and Hector SLAM, the former proves to be the most consistent solution of the two.

74 Experiments and Results

(a) Gmapping (b) LaMa’s particle filter (c) LaMa 2D

(d) Karto SLAM (e) SLAM Toolbox (f) Hector SLAM

Figure 5.17: Computational resources used by SLAM solutions in Intel

(a) Gmapping (b) LaMa’s particle filter (c) LaMa 2D

(d) Karto SLAM (e) SLAM Toolbox (f) Hector SLAM

Figure 5.18: Computational resources used by SLAM solutions in ACES

5.2 Optimal Sensor Placement

In the second and final phase of the project, a number of experiments were conducted to find

the optimal sensor positioning/configuration that maximizes the performance of a given SLAM

solution picked based on the results obtained in the previous experiments.

5.2 Optimal Sensor Placement 75

One of the most important variables in this phase is the computational power available to

conduct the experiments. As mentioned before, the objective function is obtained from the data

gathered after the wheelchair has completed some sort of navigation circuit, so each time the

function is called, there is a time cost associated with the completion of said circuit. If this cost is

too high, the optimization algorithm would simply take too long to obtain a sufficient number of

results.

Since these experiments were conducted using Gazebo and ROS, it is possible to speed

up the physics engine of the Gazebo simulator to increase the speed of the navigation circuit.

However, this increase in speed is reliant on the processing power available in the machine running

the simulation. With this said, a number of measures were taken to increase this speed as much as

possible, namely:

• The least consuming SLAM solution was picked, specifically, LaMa 2D. This is also ad-

vantageous since the metrics developed consider the SLAM solutions to be Online SLAM,

which LaMa 2D originally is.

• The world model in 4.10 was used as the testing environment. Since it is such a short

environment, the processing power consumed for loading the world should be reduced in

comparison with the bigger worlds. Also, even though the SLAM solution picked was not

the best from the results gathered in the previous phase, it should still produce good results

in such a small environment.

• Instead of using some sort of goal-oriented algorithm coupled with the navigation stack, a

follow line algorithm was created to control the navigation of the wheelchair.

Regarding the last point, the move_back_forth node was created, contained in the move_back_forth.py

python script, which stands as a simple follow-line algorithm that creates a predefined circuit by

controlling the wheelchair movement by publishing to the cmd_vel ROS topic. So, for all the

experiments performed in this phase, the wheelchair performs the circuit shown in figure 5.19.

With these modifications, it was possible to increase the simulation speed to be 1.5x faster than in

real-time, making each objective function call last around 30 seconds.

Apart from this, there also a number of things to consider associated with the objective

function results. SLAM solutions are inherently stochastic processes, which means that even

when performing the exact same course with the exact sensor configuration, the performance of

the solution may not be exactly the same. As an example, we can see the fluctuation between the

values in figure 5.20 which compares the metric results of repeated iterations of the navigation

circuit with 2 different sensor configurations, one with a FOV of 120º and another with a FOV

of 130º. The fluctuation seen in the metric results of both configurations, causes both to alternate

between being the best result multiple times. Unfortunately, this further adds to the chance that

the hillclimber will get stuck in local minimums, instead of trending to the best sensor positions.

This was also taken into account when choosing the SLAM solution to use. Since we are using an

Online SLAM solution this should decrease the number of probabilistic predictions in the SLAM

76 Experiments and Results

Figure 5.19: Optimization loop circuit (Red Line)

process, compared with graph-based or particle filter-based solutions. Also, in an effort to make

the distinction between the performance of each configuration more obvious, the original metric

changed from the sum of the mean of the errors in the metrics to the accumulation of errors

(equation 4.11).

Figure 5.20: Benchmark metric results fluctuation between hillclimber iterations

With these points considered, a number of different experiments were conducted using the

optimization algorithm described in section 4.5. The difference between the experiments is the

state space that is considered when performing the optimization. The number of variables con-

sidered is incrementally increased, starting by only considering the state space as the perimeter

around the wheelchair with different fields of view and finishing by considering all of the possible

places in the perimeter around the wheelchair with 2 sensors with different configurations (both

FOV and the max range). The thought here is to analyze the effect that each variable has on the

performance of the SLAM solution. Again, all of these experiments are based on the completion

of the circuit in figure 5.19 with odometry model described in section 4.1.1. For future reference,

in figures 5.21 and 5.22 we have the path comparisons and the map produced by a configuration

5.2 Optimal Sensor Placement 77

that returned a metric result of 10.1 and 14.1, respectively.

Figure 5.21: Optimization circuit generated map (left figure) & path comparisons (right figure)
with benchmarking result of 10.1

Figure 5.22: Optimization circuit generated map (left figure) & path comparisons (right figure)
with benchmarking result of 14.2

Based on these results any sensor configuration that achieves a value below 13 will be

considered a good sensor placement performance.

