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“Pelo sonho é que vamos,
Comovidos e mudos.

Chegamos? Não chegamos?
Haja ou não frutos,

Pelo Sonho é que vamos.
Basta a fé no que temos.

Basta a esperança naquilo
Que talvez não teremos.
Basta que a alma demos,

Com a mesma alegria,
Ao que desconhecemos

E ao que é do dia-a-dia.

Chegamos? Não chegamos?

- Partimos. Vamos. Somos.”

Sebastião da Gama, O Sonho
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Resumo

Neste trabalho, um modelo recorrendo ao Método dos Elementos Finitos, MEF, é de-
senvolvido de modo a avaliar a influência de determinados parâmetros geométricos na
rigidez de engrenamento de engrenagens cilíndricas de dentado reto e eixos paralelos.
Também se procura avaliar a influência desses parâmetros para posterior calibração de
um modelo analítico aproximado. A maneira como esse modelo introduz o conceito de
função Heaviside permite avaliar a rigidez de engrenamento de vários pares de dentes
partindo da sobreposição de apenas um deles, através da razão de condução, permitindo
que o modelo numérico adquira uma configuração mais simples. Este modelo depende de
um parâmetro que é a razão entre o valor máximo e mínimo da parábola que define a
rigidez de um único par de dentes ao longo do caminho de engrenamento, αk. O objetivo
deste trabalho foi então procurar a relação deste parâmetro com os vários parâmetros
geométricos que definem a geometria do dentado de engrenagens.

Uma determinada roda com uma dada geometria é gerada através do KISSsoft. O
modelo CAD é exportado e trabalhado no SolidWorks. De seguida, o modelo de Elemen-
tos Finitos é desenvolvido usando ANSYS. É efetuado um estudo de convergência para
se chegar uma configuração final. O erro de transmissão que é obtido pelo modelo de
Elementos Finitos é usado para determinar a rigidez de engrenamento, permitindo a de-
terminação do parâmetro livre αk, que desempenha um papel crucial não só na rigidez de
engrenamento como na distribuição de carga. Este parâmetro livre manifestou variações
significativas com a alteração de alguns parâmetros, nomeadamente o factor de addendum,
o fator de redução de addendum, as modificações de perfil na direção axial e a razão de
condução; por outro lado, parâmetros como o módulo, o factor de raio de pé, a razão
de transmissão, o factor de dedendum e a correção de dentado tiveram menor influência.
As modificações de perfil na direção axial não permitiram uma análise tão direta. Os
resultados numéricos mostraram também que as curvas pré-existentes para descrever o
andamento de αk não eram as mais adequadas.

A maioria dos trabalhos realizados atualmente e que podem ser consultados na liter-
atura estabelecem o valor deste parâmetro livre, αk, como sendo função apenas da razão
de condução. Este trabalho demonstra que outros fatores devem ser tidos em conta. De
facto a existência de valores diferentes de αk para a mesma razão de condução é evidência
de que a primeira grandeza não pode ser definida como função apenas da segunda.

Palavras-chave: Rigidez de engrenamento, Distribuição de carga, Modelo de Ele-
mentos Finitos, Engrenagens cilíndricas de dentado reto e eixos paralelos.
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Abstract

In this work, a model based on the Finite Element Method, FEM, is developed to
evaluate the influence of gear tooth geometry on the parallel axis spur gear mesh stiffness.
This work also aims to evaluate such influence and use it to calibrate an approximated
analytical model. The way the model introduces the Heaviside function to evaluate the
gear mesh stiffness of the whole gear as a superposition of gear mesh stiffness of a single
tooth pair, taking into account the contact ratio, makes the model have a simpler con-
figuration. This model also depends on a parameter that defines the ratio between the
maximum and minimum value of the parabola that defines the gear mesh stiffness of a
single teeth pair along the contact path, αk. The goal of this work was then attempting
to find the relationship between this parameter and the several geometric parameters that
define the geometry of the gear teeth.

A gear with a certain geometry is generated using KISSsoft. The CAD model exported
is handled in SolidWorks. Then, the Finite Element model is developed using ANSYS. A
convergence study is done to reach the final configuration of the model. The transmission
error obtained from the Finite Element model is used to obtain the gear mesh stiffness,
which allows the determination of the value of a free parameter, αk, which plays a ma-
jor role in gear mesh stiffness and load sharing ratio of spur gears. This free parameter
showed significant variation as the some parameters were altered, namely the addendum
factor, the tip alteration factor, the profile modifications on the axial direction and the
contact ratio; on the other hand, the module, the root radius factor, the gear ratio, the
dedendum factor and the profile shift coefficient had a smaller influence. The axial profile
modifications did not allow for such a straightforward analysis. The numerical values also
show that the pre-existing curves describing αk do not perform so well.

The vast majority of the work done until now and that can be consulted in the literature
only establishes the value of this free parameter, αk, based on the contact ratio of the gears.
This work shows that other factors must be taken into account. In fact, considering that,
for the same driving ratio, different values of αk were obtained, considering αk a function
of the driving ratio alone is mathematically incorrect.

Keywords: Gear Mesh Stiffness, Load Sharing, Finite Element Model, Parallel Axis
Spur Gears.
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Chapter 1

Introduction

1.1 Motivation

The recent rise in electrical vehicle mobility calls for a development in all the areas that
concern them. An electric vehicle, EV, may share some requisites with internal combustion
engine, ICE, vehicles given that they both aim to solve the same main problem, but the
differences between these technologies are far too great not to be acknowledged. In EV
applications, motors typically rotate at a much faster rate than an ICE. Furthermore, the
lower weight of the EV, the higher its possible range, making light weight construction a
necessity in order to make the range of an EV competitive with that of an ICE powered
vehicle. This creates the need for optimization in the multiple aspects of the drivetrain
and structure of an EV.

The electric motors are far more silent than the ICE and therefore unable to mask the
noise produced in the transmission. The fact that the EV have a lighter construction also
leads to fewer layers and lower robustness when it comes to isolating vibrations produced
in the transmission and are the source of the aforementioned noise [1]. In fact, EVs are
heavier mainly due to the battery. Improvements can be achieved with a proper gear
design, aiming to reach a constant mesh stiffness throughout the contact path [2].

The improvement that is expected greatly motivates the work that will be developed
throughout the document and the author hopes that it will benefit those who are currently
or will at some point study or work in the area. This work will feed data towards the
calibration of an approximated analytical model for the calculation of the gear mesh
stiffness of parallel axis spur gears.

1.2 Main Goal

One of the goals of this work is to develop a process to establish the dependence of
the gear mesh stiffness with the main geometric parameters that define a gear. Through
a parametric study conducted with FEA resources and an adequate parameter selection,
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this work also aims to provide the last necessary data to complete analytical expressions
that allow, with less time and effort, the determination of the absolute stiffness at a
given point throughout the path of contact. In the future, this may help reducing the
necessary time to design gears for EV automotive transmission (although this is not limited
to this sector) optimized for smoothness of operation and efficiency. The vibrational
problems are related with the gear mesh stiffness and its variation with time. The meshing
dynamic can only be properly studied when the gear meshing is also adequately calculated.
Knowing the gear dynamic can lead to the mentioned smoother, lighter and more efficient
transmissions, possibly through optimization algorithms. As the efficiency is closely related
to the autonomy of an EV, it is a topic of high importance [3–7].

The obtained results will calibrate an analytical model that far out speeds a FEM.
The analytical model can easily be subjected to an optimization algorithm and quickly
determine the most efficient gear with the lowest mesh stiffness variation, which is the main
cause of the problems this works is aiming to solve. Finally, an analytical model, when
appropriately validated, can be superior to FEA: simulations with durations exceeding
half a day will become unnecessary.

1.3 Outline

In this Section, the contents of the remaining Chapters of this document are summa-
rized.

Chapter 2 - To introduce the topic, a brief history of the evolution of the gear is
presented in this chapter, followed by the presentation of the concept of the gear mesh
stiffness and some example models for its calculation, along with the approximated ana-
lytical model that motivated this work and the method used in ISO 6336-1.

Chapter 3 - The main geometrical parameters that may influence the quantities that
are being studied in this work are presented here. The matrix where all the models
in study are presented also contemplates how the presented parameters will vary. The
Hertzian contact model is also presented and applied to the contact of gear teeth.

Chapter 4 - In this chapter, the whole process of the practical part is presented. From
the geometry definition to the FEA part, the main steps towards achieving the results are
described.

Chapter 5 - The results and their respective discussion are included here. Abnormal
results and the influence of the input parameters are evaluated here to reach the conclusions
that will follow.

Chapter 6 - In this final chapter, some conclusions about the obtained results are ex-
posed to summarize the information that this work provided. Based on these conclusions,
some future works are proposed in order to follow up the work done thus far regarding
this topic.
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Chapter 2

Gear Mesh Stiffness

In this chapter, a brief history of the evolution of the gear is presented, alongside the
presentation of the concept of the gear mesh stiffness and some example models for its
calculation. The approximated analytical model that motivated this work and the method
used in ISO 6336-1 are presented with more detail due to their importance regarding the
work at hands.

2.1 Brief History

Literature has no definitive information regarding the origin of gears. It is not known
who first used gears or started their development. Is is speculated that the first versions
of gears were made from wooden disks and used in farm work or to ladle water. The first
literature regarding the subject dates about 2300 years ago, written by Aristotle, Subject
on Machine [8].

Nonetheless, the gear history goes way back. Several machines, deriving from Hellenis-
tic sources, such as Archimedes, Ctesibius, Philo of Byzantium and others, were described
by Vitruvius. His descriptions included machines for engineering structures (hoists, cranes
and pulleys) and war machines (ballistae, catapults and siege catapults). The more de-
tailed descriptions covered, among others, [8]:

• dewatering devices;

• raising water and dewatering machines to irrigate fields and drain mines, speculated
to be based on Archimedes’ works, although not mentioned;

• water clocks and sundials;

• surveying and measuring instruments (diopters, chorobates such as water levels) and
odometers;

• lifting machines, such as endless chains of buckets and reverse overshot water wheels;
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• aqueducts and inverted siphons;

• a steam engine named aelopile, which was conceived as an experiment to demonstrate
the nature of atmospheric air motions;

• a water mill named after the author of these descriptions in a vertical configuration
which outperformed the horizontal one in terms of efficiency.

It is worth noting that these machines did not pose a worthy novelty. Instead, they
preserved construction details, which could be traced back. Another big step in gear
history was achieved thanks to the widely known genius, Leonardo da Vinci. Several
sketches drawn by Leonardo da Vinci, about 500 years ago, contemplated almost all the
varieties of gear that are used nowadays [8].

His contributions regarding mechanisms that involved gears were countless, but some
main ones, as a term of comparison with the previous mentioned, are [8]:

• lifting equipment: winches, cranes and mechanical jacks using different gear drives;

• buckets for underwater works, fans and helicoidal impellers;

• excavators and dredges for port works and channels;

• printing presses with an automatic device;

• clockwork mechanisms;

• mechanisms that allowed a continuous rotation motion to be turned into an inter-
mittent motion;

• measuring instruments of the same categories as aforementioned;

• friction wheels, flywheels and cam actuated levers;

• a speed gear where a lantern-pinion could be meshed with three spur gear wheels
and allowed all of them to have different diameters;

• a small car driven by pedal or sprint system, a chariot with a transmission system
to all the four wheels and a self-propelled chariot driven by a spring system;

• a rear axle with differential;

• a helical motion propulsion system, which would become an ancestor of today’s
helicopter.

The importance of such contributions for the mechanical engineering is undeniable.
Furthermore, the importance of these systems for the evolution of the gear is equally
beyond doubt.
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Many of these machines used previously known types of gears, but Leonardo da Vinci
proposed new types that could be considered novelties. The bevel gear pair, where the
bevel is a crown wheel, the worm gear pair, where the worm has a toroidal shape, cylindri-
cal helical gears and a double worm gear mechanism are the types of gears he introduced [8].

It is also stated that Leonardo da Vinci knows the kinematics of the helicoidal motion,
being the first one to describe it. Additionally, the tooth profile shape was also a concern
he kept in mind, as he understood it had an importance in terms of gear transmission. He
made use of his vast knowledge not only for civil and mechanical engineering problems,
but also for belic purposes. It’s undeniable that war instigated many developments in the
gearing sector [8].

Later on, the laws of gearing are established. For a given position and transmission
function, in the most general case of axes arrangement in the Euclidian three-dimensional
space, the laws of gearing were formulated as [8]:

• First law of gearing: A unique relationship exists between the instantaneous
displacement of the output member and the instantaneous displacement of the input
member;

• Second law of gearing: A unique relationship exists between the spiral angle and
the pressure angle at the contacts between conjugate surfaces in order to provide
motion transmission as defined by the first law of gearing;

• Third law of gearing: The conjugate action requires a unique effective curvature
at the contacts that satisfy the second law of gearing.

The topic of the tooth profile became more prominent, having already been introduced.
Hawkins stated that the involute profile had considerable advantages when compared to
the widely adopted profile at that time, the cycloid profile [8].

The involute profile allowed a perfect kinematic operating mode, allowed more than
one pair of teeth to contact at the same time, which lead to improvements in terms of
mechanical strength and load carrying capacity and, under the same operating conditions,
the rolling velocity increased and the sliding velocity decreased, leading to a slide/roll-ratio
with almost half the value [8].

The involute profile would then become increasingly more popular, as it was superior
to the cycloid profile regarding [8]:

• adjustability;

• uniformity of distribution of the pressure of contact;

• sliding friction and efficiency;

• thrusts on the bearings;

• mechanical strength and load carrying capacity.
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As the knowledge regarding gears increased, so did the studies and researches con-
cerning the topic. By the early 20th century, the concerns towards the gear teeth in
action rose. The mechanical strength characteristics of materials, their manufacture and
cutting processes in the teeth and production technologies of the gears became addressed
problems [8].

These problems necessarily evolved in complexity, until the actual state of the art is
reached. Dynamic analyses of the gears were gradually introduced, more and more ad-
vanced and complicated, to calculate more accurately the dynamic loads, also as a function
of the dynamic transmission error, or in order to take account of specific influences, or
still to achieve predetermined goals. Some of these goals can be listed as studying [8]:

• periodic excitation, as for example the one related to step changes in mesh stiffness,
due to the change from single pair to double pair tooth contact;

• transient excitation, for example the one related to different types of transmission
and/or manufacturing errors, some of which with random distributions;

• different types of gear, including cylindrical spur and helical gears, bevel and spiral
bevel gears, crossed-axes gears, worm gears and hypoid gears or even various type
combinations;

• areas of application, namely aerospace, automotive, industrial gearing, gears for
marine applications, etc.;

• speed regions, i.e., subcritical, main resonance, and supercritical speed ranges;

• vibratory behavior, in terms of modal shapes and related frequencies, and noise
control;

• acoustics of cavity and comfort control, etc.

The problem that motivates this dissertation, gear mesh stiffness, is also one of the main
topics on which gear technology focuses on, nowadays.

2.2 Mesh Stiffness

Fundamentally, the concept of stiffness establishes the resistance manifested by a body
to a deflection caused by a given load. The simplest way of expressing is through the
analysis of a linear system with a single degree of freedom, DOF, such as a linear spring,
where the stiffness, k is given by the ratio between the applied load, L, and the resulting
displacement from its application, δ, as stated in Eq. 2.1 [9].

k = L

δ
(2.1)
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In more realistic scenarios, systems will likely have more than one DOF. In such cases,
for a system with n DOFs, the stiffness is defined as a square matrix of order n. Each
element of the k matrix, kij, can be obtained by the relation established in Eq. 2.2, which
is a ratio between the load applied in the DOF i, Li and the resulting displacement in the
DOF j, δj [9].

kij = Li
δj

(2.2)

Once the concept of stiffness is established, it can be adapted to gear mesh stiffness with
the appropriate adjustments. Similarly, the gear mesh stiffness also establishes a relation
between a load that must be applied on the gear mesh to produce a given displacement.
However, in the gear meshing process, several deflections occur during the loading process.
First, the Hertzian deflection occurs at the contact point on the profile, which is then
transmitted to the body, causing bending, shear and compression deflections. When the
load reaches the tooth root, it is transferred to the adjacent parts until it eventually
reaches the gear body. If it is strained, there may exist an angular tooth deflection with
respect to the gear center. The concept that immediately follows this line of thought is the
Transmission Error, TE, which is represented by the difference between the theoretical
position of the unmodified, geometrically perfect and infinitely rigid gears and their actual
position. As such, it is the relative displacement of the gear with respect to the pinion
(output with respect to the input) and can be mathematically expressed, in its angular
form, as presented in Eq. 2.3 [9] :

TE = θ2 −
rb1
rb2

θ1 (2.3)

where θ1 and rb1 are the rotation angle and base radius, respectively, of the pinion and
θ2 and rb2 are the rotation angle and base radius, respectively, of the gear. The angular
form of the TE can be converted into its linear form by multiplying both sides of Eq. 2.3
by rb2, which translates into a displacement along the line of action. There are two types
of transmission, which apply to the working conditions: static transmission error and
dynamic transmission error. Since the transmission error itself is a displacement caused
by a load, it can be related to the gear mesh stiffness. The gear mesh stiffness can be
either linear or torsional, as well as converted between both. The torsional mesh stiffness,
kt, corresponds to the ratio between the applied torque, T , and the angular transmission
error, established in Eq. 2.4. Likewise, the linear mesh stiffness, kl is given by the ratio
between the applied load, L, and the linear transmission error, δ, established in Eq. 2.5 [9].

kt = T

TE
(2.4)

kl = L

δ
(2.5)
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Stiffness is related, by definition, to elastic deflections. Therefore, the no-load transmission
error, which is associated with manufacturing errors, must be removed from the transmis-
sion error when calculating the associated gear mesh stiffness since it is associated to a
rigid-body motion and not elastic deflection. Nonetheless, the no-load transmission error
must be taken into account when a gear pair is modeled, given its impact on the system’s
behavior. As said, and recalling that T = L ·rb and the Eqs. 2.4 and 2.5, the torsional and
linear mesh stiffness are intrinsically related, with the relationship denoted in Eq. 2.6 [9]:

kt = T

TE
= Lr2

b2
TE rb2

= L

δ
r2
b2 = klr2

b2 (2.6)

The gear mesh stiffness plays a crucial role in today’s technology. Two sectors that have
seen a rise in the importance of this problematic are electric vehicles (EVs) and polymer
gears. Electric vehicles are currently a sector in ascension due to industrial and environ-
mental reasons and, consequently, have seen an increase in production volume over the
last few years. There are common drivetrain configurations that can be found in electric
vehicles:

• in small EVs, the electric motor (low/average speed motor) is typically attached
directly to the wheels;

• for EVs with the objective of replacing the internal combustion engine vehicles, the
electric motor (high speed motor) is coupled to a transmission.

