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Abstract 

Adsorption processes are considered to be a viable alternative for pretreatment of syngas, 

mainly due to their low energetic requirements. One of those processes, pressure swing 

adsorption (PSA), is employed for that purpose. However, it displays very complex dynamical 

behavior, which is usually simulated by phenomenological models. These models are often 

cumbersome, which makes them unsuitable for real-time process assessment. For that purpose, 

there is a need to search for alternative models; artificial neural networks (ANN) arose as a 

suitable alternative, due to their versatility. 

This work attempts to develop different neural network models for prediction of a number of 

process output variables. A classical model of ANNs (FNN - Feedforward Neural Networks, based 

on a NARX – nonlinear autoregressive with exogenous inputs predictor), a machine learning 

model (RNN - Recurrent Neural Networks, based on a NOE – nonlinear output error predictor) 

and a deep learning model (LSTM – long short-term memory, based on a NOE – nonlinear output 

error predictor) were studied and their performances compared. Firstly, the sets of simulation 

data needed for the training and validation of each network were generated. Then, all the 

models were trained and validated. 

It was found that LSTM networks were the only ones capable of fully representing the dynamic 

behavior of the PSA unit, whereas the other models were only partially capable of predicting 

it. Between the classical model and the machine learning, the former performed better 

compared to the latter, which displayed inconsistent results, putting its predictive capabilities 

into question. A comparison was also established between the empirical models and the 

phenomenological ones in terms of computational speed, and the former achieved dramatically 

lower simulation times than the latter. 

It is therefore concluded that the LSTM models can be reliable predictors of the process’ 

dynamical behaviour, and may be a good option for the development of control, optimization 

and on-line measurement strategies. On the other hand, the classical and machine learning 

models showed considerable limitations in handling the PSA unit’s complex dynamic behaviour. 

Keywords: artificial neural networks, artificial intelligence, deep learning, machine learning, 

pressure swing adsorption



Modelling of a PSA unit by artificial neural networks 
 

 

Resumo 

Os processos de adsorção são considerados alternativas viáveis para o pré-tratamento de gás 

de síntese, principalmente devido aos seus reduzidos custos energéticos. Um desses processos, 

adsorção por modulação de pressão (PSA), é usado para essa função. Contudo, o PSA demonstra 

um comportamento dinâmico bastante complexo, que é normalmente simulado por modelos 

fenomenológicos. Estes modelos são complexos e requerem elevado esforço e tempo 

computacional, o que os torna inapropriados para avaliação de processos em tempo real. Nesse 

sentido, é necessário procurar modelos alternativos; as redes neuronais artificiais (RNA) 

surgiram como uma alternativa adequada, devido à sua versatilidade. 

Este trabalho propõe desenvolver diferentes modelos de redes neuronais com o intuito de 

efetuar previsões de algumas variáveis de saída do processo. Um modelo clássico de RNA’s (FNN 

- Feedforward Neural Networks, based on a NARX – nonlinear autoregressive with exogenous 

inputs predictor), um modelo de machine learning (RNN - Recurrent Neural Networks, based on 

a NOE – nonlinear output error predictor) e um modelo de deep learning (LSTM – long short-

term memory, based on a NOE – nonlinear output error predictor) foram estudados e os seus 

desempenhos foram comparados entre si. Em primeiro lugar, os conjuntos de dados necessários 

para o treino e validação de cada rede foram gerados. De seguida, todos os modelos de rede 

foram treinados e validados. 

Foi observado que as redes LSTM foram as únicas capazes de representar o comportamento 

dinâmico do PSA na sua totalidade, enquanto que os restantes modelos apenas foram capazes 

de o prever de forma parcial.  Entre o modelo clássico e o de machine learning, o primeiro 

apresentou melhor desempenho que o segundo, que obteve resultados inconsistentes, 

colocando as suas capacidades preditivas em causa. Os modelos fenomenológicos e empíricos 

foram comparados em termos de velocidade computacional e os primeiros demonstraram 

tempos de simulação drasticamente mais baixos. 

Conclui-se então que os modelos LSTM podem ser previsores adequados do comportamento 

dinâmico do processo, e podem ser uma boa opção para o desenvolvimento de estratégias de 

controlo, otimização e medição em tempo real. Por outro lado, os modelos clássicos e de 

machine learning revelaram limitações consideráveis em lidar com o complexo comportamento 

dinâmico do PSA. 

Palavras-chave: redes neuronais artificiais, inteligência artificial, deep learning, machine 

learning, adsorção por modulação de pressão
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1 Introduction 

1.1 Motivation and Relevance 

Syngas is one of the main sources available for the production of pure H2 and synthetic fuels, 

among others. There are numerous methods and raw materials for production of syngas, and 

depending on the route of production, it may get contaminated with undesirable impurities. 

Thus, pre-treatment might be necessary in order to remove the impurities and also adjust the 

H2/CO ratio to a suitable amount to be used in fuel production through the Fischer-Tropsch 

process. Amine absorption is the preferred process for adjustment of H2/CO ratio. However, 

adsorption processes are potentially a more viable alternative, as they are able to maintain the 

low energetic costs associated with the absorption while reducing the environmental impact 

and increasing the separation productivity. 

Pressure swing adsorption (PSA) is one of the adsorptive processes that are considered a viable 

alternative for pre-treatment of syngas, due to the aforementioned advantages. However, this 

process displays very complex dynamic behaviour, which affects the development of strategies 

of design, control, optimization and inference of the process, making the employment of PSA 

in industrial scale a difficult task. The development of practical ways to assess the process 

dynamic behaviour is an essential step to overcome those problems. Assessment of the process’ 

dynamic behaviour is usually accomplished by using phenomenological models, which are often 

complex, and their simulation requires great computational time and effort. Thus, it is difficult 

to make use of a phenomenological model for real-time process assessment. Therefore, it is 

necessary to develop ways of finding alternative models that are able to provide accurate 

information about the process dynamics in real-time. 

Artificial Neural Networks (ANN) are empirical models that emerged as alternatives to 

phenomenological models because of their versatility and are part of the state-of-the-art of 

plenty of technologies, such as speech and facial recognition. Most of its applications are found 

in the field of informatics. It is necessary to construct a bridge between informatics and 

chemical engineering so advancements on the former can solve problems of the latter. 

This work proposes to develop an empirical model based on ANNs in order to model a PSA 

process to adjust the H2/CO ratio of a syngas mixture. Classical models of ANNs will be built, 

as well as intermediary ones, ANNs machine learning based, and finally the most recent advance 

in the field, deep neural networks (DNN). Their performances shall be compared, so as to find 

the most appropriate model for the process in question. Furthermore, the evaluation of the 

employment of DNN models on a chemical process is another important contribution of this 

work. 



Modelling of a PSA unit by artificial neural networks 
 

Introduction   2 

1.2 Outline 

This work is divided into 5 main parts: 

In chapter 1, an introduction explaining the motivation and context in which this work was 

carried out is presented. 

In chapter 2, State of the Art, a brief introduction of what syngas consists of, its main routes 

of production is presented, as well as an explanation of why its pre-treatment may be 

necessary, and the main methods to achieve it. Then, a description of the functioning of 

pressure swing adsorption, one of the pre-treatment methods, is presented. Finally, the 

concept of artificial neuron networks is explained and the state-of-the art for artificial 

intelligence in chemical engineering is described. 

In chapter 3, Materials and Methods, the phenomenological mathematical model of the PSA unit 

studied in this work, used to obtain experimental data, is presented. Then, the predictor 

models used throughout the work are defined, as well as all the network structures. Moreover, 

the procedures and methods used to obtain the results are explained in this section as well. 

In chapter 4, Results and Discussion, the experimental data used in this work is presented, as 

well as the obtained results for all the network models. In the end, comparisons are established 

between each other, in order to make a distinction between them in terms of performance. 

In chapter 5, the conclusions drawn from the results are presented, followed by proposals of 

future works with the potential to expand on the work done in this thesis.
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2 State of the Art 

2.1 Syngas 

Synthetic gas, commonly known as syngas, is a gaseous mixture of hydrogen (H2), carbon 

monoxide (CO) and carbon dioxide (CO2). It is a key intermediate in the production of synthetic 

fuels through the Fischer-Tropsch process and it is one of the main sources for the production 

of pure H2 and CO (Abraham, 2017; J. Rostrup-Nielsen & Christiansen, 2011).   

 

In theory, syngas can be produced from several carbon sources, which include natural gas, oil, 

coal and biomass. These can be combined with steam and oxygen in order to generate syngas 

(J. Rostrup-Nielsen & Christiansen, 2011). The main processes used for syngas production are 

steam reforming (J. R. Rostrup-Nielsen, 1984), non-catalytic partial oxidation (Marda et al., 

2009) and autothermal reforming (Christensen & Primdahl, 1994). 

 

An essential step before the usage of syngas for Fischer-Tropsch synthesis is its purification, in 

order to remove impurities, such as CO2 or acid gases, that can affect the outcome of the 

process and poison the catalysts used in the manufacture of syngas and in downstream processes 

(J. Rostrup-Nielsen & Christiansen, 2011). Furthermore, the H2/CO ratio for syngas is a very 

important parameter to consider in Fischer-Tropsch synthesis and as such, prior treatment may 

also be necessary for adjusting the ratio to desired levels (Regufe et al., 2015). Adsorptive 

processes have been presented as a good choice for the pre-treatment of syngas due to their 

low energetic consumption. Currently, absorption using amines is the preferential method for 

syngas pre-treatment, but the pressure swing adsorption process is also a viable alternative and 

possibly a more efficient one (Regufe et al., 2015).  

 

2.2 Pressure swing adsorption 

The main principle behind adsorption processes is that an adsorbent selectively adsorbs one or 

more components from a fluid mixture. This selectivity might be a result of either a difference 

between adsorption equilibria or a difference between adsorption kinetics (Ruthven, Farooq, 

& Knaebel, 1994). 

Adsorptive processes are comprised of two main steps: adsorption, where the adsorbent bed 

retains the preferentially adsorbed species in its midst, and regeneration, which is when those 

species are removed from the bed. The product stream obtained during the adsorption step is 

called raffinate and will mostly contain the least adsorbed species. The stream produced by 

the regeneration step is called extract and is rich in the most adsorbed species (Ruthven et al., 

1994). 
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Large-scale adsorptive separation processes can be divided into two categories: cyclic batch 

systems and continuous flow systems. In cyclic batch processes, the adsorbent bed is alternately 

saturated and regenerated as part of a cycle, whereas in continuous flow systems, the feed 

stream and adsorbent are in continuous counter-current contact with each other (Ruthven, 

1984). 

 

Cyclic batch processes often feature alternative methods for the regeneration of the adsorbent 

bed: thermal swing consists in heating the bed to a point where the adsorbate is desorbed and 

removed in the fluid stream, this technique is employed in a process called temperature swing 

adsorption (TSA); pressure swing consists in an adsorption step with a higher pressure and then 

the pressure in the column is decreased in order to achieve desorption, this technique is the 

most distinguishable aspect of the pressure swing adsorption (PSA). Additionally, other variants 

might be found such as the Vacuum Pressure Swing Adsorption (VPSA). 

 

TSA/PSA units and their variants have been applied in the industry to solve complex separation 

problems such as: purification of hydrogen (Sircar & Golden, 2000), removal of CO2 from gas 

mixtures (Gomes & Yee, 2002) and air drying (Chihara & Suzuki, 1983).  