5.2.1 Use Case 1: Single Sensor, Perimeter, FOV & Orientation

In the first experiment conducted, the optimization algorithm was applied to the state space

shown in table 4.1 with only 1 sensor and with the range variable restricted to its maximum range

of 20 meters. In figure 5.23 we can see all of the local minimums achieved by the different runs

of the hill-climber algorithm, ordered from the highest cost function value to the lowest, where

78 Experiments and Results

the x-axis represents the hill-climber run and y-axis represents the minimum cost function value

found in that run.

Figure 5.23: All hillclimber results from use case 1

From this plotting it’s possible to see that from 70 different hillclimber runs, there are 27

sensor configurations (38.5%) that fall below the 13 meters threshold. All of the sensor configura-

tions below 13 meters are shown in the next figure, where the black box represents the wheelchair

model and the triangle the front and center of the model. The blue triangles are the sensors, each

with an orientation associated with them (where the triangle is pointing). The FOV of the sensor

is the number next to the sensor position/configuration.

Figure 5.24: Sensor configurations with a benchmarking metric result below 13 in use case 1

5.2 Optimal Sensor Placement 79

There is a concentration of a large part of the sensors in the front of the wheelchair with an

orientation and FOV sufficient to always cover the direction of the movement of the wheelchair.

Even the sensors that ended up on the sides of the wheelchair seem to either be pointing in the di-

rection of the wheelchair movement or have a FOV sufficient to cover it. In the small world model

considered, the sensors being pointed in the direction of movement of the wheelchair with a range

of 20 meters, means that at all times, the SLAM is able to get data from a wall that is perpendicular

to its direction of movement. This should make the scan matching process easier and, in turn, its

SLAM estimate more accurate. Furthermore, pretty much all of the sensors configurations have a

FOV above 100º. In figures 5.25 we see the top 4 positions of these hillclimber runs. The legend

of each plot represents the configuration plus the result (FOV,Range=Cost Function Result). All

of them are pointed in the direction of wheelchair movement and have FOVs higher than or equal

to 130º.

Figure 5.25: Top 4 sensor positions/configurations in use case 1

5.2.2 Use Case 2: Dual Sensors, Perimeter, FOV & Orientation

In the second use case scenario, the same variables as the previous scenario were used, however,

a second sensor was added with the same state space possibilities. All of the results from the

different hillclimber iterations are present in figure 5.26.

80 Experiments and Results

Figure 5.26: All hillclimber results from use case 2

From 95 different hillclimber runs, there are 73 sensor configurations (77%) that have

achieved a cost function below 13 meters. Since it would become quite cumbersome to display all

73 positions, in figure 5.27 we have all of the sensor configurations that achieved values below a

cost function of 10 meters. Both plots in the figure show the pair of sensors of these configurations

where each colored sensor has a matching pair on the second plot.

Figure 5.27: Sensor configurations with a benchmarking metric result below 10 in use case 2

Looking at both plots, it is clear that there is a trend of each pair of sensors diverting their

orientation in order to maximize the area covered by the laser scans. Also, some sensors have

started appearing pointing in the opposite direction of movement of the wheelchair (the back of

the chair), which is further shown in figure 5.28 where the best sensor positions/configurations are

displayed.

From the top results, we can also see an interesting configuration in the last plot that diverts

from the trend of previous results pointing in the direction of the movement of the wheelchair

while still managing to be one of the top results. Another interesting remark is that the cost func-

tion values of both the single and dual sensor are all in the same range, which suggests that there

are single sensor positions/configurations that offer similar results to the best dual sensor posi-

5.2 Optimal Sensor Placement 81

Figure 5.28: Top 6 sensor configurations in use case 2

tion/configurations. However with a similar number of hillclimber runs for both single and dual

sensor positions/configurations, there are many more results below the set threshold of 13 meters

in the case of the 2 sensors than with just 1 sensor, which implies that is easier to achieve accept-

able SLAM performance using double sensors configurations then when using a single sensor.

5.2.3 Use Case 3: Single Sensor, Perimeter, Limited FOV & Orientation

In this next use case, the FOV was limited to a max range of 120º instead of 180º. The point

is to check if it is possible to achieve the same SLAM performance up until now, with a lower

82 Experiments and Results

quality of sensors (lower FOV). From the 110 different hillclimber runs in figure 5.29, there were

24 sensor configurations (22%) falling below the set 13 meters threshold.

Figure 5.29: All hillclimber results from use case 3

In figure 5.30 the same trend in the orientation and position of the sensors continues. The

top results in figure 5.31 also show that, in this experimental setting, that it is possible to achieve

the same SLAM performance with sensors with a lower FOV coverage.

Figure 5.30: Sensor configurations with a benchmarking metric result below 13 in use case 3

5.2 Optimal Sensor Placement 83

Figure 5.31: Top 6 sensor configurations in use case 3

5.2.4 Use Case 4: Double Sensors, Perimeter, Limited FOV & Orientation

In this use case, again, a second sensor is added to the state space of the previous use case. From

95 different hillclimber tests, all of the final results are displayed in figure 5.32 having 46 sensor

configurations (48.2%) achieved results below the 13-meter metric threshold.

