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A B S T R A C T   

It is accepted that cancer progression is a stochastic process, and there is a bifurcation in cancer cell count, which 
gets chaotic if not treated at preliminary stages. Therefore, strategies for fighting cancer at early stages are highly 
desired. However, the interaction of the immune system with cancer cells is not a straightforward process. The 
stochastic cell interactions lead to uncontrollable dynamics and sometimes to the death of the patient. A sto-
chastic computational framework developed based on principles of the cancer-immune cell interaction is pro-
posed in this article. The results obtained using the framework for breast cancer are close to the experimental 
findings, confirming that it can be a useful tool for identifying possible control measures. This study concludes 
that a control strategy based on stochastic modeling is promising and that a deep understanding of the inter-
action cell rates is essential for timely cancer control measures.   

Introduction 

The human immune system has a sort of army of immune cells 
comprised of T and B cells. These cells fight against foreign invaders 
such as viruses and bacteria. They also fight against malignant cancerous 
cells. T cells release toxins against foreign cells, and B cells make the 
antibodies to neutralize them. The human organs are made up of mil-
lions of cells. The proteins in each cell are responsible for its functioning. 
Peptides from these proteins appear on the cells’ surface as molecules 
and are called MHC/HLA. During T cell surveillance, the cells scan each 
foreign cell through the T-cell receptor (TCR) mechanism. Suppose T 
cells identify a foreign cell as usual. In that case, they leave that cell, 
whereas if peptides came from the invader proteins, then T cells 
recognize it and release cytokines and factors to eliminate the abnormal 
cell [2]. 

Sometimes, the cancer cells are masked, or the immune system is 
weak, and the immune response fails to fight against the cancer cells. 
Tumors usually build a defense system against immune cells. For 
example, the checkpoints PD1 and CTLA-4 are released by cancer cells 
and bound to T cells and inhibit their activity by deactivating them. 
Tumor cells also release proteins such as cytokine (IL-10, TGF-β, IDO), 
which stop T cells from functioning and reverse their role by trans-

forming them into tumor-friendly cells. These trader T cells are called 
regulatory T cells and are an enemy of the immune system. 

The field of immunotherapy has developed during the last century 
(since the 1890’s when the first vaccine was developed (Coley) [19]) 
and has shown significant signs of progress. There are two main ap-
proaches towards immunotherapy: Enhancing the immune response, 
making it more robust, and using drugs to inhibit the tumors’ suppres-
sive immune environment. 

Enhancing the immune response 

One enhancement method for the immune system is to create vac-
cines. Foreign antigens can be recognized by identifying mutated pro-
teins of the tumor (Neoantigens). These mutated proteins can be given to 
the immune system to activate the patient’s T cells, and thus the tumor 
vaccine fights against the tumor cells. Another method is the adoptive T 
cells transfer, where T cells are taken out of the patient’s body, grown in 
the laboratory, and educated to recognize cancer or even modified to 
become much more robust. These fiber cells are then transferred back 
into the patient. A third approach is by cytokines, also termed as stim-
ulating factors. Cytokines are proteins like the interleukins 2, 7, 12, and 
15 that cause T cells to multiply and become stronger. A fourth 
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enhancement approach is the “Agonist Antibodies”, such as Anti-OX40, 
Anti-GITR, Anti-41BB, and others, to cause T cells to be grown and 
strengthen. 

Using drugs to inhibit the suppressive immune environment of the tumors 

Strategies have been developed to knock down the cancer defense 
mechanism. Some antibodies or drugs neutralize inhibitory and anti- 
inflammatory factors, such as anti-IL-10 and anti-tgfβ and IDO in-
hibitors. Food and Drug Administration (FDA) approved some of these 
approaches like Anti-PD1-PDL1 and Anti-CTLA-4. 

