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Resumo 
 

O intervalo normal de valores basais de saturação regional de oxigénio cerebral (rSO2) e 

as variáveis que o podem afetar ainda são um assunto controverso. Frequentemente, os 

dados existentes encontram-se relacionados com um tipo específico de cirurgia. O objetivo 

deste estudo consistiu na avaliação dos valores basais de rSO2 em doentes com mais de 

65 anos de idade de várias áreas cirúrgicas e na identificação de variáveis relacionadas 

com esses mesmos valores. 

Foi realizada uma análise secundária de um estudo prospetivo realizado entre os dias 23 

de julho de 2017 e 2 de maio de 2019. Doentes com ≥ 65 anos com cirurgia eletiva 

programada foram abordados previamente à cirurgia. O outcome primário foi o valor basal 

de rSO2 medido usando o monitor INVOSTM 5100C. Variáveis pré-operatórias que 

pudessem influenciar o valor de rSO2 foram consideradas para a análise univariada e 

multivariada. 

Duzentos e cinquenta e quatro doentes foram incluídos na análise. O rSO2 basal foi de 64 

[11] (mediana [IQR]), variando entre 29% e 84% num coorte de doentes com 73 [10] anos 

de idade. Cento e quarenta e dois doentes (56%) foram classificados como estado físico 

de acordo com a American Society of Anesthesiologists (ASA) 2 e a concentração de 

hemoglobina foi de 13 [3] g/dL. Na análise multivariada, valores mais baixos de rSO2 foram 

associados a concentração de hemoglobina mais baixa (OR = 0.966, IC 95% (0.956 a 

0.976), P <0.001) e a uma classificação do estado físico ASA mais alta (OR = 0.967, IC 

95% (0.935 a 0.999), P = 0.047). 

Os nossos resultados são compatíveis com os dados existentes, podendo contribuir para 

a definição de um intervalo normal de valores basais de rSO2 no futuro. A concentração de 

hemoglobina e o estado físico ASA foram identificados como variáveis independentes 

associadas ao valor basal de rSO2. 
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Abstract 
 
A normal range for baseline regional cerebral oxygen saturation (rSO2) values and the 

variables that may affect it are still subject to controversy and often related to a specific type 

of surgery. The aim of this study was to evaluate the baseline rSO2 in a cohort of elderly 

patients across multiple surgical areas and to identify variables associated with these 

values.  

A secondary analysis of a prospective study that was conducted between July 23, 2017 to 

May 2, 2019 was performed. Patients with ≥ 65 years scheduled for elective surgery were 

approached before surgery. Primary outcome was baseline rSO2 collected using INVOSTM 

5100C. Preoperative variables that could influence rSO2 were considered. Data was 

analysed using univariate and multivariate analysis, as appropriate.  

Two hundred and fifty-four patients were included in the analysis. Baseline rSO2 was 64 

[11] (median [IQR]) ranging between 29% and 84% in a cohort of patients aged 73 [10] 

years. One hundred and forty-two patients (56%) were American Society of 

Anesthesiologists (ASA) physical status 2 and haemoglobin concentration was 13 [3] g/dL. 

On the multivariable analysis, lower baseline rSO2 values were correlated with lower 

haemoglobin concentration (OR = 0.966, CI 95% (0.956 to 0.976), P < 0.001)  and higher 

ASA physical status (OR = 0.967, CI 95% (0.935 to 0.999), P = 0.047).  

Our results were in line with what has been previously found and may contribute to a 

definition of a normal range of baseline rSO2 values in the future. Haemoglobin 

concentration and ASA physical status remained as independent variables associated with 

baseline rSO2.  
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Introduction 
 
The brain is a vital organ essential for the survival of the human being. Although it is the 

target of hypnotic drugs during anaesthesia, it remains one of the least monitored organs.1,2 

The brain needs a tight management3 and this is related to the high metabolism rate and  

oxygen demand for its well-functioning.1,4  

 