Comparing the best results in this use case with the previous, the sensors continue to divert

their orientations to cover a bigger area, and the performance compared with the performance in

84 Experiments and Results

Figure 5.32: All hillclimber results from use case 4

the use cases of a single sensor does not seem to be any better.

Figure 5.33: Sensor configurations with a benchmarking metric result below 10 in use case 4

5.2.5 Use Case 5: Single Sensor, Perimeter, FOV, Orientation & Range

In the final experiments, the variable of the max range is included in the state space with an inter-

val of [4,20]. The size of the testing world is 20x8, so the max possible range was restricted to 20

meters, which represents a range that, at all places in the world, should be able to cover the whole

environment. In figure 5.35, the final results of all the 78 different hillclimber runs are presented,

having landed 26 sensor positions/configurations (33.3%) below the 13 meters threshold.

We can see the sensor configurations falling below the set threshold, in figure 5.36 (the

range of the sensor is now next to the FOV). The trend of the sensors pointing in the direction

of the wheelchair movement continues. As far as the max range of the laser scans, most sensors

have at least a 12-meter max range, which makes it so, if the sensor is pointing in the direction of

5.2 Optimal Sensor Placement 85

Figure 5.34: Top 6 sensor configurations in use case 4

the wheelchair movement, the SLAM solution has data on an obstacle opposing the direction of

movement on most of the circuit duration.

From the best sensor configurations in plotted in figure 5.37 all the same trends are seen.

We can also see that 2 of the best sensor positions/configurations manage to be in the top with only

a 12-meter max range laser scan readings.

86 Experiments and Results

Figure 5.35: All hillclimber results from use case 5

Figure 5.36: Sensor configurations with a benchmarking metric result below 13 in use case 5

5.2.6 Use Case 6: Dual Sensors, Perimeter, FOV, Orientation & Range

Again, the same variables as the previous scenario were used, however, a second sensor was

added with the same state space possibilities. All of the results from the different hillclimber

iterations are present in figure 5.38.

From the 81 ordered results, there are 52 results that are below the 13 meters threshold. In

figure 5.39 we can see all of the results below the threshold of 10 meters. The range of the sensors

isn’t displayed in this plot as the figure would be quite hard to read. Much of the same seen in use

5.2 Optimal Sensor Placement 87

Figure 5.37: Top 6 sensor configurations in use case 5

case 2 can be seen here with the sensors having opposing orientations in an attempt to maximize

the area covered.

From the best positions in figure 5.40, most of the sensor pairs shown seem to have a dif-

ference in the range of the sensor. This, coupled with the fact that there does not seem to be any

difference between the final results in the use cases where one or two sensors are used suggests that

there is no significant difference in SLAM performance between using either one or two sensors

if one of them is able to sufficiently cover the environment (enough FOV and range).

88 Experiments and Results

Figure 5.38: All hillclimber results from use case 6

Figure 5.39: Sensor configurations with a benchmarking metric result below 10 in use case 6

From all the results gathered in the phase of the project, it is possible to see that, for the nav-

igation scenario proposed, the best possible single sensor position/configuration is able to achieve

similar performance to when using double sensors. Also, it is possible to reduce the quality of

the sensor, specifically, the FOV covered and its max range, and still be able to achieve a SLAM

performance that could rival the best sensor position/configuration that was previously perceived

to be the best.

These two findings point to both a possible cost reduction in the sensor equipment of intel-

ligent wheelchairs, as the possibility of the usage of lower-performing sensors has opened. Also,

the different possible sensor positions offer interesting alternatives in the physical placement of the

sensor. This is an important point to consider, as the space available for the placement of sensors

in powered wheelchairs can be limited by the actual structure of the wheelchair and the user of the

wheelchair.

5.3 Summary 89

Figure 5.40: Top 6 sensor configurations in use case 6

5.3 Summary

From the results gathered in this first phase of the experiments it was found that the particle-

filter-based SLAM solutions showed better performance on both the exploration circuits and the

ROSbag circuits. However, if the scenario is appropriate, namely if the deployment environment is

small enough, and the computational resources are limited, the Online SLAM solution LaMa 2D

is the best option. Regarding the graph-based solutions, there does not seem to be any advantage

90 Experiments and Results

in using them since they end up consuming similar computational resources as the particle-filter-

based ones but are much more inconsistent regarding their performance.

In the phase of the next experiments, the results gathered offer a number of different conclu-

sions. There are multiple sensor positions/configurations that were able to achieve similar optimal

SLAM performance. These results are important since the available sensor footprint, in a real-life

situation, could possibly be much more restrictive than state space considered. Furthermore, if the

placement and orientation are correct it is possible to reduce configurations of the sensor (FOV and

range) to values that may have not been so obvious. This is also important, as a reduction in the

capabilities of the sensor opens a possibility in the reduction of the overall cost of the equipment

required to implement an intelligent wheelchair.