On March 8, 2019, FDA approved “atezolizumab” in combination 
with “paclitaxel (protein-bound)” for the treatment of adult patients 
with metastatic triple-negative breast cancer (TNBC) or locally 
advanced unresectable whose tumors express programmed death-ligand 
1 (PD-L1). FDA also approved the Ventana PD-L1 (SP263) Assay device 
for qualitative detection and immunohistochemical assessment of PD-L1 
for TNBC patients. Although not very common, these treatments have 
side effects and are life-threatening if not treated. These include thyroid 
dysfunction or diabetes, some endocrine diseases that lead to weakness. 

Cancer is the most deadly disease globally, with the lowest clinical 
success rate compared to other conditions. It is a very heterogeneous 
disease characterized by the accumulation of mutations that leads to 
tumor growth, immune escape, clinical progression, and drug resistance. 
CTLs destroy tumor cells, and the overwhelming amount of T cells 
circulate in the blood and lymph. The majority are non-cytotoxic and are 
referred to as naive T cells. The lymph nodes located throughout the 
body have a large number of naive T lymphocytes, which can become 
cytotoxic after activation. Millions of variant T cells are produced by the 
human body, each with its ability to distinguish distinct invaders. 
Mathematical modeling of cancer cells has been used to synthesize and 
review clinical trials’ key findings to predict their limitations and future 
consequences. For two decades, mathematical models based on ordinary 
differential equations (ODEs) have been used to study the dynamics of 
oncolytic viruses propagating through tumors. In deterministic mathe-
matical modeling, the output is entirely based on initial conditions and 
the values of parameters. On the other hand, stochastic mathematical 
modeling is considerably more complicated and has inherent random-
ness that leads to an ensemble of different output against the set of 
parametric values and initial conditions. A comprehensive review of 
deterministic and stochastic models for tumor-immune dynamics can be 
found in [1,18]. 

The real world is mainly driven by stochasticity, and hence stochastic 
models are more qualitative than quantitative. Therefore, stochastic 
modeling has become an efficient and practical approach to random 
model outputs of human body systems. In the case of malignancy caused 
by cancer, the stochastic effects dominate the involved dynamic. Hence, 
this study is designed to develop a stochastic mathematical model, 
which incorporates biological data of the breast cancer dynamics [15], 
to provide a cancer control strategy by varying the model’s parametric 
values. 

Stochastic modeling of cytotoxic T and tumor cells 

Deterministic modeling 

We designed a deterministic model under the following assumptions: 
tumor cells grow logistically in the absence of immune response [6]; 
cytotoxic T lymphocytes can kill tumor cells [17]; tumor cells can 
activate naive and noncytotoxic cells [10]; after the activation of cyto-
toxic T cells, they grow logistically; cytotoxic T cells became inactive 
after some number of interactions with tumor cells [1]. The model 
describing the kinetics of tumor cell and cytotoxic T cell was modeled by 
a system of ordinary differential equations as: 

dx1

dt
= f (x1, x2) = α1x1

(

1 −
x1

α2

)

− α3x1

(
x2

α4 + x2

)

, (1)  

dx2

dt
= g(x1, x2) = α5x2

(

1 −
x2

α6

)(
x1

α7 + x1

)

− α8x1x2 − α9x2, (2)  

where αi, i = 1,2,…,9, are dimensionless parameters [15]. 

Stochastic modeling 

A stochastic process, in broad terms, is a mathematical process that 
evolves probabilistically. It represents the family of random variables {
X(t) : t ∈ τ} defined on probability space (Ω,Λ,P), where both index (t) 
and random variable (X(t)) can be discrete and continuous [7]. The 
stochastic model equations can be divided into two main groups: the 
first group deals with the modeling trajectories of the process, provided 
by the random variable X(t). A system of differential equations that 
describes these trajectories with stochastic terms is generally called a 
system of stochastic differential equations (SDEs), and hence its solution 
is a stochastic process. The second group is concerned with the use of 
deterministic differential equations to evaluate probability p(x, t) =

