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A B S T R A C T   

Describing our visual experiences improves their retention in visual working memory, yielding a labeling benefit. 
Labels vary, however, in categorical distinctiveness: they can be applied broadly or narrowly to categorize 
stimuli. Does categorical distinctiveness constrain the labeling benefit? Here, we varied the number of terms used 
to label continuously varying colors (Experiment 1) and shapes (Experiment 2). Participants memorized four 
items, and later recalled them using a continuous color or shape wheel. During study, participants articulated 
“bababa” or labeled the items with two, four, or their preferred term. Recall error decreased with increases in the 
number of labels. Mixture modeling showed that labeling increased the probability of recall. Memory precision, 
however, varied with categorical distinctiveness: broad labels reduced precision, whereas categorically distinct 
labels increased precision compared to no-labels. In sum, in-the-moment labeling activates categorical knowl
edge that facilitates the storage of visual details. Data and analysis scripts are available at: https://osf.io/mqg4k/   

Introduction 

“A picture is worth a thousand words”. This English idiom illustrates 
the common sense that our visual experience is far richer than usually 
conveyed by language. Notwithstanding, it is commonplace to describe 
our visual experiences as they unfold in front of us or as we recollect 
them in our minds. Verbal descriptions (hereafter labels) can vary in 
many parameters, including the specificity with which they identify the 
visual stimulus, what we will refer to here as categorical distinctiveness 
(Murdock, 1960). For example, one could describe the color of a piece of 
clothing as “vibrant”, or use a more specific term, e.g., “pink”. The term 
“vibrant” can be applied broadly to categorize many colors, whereas 
“pink” is more narrowly applied over the same space. Accordingly, 
“pink” can differentiate between more colors than “vibrant”. The pre
sent study assessed how the categorical distinctiveness of labels affects 
the quantity and quality of information stored in visual working 
memory. 

In the following sections, we will define working memory and the 
role categorization plays in this memory system. Next, we will discuss 
the relation between categorization and verbal labeling, and the hy
potheses that have been raised regarding the labeling effect on visual 
memory. Finally, we will delineate hypotheses regarding the role of 

categorical distinctiveness in visual working memory. 

Visual working memory and categorization 

Visual working memory keeps visual representations accessible for 
ongoing cognitive processing. In a prototypical visual working memory 
task, participants store the precise feature values of a set of stimuli (e.g., 
their colors), and reproduce the feature of a tested item using a 
continuous scale, for example a continuous color wheel (Prinzmetal 
et al., 1998; Wilken & Ma, 2004; Zhang & Luck, 2008). Responses in this 
task can be modeled to estimate how much information was accessible 
in working memory, and the precision with this information was stored 
using the so-called mixture models (Bays et al., 2009; Zhang & Luck, 
2008). Typically, the quantity and quality of visual working memory 
representations decreases with increasing memory load (Luck & Vogel, 
2013). 

Critically, research has consistently demonstrated that categorical 
knowledge about visual features affects both perception (Athanaso
poulos et al., 2011; Franklin et al., 2008; Hanley & Roberson, 2011; 
Roberson & Davidoff, 2000; Thierry et al., 2009; Winawer et al., 2007) 
and memory over the short-term and long-term (Bae et al., 2014; Boy
nton et al., 1989; Persaud & Hemmer, 2016; Uchikawa & Shinoda, 
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1996). Accordingly, more recently researchers have extended the 
mixture models used to assess performance in visual working memory 
tasks to also account for the influence of categorical knowledge. In 
essence, these models allow some responses to be based on categorical 
representations (e.g., red vs. green), whereas other responses are 
assumed to be based on continuous (fine-grained) representations of the 
exact feature value experienced (Bae et al., 2015; Cibelli et al., 2016; 
Hardman et al., 2017; Pratte et al., 2017). These studies have shown that 
a substantial amount of responses in visual working memory tasks are 
influenced by the prior knowledge of the participants, as reflected in 
well-learned feature categories. 

Categorization and verbal labeling 

Implicitly, the use of categorical knowledge in visual working 
memory tasks has been assumed to be a by-product of verbal labeling 
(Cibelli et al., 2016; Hardman et al., 2017) but the reliance on labeling 
has been hardly directly manipulated. For example, in the study of 
Donkin, Nosofsky, Gold, and Shiffrin (2015), participants were asked to 
store the precise color of a single dot presented for 0.1, 0.5, or 2 s. In 
most trials, offset of the stimulus was followed by a delay of variable 
duration, after which visual working memory was tested with a color 
wheel. In other trials, participants labeled the color and color repro
duction based on the label was tested three trials later. Longer study 
durations yielded more precise visual memory of the stimulus, as well as 
more precise responding in labeling trials. They modeled the visual 
working memory data incorporating several sources of information: the 
perceptual information from the stimulus, the precision of verbal labels, 
and random guessing. All of these factors proved necessary to account 
for their data. Although labeling precision was directly assessed in this 
study, they did not manipulate reliance on the labels and hence the study 
could not inform whether labeling changed how information was stored 
in visual working memory. 

There are multiple ways in which labeling could alter the storage of 
visual information in memory. Several hypotheses of the labeling effect 
have been raised with regards to investigations of episodic long-term 
memory. We will briefly review these hypotheses below. 

Verbal recoding 
The verbal recoding (Souza & Skóra, 2017) or verbal overshadowing 

(Alogna et al., 2014; Schooler & Engstler-Schooler, 1990) hypothesis 
states that labeling promotes the storage of a verbal representation at the 
expense of the visual one. Storage of the label “green” at the expense of 
the particular greenish hue presented for study should lead to a large 
loss of precision in recalling this feature from memory. For example, in 
the classical study by Schooler and Engstler-Schooler (1990), worse 
memory for a face was observed when participants were requested to 
describe the stimulus during the retention interval. Several studies have 
observed costs of labeling, although facilitation has been observed in 
some conditions (for a meta-analysis and overview of the verbal over
shadowing effect see Meissner et al., 2008). 

Memory distortion 
Lupyan (2008) proposed the shift-to-prototype hypothesis which 

states that labeling causes visual representations to more strongly drift 
towards the category prototype activated by the label. This hypothesis 
was based on the observation that asking people to classify objects as 
belonging to one out of two categories (e.g., lamps vs. chairs) impaired 
episodic visual long-term memory for the studied exemplars compared 
to memory of the same objects studied under a preference rating in
struction. The idea here is that top-down categorical information can 
distort the storage of perceptual information provided by the perceptual 
input. 

Categorical information is known to guide memory responses irre
spective of labeling (Crawford et al., 2000; Huttenlocher et al., 1991) 
and the ability to form conceptual classes is also displayed by non- 

human animals which do not have language to assist in this process 
(Zentall et al., 2008). However, labels have been found to activate cat
egorical information more strongly than would have occurred only by 
the presentation of an exemplar of the category (Boutonnet & Lupyan, 
2015; Edmiston & Lupyan, 2015; Forder & Lupyan, 2019; Lupyan & 
Thompson-Schill, 2012). In this way, online labeling of a stimulus dur
ing study would accentuate the memory distortion produced by prior 
experience with categories. This is in agreement with the results re
ported by Carmichael et al. (1932) in which ambiguous line-drawings 
were presented to participants and these were paired with one of two 
labels. Free drawing of the images from memory was biased by the la
bels. For example, when a drawing was paired with the term “moon”, it 
was sketched later more similarly to a moon than when the same 
drawing was paired with the label “C”. 

In sum, this hypothesis predicts an increase in the ability to 
discriminate stimuli from different categories, but reduced ability to 
make within-category discriminations. Contradicting this hypothesis, 
Forder and Lupyan (2019) showed that in-the-moment labeling 
increased between-category as well as within-category discrimination of 
colors. 

Dual-Trace (Visual + Verbal) 
Instead of replacing the visual trace, labeling could add a verbal 

representation to the visual one, thereby creating two sources of infor
mation: a continuous visual representation and a verbal one containing 
categorical information. Both sources of information may guide recall or 
one of them may dominate depending on the situation, in line with the 
dual-coding theory (Pavio, 1991). This hypothesis guided the modeling 
implemented by Donkin et al. (2015): verbal labeling was considered as 
an additional source of information. Other studies have shown that la
beling may impair performance if the verbal label dominates. Labeling 
can be inconsequential if the context for the visual item is reinstated or if 
it occurs during the study phase instead of the retention interval 
(Brandimonte et al., 1992, 1997; Brown et al., 2014). These results 
suggest that people had two independent sources of information in 
mind: the visual trace and the verbal trace. 

Distinctiveness 
The label could serve as an additional retrieval cue to the visual 

trace. In this scenario, labeling helps to the extent that it distinguishes 
between items in memory. This account explains the labeling costs 
observed by Lupyan (2008): the lack of distinctiveness of the labels used 
in this study (two labels for several exemplars of the same category) 
would reduce their distinctiveness. In contrast, Richler et al. (2013) 
varied whether studied exemplars were from two categories or unique 
categories. Labeling only yielded worse long-term memory than pref
erence rating in the two-category but not in the unique-category con
dition. This was not simply due to an increase in categorical memory 
because labeling improved rejection of within-category lures, suggesting 
that label distinctiveness impacts the storage of visual details (see also 
Bartlett, Till, & Fields, 1980). 

Categorical visual long-term memory 
Yet another possibility is that labels activate a visual trace of the 

category in long-term memory. Participants would then have two visual 
traces to rely on, with the visual trace of the category serving to enhance 
the perception of the specific value of the presented item or to protect it 
from interference. The label-feedback hypothesis (Lupyan, 2012a) states 
that saying (or hearing) a label such as “green” would transiently acti
vate visual features related to green that set it apart from other cate
gories. This could then serve to sharpen the perception of a greenish hue 
presented for study, arguably protecting it from forgetting, increasing its 
fidelity, or facilitating its short-term consolidation (Ricker, 2015). As we 
reviewed above, verbal labeling has been found to be a more effective 
means to activate categorical information than properties of category 
exemplars (Boutonnet & Lupyan, 2015; Edmiston & Lupyan, 2015; 

A.S. Souza et al.                                                                                                                                                                                                                                



Journal of Memory and Language 119 (2021) 104242

3

Forder & Lupyan, 2019; Lupyan & Thompson-Schill, 2012; Lupyan & 
Ward, 2013). For example, the sound of a barking dog is less efficient to 
cue the category of dog than the word “dog” (Edmiston & Lupyan, 
2015). In line with this possibility, Bower et al. (1975) observed an effect 
of presenting abstract drawings (droodles) with and without an associ
ated verbal interpretation that gave it meaning. When a meaningful 
interpretation was provided, memory was augmented and participants 
could recall more drawings compared to a baseline condition with no 
interpretations. 