A PSA system consists of one or more adsorbent beds that are alternately pressurized and 

depressurized with usually a step of adsorption, called a feed step, where the lighter 

components are produced, followed by a desorption step, where the most retained components 

are produced (Ruthven, 1984). The bed is then purged, so the species in question is thoroughly 

removed, so as to not contaminate the raffinate in the next step. The cycle proceeds by 

pressurizing the column and feeding the gas mixture to the adsorbent bed again. The more 

complex large-scale industrial designs usually include more than two columns and several 

additional steps (Ruthven et al., 1994), such as the rinse step, where after the feed step, the 

bed is purged with the most retained species at high pressure in order to improve the purity of 

the extract (Ruthven et al., 1994). This leads to a very complex dynamic behaviour, originating 

a series of problems in the process design and operation. 

 

2.3 Artificial Neural Networks 

Artificial neural networks (ANN) are a computational model composed of interconnected 

processing elements called neurons or nodes (G. Zhang, Eddy Patuwo, & Y. Hu, 1998). ANNs 

were first proposed by McCulloch & Pitts (1943), where the model was devised to represent the 

biological neuron. 

 

McCulloch & Pitts (1943) started from the principle that a biological neural system contains 

cells called neurons, connected to each other by synapses. Each neuron is composed of a cell 
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body and functional units called dendrites and axons. The dendrites are responsible for 

receiving information from other neurons and transmitting them to the cell body. The axons 

then send the information away through the synapses to the dendrites of neighbouring neurons 

(Basheer & Hajmeer, 2000). This is the basic mechanism through which the nervous system 

transmits external signals to the entire human body. 

 

Like biological neural systems, ANNs respond to a set of external signals, the inputs and outputs, 

and approximate a function of the inputs, by propagating the input values to the outputs, using 

the weights as intermediate parameters.  Following these ideas, the ANNs components are 

equivalent to the parts of a biological neuron: 

 Neurons, the elementary unit of an ANN, equivalent to the cell body, represent a 

function that sums the weighted inputs and the biases; 

 The connections between the neurons are equivalent to dendrites, and transmit 

information between each neuron; 

 Weights, which represent the strength of the synapses, scale the information input to 

each neuron; 

 Biases are input factors of the neurons that allow them to better adjust to the input 

data; 

 Activation function, which, in its simplest configuration, functions as an ON-OFF switch 

that determines whether the neuron was “activated” or not; 

 Outputs, equivalent to the axons, transmit information away from the neuron.  

 

A visual representation of the aforementioned concepts is presented in Figure 1: 

 

Figure 1 - Comparison between a biological neuron and an artificial neuron 

The parameters of the network, weights and bias, are estimated during the training step. During 

this step, a set of data (training data), consisting of input-output data pairs, is fed to the 
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network so an optimization algorithm (training algorithm) is able to determine the set of 

network parameters that can provide the most accurate prediction of outputs for their 

corresponding inputs. 

ANNs can either be single-layer or multi-layer: a single layer network will only have a set of 

inputs mapped to an output node by using a generalized variation of a linear function. In the 

multi-layer network, the neurons are arranged in layers, and the input and output layers are 

separated by one or more hidden layers, referred to that way because its computations are not 

accessible to the user (Aggarwal, 2018). 

The information flux between the layers of an ANN model can be only towards the output layer, 

in which case the ANN is a feedforward neural network (FNN), or there can be backpropagation 

of information, information can flow in any direction, which is characteristic of recurrent neural 

networks (RNN). This complex flux of information makes RNNs more powerful tools for 

prediction, which makes them more suitable for modelling sequential data, thanks to their 

ability to store memory (Aggarwal, 2018). However, usage of RNNs requires more computational 

resources, and their training is more complex, often leading to problems. On the other hand, 

FNNs are simpler to train and implement but are less powerful, and thus, their predictive 

capability is much more limited. The trade-off between these two structures will be detailed 

further throughout this work. 

2.4 Evolution of ANN and Deep Learning   

Many engineering problems are very complex and are difficult or even impossible to solve 

through conventional methods. Some of these problems involve incomplete and noisy data, 

which are the type of problems that ANNs were designed to solve (Rafiq, Bugmann, & 

Easterbrook, 2001). As such, researchers started to take advantage of ANN’s capabilities and 

employed them to solve problems such as wastewater treatment (Hamed, Khalafallah, & 

Hassanien, 2004; Gontarski, Rodrigues, Mori, & Prenem, 2000), process control (Chen & Huang, 

2004) and time-series forecasting (G. P. Zhang, 2003). In the field of adsorption processes, Sant 

Anna, Barreto, Tavares, & de Souza (2017) proposed an Machine Learning based model to 

optimize a PSA unit; Ye et al. (2019) proposed a classical ANN model that also performed 

optimization of a PSA unit; Nogueira et al. (2018) proposed a Quasi-Virtual analyser based on 

FNN networks to perform real-time measurement of a Simulated Moving Bed adsorption unit. 

However, it was not found any work that evaluates the employment of most advanced 

techniques from the artificial intelligence field, such as the Deep Learning ANNs. 

According to Venkatasubramanian (2019), the historical evolution of AI application in chemical 

engineering can be divided into three main phases and a precursor phase, which are summed 

up in Figure 2: 
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Figure 2 - Historical evolution of the use of AI in chemical engineering. 

Each of the phases is described in detail in the following sections: 

Phase 0: Early attempts  

Even though major work in researching AI for use in chemical engineering only started in the 

early 1980s, some projects for the development of AI in chemical engineering started as early 

as the late 1960s (Venkatasubramanian, 2019). Siirola & Rudd (1971) created the first system 

that employed AI methods in chemical engineering. 

Phase I: Expert systems era (~1983 to ~1995) 

The period from the early 1980s to the mid-1990s saw some of the first major efforts for the 

development of AI systems for chemical engineering, where so-called expert systems, or 

knowledge-based systems, played a major role (Venkatasubramanian, 2019). Expert systems 

are computer programs that simulate the problem-solving methods of humans with expertise in 

a given field. This era saw impressive advancements in expert systems application, in domains 

such as process synthesis and design (René Bañares-Alcántara, Westerberg, & Rychener, 1985) 

(R. Bañares-Alcántara, Westerberg, Ko, & Rychener, 1987). However, expert systems had 

severe disadvantages, mainly, the fact that developing industrial applications for these systems 

was too costly and time-consuming, due to the extensive amounts of knowledge needed to be 

taught to the AI  (Venkatasubramanian, 2019).  

Phase II: Neural networks era (~1990 to ~2008) 

Interest in expert systems waned over time due to the aforementioned drawbacks. In the early 

1990s, interest in another method for developing AI started picking up. ANNs represented a 

good alternative to expert systems, as they are able to automatically acquire knowledge from 

experimental data, which required considerably less time and effort than feeding information 

to expert systems  (Venkatasubramanian, 2019).  

Phase I: Expert systems 
era

~1983 to ~1995

•First major efforts 
for the development 
of AI systems for 
chemical 
engineering;

•Important 
advancements in 
expert systems 
application.

Phase II: Neural 
network era

~1990 to ~2008

•Rise of ANNs;

•Major advances in 
application of AI 
thanks to the 
development of 
ANNs.

Phase III: Deep learning 
era 

~2005 to present

•Introduction of RNN 
and LSTM networks.

•More complex 
applications of AI 
made possible by the 
increased 
capabilities of these 
networks.
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A key breakthrough for ANN development was the reinvention of the backpropagation algorithm 

for training of feedforward neural networks, which in turn introduced the possibility of 

approximating nonlinear functions using experimental data (Venkatasubramanian, 2019). This 

opened up new possibilities in the field of AI, and a tremendous amount of advancements were 

made thanks to ANNs, particularly in the fields of product design (Gani, 2004), fault detection 

(Ungar, Powell, & Kamens, 1990), control (Hernández & Arkun, 1992) and modelling (Bakshi & 

Stephanopoulos, 1993). In spite of the newfound success of ANNs in the 1990s, some problems 

remained beyond their capabilities at the time. Domains like speech recognition and natural 

language processing required more complex networks, with more intermediate layers, which 

were impossible to train at the time. Furthermore, in the domains of process control, 

optimization and modelling, the predictive abilities of ANNs declined over time, and required 

a large amount of data for their development, which was not readily available during those 

times (Venkatasubramanian, 2019). 

Phase III: Deep learning era (~2005 to present) 

The answer to the shortcomings of ANNs was revealed in the 2000s, when deep or convolutional 

neural networks were created. These networks had more intermediate layers in their structure, 

as opposed to the classical ANNs, which typically only had one (Venkatasubramanian, 2019). 

The training of these networks was not even possible through backpropagation and only in 2006 

was a viable training method developed, a layer by layer training strategy that brought along 

an increase in processing speed. This allowed the networks to extract features hierarchically 

and learn more complex patterns (Venkatasubramanian, 2019). 

Recurrent neural networks (RNN) also became common during this time. As previously 

mentioned, these networks are more suited for the approximation of sequences, as they are 

able to store memory. This opened up new possibilities for solving problems that include 

sequential data, like time series analysis. This was enhanced further by the development of 

long short-term memory units (LSTM). These structural features improve the memory saving of 

RNN, and are better suited for predictions based on time series data. Their structure is analysed 

further in section 3.3.2.  

Deep learning is a group of machine learning techniques that use artificial neural networks to 

solve complex problems. The relationship between AI, machine learning and deep learning, as 

well as their definitions, is explained in Figure 3: 
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Figure 3 - Relationship between the concepts of artificial intelligence, machine learning and deep 

learning. 

Deep learning is part of the state of the art technology for various fields, particularly in 

automated speech recognition (ASR), where it contributed to significant technological 

improvements (Hinton et al., 2012; Deng et al., 2013). 

Another similar field where deep learning found several practical application is document 

reading. By the late 1990s, 10% of all bank cheques in the United States of America were verified 

by deep networks (LeCun, Bengio, & Hinton, 2015). 

In the early 2010s, hardware advancements renewed interest in practical applications of deep 

learning. Graphical processing units (GPUs) were used to train deep learning neural networks 

and it was found that they speed up the training process by several orders of magnitude, causing 

a severe decrease of running times (Raina, Madhavan, & Ng, 2009). This is due to GPUs being 

well suited for the mathematical operations behind machine learning (Oh & Jung, 2004).   

Hardware advancements brought about a revolution in the use of deep learning, and deep 

neural networks are now the predominant approach for nearly all recognition and detection 

tasks (LeCun et al., 2015). Most major technology companies, such as Microsoft, Google, Apple, 

IBM, Adobe and Facebook started research and development on deep neural networks for use 

in their products (LeCun et al., 2015). Currently, those companies employ LSTM networks in 

Artificial 
Intelligence: 
Imitating the 

intelligence and 
behavior of humans 
through instructions.

Machine Learning: 
A technique by which 
a computer system 
can learn from data 
instead, with human 

supervision.

