
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

FCPortugal - Machine Learning for
Creating Robotic Soccer Setplays

Bruno Miguel da Silva Barbosa de Sousa

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Luís Paulo Reis

October 31, 2021

FCPortugal - Machine Learning for Creating Robotic
Soccer Setplays

Bruno Miguel da Silva Barbosa de Sousa

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Prof. Henrique Daniel de Avelar Lopes Cardoso

External Examiner: Prof. José Manuel Veiga Ribeiro Cascalho

Supervisor: Prof. Luís Paulo Gonçalves dos Reis

October 31, 2021

Abstract

RoboCup, a robotic soccer competition, was introduced as a challenge for Artificial Intelligence
and Intelligent Robotics to foster research in multiple associated fields such as multi-agent col-
laboration. Since then, the competition has grown to now feature multiple leagues. One of them
is the 3D Simulated League, where two teams of eleven simulated humanoid robots compete in a
game of robotic soccer.

FCPortugal is a joint project from Faculdade de Engenharia da Universidade do Porto and
Universidade de Aveiro that participates in the 3D league. In the past, during a phase where the
team participated in the 2D league, the team’s research focused mainly on high-level strategies
for players’ coordination. However, the switch to humanoid 3D robot models forced the team to
shift focus to the implementation of low-level skills, such as walking, running and kicking the ball.
Now that those skills have been achieved, the study of high-level strategies has been restarted. One
of such strategies is using setplays, studied plans to improve chances of the team scoring goals on
setpieces, moments of the game where the game’s flow is stopped.

Recent developments in machine learning, namely in Deep Reinforcement Learning and Multi-
Agent Deep Reinforcement Learning, provide new perspectives into how agents may indepen-
dently learn to perform tasks and collaborate to achieve a common goal. These new algorithms
may now be used for the robots’ learning and optimization of robotic soccer setplays.

In this dissertation, we propose a framework for the creation and optimization of setplays for
the FCPortugal3D team. This framework includes the definition of a new setplay optimization
language, in which setplays may be defined, and a parser to translate those definitions into envi-
ronments where state of the art Reinforcement Learning algorithms may be used to optimize the
setplays.

In order to test the effectiveness of the framework, a simple setplay was defined, trained and
tested. While the results of the tests were underwhelming, not allowing to prove that the frame-
work can be used by itself to create and optimize setplays, the framework may still be used as a
starting point for the definition of setplays that researchers can later edit to improve results.

i

ii

Resumo

RoboCup, uma competição de futebol robótico, foi introduzida como um novo desafio para In-
teligência Artificial e Robôs Inteligentes com o intuito de incentivar pesquisa em várias matérias
associadas, como colaboração multi-agente. Desde então, a competição cresceu para conter várias
ligas. Uma delas é a Liga Simulada 3D, onde duas equipas de onze robôs humanoides simulados
competem em jogos de futebol robótico.

FCPortugal é um projeto conjunto da Faculdade de Engenharia da Universidade do Porto e da
Universidade de Aveiro que participa na liga 3D. No passado, durante uma fase em que a equipa
participava na liga 2D, o principal foco de estudo da equipa era em estratégias de alto nível para
a coordenação de jogadores. Contudo, a mudança para robôs humanoides 3D forçou a equipa a
mudar o foco para a implementação de habilidade baixo nível, como por exemplo andar, correr
e rematar. Agora que essas habilidades foram conseguidas, o estudo de estratégias alto nível foi
recomeçado. Uma dessas estratégias é o uso de jogadas estudadas, planos estudados para aumentar
as hipóteses da equipa marcar golos de bola parada, momentos em que o fluxo do jogo está parado.

Avanços recentes em Aprendizagem Computacional, nomeadamente em Aprendizagem por
Reforço Profundo e Aprendizagem Multi-Agente por Reforço Profundo, fornecem novas per-
spetivas em como agentes podem aprender a executar tarefas independentemente e como podem
colaborar para alcançar objetivos comuns. Estes novos algoritmos poderão agora ser usados para
os robôs aprenderem e otimizarem jogadas estudadas de futebol robótico.

Nesta dissertação, propomos uma framework para a criação e optimização de jogas estudadas
para a equipa FCPortugal3D. Esta framework inclui a definição de uma nova linguagem de opti-
mização de jogadas estudadas, na qual as jogadas estudadas podem ser definidas, e um parser para
traduzir essas definições em ambientes onde algoritmos de aprendizagem por reforço de última
geração podem ser utilizados para optimizar as jogadas estudadas.

Para testar a eficácia da framework, foi definida, treinada e testada um jogada estudada sim-
ples. Embora os resultados dos testes tenham sido pouco impressionantes, não permitindo provar
que a framework possa ser utilizada por si só para criar e optimizar jogadas estudadas, a frame-
work pode ainda assim ser utilizada como ponto de partida para a definição de jogadas estudadas
que investigadores podem posteriormente editar para melhorar os resultados.

iii

iv

Acknowledgements

I would first like to thank my supervisor, Professor Luís Paulo Reis, for the help and support given
during the whole process of doing this dissertation, as well as thank everyone involved with the
FCPortugal3D team, without which this work would not have been possible.