Prob[X(t) = x]. 
In most cases, mathematical models make simplifying assumptions 

about the characteristics of the phenomenon being studied. These 
modeling assumptions typically affect model accuracy and tractability. 
When applying stochastic processes to modeling, the common assump-
tion is the Markov property; thus, we limit our attention to Markov 
processes in the following. If the state of a process at any time tn ∈ τ 
determines the future state of the process, then it is called a Markov 
process. Specifically, a stochastic process is a Markov process if for t1 <

t2 < t3 < … < tn < tn+1, P(X(tn+1)⩽xn+1|X(tn) = xn) = P(X(tn+1)⩽xn+1|

X(t1) = x1, X(t2) = x2, …, X(tn) = xn). Wiener process (also known as 
Brownian motion) is a typical example of a continuous process of 
Morkove type [5]. One-dimensional Wiener process is stochastic process 
W(t) for t⩾0 and such that the increment Wt+s − Ws has the Normal (0, t)
distribution while increments for non-overlapping time intervals are 
independent. An r-dimensional Wiener process is a vector-valued sto-
chastic process W(t) =

(
W(1)(t),W(2)(t),W(3)(t),…,W(r)(t)

)
whose 

components W(i)(t) are independent one-dimensional Wiener processes. 
To derive a stochastic model for the interaction between tumor and 

cytotoxic T cells (see Fig. 1), we used a standard modeling procedure 
proposed by [3]. Here, we also use the same notations used in [3] to 
facilitate the understanding of our results. We also followed the steps 
given in [9] for the derivation of SDE models. First, all possible changes δ 
of the system and corresponding transition probabilities p in a small 
interval of time Δt were determined to design a discrete stochastic 
model. Then, the SDE model was formulated by calculating the expec-
tation value and covariance matrix to change the discrete process. The 
drift coefficient was obtained by changing the expected value divided by 
Δt. Similarly, the diffusion coefficient was obtained by the covariance 
matrix’s square root divided by Δt. 

Let’s consider X(t) = (X1(t),X2(t))T , where X1(t) is representing the 
population of tumor cells and X2(t) the population of cytotoxic T lym-
phocyts (CTLs) at t⩾0. Now, let’s assume that ΔX(t) is a change in a 
small interval of time Δt in which a state X1(t) and X2(t) can be changed 
by − λ1,0, or λ1 and − λ2,0, or λ2, respectively, where λ1, λ2⩾0 [3]. Ac-
cording to the deterministic model of tumor and cytotoxic T cells given 
by Eqs. 1,2, there are four possible changes for states X1(t) and X2(t) in 
time interval Δt. The possible changes and their corresponding proba-
bilities up to O((Δt)2

) are given in Table 1. Also, the probability of no 
change (ΔX(t) = [0, 0]T) is 1 −

∑4
i=1pi. 

The expected change and co-variance matrix are calculated as: 
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E(ΔX) =
∑4

i=1
piΔX(i)(t) =

(
P1(t,X1,X2) − P3(t,X1,X2)

P2(t,X1,X2) − P4(t,X1,X2)

)

Δt, (3)  

and 

E(ΔX(ΔX)T
) =

∑4

i=1
pi(ΔX(i)(t))(ΔX(i)(t))T

=

(
P1(t,X1,X2)+P3(t,X1,X2) 0
0 P2(t,X1,X2)+P4(t,X1,X2)

)

Δt.

(4) 

We define: 

μ =
E(ΔX)

Δt
=

(
P1(t, X1,X2) − P3(t, X1,X2)

P2(t, X1,X2) − P4(t, X1,X2)

)

,

=

⎛

⎜
⎜
⎜
⎜
⎝

α1x1

(

1 −
x1

α2

)

− α3x1

(
x2

α4 + x2

)

α5x2

(

1 −
x2

α6

)(
x1

α7 + x1

)

− (α8x1 + α9)x2

⎞

⎟
⎟
⎟
⎟
⎠

(5)  

V=
E(ΔX(ΔX)T

)

Δt
=

(
P1(t,X1,X2)+P3(t,X1,X2)0

0 P2(t,X1,X2)+P4(t,X1,X2)

)