The high-speed motors typically work between 8900 and 16 000 rpm. However, it is
expected that this value will eventually reach 30000 rpm. This will completely change
the design requirements for the majority of the parts that make up the drivetrain. The
modeling of the gear mesh stiffness will also require adjustments to account for an increase
in already existing effects and other effects that may appear, such as Hertzian dampening,
extension of contact, loss of contact, centrifugal expansion, manufacturing errors, teeth
friction, precession and gyroscopic effects. Some models already consider some of these
effects, but there isn’t currently a model that includes all of the ones mentioned or even
the majority of them. [9].

To give the reader insight on the state of the art, some models for the determination
of the gear mesh stiffness will be presented, however without great detail.

2.3 Mesh Stiffness and Load Sharing Models

Tables 2.1 to 2.3 summarize the main advantages and disadvantages of the different
methods to obtain the gear mesh stiffness. These are not the only advantages and disad-
vantages to take into account when deciding which way to choose in order to address this
problematic, but rather the main aspects that should be the first focus of such decision.
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Table 2.1 Advantages and disadvantages of numerical models [9].

Advantages Disadvantages

Geometry freedom Long simulation times

Models may contain several types of ele-
ments depending on the desired output

Most commercial softwares require li-
cences, which may be costly

Great Accuracy Always contain some numerical error

Table 2.2 Advantages and disadvantages of analytical models [9].

Advantages Disadvantages

Higher modeling efficiency Need for calibration

Greatly reduced time to produce results Very complex phenomena may be ex-
tremely difficult to describe analytically

Only type of models capable of providing
exact results

Frequently require the need for simplifica-
tions that are non-realistic

Rely on expressions already established by
the mechanics of materials

Table 2.3 Advantages and disadvantages of approximated analytical models [8].

Advantages Disadvantages

Lowest computational cost of all the
model natures

They involve approximations and there-
fore, cannot provide exact results

Possibility to undergo iterative processes
of optimization

May also require calibration until they can
replace other methods

They provide simple and direct expres-
sion to describe complex phenomena that
would otherwise require high numerical
computation

2.3.1 Potential Energy Method

The Potential Energy Method is strictly analytic and there are several ways to imple-
ment it and calculate the numerous parameters on which it depends. Only some of them
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will be presented here. This method establishes, through the superposition of different
effects, the gearmesh stiffness as a time varying parameter which reflects the meshing con-
ditions as the number of teeth pairs in contact changes. It is greatly dependent on tooth
geometry, the position of the contact point, tooth deflections, tooth profile errors, the tor-
sional deflection of the gear hub and local defects on the tooth [9,10]. Eq. 2.7 establishes
the total potential energy, Ut, as a combination of the potential energy associated with
bending, Ub, shear, Us, and axial compression, Ua. Eqs. 2.8, 2.9 and 2.10 show how each
of these strain energies is calculated [9].

Ut = Ub + Us + Ua (2.7)

Ub =
∫
M2

EI
dy (2.8)

Us =
∫
CfV

2

2AcG
dy (2.9)

Ua =
∫

F 2
c

2AcE
dy (2.10)

where E is the modulus of elasticity of the material, M represents the bending moment,
calculated according to Eq. 2.11 [9],

M = FN cos(αC)(yC − y) (2.11)

I is the second moment of area, calculated through Eq. 2.12 [9],

I = be3(y)
12 (2.12)

Cf is the correction factor, assuming the value of 1.2 for rectangular cross sections, V is
the shear load, calculated through Eq. 2.13 [9],

V = FN cos(αc) (2.13)

Ac is the area of the cross section, calculated through Eq. 2.14 [9],

Ac = be(y) (2.14)

G is the transverse modulus of elasticity of the material and Fc is the compressive load,
calculated through Eq. 2.15 [9].

Fc = FN sin(αC) (2.15)
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From the definitions shown in Eqs. 2.11 to 2.15, Eqs. 2.8 to 2.10 can be rewritten as shown
in Eqs. 2.16, 2.17 and 2.18 [9]:

Ub = 6F
2
N cos2(αC)

Eb

∫ yC

yp

(yC − y)
e3(y) dy (2.16)

Us = 0.6F
2
N cos2(αC)

Gb

∫ yC

yp

dy

e(y) (2.17)

Ua = F 2
N sin2(αC)

2Eb

∫ yC

yp

dy

e(y) (2.18)

yp and yC , the integration limits, correspond to the values of y at the fixed boundary of
the tooth and the load section. The fixed boundary is located at the chordal tooth root
line and the load section is located at the intersection between the line of action and the
tooth centerline. To better understand these geometrical parameters, Fig. 2.1 shows their
location on the tooth geometry [9]. To define the geometrical parameters in terms of the

Figure 2.1 Relevant tooth geometry parameters for the PEM [11].

load point, a normalized coordinate, ξC , can defined as stated in Eq. 2.19 [9].

ξC = TC

pb
=

√
r2
C − r2

b

πm cos(α) (2.19)

It is calculated as the ratio between the curvature radius at the load point C, TC and the
circular base pitch, pb [9]. The load angle can be defined by Eqs. 2.20 to 2.22 [9]:

αC = αT − 0.5γC (2.20)

αT = arccos
(
rb
rC

)
(2.21)

γC = 2
(
s

d
+ inv(αt)− inv(αT )

)
(2.22)
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where s is the tooth thickness at the pitch radius, d represents the pitch diameter, inv
is the involute of the argument angle and αt is the transverse pressure angle. Reworking
Eq. 2.20 allows it to be rewritten as stated in Eq. 2.23 [9],

αC = π

z
ξC −

π

2z −
2x tan(α)

z
− inv(αt) (2.23)

where x is the profile shift coefficient. The tooth chordal thickness, e(y), can be defined as
a function of the angular thickness of the tooth, γ(y), as shown in Eq. 2.24. The angular
thickness of the tooth is defined on Eq. 2.25.

e(y) = 2r(y) sin
(
γ(y)

2

)
(2.24)

γ(y) = γb − 2v(y) (2.25)

In the angular thickness expression, v(y) represents the polar angle of the profile. This
angle is measured from the radius of the involute start point at the base circle and can be
visually interpreted from Fig. 2.1. Eqs. 2.26 and 2.27 show how to calculate the limits of
integration [9].

yp = rp cos(γp) (2.26)

yC = rb
cos(αC) (2.27)

In these equations, γp is the angular thickness of the tooth at the root radius and rp is the
tooth root radius. Based on the assumption that the load-deflection relationship is linear,
the strain energy and stiffness can be linked through the expression in Eq. 2.28 [9]:

U = L2

2k (2.28)

where U is the total potential energy of the system, which is the single tooth. L is the total
load applied in that same system, which in this case is the tooth normal load, represented
by F , and k is the system’s stiffness. Once again, in this case, it represents the single
tooth’s stiffness. The total potential energy for a single tooth, Ut, can be transformed into
the specific total tooth potential energy, ut, as shown in Eq. 2.29 [9]:

Ut = Ub + Us + Ua = F 2

2 ut (2.29)

This shift is done by taking out F 2

2 out of each individual term and highlighting ut. Finally,
Eq. 2.28 can be rewritten as Eq. 2.30 by employing the changes in Eq. 2.29 in order to
establish the relation between the single tooth stiffness and the specific total potential
energy:

kst = 1
ut

(2.30)
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The stiffness of a single tooth is obtained, but the entire system is made of more than a
single tooth. The gear mesh stiffness contemplates, at least, one pair of teeth in contact. As
such, the contact stiffness must be taken into account. The contribution of the gear body
to the tooth deflection must also be considered, in the form of fillet-foundation stiffness.
For the first additional contribution, the contact compliance, yH , three approaches can be
considered: an approximate Hertzian and compression approach, which originates from
the Hamilton Standard [9], calculated through Eq. 2.31 [9],

yH ≈
4F
πb

[(
1− ν2

1
E1

)
+
(

1− ν2
2

E2

)](
1 + π

4

)
(2.31)

a semi-empirical approach developed by Palmgren [9], defined by Eq. 2.32,

yH = 1.275F 0.9

E0.9
12 b

0.8 = 4(1− ν2)F
πE12b

(
1.10b

2E12
F

)0.1

(2.32)

where E12 = 1
2

(
1
E1

+ 1
E2

)
, and finally a closed form approach developed by Weber [9],

which can be calculated as stated in Eqs. 2.33 and 2.34,

yH = 2F
πb

[(
1− ν2

1
E1

){
ln 2h1
bH
−
(

ν1
2(1− ν1)

)}
+(

1− ν2
2

E2

){
ln 2h2
bH
−
(

ν2
2(1− ν2)

)}] (2.33)

bH =
{

4F
πb

[(
1− ν2

1
E1

)
+
(

1− ν2
2

E2

)]
/

[ 1
ρ1

+ 1
ρ2

]}
(2.34)

where bH is the halved Hertzian contact width, h1 and h2 are the distances on the pinion,
1, and gear, 2, between the point of contact and the tooth centerline along the line of
action and ρ1 and ρ2 are the radii of curvature of the pinion and gear, respectively. From
the definition of stiffness and compliance, the Hertzian contact stiffness can be calculated
from Eq. 2.35 [9].

kH = F

yH
(2.35)

An improved expression to calculate the contact compliance can be developed including
the ones presented in Eqs. 2.31 to 2.33. This new expression, presented in Eq. 2.36,
corroborates with finite element simulations and overcomes some inadequacies shown by
the previous expressions [9].

yH =

ln((1 +
√

1 + 1
k

2 )k)− 0.429
1 +

√
1 + 1

k
2

[b2H
4

( 1
ρ1

+ 1
ρ2

)]
(2.36)
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In this novel expression, k is introduced and represents the datum depth in the normal
direction, normalized in respect to half Hertz contact. The most common fillet-foundation
compliance analysis is based a theory applied for circular elastic rings. The expression
Eq. 2.37 for the fillet-foundation compliance depends on h and θp, which are the ratio
between the tooth root radius and the bore hole radius and the angle between the tooth
centerline and the junction with the root circle, respectively.

yf = F cos2 αC
E · b

L∗
(
up
Sp

)2

+ M∗
(
up
sp

)
+ P∗

(
1 + Q∗ tan2 αC

) (2.37)

with L∗, M∗, P∗, Q∗ being functions that depend on h and θp, αC being the load angle, up
being the distance along the tooth centerline measured from the tooth root to the loading
tooth section and sp being the tooth root thickness [9]. Under the assumption of plain
strain conditions, these functions, leading to Eq. 2.38 [9].

X∗i (h, θp) = Ai
θ2
p

+Bih
2
fi + Cih

θp
+ Di

θp
+ Eih+ Fi (2.38)

where h is defined as stated in Eq. 2.39

h = rp
rB
, (2.39)

The constants Ai through Fi are defined in Table 2.4.

Table 2.4 Coefficients for the application of Eq. 2.38.

Ai × 105 Bi × 103 Ci × 104 Di × 103 Ei Fi

L∗(h, θp) -5.574 -1.9986 -2.3015 4.7702 0.0271 6.8045
M∗(h, θp) 60.111 28.100 -83.431 -9.9256 0.1624 0.9086
P ∗(h, θp) -50.952 185.50 0.0538 53.300 0.2895 0.9236
Q∗(h, θp) -6.2042 9.0889 -4.0964 7.8297 -0.1472 0.6904

The fillet-foundation stiffness can be calculated in a similar way, as stated in Eq. 2.40 [9].

kf = F

yf
(2.40)

The single tooth pair mesh stiffness is given by Eq. 2.41, not taking into account correction
factors that some works include [9]:

ktp = 1(
1
kst1

+ 1
kst2

+ 1
kH

+ 1
kf1

+ 1
kf2

) (2.41)

The gear mesh stiffness is obtained by adding the single tooth pair mesh stiffness of all
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gear teeth pairs in mesh according to their position, as stated in Eq.2.42 [9].

kgm =
N∑
i=1

ktpi (2.42)

The gear mesh stiffness established here is one of the ways to determine the gear mesh stiff-
ness of spur gears and is a solid basis for other implementations of the method. Besides the
variety of procedures for spur gears, there are also different methods to calculate the gear
mesh stiffness for helical gears which slightly diverge from the spur gear methodology [9].

2.3.2 Method B - ISO 6336-1-2006

Unlike Method A, which establishes tooth stiffness through an analysis that includes
every individual influence, that can be done through direct measurements and incorporate
values obtained through FEM or based on the theory of elasticity, this method is based on
studies of solid disc spur gears and their elastic behavior [12]. As is usual, the differences
between the theoretical results and the measured results are mitigated through correction
factors. Other correction factors are included to take into account changes in constructive
solution(rims and webs), rack profiles and/or even extend it to helical gears [12].

A superposition of the single tooth mesh stiffness for all the teeth pairs in contact
makes the development of an expression to calculate cγ possible, having had its accuracy
thoroughly measured a posteriori.
The stiffness parameters, c′ and cγ , calculated through this method, offer satisfactory
accuracy for the calculation of the dynamic and face load factors and the determination
of profile and helix modifications for gears when [12]:

• dealing with external gears;

• the rack profile is considered basic;

• dealing with spur gears or helical gears with an helix angle β that does not exceed
45°;

• the gears in mesh are both made of steel;

• dealing with any gear blank design;

• the connection between the shaft and gear hub allow for the torque to be transferred
and evenly spread around the circumference (achieved through interference or splined
fitting or when the pinion is integral with shaft);

• the specific load, calculated through (FtKA)
b , is no less than 100 N ·mm−1.

However, this method can be extended, contemplating approximations or including further
auxiliary factors, to the following cases [12]:
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• internal gears;

• gears made of a material other than steel and different material combinations;

• a shaft-hub assembly that does not necessarily follow the condition presented right
above, for example, in cases where the connection between the hub and shaft is
achieved through a fitted key;

• specific loads that are below the value specified in the parameters applicability con-
ditions.

The overall parameter, maximum tooth stiffness per unit face width (single stiffness) of a
tooth pair, c′, with acceptable average values when the conditions for its fairly accurate
application are met, can be obtain through Eq. 2.43 [12].

c′ = c′thCMCRCB cosβ (2.43)

It is important to understand the importance and the role played by each member of
the right hand side of the equation. The first one, the theoretical single stiffness c′th, is
applied to solid disc gears obtained through a basic rack profile. Its application to helical
gears requires the calculation of its corresponding virtual spur gear, which can be done
as expressed in Eq. 2.44. The theoretical single stiffness of that same virtual gear is then
represented as cth [12],

zni = zi
cos3 β

(2.44)

This parameter can then be calculated from Eq. 2.45 [12],

c′th = 1
q′

(2.45)

where q′ is the minimum value of the flexibility of a pair of teeth. As stiffness and flexibility
are inversely proportional, it is logical to establish such relation: the maximum stiffness
is necessarily inversely proportional to the minimum flexibility, as stated in Eq. 2.45. The
minimum flexibility can be calculated from the Eq. 2.46 [12],

q′ = C1 + C2
zn1

+ C3
zn2

+ C4x1 + C5x1
zn1

+ C6x2 + C7x2
zn2

+ C8x
2
1 + C9x

2
2 (2.46)

being C1 through C9 constant coefficients for a given range of several parameters regarding
gear geometry, which also rules over the series progression in Eq.2.46. These constants
and series progression apply to gears with a basic rack profile that manifests [12] :

• αP = 20°;

• haP = mn;

• hfP = 1.2mn;
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• ρfP = 0.2mn;

• x1 ≥ x2;

• −0.5 ≤ x1 + x2 ≤ 2.0.