The aging population 

Individuals older than 65 represent the fastest growing segment of the population in many 

parts of the developed world. Aging increases the probability of a person to undergo surgery 

and, therefore, the number of people who will require anaesthesia for therapeutic and/or 

diagnostic procedures is expected to increase.5,6 Anaesthetic drugs are linked to potential 

neurotoxicity and have an impact in the brain’s metabolism, namely oxygenation.1  It has 

been shown that the elderly have an increased sensitivity to anaesthetic drugs and are more 

prone to their haemodynamic depressing side effects, therefore even more special focus is 

needed regarding cerebral monitoring in this segment of the population.7  

 

The NIRS technology 

The Near Infrared Spectroscopy (NIRS) is a technology widely used in several areas and 

has been gaining popularity in anaesthesiology to measure cerebral oximetry.4,8  

NIRS monitoring allows the recognition of desaturation events9 and may play a part in the 

identification of cerebral ischemia. It can be used as part of a portable device which allows 

real-time, non-invasive monitoring of tissue oxygen saturation, not only in the operative 

room, but also as a bedside monitor.10  

Several systems use NIRS technology, one of which is INVOSTM 5100C (Medtronic, 

Ireland) that allows recording of regional cerebral oxygen saturation (rSO2) by placing small 

sensors in the patient’s forehead.11 In each sensor there are two photodetectors separated 

by 3 cm and 4 cm from the emitting diodes of near-infrared light.12 These diodes emit near- 

infrared light at 730 and 810nm which provides two advantages: this wavelength can be 

absorbed by haemoglobin and biological tissues are relatively transparent to it.13,14,15,16 

INVOS system is based on the balance between the tissue’s supply and demand for 

oxygen.17 The system measures the oxygen content of the tissues and targets the venous 

and arterial haemoglobin oxygenation fraction, rather than the arterial compartment 

only.2,11,18
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The INVOS system integrates a modified Beer-Lambert law technology and spatially 

resolved spectroscopy.19 

The Beer Lambert law, that was actually discovered in Portugal by a French mathematician 

while looking at red wine20, may be modified in order to calculate the concentration of a 

substance with only a few parameters: the extinction coefficient of the substance, the 

amount of light attenuation and the pathlength that light travels.8,21 Oxygenated and 

deoxygenated haemoglobin have different absorption properties in the near-infrared light 

spectrum which allows for the estimation of their relative concentration22, the 

oxyhaemoglobin/total haemoglobin ratio, that is presented as a percentage in the monitor.15 

In order to avoid contamination from structures other than the brain itself, a principle of 

spatially resolved spectroscopy is used which states that the distance between the light 

emitter and detector is proportional to the depth of the investigated tissue.17 After 

penetrating the brain, the light is partially scattered and creates an arch between the 

emitting diodes and the two photodetectors (Figure 1). The amount of near-infrared light 

that is scattered across more superficial tissues (brain, muscle, skull and skin) is measured 

by the proximal photodetector and the amount which is scattered deeper in the brain is 

captured by the distal photodetector.23 Cerebral oxygen saturation value is then calculated 

through a subtraction algorithm.24  

 

NIRS in clinical practice  

The NIRS technology is most commonly used in anaesthesia during neurosurgery and 

cardiac surgery.4 Nonetheless, research is ongoing to investigate its utility in other surgical 

areas as well for specific patient positionings, such as the beach-chair position.25  

Before induction of general anaesthesia, the baseline value for each patient should be 

determined while the patient is still awake so it can be considered as a reference value.26,27 

NIRS monitoring provides continuous measurements of rSO2 during surgery and 

anaesthesia. A decrease of 20% or more in baseline rSO2 during the intraoperative period 

has been considered a marker of brain hypoperfusion.26,28,29 Cerebral perfusion optimization 

guided by rSO2 was found to be associated with better outcomes in specific scenarios.9,30,2  