I also want to thank my friends for all the moments spent, either having fun or working hard,
not only during this last period but over the last five years. You were one of the reasons that
motivated me to get up every day and go to FEUP and were essential in keeping my spirits up
during the pandemic over the last one and half years.

Finally and my biggest thank you goes to my family, which allowed me to have this amazing
opportunity to continue my studies and go to university. A special thank you for the emotional
support given in these last months, where you made me believe that I could complete this disserta-
tion even when I wanted to give up. I can’t put into words how much you all helped me, especially
you Leonor (even if you don’t yet realise it), and a thank you is not enough, but I hope you know
how grateful I am for all of it.

To you all - Thank You.

Bruno

v

vi

“Playing football is very simple,
but playing simple football

is the hardest thing there is.”

Johan Cruyff

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 1
1.3 Objectives . 2
1.4 Document Structure . 2

2 Robotic Soccer 5
2.1 RoboCup . 5
2.2 Soccer Simulation 3D League . 6

2.2.1 Simulation . 7
2.2.2 Player Model . 8

2.3 FCPortugal . 8

3 State of the Art on Machine Learning for Robotic Soccer 13
3.1 Machine Learning . 13
3.2 Robot Learning . 14
3.3 Deep Learning . 15
3.4 Deep Reinforcement Learning . 15

3.4.1 Model-Free RL . 17
3.4.2 Model-Based RL . 21
3.4.3 OpenAI Gym . 22

3.5 Multi-Agent Deep Reinforcement Learning . 24
3.6 Evolutionary Algorithms . 25

4 Setplay Frameworks 27
4.1 Setplay . 27
4.2 FCPortugal Setplay Framework . 29

5 New Setplay Optimization Framework 33
5.1 Setplay language definition . 33
5.2 Setplay language parser . 38

6 Evaluation 43
6.1 Defined Setplay . 43

6.1.1 Observation & Action Spaces . 45
6.1.2 Global Rewards, Finish & Abort Conditions 45
6.1.3 Steps . 45

6.2 Training . 46
6.3 Results . 47

ix

x CONTENTS

6.4 Conclusion . 49

7 Conclusion 53
7.1 Main Contributions . 53
7.2 Future Work . 54

References 55

List of Figures

2.1 Example of the initial 3D League simulation [37] 7
2.2 3D Simulation League field with two example teams.[57] 8
2.3 Modeled NAO robot.[56] . 9
2.4 NAO Model’s joints, effectors and actuators.[56] 10
2.5 FCPortugal Team Strategy composed of Tactics, Formations and Player Types.[45] 11

3.1 Artificial neural network architecture[7] . 15
3.2 Agent-Environment Interaction in Reinforcement Learning[59]. 16
3.3 Deep Reinforcement Learning system[34]. 17
3.4 Taxonomy of algorithms in modern RL[41]. 18
3.5 A3C and A3C architectures[64]. 19
3.6 Difference between Q Learning and Deep Q Learning[55]. 20
3.7 Results from games between AlphaZero and top classical engines in the games of

chess, shogi and Go[53]. 23
3.8 Communication between the agent, environment and the optimiser (RL algorithm).[51] 24
3.9 Evolutionary Algorithms execution flow[62]. 26

4.1 Setplay domain model[36]. 29
4.2 Implemented actions[36]. 30
4.3 Creation of a new setplay[36]. 30
4.4 Defining a setplay in SPlanner[36]. 31
4.5 Visual Representation of player actions[36]. a) direct pass, b) forward pass, c)

dribble, d) hold ball, e) shoot, f) hold position, g) move to position, h) run to
offside line. 31

4.6 Example of complete corner setplay[36]. 32

5.1 Setplay Optimization domain model. 34

6.1 Setplay: Initial Player Positions. 46
6.2 Setplay: Stage 1. 47
6.3 Setplay: Stage 2. 48
6.4 Setplay training episode rewards. 49
6.5 Robots falling at the start of the setplay. 50
6.6 Setplay being tested against Wrightocean3D team. 51

xi

xii LIST OF FIGURES

List of Tables

6.1 Trained and FCPortugal Setplay Results . 51

xiii

xiv LIST OF TABLES

Abbreviations

2D Two Dimensional
3D Three Dimensional
A2C Advantage Actor Critic
A3C Asynchronous Advantage Actor Critic
ADVCOM Advanced Communication Mechanism
AI Artificial intelligence
ANN Artificial Neural Networks
C51 Categorical 51-Atom Deep Q-Networks
COMA Counterfactual Multi-Agent Policy Gradients
DDPG Deep Deterministic Policy Gradient
DL Deep Learning
DPRE Dynamic Positioning and Role Exchange
DQN Deep Q-Networks
DRL Deep Reinforcement Learning
EA Evolutionary Algorithms
HER Hindsight Experience Replay
I2A Imagination-Augmented Agents
MADRL Multi-Agent Deep Reinforcement Learning
MBMF Model-Based Reinforcement Learning with Model-Free Fine-Tuning
MBVE Model-Based Value Expansion
ML Machine Learning
PPO Proximal Policy Optimization
QR-DQN Quantile Regression Deep Q-Networks
RL Reinforcement Learning
RoboCup Robot World Cup Initiative
SAC Soft Actor-Critic
SBSP Situation Based Strategic Positioning
TD3 Twin Delayed Deep Deterministic Policy Gradient
TRPO Trust Region Policy Optimization

xv

Chapter 1

Introduction

This chapter presents the context, motivation and objectives of this dissertation, along with the

structure of the remaining document. Section 1.1 describes the context of this work, Section

1.2 explains the motivation that lead to this dissertation and Section 1.3 details what this works

proposes to achieve. Finally, in Section 1.4 a brief overview of the structure of the document is

given.