When the load ranges from 100 ≤ Fbt
b ≤ 1600 Nmm−1, the deviations vary between −8%

and +5%. For such conditions, the coefficients are given in Table 2.5.

Table 2.5 Coefficient values for the flexibility calculation [12].

C1 C2 C3 C4 C5 C6 C7 C8 C9

0.04723 0.15551 0.25791 -0.00635 -0.11654 -0.00193 -0.24188 0.00529 0.00182

The factor that follows this parameter is CM , which, as referred, takes into account
measured values for solid gears to mitigate, as best as possible, the difference between
those and the theoretical values obtained through calculation. Its value is CM = 0.8 [12].
For different constructive solution, particularly gears with rims and webs, CR, takes into
account the added flexibility. For solid disc gears, it can be stated that CR = 1.0. For
non solid disc cases, such as gears with webs and rims, this value can be determined either
through calculation or graphically. Both methods are consistent with one another and their
differences do not exceed −1% to +7%. The expression that allows the determination of
this value through calculation goes as follows in Eq. 2.47 [12]:

CR = 1 +
ln bsb

5e
sR

5mn
(2.47)

and is subjected to some boundary conditions [12]:

• for bs
b < 0.2, the fraction must be take the value of 0.2

• for bs
b > 1.2, the fraction must be take the value of 1.2

• for sR
mn

< 1, the fraction must be take the value of 1

As an alternative, Fig. 2.2 shows the parameters than can be used to graphically determine
this factor. The value is determined with an input of sR, gear rim thickness, and bs, central
web thickness and the relevant curves can be consulted in [12]. Finally, CB, the basic
rack factor, includes the effects of the deviations from the basic rack profile of the gear.
The standard basic rack profile mentioned here is the one defined in ISO 53. It can be
calculated from Eq. 2.48 [12],

CB = [1.0 + 0.5(1.25− hfp
mn

][1.0− 0.02(20− αPn)] (2.48)
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Figure 2.2 Non solid disk gear parameters [12].

and, in cases where the pinion basic rack dedendum does not match that of the wheel it
is meshing with, a value corresponding to the arithmetic mean of the factor calculated for
each of the gears, CB1 and CB2, is used, calculated from Eq. 2.49 [12].

CB = 0.5(CB1 + CB2) (2.49)

The final term, cosβ, transforms the theoretical single stiffness of the teeth of the vir-
tual spur gear associated with a given helical gear from the normal into the transverse
theoretical single stiffness of that same helical gear.

The extension of this method to internal gears can be easily achieved by replacing zn2

by ∞ in Eq. 2.46 [12].

The extension to materials other than steel also requires some modifications, being, in
such cases, c′ determined by Eqs. 2.50 and 2.51 [12]:

c′ = c′St/St

(
E

ESt

)
(2.50)
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where
E =

( 2E1E2
E1 + E2

)
(2.51)

Given the most typical cases where this modification applies, common values can be pre-
sented here, where E

ESt
assumes a value of 0.74 in a steel/grey cast iron combination and

a value of 0.59 in a grey cast iron/grey cast iron combination [12].

The way the gear and shaft are connected also requires further modifications when
the first assembly condition presented earlier is not met, i.e., connection through fitted
key. In such cases, the single stiffness, under constant load, varies between a maximum
and minimum value twice per revolution. This minimum value can be approximated to
the value of the single stiffness when the assembly is accomplished through interference or
spline fits [12].

Press fitting one gear of a pair is press fitted onto a shaft with a fitted key and having
the gear it meshes with mounted onto a shaft through interference or splined fitting leads to
an average value of the single stiffness about 5% greater than the minimum value verified.
However, when both gears are push fitted onto shafts with fitted keys, the average value
of the single stiffness, relative to the minimum, increases to 10% [12].

Finally, a modification regarding lower values of the load is presented in Eq. 2.52, for
cases where (FtKA)

b is lower than 100 Nmm−1 [12]:

c′ = c′thCMCBCR cosβ
(
FtKA
b

100

)0.25

(2.52)

When (FtKA)
b is equal to or higher than 100 Nmm−1, c′ can be considered constant [12].

Up until now, single stiffness has been discussed and the conditions of its applicability.
Now, regarding mesh stiffness, it is important to understand why it matters as much as it
does. The mean value of mesh stiffness per unit face width, cγα, is used for the calculation
of the internal dynamic factor, Kv, and the transverse load factors KHα and KFα [12].
Respecting what was established from c′, cγα can be calculated from Eq. 2.53 [12],

cγα = c′ (0.75εα + 0.25) (2.53)

for spur gears with εα ≥ 1.2 and helical gears with β ≤ 30°. The mean value of mesh
stiffness per unit face width, cγβ, necessary for the calculation of the face load factors KHβ

and KFβ and can be obtained from Eq. 2.54 [12],

cγβ = 0.85cγα (2.54)

respecting the conditions that allow cγα to be determined beforehand.
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2.3.3 Finite Element Models

This procedure has become increasingly popular as its accuracy allowed major experi-
mental setups and major expenditures to be discarded. For structural analysis, FEM is a
great resource to calculate displacements, stresses and deflections on loaded structures [9].

This method requires an appropriate discretization of the geometry by dividing the
continuous domain of the problem into non-overlapped subdomains, known as finite el-
ements. The connection between the elements is achieved through nodes and, together,
they create a mesh that achieves said discretization. The solution for each element is
obtained by the combination of the values at each node and assembling all the elements
allows the problem to be solved. This method relies on the boundary and initial conditions
imposed, without which a solution can not be found [9].

Being a numerical method, there are always inherent errors. However, they can be
reduced as the modeling, both conceptually and structurally, becomes closer to depict
the system’s behavior. An appropriate element selection and the number of subdomains
become determinant factors in the mitigation of the numerical errors [9].

This method allows complex geometries to be analyzed. Many complex boundary con-
ditions, loading and material properties can also be handled, which proves the versatility
of this method. The popularity of the method, alongside the versatility, comes from its
high precision. However, such advantages come at a cost, which is the high computational
effort that sometimes poses an inevitable obstacle [9].

Due to its precision, the finite element method is often used as validation of other
techniques. In this work’s context, its versatility makes it a very attractive tool to conduct
analyses of the gear mesh stiffness in the presence of defects such as cracks, spalling and
pitting. It also allows the study of the influence of geometrical parameters on the gear
mesh stiffness and the study of gear mesh stiffness in a dynamic scope. Although these
are the main applications concerning the gear mesh stiffness, other may exist, although
not as featured in the current literature as the ones mentioned [9].

2.3.3.1 Typical implementations

There are many softwares that allow the analysis through FEM to be conducted. One
of the most commonly used is ANSYS. There are also several approaches concerning the
modeling of the meshing gears exist. The gear can be modeled, mainly, as [2, 13]:

• full gear, as exemplified in Fig. 2.3;

• gear body with a single or several teeth, as seen in Fig. 2.4;

• single tooth sector model, as shown in Fig. 2.5;

• three tooth sector model, as presented in Fig. 2.6.
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Figure 2.3 Full gear model [14].

Figure 2.4 Gear body model with several teeth [15].

Several element types are used, but the number of elements also plays an important part
in the implemented mesh.

The extraction of the mesh stiffness can be done in two different ways. The first
one requires the extraction of the relative rotations of the input and output gears. The
difference between both of them is the transmission error. From this quantity, the torsional
gear mesh stiffness can be easily obtained. The second method requires the extraction of
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Figure 2.5 One tooth sector model [16].

Figure 2.6 Three teeth sector model [16].

the deflection in the direction of the applied load. Necessarily, these quantities allow the
determination of the linear gear mesh stiffness. However, as previously stated, the linear
and torsional gear mesh stiffness can be easily related [9]. An implementation guideline is
suggested in the works of Zhan et al. [17]. The techniques mentioned regarding the model
can be used as a canvas to a personalized implementation, while always respecting the
rules of the model’s behavior through the many adjustable options offered. As mentioned,
there are several ways to model a gear pair, but there are commonly adopted practices
that lead to better outcomes and avoids, a priori, problems that researchers have already
come across [9].
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Finite Element Method based models are also used when studying polymer gears.
Given how recent the topic is, FEM becomes a great tool to overcome the lack of analytical
models to describe it, due to the method’s versatility [9].

2.3.4 Hybrid Model

The main difference that this model introduces is the definition of a local rigid region in
the vicinity of the contact in order to avoid unwanted and inaccurate local distortion caused
by the concentrated force transmitted. This greatly simplifies the process of building
the model, which is often a complex process, and raises its efficiency at calculating and
outputting results [18].

First, a boundary condition is established to have the hub nodes behave in a rigid
manner in relation to the gear and pinion geometric/rotation centers. The contact force
is applied both in the gear and the pinion, in the contact node and its respective meshing
node, along the line of action and, necessarily, opposing directions. This applied force, Fu,
is unitary. The deflection verified at these nodes, caused by this applied force, includes
not only the global deflection but also the local distortion which the authors aim to
avoid/eliminate. Therefore, a local rigid area around the contacting nodes is created.
Extensive testing has shown that the radius of this rigid area should be 0.2m, where m
is the module of the gear pair and its Young’s modulus should be 1000 times bigger than
that of the surrounding body [18].

For the contacting nodes, upon the consideration of the local rigid region, the global
displacement vector U can be obtained from Eq. 2.55 [18],

U = K−1F (2.55)

where F is the global nodal force vector and K is the global stiffness matrix, where the
local rigid area consideration is contemplated. To obtain the total displacements of each
node, the displacements along the directions x and y can be used on Eq. 2.56 [18],

u = ux cosαn + uy sinαn (2.56)

where ux and uy are the displacements along the x and y direction, respectively, and αn is
the operating pressure angle. It is assumed that the force moves along the tooth flank from
the meshing starting point to the tooth tip while the gear pair is fixed. Since the force
is unitary, the verified nodal displacement corresponds directly to the nodal compliance.
From that relationship, when the load is applied on every node, the compliance matrix,
in its rough form, can be obtained for the pinion, represented by λPr. This matrix can be
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written as stated in Eq. 2.57 [18],

λPr =



λ11 λ12 · · · λ1j · · · λ1N

λ21 λ22 · · · λ2j · · · λ2N

· · · · · · · · · · · · · · · · · ·
λi1 λi2 · · · λij · · · λiN

· · · · · · · · · · · · · · · · · ·
λN1 λN2 · · · λNj · · · λNN


(2.57)

where N represents the number of nodes in which the pinion’s tooth surface is discretized.
The value λij represents the nodal compliance of the i indexed node when the j indexed
node has the unitary load Fu applied. Since the number of nodes in the tooth surface is
limited, the accuracy of the interpolation matrix can be enhanced through interpolation,
leading to the definition of a matrix λP which represents the pinion’s compliance matrix.
A similar approach allows the determination of the equivalent matrix for the gear, λG .
For the load distribution and static transmission error analysis, a compatibility equation
concerning the displacements can be written as stated in Eq. 2.58 ,

− (λc + λb)Fn + xs = ε (2.58)

where xs is the static transmission error, ε is the initial separation clearance vector, which
contains all the information concerning the separation distance, the initial assembly error
and machining error. λb corresponds to the compliance matrix of all the potential contact
points.

Both these quantities can be obtained from the matrices λP and λG, respectively. It is
worth noting that the approach presented so far is based on a two- dimensional analytical
FEM. This means that all the potential contact points are located on the tooth surface and
the existence of potential contact points along the tooth width is discarded. The quantity
λc, which contemplates the effects of the tooth contact, represents the nonlinear contact
compliance matrix, also at all potential contact points, and can be written as follows in
Eq. 2.59 ,

λc = diag(λc1, λc2, ..., λci, ..., λcN ) (2.59)

where λci can be obtained through Eq. 2.60 [18].

λci = 1.275
E0.9L0.8F 0.1

i

(2.60)

The contact compliance at potential contact point i, λci is a function of the force at that
same potential contact point i, Fi and the material’s Young’s modulus and face width,
E and L respectively. Also in the compatibility equation, Eq. 2.58, Fn is the normal
contact force vector at all potential contact points, being possible to express it as stated
in Eq. 2.75 [18]
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Fn = [F1, F2, ..., Fi, ..., Fn]T , F =
n∑
i=1

Fi, (1 ≤ i ≤ n) (2.61)

with F being the total contact force, calculated from Eq. 2.62 [18]

F = T

rb1
(2.62)

with T being the applied torque and rb1 being the pinion’s base radius [18].

2.3.4.1 Results and Conclusions

Fig. 2.7 shows the obtained results for the analyzed healthy gear, where the proposed
method is the hybrid method implemented in reference [18]. There is also a comparison
with a strictly based FEM approach and the PEM, which was explained earlier. The
absolute values of the gear mesh stiffness are not relevant for the purpose with which this
model was presented, but rather the shape of the curves and how they estimate the gear
mesh stiffness, for comparison purposes [18].

Figure 2.7 Mesh stiffness distribution of an healthy gear. Adapted from [18].

There is a fairly decent agreement between the three exposed methods, seeing that the
values of the mesh stiffness do not vary significantly throughout the contact path and the
parabolic shape of the curves is evident.

2.3.5 Experimental Determination of Gear Mesh Stiffness

This experimental model aims to accurately measure the stiffness of a single tooth,
experimentally. The accuracy can be evaluated by comparison with the other presented
models, for the same configurations of the gear pair. This technique also allows studies
of the effect of the variation of the pressure angle on the single tooth stiffness, which
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requires gear types that aren’t manufactured by traditional methods, such as additive
manufacturing and bimetallic forging [19]. This is only an example of a technique, as
other experimental approaches can be seen in the literature, namely in works presented
in [9].

2.3.5.1 Setup

A steel rigid body was mounted on the base with bolts. A force impactor with a load cell
and a Linear Variable Differential Transformer were used in order to obtain all the required
information to determine the Single Tooth Stiffness, load-wise and displacement-wise,
respectively. The support structure was reinforced with welding and bolted connections
in order to minimize any unwanted effects on the tooth elastic deflection. The heat-
hardened steel force impactor had a rectangular cross section at its end and its contact
with the sample had a thickness of 0.2 mm [19]. The experimental setup used is shown
in Fig. 2.8. The forces applied ranged from 750 N to 1500 N, with an increment of 250

Figure 2.8 Experimental setup [19].

N [19]. This study involved both symmetric (α = 20°) and asymmetric (α = 25°, 30°, 35°)
configurations. The asymmetric configurations kept the first tested pressure angle at the
inferior flank, where the LVDT was located, and changed the pressure angle of the flank
on which the force was applied. The samples were designed as a cantilever beam with
an involute profile. The chosen material was 4140 steel which would undergo a surface
hardening process to prevent submergence. The process chosen was induction heating
based heat treatment: in this process, the samples were heated as quickly as possible to
their austenitic temperature (ranging from 840°C to 870°C), followed by a quenching in
oil. The resulting surface hardness ranged from 55 to 65 HRC among all the samples. To
remove any possible quenching stresses, the samples were then tempered between 160°C
and 200°C. This greatly reduces the risk of grinding cracks on the samples, which would
invalidate the results and compromise the setup [19].
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2.3.5.2 Validation through FEA

For the validation of the obtained experimental results, the authors of this test setup
decided on a FEA approach. The first step was the generation of the CAD data of the
samples, which was done with MATLAB and CATIA software. A fully rounded rack
cutter was used to achieve the higher values of DSPA. As mentioned, the CSPA was kept
constant at 20°. The CAD models were exported to ANSYS Workbench to initiate the
meshing operation. The chosen elements were hexahedral and, for all cases in this study,
mesh convergence tests were performed in order to make the finite element model/analysis
as reliable as could be. The authors defined 280 000 elements as the converged mesh
number for this study as a stabilization of the elastic deflection is denoted beyond that
point. Following the suggestion from Coy [20], the grid near the point of loading was
dimensioned according to Eq. 2.63 [19],

e

bh
= −0.2

(
c

e

)
+ 1.2, for 0.9 ≤ c

e
≤ 3 (2.63)

where c and e are, respectively, the length and width of the element and bh is the Hertzian
contact width. Doing so allows for the definition of the Hertzian part of the deflection,
which is detrimental in contact problems such as the one being studied in this experimental
setup and the one that motivates this thesis. The boundary conditions consisted of fully
fixed surfaces representing the situation of the body of the gear being clamped to the rigid
body with bolts and a force applied as described, with its value changed according to the
range and increment also as specified above. A linear static analysis was chosen as the
FEA type. The applied loads are constant, having no variation with time [19]. Finally, in
order to validate both the experimental results and the results obtained through the FEA,
expressions for the calculation of STS of spur gears with symmetric teeth, from Kuang
and Lin’s works, were used [19].