Chapter 6

Conclusion

Throughout this document, the SLAM problem, along with some of its common solutions and

existing problems, was explained and reviewed. Even though this topic has had much research

over the years, the solutions that have been developed are heavily dependent on the combination

of environment, robot, and hardware it is applied to. Moreover, these solutions are also dependent

on the perception of the environment offered by the sensors, so it’s important that the sensors are

placed in the robot in a manner that maximizes the performance of the SLAM solution that is

used. This reflects how broad and complex SLAM is, as there are situations where this problem

has been solved and others where more research is still required. Similar to what has been done

in the automobile industry, where the proper placement of LiDAR scanners was considered in

order to optimize the performance of self-driving mechanisms, the possibility of looking at sensor

placement as an optimization problem applied to SLAM performance was explored.

Intelligent wheelchairs are mobility aid instruments that make use of common mobile robotics

software and hardware to augment the capabilities of power wheelchairs. These aim to provide al-

ternative control methods and either fully autonomous or semi-autonomous mobility by installing

adaptable kits, composed of a number of sensors connected to a computer, in existing power

wheelchair models. As expressed in section 3.2.2, there have been several implementations of

SLAM algorithms in IW prototypes, making use of open-source ROS SLAM packages like RGB-

D SLAM, GMapping, ORB-SLAM, etc, that have achieved satisfactory results.

The research conducted during this dissertation was divided into 2 separate phases. The

first phase was dedicated to comparing a number of 2D SLAM algorithms, in the context of the

Intellwheels 2.0 project, by using a comparative process, where, the selected SLAM implementa-

tions were deployed in 2 different types of navigation scenarios, each applied to 3 different worlds.

Additionally, the computational resources consumption of each of the solutions was also evalu-

ated. From the results gathered, it seems the particle-filter-based solutions still remain among the

most robust for all of the navigation scenarios tested, with LaMa offering considerable savings

in its processing power. On the other hand, the remaining solutions still offered sufficient perfor-

mance for scenarios where the loop-closing opportunities were more abundant. Furthermore, in

the smaller environments and the ROSbag circuits, the Online SLAM solutions offered the best

91

92 Conclusion

performance-computational resources consumption ratio.

For the next experiment phase, where an adapted steepest hillclimber optimization algo-

rithm was used to find the best sensor placement/configuration that maximizes SLAM perfor-

mance, the number of computational resources that could be diverted to speeding the simulation

physics was important. So, since the testing scenario in this phase was quite simple, the more

economical of the SLAM solutions, LaMa 2D, was used. Based on all the different variables con-

sidered it was found that, under the simulation conditions offered, a number of different existing

positions/configurations manage to maintain similar optimal results. This abundance in different

positions may be interesting as further restrictions are added to the possible sensor footprint. Also,

by choosing certain sensor positions/orientations it was found that there does not seem to be any

advantage in using sensors over the 110º FOV range, either by adding extra sensors or by using

more complex sensors.

6.1 Contributions

Overall, in this dissertation, a comparison process for both 2D SLAM algorithms and different

sensor placements/configurations was developed, in the context of the Intellwheels 2.0 project,

with its main contributions being:

• A better understanding of the SLAM problem, its main available solutions, and its possible

further developments.

• The implementation of an intelligent wheelchair system capable of performing SLAM using

various ROS-based 2D SLAM solutions.

• The creation of simulation environments that are able to explore the performance of said 2D

SLAM solutions under different navigation scenarios.

• The comparison of different SLAM solutions under a benchmarking tool based on their

relative motion and global localization error.

• The application of an optimization algorithm aimed at maximizing the performance of the

chosen SLAM algorithm, LaMa 2D, by finding the optimal sensor placement/configuration

of one or multiple laser scan rangers.

6.2 Future Work

While performing experiments under simulated environments is convenient, it should be noted

that, even with the effort put into adding noise into both exteroceptive and interoceptive sensors

and with the different indoor models created, these testing scenarios are still far from completely

emulating real-life conditions. In turn, the performance of the SLAM algorithms may be inaccu-

rately portrayed which also reflects on the results given by the optimization algorithm, especially

6.2 Future Work 93

in this case, since the environment used was quite simple and small. Additionally, some shortcom-

ings were also identified in both the benchmarking metric used and the optimization algorithm ar-

chitecture so it would be of note to attempt this optimization using different benchmarking metrics

and more complex optimization algorithms architectures, such as genetic algorithms or simulated

annealing. The full scope of possible sensor positions/configurations was also not used, due to

time constraints. In sum, it is possible to identify a number of improvements and different testing

scenarios that could be applied to the existing framework, specifically:

• Consider the full scope of possible sensor positions/configurations (laser resolution, z-axis,

etc).

• Add further restrictions to the state space. For example, in a real-life scenario, the front of

the wheelchair would be much more restricted by the legs of the wheelchair user.

• Attempt the same optimization algorithm using a different cost function and different envi-

ronments.