Lower baseline rSO2 values and intraoperative desaturations were related with worse 

postoperative outcomes such as cognitive dysfunction31,32, postoperative delirium33, higher 

mortality rate34,35 and longer hospital length of stay (HLOS).36  

There is still no consensus regarding the normal range of baseline rSO2 values. This may 

be due, among others, to the variability of patients’ characteristics in each study, type of 

monitor used and other variables that may influence rSO2.37  Baseline rSO2 values have 
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been proposed, however, the available data are sparse and most of the times related to 

one specific surgical setting.26,38–40 

Outliers of baseline rSO2 values may be considered as a warning sign during the 

intraoperative period. Lower values can demonstrate the lack of the brain’s ability to 

increase oxygen extraction during a decline in oxygen distribution.2 Also, higher baseline 

rSO2 may also alert for a pathological situation of non-metabolizing tissue with no 

consumption of oxygen.41  

Taking this into account, it is fundamental to study baseline rSO2 in different populations in 

order to establish normative range values. Additionally, more data are needed regarding 

variables that influence baseline rSO2 to allow for a better perioperative management 

across multiple surgical areas.  

The aim of this study was to evaluate the baseline rSO2 in a cohort of elderly surgical 

patients and to identify preoperative variables associated with lower baseline rSO2 values.  
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Methods 
 
This study is a secondary analysis of a prospective observational cohort study approved by 

the Centro Hospitalar Universitário do Porto Institutional Review Board (REFª 2016.253 

(216-DEFI/205-CES and ClinicalTrials.gov Identifier NCT03171766). It was conducted in 

Centro Hospitalar Universitário do Porto, a tertiary hospital in Portugal from July 23, 2017 

to May 2, 2019.  

Inclusion criteria included 65 years or older patients scheduled for elective surgery 

(neurosurgery, urologic surgery, general surgery, orthopaedics surgery, vascular surgery, 

otorhinolaryngology surgery and maxillofacial surgery) under general or regional 

anaesthesia or monitored anaesthesia care; and expected to stay a minimum of two nights 

as in-hospital patients. Patients were excluded if they were scheduled for ophthalmologic 

or plastic surgery procedures; planned postoperative care in the Intensive Care Unit; had a 

history of cerebral tumour, stroke or transient stroke; were unable to understand cognitive 

assessment tests (aphasia, hearing impairment, untreated motor or speech disorders); had 

a diagnosis of dementia; were chronically medicated with anti-psychotic or anti-cholinergic 

drugs; and first language other than Portuguese. 

After informed and written consent, the following data were obtained pre-operatively: age; 

sex; body mass index (BMI); number of years of formal education; chronic medication with 

benzodiazepines or opioids; co-morbidities such as diabetes mellitus, arterial hypertension, 

dyslipidaemia, obesity, chronic obstructive pulmonary disease (COPD), heart failure, 

ischemic heart disease/ previous myocardial infarction (MI), chronic kidney disease, 

peripheral arterial disease, asthma, atrial fibrillation/ flutter, cancer or depression; Charlson 

Comorbidity Index (CCI); American Society of Anesthesiologists (ASA) physical status; 5-

item FRAIL questionnaire (robust, pre-frail or frail)42; functional status (partially dependent/ 

dependent vs independent for activities of daily life); smoking history (ex-smoker/ no smoker 

vs active smoker); and alcohol use (absent/ light if less than 1 drink per day vs moderate/ 

severe if more than 1 drink for women or 2 drinks for men per day). Blood laboratory analysis 

were collected from hospital records. Primary outcome was baseline rSO2.  

The baseline rSO2 value was obtained using an INVOSTM 5100C monitor while the 

participant was in a resting condition, seated down and breathing room air with no additional 

oxygen supply. A single sensor was placed in the patient’s forehead approximately 1 cm 

above the supra-orbital margin on the opposite side to the patients’ dominant hand. The 

midline of the forehead was avoided due to proximity to superior sagittal sinus which could 

affect rSO2 readings.12 After 60 seconds of continuous recording of rSO2  we considered the 

value that was displayed on the monitor. 
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Data were collected using Castor EDC platform43 where a code was generated for each 

patient to maintain anonymity.  