1.1 Context

FCPortugal[44] is a joint project from the University of Porto and the University of Aveiro that par-

ticipates in multiple robotic competitions, such as Festival Nacional de Robótica[48] and RoboCup[14].

RoboCup, an annual competition, is considered the World Cup of robotic soccer and attracts par-

ticipants from all over the world. This competition includes multiple leagues and sub-leagues.

Among the Soccer leagues, in one sub-league, 3D Soccer Simulation, two teams of 11 simulated

humanoid robots compete in a simulated soccer match.

Recently, improvements developed by researchers involved in FCPortugal’s team in the be-

haviours robots use to play the game have brought the possibility of shifting development focus

from low-level behaviours to high-level tasks. This dissertation aims to build on that work, as

well as other developments previously done for this and other sub-leagues, in order to improve the

FCPortugal’s 3D Soccer Simulation robotic team.

1.2 Motivation

In the 3D Soccer Simulation league, the simulated robots obey realistic physics, behave au-

tonomously, and coordinate to increase the chances of winning the game. This introduces a

challenge, as good results in Real-Time Multi-Robot coordination and planning in continuous

environments are tough to achieve. A soccer game does, however, have moments where the flow

1

2 Introduction

of the game is stopped. These moments (setpieces) allow the team to execute setplays (preplanned

moves), as the robots can position themselves on the pitch according to the plan, autonomously

execute their assigned tasks following the team’s plan and know exactly what the team expects of

them in the multiple moments during the setpiece. If the robots are correctly taught to follow a

given setplay, multiple setplays can be defined for different setpieces to increase the chances of

scoring a goal.

While the process of programming a robot to execute some behaviours is currently not a hard

challenge, the developed behaviours still need parameters to function correctly. Even though these

parameters can be correctly set manually, they offer an opportunity to optimize the team’s chance

to win if they are optimized. To seize these opportunities, multiple state of the art machine learning

approaches can be used. Among them, Reinforcement Learning, Deep Reinforcement Learning,

Multi-Agent Deep Reinforcement Learning and Evolutionary algorithms seem the most suitable

for the task. These algorithms will allow each robot to learn to maximize the usefulness of the

behaviours they are asked to perform, which will lead to a better outcome of a given setplay.

1.3 Objectives

This dissertation aims to propose the optimization of robotic soccer setplays as a machine learning

problem, a language for the definition of setplays and setplay optimizations and the development

of a setplay optimization framework for the FCPortugal 3D Soccer Simulation team, which will

allow the creation of new setplays and the optimization of robots behaviours on the setplays using

a machine learning approach.

Furthermore, for the purpose of testing the aforementioned developments, a setplay was de-

signed and implemented using the optimization framework. This optimized setplay will be tested

against the FCPortugal team and against other teams that usually face this team, and the results

will be compared with those obtained by the FCPortugal team in the previous competitions.

1.4 Document Structure

The remaining document is split into the following chapters. Chapter 2 provides an overview

of robotic soccer, with a more in-depth look at the RoboCup competition, the Soccer Simulation

3D League and the FCPortugal project. In Chapter 3 an introduction to machine learning, deep

learning and their applications for robotic soccer is given; furthermore, state of the art on deep

reinforcement learning, multi-agent deep reinforcement learning and evolutionary algorithms is

presented in the same chapter. Chapter 4 comprises a definition of setplays and a review of work

related with setplay framework, including an analysis on a previously implemented setplay op-

timization framework for the FCPortugal team. Chapter 5 presents the new proposed setplay

optimization framework with an in-depth look at the new setplay definition language and the set-

play parser. Chapter 6 describes the evaluation done to test the developed framework as well as

1.4 Document Structure 3

some conclusions from the results obtained. Finally, Chapter 7 covers the conclusions of this dis-

sertation, including the main contributions from this work and the future work needed to improve

it.

4 Introduction

Chapter 2

Robotic Soccer

This chapter gives background information on the context in which this work was developed,

providing an explanation on multiple concepts of robotic soccer. Section 2.1 describes how the

idea of robotic soccer emerged and the evolution of its biggest competition, RoboCup. The rules

of the sub-league in which the FCPortugal team participates are defined in Section 2.2. Finally,

Section 2.1 presents a brief history on FCPortugal’s team as well as the last developments on the

team.

2.1 RoboCup

RoboCup, the Robot World Cup Initiative, was first introduced in 1995. The purpose was to

propose the use of the game of soccer, where a soccer team is seen as a multi-agent system, to

create a new problem for AI and Intelligent Robotics research in an effort to foster multiple fields,

such as "design principles of autonomous agents, multi-agent collaboration, strategy acquisition,

real-time reasoning, robotics, and sensor fusion"[23], which are essential for a team of robots to

play a game of soccer. In such a game, each team needs to collaborate to achieve a common goal,

and as the goal of both teams is the same, they must compete for it.