• Adapt more complex optimization algorithms such as simulated annealing, genetic algo-

rithms, tabu search algorithms, etc.

• Even though it would be far too cumbersome to use an optimization algorithm in a real-life

scenario, it would still be interesting to check if the best positions/configurations obtained

in the simulated environment, reflect the same results in a real-life scenario.

94 Conclusion

References

[1] Roland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza. Introduction to au-
tonomous mobile robots. MIT press, 2011.

[2] Gian Diego Tipaldi and Wolfram Burgard. Robot Mapping Introduction to Robot Mapping
What is Robot Mapping ?

[3] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping: Part I. IEEE
Robotics and Automation Magazine, 13(2):99–108, 2006.

[4] Joydeep Dey, Wesley Taylor, and Sudeep Pasricha. Vespa: A framework for optimizing
heterogeneous sensor placement and orientation for autonomous vehicles. IEEE Consumer
Electronics Magazine, 2020.

[5] Maya Burhanpurkar, Mathieu Labbé, Charlie Guan, François Michaud, and Jonathan Kelly.
Cheap or robust? the practical realization of self-driving wheelchair technology. In 2017 In-
ternational Conference on Rehabilitation Robotics (ICORR), pages 1079–1086. IEEE, 2017.

[6] A. Juneja, L. Bhandari, H. Mohammadbagherpoor, A. Singh, and E. Grant. A comparative
study of slam algorithms for indoor navigation of autonomous wheelchairs. In 2019 IEEE
International Conference on Cyborg and Bionic Systems (CBS), pages 261–266, 2019. doi:
10.1109/CBS46900.2019.9114512.

[7] Rodrigo Antonio Marques Braga, Marcelo Petry BEng, Luís Paulo Reis, and Antonio Paulo
Moreira. Intellwheels: Modular development platform for intelligent wheelchairs. Journal
of Rehabilitation Research & Development, 48(9), 2011.

[8] Wolfram Burgard, Cyrill Stachniss, Giorgio Grisetti, Bastian Steder, Rainer Kümmerle,
Christian Dornhege, Michael Ruhnke, Alexander Kleiner, and Juan D. Tardós. A com-
parison of SLAM algorithms based on a graph of relations. 2009 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, IROS 2009, pages 2089–2095, 2009.
doi:10.1109/IROS.2009.5354691.

[9] Disability Inclusion and Accountability Framework. page 80, 2018. URL:
http://documents.worldbank.org/curated/en/437451528442789278/
Disability-inclusion-and-accountability-framework.

[10] Norman a Jacobs and Sarah Sheldon. Report of a Consensus Conference on Wheelchairs
for Developing Countries Bengaluru , India Edited By. (November):1–318, 2006. URL:
http://www.who.int/disabilities/technology/WCGconcensusconf/en/.

[11] Abhishek Pandey, Anirudh Kaushik, Amit Kumar Jha, and Girish Kapse. A Technological
Survey on Autonomous Home Cleaning Robots. International Journal of Scientific and
Research Publications, 4(4):1–7, 2014. URL: www.ijsrp.org.

95

http://dx.doi.org/10.1109/CBS46900.2019.9114512
http://dx.doi.org/10.1109/CBS46900.2019.9114512
http://dx.doi.org/10.1109/IROS.2009.5354691
http://documents.worldbank.org/curated/en/437451528442789278/Disability-inclusion-and-accountability-framework
http://documents.worldbank.org/curated/en/437451528442789278/Disability-inclusion-and-accountability-framework
http://www.who.int/disabilities/technology/WCGconcensusconf/en/
www.ijsrp.org

96 REFERENCES

[12] T B Asafa, T M Afonja, E A Olaniyan, and H O Alade. Development of a vacuum cleaner
robot. Alexandria Engineering Journal, 57(4):2911–2920, 2018. URL: https://doi.
org/10.1016/j.aej.2018.07.005, doi:10.1016/j.aej.2018.07.005.

[13] De Engenharia Eletrot. Evolution of Odometry Calibration Methods for Ground Mobile
Robots. pages 294–299. doi:10.1109/icarsc49921.2020.9096154.

[14] Filipe André Sousa Barbosa and Doutor Adriano Carvalho. FACULDADE DE EN-
GENHARIA DA UNIVERSIDADE DO PORTO Controlo de Tração em Veícu-
los Elétricos MESTRADO INTEGRADO EM ENGENHARIA ELETROTÉC-
NICA E DE COMPUTADORES MAJOR: AUTOMAÇÃO. 2013. URL:
https://paginas.fe.up.pt/{~}ee08326/wp-content/uploads/2013/
03/PDI-Relatorio-FInal{_}V3-Final.pdf.

[15] Fei Dai, Youyi Feng, and Ryan Hough. Photogrammetric error sources and impacts on mod-
eling and surveying in construction engineering applications. Visualization in Engineering,
2(1):1–14, 2014. doi:10.1186/2213-7459-2-2.