Statistical analysis was performed using IBM SPSS Statistics for Windows, Version 25.0 

(Armonk, NY: IBM Corp). The Shapiro-Wilk test and histograms were used to assess the 

normality of data and, as all continuous variables showed evidence of non-normal 

distribution, measures of central tendency were presented as median and interquartile 

range [IQR]. 

For univariate analysis we used the Spearman’s rank-order correlation test for continuous 

variables including age, BMI, years of formal education, haemoglobin and creatinine. The 

Kruskal-Wallis rank sum test was used for categorical variables with more than two 

categories such as the 5-item FRAIL questionnaire and ASA physical status. The Mann-

Whitney U test was used for dichotomous categorical variables including sex, chronic 

medication with opioids and benzodiazepines, co-morbidities as well as functional status, 

smoking history or alcohol use.  

We used a Generalized Linear Model to perform the multivariate analysis. Age was forced 

into the model and variables with P < 0.1 on the univariate analysis were considered into 

the adjusted model. Statistical significance was set at 5% of confidence interval (P < 0.05). 
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Results 
 
Seven hundred and fifty-two patients were identified as potential participants, however, 294 

were not approached due to logistic constraints, 13 patients declined to participate, 163 had 

exclusion criteria, 11 were found ineligible during interviews and 9 had their surgery 

cancelled. From the remaining 262 patients, 3 were excluded due to lack of rSO2 

assessment, 1 due to the presence of jaundice44 in the moment of the interview and 4 due 

to current treatment with haemodialysis.45 Ultimately, the total number of patients included 

in this analysis was 254 (Figure 2).  

The median age of the cohort was 73 [10] years, 165 (65%) were males, with a BMI of 26 

[5] Kg.m2, median years of formal education of 4 [3] and 58 (23%) were chronically 

medicated with benzodiazepines. One hundred and eighty-three (72%) were diagnosed 

with arterial hypertension, 66 (26%) had diabetes mellitus and 123 (48%) dyslipidaemia. 

Haemoglobin concentration was 13 [3] g/dL and median CCI score was 4 [3]. One hundred 

and forty-two patients (56%) were ASA 2 and 55 (22%) were considered frail. Thirty-seven 

(15%) patients were partially dependent/ dependent for activities of daily life, 21 (8%) were 

active smokers and 71 (28%) had a moderate or severe consumption of alcohol. Most of 

the participants were schedule either for general surgery (79 (31%)) or urologic surgery (96 

(38%)).  

The median baseline rSO2 was 64 [11] ranging between 29% and 84%. Ten (4%) had 

readings < 50%. The distribution of baseline rSO2 values are shown in Figure 3. 

On univariate analysis (Table I), patients with co-morbidities such as COPD (57 [14] vs 64 

[11], P = 0.013) had lower values of baseline rSO2 than those who did not, as well as 

patients with ischemic heart disease or previous MI (63 [10] vs 65 [12], P = 0.022), 

peripheral arterial disease (61 [9] vs 65 [11], P = 0.031) and depression (60 [14] vs 65 [11], 

P = 0.002). Haemoglobin concentration showed a positive correlation with baseline rSO2 

values as shown in Figure 4 (rs = 0.533, P < 0.001). CCI was negatively correlated with 

baseline rSO2 (rs = - 0.186, P = 0.003) and higher ASA physical status was associated with 

lower values of baseline rSO2 (55 [10] vs 62 [13] vs 66 [11] vs 68 [16], P < 0.001) (Figure 

5).  

Frailty (61[12]) was associated with lower baseline rSO2 values compared with pre-frailty 

(63 [11]) and robustness (69 [12]), (P < 0.001). Patients who were partially dependent or 

dependent for activities of daily life had lower values of baseline rSO2 than those who were 

independent for activities of daily life (60 [9] vs 65 [12], P < 0.001).   

In the multivariate analysis only haemoglobin concentration (OR = 0.966, CI 95% (0.956 to 

0.976), P < 0.001) and ASA physical status (OR = 0.967, CI 95% (0.935 to 0.999), P = 

0.047) remained as independent variables associated with lower baseline rSO2.  
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Discussion 
 
In this mixed surgical cohort of elderly adults, median baseline rSO2 was 64% [11]. 