The expression for the STS goes as shown in Eq. 2.64 [19],

K̄i(r) = (A0 +A1 ·Xi) + (A2 +A3 ·Xi)
(r −Ri)

(1 +Xi) ·m
(2.64)

where K̄i(r) is the STS at a given r of the gear, A0,1,2,3 are the empirical equations, Xi is
the addendum modification coefficient, m is the gear modulus, Ri is the radius of the pitch
circle and r is the radius of any point along the involute profile curve. All the empirical
equations on which the STS definition presented relies on only depend on Zi, which is the
number of teeth, and can be written as shown in Eqs. 2.65 to 2.68 [19]:

A0 = 3.867 + 1.612Zi − 0.02916Z2
i + 0.0001553Z3

i (2.65)

A1 = 17.060 + 0.7289Zi − 0.01728Z2
i + 0.0000999Z3

i (2.66)

A2 = 2.637− 1.222Zi − 0.02217Z2
i − 0.0001179Z3

i (2.67)
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A3 = −6.330− 1.033Zi + 0.02068Z2
i − 0.0001130Z3

i (2.68)

2.3.5.3 Results and Conclusions

Once again, it is experimentally determined that the gear mesh stiffness behaves ac-
cording to a parabola. The STS of involute spur gears with symmetric (conventional)
and asymmetric teeth is measured with a novel experimental method and a validation
procedure is also presented [19].
This method makes it possible to analyze, experimentally, gears that are not produced by
conventional design and manufacturing methods. These gears require, typically, difficult
analytical calculations in order to verify the FE models established to determine their
stiffness. On that note, the experimental measurement results were compared with FEA,
analytically calculated from the literature and the STS results obtained from the experi-
mental measurements were generally consistent with the FEA results [19].
With the increase in drive side pressure angle, the single tooth stiffness for involute spur
gears increased nearly 38%. Numerical and analytical studies in the literature can be ver-
ified experimentally using the method developed and by using the developed FE model,
the TVMS can be calculated [19].

2.4 Approximated Analytical Model

The approximated analytical model that will, later in the present work, undergo a
calibration process, is going to be presented. The advantages of such approach have been
discussed and the required values for calibration will be presented [2, 13]. These kinds of
models bear some game changing advantages, such as being ideal to undergo iterations
based optimization methods. These optimization methods may aim to minimize power
losses or the variations of gear mesh stiffness throughout the whole meshing process [7].

2.4.1 Description on the length of the contact lines

This first model is based on the assumption that the load per unit of contact line
length along the path of contact is constant. A coordinate ξ must be considered, being
the non-dimensional coordinate along the path of contact and is obtained dividing the
distance by the transverse base pitch, pbt, shown in Fig. 2.9 [2, 13]. For spur gears, it
is known that the length of the contact line over a teeth is constant. A teeth entering
the plane of action can therefore be seen as a constant value increment in the function
that describes the sum of the length of contacting lines, mathematically translated by a
Heaviside function. The expression in Eq. 2.69 [2, 13],

H(ξ) = lim
k→∞

( 1
1 + e−2·k·ξ

)
(2.69)
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Figure 2.9 ξ coordinate [2, 13].

closely behaves in accordance to the theoretical Heaviside function, also known as the unit
step function, for k = 10000, as Fig. 2.10 shows. Defining a trim function based on the
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Figure 2.10 Heaviside function approximation [2, 13].

property that the ratio of length of the contact line over a tooth to the face width is always
equal to 1 in the active section of the plane of action and 0 outside of it becomes necessary
to discard the need to define independent domains for each pair entering or leaving the
contact. This trim function, T lS(ξ), has a unitary height and a width equal to εα and
can be obtained through the subtraction of two Heaviside functions shifted by its width,
as stated in Eq. 2.70 [2, 13],

T lS(ξ) = H(ξ)−H(ξ − εα) (2.70)
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It is known that more than one pair of teeth may be in contact simultaneously. This
information is stored in the εα value and the trimmed function must be adjusted to
contemplate this possibility. The meshing pairs are always shifted by a transverse base
pitch, pbt, which corresponds to a single unit in the coordinate system defined earlier. To
obtain the line length of the other meshing pairs, in action, it is now the trim function
that must be shifted back and forth by integer values. This manipulation leads to an
unbounded contact line length ratio, UlS(ξ), defined in Eq. 2.71 [2, 13],

UlS(ξ) = T lS(ξ − i) = H(ξ − i)−H(ξ − εα − i) (2.71)

From the definition of both the coordinate system, ξ and the contact ratio, εα, the values
of i can be computed in a way that

i = −floor(εα) : 1 : floor(εα) (2.72)

where floor() represents the action of rounding down a real number to its integer part [2,13].
Since the length of the line of contact, for a given pair, should only be defined between the
bounds 0 and εα in the ξ axis, the trim function, which is defined in that same domain, can
be used to both trim and bound each of the UlSi (ξ) functions, as stated in Eq. 2.73 [2,13]:

lSi = UlSi (ξ) · T lS(ξ), ∀i (2.73)

resulting in a function that represents the bounded contact line length to gear face width
ratio, for a given tooth pair i in a spur gear. The application of the concept to all the
meshing pairs leads to a sum that contemplates all the active ones, resulting in a function
LS(ξ), defined by Eq. 2.74 [2, 13],

LS(ξ) =

 floor(εα)∑
−floor(εα)

UlSi (ξ)

 · T lS(ξ) (2.74)

These equations can then be extended to helical gears, with the appropriate adjustments,
which can be seen in detail in [2,13]. With the concept defined on equations 2.74, the load
per unit of length over a tooth can be obtained through Eq. 2.75 [2, 13]:

fN (ξ) = Mw

rbw
· 1
b · Ls(ξ) (2.75)

If, in addition to the sum of the lengths, the concept of the length of each individual
contact line for all active meshing teeth pairs, lsi (ξ) is included, the normal load acting in
a single tooth along the path of contact can be obtained through Eq. 2.76 [2, 13]:

FNi(ξ) = Mw

rbw
· l

s(ξ)
Ls(ξ) (2.76)
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Eq. 2.76 can be viewed as a product between the load supported by a pair of contacting
teeth and a load sharing function. The value of this load is Mw

rbw
and the load sharing

function is given by the length of the individual contact line divided by the sum of the
lengths of the contacting lines for all the contacting pairs, for a certain position ξ along
the defined referential [2, 13].

2.4.2 Quasi-static elastic model

This model is based on the assumption that, for a given position along the path of
contact, the load per unit length, fN (ξ), over a line of contact for a single tooth/for a single
i, is constant. This applies to a single tooth only, as the that quantity is not assumed to
be the same among all the meshing tooth pairs, again, for a given position ξ [2, 13].

It is then assumed that the gear body, up to the base cylinder (the gear hub), is
perfectly rigid and the displacement of that same base cylinder, when the gear is loaded,
is very small (dθ). Necessarily, it follows that the length of the arc corresponding to
that same angular displacement can be approximated by a linear displacement δb, in the
direction of the plane of action [2, 13].

Stiffness can be defined as the load divided by the displacement resulting from its
application. In other words, stiffness can be seen as the necessary load to apply an
unitary displacement. To keep the concept coherent, torsional stiffness establishes the
relation between a torque and an angular displacement and linear stiffness establishes the
relation between a force and a linear displacement. There is interchangeability among
both of them but the relation must be respected. That being said, the total normal force
in the transverse plane, Fbt, and the linear displacement δb are related through the linear
stiffness KT (ξ) as the following expression as shown in Eq. 2.77 [2, 13].

δb = Fbt
KT (ξ) (2.77)

If a teeth pair i is in contact, the load supported by that pair can be obtained multiplying
the displacement δb by the stiffness of that same pair, Ki(ξ), as done in Eq. 2.78 [2, 13].

FKNi(ξ) = δb ·Ki(ξ) (2.78)

The load distribution for a spur gear in the normal plane can be obtained from Eq. 2.79 [2,
13],

FKNi(ξ) = Ki(ξ)
KT (ξ) · Fbn (2.79)

ISO 6336-1 [12], as discussed in 2.3.2, issues a method to calculate a maximum value of
the single tooth mesh stiffness with an acceptable possible deviation error for a certain set
of conditions. From there, one can define a function of the single tooth mesh stiffness per
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unit of gear width according to Eq. 2.80 [2, 13].

Ku
i (ξ) = kui (ξ) · Kmax

b
(2.80)

From the literature, the single tooth mesh stiffness, for spur gears, has shown an approx-
imately parabolic/half-sine-wave behavior throughout the whole meshing period. Rincon
combined Cai’s suggestion, kCai with the ISO 6336-1 average mesh stiffness, KISO

m to
obtain the single teeth pair mesh stiffness in Eq. 2.81 (for spur gears, naturally) [2, 13].

kCai(t) = 1
0.85εα

·
[−1.8
ε2
α

· t2 + 1.8
εα
· t+ 0.55

]
(2.81)

Defining the minimum mesh stiffness, Eq. 2.82, according to a parameter αk, which rep-
resents the fraction of the maximum stiffness at either ξ = 0 or ξ = εα [2, 13],

Kmin = αk ·
Kmax

b
(2.82)

allows the unitary single tooth mesh stiffness to be expressed as stated in Eq. 2.83 [2,13]:

kui (ξ) = 4(αk − 1)
(εα + εβ)2 · (ξ − i)

2 − 4(αk − 1)
(εα + εβ) · (ξ − i) + αk (2.83)

Fusing the concept of the definition of the contact line length with the single tooth mesh
stiffness leads to Eq. 2.84.

klui (ξ, i) = Ulis · kui (2.84)

By superposition of effects, the normalised gear mesh stiffness for a spur gear, Kls(ξ), can
be calculated as stated in Eq. 2.85.

Kls(ξ) =

 floor(εα∑
i=−floor(εα

klui

 · T ls (2.85)

Extending such procedure to helical gears can be done considering that an helical gear
is made of a stack of infinitesimal spur gears, being stacked once subjected to a rotation
that generates the β throughout the width. The worked equations and a more detailed
explanation of this extension can be found in [2, 13].

2.4.3 Load sharing and the free parameter importance and determina-
tion

R is the load sharing ratio for a spur gear at the start of the meshing process [13].
Literature currently suggests different values for this parameter. For a single slice of a
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spur gear with 1 < εα < 2, for ξ = 0, it can be estimated according to Eq. 2.86,

R = αk[
4(αk−1)

(εα)2 · (1)2 − 4(αk−1)
εα

· (1)
]

+ αk
(2.86)

which leads to a definition of αk as stated in Eq. 2.87.

αk = 4R(εα − 1)
ε2
α(2R− 1)− 4Rεα + 4R (2.87)

Sánchez et al. [11] introduced an approximation to the single teeth pair mesh stiffness
based on a cosine function, Eq. 2.88, for spur gears. Manipulation towards achieving an
expression in terms of the relevant parameter, αk, leads to the expression

αSanchez
k = cos

εα
2

[
1
2

(
1.11 + εα

2

)2
− 1.17

]− 1
2
 (2.88)

This solution was validated by Sánchez et al. aswell through a model based on the mini-
mization of the potential energy that was previously developed. The validation consisted
on 3775 cases of different gear ratios, pressure angles and profile shift coefficients with the
following ranges [13]:

• 20 < z < 100;

• 18° < αm < 25°;

• −0.1 < xi < +0.1.

From the expression proposed, the value of R = 0.36 can be found, which is very close
to the other existing values. AGMA 925-A03 [13] suggests a value of 1/3, simulations
done using KISSsoft lead to a value of about 0.43 and the model based on the potential
energy method returned, as mentioned, a value of 0.36 [13]. Fig. 2.11 shows the different
curves obtained for αk for these scenarios. Naturally, the expressions are restricted by
the conditions under which they are determined. They lack generality. These equations:

• yield negative values of αk for a given range of εα < 1;

• have a root on the denominator in the 0 < εα < 1 domain;

• do not depict an increase in αk as εα decreases, which should happen, culminating
in αk = 1 for εα = 0.

This set of physical incoherences becomes the aspect that should be the focus of the
investigation that follows the work done until the moment, on this matter [13].

The αk parameter plays a decisive role in the estimation of the gear mesh stiffness, load
sharing ratio and friction torque. Its value depends on several parameters that influence
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Figure 2.11 Curves for the αk evolution with εα [13].

the gear geometry. A numerical model, based on works that can be consulted in [9], or
with greater detail in [17] will be developed to estimate this parameter’s variation with
each of the geometrical parameters presented. The numerical model is, as mentioned, a
way of addressing the problem and a choice was made to follow that path.
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Chapter 3

Gear Geometry and Simulation
Landscape

In this chapter, the main geometrical parameters that may influence the quantities
that are being studied in this work are presented here. The matrix where all the models
in study are presented also contemplates how the presented parameters will vary. The
Hertzian contact model is also presented, applied to the contact of gear teeth. Finally, the
torsional model that will allow the gear mesh stiffness to be obtained from the values of
transmission error will be presented.

3.1 Geometric Parameters

Gear mesh stiffness depends on the gear geometry. In order to provide some back-
ground to the parametric study that will follow the theoretical part of this work, the
geometric parameters that may influence the gear mesh stiffness and load sharing ratio
will be presented.

3.1.1 Module

The module, represented by the parameter m, alongside with the number of teeth, z,
defines the size of the gear. A gear pair may only mesh if and only if the modules of both
individual gears match: otherwise, the meshing becomes impossible. It is a fundamental
rule of gear technology. This quantity also corresponds to the length of the pitch diameter
per tooth. Varying the module can be seen as a scaling of the gear, considering that most
of its geometry is based on factors of this quantity [21].

Closely related to this parameter is the circular pitch, calculated from Eq. 3.1,

p = πd

z
(3.1)
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which is the ratio of the pitch circle circumference and the number of the teeth. Its value
represents the linear distance, along the pitch circle arc, between an arbitrary point and
its counterpart on an adjacent tooth [21].

The circular pitch can also be obtained from Eq. 3.2.

p = πm (3.2)

Equations 3.1 and 3.2 allow the conversion between both of these parameters, p and
m . This is particularly interesting given that each parameter, even though both of
them are major influences on gear size, dimensions the gear size with specific features.
When a specific spacing between teeth is desired, the circular tooth is the parameter
used to represent tooth size. In cases when a given feed is necessary or when designing
position control systems, this parameter often assumes integer values or specific fractional
values [21].

3.1.2 Pressure angle

The pressure angle is given by the angle between the line-of-action and a perpendicular
line to a line that crosses both the gears centers. Alterations in the center distance result
in a slight alteration of the value of this parameter; however, there is a relation that never
changes between the base and pitch circles and the pressure angle, as Eq. 3.3 states [21]:

rb = r cos(α) (3.3)

When the center distance changes, so does the pressure angle, being α′ the changed value as
a consequence. The relation in Eq. 3.3 remains, but is adjusted as presented in Eq. 3.4 [21],

rb = r′ cos(α′) (3.4)

to contemplate the exact operating values.

3.1.3 Gear ratio and number of teeth

Gears’ size ranges from a few millimeters to several meters. The size of the gears is
established through the value of both the module and its number of teeth. If the module
can be seen as a scaling of the whole gear, changing the number of teeth does not scale
the teeth but rather the size of the remaining part of the gear, the hub and changes its
shape, namely its curvature of the flank. This is one of the many properties that explain
why this technology is so popular nowadays.
Power, that can be defined as stated in Eq. 3.5 [21],

P = T · ω (3.5)
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where T represents the torque and ω represents the angular velocity, allows the gear
mechanisms to provide speed and torque according to the needs, keeping the product
on the right-handed side of the expression in 3.5 constant. The first step towards the
definition of the transmission ratio consists on relating the input and output powers as
done in Eq. 3.6 [21].

P1 = P2 ≡ T1 · ω1 = T2 · ω2 ≡
T1
T2

= ω2
ω1

(3.6)

From the pitch circles, one can determine the velocity ratio of gear 2 to gear 1 through
the ratio of pitch diameters as seen in Eq. 3.7 [21],

i = d1
d2

(3.7)

The inverse of this quantity, given the power must be kept constant, represents the torque
of gear 2 to gear 1. The gear ratio, or velocity ratio, can be defined in terms of number
of teeth. Since, necessarily, m1 = m2 and d = zm, Eq. 3.7 can be rewritten as seen in
Eq. 3.8 [21].

i = z1 ·m
z2 ·m

= z1
z2

(3.8)

3.1.4 Tip alteration

Tip alteration contemplates the removal of material from the tooth addendum by an
amount proportional to the modulus. This amount is known as the tip alteration factor,
k. A positive factor can be seen as an addition of material relative to the standard profile,
resulting in a thinner tooth thickness at the tip circle and a negative factor, in contrast,
can be seen as a removal of material, which leads to a thicker tooth at the tip circle [21].