Deep Learning: 
Algorithms can 
evaluate the 

accuracy of its 
prediction and 

improve 
themselves.
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their major commercial products. For instance, Google uses LSTM on Google Translate (Metz, 

2016b) and Apple uses LSTM in the “Quicktype” function of their iPhones. (Metz, 2016a) 

However, nowadays, the majority of the works from the process engineering field that makes 

use of artificial intelligence are still using tools from Phase II (Sant Anna et al., 2017; Ye et al., 

2018; Nogueira et al., 2018; Nogueira et al., 2017). There is a lack of new studies in the process 

engineering field in order to make these new developments available to solve a series of issues 

from the field. Thus, deep learning has not yet found applications on the field of chemical 

engineering processes, and one of the goals of this work is to demonstrate the potential of this 

technology for the modelling of a real-life PSA process.  
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3 Materials and Methods 

3.1 Mathematical model 

A set of data, with inputs and their respective outputs, is necessary for the training of an ANN. 

For this work, the data is obtained by simulating a PSA process using the gPROMS software. 

As such, a mathematical model that characterizes the PSA process studied in this work was 

developed and programmed on gPROMS, so it can be used to simulate the process. 

The simulations were conducted in MATLAB by using a bridging software called goMATLAB. The 

inputs were introduced on MATLAB and the gPROMS model was called upon to simulate the 

process, obtain the results and send them to MATLAB. 

The following assumptions were made in order to formulate the mathematical model: 

 Ideal gas behavior; 

 Axial dispersed flow; 

 External mass and heat transfer resistances expressed with the film model; 

 Internal mass transfer resistance expressed with the Linear Driving Force (LDF) model; 

 No temperature gradients inside each particle, as the heat transfer in the solid phase is 

much faster than in the gas phase; 

 Constant porosity along the bed; 

 The Ergun equation is valid locally. 

The material balance for each component in the gas phase is given by: 

𝜕

𝜕𝑧
(𝜀𝐷𝑎𝑥𝐶𝑔,𝑇

𝜕𝑦𝑖

𝜕𝑧
) −

𝜕

𝜕𝑧
(𝑢0𝐶𝑔,𝑖) − 𝜀

𝜕𝐶𝑔,𝑖

𝜕𝑡
− (1 − 𝜀)𝑎𝑝𝑘𝑓(𝐶𝑔,𝑖 − 𝐶𝑠,𝑖) = 0 (1) 

where z is the axial position, 𝜀 is the bed porosity, 𝐷𝑎𝑥 is the axial dispersion, 𝑢0 is the 

superficial velocity, 𝐶𝑔,𝑇 is the total concentration in the gas phase, 𝐶𝑔,𝑖 is the component 

concentration in this gas phase (for component i), 𝑦𝑖 is the molar fraction of component i, 𝐶𝑠,𝑖 

is the concentration of component i in the solid phase, 𝑘𝑓 is the film mass transfer coefficient 

and 𝑎𝑝 is the external specific area of the particle. 

The LDF model is used to characterize the mass transfer rates in the solid phase. As such, the 

material balance in the solid phase is given by: 

𝜕𝑞�̅�

𝜕𝑡
=

15𝐷𝑝

𝑅𝑝
2 (𝑞𝑖

∗ − �̅�𝑙) (2) 

Where 𝐷𝑝 is the pore diffusivity, 𝑅𝑝 is the particle radius, �̅�𝑙 is the particle averaged adsorbed 

concentration and 𝑞𝑖
∗ is the adsorbed concentration in equilibrium with 𝐶𝑠,𝑖.  
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𝑞𝑖
∗ is determined by the multicomponent extension of the Langmuir isotherm: 

𝑞𝑖
∗ = 𝑞𝑚,𝑖

𝐾𝑖𝑃𝑖

[1 + ∑ 𝐾𝑗𝑃𝑗
𝑛
𝑗=1 ]

, 𝑖, 𝑗 = 𝐶𝑂2, 𝑁2, 𝐶𝐻4, 𝐶𝑂 (3) 

Equaling the fluxes at the particle surface: 

(1 − 𝜀)𝑎𝑝𝑘𝑓

𝜌𝑏
(𝐶𝑔,𝑖 − 𝐶𝑠,𝑖) = 𝑘ℎ(𝑞𝑖

∗ − �̅�𝑙) (4) 

 where 𝜌𝑏 is the bulk density of the column. 

The energy balance in the gas phase is given by: 

𝜕

𝜕𝑧
(𝜆

𝜕𝑇𝑔

𝜕𝑧
) − 𝑢0𝐶𝑔,𝑇𝐶𝑝

𝜕𝑇𝑔

𝜕𝑧
+ 𝜀𝑅𝑔𝑇𝑔

𝜕𝐶𝑔,𝑇

𝜕𝑡
 

−(1 − 𝜀)𝑎𝑝ℎ𝑓(𝑇𝑔 − 𝑇𝑝) −
4ℎ𝑤

𝑑𝑤𝑖
(𝑇𝑔 − 𝑇𝑤) − 𝜀𝐶𝑔,𝑇𝐶𝑣

𝜕𝑇𝑔

𝜕𝑡
= 0 

(5) 

where 𝑇𝑔, 𝑇𝑝, and 𝑇𝑤  are the gas phase, solid phase and wall temperatures, respectively, 𝜆 is 

the heat axial dispersion coefficient, 𝑅𝑔 is the universal gas constant (R=8.314 J·K-1·mol-1), ℎ𝑓 

is the heat transfer coefficient between the gas and the particle, ℎ𝑤 is the heat transfer 

coefficient between the gas phase and the column wall, 𝑑𝑤𝑖 is the internal wall diameter, 𝐶𝑝 

is the heat capacity of the mixture at constant pressure and 𝐶𝑣 is the heat capacity of the 

mixture at constant volume. 

An overall energy balance of the gas phase, adsorbed phase and the solid phase inside a particle 

is described by: 

(1 − 𝜀) [𝜀𝑝 ∑ �̅�𝑙𝐶𝑣,𝑎𝑑𝑠,𝑖 + 𝜌𝑝�̂�𝑝,𝑠

𝑛

𝑖=1

]
𝜕𝑇𝑝

𝜕𝑡
= 𝜌𝑏 ∑(−∆𝐻𝑎𝑑𝑠)

𝜕�̅�𝑙

𝜕𝑡

𝑛

𝑖=1

+ (1 − 𝜀)𝑎𝑝ℎ𝑓(𝑇𝑔 − 𝑇𝑝) (6) 

where (−∆𝐻𝑎𝑑𝑠) is the heat of adsorption of each component, and �̂�𝑝,𝑠 is the solid specific heat 

per mass unit. 

The energy balance to the column wall assumes energy exchange with the gas phase and the 

external environment, and is given by: 

𝜌𝑤�̂�𝑝,𝑤

𝜕𝑇𝑤

𝜕𝑡
= 𝛼𝑤ℎ𝑤(𝑇𝑔 − 𝑇𝑤) − 𝛼𝑤𝑙𝑈(𝑇𝑤 − 𝑇∞) (7) 

where  𝑇∞ is the external temperature, 𝜌𝑤 is the wall density, �̂�𝑝,𝑤 is the wall specific heat per 

mass unit, 𝑈 is the overall heat transfer coefficient, 𝛼𝑤 is the ratio of internal surface area to 

the column wall volume and 𝛼𝑤𝑙  is the ratio of the log mean surface area to the column wall 

volume. 

 The momentum balance is given by the Ergun equation: 
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−
𝜕𝑃

𝜕𝑧
=

150𝜇(1 − 𝜀)2

𝜀3𝑑𝑝
2 𝑢0 +

1.75(1 − 𝜀)𝜌

𝜀3𝑑𝑝

|𝑢0|𝑢0 (8) 

where 𝑃 is the total pressure, 𝜇 is the gas velocity, 𝜌 is the gas density and 𝑑𝑝 is the particle 

diameter. 

The selected boundary conditions that were used with the proposed PSA model are as follows: 

Table 1 - Boundary conditions for the PSA model. 

Pressurization with feed 

𝑧 = 0, inlet 𝑧 = 𝐿 

𝑢0𝑖𝑛𝑙𝑒𝑡𝐶𝑖𝑛𝑙𝑒𝑡,𝑖 = 𝑢0𝐶𝑔,𝑖 − 𝜀𝐷𝑎𝑥𝐶𝑔,𝑇

𝜕𝑦𝑖

𝜕𝑧
 

𝜕𝐶𝑔,𝑖

𝜕𝑧
= 0 

𝑃 = 𝑃𝑖𝑛𝑙𝑒𝑡 𝑢0 = 0 

𝑢0𝑖𝑛𝑙𝑒𝑡𝐶𝑖𝑛𝑙𝑒𝑡,𝑇𝐶𝑝𝑇𝑖𝑛𝑙𝑒𝑡 = 𝑢0𝐶𝑔,𝑇𝐶𝑝𝑇𝑔 − 𝜆
𝜕𝑇𝑔

𝜕𝑧
 

𝜕𝑇𝑔

𝜕𝑧
= 0 

Feed, Rinse 

𝑧 = 0, inlet 𝑧 = 𝐿, outlet 

𝑢0𝑖𝑛𝑙𝑒𝑡𝐶𝑖𝑛𝑙𝑒𝑡,𝑖 = 𝑢0𝐶𝑔,𝑖 − 𝜀𝐷𝑎𝑥𝐶𝑔,𝑇

𝜕𝑦𝑖

𝜕𝑧
 

𝜕𝐶𝑔,𝑖

𝜕𝑧
= 0 

𝑢0𝑖𝑛𝑙𝑒𝑡𝐶𝑖𝑛𝑙𝑒𝑡,𝑇 = 𝑢0𝐶𝑔,𝑇 𝑃 = 𝑃𝑜𝑢𝑡𝑙𝑒𝑡 

𝑢0𝑖𝑛𝑙𝑒𝑡𝐶𝑖𝑛𝑙𝑒𝑡,𝑇𝐶𝑝𝑇𝑖𝑛𝑙𝑒𝑡 = 𝑢0𝐶𝑔,𝑇𝐶𝑝𝑇𝑔 − 𝜆
𝜕𝑇𝑔

𝜕𝑧
 

𝜕𝑇𝑔

𝜕𝑧
= 0 

Counter-current blowdown 

𝑧 = 0, outlet 𝑧 = 𝐿 

𝜕𝐶𝑔,𝑖

𝜕𝑧
= 0 

𝜕𝐶𝑔,𝑖

𝜕𝑧
= 0 

𝑃 = 𝑃𝑜𝑢𝑡𝑙𝑒𝑡 𝑢0 = 0 

𝜕𝑇𝑔

𝜕𝑧
= 0 

𝜕𝑇𝑔

𝜕𝑧
= 0 

Purge 

𝑧 = 0, outlet 𝑧 = 𝐿, inlet 

𝜕𝐶𝑔,𝑖

𝜕𝑧
= 0 𝑢0𝑖𝑛𝑙𝑒𝑡𝐶𝑖𝑛𝑙𝑒𝑡,𝑖 = 𝑢0𝐶𝑔,𝑖 − 𝜀𝐷𝑎𝑥𝐶𝑔,𝑇

𝜕𝑦𝑖

𝜕𝑧
 

𝑃 = 𝑃𝑜𝑢𝑡𝑙𝑒𝑡 𝑢0𝑖𝑛𝑙𝑒𝑡𝐶𝑖𝑛𝑙𝑒𝑡,𝑇 = 𝑢0𝐶𝑔,𝑇 

𝜕𝑇𝑔

𝜕𝑧
= 0 𝑢0𝑖𝑛𝑙𝑒𝑡𝐶𝑖𝑛𝑙𝑒𝑡,𝑇𝐶𝑝𝑇𝑖𝑛𝑙𝑒𝑡 = 𝑢0𝐶𝑔,𝑇𝐶𝑝𝑇𝑔 − 𝜆

𝜕𝑇𝑔

𝜕𝑧
 

 