[16] Sebastian Thrun, Wolfram Burgard, Dieter Fox, et al. Probabilistic robotics, vol. 1, 2005.

[17] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, Jose Neira,
Ian Reid, and John J. Leonard. Past, present, and future of simultaneous localization and
mapping: Toward the robust-perception age. IEEE Transactions on Robotics, 32(6):1309–
1332, 2016. arXiv:1606.05830, doi:10.1109/TRO.2016.2624754.

[18] J. E. Guivant and E. M. Nebot. Optimization of the simultaneous localization and map-
building algorithm for real-time implementation. IEEE Transactions on Robotics and Au-
tomation, 17(3):242–257, 2001. doi:10.1109/70.938382.

[19] Guido Zunino and Henrik I Christensen. Navigation in realistic environments. In 9th Intl.
Symp. on Intelligent Robotic Systems, Toulouse, France, 2001.

[20] Giorgio Grisettiyz, Cyrill Stachniss, and Wolfram Burgard. Improving grid-based slam with
rao-blackwellized particle filters by adaptive proposals and selective resampling. In Proceed-
ings of the 2005 IEEE international conference on robotics and automation, pages 2432–
2437. IEEE, 2005.

[21] Arnaud Doucet, Nando De Freitas, Kevin Murphy, and Stuart Russell. Rao-blackwellised
particle filtering for dynamic bayesian networks. arXiv preprint arXiv:1301.3853, 2013.

[22] Arnaud Doucet. On sequential simulation-based methods for bayesian filtering. 1998. doi:
doi=10.1.1.361.4361.

[23] . Scan Matching and SLAM for Mobile Robot in Indoor Environment. PhD thesis, , 2016.

[24] Giorgio Grisetti, Rainer Kümmerle, Cyrill Stachniss, and Wolfram Burgard. A tutorial on
graph-based slam. IEEE Intelligent Transportation Systems Magazine, 2(4):31–43, 2010.

[25] Feng Lu and Evangelos Milios. Globally consistent range scan alignment for environment
mapping. Autonomous robots, 4(4):333–349, 1997.

[26] Sebastian Thrun and Michael Montemerlo. The graph slam algorithm with applications to
large-scale mapping of urban structures. The International Journal of Robotics Research,
25(5-6):403–429, 2006.

https://doi.org/10.1016/j.aej.2018.07.005
https://doi.org/10.1016/j.aej.2018.07.005
http://dx.doi.org/10.1016/j.aej.2018.07.005
http://dx.doi.org/10.1109/icarsc49921.2020.9096154
https://paginas.fe.up.pt/{~}ee08326/wp-content/uploads/2013/03/PDI-Relatorio-FInal{_}V3-Final.pdf
https://paginas.fe.up.pt/{~}ee08326/wp-content/uploads/2013/03/PDI-Relatorio-FInal{_}V3-Final.pdf
http://dx.doi.org/10.1186/2213-7459-2-2
http://arxiv.org/abs/1606.05830
http://dx.doi.org/10.1109/TRO.2016.2624754
http://dx.doi.org/10.1109/70.938382
http://dx.doi.org/doi=10.1.1.361.4361
http://dx.doi.org/doi=10.1.1.361.4361

REFERENCES 97

[27] Michael Kaess, Ananth Ranganathan, and Frank Dellaert. isam: Incremental smoothing and
mapping. IEEE Transactions on Robotics, 24(6):1365–1378, 2008.

[28] Davide Scaramuzza and Friedrich Fraundorfer. Visual odometry [tutorial]. IEEE robotics &
automation magazine, 18(4):80–92, 2011.

[29] Josef Sivic and Andrew Zisserman. Video google: A text retrieval approach to object match-
ing in videos. In null, page 1470. IEEE, 2003.

[30] Winston Churchill and Paul Newman. Experience-based navigation for long-term localisa-
tion. The International Journal of Robotics Research, 32(14):1645–1661, 2013.

[31] Michael J Milford and Gordon F Wyeth. Seqslam: Visual route-based navigation for sunny
summer days and stormy winter nights. In 2012 IEEE International Conference on Robotics
and Automation, pages 1643–1649. IEEE, 2012.

[32] Yasir Latif, César Cadena, and José Neira. Robust loop closing over time for pose graph
slam. The International Journal of Robotics Research, 32(14):1611–1626, 2013.

[33] Luca Carlone, Andrea Censi, and Frank Dellaert. Selecting good measurements via 1 relax-
ation: A convex approach for robust estimation over graphs. In 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2667–2674. IEEE, 2014.

[34] Giorgio Grisetti, Rainer Kümmerle, Cyrill Stachniss, Udo Frese, and Christoph Hertzberg.
Hierarchical optimization on manifolds for online 2d and 3d mapping. In 2010 IEEE Inter-
national Conference on Robotics and Automation, pages 273–278. IEEE, 2010.

[35] Javier Civera, Dorian Gálvez-López, Luis Riazuelo, Juan D Tardós, and Jose Maria Martinez
Montiel. Towards semantic slam using a monocular camera. In 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1277–1284. IEEE, 2011.