Additionally, we have found that lower haemoglobin concentration and higher ASA physical 

status were associated with lower baseline rSO2 values. To our knowledge this is the first 

Portuguese study regarding baseline rSO2 in the elderly.  

 

Baseline rSO2 

Baseline rSO2 values found in this study were in line with the report of others: Baikoussis 

et al.26 found that in older patients submitted to cardiac surgery and carotid surgery, mean 

baseline rSO2 values were  63.3% and 66.8%, respectively; and Casati et al.36 report a 

mean baseline rSO2 values of 63% in a cohort of elderly patients undergoing major 

abdominal surgery. In a larger sample of patients submitted to cardiac surgery, the median 

baseline rSO2 was 62% and values below 50% were considered abnormal.34 On the other 

hand, our median baseline of rSO2 was higher than the mean 58.6% found by Yao et al39 

in a cohort of 101 patients undergoing cardiac surgery. However, in this study, the authors 

considered the lowest value of rSO2 for their analysis and cardiac surgical patients may 

have higher microvascular disease burden which could affect rSO2 values.38  

In our study baseline rSO2 ranged between 29% and 84%. This range is overall in 

accordance to what has been presented by Papadopoulos et al40 in a study of 69 older 

patients undergoing hip surgery where baseline rSO2 ranged between 34% and 88% but 

approximately 19% of patients had readings ˂ 50%. In our study, only 4% of the patients 

had baseline rSO2 readings < 50%. Again, these differences may be explained due to the 

different patient populations (69 hip fracture patients vs 254 mixed surgical setting patients 

in our study) and the different methodologies used (they reported values referring to the 

lowest values of rSO2 in either hemisphere and baseline rSO2 was collected after 3 

minutes).  

 

Variables associated with lower baseline rSO2 

In the logistic regression model, only haemoglobin and ASA physical status were associated 

with lower baseline rSO2 values, which has been previously described by others.27,34,46,47 

The rSO2 principle is based on the brain’s oxygen demand and supply, and oxygen in the 

blood is almost carried exclusively by haemoglobin.48 With lower values of haemoglobin, it 

is expected that the total amount of oxygen reaching cerebral tissue would also be lower 

and consequently lower values of rSO2 would be obtained. However, it is still ambiguous if 

lower values of rSO2 are related to lower values of haemoglobin or if it is due to the algorithm 

used in NIRS technology that relies in the modified Beer Lambert’s law. One of the variables 
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used in the law, the optical pathlength, is marked as a fixed value in most commercially 

available monitors23 and this is inversely related to the concentration of the studied 

substance, in this case oxyhaemoglobin and deoxyhaemoglobin.49 With lower haemoglobin 

concentration, molecules are further apart from each other and the optical pathlength 

increases resulting in an overestimation of the  rSO2.23,50 Due to this possible overestimation 

of rSO2, haemoglobin concentration should be considered in the interpretation of rSO2 

values. 

In this study haemoglobin was strongly associated with baseline rSO2 values. Haemoglobin 

is reported as a predictor of rSO2
51, however, rSO2 may also be a potential tool to estimate 

haemoglobin concentration.52 Since NIRS allows a real time measurement of rSO2, this 

could be a faster, non-invasive, indirect way to estimate haemoglobin concentration 

intraoperatively. This association is poorly studied but is promising in the future of 

anaesthetic management.  

 

ASA physical status classification is commonly used in the perioperative medicine to stratify 

patients according to their health status, being 1 a normal healthy patient and 6 a declared 

brain-dead patient.53 Not surprisingly, we found that higher ASA physical status was 

associated with lower baseline rSO2 values and this association has been previously 

reported.34,38,40 One possible explanation, as stated by Valencia et al.38, is that patients with 

higher ASA physical status classifications may have a higher cardiovascular burden. Lower 

rSO2 values could be a consequence of the cardiovascular effects on micro vascularization 

of the brain producing a reduced blood flow.38 An association between other co-morbidities 

such as diabetes mellitus26 or dyslipidaemia26 and rSO2 has been suggested in previous 

studies. However, we did not find a significant association between rSO2 and those co-

morbidities or other cardiovascular risk factors including arterial hypertension, ischemic 

heart disease, previous MI, peripheral arterial disease or obesity. 