For this process, four performance indicators are used. These parameters will be the predicted 

output variables of the ANNs defined in section 4, in order to develop a simpler model of the 

process which requires significantly less computation effort to make the predictions. These are: 
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The ratio between the 𝐻2 and 𝐶𝑂 is calculated as: 

𝐻2

𝐶𝑂
=

∫ 𝐶𝐻2

𝑡𝑓𝑒𝑒𝑑

0
𝑢0|𝑧=𝐿 + ∫ 𝐶𝐻2

𝑢0|𝑧=𝐿
𝑡𝑟𝑖𝑛𝑠𝑒

0

∫ 𝐶𝐶𝑂
𝑡𝑓𝑒𝑒𝑑

0
𝑢0|𝑧=𝐿 + ∫ 𝐶𝐶𝑂𝑢0|𝑧=𝐿

𝑡𝑟𝑖𝑛𝑠𝑒

0

 
(9) 

The 𝐶𝑂2 purity in percentage is calculated as: 

𝑃𝑢𝑟𝐶𝑂2
=

∫ 𝐶𝐶𝑂2

𝑡𝑏𝑙𝑜𝑤

0
𝑢0|𝑧=0𝑑𝑡 + ∫ 𝐶𝐶𝑂2

𝑢0|𝑧=0𝑑𝑡
𝑡𝑝𝑢𝑟𝑔𝑒

0

∑ ∫ 𝐶𝑖
𝑡𝑏𝑙𝑜𝑤

0
𝑢0|𝑧=0𝑑𝑡 + ∫ 𝐶𝑖𝑢0|𝑧=0𝑑𝑡

𝑡𝑝𝑢𝑟𝑔𝑒

0
𝑛
𝑖=1

× 100 
(10) 

The 𝐶𝑂2 recovery in percentage is calculated as: 

𝑅𝑒𝑐𝐶𝑂2
=

∫ 𝐶𝐶𝑂2

𝑡𝑏𝑙𝑜𝑤

0
𝑢0|𝑧=0𝑑𝑡 + ∫ 𝐶𝐶𝑂2

𝑢0|𝑧=0𝑑𝑡
𝑡𝑝𝑢𝑟𝑔𝑒

0
− ∫ 𝐶𝐶𝑂2

𝑢0|𝑧=0𝑑𝑡
𝑡𝑟𝑖𝑛𝑠𝑒

0

∫ 𝐶𝐶𝑂2

𝑡𝑝𝑟𝑒𝑠𝑠

0
𝑢0|𝑧=0𝑑𝑡 + ∫ 𝐶𝐶𝑂2

𝑢0|𝑧=0𝑑𝑡
𝑡𝑓𝑒𝑒𝑑

0

× 100 
(11) 

The 𝐶𝑂2 productivity (given in: 𝑚𝑜𝑙𝐶𝑂2 𝑘𝑔𝑎𝑑𝑠
−1 ℎ−1) is calculated as: 

𝑃𝑟𝑜𝑑𝐶𝑂2
=

∫ 𝐶𝐶𝑂2

𝑡𝑏𝑙𝑜𝑤

0
𝑢0|𝑧=0𝑑𝑡 + ∫ 𝐶𝐶𝑂2

𝑢0|𝑧=0𝑑𝑡
𝑡𝑝𝑢𝑟𝑔𝑒

0
− ∫ 𝐶𝐶𝑂2

𝑢0|𝑧=0𝑑𝑡
𝑡𝑟𝑖𝑛𝑠𝑒

0

𝑡𝑐𝑦𝑐𝑙𝑒 × 𝑚𝑎𝑠𝑠 𝑑𝑟𝑦 𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑛𝑡
 

(12) 

 

3.2 Predictors 

Usually, the dynamic behaviour of several processes can be represented by time series or the 

so-called predictor. The predictors are an essential part of a model and they will define the 

model’s intrinsic nature. Thus, they should be thoroughly defined.  

A time series can be described as a series of data points ordered in time, usually at equally 

spaced time intervals. Considering a generic system, a time series can be represented by: 

𝑦(𝑡) = 𝐺[𝑢(𝑡), 𝑢(𝑡 − 1), … , 𝑢(𝑡 − 𝑘), 𝑣(𝑡), 𝑣(𝑡 − 1), … , 𝑣(𝑡 − 𝑘)] (13) 

where 𝑢 is the model input, and 𝑣 is the white noise. 

Thus, based on predictors, a system can be effectively represented using a model, which can 

be an empirical one such as artificial neural networks. Hence, a first step in the non-linear 

dynamic modelling is to evaluate the correct predictor formulation in order to attain the most 

suitable representation of the system in study.  

The most usual and important forms of predictors are Nonlinear Autoregressive with Exogenous 

Inputs (NARX) and Nonlinear Output Error (NOE) (I. B. R. Nogueira et al., 2018). Thus, the 

present work will be based on those two structures. The predictor equations for these models 

will be presented in the following sections and their influence on the system modelling will also 

be evaluated in further detail through this thesis. 

3.2.1 Nonlinear Autoregressive with Exogenous Inputs (NARX) 

For a dynamic system, the actual output 𝑦(𝑡) can be given by a NARX structure as: 
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𝑦(𝑡) = 𝐹[𝑦(𝑡 − 1), … , 𝑦(𝑡 − 1 − 𝑛𝑎), 𝑢(𝑡 − 𝑑), … , 𝑢(𝑡 − 𝑑 − 𝑛𝑏 + 1)] + 𝑣(𝑡) (14) 

where 𝑢 are the process input values, 𝑛𝑎 and 𝑛𝑏 the number of past values (also referred to as 

the model orders), 𝑑 is the input delay and 𝑣(𝑡) is the white noise produced by the system. 

A visual representation of the NARX model is found below: 

 

Figure 4 - NARX model with 𝑛𝑎 = 1, 𝑛𝑏 = 1 and 𝑑 = 1. 

This equation describes one-step-ahead predictions, but it may also be altered so it produces 

multi-step ahead predictions: 

�̂�(𝑡) = 𝑓[𝑦(𝑡 − 1), … , 𝑦(𝑡 − 1 − 𝑛𝑎), 𝑢(𝑡 − 𝑑), … , 𝑢(𝑡 − 𝑑 − 𝑛𝑏 + 1), 𝜃] (15) 

where 𝜃 represents the set of parameters of a parameterized function 𝑓(𝜑, 𝜃). 

The NARX model depends upon past measurements and inputs and is the simplest predictor 

model available. Furthermore, it demonstrates a very high speed of convergence for function 

identification. For these reasons, NARX is considered to be the most reliable predictor, being 

widely used in literature (I. Nogueira, 2018; Koivisto, 1995). 

3.2.2 Nonlinear Output Error (NOE) 

The predictor equation for NOE is described below: 

𝑧(𝑡) = 𝐹[𝑧(𝑡 − 1), … , 𝑧(𝑡 − 1 − 𝑛𝑎), 𝑢(𝑡 − 𝑑), … , 𝑢(𝑡 − 𝑑 − 𝑛𝑏 + 1)] 

𝑦(𝑡) = 𝑧(𝑡) + 𝑣(𝑡) 
(16) 

where 𝑧 is the output prediction.  

Similarly to NARX, a model can also be developed for multi-step ahead predictions: 

�̂�(𝑡) = 𝑓[�̂�(𝑡 − 1), … , �̂�(𝑡 − 1 − 𝑛𝑎), 𝑢(𝑡 − 𝑑), … , 𝑢(𝑡 − 𝑑 − 𝑛𝑏 + 1), 𝜃] 

�̂�(𝑡) = �̂�(𝑡) 
(17) 
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An example of a NOE model is found below: 

 

Figure 5 - NOE model with 𝑛𝑎 = 1, 𝑛𝑏 = 1 and 𝑑 = 1. 

As can be seen in equations 16 and 17 and Figure 5, NOE depends on past inputs and outputs, 

as well as its own past predictions, to evaluate the current output. This is in contrast to NARX, 

which only depends on past inputs and outputs, which makes the estimation of the parameters 

of a model based on a NOE predictor more difficult. This happens because the partial derivative 

of the NOE based predictions depends on the partial derivative of its own parameters. This 

leads to a correlation among parameters to be estimated and predictions made (Nelles, 2001). 

 

On the other hand, it has been found that, due to their own nature, NARX models through time 

might lead to severe error accumulation that compromises their accuracy and efficiency, and 

creates model instability; this effect is diminished for NOE models, making them more suited 

for long-term predictions than NARX models (Nelles, 2001). This makes NOE models a 

preferential option for producing simulation models, whereas NARX models are a better choice 

for predictive purposes (Koivisto, 1995). 

 

3.3 Neural Network Models 

Once the predictors are defined it is necessary to define the modelling strategy. The present 

work is based on empirical models using artificial neural networks (ANN) strategies. ANNs were 

chosen due to their higher computation speed compared to more conventional 

phenomenological models (which causes less burden on computational hardware) (Cannady, 

1998), the fact that it is a “black box” approach, which means that few prior knowledge of the 

underlying process is necessary (Karunanithi, Whitley, & Malaiya, 1992) and that they are 

capable of adapting their structure in response to new, unforeseen data, and thus, maintain 

their predictive capability (Cannady, 1998). 
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One of the goals of this work is to evaluate the application of cutting edge advances in ANN 

modelling to solve process engineering problems. Another goal is to evaluate the performance 

of those new tools, comparing them to the traditional ones. Thus, both deep neural networks 

(DNN) and classical artificial neural networks were employed in order to provide a solution to 

the problems of modelling and predicting unmeasurable variables of a PSA unit where syngas is 

purified with the main goal of adjusting its composition for future applications. Both of these 

neural network structures will be studied in detail and their results will be compared in the 

following sections. 

 

3.3.1 Feedforward Neural Networks (FNN) 

The Feedforward Neural Networks (FNN) is a classical structure of ANN where there is no 

backpropagation of information. The type of ANN structure selected to model the system in 

study is the Multilayer Perceptron (MLP). This architecture was one of the most used and 

extensively studied ANN structures during the second phase of ANN development, prior to the 

advent of deep learning (Venkatasubramanian, 2019). A considerable number of training 

algorithms have been developed for this type of network. MLP structures are very popular due 

to their versatility, as they are capable of approximating simple and complex functional 

relationships (Nørgaard, 2000).  

 

The MLP consists of multiple layers of simple nodes, or neurons, that interact using weighted 

connections. The MLP network must have at least, and usually has, three layers: an input layer, 

an output layer, and a minimum of one intermediate, or hidden, layer in between. (Pal & Mitra, 

1992) 

 

An example of a MLP with 2 inputs, 3 hidden units and a single output is presented in Figure 6: 
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Figure 6 - Example of Multilayer Perceptron Network with 2 inputs, 3 hidden units and a single output 

unit. 

 

The weights (w and W) and the biases (b) are the parameters of the network and are determined 

through a parameters estimation procedure called training step (Nørgaard, 2000). This ANN 

structure will only be used for NARX models, which are intrinsically FNN structures. 