Labeling in visual working memory 

The hypotheses listed above were raised and tested mainly with 
regards to long-term retention of information. The impact of labeling in 
visual working memory has been much less investigated. This is mostly 
because visual working memory studies often use a set-up that dis
courages labeling from occurring. First, all of the visual stimuli are 
presented in a one-shot display; second, the presentation duration is 
usually only a few hundred milliseconds; and third, memory is tested 
shortly after (typically 1 s). This strongly reduces the opportunities for 
labeling to occur. Accordingly, performance in change detection tasks 
(that only require recognition of a change in the display) does not show 
effects of blocking verbal labeling, as tested by imposing verbal memory 
loads (Vogel et al., 2001) or the use of an articulatory suppression 
procedure in which irrelevant syllabi are articulated continuously 
throughout study and memory retention (Morey & Cowan, 2004, 2005; 
Sense et al., 2016). 

To assess the impact of providing opportunities to label the visual 
memoranda, Souza and Skóra (2017) used a continuous color repro
duction task in which the memoranda were presented sequentially with 
sufficient inter-item interval for the generation of a label. They 
compared an articulatory suppression condition that prevented in-the- 
moment labeling (i.e., saying “bababa” aloud) with a condition in 
which colors were overtly labeled by the participants. The labels were 
recorded and later coded by the experimenter, revealing that a set of 
seven color terms – that is, red, orange, yellow, green, blue, purple, and 
pink – were used in most trials. As expected, color labeling increased the 
quantity of categorical representations in visual working memory. Un
expectedly, however, labeling also increased the quality (and sometimes 
the quantity) of the continuous representations stored in working 
memory, indicating that representations of the labeled information were 
stored with higher fidelity. They also observed that other types of la
beling that lacked categorical information, for example, labeling the 
order in which the items were presented (e.g., “first”, “second”, etc.) was 
not beneficial; instead it produced similar performance as in the sup
pression condition. Souza and Skóra (2017) reasoned that this effect was 
due to the color labels providing categorical information about the 
relevant memory feature thereby helping to protect the continuous 
representation of this feature from interference from the other memory 
items or from the test situation. In contrast, labeling the order of pre
sentation of the memoranda was not beneficial although it provided a 
distinct label to each item in the memory array. They argued this was the 
case because these labels lacked categorical information. This pattern 
challenges the distinctiveness hypotheses discussed above, but it is the 
pattern predicted by the categorical visual long-term memory 
hypothesis. 

Forsberg et al. (2020) replicated the design of Souza and Skóra 
(2017) in a sample of younger and older adults. Labeling also improved 
performance compared to a suppression condition, but the source of the 
benefit was different between younger and older adults. In young adults, 
color labeling afforded the storage of more visual details as well as more 
categorical information, replicating Souza and Skóra (2017). 
Conversely, older adults only showed a benefit in categorical memory, 
but not in continuous memory with labeling. These results show that the 
benefits of labeling may be subject to age-related cognitive decline. 
Unfortunately, in this study the labeling behavior of the participants was 

not recorded and hence there was no information regarding the number 
and variety of labels used by the younger and older participants. It re
mains open the question of whether the quality of the labels used by the 
participants could explain the differential impact of labeling with aging. 
As we will argue below, how people categorize and label the visual 
stimuli can have a profound impact on the retention of this information 
in visual working memory, and whether the labels increase memory 
precision. 

Categorical distinctiveness of the Labels 

Souza and Skóra (2017) showed that simply using distinct labels for 
each item in the memory array (i.e., position labels to remember colors) 
did not yield a labeling benefit, but using labels that carry categorical 
information does (i.e., color labels to remember colors). This is incon
sistent with a simple distinctiveness hypothesis of the labeling benefit. 
However, it does not rule out a role of distinctiveness in terms of the 
categories activated by the labels in long-term memory. As previously 
pointed out, most of the generated labels in the color labeling condition 
of Souza and Skóra (2017) comprised one of seven basic color terms. 
Although research has shown that some color categories are already 
present in infancy (Skelton et al., 2017), color categories receive much 
influence from cultural practices that shape color distinctions (Regier 
et al., 2007). Hence it is reasonable to assume that the choice of labels is 
related to their categorical distinctiveness in a culturally defined space, 
i.e., how much they differentiate between items in the feature space. 
This differentiation is however not fixed, and this could also pose a 
constrain in the benefits one can draw from labeling. If fewer terms are 
used to categorize the same set of colors, then the labels would be less 
distinct, and the beneficial effect of the labels could be reduced. Yet, to 
the best of our knowledge, no study manipulated the categorical 
distinctiveness of labels to trace its impact on visual working memory 
storage. 

Some finding from the episodic visual long-term memory literature 
suggest that the number of categories along which items have to be 
categorized/labeled may define whether labels produce costs or are 
inconsequential. For example, in the study by Lupyan (2008) worse 
long-term memory was observed when exemplars were labeled as 
belonging to two categories (chairs or lamps) compared to a preference 
rating condition. Richler et al. (2013) varied whether studied exemplars 
were from two categories or unique categories. Labeling only yielded 
worse long-term memory than preference rating in the two-category but 
not in the unique-category condition (see also Bartlett et al., 1980). 

In the studies listed above the number of categories varied with the 
type of memoranda studied, namely when fewer terms were used to 
label the stimuli, these stimuli were also sampled from a small set of 
categories. This limits the conclusions one can draw regarding the online 
impact of categorization on memory. Here we assume that labeling in
volves the activation of learned categories in long-term memory in line 
with the label-feedback hypothesis (for reviews see Lupyan, 2012a, 
2012b). Critically, the same set of stimuli can be categorized or labeled 
differently depending on the task goals, thereby producing different 
levels of abstraction and distinctiveness (Pansky & Koriat, 2004), and 
this can provide a flexible and task-dependent modulation of memory. 
Take, for example, the visual domain of color. Recent research has 
shown that hearing color labels can warp perception of colors increasing 
their discriminability even when these labels present redundant infor
mation (Forder & Lupyan, 2019). This effect was observed both for 
between-category comparisons, as well as within-categories compari
sons (i.e., discriminating between more prototypical and less prototyp
ical colors in the same category). Little is known, however, regarding 
what happens when people are faced with labels that are less categori
cally distinct (e.g., warm vs. cold colors). If labels have a flexible and 
online (i.e., in the moment) influence on perception, attention, and 
memory as predicted by the label feedback hypothesis, categorical ef
fects should change depending on which category the label activates. 
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The present study 

Here, we provide the first direct assessment of the impact of the 
categorical distinctiveness of labels on the quantity and quality of visual 
working memory. To manipulate categorical distinctiveness, we exper
imentally varied the number of labels (2 or 4) used to describe 
continuously-varying colors (Experiment 1) and continuously-varying 
shapes (Experiment 2) memorized for a visual working memory task. 
We also implemented two other conditions, one in which labeling was 
hindered with the imposition of articulatory suppression (repeatedly say 
“ba ba ba” aloud, hereafter the AS condition), and one in which par
ticipants were free to label the items as they wished (Free Labels con
dition). These conditions replicate the ones used to assess the labeling 
effect by Souza and Skóra (2017). The AS condition serves as a baseline 
in which the usage of labeling is hindered. This permits the assessment 
of categorical effects that occur irrespective of labeling. The Free Labels 
condition allows one to assess the maximum benefit of using as many 
distinct labels as participants can think of based on their prior learning 
experience. The 2-Labels and 4-Labels conditions, conversely, allow us 
to assess whether labeling can have a flexible and task dependent effect 
on memory depending on how the visual objects are categorized in the 
moment. 

With these manipulations, our study aims to provide a clearer picture 
of the effects of label categorical distinctiveness than achieved in prior 
studies. For example, in Richler et al. (2013) label distinctiveness was 
confounded with the type of memoranda: the low-distinctiveness label 
condition involved studying multiple exemplars from the same category, 
whereas the high-distinctiveness label condition involved studying 
unique exemplars from different categories. Accordingly, these condi
tions could not be directly compared, and their impact was assessed in 
relation to other forms of encoding instructions (e.g., preference rating). 
One problem with comparing labeling to other forms of encoding in
struction is that there is no means to know whether labeling was not 
beneficial or whether these other conditions were just more beneficial 
for memory than labeling. For example, Blanco and Gurenckis (2013) 
showed that preference rating yields good memory because of the larger 
distinctiveness and deep processing it affords. When they compared 
labeling to another encoding instruction (orientation of the object), la
beling yielded comparable levels of performance. The present study 
overcomes this difficulty by comparing conditions that promote and 
hinder verbal labeling directly (by requiring different types of overt 
labeling vs. articulatory suppression), and we compared the impact of 
these manipulations upon memory of the same set of visual stimuli, 
removing confounds of differences in memorability between stimulus 
sets. Lastly, our task also allows one to estimate the quantity and quality 
of memory representations using modeling, and hence to address the 
hypothesis that labeling impacts the storage of visual details. 

Our predictions were as follows. First, we aimed to replicate the la
beling benefit observed by Souza and Skóra (2017) when contrasting the 
AS vs. the Free Labels conditions. Overtly labeling colors or shapes with 
their preferred term in the Free Labels condition should allow partici
pants to store more precise representations of the memory items. This 
has been taken as evidence that labeling has an online effect on memory. 
According to the label-feedback hypothesis, the act of labeling high
lights typical or diagnostic properties of the category while irrelevant 
properties can be abstracted (Lupyan, 2012b). If this is indeed the case, 
varying the categorical distinctiveness of the labels between the 2- and 
4-Labels conditions should change the categories activated in visual 
long-term memory, and hence alter the prior these categories offer to 
ground the noisy information that will be stored in memory. When the 
labels are less distinct (such as in the 2-Labels condition), they will 
highlight a broad range of features, providing an imprecise prior for 
encoding the information and leading to lower memory fidelity. When 
the labels are more distinct (e.g., 4-Labels condition), the categories are 
narrower and the more precise prior would lead to more precise repre
sentations. This would show that the tradeoff in memory precision 

induced by labeling depends on the categorical distinctiveness of the 
labels. 

Experiment 1 

In Experiment 1, we used the color reproduction task employed by 
Souza and Skóra (2017): Participants remembered four colored dots 
presented sequentially and, at test, they reproduced each color using a 
continuous color wheel. Across four different within-subject conditions, 
we varied the reliance on labels to categorize the colors during study. In 
the AS condition, labeling was prevented with an articulatory suppres
sion procedure. In the Free Labels condition, participants could label the 
colors with as many terms as they wished. In the 2-Labels and 4-Labels 
conditions, we sectioned the color wheel into two and four parts, and we 
let participants select a label to refer to these sections. We then trained 
them in consistently applying these terms to categorize colors in each of 
the sections. Afterwards, participants had to use these labels during the 
following color memory task. 