In the introduction of the initiative, three robotic soccer competitions were proposed: a com-

petition with real robots, a competition of simulated robots and a competition of robots’ special

skills; furthermore, the rules for each competition were defined, and simulators were proposed for

the simulated games. One of those simulators, "The Soccer Server", has since become the official

RoboCup soccer server[12].

The first RoboCup competition was held in 1997 in Nagoya, Japan, with over 40 teams com-

peting and over 5,000 spectators watching. Since then, RoboCup has become an annual inter-

national competition and has extended the number of leagues. Currently, there are 5 distinct

competitions domains[14]:

• RoboCupSoccer, where robots play the game of soccer;

5

6 Robotic Soccer

• RoboCupRescue, where robots attempt to solve search and rescue scenarios;

• RoboCup@Home, where robots’ service capacities are tested in a home environment;

• RoboCupIndustrial, where industrial robots are presented;

• RoboCupJunior, with an educational purpose, where robots from young students are used.

For the RoboCupSoccer[15] competition domain, the following leagues have been created:

• Humanoid - robots from all teams must have a human-like shape and use human-like senses;

• Standard Platform - all teams must use the same robot, the NAO[47] robot;

• Middle Size - each team can design their own robots, but their sensors, size and weight are

restricted;

• Small Size - robots’ dimensions are further restricted;

• Simulation - all the robots and the soccer game are simulated.

Each league contains multiple sub-leagues. The Simulation League, where the FCPortugal

team competes and for which the work of this dissertation will be developed, is split into two sub-

leagues: the Simulation 2D league, where the game is played by two teams of simulated robots

in a two-dimensional soccer field, and the Simulation 3D league, which increases the realism and

complexity of the simulated matches by using humanoid robots in a three-dimensional environ-

ment. As this dissertation will work with the FCPortugal team for the Simulated 3D league, this

sub-league will be further described in the Section 2.2.

The ultimate goal of the RoboCup Initiative is:

"By the middle of the 21st century, a team of fully autonomous humanoid robot soccer

players shall win a soccer game, complying with the official rules of FIFA, against the

winner of the most recent World Cup."[13].

2.2 Soccer Simulation 3D League

The first Soccer Simulation 3D competition was held in 2004[25]. This league was started with the

intention of increasing the realism of the 2D simulated league by moving to a three-dimensional

environment. The first robot player model available was a simple sphere, which, while increasing

the game complexity, was not as realistic as a humanoid robot could be. Figure 2.1 shows an

example of the initial simulation with the sphere agents.

Later on, for the 2007 competition, a humanoid model was finally introduced. The introduction

of this model, the Fujitsu HOAP-2 robot, forced teams to focus on controlling the robot’s joints and

learning low-level skills such as walking, standing up, and kicking the ball. On the next year, this

2.2 Soccer Simulation 3D League 7

Figure 2.1: Example of the initial 3D League simulation [37]

model was replaced by a model of the NAO robot[47], the same robot used by the RoboCupSoccer

Standard Platform league, which is still the robot used today.

The competition rules have been changing since the first competition, and in 2012 was the first

year were the games played in the competition featured two teams of eleven players. In the last

years, with the teams having learnt how to execute the low-level skills required to play the game,

the research focus has shifted once again to high-level skills and multi-robot cooperation, such as

setplays and tactics.

2.2.1 Simulation

The simulator used for the Soccer Simulation 3D League is SimSpark[65], which offers a simu-

lation environment where two teams of eleven players can play each other. As previously stated,

the players are models of the NAO robot. It also enforces the rules imposed in the competition

ruleset[26] and allows for a human referee to intervene in specific situations. The soccer field,

along with an example of two teams, can be seen in Figure 2.2.

The field’s dimensions and layout are the following:

• The field is 30 by 20 meters long;

• Contains two goals which are 2.1 by 0.6 meters long and 0.8 meters tall;

• The penalty area of each goal is 3.9 by 1.8 meters long;

• The centre circle has a radius of 2 meters.

8 Robotic Soccer

The soccer ball is a sphere with a 0.04 m radius and has a mass of 26 grams. The field has

roughly 35% of the dimensions of a real soccer field. The games are played in two 5 minutes

halves. The games are visualised using RoboViz[31].

Figure 2.2: 3D Simulation League field with two example teams.[57]

2.2.2 Player Model

The model used for the robot players is the NAO robot’s models, which can be seen in Figure

2.3. The NAO robot is 0.57 meters tall and weighs 4.5 kilograms[56]. It contains 22 degrees of

freedom, which provides robots with great mobility. The model’s joints, preceptors and effector

can be seen in Figure 2.4. Furthermore, it contains a gyroscope and an accelerometer to allow the

robot to keep track of its axial and radial movement, a force resistance preceptor in each foot to

detect contact with the ground or other robots, a restricted vision preceptor at the centre of its head,

a say effector and the corresponding hear preceptor for communication, and a gamestate preceptor

to keep track of the playtime and playmode.