 

3.3.2 Recurrent Neural Networks (RNN) 

On the other hand, the ANN model based on the NOE structure is intrinsically a recurrent 

structure, in other words, it is necessary to establish a backpropagation of information in the 

ANN in order to set the past predictions as a present input. Thus, the ANN structure for this 

case cannot be a FNN and instead, it should be a recurrent neural network (RNN). Therefore, 

this model is considered a Machine Learning tool, because aside from the relationship among 

inputs and outputs, it is capable of tracking the additional relationship among past and present 

states. Once again, a Multilayer Perceptron is used here as a base for the RNN, which is called 

recurrent multilayer perceptron network.  
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Figure 7 - Multilayer perceptron with 2 inputs, 3 hidden units and a single output. 

Figure 7 presents the general structure of a RNN here used as a model for the NOE case. In the 

same way as in the FNN, this structure presents the weights and bias, w and b, respectively, as 

parameters to be estimated. 

 

3.3.3 Neural Network Training 

Considering a training set described by: 

𝑍𝑁 = {[𝑢(𝑡), 𝑦(𝑡)]|𝑡 = 1, … , 𝑁} (18) 

where 𝑢(𝑡) are the inputs and 𝑦(𝑡) are the corresponding outputs. 

 

During training, the MLP is repeatedly fed with the same training set, optimizing the ANN 

parameters iteratively, until a mapping that represents the input-output relation accurately is 

achieved (Gardner & Dorling, 1998). The main goal of the training step is to maximize the 

probability distribution, 𝜃, of the ANN model predictions representing the training data, as:  

 

𝑍𝑁 → 𝜃 

Subject to: 

𝜃 = 𝑃(𝑧𝑁, 𝑧𝑃) 

(19) 

 

This way, the network should produce output predictions, �̂�, that are close to the true values 

of 𝑦(𝑡) (Nørgaard, 2000). 
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In order to estimate the predictions’ inaccuracy, the prediction error approach is used, which 

uses the mean square error as a criterion: 

 

𝑉𝑁(𝜃, 𝑍𝑁) =
1

2𝑁
∑[

𝑁

𝑡=1

𝑦(𝑡) − �̂�(𝑡|𝜃)]𝑇[𝑦(𝑡) − �̂�(𝑡|𝜃)] (20) 

The weights are then evaluated as the values for the 𝜃 vector that minimize the error estimated 

with equation 20: 

 

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑉𝑁(𝜃, 𝑍𝑁) (21) 

Then, an iterative minimization algorithm is used: 

 

𝜃(𝑖+1) = 𝜃(𝑖) + 𝜇(𝑖)𝑓(𝑖) (22) 

where 𝜃(𝑖) is the current iteration, 𝑓(𝑖) is the search direction and 𝜇(𝑖)is the step size used by 

the algorithm. 

 

Several training algorithms for neural networks have been developed, and they differ from each 

other in their search direction and step size. The algorithm selected for the training of MLP 

networks in this work is the Levenberg-Marquardt method, which is implemented in the Neural 

Network Based System Identification Toolbox (NNSYSID). The Levenberg-Marquardt method, 

developed by Kenneth Levenberg in 1944 and rediscovered by Donald Marquardt in 1963, 

provides a numerical solution for minimizing a nonlinear function (Yu & Wilamowski, 2011).  

 

One of the first algorithms used for training of neural networks was the steepest descent 

method, also known as error backpropagation (EBP) algorithm. This algorithm was continually 

improved throughout the years, despite being regarded as an inefficient algorithm due to its 

slow convergence speed (Yu & Wilamowski, 2011). 

 

The slow convergence of the EBP algorithm can be diminished by employing the Gauss-Newton 

algorithm, which can find correct step sizes for every search direction and leads to faster 

convergence. The Levenberg-Marquardt method combines the EBP and Gauss-Newton 

algorithms, in order to take advantage of each method’s main qualities: the robustness of the 

EBP algorithm, as well as the speed of convergence from Gauss-Newton. This is the reason why 

the Levenberg-Marquardt method acquired a reputation of being the standard method for 

minimization using mean squared error criteria (Yu & Wilamowski, 2011; Nørgaard, 2000). The 

mathematical proof of this algorithm as well as its implementation is well documented by 

Fletcher (1987) (Fletcher, 1987) and Nørgaard (2000). 
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As previously mentioned, training algorithms attempt to maximize a probability according to a 

criterion, so that the neural network is able to predict the desired variables, as described in 

equations 14 and 15. However, training the network to a global maximum is not possible, and 

this step should be carefully done as the problem of overfitting may occur (Sjöberg & Ljung, 

1995). Overfitting means that the training of the network fails to develop generalization 

capabilities, or in other words, the model over learns the characteristics of the training set in 

detriment of its capacity to perform prediction outside of the training conditions. Due to 

overtraining, the final network will present too many elements, presenting a very good 

adaptation to the training data, but failing to make accurate predictions when presented with 

new data.   

Thus, the regularization technique is presented in order to avoid the overfitting problem. The 

regularization consists in the employment of an extra criterion in order to stop the neural 

network training when this criterion is met. In this work, the criterion used was weight decay, 

which is a term introduced to the training algorithm that causes the values of the weights to 

exponentially decay to zero. Weight decay is implemented in the NNSYSID toolbox and is used 

throughout this work to avoid overtraining the classical neural networks and the machine 

learning models. 

The identification of the ANN models was done with the NNSYSID toolbox, developed by Prof. 

Magnus Nørgaard from the Department of Automation of the Technical University of Denmark 

in 2000. The MATLAB Version 2.0 of this toolbox, released in the year 2000, was used in this 

work (Nørgaard, 2000). Even though NNSYSID is 20 years old, it is considered a complete and 

powerful tool to build classical ANNs models. 

 

3.3.4 Neural Network Validation 

The ANN validation is done using an extra data set obtained following the procedure that will 

be described in section 3.5. Thus, a new set of inputs and its corresponding outputs, different 

from the training set is used to verify the model predictions. This was done in order to verify 

the overfitting question aforementioned. 

The validation of the neural networks is performed by determining the prediction errors that 

are obtained when the validation set is provided to the model. The normalized sum of squared 

errors (NSSE) was chosen as criterion to evaluate the validation performance of the models. 

The NSSE is calculated as:  

𝑁𝑆𝑆𝐸 =
1

2𝑁
∑(�̂�(𝑡) − 𝑦(𝑡))2

𝑁

𝑖=1

 (23) 
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3.3.5 Selection of the optimal number of neurons 

A single hidden layer was selected for the network structure, as Hunt et al. (1992) and Hornik 

et al. (1989) showed that a single hidden layer in a MLP network is able to give a satisfactory 

approximation of a function (Hunt, Sbarbaro, Żbikowski, & Gawthrop, 1992; Hornik, 

Stinchcombe, & White, 1989). 

 

After determining the number of hidden layers, the next step is finding out the optimal number 

of neurons in the hidden layers. For this purpose, the cross-validation method was proposed by 

Schenker et al. (1996). This method consists of training two different models using two different 

data sets, for a number of neurons (𝑁𝑛), and validating each model with the set used to train 

the other network. After the validations are done, the validation error is stored in a vector. 

Then, the networks are trained again, with a different number of neurons. The procedure is 

repeated 𝑁𝑛 times, the optimal number of neurons is the one that generated the smallest error 

(I. B. R. Nogueira et al., 2018). 

 

However, this procedure was not employed in this work and instead, a simpler, yet similar 

method was used: the networks were simply trained with their respective training data a 

number of times, for different numbers of neurons, and their optimal number was the one that 

produced the smallest validation error. 

 

3.3.6 Neural Network Pruning  

If validation shows that there is overfitting, a good solution may be to remove the unnecessary 

neuron connections from the network, in order to improve its generalization capabilities, 

simplify the network structure, and improve training speed. This procedure is similar to a 

surgery where the unnecessary neurons are eliminated and it is called General Pruning. The 

pruning algorithm used here was the Optimal Brain Surgeon (OBS) available within NNSYSID, 

which is currently the main pruning strategy for ANNs (Nørgaard, 2000). After OBS removes 

each unnecessary weight, the network is retrained, and this goes on until all unimportant 

weights determined by OBS are eliminated. After the procedure, the network is retrained one 

final time, using the simplified structure given by the algorithm. The mathematical proof for 

the OBS method can be found in Hassibi et al. (1993). 

 

A diagram summarizing the entire procedure for developing the networks is shown in Figure 8: 

 

Figure 8 - Summary of the method used for developing artificial neural networks. 
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3.4 Long Short-Term Memory (LSTM) 

Long short-term memory (LSTM) is a type of recurrent neural network (RNN) architecture used 

in deep learning. Unlike FNNs, RNNs have the capability of modelling sequences, by using their 

internal state to process sequences of inputs. LSTM is capable of keeping track of long-term 

data dependencies in order to model sequences (R. Zhang et al., 2019). 

 

A schematic representation of a LSTM unit can be found in Figure 9: 

 

Figure 9 - Representation of a LSTM unit. 

Each combination of a sigmoid unit (𝜎) and the pointwise multiplication (x) it leads to is a gate. 

𝜎1 belongs to the forget gate, 𝜎2 belongs to the input gate, and 𝜎3 belongs to the output gate.  

Gradient descent methods are usually preferred for the training of RNNs. This training is more 

difficult than the training of FNNs because of the vanishing and exploding gradient problems – 

the possibility that gradients tend to zero or infinity, respectively – that occur because of the 

computations involved in the algorithm. The training is therefore affected by not only the 

variation of gradient magnitudes but also because the effect of long-term dependencies will be 

hidden by the effect of short-term dependencies (Chung, Gulcehre, Cho, & Bengio, 2014).  

 

An appropriate solution for the vanishing and exploding gradient problems is to implement a 

type of RNN architecture that includes gating units – multiplicative units that control the flow 

of information in and out of cells (Chung et al., 2014). An example of such architectures is the 

LSTM. 

 

Each LSTM unit contains memory blocks, called cells, and gating units. A single unit contains an 

input gate, a forget gate and an output gate. Input gates control the flow of information into 
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the cell, output gates control the output flow of information into the network and the forget 

gate controls the extent to which information remains in a cell (Chung et al., 2014).  

 

3.5 Data acquisition procedure 

The training data is essential information to develop a reliable model and it should be carefully 

chosen. This data can be obtained through practical experiments or simulations. In the present 

case, a phenomenological model of the process was used as a source of data. This model was 

previously developed and validated through experiments in a laboratorial unit by Regufe et al. 

(2015). Therefore, this work adopts the procedure used to generate the training data, as well 

as the validation data, obtaining the training sets to be used in the models’ development.  

The selected method for the generation of training data is called latin hypercube sampling 

(LHS) and was proposed by McKay et al. (1979). LHS is a method for generating near-random 

samples of one or more variables, and it can be seen as a blend of the known random and 

stratified sampling methods (Helton & Davis, 2003). LHS can be roughly divided into two 

different stages: firstly, samples for each variable are selected to represent that variable’s 

cumulative probability density function, and secondly, the samples of the variables are 

arranged so that they can match the correlation between those variables (Huntington & 

Lyrintzis, 1998). LHS is a widely used sampling process because of the efficient stratification 

across the range of each variable (Helton & Davis, 2003). The development of LHS is detailed 

in McKay et al. (1979).  