If labeling has an online effect in memory as predicted by the visual 
long-term memory hypothesis of Souza and Skóra (2017) which was 
derived from the label-feedback hypothesis of Lupyan (2012a, 2012b), 
then we should observe that the benefits of the labels will vary with their 
categorical distinctiveness. 

Methods 

Participants 
Forty-eight students (39 women; M = 22.75 years old) from the 

University of Zurich completed two 1-hour sessions in exchange of 
course credit or 30 Swiss francs (ca. 30 US dollars). The experiment 
consisted of a within-subjects design in which all participants were 
exposed to all of our four experimental conditions. We based our sample- 
size decision on the number needed to counterbalanced the order of our 
experimental conditions across participants (16 possible orders were 
created – see constrains below), and we replicated this counterbalancing 
three times. Given that we used Bayesian inference to assess evidence for 
changes in recall performance, we collected a sufficiently large sample 
to yield strong evidence (Bayes Factor, BF > 10) for changes in recall 
error across conditions. In Bayesian statistics it is not a problem to in
crease sample-size after seeing the data to obtain stronger evidence 
because this does not unduly inflate false positives. This is because ev
idence is computed both in favor and against the presence of an effect 
(Rouder, 2014; Schönbrodt et al., 2017). 

Four participants were excluded due to non-compliance with the 
verbalization instructions, yielding a final N = 44. All remaining par
ticipants complied with the labeling instructions and showed proper 
labeling behavior (described below). 

For all experiments described here, participants were German- 
speaking individuals from the Zurich area of Switzerland that reported 
normal or correct-to-normal vision, and no color blindness. Participants 
signed an informed consent form prior the study, and were debriefed at 
the end. The study followed the ethical guidelines of the institutional 
ethics review board, and it did not require special ethical approval. 

Procedure 
The main experiment consisted of a continuous color reproduction 

task. Additionally, participants completed two pre-training tasks to 
establish accurate labeling behavior in the 2-Labels and 4-Labels con
ditions. The experimental task was programmed in Matlab using the 
Psychophysics toolbox (Brainard, 1997; Pelli, 1997). All instructions 
and the labeling behavior of the participants occurred in German. 

Continuous color reproduction task. In the beginning of every trial (see 
Fig. 1A), a grey background (RGB 128 128 128) with four dark grey discs 
(RGB 112 112 112; 35 pixels radius) evenly spaced on an imaginary 

A.S. Souza et al.                                                                                                                                                                                                                                



Journal of Memory and Language 119 (2021) 104242

5

circle (200 pixels radius) centered in the middle of the screen was pre
sented for 500 ms. Next, a color was presented at one disc at a time for 
250 ms, followed by an inter-stimulus interval of 1000 ms. Colors were 
randomly sampled from 360 values evenly distributed along a circle in 
the CIELAB color space with L = 70, a = 20, b = 38, and radius = 60 
(Zhang & Luck, 2008). The first stimulus position was randomly selected 
from the four locations, and the subsequent ones followed in clockwise 
fashion. 

Next, memory for all four colors was tested in random order (see 
Fig. 1B). A color wheel (randomly rotated from trial-to-trial) was shown 
around the four grey dots and a central dark grey arrow indicated the 
stimulus to be reproduced on it. The arrow pointed to one location at a 
time, in random order, until all stimuli were tested. Participants moved 
the mouse around the wheel to adjust the color of the tested item, and 
they clicked with the mouse to confirm their response. 

Participants completed four blocks of 50 trials, each block consisting 
of one labeling condition (see Fig. 1A). In the AS condition, participants 
repeated “bababa” aloud throughout the study phase, thereby pre
venting labeling. In the Free-Label condition, participants freely labeled 
the colors with any term they wanted. These conditions replicate the 
ones used by Souza and Skóra (2017) in demonstrating a labeling benefit 
in visual working memory. Our experimental manipulation of labeling 
distinctiveness was implemented in the 2-Labels and 4-Labels conditions 
in which participants labeled the colors using only two and four terms 

(individually defined, see pre-training below). Trial-by-trial verbal
izations were recorded, and coded offline by the experimenter. 

Each session consisted of two blocks. The 2-Labels and 4-Labels 
blocks did not occur in the same session due to time constrains related 
to the pre-training phase. Block order within the session and session 
order were counterbalanced across participants. 

Label Pre-Training. The 2-Labels and 4-Labels blocks were preceded by a 
pre-training phase. First, participants were shown the color wheel split 
in two 180◦ sections for the 2-Labels or four 90◦ sections for the 4-Labels 
block, respectively (see Fig. 1C). Participants typed a label to each 
section. Next, participants trained applying these labels to the colors on 
the wheel. A color appeared for 250 ms, followed by a 1000 ms labeling 
window. Afterwards, the pre-specified label was printed onscreen, and 
participants pressed the right or left arrow-key to indicate whether they 
labeled the color correctly or incorrectly, respectively (self-scoring). 
Training comprised, at least, 100 trials. It continued until a minimum 
self-reported accuracy of 80% over the last 50 trials, or until 360 trials 
were completed. If the criterion was not met, the experiment stopped 
(and the participant was excluded). All participants learned the labels. 

Fig. 1. Experimental Design of Experiment 1. Note. Panel A illustrates the flow of events in the study phase and the verbalization requirements in each experimental 
condition in Experiment 1. Note that labels are illustrative and were individually determined. Panel B illustrates the flow of events in the test phase. The dark grey 
arrow indicated the randomly selected item to be reproduced. Panel C shows the division of the color wheel presented to participants. Participants were asked to type 
a label to refer to each of the sections. Note that the angles in the wheel printed in this illustration were not visible to participants, and are presented here for 
informative purposes only. Angles refer to the un-rotated color wheel. 
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Data analysis 

Verbal output 
For every memory trial, we recorded the verbal response of the 

participants during the study phase to check with instruction compli
ance. Four participants were excluded because they did not label the 
stimuli according to the instructions in the memory phase. Furthermore, 
verbal responses to each stimulus in the memory array were coded to 
assess which labels were applied to which colors. This allowed us, for 
example, to calculate the proportion of times labels like “orange”, 
“green”, “yellow”, and so forth were applied to each of the colors in the 
wheel. For each label, we then draw a line joining together the pro
portions of times this label was used for each color. This also allowed us 
to assess the consistency in applying the trained labels during the 
memory trials in the 2-Labels and 4-Labels conditions. Given that the 
labels in these conditions were individually defined, we will generally 
term them Label 1, Label 2, and so forth. Finally, this data also served to 
estimate the color categories (defined as the mean of the distribution of 
verbal responses over the color space) for modeling of the data (see 
further details below). 

Memory performance 
The main dependent variable in our study was the absolute distance 

between the reported color and the true color of the tested stimulus 
(hereafter recall error). This provides a model-free estimate of memory 
accuracy. We assessed changes in recall error with Bayesian inferential 
statistics using the Bayes Factor package (Morey & Rouder, 2015) 
implemented in R (R core team, 2017) using the anovaBF function. In 
this model, individual mean recall error in each condition served as the 
predicted variable, the labeling condition served as the predictor, and 
participant was treated as a random effect. 

Mixture modeling 
A mixture model was applied to the data to estimate the probabilities 

that responses were sampled from several distributions reflecting 
memory and guessing states. We used the hierarchical Bayesian 
categorical-continuous mixture model of Hardman et al. (2017), which 
permits the estimation of the proportion of items remembered categor
ically versus continuously. The model structure is illustrated in Fig. 2. In 
essence, this model assumes that representations in memory are either 
categorical (some canonical values) or continuous (fine-grained detail 
about the studied feature). Responses informed by categorical infor
mation cluster around some canonical values (see Fig. 2a). Responses 
informed by continuous information vary linearly with the studied 
feature (see Fig. 2b). The fidelity of continuous information can vary, 
which is captured by the model parameter called continuous impreci
sion1. This is reflected by the width of the diagonal line in Fig. 2b. Re
sponses not informed by memory are assumed to be guessing. Guessing 
can be categorical (random selection of one of the color categories 
irrespective of the studied color value; see Fig. 2c) or uniformly 
distributed (continuous guessing; Fig. 2d). Response distributions in the 
task are assumed to reflect a mixture of these four states. Accordingly, 
the mixture model aims at estimating the contribution of each of these 
distributions to generating the data modeled. 

Note that this model does not include a parameter to deal with the 
possibility of confusion between memory items. Given that memory 
items were randomly selected, any misreporting of a non-tested item 
will be randomly distributed in relation to the value of the currently 
tested item and will be accounted for by the model as guessing. This does 
not impact estimation of correct recalls in the model, which is the main 
focus of this study. 

In sum, this model has three main parameters: (a) the probability of 
storage in memory (PM); (b) the probability that the representation in 
memory was continuous (PO) as opposed to categorical (1 - PO); and (c) 
the imprecision of the continuous representation in memory (σO). The 
model was built to allow these three parameters to vary between 
simultaneously-modelled experimental conditions. In other words, if an 
experiment has two conditions A and B, and the data of both conditions 
are modeled simultaneously, the model will allow each condition to 
have their own estimated values for these three parameters. The model 
also includes other parameters that are freely estimated for the data, but 
that are not allowed to vary between simultaneously-modeled condi
tions: the number of categories, their center and width (i.e., standard 
deviation), the probability of categorical guessing (PAG), how colors are 
assigned to categories (category selectivity, σS) which accounts for the 
possibility of classification errors, and the imprecision on the selection 
of the category (σA), which captures the fact that categorical responses 
can deviate slightly from the category center (see width of the cate
gorical bands in Fig. 2a). Concretely, this means that our hypothetical 
conditions A and B would vary in PM, PO and σO, but the model would 
estimate a single value for both of them reflecting the number of cate
gories, their center and width, categorical guessing, and so forth. In 
other words, any differences in performance between these conditions 
would have to be captured in the three main parameter with condition 
effects and nowhere else. 

Given that the model set-up does not allow simultaneously-modelled 
conditions to vary in parameters that reflect categorical bias (e.g., 
number of categories, their center and imprecision), and this was the 
main factor along which our conditions varied, we modeled the data of 
each condition separately. This way, the model estimated the contri
butions of categorical biases independently for each condition, thereby 
allowing all model parameters to capture the variation in categorical 
effects induced by our labeling manipulations. We fitted two types of 
models to the data of each condition, one in which we let the model 
freely estimate the number of categories and their centers, and one in 
which we fixed the number of color categories and their center based on 
the labeling behavior recorded during the memory trials. 