Comparatively to older, non-humanoid models, which had easier movement, the NAO robot

provides a challenge for teams to develop low-level behaviours, as the robot must be controlled

by providing the robot the desired acceleration for each joint, instead of, for example, simply

commanding the robot to move to a given place. While this has the downside of harder mobility

and harder control of the ball, it brings the game closer to human soccer, which is the ultimate

goal.

2.3 FCPortugal

FCPortugal is a joint project from Faculdade de Engenharia da Universidade do Porto and Univer-

sidade de Aveiro that participates, among other competitions, in the RoboCupSoccer Simulation

League. The project started in 2000 and, in the first year, the team became RoboCup 2000 Euro-

pean Champion and RoboCup 2000 World Champion[44] in the RoboCupSoccer 2D Simulation

2.3 FCPortugal 9

Figure 2.3: Modeled NAO robot.[56]

League. With the creation of the 3D Simulation league, the team switched to this new league.

In recent years, the team has reached 4 3rd places in the RoboCupSoccer 3D Simulation League:

2013, 2015, 2016 and 2018.

Along with the team success, multiple research has been done and various low-level and high-

level skills have been implemented. Initially, while the team still participated in 2D competitions,

the focus was on developing high-level skills, such as tactics and setplays. From this period, the

following high-level skills were implemented:

• Definition of player types[45]: although each robotic team agent is equal, their behaviours

can be different just as they are in human soccer. The player types allow the team to have

greater flexibility in the planning of tactics, where, for example, some players can focus on

the recovery the ball from the opposing team, others can focus on covering other opposing

team’s robots, and other can focus on scoring; furthermore, DPRE (Dynamic Positioning

and Role Exchange), allows the robots to switch roles based on their position if they deem

it beneficial for the team;

• Team strategies with defined tactics, formations and player types: As seen in Figure 2.5,

tactics involve the use of different formations based on the game state; formations define

the desired position of each robot and its respective role;

• SBSP - Situation Based Strategic Positioning[45]: during a game, each situation is split

into two different types: active situations, where the agents focus on ball possession or ball

recovery behaviours, and strategic situations, when the agents are not close to the ball and

can behave according to the overall strategy. In these situations, agents analyse the current

tactic and formation, their position and their observation of the game state, and calculate

what the best position is for them to be;

10 Robotic Soccer

Figure 2.4: NAO Model’s joints, effectors and actuators.[56]

• COACH UNILANG[46] allows the analysis of the team’s games in order to extract infor-

mation from the opponent teams’ tactics, which then allow the team to adapt their tactics

according to the tactics of their opponents;

• ADVCOM - Advanced Communication Mechanism[45]: this mechanism is responsible for

the communication between the teams’ agents. As the communication channel may have

low bandwidth and be unreliable, only the most important information should be commu-

nicated. This information is usually to maintain the agents’ world state up to date and the

communication of team-wide useful events;

• PlayMaker[29] and SPlanner[9]: a framework for the definition of setplays, Playmaker, was

later developed. Each setplay is defined by several steps involving one or more agents,

initiation, abortion, and finishing conditions that dictate when the setplay show be started,

aborted, or finished, respectively. To aid users in defining such setplays, a graphical in-

terface, SPlanner, was later created. As this dissertation will focus on creating a setplay

framework for the 3D team, the 2D framework will be discussed further in Chapter 4.

With the switch to the newly created 3D Simulation League, the focus was changed to learning

low-level skills, as the process of teaching robots these skills was not trivial. In recent years,

low-level skills have been developed for robots to get up[1], walk[50], run[2], and multiple ball

kicks[1, 51, 61]. Furthermore, one high-level skill has been implemented for kick-off[3].

2.3 FCPortugal 11

Figure 2.5: FCPortugal Team Strategy composed of Tactics, Formations and Player Types.[45]

Now that these low-level skills have been implemented, the team can start to look again into

implementing high-level skills, such as tactics, formations and setplays, which leads to the pro-

posed solution of this dissertation, creating a setplay framework for the definition and the imple-

mentation of setplays.

12 Robotic Soccer

Chapter 3

State of the Art on Machine Learning
for Robotic Soccer

This chapter presents the state of the art on machine learning techniques and algorithms available

to be used for robot soccer learning and optimisation. A brief introduction is provided: to Machine

Learning and its different subfields is provided in Section 3.1; to Robot Learning in Section 3.2;

and to Deep Learning in Section 3.3. Section 3.4 offers an in-depth look into Deep Reinforcement

Learning, the differences between model-free and model-based reinforcement learning, policy op-

timization and q-learning and multiple algorithms from each domain. Furthermore, it presents

OpenAI Gym, a standard in Reinforcement Learning, along with FCPGym, FCPortugal’s adapta-

tion. Moving to Multi-Agent Deep Reinforcement Learning, Section 3.5 details its advancements

for multi-agent environments, along with some of the algorithms developed. Finally, Section 3.6

explains Evolutionary Algorithms and how they can provide a different perspective on solving

optimisation problems.