A subroutine for the generation of variable samples was created in MATLAB, using the lhsdesign 

function included in the software. Both training and validation data sets were generated with 

this procedure. 
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4 Results and Discussion 

4.1 Process Simulation 

This work’s case study is a PSA process that was designed for the adjustment of H2/CO ratio of 

a syngas mixture. The model of this process was previously developed by Regufe et al. (2015) 

and validated through experiments in a laboratorial PSA unit located in Laboratory of Separation 

and Reaction Engineering. The model is detailed in section 3.1, and presented below are the 

simulation conditions that served as basis for the generation of data for the present work was 

generated. The model is implemented in gPROMS (Process Systems Enterprise, 2015) and it was 

run in MATLAB through the go:MATLAB connection. All the remaining studies presented here 

were done in MATLAB. 

The initial composition of the mixture is 22% CO, 30% CO2 and 48% H2. As a result of the process, 

two product streams are obtained: a CO2-rich stream (the most adsorbed component of the 

mixture) and a H2+CO stream with a H2/CO ratio suitable for use in the Fischer-Tropsch process.  

The PSA process is carried out with the following steps: 

 Co-current pressurization with the feed mixture and feed step at 𝑃𝐻𝑖𝑔ℎ = 4.0 bar; 

 Rinse step with a pure stream of CO2, in order to increase the amount of CO2 in the 

adsorbent bed; 

 Blowdown step, where the bed is depressurized to 𝑃𝐿𝑜𝑤 = 1.0 bar counter-currently; 

 A purge step, carried out with a mixture of 32% CO and 68% H2.  

A visual scheme for the full PSA cycle is presented below: 

 

Figure 10 - Scheme of the PSA process studied in this work. 
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The parameters for the adsorbent bed used in the process are shown in Table 2: 

Table 2 - Parameters used for the process’ adsorbent bed. 

Bed diameter (m) 0.0211 

Bed length (m) 0.323 

Bed porosity 0.353 

Adsorbent MIL-125(Ti)_NH2 

Adsorbent shape Granulate 

Particle bulk density (kg·m-3) 549 

Particle porosity 0.56 

Particle radius (m) 1.00×10-3 

Particle specific heat (J·kg-1·K-1) 1200 

 

The transport parameters used in the mathematical model are presented in Table 3: 

Table 3 – Transport parameters used in the process’ mathematical model. 

Dax (m
2·s-1) 6.9×10-5 

λ (J·s-1·m-1·K-1) 0.6 

kf (m·s-1) 2.0×10-2 

hf (W·m-2·K-1) 128 

hw (W·m-2·K-1) 50 

Dp (m
2·s-1) 

CO2: 7.7×10-7 

H2: 2.5×10-6 

CO: 9.8×10-7 

Rp (m) 1.0×10-3 

 

The operating conditions used in the mathematical model are given in Table 4: 

Table 4 – Operating conditions of the PSA process. 

Temperature (K) 323 

PHigh (bar) 4.0 

PLow (bar) 1.0 

Flow rates (SLPM) 

Feed: 0.43 

Rinse: 0.50 

Purge: 0.30 
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Step times (s) 

Feed: 332 

Rinse: 221 

Blowdown: 94 

Purge: 92 

 

The results for the simulations carried out using the parameters presented in Tables 2, 3 and 4 

are presented in Table 5: 

Table 5 – Simulation results of the PSA process. 

(H2 + CO) product 

H2/CO  2.37 

CO2 product 

Purity (%) 83.8 

Recovery (%) 93.5 

Productivity (mol·kgads
-1·h-1) 3.15 

 

4.2 Data acquisition 

From the conditions previously presented the methodology to generate data points was applied 

in order to build a database large enough to train and validate the empirical models. As 

described in section 3.5, the input data variation was generated through the Latin hypercube 

sampling method, using the lhsdesign MATLAB function. Eight process inputs were selected as 

process operating variables to be correlated to the process performance parameters through 

the ANN models. Fixed intervals were defined for each of the eight selected input variables and 

the samples created were within those intervals. Those variables were selected for being the 

most important operating variables of the process. Furthermore, they are of interest from the 

control and optimization point of view, which means the ANNs models might serve as the base 

for those disciplines. The selected input variables are: 

 𝑡𝑓𝑒𝑒𝑑 – feed step time; 

 𝑡𝑝𝑢𝑟𝑔𝑒 – purge step time; 

 𝑡𝑟𝑖𝑛𝑠𝑒 – rinse step time; 

 𝑃ℎ𝑖𝑔ℎ - high pressure; 

 𝑃𝑙𝑜𝑤 – low pressure; 

 𝑄𝑟𝑖𝑛𝑠𝑒 – rinse step volumetric flow rate; 

 𝑄𝑝𝑢𝑟𝑔𝑒 – purge step volumetric flow rate; 

 𝑇𝑖𝑛𝑙𝑒𝑡 – inlet temperature. 
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The bounds for the selected intervals are presented in Table 6 and were calculated considering 

± 25% of the values presented in Table 4: 

Table 6  – Upper and lower bounds for the intervals of the generated training samples. 

 
𝒕𝒇𝒆𝒆𝒅  

(s) 

𝒕𝒑𝒖𝒓𝒈𝒆 

(s) 

𝒕𝒓𝒊𝒏𝒔𝒆 

(s) 

𝑷𝒉𝒊𝒈𝒉 

(bar) 

𝑷𝒍𝒐𝒘 

(bar) 

𝑸𝒓𝒊𝒏𝒔𝒆 

(m3·s-1) 

𝑸𝒑𝒖𝒓𝒈𝒆 

(m3·s-1) 

𝑻𝒊𝒏𝒍𝒆𝒕 

(K) 

Upper 412.5 118.8 275 5.0 1.25 0.625 0.375 403.9 

Lower 247.5 71.25 165 3.0 0.75 0.375 0.225 243.4 

  

For the training sets, 80 different values for each input variable were generated and only one 

of the variables was introduced in the initial conditions vector at a time. Each one of the new 

operating conditions was applied to the process and then, enough time was given to reach the 

new steady state (19 cycles). Overall, this procedure generated a total of 12160 data points. 

The inputs for each variable are represented below in graphical form in Figure 11:  
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Figure 11 – Generated  inputs for a) 𝑡𝑓𝑒𝑒𝑑, b) 𝑡𝑝𝑢𝑟𝑔𝑒, c) 𝑡𝑟𝑖𝑛𝑠𝑒, d) 𝑃ℎ𝑖𝑔ℎ, e) 𝑃𝑙𝑜𝑤, f) 𝑄𝑟𝑖𝑛𝑠𝑒, g) 𝑄𝑝𝑢𝑟𝑔𝑒 and 

h) 𝑇𝑖𝑛𝑙𝑒𝑡 to use for training the neural networks. 

The same procedure was repeated in order to generate a set for models validation. In this case, 

17 different samples for each variable were generated within new operating condition intervals 

considering ± 15% of the original values (Table 4) as given in Table 7, following the LHS method, 

and a total of 2583 data points were obtained. 

Table 7 – Upper and lower bounds for the intervals of the generated validation samples. 

 
𝒕𝒇𝒆𝒆𝒅  

(s) 

𝒕𝒑𝒖𝒓𝒈𝒆 

(s) 

𝒕𝒓𝒊𝒏𝒔𝒆 

(s) 

𝑷𝒉𝒊𝒈𝒉 

(bar) 

𝑷𝒍𝒐𝒘 

(bar) 

𝑸𝒓𝒊𝒏𝒔𝒆 

(m3·s-1) 

𝑸𝒑𝒖𝒓𝒈𝒆 

(m3·s-1) 

𝑻𝒊𝒏𝒍𝒆𝒕 

(K) 

Upper 379.5 109.25 253 4.6 1.15 0.575 0.345 371.6 

Lower 280.5 80.75 187 3.4 0.85 0.425 0.255 274.7 

 

The inputs generated for the validation set can be found in Figure 12: 
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Figure 12 – Generated  inputs for a) 𝑡𝑓𝑒𝑒𝑑, b) 𝑡𝑝𝑢𝑟𝑔𝑒, c) 𝑡𝑟𝑖𝑛𝑠𝑒, d) 𝑃ℎ𝑖𝑔ℎ, e) 𝑃𝑙𝑜𝑤, f) 𝑄𝑟𝑖𝑛𝑠𝑒, g) 𝑄𝑝𝑢𝑟𝑔𝑒 and 

h) 𝑇𝑖𝑛𝑙𝑒𝑡 to use for validating the neural networks. 

Both of the input sets were run by the model so results for the four selected output variables 

were obtained. These variables are the performance indicators described in section 3.1, by 

equations 9, 10, 11 and 12. 

4.3 Network training and validation – classical model 

The networks were trained with the generated training data. NARX predictor models were 

employed to make one-step-ahead predictions of the output variables.  

A different network was trained and validated for predicting each output variable, instead of 

a single network that predicts every variable simultaneously, as multi-input multi-output 

(MIMO) networks are more complex and difficult to train than multi-input single-output (MISO) 

models. 

The training parameters used for the NARX and NOE networks are: 

Table 7 – Training parameters for the NARX and NOE models 

Number of past inputs 1 

Number of past outputs 1 

Time delay 1 

Maximum number of iterations NARX: 500 

NOE: 100 

Early stop criteria (weight decay) 1 

 

4.3.1 NARX – model identification  

In order to determine the optimal number of hidden layer neurons, the networks were trained 

multiple times with up to 30 neurons, and the number of neurons that produced the smallest 
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error (NSSE, as mentioned in section 3.3.4) was selected as the optimal number. The results of 

this procedure shall be presented throughout this section.  

The validation results (the comparison between the PSA outputs and the model’s predictions) 

will be presented in section 4.6 and compared to the validation results of other models, in 

order to analyse their performances. 

The validation results for NARX models may also be consulted separately in appendix A1. 

The results of the identification of the optimal number of neurons for the output variables are 

presented in Figure 13 in which the arrows indicate the optimal number of neurons: 

  

  

Figure 13 - Identification of the optimal number of neurons for the NARX networks: a) 
𝐻2

𝐶𝑂⁄ , b) 𝑃𝑢𝑟𝐶𝑂2
, 

c) 𝑅𝑒𝑐𝐶𝑂2
, d) 𝑃𝑟𝑜𝑑𝐶𝑂2

 

The results of the identification of the optimal number of neurons for the NARX model 

consistently showed that NSSE decreases with the number of neurons until it eventually 

stabilizes. The number of optimal neurons for the NARX networks tends to be quite high, which 

suggests that larger networks achieve better more accurate predictions until a certain point, 

from which overtraining might occur. However, only networks of up to 30 neurons in the hidden-
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layer were trained as it was difficult to train larger networks due to the considerable 

computational effort required for this task. 

4.4 Network training and validation – Machine Learning strategy 
 

4.4.1 NOE – model identification  

This section presents the development of the machine learning strategy, based on a NOE 

predictor. The same output variables were also predicted by this approach. For this case, the 

development methodology is very similar to the previously presented one. The validation results 

(the comparison between the PSA outputs and the model’s predictions) will be presented in 

section 4.6 and compared to the validation results of other models, in order to analyse their 

performances. 