For the Fixed Categories modeling, we took two assumptions. First, 
we assumed that the categories used in the Free-Labels condition reflect 
general prior experience with categorizing colors, and that these cate
gories would guide memory in the presence and absence of labeling. 
Hence the categorical effects would be similar in the AS condition and 
the Free Labels condition, and we used the values estimated from the 
labeling behavior in the Free Labels condition to fix the categories in the 
AS condition. This reflects the assumption that labeling would activate 
categorical information to a larger degree, but without labeling cate
gorical information would also be activated by the stimulus. This is in 
line with the modeling implemented by Souza and Skóra (2017), and 
does match the overall categorical responding observed in the raw data 
across these conditions (see Fig. 4). Second, to make a strong test of the 
online effect produced by the manipulation of labeling implemented 
here, we fixed the maximum number of categories to two and four in the 
2-Labels and 4-Labels conditions, respectively. We also defined the 
center of each wheel section as the respective center of their labeling 
categories. 

To evaluate changes in model parameters as a function of experi
mental condition, we considered the overlap on the posterior distribu
tion of the parameters. The credible values in the posterior are those 
within the 95% highest density interval (HDI). When the HDI of two 
posteriors do not overlap, or the difference between the posteriors do 
not include zero, their difference is credible (Kruschke, 2013). 

There are two model variants in the CatContModel. The between- 
item model assumes that each response is based on either a categori
cal or a continuous representation. The within-item model assumes that 
responses are based on a weighted combination of a continuous and a 
categorical representation of each item. Both Hardman et al. (2017) and 
Souza and Skóra (2017) found that the between-item model had a better 

1 This is the sigma parameter of the von Mises distribution, which has the 
same meaning as the imprecision parameter in the traditional mixture model 
proposed by Zhang & Luck (2008). 
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fit to the data of delayed estimation tasks. Here we fitted the between- 
item model version to the data of Experiment 1 (20′000 iterations; 
500 burn-in) using the CatContModel package (Hardman, 2016) 
implemented in R. 

Materials, data, and analysis scripts for all experiments reported here 
can be found at the Open Science Framework: https://osf.io/mqg4k/ 

Results 

Verbal labeling 
Analysis of the trial-by-trial labeling behavior of the participants 

during the working memory trials is presented in Fig. 3. Fig. 3A-C pre
sent the proportion of times the labels were applied to each color on the 
wheel in the 2-Labels, 4-Labels, and Free Label conditions in Experiment 
1. Each line tracks the frequency of usage of one label over the color 
space. When the line is at 1.0, it indicates that this label was used by all 
participants to describe that color when it was presented for study in the 
memory trial. 

As shown in Fig. 3A and B, labeling was highly accurate in the 2-La
bels and 4-Labels conditions indicating that participants complied with 
the instruction to label the colors during the memory study phase with 
the trained labels. In the Free Labels condition, seven basic color terms 
were used in most trials (ca. 86%), reflecting high consistency in the 
selection of color terms by participants. Note that in the Free Labels 
condition, participants could use any term they wanted, but the seven 
color terms depicted in Fig. 3C were the most common. Overall, there 
was very high agreement between participants on how to label each of 
the colors they were trying to memorize. 

Fig. 3D presents the overall usage proportion of three classes of labels 
during the working memory trials. The first class is what we termed 
basic labels (i.e., the trained labels in the 2- and 4-Labels conditions and 
the seven basic color terms used in the Free Labels). The second class 
consists of rarer labels (e.g., olive, kiwi, gold, light blue) that we labeled 

as “other”. The last class is NA which constitutes unclassified responses, 
i.e., instance in which the participant remained silent or produced an 
unintelligible response. As expected, overall usage of the trained labels 
was very high, this indicated that our procedure was successful in 
generating different labeling behaviors in each memory condition. 

Model free indices of performance 

Raw responses. Fig. 4 shows a scatterplot relating studied color hue and 
response hue in each experimental condition (Hardman et al., 2017). In 
these scatterplots, it is possible to visualize the contributions of the 
different sources of information the mixture model aims to account for. 
For example, the scattered dots within each panel in Fig. 4 are consistent 
with guessing, the dots that align in the diagonal line with continuous 
memory for the studied colors, and the vertical bands along the diagonal 
with categorical responding. Overall, one can infer from these plots that 
there was more guessing under the AS condition, and less guessing under 
the Free Labels condition. The pattern of categorical effects is similar 
between the AS and Free conditions. In the 2- and 4-Labels conditions, 
conversely, the categorical bands mimic the ones specified by the labels 
at the time of study, i.e., two and four bands, respectively. 

Mean Recall Error. When we take the absolute difference between the 
studied and reported color value, we obtain a measure of recall error. 
Recall error in Experiment 1 is depicted in Fig. 5A. Recall error was 
higher when labeling was hindered with suppression (AS condition), and 
lowest in the Free Labels condition. Performance in the 2- and 4-Labels 
conditions remained in between these values. Across all conditions, we 
observe a monotonic decrease in error with increases in the number of 
labels used. Accordingly, a one-way repeated measures BANOVA having 
condition (AS, 2, 4, and Free) as predictor showed overwhelming sup
port for an effect of condition in recall error, BF10 = 1.75 × 1028. To 
follow up on this effect, we contrasted adjacent levels of the condition 

Fig. 2. Multinomial Process Tree Illustrating the Categorical-Continuous Model of Hardman et al. (2017). Note. For all scatterplots, the x-axis represents the studied 
color-hue and the y-axis the response hue. Each panel shows the predicted data pattern that the model parameter accounts for. Panel a. Categorical memory: for a 
range of studied hues, the same categorical response is provided (“red”). The width of the categorical bands reflects categorical imprecision in reporting the category. 
Panel b. Continuous memory: responses vary linearly with the studied hue thereby generating a continuous diagonal line. The width of the diagonal line indicates the 
continuous memory imprecision: a thin diagonal represents more precise co-variation of studied and response values. Panel c. Categorical guessing: guessing is 
distributed over constant category bands. Panel d. Random guessing. Reprinted from Souza and Skóra (2017). (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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variable using Bayesian t-tests. There was substantial evidence for a 
reduction in recall error between the AS and 2-Labels conditions 
(BF10 = 32), between the 2- and 4-Labels conditions (BF10 = 4.39 × 105), 
and between the 4- and Free Labels conditions (BF10 = 2705). 

Mixture modeling 
We modeled the data either by fixing the number and center of the 

categories (Fixed Categories) or by allowing the model to freely estimate 
the number and center of the categories (Free Categories). For both 
types of models, we fitted them using 20,000 iterations, and discarded 
the first 500 iterations as burn-in. Both types of models yielded similar 
results, the only difference being that when the model freely estimates 
the categories, it is more liberal in assigning them and estimates more 
categorical responding than continuous responses. This, however, did 
not change the relative positioning of the conditions in relation to each 
other in either type of model. The Supplementary Materials file shows a 
posterior predictive check of both models and indicate that both 
accounted for the data well. 

Categorical Information. The free-categories model provides an estima
tion of the number of categories that are needed to capture the most 
variance in performance in each condition. The estimated mean number 
of categories and their credible intervals were the following: AS = 7.79 
[7.38, 8.20], 2-Labels = 5.53 [5.02, 6.09], 4-Labels = 6.44 [6.13, 6.77], 
and Free Labels = 7.97 [7.61, 8.34]. Note that the estimated number of 
categories was relatively high in all conditions. In our experimental 
conditions (i.e., 2- and 4-Labels conditions), the number of estimated 
categories was much larger than the number of categories we prompted 

participants to use. This is probably due to two factors. On the one hand, 
there is the issue of model flexibility. The model can potentially account 
for more variation by assigning large number of categories. On the other 
hand, the requirement to label the memoranda with a small set of terms 
does not wash out people’s history of categorization, which may still 
contribute to performance. Hence the estimated values might reflect a 
combination of both of these factors, and should be interpreted with 
caution. Critical for our research question, however, is the difference in 
estimated categorical behavior between the conditions. The estimated 
number of categories did not credibly differ between the AS and Free 
Labels conditions (i.e., their credible intervals overlap), but values in 
these conditions were credibly higher than in the 2-Labels and 4-Labels 
conditions. This indicates that: (a) simply requesting participants to 
utter “bababa” does not change their categorical biases, but (b) 
prompting them to label the memoranda with 2- and 4-Labels does. 
Another critical observation here is that the estimated number of cate
gories was credibly higher in the 4-Labels than 2-Labels condition. This 
provides further evidence that labeling had an online effect on the 
activation of categories that guided memory responses. 

Fig. 6 presents the posterior of the category centers estimated by the 
free models collapsed across all participants. This figure shows that the 
AS and Free Labels conditions have similar number and center for the 
categories. The estimation of the category centers in the 2-Labels and 4- 
Labels conditions are similar to the one expected based on the labeling 
behavior imposed on those conditions. Note that the model was fitted 
separately to each condition and the model was blind about the 
manipulation of labeling, hence the estimated categories are the ones 
that can best account for the data in each condition. 

Fig. 3. Verbal Labeling Recorded During the Working Memory Trials in Experiment 1. Note. Panels A-C: Each line represents the proportion of times each label was 
applied to each color when it was presented for study on the working memory trials. Panel D: Overall usage proportion of the basic color terms depicted in panels A-C, 
other terms, or not classified responses (NA = silence or unintelligible). 
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Probability of Recall. Fig. 5B and C show the group-level posterior 
parameter estimates of the fixed-categories models. Fig. 5D and E show 
the group-level posterior parameter estimates of the free-categories 
models. Fig. 5B and D present the probability that responses were 
informed by memory (total), and when this value is separated into the 
proportion of categorical and continuous representations.2 As shown in 
both panels, labeling with either two, four or with free terms increased 
total recall probability compared to the AS condition. This was in part 
due to increases in categorical memory, and partially due to some in
crease in continuous memory. Fig. 7 presents the posterior difference in 
parameter estimates across the AS and each labeling condition, and also 
between the 2- and 4-Labels conditions in which we experimentally 
induced a change in label distinctiveness. When the difference between 
posteriors does not include 0, they are credible. As shown in Fig. 7A and 
B, increases in categorical memory when participants labeled the items 
tended to be credible, except for the contrast between AS and 2-Labels 
condition and the AS vs. Free condition in the fixed-categories model. 
Increases in continuous memory were observed for all labeling condi
tions in contrast to AS, except for the contrast AS-4-Labels in the Free 
Categories Modeling (Fig. 7C and D). 