3.1 Machine Learning

Machine Learning (ML) is the study of algorithms that allow computers to learn how to perform a

task through experience[35]. It is a branch of Artificial Intelligence (AI), which builds models that

make predictions without being directly programmed on how to achieve those decisions. Some

of the applications of machine learning are document classification, natural language processing,

computer vision, fraud detection and learning to play games.

While new approaches are proposed every day, ML algorithms are often split into three main

categories: supervised learning, unsupervised learning and reinforcement learning. Other learning

scenarios are, for example, semi-supervised learning, on-line learning and active learning.

Supervised learning algorithms learn a mathematical function that maps the model’s inputs to

the desired outputs. For that reason, during the training phase, the algorithms must be fed with

13

14 State of the Art on Machine Learning for Robotic Soccer

ground truth examples of inputs and their respective outputs from the learning domain. Supervised

learning algorithms are further split according to the type of variable they are trying to predict. If

the variable is discrete (can only have a restrict number of values), classification algorithms are

used, while for continuous variables, regression algorithms are used. An example application of a

classification task is the classification of documents in categories, and an example of a regression

task is the prediction of stock values.

On the other hand, unsupervised learning models are only provided with input data during

training and are tasked with finding groups in the input data. Again, these algorithms can be split

into two categories: clustering, which is the partitioning of data into different clusters/groups, and

dimensional reduction, which consists in reducing the dimension of data that represents an item by

creating a new representation with a smaller dimension. Clustering can be used to classify users

according to their purchases, and dimensional reduction can be used on large datasets to condense

item representations to help other machine learning techniques learn something from the data.

Reinforcement Learning (RL) is different as the algorithms are not provided with the input

from the begging of training. In contrast with other learning techniques, in RL, the learner must

interact with their environment, and perceive which actions are best for each environment state by

calculating each action’s reward. As these algorithms will be used in this dissertation by the robots

for the task of learning setplays, they will be further explained in Section 3.4.

3.2 Robot Learning

Robot Learning is a field that intersects the robotics and machine learning fields. For robot learn-

ing, multiple machine learning approaches have been adapted to the domain, including reinforce-

ment learning, inverse reinforcement learning and regression[43]. The interest in robot learning

has surged from the fact that some tasks are nearly impossible to program robots for, not all situa-

tions can be predicted when programming and real-world scenarios are always changing, so robot

learning provides a solution to train robots to adapt to non-stationary environments. Robot Learn-

ing has many applications in the robotic field. Among others, "low-level and high-level control and

planning, perception and sensor fusion, as well as models of the robot and its environment"[24].

Reinforcement Learning is suited for robot learning as the ability to self-improve in respect

to a reward function is essential for robots to become more autonomous[43]. In the past, three

main styles of reinforcement learning are usually seen in robot learning: "model-based reinforce-

ment learning, model-free value function approximation methods, and direct policy search"[43].

However, new advancements in machine learning, due to availability of big data and the increase

in computation power, have made it so deep learning techniques can outperform hand-designed

algorithms in many tasks [24]. Like other fields, the focus in robot learning has also switched to

deep learning and deep reinforcement learning techniques.

3.3 Deep Learning 15

3.3 Deep Learning

Deep Learning (DL) is another sub-field of machine learning, which uses artificial neural net-

works (ANN) to approximate non-linear functions. The typical architecture of an artificial neural

network, as seen in Figure 3.1 allows models to generate any number of outputs and receive any

number of inputs. The network’s complexity can be altered by modifying the number of hidden

layers and the number of nodes in each layer. Each node consists of a series of inputs, a weight at-

tributed to each of those inputs, the node output, and an activation function which maps the inputs

into the output. During training, the nodes’ input weights are optimised using back-propagation,

based on a loss function. The name Deep Learning comes from the high number of hidden layers

used in ANNs, which is only possible due to recent advancements in computation power as the

training phase becomes longer as new layers are introduced.

The main advantage of Deep Learning is that Deep Learning models that are composed of

multiple layers can learn "representations of data with multiple levels of abstraction"[27].

They have become popular in various fields. Among them is image classification[20], where

Deep Learning models can integrate high-level and low-level features in the hidden layers, as well

as classifiers in the last layers. This contrasts with older image classification models, which had to

extract image features by hand and then use those features to classify the image.

Figure 3.1: Artificial neural network architecture[7]

3.4 Deep Reinforcement Learning

Reinforcement Learning (RL) is, as previously stated, another sub-field of machine learning. In

Reinforcement Learning, instead of being given inputs during the training phase, Reinforcement

Learning algorithms learn by taking actions in a given environment to maximise their perceived

rewards (based on their observation of the environment). An agent using RL techniques learns

16 State of the Art on Machine Learning for Robotic Soccer

”behavior through trial-and-error interactions with a dynamic environment”[22]. The cycle of

analysing the environment state, taking an action and perceiving a reward can be seen in Figure

3.2.

The keys concepts in RL are agent, which is being trained to perform a given task; envi-

ronment, the world where the agents reside and which the agent interacts with; observation, the

perceived state of the environment by the agent (which may not be complete); action, taken by

the agent to alter the agent’s and the environment’s states; and reward, which is calculated by the

agent based on a value function according to their environment’s observation, and represents how

good/bad the current situation is. The main goal of the agent is to maximise the cumulative reward

during each training episode.