The results of the identification of the optimal number of neurons for the output variables are 

presented in Figure 14: 

  

  

Figure 14 - Identification of the optimal number of neurons for the NOE networks: a) 
𝐻2

𝐶𝑂⁄ , b) 𝑃𝑢𝑟𝐶𝑂2
, 

c) 𝑅𝑒𝑐𝐶𝑂2
, d) 𝑃𝑟𝑜𝑑𝐶𝑂2
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As can be seen in Figure 14, networks of only up to 10 and 5 hidden layer neurons were trained. 

This is because of the previously mentioned issues related to the vanishing/exploding gradient 

problems, which in this case was the vanishing gradient problem. Thus, only relatively small 

networks were trained, as training larger networks would be impossible due to the formation 

of a singular weight matrix. Furthermore, the NOE model for the CO2 purity was only trained 

with up to 5 hidden layer neurons, because the same issues were verified during the training 

process, which rendered the training of larger networks impossible. 

However, this network is an exception, and all remaining NOE networks were trained with up 

to 10 neurons. 

From the results presented thus far, it is possible to note that unlike in NARX models, the NSSE 

does not always tend to decrease and eventually stabilize as the number of neurons increases. 

This is due to the instability of NOE models’ training, which leads to the observed 

unpredictability of these results, such as the peak in Figure 14 d), or the sudden increase of 

NSSE observed in Figure 14 a). 

4.5 Network training – Long Short-Term Memory model 
 

The same output variables were also predicted by a deep learning LSTM network with the goal 

of comparing the performance of these network models with classical ones. 

All the LSTM networks are composed of two hidden LSTM layers and each of them has a pre-

selected number of hidden LSTM units. The optimization of the LSTM structure was not part of 

this work due to the complexity of the task, and it should be the subject of future works. 

Furthermore, it was noted that with two hidden layers and a number of neurons around 100, 

the LSTM was able to predict the process variables with good accuracy.  Thus, the number of 

hidden LSTM units for the networks was selected through a simple trial and error approach and 

future works should address this issue better. However, even using this simple methodology, it 

was possible to obtain a better performance with the DNN models than with the classical ones, 

as it will be seen in section 4.6. The training parameters defined for the training of these 

networks and their final structure are presented in Table 8 and 9. 

Table 8 – Training parameters for LSTM networks. 

Maximum number of iterations 

(epochs) 

160 

Initial learning rate 0.005 

Learning date drop factor 0.2 

Learning rate drop period 125 

Frequency of network validation 1 
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Gradient treshold 1 

 

Table 9 – Number of LSTM units in the hidden layers of each network. 

H2/CO Ratio 
Number of hidden units (1st layer): 300 

Number of hidden units (2nd layer): 100 

CO2 Purity 
Number of hidden units (1st layer): 300 

Number of hidden units (2nd layer): 100 

CO2 Recovery 
Number of hidden units (1st layer): 300 

Number of hidden units (2nd layer): 100 

CO2 Productivity 
Number of hidden units (1st layer): 100 

Number of hidden units (2nd layer): 100 

 

The validation results for the LSTM networks can be also found in section 4.6, and the results 

themselves are shown in Appendix A1. 

4.6 Comparison and model validation 

In this section, the validation results for all of the models are compared to each other, in order 

to determine their relative performance. 

Due to the large size of the validation data, the outputs resulting from the simulation of the 

PSA model had to be divided into two small regions. The division was made in order to obtain 

a representation of one area where there are strong dynamic oscillations, and another where 

the dynamics are smoother. However, full validation data and comparison between the models 

are shown in Appendix A1. 

Two graphs are shown for each output variable: one highlighting a part of the oscillatory region, 

and one for the smooth region. In each of these graphs, the predictions from the three models 

are compared to the simulation outputs: 

The results for the H2/CO ratio are given in Figure 15: 
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Figure 15 - Comparison of the different models for H2/CO ratio, for the strong dynamics region 

(above) and the smooth dynamics region (below). 

In the region with stronger dynamics, only the LSTM network is able to make precise predictions 

of the behaviour, whereas NARX and NOE models are not. On the other hand, the NARX model 

was able to do satisfactory predictions, but it presents a persistent offset. Finally, the NOE 

model presented a significant deviation from the process behaviour. This may be attributed to 

the hard training of these models, which can lead to the atrophy of networks leading to a model 

with poor predictive capabilities. Similar conclusions are taken from the analysis on the region 
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with smother dynamics, visual inspection suggests LSTM achieved the best results, and NOE 

once again displayed poor performance for H2/CO ratio predictions. 

Figure 16 shows the results for CO2 purity: 

 

 
Figure 16 - Comparison of the different networks for CO2 purity, for the strong dynamics region 

(above) and the smooth dynamics region (below). 

In this case, through visual inspection, it is difficult to tell which model presents the best 

performance, since all of them produced precise predictions. However, in both NOE and NARX 
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a small offset is present between the steady state predicted and the actual one. On the other 

hand, LSTM was able to predict the steady state accurately, presenting an overall performance 

slight superior to the other models. 

The results for the CO2 recovery are displayed in Figure 17: 

 

 
Figure 17 - Comparison of the different models for CO2 recovery, for the strong dynamics region 
(above) and the smooth dynamics region (below). 

The LSTM network was once again able to make acceptable predictions of the process dynamics, 

while the classical and machine learning networks were not able to. The dense regions on both 
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graphs in the NOE predictions are oscillations produced by the model, again showing how the 

model can often produce unstable results. LSTM networks appear to have achieved the best 

performance, as the NARX model did not approximate the variations in the dynamics of the CO2 

recovery as well as LSTM. 

The results for the CO2 productivity are shown in Figure 18: 
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Figure 18 - Comparison of the different models for CO2 productivity, for the strong dynamics region 

(above) and the smooth dynamics region (below). 

The results are of a similar nature to the ones obtained for the CO2 recovery, with LSTM 

appearing to achieve better results across all the conditions tested, in spite of a small offset at 

some instants. The most significant difference is the improvement of the NOE performance, 

which seems to be superior to the NARX model in this case. 

4.7 Phenomenological model vs Empirical model 

Finally, the simulation time of the phenomenological model was compared to the one of the 

empirical models, for the whole validation set. The simulations were run on the same computer 

with an Intel Core i5-2400 processor and 8 GB of RAM memory for the case of the 

phenomenological model it took 3 hours, while for the empirical models it took about 1 second. 

This difference is important for application in real time optimization, inference and control 

strategies. Furthermore, deep learning was able to represent with precision the full process 

dynamics when compared with phenomenological model, and this is an essential characteristic 

to address PSA dynamic related issues.
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5 Conclusions  

In this work, three sets of ANN-based empirical models were developed to model a PSA process 

with the goal of adjusting the H2/CO ratio of a syngas mixture. Each set of ANNs presented a 

Multi-MISO system, with each of the four ANNs receiving information on eight process inputs 

and predicting one process output. Thus, a total of 12 Artificial Intelligence models were 

developed in the present work. The models were developed based on the historical advances 

on the Artificial Intelligence field, one model based on the classical approach, another based 

on machine learning and a final one based on deep learning. The performance of each model 

was studied and discussed, and the models were compared to each other. 

The deep learning models generally showed better performances than the classical model and 

machine learning model, as the DNNs were able to predict precisely the entire dynamical 

behaviour of the PSA unit for all outputs, whereas the others were only able to achieve a close 

approximation of the process dynamics. Between the classical model and the machine learning, 

NARX performed better when compared to NOE, which displayed inconsistent results, putting 

its predictive capabilities into question. The overall poor behaviour of the machine learning 

model is due the gradient explosion/vanishing problems related to the field. Precisely to 

address those problems the DNNs where developed. 

A comparison was also established between the empirical models and the phenomenological 

ones, and the former achieved dramatically lower simulation times than the latter. 

It is therefore concluded that the LSTM-based DNNs can be reliable predictors of the process’ 

dynamical behaviour, and may be a good option for the development of control, optimization 

and on-line measurement strategies. On the other hand, the classical networks showed 

considerable limitations in handling the PSA unit’s complex dynamic behaviour. 

Future works 

Examples of possible projects that may expand on the results of this work include: 

 Optimization of the LSTM networks; 

 Employing empirical models on a nonlinear model predictive control system; 

 Optimization of the PSA unit based on the built models; 

 Development of systems with on-board empirical models, to be employed on a 

laboratorial installation, that can provide real-time information about the process.





Modelling of a PSA unit by artificial neural networks 
 

References   43 

6 References 

Abraham, M. A. (2017). Encyclopedia of sustainable technologies. In (pp. 1 online resource (4 

volumes)).  

Aggarwal, C. C. (2018). Neural networks and deep learning : a textbook. In (pp. 1 online 

resource (xxiii, 497 pages)). Retrieved from http://dx.doi.org/10.1007/978-3-319-

94463-0 MIT Access Only doi:10.1007/978-3-319-94463-0 

Bakshi, B. R., & Stephanopoulos, G. (1993). Wave-net: a multiresolution, hierarchical neural 

network with localized learning. AIChE Journal, 39(1), 57-81. 

doi:10.1002/aic.690390108 

Bañares-Alcántara, R., Westerberg, A. W., Ko, E. I., & Rychener, M. D. (1987). Decade—A 

hybrid expert system for catalyst selection—I. Expert system consideration. Computers 

& Chemical Engineering, 11(3), 265-277. doi:https://doi.org/10.1016/0098-

1354(87)85008-1 

Bañares-Alcántara, R., Westerberg, A. W., & Rychener, M. D. (1985). Development of an 

expert system for physical property predictions. Computers & Chemical Engineering, 

9(2), 127-142. doi:https://doi.org/10.1016/0098-1354(85)85003-1 

Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing, 

design, and application. Journal of Microbiological Methods, 43(1), 3-31. 

doi:https://doi.org/10.1016/S0167-7012(00)00201-3 

Cannady, J. (1998). Artificial Neural Networks for Misuse Detection. 

Chen, J., & Huang, T.-C. (2004). Applying neural networks to on-line updated PID controllers 

for nonlinear process control. Journal of Process Control, 14(2), 211-230. 

doi:https://doi.org/10.1016/S0959-1524(03)00039-8 

Chihara, K., & Suzuki, M. (1983). AIR DRYING BY PRESSURE SWING ADSORPTION. Journal of 

Chemical Engineering of Japan, 16(4), 293-299. doi:10.1252/jcej.16.293 

Christensen, T. S., & Primdahl, I. I. (1994). Improve syngas production using autothermal 

reforming.  

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical Evaluation of Gated 

Recurrent Neural Networks on Sequence Modeling. 

Deng, L., Li, J., Huang, J., Yao, K., Yu, D., Seide, F., . . . Acero, A. (2013, 26-31 May 2013). 

Recent advances in deep learning for speech research at Microsoft. Paper presented 

at the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. 

Fletcher, R. (1987). Practical methods of optimization (2nd ed.). Chichester ; New York: 

Wiley. 