3.1.5 Profile

A single profile standard defines a specific set of parameters concerning the geometry
of the tooth. The addendum corresponds to the proportion of material located above the
pitch circle. The dedendum corresponds to the proportion of material located below the
pitch circle. The normalized profiles typically include specific values of addendum factor,
hap, dedendum factor, hfp, root radius factor, ρfp, among other specifications. Once again,
these factors are established in terms of the module. The way the addendum factor alters
the tooth size is comparable to the tip alteration factor. However, the dedendum factor
changes the distance between the root and pitch circles, shortening or extending the tooth
on that metric. The root radius factor defines the tooth fillet radius according to the tooth
modulus. A higher value leads to a thinner/smaller cross section area at the root of the
tooth, which may play an important role in the load capacity of the tooth [21].
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3.1.6 Profile Modifications

Profile modifications, which are basically intentional deviations from the involute tooth
profile, are a commonly used resource to prevent excessive tooth load deflection interference
and, consequently, improve load capacity. However, in the axial direction, the profile
modifications may not change the chosen profile. The elimination of tip interference,
through these alterations, reduces meshing noise. Some modifications also accommodate
assembly misalignment towards preserving load capacity [21].

Crowning and side relieving are tooth surface modifications along the axial direction.
Crowning consists on the removal of a slight amount of tooth from the center to the edge
in order to make the surface slightly convex. This modification makes it possible for
the gear to maintain contact in the central region of the tooth and avoid the lower load
capacity of the edges, being more relevant in cases where the assembly of gears includes
misalignment. Edge relieving is a modification that consists of a chamfering of the tooth
surface near the edges. It does not change the nature of the contact. Therefore, it merely
accomplishes the advantage that the crowning also provides regarding stress concentration
at the gear edges but not misalignments [21]. The tip relief modification also changes the
tooth flank and may greatly influence the mesh stiffness, mainly at the beginning and the
end of the meshing. However, due to time limitations and the need to prepare each model
from scratch, it is not included in this work.

3.1.7 Contact Ratio

The value of the contact ratio is determinant on the smoothness and continuity of the
meshing by guaranteeing a pair of teeth begins contacting before another one ceases its
own contact. This parameter is a measure of the meshing overlap, calculated as the ratio
between the length of the line of action and the base pitch, as follows in Eq. 3.9 [21]:

εα = AB

pb
(3.9)

For the case of spur gears, this expression can be rewritten to directly contemplate geo-
metric parameters of the gear pair,

εα =

√
(r2
a1 − r2

b1) +
√

(r2
a2 − r2

b2)− a sin(α)
pb

(3.10)

Also known as normalized contact length, this value, εα, must always be greater than 1 in
order to ensure that there is no gap between the initiation of contact in A and the release
of contact in B, which would lead to an acceleration of the driving gear and shock when
the contact is resumed. It is widely adopted, for parallel axis spur gears, to keep this value
above 1.2 and it should never drop below 1.1 when all the tolerances are considered to be
at their worst-case values [21].
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A contact ratio between 1 and 2 means that during meshing, there are periods when
two pairs are in contact and only one pair is in contact. Similarly, a ratio between 2 and 3
means that two or three pairs of teeth are always in contact. Usually, such a high contact
ratio is not obtained with external spur gears. Nonetheless, it is possible to reach these
values through specially designed nonstandard external spur gears [21].

3.2 Parameter Matrix

The first step towards conducting the parametric study is the appropriate definition
of the parameters to be studied and their values. The chosen parameters are the ones
that impact the gear tooth the most and even its size, resulting in a wide variety of
geometries. The values adopted for each parameter were chose according to ISO 53.
Table 3.1 summarizes the parameters of each model studied, highlighting the changes
relative to the standard geometry adopted, M4_5. Aside from the value of the module,
m, and the axial distance, a, every other parameter is dimensionless.



40 Gear Geometry and Simulation Landscape

Table 3.1 Parameter values for the simulated gears.

Gear z1 i = z2
z1

x1/x2 m /mm α a /mm k ρ∗fp h∗ap h∗fp Profile Modif.

M4_5(Ref.) 20 1 0/0 4.5 20 90 N/A 0.38 1.00 1.25 N/A
M1_75 20 1 0/0 1.75 20 35 N/A 0.38 1.00 1.25 N/A
M2_5 20 1 0/0 2.5 20 50 N/A 0.38 1.00 1.25 N/A
M8 20 1 0/0 8 20 160 N/A 0.38 1.00 1.25 N/A
M12 20 1 0/0 12 20 240 N/A 0.38 1.00 1.25 N/A
I2 20 2 0/0 4.5 20 135 N/A 0.38 1.00 1.25 N/A
I3 20 3 0/0 4.5 20 180 N/A 0.38 1.00 1.25 N/A
K0.1 20 1 0/0 4.5 20 90 +0.1 0.38 1.00 1.25 N/A
K0.2 20 1 0/0 4.5 20 90 +0.2 0.38 1.00 1.25 N/A
PROFI11 20 1 0/0 4.5 20 90 N/A 0.38 1.10 1.25 N/A
PROFI12 20 1 0/0 4.5 20 90 N/A 0.38 1.20 1.25 N/A
PROFI21 20 1 0/0 4.5 20 90 N/A 0.38 1.00 1.35 N/A
PROFI22 20 1 0/0 4.5 20 90 N/A 0.38 1.00 1.45 N/A
PROFI31 20 1 0/0 4.5 20 90 N/A 0.20 1.00 1.25 N/A
PROFI32 20 1 0/0 4.5 20 90 N/A 0.25 1.00 1.25 N/A
C20 20 1 0.1766/0.1766 4.5 20 91.5 N/A 0.38 1.00 1.25 N/A
CORR1 20 1 0/0.3532 4.5 20 91.5 N/A 0.38 1.00 1.25 N/A
CORR2 20 1 -0.1000/0.4532 4.5 20 91.5 N/A 0.38 1.00 1.25 N/A
ER1 20 1 0/0 4.5 20 90 N/A 0.38 1.00 1.25 End Relief 1
ER2 20 1 0/0 4.5 20 90 N/A 0.38 1.00 1.25 End Relief 2
ER1M45 20 1 0/0 4.5 20 90 N/A 0.38 1.00 1.25 End Relief 1
CR1 20 1 0/0 4.5 20 90 N/A 0.38 1.00 1.25 Crowning 1
CR2 20 1 0/0 4.5 20 90 N/A 0.38 1.00 1.25 Crowning 2

It is known that, even though care was put into changing only one parameter at once
to avoid crossover effects, underlying quantities, such as the contact ratio, may suffer
from these changes. It is then important to investigate whether possible changes are a
result of the parameter that was directly changed or rather a consequence of the change
in the underlying parameters associated with such direct definition. Table 3.4 summarizes
the contact ratios for each of the models presented in Table 3.1. In the recent theories,
summarized in [9], it is always implied that αk depends on the contact ratio alone. Some
of these will be presented later on, but these values will be presented here for consistency
of the provided information.

The axial profile modifications are exemplified in Figs. 3.1 and 3.2 and their values are
presented in Tables 3.2 and 3.3.

Table 3.2 End relief parameters. [22]

End Relief Type LCI /µm LCII /µm CβI /mm CβII /mm

1 Linear 100 100 0.2 0.2
2 Linear 200 200 0.2 0.2

Some of the proposed gears share the same value of contact ratio. This happens
because the parameter that was directly changed has no influence on this underlying pa-
rameter. However, this becomes advantageous to determine whether its the parameter
that was purposely changed that determines the behavior of αk or the parameters that
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Figure 3.1 End relief profile modification schematic [22].

Figure 3.2 Crowning profile modification schematic.

Table 3.3 Crowning parameters. [22]

Crowning CβI /µm CβII /µm bX I/II /mm

1 100 100 b/2
2 200 200 b/2

were indirectly altered.
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Table 3.4 Contact ratio values for the simulated gears.

Gear εα

M4_5(Ref.) 1.557
M1_75 1.557
M2_5 1.557
M8 1.557
M12 1.557
I2 1.635
I3 1.671
K01 1.621
K02 1.811
PROFI11 1.686
PROFI12 1.811
PROFI21 1.557
PROFI22 1.557
PROFI31 1.557
PROFI32 1.557
C20 1.470
CORR1 1.460
CORR2 1.466
ER1 1.557
ER2 1.557
CR1 1.557
CR2 1.557

3.3 Hertzian contact model

As the contact pressure will be kept constant, it is important to present the model
that will be used for its calculation. This is done to remove the influence of different
penetrations that would arise if the value of the torque was the load part of the simulation
to be kept constant throughout all the simulations. The contact problem that is being
studied in this work can be modeled according to Hertz’s contact theory, since all the
underlying conditions are met:

• The contact are dimensions are far smaller than those of the contact bodies and
their curvature radius;

• The contact force is normal to the common tangent plane and its line of action
intersects both solids’ curvature center;

• The materials are isotropic, homogeneous and elastic, obeying the Hooke’s Law:

• When no force is applied, the contact between the bodies occurs along a line instead
of an area;

• The contact area is plane and parallel to the common tangent plane;
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• The bodies in contact can be obtained through revolution, since the contact between
involute profile gear teeth can be modeled as a contact between two cylinders, in the
close vicinity of the contact line.

For the C20 gear that is serving as the stepping stone to start the parametric study,
the main geometric features relevant to the Hertzian contact approach are presented in
table 3.5. The normal force can be obtained through the applied resistant torque through

Table 3.5 Relevant geometric features of the C20 gear.

α / ° rb / mm T1I = T2I / mm

20 43.0105 17.4625

Eq. 3.11,
Fn = T

rb
(3.11)

With a Young’s Modulus of 210 GPa and a Poisson’s coefficient of 0.3, the combined
Young’s Modulus can be calculated through Eq. 3.12.

1
E∗

=
(

1− ν2
1

E1
+ 1− ν2

2
E2

)
· 1

2 (3.12)

Finally, the radius of curvature is given by the T1I and T2I segments, which comes from the
cylindrical contact approach. The osculating cylinders that are the basis of this approach
are shown in Fig. 3.3. The equivalent radius can then be obtained through Eq. 3.13

Figure 3.3 Osculating cylinders.

1
RX

= 1
2

( 1
RX1

+ 1
RX2

)
(3.13)
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Finally, the value of a, which is the contact surface semi-width, for Fn = 1162.507 N, ,
for a torque which initially had a value of 50 N·m, E∗ = 115.385 GPa and RX = 17.4625
mm, can be computed through the expression in Eq. 3.14:

a =

√
2
π

Fn
`

RX
E∗

(3.14)

and has a value of 89.44µm. The maximum Hertz pressure can also be computed as stated
in Eq. 3.15

p0 = 4
π
· pm =

√
2
π

Fn
`

E∗

RX
(3.15)

and has a value of approximately 591 MPa, being pm the average pressure. From this point
onwards, several stresses and their distribution can be obtained, but the main aspect that
concerns the validation is the location/depth at which the maximum stresses occur. The
maximum shear stress occurs, for a linear contact, at a depth given by Eq. 3.16

Zs = 0.7861a (3.16)

and its value is, for this case, 70.31µm. With this information, in the numerical simulation
a refinement shell can be dimensioned to contemplate the relevant part of the contact
stresses by defining its thickness according to this value through a relation of N ×Zs, for
an arbitrary value of N = 15. For the developed models, the thickness of the shell had its
value kept at about 1 mm for the gears with a module of 4.5 mm and adjusted by a factor
of m

mstd
for the gears with a different module.

The Crowning profile modification results in a pure elliptic contact instead of a linear one,
which requires a different approach. For an elliptic contact, there are now curvatures along
both contact directions. For the first case of crowning, the radius of curvature along the
axial direction of the gear, RX , obtained from 3.13, has a value of 15.391 mm, which is
equal to each of the teeth curvature, due to the fact that they’re equal. The same happens
with the radius of curvature along the radial direction of the gear, RY , which can also be
obtained through 3.13 applied to Y instead of X. Its value is 245 mm and, since RX > RY ,
the equivalent curvatures are defined by A = 1

RX
and B = 1

RY
. Determining the curvature

ratio can be done as stated in Eq. 3.17.

A

B
= 245

15, 391 = 15, 9184 (3.17)

The values of kab and Ca and can be obtained through table consultation with this value
as an input. Knowing how these parameters vary with the curvature ratio, since its value
exceeds 15, a linear interpolation leads to a fairly accurate value. Interpolating between
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A/B = 15.5 and A/B = 16, according to the expression in Eq. 3.18

kab = klb +
(
A

B

)
· (khb − klb)

(AB |hb)−
A
B |lb)

(3.18)

where the lb and hb indexes indicate whether the value corresponds to the lower bound
or upper bound, respectively, the value of kab can be obtained. This expression can be
used to determine the values of Ca simply by replacing the kab variables with the one to
be determined. Finally, the contact semi-width/smaller axis of the contact ellipse can be
determined through the expression in Eq. 3.19

a = Ca

[
Fn

(A+B)E∗
] 1

3
(3.19)

The larger axis of the ellipse can be obtained by Eq. 3.20

b = a

k
(3.20)

and finally, the maximum contact pressure can be computed from Eq. 3.21

p0 = 3
2
Fn
πab

= 3k
2
Fn
πa2 (3.21)

Rather than keeping constant input torque for all simulations, the contact pressure value
was kept constant throughout the different geometries. Fixing the value calculated, the
resistant torque applied on the gear will be adjusted in the relevant cases to accommodate
the changes in active root radius and curvature radius at the primitive circle. For that,
the Microsoft Excel Solver becomes a quick and useful tool to determine the value of the
resistant torque that must be applied in each case: the maximum contact pressure cell
becomes the objective, with the value obtained from Eq. 3.15, the resistant torque cell
becomes the variable and a restriction to keep the torque value as non negative can be
added to avoid solutions outside the problem’s domain.

3.4 Torsional Model

A spur gear pair contact can be simplified as two-DOF vibrational model, represented
in the free body diagram shown in Fig. 3.4. The shafts are considered rigid and the mesh
condition is assumed perfect. Inaccuracies such as eccentricity, unequal tooth width and
pitch deviatons are, as a consequence, not taken into account. However, these imperfec-
tions are negligible in this study [17].

Based on these considerations and the D’Alembert Lagrange’s principle, the differential
equations of motion can be expressed as shown in Eqs. 3.22 and 3.23:

Jpϕ̈p + C(ϕ̇p − ϕ̇g − ė) +Kt(ϕp − ϕg − e) = Tp (3.22)
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Figure 3.4 Free body diagram of the torsional model of the gear pair [17].

Jgϕ̈g − C(ϕ̇p − ϕ̇g − ė)−Kt(ϕp − ϕg − e) = −Tg (3.23)

The rotary inertia of the pinion and the gear are represented by Jp and Jg, C and Kt are,
respectively, the damping coefficient and the torsional mesh stiffness. ϕ̈p and ϕ̈g represent
the angular acceleration of the pinion and gear, ϕ̇p and ϕ̇g the angular velocity and ϕp

and ϕg the angular displacement. The total gear backlash is taken into account in the
quantity e [17].

A quasi-static approach becomes valid when the pinion and gear rotate very slowly,
with constant speeds typically under 0.1 /rads−1, and the inertial effects produced are
disregardable. Ignoring the derivatives in order to the time variable, 3.22 and 3.23 can be
rewritten as stated in Eqs. 3.24 and 3.25 [17].

Kt(ϕp − ϕg − e) = Tp (3.24)

−Kt(ϕp − ϕg − e) = −Tg (3.25)

From the expressions obtained upon simplification, the concept of transmission error can
be materialized by the following definition in Eq. 3.26,

TE = ϕp − ϕg − e (3.26)

which translates into the difference between the theoretical angular position of the driven
gear and its actual position during the contact and while it runs the driving gear, at
constant speed.

Upon such definition and recalling the Eqs. 3.24, 3.25 and 3.26, the torsional mesh
stiffness can be defined as stated Eq. 3.27 [17].

Kt =
∣∣∣∣ TpTE

∣∣∣∣ =
∣∣∣∣ TgTE

∣∣∣∣ (3.27)

Based on the gear geometry, the linear mesh stiffness can be easily obtained dividing
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the torsional mesh stiffness by the squared base radius, which yields Eq. 3.28.

Kl = Kt

r2
bp

= Kt

r2
bg

(3.28)

These equations lead to the same definitions presented in Eqs. 2.4 and 2.6. These ex-
pressions will be used in the result analysis since this model describes the behavior of the
implemented model and handles the quantities that can be obtained from it.
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Chapter 4

Simulation preparation and setup

In this chapter, the whole process of the numerical implementation part is presented.
From the geometry definition to the FEA part, the main steps towards achieving the
results are described. Some problems that occurred and some implementation details that
are considered important or even necessary are highlighted to save the reader some time,
both avoiding those problems and time spent solving them.