Figure 3.2: Agent-Environment Interaction in Reinforcement Learning[59].

Deep Reinforcement Learning (DRL) comes as the intersection of two machine learning fields

- deep learning and reinforcement learning. With the increase in popularity of deep learning

techniques in other machine learning fields, new algorithms and adaptations of older algorithms

were developed to take advantages of the increase in computation power. The agents use Artificial

Neural Networks to translate their input, the environment’s observation, into an output, an action

to take or the expected value of each possible action. The hidden layers in the ANN allow for the

agent’s actions to take into account the high-level and low-level concepts from the environment

that may otherwise not be perceived by the agent. Figure 3.3 shows a representation of the use of

ANNs in a deep reinforcement learning system.

Moving to Deep Reinforcement Learning algorithms, there are many different but overlapping

categories. According to OpeanAI[41], DRL algorithms can be split according to their use or not

of an environment model or not. Furthermore, Model-Free algorithms may be divided in Policy

Optimization algorithms that learn a policy between states and actions and attempt to optimise that

policy, or Q-Learning algorithms that try to optimise a function Q(s,a) which maps the perceived

reward of taking an action a in an environment state s. On the other hand, Model-Based algorithms

can be split into algorithms which must learn a model of the environment and algorithms which

are given a model. Figure 3.4 shows algorithms used in modern reinforcement learning and their

division in the previously defined categories.

3.4 Deep Reinforcement Learning 17

Figure 3.3: Deep Reinforcement Learning system[34].

3.4.1 Model-Free RL

In Model-Free Reinforcement Learning algorithms, the trained agent does not have access to a

model of the environment. An environment model is a function that predicts transitions between

states and the rewards associated with such transitions. The main downside of not using such a

model is that such models allow the agent to think ahead and choose actions based on long-term

perceived rewards, as agents can predict how the environment may change with their actions.

While model-free algorithms can also allow agents to plan ahead, the number of training samples

to do so is higher than model-based algorithms[41]. On the other hand, model-free algorithms are

simpler to understand and implement, which causes them to be more popular and better developed

and tested. Model-Free Reinforcement Learning algorithms can be further categorised into Policy

Optimization, Q-Learning or a combination of the two.

3.4.1.1 Policy Optimization

Policy-based algorithms work by building a policy πθ (a|s) that maps a probability for the agents

to take an action a at the state s. By optimising θ , which is a parameter of the function used to

map the policy (in deep reinforcement learning, corresponds to the ANN’s weights), the policy is

optimised for the task being trained[41]. The optimisation is done on-policy, meaning updates to

the policy are only based while acting according to the latest policy. Policy-based models usually

vary in how they optimise θ and how and when to update the policy.

Some examples of Policy Optimization algorithms are:

• Policy Gradient: Policy Gradient Algorithms attempt to directly optimized a policy by op-

timizing θ , according to a reward function given by equation 3.1 where dπ(s) represents

a stationary distribution of a Markov chain for the policy π and Qπ the value of executing

18 State of the Art on Machine Learning for Robotic Soccer

Figure 3.4: Taxonomy of algorithms in modern RL[41].

action a on state s according to policy πθ [64].

J(θ) = ∑
s∈S

dπ(s) ∑
a∈A

πθ (a|s)Qπ(s,a) (3.1)

Policy Gradient works by reformatting the objective function not to involve the state distri-

bution. REINFORCE, a Monte-Carlo policy gradient algorithm uses "an estimated return

by Monte-Carlo methods using episode samples to update the policy parameter θ"[64].

• A2C / A3C: Advantage Actor Critic (A2C) and Asynchronous Advantage Actor Critic

(A3C) algorithms[32]: These methods are actor-critic as they consist of two models: a

critic, that learns a value function either for each state of for each state-action pair and an

actor which updates the policy according to the critic. A3C is designed for parallel training,

as the critics learn with multiple actors running in parallel which are periodically synced.

A2C is a synchronous version of A2C and was developed because, due to its parallel nature,

agents in A3C could be using non-updated parameter values, which would lead to non-

optimal learning. On the other hand, in A2C, a coordinator awaits the end of an iteration

of all agents’ training before updating the model’s parameters and allowing agents to start

another iteration. Figure 3.5 show the different architectures between A2C and A3C.

• TRPO: Trust Region Policy Optimization[21] was introduced to improve training stability

by trying to reduce policy variation between iterations. To achieve that, it introduces a

"divergence constraint on the size of policy update at each iteration"[64].

• PPO: Proximal Policy Optimization[49]. The problem with TRPO is that the introduction

of the divergence constraint may make good results hard to achieve. For that reason, PPO

simplifies the constraint by improving the policy as best as possible while ensuring there is

not a significant change from the last policy.

3.4 Deep Reinforcement Learning 19

Figure 3.5: A3C and A3C architectures[64].