Gani, R. (2004). Chemical product design: challenges and opportunities. Computers & 

Chemical Engineering, 28(12), 2441-2457. 

doi:https://doi.org/10.1016/j.compchemeng.2004.08.010 

Gardner, M. W., & Dorling, S. R. (1998). Artificial neural networks (the multilayer 

perceptron)—a review of applications in the atmospheric sciences. Atmospheric 

Environment, 32(14), 2627-2636. doi:https://doi.org/10.1016/S1352-2310(97)00447-0 

Gomes, V. G., & Yee, K. W. K. (2002). Pressure swing adsorption for carbon dioxide 

sequestration from exhaust gases. Separation and Purification Technology, 28(2), 161-

171. doi:https://doi.org/10.1016/S1383-5866(02)00064-3 



Modelling of a PSA unit by artificial neural networks 
 

References   44 

Gontarski, C. A., Rodrigues, P. R., Mori, M., & Prenem, L. F. (2000). Simulation of an 

industrial wastewater treatment plant using artificial neural networks. Computers & 

Chemical Engineering, 24(2), 1719-1723. doi:https://doi.org/10.1016/S0098-

1354(00)00449-X 

Hamed, M. M., Khalafallah, M. G., & Hassanien, E. A. (2004). Prediction of wastewater 

treatment plant performance using artificial neural networks. Environmental 

Modelling & Software, 19(10), 919-928. 

doi:https://doi.org/10.1016/j.envsoft.2003.10.005 

Hassibi, B., Stork, D. G., & Wolff, G. J. (1993, 28 March-1 April 1993). Optimal Brain Surgeon 

and general network pruning. Paper presented at the IEEE International Conference on 

Neural Networks. 

Helton, J. C., & Davis, F. J. (2003). Latin hypercube sampling and the propagation of 

uncertainty in analyses of complex systems. Reliability Engineering & System Safety, 

81(1), 23-69. doi:https://doi.org/10.1016/S0951-8320(03)00058-9 

Hernández, E., & Arkun, Y. (1992). Study of the control-relevant properties of 

backpropagation neural network models of nonlinear dynamical systems. Computers & 

Chemical Engineering, 16(4), 227-240. doi:https://doi.org/10.1016/0098-

1354(92)80044-A 

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A., Jaitly, N., . . . Kingsbury, B. (2012). 

Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views 

of Four Research Groups. IEEE Signal Processing Magazine, 29(6), 82-97. 

doi:10.1109/MSP.2012.2205597 

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are 

universal approximators. Neural Networks, 2(5), 359-366. 

doi:https://doi.org/10.1016/0893-6080(89)90020-8 

Hunt, K. J., Sbarbaro, D., Żbikowski, R., & Gawthrop, P. J. (1992). Neural networks for 

control systems—A survey. Automatica, 28(6), 1083-1112. 

doi:https://doi.org/10.1016/0005-1098(92)90053-I 

Huntington, D. E., & Lyrintzis, C. S. (1998). Improvements to and limitations of Latin 

hypercube sampling. Probabilistic Engineering Mechanics, 13(4), 245-253. 

doi:https://doi.org/10.1016/S0266-8920(97)00013-1 

Karunanithi, N., Whitley, D., & Malaiya, Y. K. (1992). Using neural networks in reliability 

prediction. IEEE Software, 9(4), 53-59. doi:10.1109/52.143107 

Koivisto, H. (1995). A Practical Approach to Model Based Neural Network Control (Tese de 

doutoramento). 

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436. 

doi:10.1038/nature14539 

Marda, J. R., DiBenedetto, J., McKibben, S., Evans, R. J., Czernik, S., French, R. J., & Dean, 

A. M. (2009). Non-catalytic partial oxidation of bio-oil to synthesis gas for distributed 

hydrogen production. International Journal of Hydrogen Energy, 34(20), 8519-8534. 

doi:https://doi.org/10.1016/j.ijhydene.2009.07.099 

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous 

activity. The bulletin of mathematical biophysics, 5(4), 115-133. 

doi:10.1007/BF02478259 



Modelling of a PSA unit by artificial neural networks 
 

References   45 

McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A Comparison of Three Methods for 

Selecting Values of Input Variables in the Analysis of Output from a Computer Code. 

Technometrics, 21(2), 239-245. doi:10.2307/1268522 

Metz, C. (2016a). APPLE IS BRINGING THE AI REVOLUTION TO YOUR IPHONE. Retrieved from 

https://www.wired.com/2016/06/apple-bringing-ai-revolution-iphone/ 

Metz, C. (2016b). AN INFUSION OF AI MAKES GOOGLE TRANSLATE MORE POWERFUL THAN 

EVER. Retrieved from https://www.wired.com/2016/09/google-claims-ai-

breakthrough-machine-translation/ 

Nelles, O. (2001). Nonlinear system identification : from classical approaches to neural 

networks and fuzzy models. Berlin ; New York: Springer. 

Nogueira, I. (2018). Optimization and Control of TMB, SMB and SMBR units (Tese de 

doutoramento).  

Nogueira, I. B. R., Ribeiro, A. M., Requião, R., Pontes, K. V., Koivisto, H., Rodrigues, A. E., & 

Loureiro, J. M. (2018). A quasi-virtual online analyser based on an artificial neural 

networks and offline measurements to predict purities of raffinate/extract in 

simulated moving bed processes. Applied Soft Computing, 67, 29-47. 

doi:https://doi.org/10.1016/j.asoc.2018.03.001 

Nørgaard, M. (2000). Neural Network Based System Identification Toolbox, Version 2.0. Tech. 

Report. 00-E-891, Department of Automation, Technical University of Denmark, 2000.  

Oh, K.-S., & Jung, K. (2004). GPU implementation of neural networks. Pattern Recognition, 

37(6), 1311-1314. doi:https://doi.org/10.1016/j.patcog.2004.01.013 

Pal, S. K., & Mitra, S. (1992). Multilayer perceptron, fuzzy sets, and classification. IEEE 

Transactions on Neural Networks, 3(5), 683-697. doi:10.1109/72.159058 

Process Systems Enterprise. https://www.psenterprise.com/products/gproms. 2015.  

Rafiq, M. Y., Bugmann, G., & Easterbrook, D. J. (2001). Neural network design for engineering 

applications. Computers & Structures, 79(17), 1541-1552. 

doi:https://doi.org/10.1016/S0045-7949(01)00039-6 

Raina, R., Madhavan, A., & Ng, A. Y. (2009). Large-scale deep unsupervised learning using 

graphics processors. Paper presented at the Proceedings of the 26th Annual 

International Conference on Machine Learning, Montreal, Quebec, Canada.  

Regufe, M. J., Tamajon, J., Ribeiro, A. M., Ferreira, A., Lee, U. H., Hwang, Y. K., . . . 

Rodrigues, A. E. (2015). Syngas Purification by Porous Amino-Functionalized Titanium 

Terephthalate MIL-125. Energy & Fuels, 29(7), 4654-4664. 

doi:10.1021/acs.energyfuels.5b00975 

Rostrup-Nielsen, J., & Christiansen, L. J. (2011). Concepts in syngas manufacture. London: 

Imperial College Press. 

Rostrup-Nielsen, J. R. (1984). Catalytic steam reforming. Berlin: Springer-Verlag. 

Ruthven, D. M. (1984). Principles of adsorption and adsorption processes. New York: Wiley. 

Ruthven, D. M., Farooq, S., & Knaebel, K. S. (1994). Pressure swing adsorption. New York, 

N.Y.: VCH Publishers. 

Sant Anna, H. R., Barreto, A. G., Tavares, F. W., & de Souza, M. B. (2017). Machine learning 

model and optimization of a PSA unit for methane-nitrogen separation. Computers & 

Chemical Engineering, 104, 377-391. 

doi:https://doi.org/10.1016/j.compchemeng.2017.05.006 



Modelling of a PSA unit by artificial neural networks 
 

References   46 

Schenker, B., & Agarwal, M. (1996). Cross-validated structure selection for neural networks. 

Computers & Chemical Engineering, 20(2), 175-186. 

doi:https://doi.org/10.1016/0098-1354(95)00013-R 

Siirola, J. J., & Rudd, D. F. (1971). Computer-Aided Synthesis of Chemical Process Designs. 

From Reaction Path Data to the Process Task Network. Industrial & Engineering 

Chemistry Fundamentals, 10(3), 353-362. doi:10.1021/i160039a003 

Sircar, S., & Golden, T. C. (2000). Purification of Hydrogen by Pressure Swing Adsorption. 

Separation Science and Technology, 35(5), 667-687. doi:10.1081/SS-100100183 

Sjöberg, J., & Ljung, L. (1995). Overtraining, regularization and searching for a minimum, 

with application to neural networks. International Journal of Control, 62(6), 1391-

1407. doi:10.1080/00207179508921605 

Ungar, L. H., Powell, B. A., & Kamens, S. N. (1990). Adaptive networks for fault diagnosis and 

process control. Computers & Chemical Engineering, 14(4), 561-572. 

doi:https://doi.org/10.1016/0098-1354(90)87027-M 

Venkatasubramanian, V. (2019). The promise of artificial intelligence in chemical 

engineering: Is it here, finally? AIChE Journal, 65(2), 466-478. doi:10.1002/aic.16489 

Ye, F., Ma, S., Tong, L., Xiao, J., Bénard, P., & Chahine, R. (2019). Artificial neural network 

based optimization for hydrogen purification performance of pressure swing 

adsorption. International Journal of Hydrogen Energy, 44(11), 5334-5344. 

doi:https://doi.org/10.1016/j.ijhydene.2018.08.104 

Yu, H., & Wilamowski, B. (2011). Hao Yu and B. M. Wilamowski, LevenbergMarquardt Training 

Industrial Electronics Handbook, vol. 5 Intelligent Systems, 2nd Edition, chapter 12, 

pp. 12-1 to 12-15, CRC Press 2011. In (pp. 12-11 to 12). 

Zhang, G., Eddy Patuwo, B., & Y. Hu, M. (1998). Forecasting with artificial neural networks:: 

The state of the art. International Journal of Forecasting, 14(1), 35-62. 

doi:https://doi.org/10.1016/S0169-2070(97)00044-7 

Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. 

Neurocomputing, 50, 159-175. doi:https://doi.org/10.1016/S0925-2312(01)00702-0 

Zhang, R., Chen, Z., Chen, S., Zheng, J., Büyüköztürk, O., & Sun, H. (2019). Deep long short-

term memory networks for nonlinear structural seismic response prediction. 

Computers & Structures, 220, 55-68. 

doi:https://doi.org/10.1016/j.compstruc.2019.05.006 

  



Modelling of a PSA unit by artificial neural networks 
 

Appendix A1. Validation results for each network model   47 

Appendix A1. Validation results for each network 

model 

A1.1 NARX 
 

 
Figure A1.1 - Validation results for the H2/CO ratio (NARX model). 

 
Figure A1.2 - Validation results for the CO2 purity (NARX model). 
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Figure A1.3 - Validation results for the CO2 recovery (NARX model). 

 
Figure A1.4 - Validation results for the CO2 productivity (NARX model). 
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A1.2 NOE 
 

 
Figure A1.5 - Validation results for the H2/CO ratio (NOE model). 

 

 
Figure A1.6 - Validation results for the CO2 purity (NOE model). 
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Figure A1.7 - Validation results for the CO2 recovery (NOE model). 

 

 
Figure A1.8 - Validation results for the CO2 productivity (NOE model). 
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A1.3 LSTM 
 

 

Figure A1.9 - Validation results for the H2/CO ratio (LSTM model). 

 

 

Figure A1.10 - Validation results for the CO2 purity (LSTM model). 
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Figure A1.11 - Validation results for the CO2 recovery (LSTM model). 

 

 
Figure A1.12 - Validation results for the CO2 productivity (LSTM model). 