One could argue that the comparison between the AS and the 2-La
bels and 4-Label conditions does not offer a proper assessment of the 
effect of label distinctiveness. A fairer comparison can be obtained by 
contrasting performance between the conditions in which label 
distinctiveness was manipulated experimentally, i.e., between the 2- and 

4-Labels conditions. Fig. 7 also presents a direct contrast between these 
conditions. 

When comparing the 2- and 4-Labels conditions, we can see differ
ences in categorical and continuous memory. Categorical memory 
increased when the number of labels increased, but continuous memory 
decreased (see Fig. 7). This seems to suggest that increases in label 
distinctiveness reduced the storage of visual details. However, one has to 
take into consideration also the continuous memory imprecision 
parameter, the categorical imprecision, and the categorical selectivity 
parameters. 

Imprecision. Continuous and categorical imprecision as well as category 
selectivity are presented in Fig. 5C and E. As shown in these panels, 
regardless of how the categories are set in the model (fixed or free 
parameter), the 2-Label condition yielded more imprecise memory 
compared to all other conditions, and the memory imprecision was also 
lower in the 4- compared to the 2-Labels condition (see Fig. 7E and F). In 
general, the categorical imprecision was also larger, and there was less 
selectivity in classifying the colors in the 2-Labels condition compared to 
the remaining conditions. 

Discussion 

Experiment 1 replicated prior work (Souza & Skóra, 2017) showing 
that labeling improved visual working memory performance: when la
beling was prevented with an articulatory suppression procedure per
formance was worse compared to the Free Labels condition. Our 
modeling showed that this labeling benefit was due both to an increase 
in categorical memory – albeit in the fixed categories model this increase 
was not fully credible – as well as an increase in continuous memory for 

Fig. 4. Scatterplots Relating the Studied Color Hue to the Color Hue Selected as Response in Each Trial of each Experimental Condition in Experiment 1.  

2 Note that total = categorical + continuous. For example, a total of 0.90 
could be break down into 0.50 categorical and 0.40 continuous memory. The 
remaining 0.10 is accounted for by guessing. 
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the freely labeled colors. The increase in continuous memory in the Free 
Labels condition was reflected both in a higher probability of storing a 
continuous representation as well as in more precise memory. Further
more, our modeling showed that the same categories were present when 
participants freely labeled the memoranda or when labeling was hin
dered with articulatory suppression. This is consistent with the idea that 

labeling is an efficient way to activate the categorical information in 
long-term memory (Edmiston & Lupyan, 2015; Forder & Lupyan, 2019; 
Lupyan & Thompson-Schill, 2012). These results are consistent with the 
categorical visual long-term memory hypothesis and the label-feedback 
hypothesis. 

The novel contribution of Experiment 1 was to assess how the 

Fig. 5. Recall Error (Panel A) and Mixture Model Parameters (Panels B-E) in Experiment 1. Note. Panel A. Sample mean and error bars displaying 95% within- 
subjects confidence intervals are in blue; individual data in grey. Panels B and D: Mean and 95% HDI of the probability of recalling information from memory 
(total), and breaking this value down into categorical and continuous information. Panels C and E: Mean and 95% HDI of parameters reflecting the imprecision of 
continuous representations, categorical representations, and selectivity with which colors were categorized. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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quantity and quality of visual working memory representations change 
with the categorical distinctiveness of the descriptions generated in the 
moment to categorize the memoranda. We reasoned that if categorical 
information has an online effect on memory, storage of visual details 
would depend on how much categorical information was provided by 
the labels to distinguish between the different items in the memory set. 
To manipulate label distinctiveness, we experimentally varied the 
number of labels (2 or 4) used to describe the colors. Both conditions 
produced lower recall error compared to the suppression condition. 
Critically, the superiority of these conditions compared to AS was due to 
modulations in different parameters. On the one hand, labeling reduced 
guessing irrespective of the number of labels used. The chance that 
participants had information about the colors in mind increased 
dramatically (p > 0.90) in both labeling conditions. On the other hand, 
the precision of the information in memory depended on the label 
distinctiveness. The increase in total recall probability in the 2-Labels 
condition was still associated with substantial recall error, this being 
the case because this condition generated less precise memory than both 
the AS condition and the 4-Labels condition. The larger superiority of 
the 4-Labels condition compared to the AS and 2-Labels comes therefore 
from a higher chance of having information in memory and also because 
the more distinct labels allowed properties from the memorized hue to 
be better retained in mind. These findings demonstrate that labeling has 

a flexible and online influence on memory: it generally increases 
accessibility of information in memory and it will affect storage of visual 
details depending on the precision of the categorical information acti
vated by the labels. 

One concern often raised to our results is that the AS condition in
troduces task irrelevant information whereas in the other conditions all 
labels are task relevant. Souza and Skóra (2017) demonstrated that the 
AS procedure yielded similar performance as a condition in which par
ticipants generated task relevant labels (i.e., they labeled the serial input 
position of the items: first, second, third, and fourth). This shows that it 
is not the task-relevance that creates a benefit for the usage of color 
labels, but the categorical information they provide regarding the task- 
relevant feature. 

Another concern that may be raised is that participants received 
training before entering some conditions (2-Labels and 4-Labels), but 
not before entering others (AS and Free Labels), and there might be 
carryover from one condition to the next. We only exposed participants 
to a training phase for the conditions that we assumed deviated from 
their natural tendencies to categorize the stimuli, and we counter
balanced the order of the experimental conditions such that some par
ticipants did the AS and Free Labels condition without being exposed to 
a different type of categorization training. Although running the risk of 
carryover effects, we believe the manipulation of the labeling re
quirements within-subjects and the findings that these conditions still 
had clear-cut contrasting effects on performance speaks more strongly to 
the online effect of labeling. These effects were obtained despite all the 
variation in prior experience with the experimental conditions and 
different labeling requirements. That said, it is worth noting that the 
most critical comparison regarding the effect of label distinctiveness is 
obtained by contrasting the 2- and 4-Labels conditions, both of which 
were preceded by training. 

Experiment 1 allowed participants to rely on their own prior expe
rience with color terms to generate labels that could be applied broadly 
or narrowly over the continuous color feature-space. Participants had 
very similar intuitions regarding how to label the colors, as reflected on 
the high agreement regarding color terms in the Free Labels condition as 
shown in Fig. 3C. Our results showed that labeling can have both ben
efits (i.e., higher chance of remembering and higher fidelity if the labels 
are precise) and costs (i.e., lower memory precision when labels are 
broad) and that this will constrain how much performance changes in 
comparison to a condition in which labeling is hindered. One question 
left unanswered in this experiment, is whether the effects of labeling 
depend on the long-term prior experience with the terms, or whether 
they mostly reflect the act of categorizing the memoranda at the study 
phase. The goal of Experiment 2 was to distinguish between these 
possibilities. 

Experiment 2 

In Experiment 2 participants completed a continuous shape- 
reproduction task (Li, Liang, Lee, & Barense, 2020). We selected this 
continuous space because it contains shapes that are more or less novel, 
and hence it was less likely that participants encountered and classified 
(aka. labeled) these shapes prior to the experiment. This allowed us to 
take a somewhat more neutral ground to experimentally manipulate the 
categorization of the shapes without strongly conflicting with prior 
knowledge of the individuals. 

In Experiment 2, we experimentally built the categories used by 
participants in labeling the shapes. Participants were presented with 
German non-words, and they were trained to apply these terms to the 
continuous shape-space across two conditions that varied in categorical 
distinctiveness. In the 2-Labels condition, participants were trained in 
using two non-words to divide the shape space into two broad cate
gories. In the 4-Labels condition, participants were trained in using four 
non-words to divide the shape space into four categories. Critically, 
unlike Experiment 1, the partitioning of the shape wheel was randomly 

Fig. 6. Posterior Distributions of Category Centers in Each Condition Estimated 
by the Free Categories Models in Experiment 1. 
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determined for each participant, and hence completely arbitrary. As 
comparisons, participants also completed the task under suppression 
(AS condition) and having the opportunity to freely generate labels (Free 
Labels condition). 

If categorical distinctiveness is the relevant variable in generating 
the labeling effects we observed in Experiment 1, then training partici
pants to arbitrarily categorize the stimuli using broad or more narrow 
categories should yield comparable effects to the ones observed in 
Experiment 1 although participants had no extra-laboratory experience 
with the labels and the categories themselves. 

Methods 

Participants 
Thirty-two students (21 women; M = 22 years old) of the University 

of Zurich took part in two 90-min sessions in exchange of course credit 

or 45 CHF. All participants were German speaking individuals, and they 
were tested in German. One participant was excluded from the final 
analysis because they failed to learn the categories in the 4-Labels 
condition with sufficiently high accuracy (see criteria below), leaving 
a total N = 31. Our sample size decision was again based on the number 
of participants required to counterbalance our conditions (16 orders, 
which we replicated two times). We sought to have enough participants 
to detect strong evidence (BF > 10) for difference in performance be
tween the 2- and 4-Labels condition. 

Procedure 

Continuous shape reproduction task. In the beginning of every trial (see 
Fig. 8A), four thin grey circle frames (RGB 220 220 220; 95 pixels 
radius) appeared evenly spaced on an imaginary circle (160 pixels 
radius) centered in the middle of a white screen for 500 ms. Next, one 

Fig. 7. Violin Plot of the Difference in Posterior Estimates Between Conditions in Experiment 1. Note. The x-axis depicts the two conditions contrasted (e.g., AS- 
2 =AS vs. 2). The dot represents the mean difference in estimates between the conditions and the thick line the HDI of their difference. The horizontal dotted line 
marks the value representing the Null hypothesis. 

A.S. Souza et al.                                                                                                                                                                                                                                



Journal of Memory and Language 119 (2021) 104242

13

shape was presented at one circle-location at a time for 250 ms, followed 
by an inter-stimulus interval of 1000 ms. Shapes were randomly sampled 
from 360 shapes evenly distributed along a continuous shape wheel (Li 
et al., 2020). The first stimulus position was randomly selected from the 
four locations, and the subsequent ones followed in clockwise fashion. 

Next, memory for all four shapes was tested in random order. A dark- 
grey wheel was shown around the four grey dots, and the thicker frame 
of one of the circles indicated the stimulus to be reproduced (see 
Fig. 8B). When participants moved the mouse towards the grey wheel, 
one shape appeared at the tested location. Angles on the grey wheel 
were used to represent the shapes on a hidden-shape wheel (illustrated 
in simplified form on Fig. 8C). Participants moved the mouse along the 
wheel to adjust the shape appearing at the tested location, and they 
clicked with the mouse to confirm their response. The shape-wheel was 
randomly rotated on every trial. 