[36] Michael Kaess. Simultaneous localization and mapping with infinite planes. In 2015 IEEE
International Conference on Robotics and Automation (ICRA), pages 4605–4611. IEEE,
2015.

[37] Kevin Lai, Liefeng Bo, and Dieter Fox. Unsupervised feature learning for 3d scene labeling.
In 2014 IEEE International Conference on Robotics and Automation (ICRA), pages 3050–
3057. IEEE, 2014.

[38] Tae-Hyeong Kim and Tae-Hyoung Park. Placement optimization of multiple lidar sensors for
autonomous vehicles. IEEE Transactions on Intelligent Transportation Systems, 21(5):2139–
2145, 2019.

[39] Brígida Mónica Faria, Luís Paulo Reis, and Nuno Lau. A survey on intelligent wheelchair
prototypes and simulators. In New Perspectives in Information Systems and Technologies,
Volume 1, pages 545–557. Springer, 2014.

[40] Richard C Simpson. Smart wheelchairs: A literature review. Journal of rehabilitation re-
search & development, 42(4), 2005.

[41] Zhengang Li, Yong Xiong, and Lei Zhou. Ros-based indoor autonomous exploration and
navigation wheelchair. In 2017 10th International Symposium on Computational Intelligence
and Design (ISCID), volume 2, pages 132–135. IEEE, 2017.

98 REFERENCES

[42] The Intelligent Wheelchair Project. URL: https://web.eecs.umich.edu/
{~}kuipers/research/wheelchair/.

[43] Takashi Gomi and Ann Griffith. Developing intelligent wheelchairs for the handicapped. In
Assistive Technology and Artificial Intelligence, pages 150–178. Springer, 1998.

[44] Simon P Levine, David A Bell, Lincoln A Jaros, Richard C Simpson, Yoram Koren, and
Johann Borenstein. The navchair assistive wheelchair navigation system. IEEE transactions
on rehabilitation engineering, 7(4):443–451, 1999.

[45] Christian Martens, Nils Ruchel, Oliver Lang, Oleg Ivlev, and Axel Graser. A friend for
assisting handicapped people. IEEE Robotics & Automation Magazine, 8(1):57–65, 2001.

[46] ROS.org | Powering the world’s robots. https://www.ros.org/ visited 2021-01-28.

[47] Aniket Murarka, Joseph Modayil, and Benjamin Kuipers. Building local safety maps for a
wheelchair robot using vision and lasers. In The 3rd Canadian Conference on Computer and
Robot Vision (CRV’06), pages 25–25. IEEE, 2006.

[48] Collin Johnson. Topological mapping and navigation in real-world environments. PhD
thesis, 2018.

[49] Collin Johnson and Benjamin Kuipers. Socially-aware navigation using topological maps
and social norm learning. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics,
and Society, pages 151–157, 2018.

[50] Rodrigo AM Braga, Marcelo Petry, Antonio Paulo Moreira, and Luis Paulo Reis. Concept
and design of the intellwheels platform for developing intelligent wheelchairs. In Informatics
in control, automation and robotics, pages 191–203. Springer, 2009.

[51] Gazebo. http://gazebosim.org/, visited 2021-01-28.

[52] Farzan M Noori, David Portugal, Rui P Rocha, and Micael S Couceiro. On 3d simulators for
multi-robot systems in ros: Morse or gazebo? In 2017 IEEE International Symposium on
Safety, Security and Rescue Robotics (SSRR), pages 19–24. IEEE, 2017.

[53] Stephen Balakirsky and Zeid Kootbally. Usarsim/ros: A combined framework for robotic
control and simulation. In International Symposium on Flexible Automation, volume 45110,
pages 101–108. American Society of Mechanical Engineers, 2012.

[54] Webots: robot simulator. https://cyberbotics.com/, visited 2021-01-28.

[55] Ana Beatriz Cruz, Armando Sousa, and Luis Paulo Reis. Controller for real and simulated
wheelchair with a multimodal interface using gazebo and ros. 2020 IEEE International
Conference on Autonomous Robot Systems and Competitions (ICARSC), 2020. doi:10.
1109/icarsc49921.2020.9096195.

[56] Augusto Luis Ballardini, Simone Fontana, Axel Furlan, and Domenico G. Sorrenti.
ira_laser_tools: a ros laserscan manipulation toolbox, 2014. arXiv:1411.1086.