4.1 Tools

Fig. 4.1 condensates the implementation and analysis steps of the work done. There
it can also be seen where the FEA part, Simulation preparation, is located along the
workflow.

The KISSsoft version used was the 2019 one, the SolidWorks version was the 2020 one
and the ANSYS version used was 2020 R2.

4.2 Gear Geometry Definition

In this section, the generation and treatment of the geometry to be inserted into the
FEM software is discussed.

4.2.1 Geometry Generation

The first step is the definition of the gear design parameters in KISSsoft. Since the
desired position of the gear teeth will be defined in the assembly later on, a single gear can
be generated. This procedure covers not only the cases where the gear teeth are identical
but also the cases where they differ and therefore is more generic. Since the loading/op-
eration conditions of the gear teeth pair will be an aspect concerning the simulation and
not the applicability of the gear, the Rating tab can be removed. However, if one wishes
to validate or verify the loading conditions, Rating must be kept and a Contact Analysis
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Figure 4.1 Overall workflow schematic.
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must be employed. The tip alteration modifications are not present in the base parame-
ters, as well as the profile modifications that are going to be studied. Fig. 4.2 shows the
checkbox that needs to be checked to allow this parameter to be an input chosen by the
user. As an additional regard concerning tip alteration, when profile shifts are included,
the software automatically inserts tip alteration on the gear. Since the aim of this study
requires each parameter to be modified at a time, such cases require the tip alteration to
be manually set to 0.00. The modifications tab is not a base one, meaning it must be

Figure 4.2 Tip alteration adjustment.

added. This can be done by selecting the option shown in Fig. 4.3. The chosen profile

Figure 4.3 Profile modification selection.

modifications already mentioned and their type and value must be inserted in the area
shown in Fig. 4.4.

Once the geometry is fully defined, a Calculation must be run and from the Graphics,
the CAD model can be exported as a .stp file. Generating a report concerning this
geometry is very useful, since all the information needed for contact pressure, coordinate
shift and mesh stiffness calculation is included there.

4.2.2 Geometry Manipulation

Once the CAD model is exported from KISSsoft, it can be handled in the SolidWorks
environment in order to be assembled properly. A good manipulation of the geometry will
make the modeling in the FEM software much easier. Since the relevant approximated
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Figure 4.4 Profile modifications window.

analytical model allows the study of a single teeth pair contact, the geometry will be
modeled that way, which is a great way of reducing complexity of the geometry and allow
a much better discretization. Summarizing the whole process, the main steps towards
achieving the desired model are:

1. Gear Trimming (Cut Extrude Feature), as exemplified in Fig. 4.5;

(a) Initial gear tooth configuration (b) Preserved part of the whole gear

Figure 4.5 Gear trimming schematic.

2. Gear Partitioning (Split Feature);
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3. Refined region Creation (Split Feature);

4. Assembly, where it is required to:

(a) Create a point at the center of rotation of the pinion and gear;

(b) Create a vertical line with a length equal to the center distance of the gear pair;

(c) Draw a circle with a diameter equal to the active root diameter on the pinion;

(d) Draw a circle with a diameter equal to the addendum diameter on the gear;

(e) Create a point on the leftmost (to an observer on the front plane) intersection
of both drawn circles;

(f) Make both the pinion and gear coincident with the point created on the previous
step;

(g) Verify that the assembly is fully defined. Restrict any leftover unwanted move-
ment if the assembly is under defined.

5. Export as .stp file.

Since this model was unable to provide acceptable results, a similar model containing
a refinement region was developed. Several configurations, shown in Fig. 4.6, were tested
until an acceptable one was found. An extensive study towards capturing local deflections
in the model was employed. Since the refinement has the main goal of capturing local
effects, restricting it to the contact area was an advantageous measure both in terms of
computational efforts and simulation time. Several refinement regions were tested in order
to evaluate the necessary refinement level for the contact stresses to match the analytical
stress distributions obtained. Some refined regions, Figs. 4.6a and 4.6b, proved inefficient
in the meshing process given their reduced dimension and the inability for the model to
transition from the local refined elements to the coarser mesh on the remaining gear body.
The third refined region, Fig. 4.6c, even though the meshing process happened smoothly,
would lead to an excessive element concentration at the zone and would go beyond the
region where the contact happened. The chosen refined region was Fig. 4.6d, having a
thickness of about 15×Zs mm, for the Zs calculated for an initial torque of 50 N· m. This
refined region performed well when the torque was increased later on, so this configuration
was maintained. To achieve a structured mesh, in a similar way that was done with the
refined region, the remaining body was partitioned as shown in Fig. 4.7. Finally, a
configuration that turns Fig. 4.8a into Fig. 4.8b was adopted. With the trimmed teeth,
the assembly was made to achieve the configuration shown in Fig. 4.9.

Once again, the geometry is exported as a .stp file in order to be handled in the next
software.



54 Simulation preparation and setup

(a) First proposed refined region (b) Second proposed refined region

(c) Third proposed refined region (d) Final proposed refined region

Figure 4.6 Different refined region configurations employed.

Figure 4.7 Schematic of the gear tooth partitioning .
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(a) Exported model from KISSsoft (b) Final tooth configuration

Figure 4.8 Initial and last stages of the tooth preparation process.

Figure 4.9 Final configuration of the assembly.
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4.3 Simulation preparation: ANSYS Workbench

In the ANSYS Workbench, a Transient Structural analysis is created. In the Geome-
try tab, the saved SolidWorks CAD model is inserted. The configuration obtained from
SolidWorks, for most cases, performed well. However, for some setups tested, convergence
errors occurred on the region highlighted in Fig. 4.10. To overcome this, material was

Figure 4.10 Location of the most common convergence problems.

added at the location to spread what was believed to be an excessive load at the mentioned
region where the elements became excessively distorted. In the Design Modeler environ-
ment, which can be accessed by right clicking the Geometry tab and selecting Open with
Design Modeler, the material was added through revolution of the lateral faces. To each
side, a revolution, in degrees, given by 360

4·z was inserted. For that, an additional referential
was added, in relation to the default ones with an offset equal to the center distance.
Only then was the Revolve feature possible for the gear. This amount of material was
enough to prevent the same convergence error to happen in the following simulations, for
a transmission ratio of 1. The final geometry is shown, as seen in the Design Modeler
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environment, in Fig. 4.11. Having established the geometry of the model, the boundary

Figure 4.11 3D model geometry

conditions, contact definitions, meshing, solution and results will be discussed.

4.3.1 Boundary Conditions

Concerning the boundary conditions applied, the main features to be introduced are
presented in Fig 4.12. Given the attention that the contact requires, Section 4.3.2 will
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deal with it with the deserved detail. Two joints are added, one for the gear and one for

Figure 4.12 Boundary Conditions.

the pinion, both with the details shown in Fig. 4.13. This addition will allow each body
to fully behave according to a rotational DOF at its center, being the most appropriate
way to probe the most relevant results for this study. Both the pinion hub and gear hub
are connected with Body-Ground joints with all the DOF restricted except the rotation
around the Z axis.

(a) Pinion joint selections (b) Pinion joint details

Figure 4.13 Appropriate joint setup.

To ease the repetition of these steps in all the models prepared, which has to be done
separately, named selections, shown in Fig. 4.14 are created. The Gear and Pinion
selections include the whole bodies, individually but containing all the partitions for each
one. The Gear and Pinion Contact named selections correspond to the contact selection
of the contact and target faces and the Pinion and gear Hub are the selections that grant
an appropriate behavior of the model. Among all those created, the one remaining that
requires an exemplification is the selection that allows the joint referential to be created
at the designated location. By employing the selection shown in Fig. 4.15, the referentials
show up at the desired locations, respecting the center distance that was defined when
the assembly was created earlier. This selection allows a referential to be automatically
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Figure 4.14 Named selections.

Figure 4.15 Pinion referential selection.

created as shown in Fig. 4.16. If the same is done for the gear, it is expected that a
referential respecting the same rules is created for that body.
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Figure 4.16 Pinion referential.

4.3.1.1 Symmetry

A symmetry is added to the model dividing it in half through its width. Symmetry
planes, when existing, are widely used and extremely advantageous in finite element analy-
ses, specially when there are limitations on how many elements/nodes are allowed to exist,
which happens in the current work. This symmetry makes it possible to double mesh’s
density by halving the model’s volume, making it possible to analyze bigger models with
more detail. The symmetry plane added is shown in Fig. 4.17.

The symmetry plane can either be defined directly or have all the nodes comprising it
with movement along the Z direction, the direction normal to the rolling plane, restricted.
For a converged simulation, the displacements along the Z direction, on the face not
contained in the symmetry plane, can be seen in Fig. 4.18. The values are not zero and
the zones under compression and tension are easily identifiable and according to what
is expected. Once again, for a converged simulation, the displacements along the Z
direction, this time on the face contained in the symmetry plane, can be seen in Fig. 4.19
and their values are, practically, zero. This is indeed the expected behavior and provides
validation towards the symmetry approach.
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Figure 4.17 Symmetry plane.

Figure 4.18 Displacements along the Z direction.
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Figure 4.19 Displacements along the Z axis on the symmetry plane.
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4.3.2 Contact

A frictionless contact is adopted, since the main aspect regarding the transmission
error, load sharing and mesh stiffness is the normal force transmitted between the teeth
flanks. Some adjustments regarding the formulation and penetration between the bodies
are implemented to diminish the model’s sensitivity to the contact stiffness, as shown in
Fig. 4.20.

Figure 4.20 Contact Details.

The target and contact surfaces/bodies are selected as shown in Fig.4.21. The asym-
metric default option is kept to achieve convergence. A single contact surface-target sur-
face pair is created, known as an asymmetric contact or "one-pass contact". When the
symmetric option is chosen, two sets of contact pairs are generated. Each surface then
acts as both a contact and a target surface and this contact is also known as "two-pass
contact". This configuration is, naturally, less efficient, but many analysis benefit from it
when it comes to reducing penetration. In this case, the penetration reduction is achieved
by reducing the penetration tolerance value.

The Augmented Lagrange formulation is suitable for most problems and its wide cov-
erage makes it appropriate for a problem that does not perfectly fit in the categories in
which the other options excel. This formulation blends the Lagrange Multiplier method
with the Penalty formulation to compensate each other’s disadvantages. In this method,
the contact tractions (in this case pressure only, since there are no frictional stresses) are
augmented while iterating to achieve a final penetration within the defined tolerances.
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Figure 4.21 Contact Selection.

This method’s condition is better than that of the penalty method and shows less sen-
sitivity to the magnitude of the contact stiffness. A drawback in the method resides in
its need for additional iterations, specially in cases when the deformed mesh shows sig-
nificant distortion. The method is better than the pure Lagrangian method in terms of
computational cost.

Given the nature of how the initial contact is established, a proper detection method
must be selected. Contact detection at Gauss points is a very poor choice due to the fact
that one of the surfaces has a corner, which is the edge at the tooth tip, when the contact
begins. Although contact detection at nodes improves the quality of the simulation when
compared to the previous option, with smoother plots, it shows longer convergence times
and some instabilities for some surface combinations. Therefore, the latest added option
to the software and that also proves to be a major improvement is the Nodal-Projected
Normal from Contact, which overcomes the mentioned limitations. This option provides
good results without significant contact pressure spikes at nodes, a better convergence
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behavior if the contact surfaces are adequately meshed and the mesh is properly discretized
and leads to an overall better performance if both the surfaces in contact are meshed with
a similar mesh size, which is the case.

The normal penalty contact stiffness, known as FKN, plays a major role in the conver-
gence behavior of the model: lowering its value will ease the convergence. However, the
software provider recommends certain values depending on the problem at hands:

• FKN = 0.1 for problems dominated by bending deformation;

• FKN = 1.0 for problems dominated by bulk deformation;

• FKN = 10 for bonded surfaces.

The value of the normal penalty contact stiffness, Normal Stiffness Factor in the contact
details, is then chosen to better accommodate the effects that dominate this problem,
0.1, and has its value fixed to mitigate any effect on the mesh stiffness that is being
determined [23,24].

The contact stabilization damping, destined to nonlinear contacts (in this case, fric-
tionless), handles oscillations that may occur associated with the dynamic nature of the
problem, even though the speeds are kept quite small to achieve a quasi-static behavior. If
the value is kept at 0, which is the default value, the damping only activates under certain
circumstances and in the first load step only. If a value greater than 0 is used, the damping
applies to all the load steps. It is worth mentioning that the damping factor selected ap-
plies only to the normal direction. The Tangential damping factor is not directly shown in
ANSYS Mechanical, but it is unnecessary in this particular case. To avoid some common
convergence failures in non-linear problems involving contact, mainly caused by initial
gaps and oscillation between the two bodies, an initial contact is established through the
Adjust to Touch definition in the interface treatment. Mesh discretization often creates
artificial gaps between surfaces, even when the CAD model is built to have them touching
one another. This option removes the gap numerically by assuming that the surfaces are
in fact touching.

Given the nature of the problem in hands, alongside the boundary conditions defined,
the initial contact must be properly defined to avoid rigid body motion by making the
surfaces touch when handling the CAD model, which may jeopardize the whole analysis.
Even if the geometrical model appears to be touching, several issues may keep it from
converging or even begin simulating:

• the complexity of the profiles may make it harder to pinpoint the first point of
contact;

• the mesh may have small gaps between the elements on both sides of the element
pair, resulting from numerical round-off;
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• small gaps may exist between the integration points of the contact and target surfaces
elements.

However, there is also the possibility that the opposite may occur: too much initial pene-
tration between the contact and target surfaces can lead to an overestimation of the contact
forces and result in nonconvergence or even breaking-away of the contacting components.

It is, then, recommended to always verify the initial contact status in order to prevent
crashes that may be time consuming and quickly find out if adjustments need to be made
to the model.

4.3.3 Meshing

4.3.3.1 Element Order

Initially, the whole model was meshed with quadratic elements. The first geometries
did not allow for a structured mesh to be employed, so the model was completely meshed
with quadratic tetrahedral elements. This resulted in a large number of nodes that quickly
would exceed the node number limitation of the software. It was also present, from
the beginning, that the whole model did not require the same kind of refinement as the
contact area and work was done to decouple, as best as possible, the region that needed
the refinement and the region where the refinement would bear no benefit and would
misspend the additional nodes [25]. The quadratic elements did not pose an advantage
towards saving on the amount of nodes and a different choice was made. That being said,
the whole model, aside from the tetrahedral partition and the contact surfaces was meshed
with linear elements and the regions mentioned were meshed with quadratic elements.

4.3.3.2 Convergence

Convergence studies were employed to both the gear body and the refinement region.
The aim of this study was to establish:

• the number of elements in the body after which the increase in the density of the
mesh would not provide any benefit;

• the degree of refinement on the refined region beyond which the results would bear
little to no change;

• the amount of substeps that would lead to fewer numerical errors;

• the value of the torque that would lead to smoother results and no contact chattering.

Regarding the body mesh, several numbers of nodes were employed while the refinement
region mesh remained unchanged. Fig. 4.22 shows the overall number of nodes of each
mesh employed and the TE obtained, for a torque of 75 N·m. It becomes clear that the
number of nodes of the body bears little to no effect on the behavior of the TE curve.
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Figure 4.22 Body mesh convergence study.

The lowest density value was chosen to save as much elements/nodes as possible for the
refinement region, keeping in mind that reducing the body number of nodes further could
lead to numerical errors.

Then, the number of nodes on the refined region was studied. Although in some cases
the overall number of nodes was the same as the previous study, the majority of elements
was now concentrated on the surface where the contact would occur throughout the line
of action. Fig. 4.23, unlike the previous study, shows discrepancies between the different
numbers of nodes employed. Since the differences between the mesh with 550 thousand
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Figure 4.23 Refined mesh convergence study.

nodes and the one with 620 thousand nodes are negligible, the mesh with the lower amount
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of elements/nodes was chosen to reduce simulation time.
The number of substeps was studied, with the amounts set to those shows in Fig. 4.24.

As the amount of substeps increased, so did the numerical errors, corresponding to the
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Figure 4.24 Substep number study.

peaks that deviate from the expected parabolic behavior of the curve. It was then decided
that 30 substeps would be the most appropriate choice. Finally, several values of torque
were studied, being the results obtained in Fig. 4.25. From the obtained results, the value
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Figure 4.25 Torque value study.

of 100 N·m, for the standard gear, proved itself to be promising regarding the mitigation
of numerical errors and the possibility of contact shattering.
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4.3.3.3 Final Configuration

In this section, the final mesh adopted, how it looks and some additional regards con-
cerning how it is obtained are presented. In Fig. 4.26, the relevant mesh details employed
are shown. To avoid distorted elements, which is common in cases where the magnitude

Figure 4.26 Mesh Details.

of refinement necessary is considerable, it is mandatory to make the Span Angle Center
fine.

Given the geometry of the involute profile and its curvature, Mesh Defeaturing, which
would remove features smaller than the value selected, is disabled. A Defeature Size option
would appear otherwise, but it is not relevant here [26].