As in Experiment 1, all participants were exposed to four within- 
subject conditions: AS condition, 2-Labels, 4-Labels, and Free Labels. 

Each experimental condition was completed in a different block con
sisting of 50 trials (see Fig. 8A). In the AS condition, participants 
repeated “bababa” aloud throughout the study phase, thereby pre
venting labeling. In the Free Labels condition, participants freely labeled 
the shapes with any term they wanted. In the 2-Labels and 4-Labels 
conditions, participants labeled the shapes using only two and four 
German non-words (see pre-training below). 

All verbalizations during the memory trials were recorded, and 
coded offline by the experimenter. Each session consisted of only two 
experimental blocks. The 2-Labels and 4-Labels blocks did not occur in 
the same session due to time constrains related to the pre-training phase. 
Block order within the session and session order were counterbalanced 
across participants. 

Label Pre-Training. Before starting the 2-Labels and 4-Labels memory 
block, participants underwent a three-part label categorization training 
phase. In the first part, participants were shown the wheel partitioned 

Fig. 8. Experimental Design of Experiment 2. Note. Panel A illustrates the flow of events in the study phase and the verbalization requirements in each experimental 
condition of Experiment 2. Panel B illustrates the test phase. The thick circle-frame indicated the item to be reproduced on the shape wheel, and the black circle 
indicated the current mouse position on the wheel. Panel C illustrates the hidden continuous shape wheel by displaying the shapes at evenly (15◦ apart) points on the 
wheel. Panel D illustrates the division of the shape wheel in the 2-Labels and 4-Labels conditions. The partitioning of the wheel was randomly determined for each 
participant in each condition. 
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into 2 or 4 even sections, with each section being associated with a non- 
word: Cipa and Mofe for the 2-Labels condition; Pexa, Voli, Fibe and 
Waku for the 4-Labels condition. The partitioning of the wheel was 
indicated with red dots (as illustrated in Fig. 8D). When participants 
moved the mouse around the wheel, the shape at the current mouse 
cursor position and its category label appeared in the screen center as 
illustrated in Fig. 8D. Participants were told to explore the categories 
and then click on a button to continue to the next part. 

In the second part, participants trained categorizing the shapes. A 
shape was shown on the middle of the screen together with the 2 or 4 
non-words reflecting the respective categories (presented in a row un
derneath it). Participants clicked on the label they thought applied to 
this shape, and received feedback regarding the correctness of their 
response for 1 s: the correct label turned green and, if their response was 
incorrect, the selected label turned red. They completed a minimum of 
144 trials in this training part, which were divided into 3 blocks of 48 
trials. Within each block, shapes within each category appeared evenly 
(to make sure training was even over categories). The phase was finished 
when participants achieved a minimum accuracy levels of 83% over the 

last block of 48 trials. In case accuracy was below that level, participants 
completed an additional block of 48 trials (with categories evenly 
balanced along these trials). 

As the third and last step, participants trained verbal labeling of the 
items within the time-frame of the experiment (1250 ms for each item). 
As in Experiment 1, they were presented one stimulus for 250 ms, and 
had an additional 1000 ms to label it. They self-scored their label ac
curacy, and this training continued for a minimum of 100 trials, and 
until they reached 83% accuracy. Only one participant had to be 
excluded for failing to learn the categories (and only in the 4-Labels 
condition). 

Results 

Verbal labeling 
We recorded all generated labels during the working memory trials 

and these were coded offline by the experimenter. To assess whether 
participants were correctly labeling the shapes with the trained labels, 
we centered the shapes in relation to the random partitioning of the 

Fig. 9. Verbal Labeling Behavior Recorded During the Working Memory Trials in Experiment 2. Note. Panels A-B: Proportion of times each trained label was applied 
to shapes in the sections defined by the random wheel partitioning (with 0 indicating the random partitioning). Panel C: Proportion of times labels were applied to 
the shapes in the unrotated wheel in the Free Labels condition. Labels referring to the same quality were lumped together (e.g., small star, big star, Christmas star 
were classified as star-like); the first 6 labels refer to the trained non-words. Panel D: Overall usage proportion of (a) the trained labels, (b) other terms, or (c) not 
classified responses (NA = silence or unintelligible) across the three labeling conditions. 
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shape-wheel defined for each participant (which we will refer to as the 
0-point) in the 2- and 4-Labels conditions. In the 2-Labels condition, the 
0-point defines the separation of the two-halves of the wheel, with one 
half being labeled Cipa and the other Mofe. In the 4-Labels condition, the 
0-point defines the start of the partitioning of the wheel into equal 90◦

sections which were labeled Pexa, Voli, Fibe, and Waku. Using this re- 
centered wheel, we computed the proportion of times the trained la
bels where applied to the respective shapes on the assigned sections 
during the working memory trials. Fig. 9A and B show one line per label, 
with the line tracking the proportion of times this label was applied to 
each shape on the wheel. As shown in Fig. 9A and B, participants 
correctly applied the trained labels to shapes on their respective sections 
of the wheel during the working memory trials. This indicates that our 
categorization training was effective in generating differentiated 

labeling behavior during the memory trials. 
In the Free Labels condition, participants used 174 different labels to 

describe the shapes. This yielded a very low frequency of responses per 
shape. In order to allow for some visualization of the variety of labels 
used, we classified together terms that referred to similar concepts (e.g., 
star, dress, vase, house). We then lumped together terms that were used 
less frequently (less than 70 entries) into a general category of “rare”. 
This allowed us to reduce the label-space to 21 terms. 

We then plotted how these terms were applied to the shapes on the 
unrotated wheel (see Fig. 9C). As indicated in Fig. 9C, there was little 
consensus among participants on how to label the shapes: the biggest 
agreement was with the use of terms referring to stars in relation to 
shapes in angles 270 to 360 (see shape wheel on Fig. 8C, note that 0 is on 
the right and angles increase in clockwise fashion). 

Fig. 10. Scatterplots Relating the Studied Shape to 
the Shape Selected as Response in each Trial of Each 
Experimental Condition of Experiment 2. Note. The 
first two rows show the data in relation to the 
unrotated shape-wheel. Given that wheel-sectioning 
was individually determined for each participant in 
the 2-Labels and 4-Labels conditions, the category 
effect is diluted in this visualization. The bottom 
row presents the studied shapes and response shapes 
in relation to the individual wheel partitioning. The 
labeled categories became then apparent.   
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Fig. 9D shows the overall proportion of times participants used the 
trained labels, other labels, or for which no response was recorded 
(silence or unintelligible sound). Participants mainly used the trained 
labels in the 2- and 4-Labels conditions. In the Free Labels condition, 
participants still used some of the trained labels (ca. 19% of the time), 
alongside a large range of other terms. This may be the case because 75% 
of the participants completed the Free Labels condition after having 
been already exposed to either the 2- or the 4-Labels conditions. 

Model free indices of performance 

Raw responses. Fig. 10 shows a scatterplot relating studied shape to 
response shape in Experiment 2. As anticipated, there were few cate
gorical bands in the AS and Free Labels conditions given that the shapes 
do not easily map to prior learned categories. This was a desired feature 
in our selection of this feature space to facilitate the random manipu
lation of the categories in the 2- and 4-Labels conditions. Because the 
wheel was sectioned in a random location in the 2- and 4-Labels con
ditions, it is difficult to see the labeled categories in the unrotated wheel. 
When the studied and response values are re-centered in relation to the 
individual wheel sectioning (bottom row), two and four categorical 
bands emerge. This figure shows that training participants to arbitrarily 
classify the shapes into two or four categories produced a corresponding 
change in the way these shapes were stored in working memory. 

Mean recall error. As in Experiment 1, we computed the average error in 
reproducing the shapes. Fig. 11A shows recall error as function of la
beling condition. Replicating Experiment 1, recall error was largest 
when labeling was hindered with suppression (AS condition) and best 
when participants freely labeled the shapes (Free Labels). Performance 

in the 2- and 4-Labels conditions was in-between, with recall error being 
larger with 2- than the 4-Labels. A repeated-measures, one-way 
BANOVA showed overwhelming support for an effect of condition on 
recall error, BF10 = 4.88 × 109. As in Experiment 1, we compared adja
cent levels of the condition variable using t-tests. There was strong ev
idence for a reduction in recall error between the AS and 2-Labels 
conditions, BF10 = 13.35, and between the 2- and 4-Labels conditions, 
BF10 = 275.74. The evidence for a reduction in recall error between the 
4- and Free Labels condition was only substantial, BF10 = 3.79. 

One concern in the Free Labels condition is that in ca. 19% of the 
trials, one of the trained labels was used, showing some carryover be
tween conditions. To assess whether this produced an impact on per
formance, we compared recall in trials in which participants used the 
trained labels vs. other labels. Only nine participants continued to use 
the trained labels in the Free Labels condition. The recall error when the 
trained labels were used was M = 36.93, 95% within-subjects CI [13.62, 
60.24], and when they were not used was M = 50.22 [26.91, 73.54]. A 
Bayesian t-test indicated that their difference was ambiguous, 
BF10 = 0.45. However, if anything participants performed better when 
using the trained labels than otherwise. Given that we selected this 
shape wheel for their relative novelty in relation to the prior experience 
of the participants, this may indicate that about 1/3 of the participants 
found it hard to even come up with ad-hoc categories for the shapes 
during the working memory trials and found it easier to continue using 
the trained labels. 

Mixture modeling 
We submitted the data of Experiment 2 to the same mixture model as 

described for Experiment 1. For Experiment 2 we only fitted to the data 
in each condition a model in which the number and center of the 

Fig. 11. Recall Error (Panel A) and Mixture Model Parameters (Panels B-C) in Experiment 2. Note. Panel A: Error bars depict 95% within-subjects confidence in
tervals. Grey lines depict individual participants. Panel B: Mean and 95% HDI of the group-level posterior of the probability of recalling information from memory 
(overall), and breaking this value down into categorical and continuous representations. Panel C: Mean and 95% HDI of the group-level posterior of the parameters 
reflecting the imprecision of continuous representations, categorical representations, and selectivity with which shapes were categorized. 