,

=

⎛

⎜
⎜
⎜
⎜
⎝

α1x1

(

1−
x1

α2

)

+α3x1

(
x2

α4+x2

)

0

0 α5x2

(

1−
x2

α6

)(
x1

α7+x1

)

+(α8x1+α9)x2

⎞

⎟
⎟
⎟
⎟
⎠

(6)  

and the square root of co-variance matrix V as: 

B(t,X1,X2) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
V(t,X1,X2)

√
. (7) 

Finally, the SDE model of tumor-CTLs interaction is given by: 

dX(t) = μ(t,X1,X2)dt +B(t,X1,X2)dW(t), (8)  

X(0) = X0, (9)  

where W(t) = (W1(t),W2(2))T is a vector of two independent Wiener 
processes corresponding to differential dW(t). 

Non-negativity criteria 

First, we recall main theorems that were formulated for system of 
SDEs and yield the necessary and sufficient condition for the invariance 
of rectangular subsets [20,8]. Let’s consider the general form of Ito 
SDEs: 

dX(t) = F(t,X(t))dt+G(t,X(t))dW(t), (10)  

X(0) = X0, (11)  

where F : [0,∞) × Rn→Rn and G : [0,∞) × Rn→Rn×r are Borel- 
measurable function and Borel-measurable mapping, respectively. 
Also, that W(t) is a Wiener process and dW(t) is corresponding Ito dif-
ferential. 

Definition 1. A subset K⊂Rn is said to be invariant for stochastic sys-
tem (F,G) if for any t0⩾0 and X0 ∈ K, the solution X(t) for t⩾t0 also 
attains values within set K. 

Theorem 1. A set K := {x ∈ Rn : aj⩽xj⩽bj, j = 1, 2,3,…, n}, where aj,

bj ∈ R with bj > aj, is invariant for stochastic system (F,G) iff: 

Fj(t, x)⩾0 for x ∈ K such that xj = aj,

Fj(t, x)⩽0 for x ∈ K such that xj = bj,

Gj,k(t, x)⩾0 for x ∈ K such that xj ∈ {aj, bj},

for all t⩾0 and k = 1,2,3,…,r. The invariance of the positive cone is an 
important case for the application of non-negativity of solutions. 

Theorem 2. A set K+ := {x ∈ Rn : xj⩾0, j = 1, 2,3,…, n} is invariant for 
stochastic system (F,G) iff: 

Fj(t, x)⩾0 for x ∈ K+ such that xj = 0,

Gj,k(t, x)⩾0 for x ∈ K+ such that xj = 0,

for all t⩾0 and k = 1,2,3,…, r. 

Proposition 1. The stochastic model for tumor-CTLs interaction given by 
Eqs. 8,9 has the following properties: 

(i) The solution of underlying deterministic system remains non-negative. 
(ii) The stochastic model preserves non-negativity, independently of Ito or 
Stratonovich’s interpretation of SDEs. 

Proof. The stochastic model for tumor-CTLs interaction is: 

Fig. 1. Schematic diagram depicting the interaction of tumor cells with CTLs.  

Table 1 
Possible changes in tumor-CTLs interaction model corre-
sponding to their probabilities.  

Change Probability 

ΔX(1) = [1,0]T  p1 = P1(t,X1,X2)Δt  

ΔX(2) = [0,1]T  p2 = P2(t,X1,X2)Δt  

ΔX(3) = [− 1, 0]T  p3 = P3(t,X1,X2)Δt  

ΔX(4) = [0, − 1]T  p4 = P4(t,X1,X2)Δt   
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By taking into account the functions: 

F1(x1, x2) = α1x1

(

1 −
x1

α2

)

− α3x1

(
x2

α4 + x2

)

,

F2(x1, x2) = α5x2

(

1 −
x2

α6

)(
x1

α7 + x1

)

− (α8x1 +α9)x2,

G1(x1, x2) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

α1x1

(

1 −
x1

α2

)

+ α3x1

(
x2

α4 + x2

)√

,

G2(x1, x2) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

α5x2

(

1 −
x2

α6

)(
x1

α7 + x1

)

+ (α8x1 + α9)x2

√

.