 

Study limitations 

This study has several limitations. First, this is a secondary analysis of a prospective 

observational study which was not designed or powered to meet our primary outcome. 

Second, rSO2 was only measured with INVOSTM monitor and the results cannot be 

generalized for other types of monitors. Third, in this study, rSO2 was measured using only 

one sensor in one hemisphere and, therefore, potential anatomical variances, such as 

incomplete circle of Willis or undiagnosed severe carotid stenosis, may have gone 

unnoticed.17  

Fourth, this is a single-centre study that included only elderly patients undergoing elective 

surgery. Generalization to younger patients and other populations should be made with 
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caution. The population included in this cohort had miscellaneous characteristics which can 

be a limitation but also a strong point. Fifth, there are other variables associated with  rSO2 

that were not considered in this study such as partial pressure of carbon dioxide in arterial 

blood, central venous pressure, cardiac index,54 temperature12, skull thickness, and area of 

cerebrospinal fluid layer.24 Sixth, we evaluated patients’ co-morbidities, but no 

considerations were made regarding the specific treatment for each pathology which can 

lead to a potential bias of the status of control of the chronic disease.  
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Conclusion 
 
There is evidence that NIRS guided management of cerebral oximetry can be a potential 

tool to help prevent postoperative adverse outcomes.9,30 Since it is a trend monitor, a 

baseline rSO2 determination is fundamental to evaluate desaturations in the intraoperative 

period. Despite its growing utility in diverse clinical situations, there is still no clear 

consensus regarding the normal range of baseline rSO2 values.  

The median baseline rSO2 value found in this study may contribute to the establishment of 

normative data since our results were in line with the literature. 

In this cohort, only haemoglobin and ASA physical were associated with lower baseline 

rSO2. Although ASA physical status and haemoglobin concentration were already described 

as variables that could influence rSO2 values in previous studies, our study supports these 

findings and highlights that these two variables should be considered when using rSO2 for 

monitoring. Haemoglobin was strongly associated with rSO2 and rSO2 can potentially 

estimate haemoglobin concentration. Hence, more studies are needed to understand the 

effect, direction and magnitude of this relationship.  
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Figure 1. Representation of spatially resolved spectroscopy. A-D: extracerebral tissues (A-
skin, B-fat layer, C-bone, D-meninges); E1 – grey matter of the brain; E2 – white matter of 
the brain. F1 represents the arch between the emitter of Near Infrared (NIR) Light and the 
detector located at 3 cm, where F2 represents the arch between the same emitter and the 
photodetector placed at 4cm. Regional cerebral oxygen saturation = F2 – F1. 
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Figure 2: Flowchart on recruitment and retention. 
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Figure 3. Histogram of baseline regional cerebral oxygen saturation (rSO2). 
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Figure 4. ScatterPlot of baseline regional cerebral oxygen saturation (rSO2) and 
haemoglobin. 
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Figure 5. BoxPlot of baseline regional cerebral oxygen saturation (rSO2) stratified by 
American Society of Anesthesiologists (ASA) physical status. 
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Table I: Preoperative characteristics of the cohort and univariate analysis. IQR: 
interquartile range; N: Number; COPD: Chronic Obstructive Pulmonary Disease; MI: 
Myocardial Infarction; ASA: American Society of Anesthesiologists; rSO2: regional cerebral 
oxygen saturation  

 
 

*Spearman’s rank-order correlation test  
+ Kruskal-Wallis rank sum test 
‡ Mann-Whitney U test 
 
 
 