A.S. Souza et al.                                                                                                                                                                                                                                



Journal of Memory and Language 119 (2021) 104242

17

categories were allowed to be freely estimated for each participant. 
Fixing the categories were not feasible here for two reasons. First, the 
feature space used did not involve spontaneous and stable categories 
which we could use to fix categories in the AS and Free Labels condi
tions. Second, for the 2- and 4-Labels conditions, we individually 
determined the partitioning of the wheel, and hence again we did not 
have stable categories over participants. Therefore, the best compromise 
was to allow the model to freely estimate these values. We fitted the 
model using 20,000 iterations, and discarded the first 5000 iterations as 
burn-in. The Supplementary Materials present a posterior predictive 
check of the model. 

Categorical information. The number of categories estimated in each 
condition was the following: AS = 8.05 [7.45, 8.64]; 2-Labels = 5.52 
[5.00, 6.10]; 4-Labels = 7.29 [6.84, 7.74]; and Free Labels = 7.73 [7.23, 

8.29]. Only the 2-Labels condition had a credible lower number of 
categories than the other conditions. The remaining conditions yielded 
similar estimates. 

Fig. 12 presents the category centers estimated by the model for a 
subset of participants. Averaging across all participants (as done in 
Experiment 1) was not informative here because participants had more 
idiosyncratic categories in the AS and Free Labels conditions, and their 
categories also differed in locations in the 2- and 4-Labels. The critical 
contrast here is between the 2- and 4-Labels conditions: The estimated 
centers show that there are fewer categories in the 2-Labels than the 4- 
Labels condition and the categories tend to be spaced as induced by the 
labeling pattern imposed on those conditions. 

Probability of recall. Fig. 11B shows the group-level estimates for pa
rameters associated with the probability of recalling information from 

Fig. 12. Posterior Distributions of Category Centers in Each Condition for a Sample of 5 Participants (P1, P8, P15, P22, and P30) in Experiment 2.  
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memory. As shown in this figure, labeling with any number of terms 
increased the probability of recalling information from memory (total) 
compared to the AS condition, replicating Experiment 1. This figure also 
shows that this gain was mainly due to the retrieval of categorical rep
resentations. Fig. 13A shows the difference in posterior estimates for the 

probability of retrieving categorical information in each labeling con
dition against the AS condition, and when comparing the 2- and 4-Labels 
conditions which implement our critical manipulation of label distinc
tiveness. Categorical memory increased in all labeling conditions 
compared to AS, but this increase was not fully credible in the 2-Labels 
condition. The probability of categorical memory also credibly 
increased when contrasting the 2- and 4-Labels conditions. 

Fig. 11B shows that the probability of retrieving continuous repre
sentations remained mostly unaffected by labeling, with exception of the 
2-Labels condition that received a credible boost compared to AS (see 
also Fig. 13B). The contrast between the 2- and 4-Labels conditions 
showed a reduction in the probability of continuous memory in the 4-La
bels condition. This is a similar pattern as observed in Experiment 1. 

Imprecision. As in Experiment 1, this higher probability of recalling 
continuous representations in the 2-Labels condition needs to be con
trasted with the reduction in memory precision this condition produced: 
continuous imprecision tended to increase in contrast to the AS condi
tion (see Fig. 11C and 13C), although this increase was not fully credible 
in Experiment 2, and memory imprecision was credibly lower in the 4- 
than the 2-Labels condition, i.e., memory was more precise with 4-La
bels. Likewise, categorical precision and categorical selectivity was 
also hindered in the 2-Labels condition compared to the other conditions 
(see Fig. 11C), particularly for the contrast between the 2- and 4-Labels 
conditions. 

Discussion 

In Experiment 2 we trained German-speaking individuals in cate
gorizing shapes using German non-words. In one condition, participants 
learned to use two non-words to divide the continuous shape space into 
two arbitrary broad categories. In another condition, they learned to use 
four non-words to divide the same space into four arbitrary categories. 
Thereafter they performed a visual working memory task in which they 
were asked to label the shapes using these novel category labels. We 
compared these conditions to a suppression (AS) baseline and a free- 
labeling condition. Categorization of the shapes with broad (2-Labels) 
and more specific terms (4-Labels) had an impact on how much infor
mation was retained in visual working memory, and on the precision of 
memory representations. Labeling afforded the retention of more in
formation in mind as reflected in heighted probability of retrieving in
formation from memory when labeling was used (i.e., 2-Labels, 4- 
Labels, and Free Labels compared to AS). The categorical distinctiveness 
of the labels, however, impacted memory precision: usage of broad la
bels (2-Labels) hindered precision compared both to AS (although this 
effect was not credible in Experiment 2) and to the usage of more distinct 
labels (4-Labels condition). These effects replicate the ones obtained in 
Experiment 1 in which the labels were self-selected by participants and 
reflected their prior history with color terms. Here we demonstrated that 
this effect reflects ongoing categorization of the visual input: novel 
categories learned in the course of a brief training session can also serve 
as a prior for storage of information in visual working memory. In sum, 
Experiment 2 shows that labeling affects visual working memory not 
only when well-established categories in long-term memory are acti
vated, but also when newly learned categories are activated by the la
bels. This shows that labeling has an online and task-dependent effect on 
visual working memory. 

One apparent limitation of Experiment 2 is that participants had very 
idiosyncratic labeling for the shapes in the Free Labels condition and 
their labeling was not highly consistent. This probably limited the 
benefit they obtained in the Free Labels condition. This may explain why 
there was just a small difference between the recall error in the 4-Labels 
and Free Labels condition. Some participants even continued to label the 
stimuli with the trained labels, showing carryover effects from the 
previous condition they were exposed to. We don’t believe this is critical 

Fig. 13. Violin Plot of the Difference in Mixture Model Parameter Estimates 
Between Conditions in Experiment 2. Note. The dot represents the mean dif
ference and the thick line the HDI of the difference. The horizontal dotted line 
marks the value representing the Null hypothesis. 
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for our research question though. Here our main goal was to manipulate 
the categorical distinctiveness for a set of relative novel stimuli for 
which the categories themselves were arbitrarily constructed during the 
experiment. We implemented this manipulation across the 2- and 4-La
bels conditions. We succeeded in replicating the results of Experiment 1 
using arbitrary categories: probability of recall increased in both label
ing conditions, but fine-grained memory of the shapes was reduced in 
the 2-Labels compared to 4-Labels conditions. 

General discussion 

Previous research has shown that labeling visual inputs allows us to 
better remember them over short intervals (Forsberg et al., 2020; Souza 
& Skóra, 2017). Here we demonstrated for the first time that the effect of 
labeling upon visual working memory is directly related to the cate
gorical distinctiveness of the labels generated. Labels that are broadly 
applied to categorize the visual stimuli improve the accessibility of in
formation in memory (increasing probability of recall) while at the same 
time hindering memory for visual details, whereas labels that more 
narrowly distinguish between items improve both the accessibility of 
memory representations and the retention of visual details. 

Hypotheses of the labeling effect 

The hypotheses of the labeling effect make different predictions to 
performance in our task. The verbal recording hypothesis predicts that 
labeling should reduce the storage of continuous information, because 
the label replaces the continuous information in mind. The memory 
distortion hypothesis predicts that labeling will bias memory towards 
the prototype, thereby reducing memory precision. The dual-trace hy
pothesis predicts that labeling will only add categorical information 
with no impact on the continuous information stored. The distinctive
ness hypothesis predicts that any type of label should increase proba
bility of recall as long as they provide an additional retrieval cue to the 
memory traces. Finally, the categorical visual long-term memory hy
pothesis predicts that labeling will activate categorical information in 
long-term memory which will serve as a categorical prior to reduce 
uncertainty in the incoming perceptual information (in line with the 
label feedback hypothesis). This reduction in uncertainty sharpens the 
perception and consequent storage of the visual details in working 
memory. 

Our results show that labeling continuously varying colors and 
shapes can increase memory precision ruling out hypotheses that do not 
consider the possibility of a gain in this parameter – namely the recod
ing, distortion and dual-trace hypotheses. This replicates and extends to 
other visual features prior work with labeling of colors (Forsberg et al., 
2020; Souza & Skóra, 2017). The pure distinctiveness account was also 
ruled out by Souza and Skóra (2017): simply using different terms to 
refer to the memoranda did not improve performance when they lacked 
categorical information. Altogether, the improvement of memory pre
cision by labeling is consistent with the categorical visual long-term 
memory hypothesis. 

The prediction that labels activate categorical information leads to 
the question of whether this activation is flexible and task-dependent. 
The same stimuli can be categorized in different ways by the same 
person. If labels are biasing storage online, then their effect will depend 
on which categories are activated by the labels. To the best of our 
knowledge, we are the first to experimentally manipulate the categorical 
distinctiveness of the labels and to assess its impact on visual working 
memory. 

Categorical distinctiveness 

We trained participants to categorize colors and shapes using either 
two or four labels. This allowed us to show that the improvement in 
visual working memory (i.e., the reduction in recall error) was 

proportional to the number of labels used. Two labels produced a 
smaller benefit than four labels in comparison to a verbal suppression 
condition. The smaller benefits of two compared to four labels is related 
to two opposing effects created by labeling: labels increase probability of 
recall indicating that labeled information is better consolidated or 
maintained in working memory; however, the degree in which the labels 
sharpen perception of the incoming information depends on how much 
the label highlights features that are characteristic of the category in 
comparison to other categories. Broad categories have fewer distinctive 
features than narrow categories, and hence they do not create a suffi
ciently distinct context to encode the precise feature of the studied 
items. 

The impact of categorical distinctiveness uncovered here is line with 
the one predicted based on findings obtained in studies on episodic vi
sual long-term memory (e.g., Richler et al., 2013). Our study advances 
this literature by showing that categorical distinctiveness effects can be 
observed by varying the types of labels (2 vs. 4 labels) applied to the 
same set of visual stimuli, and by comparing it to a baseline in which 
labeling is prevented by articulatory suppression. 

In episodic visual long-term memory labeling has been associated 
with either costs or, at best, no changes in performance (Kelly & Heit, 
2017; Lupyan, 2008; Richler et al., 2013). In contrast, our study points 
to a labeling benefit (see also Forsberg et al., 2020; Souza & Skóra, 
2017). The differences in costs versus benefits might be related to the 
selection of baseline: long-term memory studies have typically 
compared verbal labeling to preference rating. However, preference 
rating yields better performance compared to other types of encoding 
instructions (Blanco & Gurenckis, 2013). By varying the labeling 
behavior applied to the same set of memoranda, we could provide a 
clearer measure of the online effect of labeling on visual working 
memory. Our findings showed that in contrast to a condition in which 
labeling is hindered, we can measure benefits even of broad labels. 
These benefits are smaller, however, than when more distinct labels are 
used. 