One can verify that: 

F1(0, x2)⩾0, F2(x1, 0)⩾0,

and 

G1(0, x2) = 0, G2(x1, 0) = 0.

This satisfies the conditions of Theorem 1. Hence, the deterministic 
and stochastic solutions of tumor-CTLs model preserves non- 
negativity. □ 

Numerical simulations and discussion 

There are different numerical schemes to solve stochastic differential 
equations where Euler-Maruyama and Milstein methods are most com-
mon [4]. Euler-Maruyama uses truncation of stochastic Taylor series 
after the first-order terms, while Milstein’s method uses truncation of 
stochastic Taylor series after the second-order terms. We have tried both 
techniques to solve the proposed SDE model of tumor-CTLs interaction, 
but both failed to solve the model numerically due to its strong 
nonlinearity. We then used Runge-Kutta (RK) numerical schemes to 
solve the proposed SDE model. The nth-order RK algorithm for the nu-
merical integration of SDEs is given by: 

xk+1 = xk +
∑n

j=1
bjkj, (13)  

kj = hF

(

tk + cjh, xk +
∑j− 1

i=1
ajiki

)

+ hG

(

tk + cjh, xk +
∑j− 1

i=1
ajiki

)

wj, (14)  

where wj is an independent and identically distributed vector of random 
processes [16]. We used the RK method of order four to solve the pro-
posed SDE model with the coefficients and parameters indicated in Ta-
bles 2 and 3. 

The results of numerical simulations are shown in Fig. 2 that show 
decay oscillations in the population of CTLs. This cyclic fluctuation has a 
close agreement with experimental studies of breast cancer. Fig. 2a 
represents the state profiles of tumor cells and CTLs, while Fig. 2b de-
picts phase portrait analysis of tumor-immune dynamics. A noisy 
behavior can be seen in SDE dynamics which looks realistic and matched 
with experimental studies. In the literature, it has been reported that 
immune cells can eliminate tumors at early stages, and most of the 
tumor cells are destroyed within two days [21,12]. From the numerical 
simulations, we can see that the proposed model shows a large oscilla-
tion in the population of the CTLs and that the tumor cells decrease at 
earlier stages. It can also be seen that the tumor is not obliterated. If a 
tumor has a size less than 2 mm in diameter and a population level less 
than 6× 105, then the tumor remains small and stable [22]. This phe-
nomenon is termed “cancer without disease”, and many studies have 
suggested that microscopic tumor never progresses to an invasive one 
[13,11,14]. 

Fig. 3, one can understand the change in the population of CTLs after 

Table 2 
Coefficients of RK-4 method and corresponding values [16].  

Coefficients Values 

a21  2.71644396264860  
a31  − 6.95653259006152  
a32  0.78313689457981  
a41  0.0  
a42  0.48257353309214  
a43  0.26171080165848  
b1  0.47012396888046  
b2  0.36597075368373  
b3  0.08906615686702  
b4  0.07483912056879   

Table 3 
Parameters of the proposed SDE model and corre-
sponding values [15].  

Parameters Values 

α1  0.6387  
α2  103  

α3  1  
α4  20  
α5  5.7484  
α6  8× 102  

α7  102  

α8  7.812× 10− 4  

α9  0.8729   

dX(t) =

⎛

⎜
⎜
⎜
⎜
⎝

α1x1

(

1 −
x1

α2

)

− α3x1

(
x2

α4 + x2

)

α5x2

(

1 −
x2

α6

)(
x1

α7 + x1

)

− (α8x1 + α9)x2

⎞

⎟
⎟
⎟
⎟
⎠

dt

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

α1x1

(

1 −
x1

α2

)

+ α3x1

(
x2

α4 + x2

)√

0

0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

α5x2

(

1 −
x2

α6

)(
x1

α7 + x1

)

+ (α8x1 + α9)x2

√

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

dW(t).