It is widely known that complex geometries benefit from tetrahedral elements to be
fully and more easily discretized. However, a structured mesh is much harder to obtain
in such cases and these elements are more susceptible to problems such as shear locking.
Throughout the testing phase, the simulations manifested a better behavior in the tran-
sition between the refined and non-refined zone by generating a tetrahedral mesh, which
justifies the patch conforming method adopted and that will be discussed alongside the
remaining choices for the mesh generation. The refined zone, which includes the contact
elements presented earlier, consists of hexahedral elements only: this leads to an even
discretization of the contact surface both along the line of action and along the width of
the gear and greatly improves the results output and their post processing and analysis,
if discrete lines or points on the model are the object of analysis.

However, throughout the testing phase, a mesh consisting of quadratic tetrahedral ele-
ments and linear hexahedral elements was implemented to provide a better understanding
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on whether this measure would compromise the results or end up saving resources. The
output desired manifested little to no deviation and the stress distribution on the model
was acceptable. Provided the aim of the study is not the value of stresses developed
throughout the contact, this mesh configuration was adopted. This lead to the appear-
ance of quadratic pyramid elements. These elements establish the connection between
linear hexahedra and quadratic tetrahedra. Studies [25] show that these elements provide
much better transitions and allow a conforming mesh. This measure grants a quality mesh
despite the lower order of the majority of the hexahedral elements. The applied mesh fea-
tures, Edge Sizings, to provide better control of the number of elements and guaranteeing
a structured mesh by keeping opposite sides of the partition with the same amount of
divisions is shown in Fig. 4.27. The model is then meshed with:

Figure 4.27 Edge sizings applied to generate the mesh.

1. Non refined region width sizing, 14 divisions;
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2. refined region width sizing, 35 divisions;

3. Edge sizing with 55 divisions;

4. Edge sizing with 15 divisions;

5. Edge sizing with 30 divisions;

6. Edge sizing with 35 divisions;

7. Edge sizing with 85 divisions;

8. Edge sizing with 25 divisions;

9. Edge sizing with 30 divisions.

The final configuration of the mesh is shown, in Fig. 4.28. Each separate partition is
shown in Fig. 4.29. In Fig. 4.29a, the upper left partition is shown, being meshed with
linear hexahedral elements. In Fig. 4.29b, the upper right partition, which is meshed
with tetrahedral quadratic elements is shown. Fig. 4.29c shows the lower left partition,
meshed with linear hexahedral elements and Fig. 4.29d shows the lower right partition,
meshed with the same type of elements. The extra part, added to all the models through
Revolution, is shown in Fig. 4.30 and is also meshed with linear hexahedral elements.
In the final mesh configuration, the hub and tooth flank without contact are left with
rather bigger elements. Fig. 4.31 shows the final mesh on the refined region. Since
the bias factor that was initially applied to the refined region lead to aspect ratios that
compromised simulations, it was completely removed. As such, no edge sizing on the
model has bias in the number of divisions. Fig. 4.32 shows the improvement of the aspect
ratio when the bias is removed. The existing bias leads to a maximum aspect ratio on
the refined region of 16.591, which is excessive on the most loaded area of the model, and
removing the bias leads to an aspect ratio of the elements of about 6.6 throughout the
whole refined region.

Fig. 4.33 shows the stress distribution in one of the starting models. For comparison,
Fig. 4.34 shows the stress distribution on one of the final models. Even though the stresses
are not a focus of this study, a superficial comparison of the developed contact stresses was
employed and the relative error when compared to the Hertzian contact model changed
from about 80% in the earlier stages to about 5% in the final stages.
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Figure 4.28 Final mesh configuration on the pinion.
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(a) Top left partition (b) Top right partition

(c) Bottom left partition (d) Bottom right partition

Figure 4.29 Different partitions into which the geometry is divided.

Figure 4.30 Additional partition added through revolution.
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(a) Isometric view of the discretized refined region

(b) Side view of the discretized refined region

Figure 4.31 Refined region mesh.
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(a) Side view of the refined region with a bias factor of 5

(b) Side view of the refined region without bias

Figure 4.32 Influence of the bias factor on the aspect ratio of the elements.
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Figure 4.33 Von-Mises Stress distribution on the initial models in MPa.

Figure 4.34 Von-Mises Stress distribution on the final models.
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4.3.4 Solution and Results

Before running the simulation, the Analysis Settings adopted are summarized in Fig. 4.35.
Since the boundary conditions and applied loads do not change throughout the simulation,
a single step is enough. Its definition should be set to Substeps, allowing the number of
substeps to be manually chosen by disabling the Auto Time Stepping. The Time Inte-
gration is turned off to accomplish the same goal as the simplification employed in the
equations 3.24 and 3.25. Alongside this adjustment, the Large Deflection option is en-
abled and the Weak Springs are turned off, being useful and necessary only in particular
cases. The Software provider recommends keeping Large Deflection option activated at
all times except in the few cases when the deflection phenomena are considerably small.
The Moderate Speed Dynamics option is selected, making it necessary to add a damping
coefficient in the contact details, with a value of 0.05. This value was kept constant for all
the simulations.

Finally, depending on the desired results, the Output Controls ought to be adjusted to
properly provide the data that better fits the user’s goals. In this study, Surface Stresses,
Contact Data and Nodal Forces play a major role in the parametric analysis that follows
the numerical simulation. The value of the rotation speed and torque are only assigned
at this stage. Figs. 4.36a and 4.36b show the details of the joints at the point where these
values must be introduced.

In order to fully analyze the contact evolution, an appropriate value of the rotational
speed is required. The angular velocity, associated with the value of the Step Time, must
match the angle of the arc associated with the length AB , keeping in mind the involute
geometry and its inherent relations. This angle can be calculated exactly as shown in
Eqs. 4.1 to 4.4,

γ = φ− φ1 (4.1)

φ = arctan
(
T1B

rb1

)
(4.2)

T1B = T1A+ εα · pb (4.3)

γ = arctan
(
T1A

rb1

)
(4.4)

Fig. 4.37 shows the schematic that allows the quantities to be visually understood. For
a rotational speed of 0.09 rad/s, Eq. 4.5 allows the determination of the total simulation
time.

ω = φ1
t

(4.5)

The value of the rotation speed must be kept very low to validate a quasi-static analysis,
which is the case in the present work. The value of the simulation time must be adjusted
for each geometry, seeing that γ is calculated with parameters that depend on the changes
verified for many models. It is advised to keep the chosen Step Time value slightly smaller
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(a) First set of settings (b) Second set of settings

Figure 4.35 Analysis settings.

than that which is calculated in order to prevent unrestricted motion in the final instants
of the simulation and lead to failure of the simulation. Fig. 4.38 shows the consequences
of neglecting such detail in the developed model.
It is not uncommon for the total structure error to reach values of about 20 mJ in cases
where this happens.

The selection of the resistant torque is a crucial aspect of the setup. If the value chosen
is too small, numerical problems, namely contact chattering, may occur. This problem is
also associated with the normal penalty contact stiffness, FKN, values being too high.
This problem may often compromise the whole analysis. A very common error, elements
turning inside out, occurs when the load, locally, induces loads that distort the elements
excessively. Those elements would, then, lose their shape, which would compromise the
simulation. There are several possible causes: either the boundary conditions are not
properly defined, the element quality, mainly in respect to aspect ratio, is poor or not
high enough to withstand the effects of the load and/or the number of nodes is lower
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(a) Pinion joint

(b) Gear joint

Figure 4.36 Assigning values of torque and rotation speed.

than what was necessary. Having aspect ratios lower than 10 for the elements that make
up the refinement region prevented it from happening at that location. The rest of the
model, having a lower local load applied than the previously mentioned elements, showed
a better tolerance to that mesh metric. A maximum empirical threshold value of 30 was
preserved as the simulations were progressing as a result of the number of them that failed
to converge and the debugging process they necessarily went through. Naturally, the
Software Provider highly recommends that the unconverged solutions are strictly used for
debugging purposes, which renders them useless for any other goal than to finally reach
convergence.

The results for post processing are then obtained in spreadsheet form in the Workbench
environment/window when the adequate probe was selected, where a value of the relative
rotation for each body is obtained for each substep and a value of the torque is obtained
the same way for the same substeps. The main values that the model is implemented
to provide can be obtained from the Probe option, selecting the Relative Rotation. Two
different Probes are created: one for the pinion relative rotary displacement and a similar
one for the gear. The probes should be defined as shown in Fig. 4.39, selecting the other
joint for the gear case. To evaluate the stresses associated with the transmission error,
an extra Probe is created for the Equivalent Stress. A probe for the torque in the pinion
is also necessary to allow the calculation of the gear mesh stiffness.
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Figure 4.37 Meshing schematic.

4.3.5 Special Cases

For the models with a transmission ratio different than 1, I2 and I3, the error that
occurred in the zone shown in Fig. 4.10 happened even when a small amount of additional
material was added. After many values of torque tested, refined region configurations and
local refinements on the error zone, the only way of achieving convergence was keeping
the whole hub, as shown in Fig. 4.40. Although this measure solved the convergence
problem, it can be seen in Fig. 4.41 that the structural error has its maximum value
at the location where the convergence error occurred. This is an indicator that, if this
region was being analyzed, the refinement of the mesh, locally, should be enough to lower
value of this structural error. Some models, having a smaller thickness at the tooth tip,
namely K02 and PROFI12, had their refined region reaching the vertical line dividing the
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Figure 4.38 Abnormal distortion of the mesh.

Figure 4.39 Relative rotation probe details for the pinion.

partitions of the tooth, like the example shown in Fig. 4.42. In such cases, the aspect
ratios of the tetrahedral elements on the partition close to the refined region would reach
unacceptable values (empirically, over 35 on a non directly loaded region). To overcome
that problem, the refined region was adjusted as shown in Fig. 4.43. This way, most of the
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Figure 4.40 Preserved body of the gear with 60 teeth.

high stresses would still fall on the refinement region and the aspect ratio of the elements
would remain acceptable. The modified refined region can be obtained from the original
refined region in the Design Modeler by merely cutting the original and merging the top
cut part with the tetrahedral mesh partition. The cut can be performed through a plane
that is perpendicular to the tooth flank and contains the top edge on the side of the refined
region.

4.3.6 Validation

The validation requires a verification of the developed contact stresses and their com-
parison with the values calculated through the Hertzian contact model, which was pre-
sented earlier. As said, the final models reached relative errors with values around 5%,
which is enough to validate the model. Another metric is the structural error.
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Figure 4.41 Structural error of the body of the gear with 60 teeth.

Figure 4.42 Model with a refined region intersecting the central partition section.
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Figure 4.43 refined region modification.
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4.3.6.1 Structural Error

For Displacement-Based problems, category into which the problem at hands fits,
the ANSYS software approximates error with a similar technique to the one given by
Zienkiewicz and Zhu [27] and the theory behind it is presented in Appendix A.

Empirically, it was seen that models that converged without issues had total values of
this error that did not exceed 10−1 mJ.

Models that converged but did require some attention or had previous convergence er-
rors have values of about 1 mJ or slightly higher, to which is recommended some attention.
This became the maximum tolerable value for all the models.

Finally, models that did not converge or behaved abnormally manifested total errors
of about 20 mJ. This value is unacceptable and the simulations where they occurred were
discarded. Those were altered until the error value was within tolerable limits, the two
mentioned above.

The validation also requires a verification of the developed contact stresses and their
comparison with the values calculated through the Hertzian contact model, which was
presented earlier. As said, the final models reached relative errors with values around 5%,
which is enough to somewhat validate the model.
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Chapter 5

Results and Discussion

In this chapter, the results and their respective discussion are included. Abnormal
results and the influence of the input parameters are evaluated in order to reach some
conclusions regarding the setup implemented and proposed values of R in the literature
analyzed. The result treatment is handled at first, including a relevant coordinate shift.
Finally, the discussion of the obtained results is presented.

5.1 Results

The results for the standard gear are presented to exemplify what kind of curves are
expected to be obtained. Some other results are presented since they require further ex-
planation or discussion. The curves corresponding to models that behaved according to
the expectations and did not manifest relevant particularities are contemplated in Appen-
dice B.

5.1.1 Coordinate Shift

To maintain consistency, the time coordinate must be converted into the ξ coordinate
presented alongside the analytical model to be calibrated. This can be easily done by
trigonometric relations on the gearing schematic shown in Fig. 5.1. Both x and t are
linear quantities and therefore a relation can be established. By analyzing the triangle
defined by the points T1, A and the center of rotation of the pinion, the relation presented
in Eq. 5.1 can be established.

tan(γ + ωt) = T1A+ x

rb
(5.1)

Recalling that the ξ coordinate can be associated to x, length along the line of action,
through Eq. 5.2,

x = ξ · pbt (5.2)
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Figure 5.1 Schematic for the coordinate shift.

the variable ξ can be obtained through t by the expression presented in Eq. 5.3.

ξ = rb tan(γ + ωt)− T1A

pbt
(5.3)

5.1.2 M4_5

Fig. 5.2 shows the transmission error and mesh stiffness distributions with the ξ coor-
dinate for the M4_5 model and Fig. 5.3 shows its normalized mesh stiffness distribution
in relation the maximum value verified. The mesh stiffness is calculated from the trans-
mission error through the relations established in Eqs. 3.27 and 3.28. Since the pinion is
equal to the gear, which happens to most of the studied models, a symmetric behavior of
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the transmission error and mesh stiffness is expected. Regarding the numerical errors, the
selections made during the convergence study should keep them under control, but not
make them disappear completely.
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Figure 5.2 Numerical results of the M4_5 model.
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Figure 5.3 Normalized mesh stiffness of the M4_5 model.

5.1.3 ER1

Fig. 5.4 shows the transmission error and mesh stiffness distributions with the ξ co-
ordinate for the ER1 mode and Fig. 5.5 shows the normalized mesh stiffness distribution
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for that same model. From the presented curves and in comparison to the other curves
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Figure 5.4 Numerical results of the ER1 model.
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Figure 5.5 Normalized mesh stiffness of the ER1 model.

obtained, or rather the ones obtained for the standard gear, this result deviated from the
expectations. Instead of a parabolic behavior, the transmission error and consequently
the mesh stiffness followed a curve with a trapezoidal shape in the middle of the contact
path. The first step towards verifying its validity was the value of the structural error.
The models that converged properly, up to this point, had structural errors that did not
exceed 10−3 mJ. Since the same happened to this model, something else was causing the
inaccuracy, in case this behavior was not realistic. By checking the torque, its values
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along X and Y were not zero, as shown in Fig. 5.6, which is not the expected result. In

Figure 5.6 Torque along the X, Y and Z directions for the initial simulation.

the same model, the contact status, as shown in Fig. 5.7 showed that there was a region
without contact between two other regions where contact was happening. The red region
shows where the contact between the two bodies is happening and the green region shows
where the the contact is not happening. To understand the origin of these issues, an-

Figure 5.7 Contact status of the initial simulation of the ER1 model.

other model was prepared, with a more refined mesh on the refinement region For that
model, the torque values on the pinion are shown in Fig. 5.8. Since the values are sig-
nificantly lower, one can safely, to some degree, say that the previous issues were due to
some numerical problem in the mesh. The contact status also improved, as can be seen in
Fig. 5.9.
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Figure 5.8 Torque along the X, Y and Z directions for the refined simulation of the ER1
model.

Figure 5.9 Contact status of the refined simulation of the ER1 model.

That being said, the results obtained may depict what happens in models with end
relief modifications applied. As follow up, it is important to explain this behavior and
understand why it happens. A gear pair with a width equal to that of the width in
contact when end relief is applied would behave in a different way, necessarily. This
happens because there is a convective effect associated with the excess material that exists
when in the end relief case, even though it plays no active part in the contact region. In
a FEM model, this would be a consequence of elements in the stiffness matrix outside its
main diagonal.

5.1.4 ER2

This model showed a very similar behavior to the ER1 model. Once again, Fig. 5.10
shows the transmission error and mesh stiffness curves and Fig. 5.11 shows the normalized
mesh stiffness distribution also in relation the maximum value verified.
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Figure 5.10 Numerical results of the ER2 model.
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Figure 5.11 Normalized mesh stiffness of the ER2 model.

5.1.5 ER1M45

To further investigate this abnormal behavior, a model containing a gear with an end
relief on the pinion position and a gear with the dimensions of the standard gear on the
gear position was implemented. Figs. 5.12 and 5.15 show the same curves presented for the
previous models. The curves show a behavior that resembles the models with end relief
on both gears, but closer to a parabola than both of them. A gear pair with a width equal
to that of the width in contact when end relief is applied would behave in a different way,
necessarily. This happens because there is a convective effect associated with the excess
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Figure 5.12 Numerical results of the ER1M45 model.
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Figure 5.13 Normalized mesh stiffness of the ER1M45 model.

material that exists when in the end relief case, even though it plays no active part in the
contact region. Since the structural error was within the empirically established reasonable
values, this is, for now, the most plausible explanation for the abnormal behavior. The
torque along the X and Y directions was also negligible, which did not appear as a possible
issue. Further information concerning this hypothesis can be found in reference [28].
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5.1.6 Summary

Table 5.1 summarizes the main results taken from the simulations done. The curves
that served as a source for these values are presented in Appendix B.