Labeling effect: memory quantity vs. quality 

Our modeling of the data provided information about the changes 
induced by labeling regarding the quantity and quality of visual working 
memory representations. Overall, labeling the task-relevant feature 
benefits visual working memory irrespective of the type of label (even if 
very broad) by increasing storage probability compared to when label
ing is hindered. The benefits of very broad labels are smaller, however, 
because they diffusely highlight the properties of the category and hence 
they do not strongly sharpen perception of the incoming information. In 
contrast, distinctive labels have narrower boundaries and they can be 
used to highlight the similarity of the current item with the category 
prototype and its dissimilarity to other categories as suggested by the 
label-feedback hypothesis (Lupyan, 2012b, 2012a). This in itself may 
permit the storage of more fine-grained representations or more stable 
fine-grained representations – which are reflected in reductions in the 
memory imprecision parameter of our model. 

These results resonate with the ones of Richler et al. (2013) in which 
the usage of low-distinctiveness labels (two categories) yielded worse 
performance than preference rating, whereas the usage of unique, high- 
distinctive labels (unique categories) yielded comparable performance 
to preference rating. Our results point to the exact source of this effect: 
categorical distinctiveness changes the fidelity of the memory repre
sentation. When one needs to compare several exemplars from the same 
category, memory fidelity becomes critical to distinguish between tar
gets and lures. With fewer terms and several exemplars, memory 
imprecision will increase as a function of labeling. With several terms 
and few exemplars, benefits will tend to accrue. 

Notwithstanding the widespread hypothesis that labels only 
contribute categorical knowledge (Cibelli et al., 2016; Hardman et al., 
2017), our study shows that labels also affect the storage of continuous 
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memory representations in memory. Fine-grained visual representations 
seem particularly fragile, and the categorical information activated by 
the labels may help in protecting it from interference produced by the 
other items or by decreasing the load on the limited capacity of visual 
working memory. This protection however depends on the distinctive
ness of the labels used. This goes one way in explaining why sometimes 
labeling could appear to produce a performance cost. Whether there will 
be benefits or costs will depend on the match between the types of labels 
used to categorize the stimuli and the subsequent demands on memory 
precision in the memory test. If the labels have low categorical 
distinctiveness and the memory test requires fine-grained discrimina
tions, costs will likely follow. Otherwise, labels will tend to increase 
performance as indicated by the increased probability of retention of 
information in memory and the increase in memory fidelity. 

Are categories and labels the same Thing? 

One may wonder whether labeling and categorization are the same 
thing. Here we have used these terms almost interchangeably, but this is 
not meant to reflect that labeling is a precondition for categorization. As 
we have pointed out in the introduction, categorical effects are observed 
even in the absence of overt labeling (Crawford et al., 2000; Hutten
locher et al., 1991) and can occur as fast as 150–200 ms after stimulus 
onset as revealed by EEG differentiation between stimuli associated with 
the same vs. different labels (Thierry et al., 2009). Categorical 
responding appears in the delayed estimation task even under articu
latory suppression as demonstrated here and in prior work (Forsberg 
et al., 2020; Souza & Skóra, 2017). Labels just accentuate the categorical 
responding in this task, a finding that has been replicated in many other 
perceptual tasks as well (Boutonnet & Lupyan, 2015; Edmiston & 
Lupyan, 2015; Forder & Lupyan, 2019; Lupyan & Thompson-Schill, 
2012). In support of this notion, our modeling showed similar categor
ical effects under suppression and free labeling indicating that cate
gorical information is also activated by the stimulus itself. The stimulus 
probably prompts the labeling, with the labeled category then more 
strongly activating the category in visual long-term memory which 
further sharpens memory storage – reflecting a cycle of 
interdependency. 

Overall, our findings point to a strong role of in-the-moment verbal 
labeling for storage of visual information. Much earlier work has been 
concerned with comparing performance for hard-to-label versus easy-to- 
label stimuli under the assumption that the activation of labels occurs 
automatically upon presentation of the stimulus (Brandimonte, Hitch, & 
Bishop, 1992; Gilbert, Regier, Kay, & Ivry, 2006; Thierry, Athanaso
poulos, Wiggett, Dering, & Kuipers, 2009). Our work shows that labeling 
effects are not solely automatic – categorical information is more 
strongly activated when labels are generated online (Lupyan, 2012b, 
2012a). Our results show that it is not only the existence of a label to the 
visual input that matters, but whether and which type of label (more or 
less categorically distinct) is applied at the incoming visual information. 
This resonates with the idea that categorical effects are not fixed. 
Humans can entertain different categories for the same set of stimuli 
depending on the purpose of the current task. This flexibility, however, 
also means that what will be remembered from this episode will vary 
depending on the categorization. 

Furthermore, our results show that the labeling effect does not need 
to come from a long history of culturally-mediated learning of the cat
egories and the labels. In Experiment 1, participants could rely on their 
prior history with color terms to classify the colors in the Free Labels 
condition, and our sectioning of the color wheel in the 2-Labels and 4- 
Labels conditions was not arbitrary but meant to maximize consis
tency within the sections to facilitate the labeling and categorization of 
the colors. In Experiment 2, we removed the grounding on prior expe
rience. The categories were learned over the course of a short experi
mental training phase that took ca. 20–30 min and the category 
boundaries were randomly determined for each individual. The effect of 

categorical distinctiveness was remarkably similar between 
experiments. 

Do the categories come from using language to refer to visual input? 
Category learning is facilitated by labels, a finding that has been 
demonstrated with adults (Lupyan et al., 2007), children (Sloutsky & 
Fisher, 2012), and babies (Althaus & Mareschal, 2014). This does not 
mean that categorical learning cannot happen in the absence of labeling. 
Categorical learning probably requires discriminative training to 
respond differently to different categories and similarly to elements 
from the same category. Teaching someone to label the categories adds 
one property to discriminate between category elements and increases 
the experience in differentiating them. 

Labeling and verbal rehearsal 

One may wonder whether the labeling effect we observed is related 
to verbal rehearsal of the labels. Verbal labeling and verbal rehearsal are 
not the same process: labeling is related to the recoding of visual in
formation into a verbal representation; conversely, verbal rehearsal is 
the overt or covert repetition of verbal information to oneself when this 
information has to be maintained in mind (Baddeley, 1986). Although 
different, once participants labeled the visual items, the verbal labels 
would be available for rehearsal. When participants used fewer labels to 
categorize the stimuli, rehearsal could be less efficient since it was more 
likely that multiple items received the same label, being then rehearsed 
together. This could in turn lead to a higher chance of confusing items 
labeled with the same term with each other, generating the so-called 
swap errors. Swap errors have been observed to account for some pro
portion of the errors in visual working memory tasks (Bays et al., 2009; 
Oberauer et al., 2017; Souza et al., 2014; van den Berg et al., 2014). 

We think this explanation is unlikely for two reasons. First, our 
model estimated high chances of correct recall in all labeling conditions 
compared to suppression. This heightened probability of recall indicates 
that participants were not confusing items with each other, since swap 
errors would be accounted for in our model as guessing. Second, we 
plotted the distributions of responses in relation to the target feature 
value (i.e., the one that should be recalled now) and in relation to the 
non-target values (i.e., the feature of the other memory items that are 
not being tested now). These plots should reveal whether there is sub
stantial concentration of responses around the non-target features which 
would be consistent with large proportions of swap errors. These dis
tributions are presented in Fig. 14. 

Fig. 14 shows that there was little evidence for a contribution of non- 
target recalls in all of the conditions (see small bump in the red distri
butions). Labeling with fewer terms (2-Labels) did not increase this 
bump compared to suppression. Of course, since performance improved 
across the labeling conditions, there was a smaller chance of errors in 
these conditions, so there was a very small reduction of the non-target 
bump in the 4-Labels and Free Labels conditions compared to the 
other conditions. 

Furthermore, it is so far unclear whether verbal rehearsal would be 
an important contributor to performance on visual working memory 
tasks. The role of verbal rehearsal has been questioned even for the 
maintenance of verbal information with the evidence bearing this 
contribution being weak at best (Lewandowsky & Oberauer, 2015; 
Oberauer, 2019). Souza and Oberauer (2018, 2020) have experimen
tally manipulated rehearsal of verbal lists in two types of verbal working 
memory tasks (i.e., simple span and complex span) and observed that 
increasing the amount and length of rehearsals did not lead to any 
performance improvement. This is inconsistent with a causal role of 
verbal rehearsal in verbal tasks. Our current experiments do not rule out 
a role of verbal rehearsal in visual working memory, but in light of the 
evidence contrary to it being a helpful strategy in verbal tasks, it seems 
unlikely that rehearsal contributes to the labeling benefit in visual 
working memory. 
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High-order information in working memory 

Recently, studies have started to incorporate high-order information 
into models of visual working memory. These studies showed that in
formation stored in working memory is context-dependent: memory for 
one element depends on the surrounding elements, and general statistics 
describing the assemble of memory items can improve memory reten
tion (Bates, Lerch, Sims, & Jacobs, 2019; Brady & Alvarez, 2011, 2015; 
Brady & Tenenbaum, 2013). Furthermore, prior knowledge of co- 
occurrences between features seem to afford data-compression or 
chunking (Brady, Konkle, & Alvarez, 2009; Gobet et al., 2001; Huang & 
Awh, 2018; Nassar, Helmers, & Frank, 2018), which also reduces the 
load on working memory. Similarly, it is conceivable that labeling and 
categorization may also allow participants to use hierarchical repre
sentations and contextual information to increase data-compression 
thereby relieving capacity limitations in visual working memory. This 
is in line with our prior working demonstrating that labeling had a 
substantially larger effect on visual working memory when the memory 
load increased from one to two, and then to four items (Souza & Skóra, 
2017). When participants had to retain one single element, labeling was 
inconsequential, and with two-items the effects were also small. The 
benefits were only substantial when four items were retained in mind. 
Storage of multiple items places a strong demand on the limited capacity 
of visual working memory, and it is under these conditions that labeling 

is most beneficial. 
In sum, our results are relevant for theories regarding the interplay of 

visual working memory and conceptual long-term memory (Brady, 
Konkle, & Alvarez, 2011). They point to ways in which activation of 
conceptual long-term memory via labeling changes online storage of 
information in visual working memory providing evidence that the 
interplay between these two systems can be under strategic control of 
the individual. 

Conclusion 

The richness of a picture may be worth a thousand words, but the 
retention of this complex visual information in mind is constrained by 
capacity limitations. Our study shows that investing more words in 
describing a picture can lead to a big payoff: visual representations 
become more accessible and they retain more fine-grained details. 
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