(12)   
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the interaction with tumor cells. During the first cycle, they are over-
expressed as a result of their surveillance characteristic. Then, as cancer 
cells develop resistance against the immune system, the CTLs pop-
ulation’s size decreases periodically. The period is significant while 
developing cancer drugs. We studied the variation imposed by param-
eter α1, which controls cancer cells’ growth rate. For increasing values of 
α1, CTLs grow in number. Fig. 3a presents the CTLs dynamics when 

deterministic and stochastic approaches are used, while Fig. 3b illus-
trates tumor dynamics. One can see the flattening in the graph for 
increased values of α1; this is not the case in reality. On the contrary, this 
flattening effect is not presented when stochastic dynamics are used. 
Hence stochastic dynamics are more realistic as compared to 
deterministic. 

From [15], sensitivity analysis results reveal that α5 is a crucial 

Fig. 2. Illustration of numerical simulations of proposed stochastic model.  

Fig. 3. Tumor-CTLs density profiles for different values of “α1”.  

Fig. 4. Tumor-CTLs density profiles for different values of “α5”.  
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parameter in order to control tumor population. This parameter is 
negatively correlated with the population of tumor cells. Fig. 4 shows 
the change in the dynamics of tumor cells and immune cells relative to 
CTLs growth rate. Tumor cells and their noisy behavior is decreasing 
with a more significant value of α5. Thus, this parameter is also affecting 
the randomness of the SDE model. 

Conclusion 

Stochastic modeling of biological processes has emerged as a 
powerful tool that has provided substantial insight into intra-cellular 
processes. It advances computing technology and enables real-time 
imaging of expression at the single-cell level, which was previously 
unattainable. In this article, we present a stochastic model of breast 
tumor interaction with CTLs. The designed model adheres to the stan-
dard modeling processes of Ito stochastic models. We have effectively 
demonstrated the non-negativity criteria for the solution of the proposed 
SDE model. The computational model developed during this study is 
novel. Based on parametric values extracted from experimental data and 
the obtained numerical results, one can conclude that the cancer onset 
and its interaction with the immune system can be better interpreted 
with the aid of a stochastic modeling approach. Due to strong non-
linearities, both the first-order numerical technique Euler-Maruyama 
and the second-order Milstein approach failed to solve the designed 
SDE model. Therefore, we discuss the nth-order RK algorithm for the 
numerical integration of the SDE model and propose fourth-order RK to 
solve the designed model numerically. The stochastic modeling and 
simulation approaches proposed in this study are promising and simple 
for future control studies. We highlight important parameters and 
discuss tumor control strategies by varying values of these parameters. 
From numerical simulations, it can be concluded that CTLs can remove 
the small tumor but fail to remove the larger tumor. However, in the 
future, we are interested in extending our model by adding the effects of 
chemotherapy and immunotherapy. 

CRediT authorship contribution statement 

Muhammad Idrees: Data curation, Formal analysis, Investigation, 
Methodology, Resources, Validation, Visualization, Writing - original 
draft, Writing - review & editing. Ayesha Sohail: Conceptualization, 
Formal analysis, Investigation, Methodology, Project administration, 
Supervision, Validation, Visualization, Writing - original draft, Writing - 
review & editing. João Manuel R.S. Tavares: Formal analysis, Funding 
acquisition, Methodology, Software, Visualization, Writing - original 
draft, Writing - review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 

interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgement 

aaa 

References 

[1] Adam JA, Bellomo N. A survey of models for tumor-immune system dynamics. 
Springer Science & Business Media; 2012. 

[2] Al-Utaibi KA, Sohail A, Yu Z, Arif R, Nutini A, Abdel-Salam A-SG, Sait SM. 
Dynamical analysis of the delayed immune response to cancer. Results Phys 2021; 
104282. 
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