[57] Andrew Howard and Nicholas Roy. The robotics data set repository (radish), 2003. http:
//radish.sourceforge.net/, visited 2021-01-28.

https://web.eecs.umich.edu/{~}kuipers/research/wheelchair/
https://web.eecs.umich.edu/{~}kuipers/research/wheelchair/
https://www.ros.org/
http://gazebosim.org/
https://cyberbotics.com/
http://dx.doi.org/10.1109/icarsc49921.2020.9096195
http://dx.doi.org/10.1109/icarsc49921.2020.9096195
http://arxiv.org/abs/1411.1086
http://radish.sourceforge.net/
http://radish.sourceforge.net/

REFERENCES 99

[58] Rainer Kümmerle, Bastian Steder, Christian Dornhege, Michael Ruhnke, Giorgio Grisetti,
Cyrill Stachniss, and Alexander Kleiner. On measuring the accuracy of SLAM algorithms.
Autonomous Robots, 27(4):387–407, 2009. doi:10.1007/s10514-009-9155-6.

[59] Eurico Pedrosa, Artur Pereira, and Nuno Lau. A Non-Linear Least Squares Approach to
SLAM using a Dynamic Likelihood Field. Journal of Intelligent and Robotic Systems: The-
ory and Applications, 93(3-4):519–532, 2019. doi:10.1007/s10846-017-0763-7.

[60] Stefan Kohlbrecher, Oskar Von Stryk, Johannes Meyer, and Uwe Klingauf. A flexible and
scalable SLAM system with full 3D motion estimation. 9th IEEE International Symposium
on Safety, Security, and Rescue Robotics, SSRR 2011, pages 155–160, 2011. doi:10.
1109/SSRR.2011.6106777.

[61] Steve Macenski and Ivona Jambrecic. SLAM Toolbox: SLAM for the dynamic world. Jour-
nal of Open Source Software, 6(61):2783, 2021. doi:10.21105/joss.02783.

[62] Eurico Pedrosa, Artur Pereira, and Nuno Lau. A sparse-dense approach for efficient grid
mapping. In 2018 IEEE International Conference on Autonomous Robot Systems and Com-
petitions (ICARSC), pages 136–141, 2018. doi:10.1109/ICARSC.2018.8374173.

[63] Eurico Pedrosa, Artur Pereira, and Nuno Lau. Fast grid slam based on particle filter
with scan matching and multithreading. In 2020 IEEE International Conference on Au-
tonomous Robot Systems and Competitions (ICARSC), pages 194–199, 2020. doi:10.
1109/ICARSC49921.2020.9096191.

http://dx.doi.org/10.1007/s10514-009-9155-6
http://dx.doi.org/10.1007/s10846-017-0763-7
http://dx.doi.org/10.1109/SSRR.2011.6106777
http://dx.doi.org/10.1109/SSRR.2011.6106777
http://dx.doi.org/10.21105/joss.02783
http://dx.doi.org/10.1109/ICARSC.2018.8374173
http://dx.doi.org/10.1109/ICARSC49921.2020.9096191
http://dx.doi.org/10.1109/ICARSC49921.2020.9096191

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Context
	1.3 Goals and Contributions
	1.4 Document Structure

	2 Simultaneous Localization and Mapping
	2.1 SLAM and Applications
	2.2 Mathematical Basis
	2.3 Common SLAM approaches
	2.3.1 Feature-Based SLAM
	2.3.2 Grid-Based SLAM
	2.3.3 Graph-Based SLAM

	2.4 Open Problems
	2.4.1 Robustness
	2.4.2 Scalability
	2.4.3 Map Representation
	2.4.4 Metric Map Models
	2.4.5 Semantic Map Models

	2.5 Optimal Sensor Placement
	2.5.1 Optimization Problems

	2.6 Summary

	3 Intelligent Wheelchairs
	3.1 Common Characteristics
	3.1.1 Operating Modes

	3.2 Developed Prototypes
	3.2.1 Early Models
	3.2.2 Recent SLAM-based Models

	3.3 Multi-Robot Simulators
	3.4 Summary

	4 Simulation Environment
	4.1 Intelligent Wheelchair Model
	4.1.1 Odometry Noise Modelling
	4.1.2 Sensors Used

	4.2 World Models
	4.3 2D SLAM Algorithms
	4.3.1 Benchmarking Metrics

	4.4 Path Planning
	4.4.1 Cost maps
	4.4.2 Navigation Planners
	4.4.3 Goal Creation

	4.5 Optimization Process
	4.5.1 State Space

	4.6 Summary

	5 Experiments and Results
	5.1 2D SLAM Analysis
	5.1.1 Exploration Circuits
	5.1.2 ROSBag Circuits
	5.1.3 Computational Resources Consumption

	5.2 Optimal Sensor Placement
	5.2.1 Use Case 1: Single Sensor, Perimeter, FOV & Orientation
	5.2.2 Use Case 2: Dual Sensors, Perimeter, FOV & Orientation
	5.2.3 Use Case 3: Single Sensor, Perimeter, Limited FOV & Orientation
	5.2.4 Use Case 4: Double Sensors, Perimeter, Limited FOV & Orientation
	5.2.5 Use Case 5: Single Sensor, Perimeter, FOV, Orientation & Range
	5.2.6 Use Case 6: Dual Sensors, Perimeter, FOV, Orientation & Range

	5.3 Summary

	6 Conclusion
	6.1 Contributions
	6.2 Future Work

	References