 TOTAL=254 BASELINE RSO2, MEDIAN [IQR] YES VS NO P-VALUE 

PREOPERATIVE VARIABLES 
AGE, YEARS, MEDIAN [IQR] 73 [10] - 0.400* 
SEX, N (%)   0.240‡ 

MALE 165 (65) 65 [11] - 
FEMALE 89 (35) 64 [11] - 

EDUCATION, YEARS, MEDIAN [IQR] 4 [3]  0.725* 
CHRONIC MEDICATION N (%)    

BENZODIAZEPINES 58 (23) 63 [13] vs 65 [10] 0.258‡ 
OPIOIDS 15 (6) 62 [5] vs 64 [12] 0.086‡ 

CO-MORBIDITIES, N (%)    
DIABETES MELLITUS 66 (26) 64 [14] vs 65 [11] 0.089‡ 

ARTERIAL HYPERTENSION 183 (72) 64 [11] vs 65 [11] 0.474‡ 
DYSLIPIDAEMIA 123 (48) 64 [14] vs 64 [10] 0.821‡ 

OBESITY 51 (20) 62 [9] vs 65 [11] 0.201‡ 
COPD 17 (7) 57 [14] vs 64 [11] 0.013‡ 

HEART FAILURE 21 (8) 64 [16] vs 64 [11] 0.194‡ 
ISCHEMIC HEART DISEASE / PREVIOUS MI 29 (11) 63 [10] vs 65 [12] 0.022‡ 

CHRONIC KIDNEY DISEASE 20 (8) 64 [8] vs 64 [12] 0.412‡ 
PERIPHERAL ARTERIAL DISEASE 18 (7) 61 [9] vs 65 [11] 0.031‡ 

ASTHMA 7 (3) 70 [27] vs 64 [11] 0.665‡ 
ATRIAL FIBRILLATION/FLUTTER 22 (9) 63 [16] vs 64 [10] 0.133‡ 

CANCER 49 (19) 64 [12] vs 64 [11] 0.378‡ 
DEPRESSION 35 (14) 60 [14] vs 65 [11] 0.002‡ 

BLOOD LABORATORY ANALYSIS, MEDIAN [IQR]    
HAEMOGLOBIN (g/dL) [N=208] 13 [3] - <0.001* 

CREATININE (mg/dL) [N=201] 1[0] - 0.201* 
CHARLSON COMORBIDITY INDEX, MEDIAN [IQR] 4[3] - 0.003* 
ASA, PHYSICAL STATUS, N (%)   <0.001+ 

1 4 (2) 68 [16] - 
2 142 (56) 66 [11] - 
3 99 (39) 62 [13] - 
4 9 (4) 55 [10] - 

FRAIL QUESTIONNAIRE, N (%)   <0.001+ 
ROBUST (SCORE 0) 87 (34) 69 [12] - 

PRE-FRAIL (SCORE 1 AND 2) 112 (44) 63 [11] - 
FRAIL (SCORE 3 TO 5) 55 (22) 61 [12] - 

FUNCTIONAL STATUS, N (%)   <0.001‡ 
INDEPENDENT 217 (85) 65 [12] - 

PARTIALLY DEPENDENT / DEPENDENT 37 (15) 60 [9] - 
SMOKING, N (%)   0.885‡ 

NO/EX-SMOKER 233 (92) 64 [11] - 
ACTIVE SMOKER 21 (8) 65 [15] - 

ALCOHOL, N (%)   0.229‡ 
ABSENT/LIGHT 183 (72) 64 [11] - 

MODERATE/SEVERE 71 (28) 65 [12] - 
SURGICAL AREA, N (%)    

GENERAL SURGERY 79 (31) 65 [13] - 
UROLOGIC SURGERY 96 (38) 66 [11] - 
VASCULAR SURGERY 39 (15) 62 [11] - 

NEUROSURGERY 7 (3) 60 [11] - 
ORTHOPAEDICS SURGERY 23 (9) 62 [9] - 

OTORHINOLARYNGOLOGY SURGERY 7 (3) 58 [17] - 
MAXILLOFACIAL SURGERY 3 (1) 69 [.] - 

PRIMARY OUTCOME  
BASELINE RSO2, MEDIAN [IQR] 64 [11] - - 