Table 5.1 Relevant values of the stiffness distributions for the simulated models.

Model αk(ξ = 0) αk(ξ = εα) Kmax × 10−5 /N·mm−1

M1_75 0.6606 0.6804 1.2325
M2_5 0.6620 0.6870 1.2328
M4_5 0.6594 0.6802 1.2329
M8 0.6548 0.7334 1.2328
M12 0.6632 0.7334 1.2328

PROFI11 0.6023 0.6735 1.2791
PROFI12 0.5537 0.7135 1.2768
PROFI21 0.6720 0.7468 1.1050
PROFI22 0.6824 0.7465 1.0018
PROFI31 0.6719 0.7398 1.1448
PROFI32 0.6781 0.7475 1.1448

I2 0.6005 0.7406 2.6940
I3 0.5777 0.7856 4.3244
C20 0.6826 0.7727 1.3108

CORR1 0.7121 0.7177 1.2374
CORR2 0.6909 0.7300 1.2741
K01 0.6023 0.6735 1.2791
K02 0.5530 0.7135 1.2768
ER1 0.6395 0.7256 1.1316
ER2 0.549 0.6804 1.3742

ER1M45 0.6754 0.8117 1.0121
CR1 0.7450 0.8194 0.5963
CR2 0.7297 0.8403 0.4713

The symmetry of the curves can be analyzed considering the proximity of the values
of αk at each value of ξ considered. Some models, made of equal gears on the pinion
and gear positions, do present a fairly symmetric behavior. However, some models that
share the same property do not, and that may be something worth analyzing, as effects
not taken into account may be responsible for such results. Models where material is
added in comparison to the standard gear manifest a higher mesh stiffness. This does not
happen to the gears where the module is changed because everything is scaled, including
the load, leading to the same results. It is also worth noting that the value of αk for
ξ = εα suffers some changes throughout these models when it was expected to remain the
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same. The increase in mesh stiffness in the models with a different gear ratio is a result
of a bigger overall volume without having the teeth overall size varying accordingly. The
crowning profile modification models, having a different contact type than all of the other
models, may not be analyzed under the same scope. It is believed that in this case, the
penetration plays some part in the obtained results and more models with the crowning
profile modification should be developed to mitigate this effect and establish a closer
comparison. However, the present results are already insightful regarding the expected
behavior of models containing this profile modification and are a very useful tool in order to
start studying this case with more detail. The end relief profile modification is the aspect
that requires the most attention, regarding the geometrical parameters, given the fact
that its behavior is the most abnormal. Regarding the remaining models, the results do
not deviate much from the expectations concerning the symmetry and maximum stiffness
values. As such, the results for all of the models are presented for further analyses and
the maximum stiffness is presented for quick comparisons and possible validations.

5.2 αk parameter

The values presented give valuable information concerning the symmetry of the ob-
tained curves and the maximum values of the gear mesh stiffness. These obtained values
can be used for further comparison with other methods, highlighting ISO 6336-1 Method
B in this matter. The gears pairs made of equal gears shows a more symmetric behavior,
whereas the gear pairs where the pinion is different than the gear show a more asymmetric
behavior, which was believed that would happen. Understanding the influence of each pa-
rameter on the value of the second column of the Table 5.1 is crucial. From Eq. 5.4, a linear
regression of the numerical point for each studied parameter is presented in Fig. 5.14.

αk = a0 ·Y∗ + a1 (5.4)

The first information towards determining the influence of each parameter on αk should
be the value of the slope of the linear regression of the numerical values. Then, looking
at the numerical values themselves, determine if the information of the linear regression is
accurate enough concerning the influence of the parameter. While for most cases the first
information is enough, looking at the discrete numerical values for both cases where axial
profile modifications are applied, the parameter studied in each of them plays a significant
role and therefore its influence must be taken into account.

From this information, it can be seen that:

• the module;

• the root radius factor;
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Figure 5.14 Influence of the geometrical parameters on the αk parameter.
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Figure 5.15 Influence of the contact ratio on the αk parameter.

• the gear ratio;

• the dedendum factor;
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Table 5.2 Coefficients for the approximations for the first set of numerical points.

Parameter a0 a1

m 2.076·10−6 0.6600
hap -0.5285 1.1865
hfp 0.1150 0.5160
ρfp -0.0844 0.6931
i -0.0409 0.6942
k -0.5320 0.6581
LC 0.0533 0.6262
Cβ 0.3515 0.6762
x 0.0099 0.5931
εα -0.2384 1.0251

• the profile shift coefficient,

bear little influence on the value of αk. On the other hand,

• the addendum factor;

• the tip alteration alteration factor;

• the crowing profile modification;

• the end relief profile modification;

• the contact ratio, possibly as a consequence of other factors,

do play a significant role in its value. From this separation, the follow up measure would
be the establishment of a dimensionless parameter, including all the relevant geometrical
parameters, of which αk could be a function of. Later on, the parameters with lower
influence could be included, with the exception of the module that evidently has little
to no contribution on the matter. Since the profile modifications shift the value of αk
vertically, this function could include a parcel including, exclusively, the parameters that
are responsible for the axial profile modifications. Fig. 5.16 shows the numerical results
obtained and the curve obtained when replacing the average value ofR for all the numerical
points in Eq. 2.87, which has a value of 0.3943. From the presented results, the values of
αk are slightly higher for the gears with corrections, which have lower contact ratios. This
behavior contradicts that of the αk = f(εα) curve for those same values of εα. Increasing
the contact ratio leads to lower values αk, and lowering its value leads to higher values of
αk. However, for the same value of εα, there are several values of αk, as seen in Fig. 5.17.
This means that, against what is mostly stated in the literature, αk cannot be a function
of εα alone, making the previous comment concerning the inclusion of the most relevant
geometrical parameters in the definition of αk even more important. Fig. 5.17 also shows
how the numerical results behave in comparison with the other curves proposed.
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Figure 5.16 Variation of the αk parameter with the contact ratio in terms of R [13].

From these results, one can either establish which curves are more appropriate for each
case or consider the proposed value of R for implementations. Nonetheless, this is far from
a final stage of the desired state of this work and the focus should remain on the proposed
future works.

As an additional regard, the tip alteration modifies the height of the teeth, while
keeping the remaining profile parameters the same. In practical terms, this means that
the parabola should begin earlier or later and end earlier or later when compared to the
parabola of the same tooth, with the same parameters, without the tip alteration. Clearly,
this has an impact in αk and, by varying it with a certain rule, should be something worthy
of further investigation. The present results may be the starting point of such investigation,
but more models with a wider variety of the discrete values of the geometrical parameter
should be simulated for that matter.
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Figure 5.17 Different curves for the determination of αk [13].
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Chapter 6

Conclusions and Future Works

In this final chapter, some conclusions about the obtained results are presented to
summarize the information that this work provided. Based on these conclusions, some
future works are proposed to enrich the work done here and culminate some results that
have no apparent/conclusive cause.

6.1 Main Conclusions

With this work, several conclusions can be reached. First, αk must be a function of
parameters other than εα. On that note the addendum factor, the tip alteration factor,
the crowing profile modification, the end relief profile modification and the contact ratio
have significant influence on the αk value. The module, the root radius factor, the gear
ratio, the dedendum factor and the profile shift coefficient (on the gear, having the biggest
variation amplitude) have little to no influence on the αk value.

It can also be concluded that profile modifications in the axial direction have great
influence on both the value of αk and the shape of the gear mesh stiffness distribution.

It can be hypothesized that tip alteration can be condensed in a personalized starting
and ending point of the unaltered gear mesh stiffness curve. However, further work would
need to be done to reach tangible conclusions on the definitive influences of the parameter
on the mesh stiffness curve and verify if such a rule can be established.

6.2 Future Work

The step that necessarily follows this work is establishing a law of variation of αk that
includes every parameter of relevant influence. Describing the parameter as a function of a
dimensionless value comprised by those influential parameters would be an ideal scenario.
That way, the limitation of the multiple values of αk for the same value of εα would
no longer exist and effects not taken into account until now would be considered. It is
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expected that such improvement would allow the model to acquire a wider coverage of
cases with smaller approximation errors.

The comparison of the obtained values with the ISO 6336-1 Method B would also
provide an insight of the accuracy of the developed model while allowing to estimate how
the estimations deviate from one another, while reaching conclusions from that analysis.

As a necessary follow-up, implementing the improved model and comparing it to ex-
isting results would be an indicator of whether steps back should be taken or if moving
forward is possible.

Even though the range of contact ratios includes the vast majority of applications
regarding this value alone (most gears considered here could not be used in real life ap-
plications), extending this range would lead to a more elegant and complete definition of
the model, which should also be a goal worth consideration.

Extending this analysis to helical gears is of the utmost importance, given the wide
variety of applications that benefit from this technology.

The current FEM models contain information regarding the load distribution along
the width; however, accessing and handling this information requires significantly more
time than the information handled throughout this work. As such, analyzing that already
existing information would enrich the work at hands and the approximated analytical
model presented, which handles that problem. In addition to that, recent literature stated
that the equivalent cylinders approach is not the most appropriate to deal with load sharing
problems in spur gears contact. It would be interesting to implement a static model
comprised of two cylinders, the equivalent cylinders, and compare the results obtained
with the full geometry and the simplification to reach some verification.
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Appendix A

Zienkiewicz-Zhu estimator

The Zienkiewicz-Zhu (ZZ) estimator is a popular estimator that compares a recovered
gradient with the original gradient to compute the error. It computes the improvement
of the gradient of the numerical solution through post-processing procedures [27, 29]. Al-
though its applications were limited to isotropic meshes, recent studies have been aiming
to widen the window of applicability, extending the ZZ to anisotropic meshes, which have
a much less developed error estimation theory. The ZZ estimator’s popularity is not for
naught:

• the ZZ estimator is relatively cheap, since it uses a recovered gradient which is often
computed even when it is not used

• the ZZ estimator, in numerical experiments, is extremely robust, which explains the
variety of problems that can profit from this error estimation approach

The Displacement-Based finite element formulation assumes continuity that results in a
continuous displacement field from element to element. However, this property is not kept
for the stress field, which ends up discontinuous. Obtaining acceptable stresses becomes
one extra task, involving the calculation of the elements’ nodal stresses average and then
returning to a single element’s domain. Doing this for every element of the model makes it
possible to infer on convergence/quality of the simulation. For context, the formulation on
which the error calculation algorithm is based will be briefly presented. First, the stresses
at each node of the element are used to compute

{∆σin} = {σan} − {σin} (A.1)

where:
{∆σin} = stress error vector at node n of the element i;
{σan} = averaged stress vector at node n, calculated as stated in Eq. A.2;
{σin} = stress vector of node n of the element i.
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{σan} =

Nn
e∑

i=1
{σin}

Nn
e

(A.2)

Once obtained, the stress error vector is used to determine, for each element,

ei = 1
2

∫
V ol
{∆σ}T [D]−1 {∆σ} d(V ol) (A.3)

where:
ei = energy error for the element i;
V ol = Volume of the element;
[D] = stress-strain/constitutive matrix evaluated at reference temperature;
{∆σ} = stress error vector at the relevant and needed points, evaluated from all the stress
vectors, {σn}, of the element.

Then, over the whole model, the error is given by

e =
Nr∑
i=1

ei (A.4)

where:
e = energy error over the entire model;
Nr = number of elements in the model.

The program also allows the error to be normalized in terms of the strain energy and
the energy error for a single element can be used for adaptive mesh refinement to achieve
"error equilibration", a concept that describes a situation where ei is equal for all elements.



111

Appendix B

Transmission Error and Mesh
Stiffness Curves

In this appendix, the curves with the distribution of the transmission error, mesh
stiffness and normalized mesh stiffness for every simulated model are shown in order to
provide some complementary information concerning the results presented.
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Figure B.1 Numerical results of the M1_75 model.
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Figure B.2 Normalized mesh stiffness of the M1_75 model.
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Figure B.3 Numerical results of the M2_5 model.
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Figure B.4 Normalized mesh stiffness of the M2_5 model.
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Figure B.5 Numerical results of the M4_5 model.
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Figure B.6 Normalized mesh stiffness of the M4_5 model.
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Figure B.7 Numerical results of the M8 model.
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Figure B.8 Normalized mesh stiffness of the M8 model.
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Figure B.9 Numerical results of the M12 model.
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Figure B.10 Normalized mesh stiffness of the M12 model.
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Figure B.11 Numerical results of the PROFI11 model.
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Figure B.12 Normalized mesh stiffness of the PROFI11 model.
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Figure B.13 Numerical results of the PROFI12 model.
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Figure B.14 Normalized mesh stiffness of the PROFI12 model.
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Figure B.15 Numerical results of the PROFI21 model.
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Figure B.16 Normalized mesh stiffness of the PROFI21 model.
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Figure B.17 Numerical results of the PROFI22 model.
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Figure B.18 Normalized mesh stiffness of the PROFI22 model.
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Figure B.19 Numerical results of the PROFI31 model.
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Figure B.20 Normalized mesh stiffness of the PROFI31 model.
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Figure B.21 Numerical results of the PROFI32 model.
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Figure B.22 Normalized mesh stiffness of the PROFI32 model.
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Figure B.23 Numerical results of the I2 model.
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Figure B.24 Normalized mesh stiffness of the I2 model.
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Figure B.25 Numerical results of the I3 model.



124 Transmission Error and Mesh Stiffness Curves

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure B.26 Normalized mesh stiffness of the I3 model.
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Figure B.27 Numerical results of the C20 model.



125

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure B.28 Normalized mesh stiffness of the C20 model.
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Figure B.29 Numerical results of the CORR1 model.
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Figure B.30 Normalized mesh stiffness of the CORR1 model.
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Figure B.31 Numerical results of the CORR2 model.



127

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure B.32 Normalized mesh stiffness of the CORR2 model.
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Figure B.33 Numerical results of the K01 model.
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Figure B.34 Normalized mesh stiffness of the K01 model.
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Figure B.35 Numerical results of the K02 model.
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Figure B.36 Normalized mesh stiffness of the K02 model.
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Figure B.37 Numerical results of the ER1 model.
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Figure B.38 Normalized mesh stiffness of the ER1 model.
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Figure B.39 Numerical results of the ER2 model.
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Figure B.40 Normalized mesh stiffness of the ER2 model.
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Figure B.41 Numerical results of the ER1M45 model.
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Figure B.42 Normalized mesh stiffness of the ER1M45 model.
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Figure B.43 Numerical results of the CR1 model.
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Figure B.44 Normalized mesh stiffness of the CR1 model.
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Figure B.45 Numerical results of the CR2 model.
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Figure B.46 Normalized mesh stiffness of the CR2 model.


	Front Page
	Contents
	Notation
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Main Goal
	1.3 Outline

	2 Gear Mesh Stiffness
	2.1 Brief History
	2.2 Mesh Stiffness
	2.3 Mesh Stiffness and Load Sharing Models
	2.3.1 Potential Energy Method
	2.3.2 Method B - ISO 6336-1-2006
	2.3.3 Finite Element Models
	2.3.4 Hybrid Model
	2.3.5 Experimental Determination of Gear Mesh Stiffness

	2.4 Approximated Analytical Model
	2.4.1 Description on the length of the contact lines
	2.4.2 Quasi-static elastic model
	2.4.3 Load sharing and the free parameter importance and determination


	3 Gear Geometry and Simulation Landscape
	3.1 Geometric Parameters
	3.1.1 Module
	3.1.2 Pressure angle
	3.1.3 Gear ratio and number of teeth
	3.1.4 Tip alteration
	3.1.5 Profile
	3.1.6 Profile Modifications
	3.1.7 Contact Ratio

	3.2 Parameter Matrix
	3.3 Hertzian contact model
	3.4 Torsional Model

	4 Simulation preparation and setup
	4.1 Tools
	4.2 Gear Geometry Definition
	4.2.1 Geometry Generation
	4.2.2 Geometry Manipulation

	4.3 Simulation preparation: ANSYS Workbench
	4.3.1 Boundary Conditions
	4.3.2 Contact
	4.3.3 Meshing
	4.3.4 Solution and Results
	4.3.5 Special Cases
	4.3.6 Validation


	5 Results and Discussion
	5.1 Results
	5.1.1 Coordinate Shift
	5.1.2 M4_5
	5.1.3 ER1
	5.1.4 ER2
	5.1.5 ER1M45
	5.1.6 Summary

	5.2 k parameter

	6 Conclusions and Future Works
	6.1 Main Conclusions
	6.2 Future Work

	References
	Appendices
	A Zienkiewicz-Zhu estimator
	B Transmission Error and Mesh Stiffness Curves