3.4.1.2 Q-Learning

Q-learning algorithms learn a function Qθ (s,a) and approximate it to the optimal action-value

function. This Q function maps the expected reward the agent will receive by taking action a in

state s. The training is done off-policy, meaning the agent can use any previously obtained data

to update the Q function parameters. Instead of building a policy for the agents to follow, this

approach tries to maximise the value of the actions taken at each step using a greedy approach. At

each state, the action taken by the agent is given by equation 3.2[41]

a(s) = argmaxaQθ (s,a) (3.2)

Some examples of Q-Learning algorithms are:

• DQN: Deep Q-Networks[33]. Based on the classical Q-Learning algorithm which used a

matrix to store all the Q values for each action-state pair, DQN replaces that matrix with a

neural network. The main problem of the Q-Learning is that it needs to train in all action-

state pairs, making the training phase very long, as it grows exponentially with the number

of actions and states. To handle that issue, DQN use a neural network to approximate the

Q(s,a) function, as seen in Figure 3.6. DQN also implemented two further optimisations:

Experience Replay, where instead of updating the neural network with every new observa-

tion, each observation is stored, and then only a random subset of them are used to update

the neural network, and the addition of a Target Network, which is a copy of the neural

network which is used to predict new actions during training instead of the original network

and is not trained, being instead periodically synchronised with the original network.

• C51: Categorical 51-Atom DQN[6]. Categorical Deep Q-Networks replaces single nu-

merical Q-values for any given action-state pair by a Q-value probability distribution. A

numerical Q-value usually represents the mean value that the reward can take. Thus, that

value may not fully represent the state-action pair. If, for example, after executing an action,

the agent may, due to environment changes, get to a state with a reward of -1 or a state with a

reward of 1, such state would be different from a state where the agent always has 0 rewards,

20 State of the Art on Machine Learning for Robotic Soccer

Figure 3.6: Difference between Q Learning and Deep Q Learning[55].

but the Q-value would be the same. By taking into account this distribution, the agent can

make better-informed decisions, leading to better results.

• QR-DQN: Quantile Regression DQN[10]. Similar to C51, a distribution of the Q-Value of

each action-state pair is also used. This algorithm uses a number N of quantiles to approxi-

mate the distribution of possible Q-Values.

• HER: Hindsight Experience Replay[4] Most problems in Reinforcement Learning only have

domain rewards when a given episode ends as positive or negative. This introduces a prob-

lem, as agents may not be able to measure intermediate states. While in most problems,

intermediate rewards may be given using Reward Engineering, this process requires that

users understand the problem domain, which may not always be the case. To combat this

problem of binary rewards, as well as sparse rewards, HER was developed. If, during an

episode, an agent fails to reach a goal, instead of just updating the Q-function with such

failure, there is also an update of success for the agent to reach the final state, which may

later become useful. This allows the agent to learn about its environment and its task even

when an episode fails.

3.4.1.3 Policy Optimization & Q-Learning

Both Policy Optimization and Q-Learning have advantages and disadvantages. The main strength

of policy optimisation is that the method optimises a policy according to a policy given by the user,

which tends to make the developed models more stable, while in Q-Learning, the algorithm mostly

optimises the expected final reward based on a reward function, which can be unstable. However,

when they work, Q-Learning algorithms tend to be faster to train, because they can always reuse

past data to continuously improve the model.

3.4 Deep Reinforcement Learning 21

To try to acquire advantages from both Policy Optimization and Q-Learning, some algorithms

were developed with features from both classes:

• DDPG: Deep Deterministic Policy Gradient[28]. This algorithm learns a policy and a Q-

function concurrently and uses them to improve each other. As in actor-critic models, it uses

one network to propose actions (using a policy) and another to predict their value (using a

Q-function). As in DQN, it uses Experience Replay to learn on a set of sample, and the

concept of Target Network, but instead of using a single target network, two are used to add

stability in training.

• TD3: Twin Delayed DDPG[18]. TD3 is based on DDPG. The main difference is that instead

of learning a single Q-function, TD3 learns two. These two Q-function act as two distinct

critics, returning different Q-values for each action proposed by the actor. Due to this, TD3

models are generally faster to train than DDPG models.

• SAC: Soft Actor-Critic[19]. SAC core idea comes from the concept of Maximum Entropy

Reinforcement Learning. While most RL algorithms maximise expected rewards, in Max-

imum Entropy Reinforcement Learning actors also aim to maximise entropy, which means

that agents should try to succeed at the given task while trying to be as random as possible.

This allows models to generalise better, which gives models better results when compared

to other models.

3.4.2 Model-Based RL

In Model-Based Reinforcement Learning algorithms, the agent being trained has access to a model

of the environment, which allows the agent to plan ahead, and deciding which actions to take based

on the scenarios and future states such actions will trigger. The planning results can then be used

into building a policy[41], which decreases training time. However, having models that are true to

the real-world environment is pretty rare, which means agents will also have to learn a model. If

the learned model is incorrect, differences between the real-world and the model may be used by

the robot to increase training rewards, and as they are not congruent with the real world, the agent

will not take optimal actions when exposed to the real-world.

As previously stated, Model-Based Reinforcement Learning algorithms may be split into al-

gorithms which must learn the model and algorithms which are given the model.

3.4.2.1 Learn the Model

Some examples of Model-Based Reinforcement Learning algorithms that learn the environment

model are:

• MBMF: Model-Based RL with Model-Free Fine-Tuning[38]. MBMF uses a basic ap-

proach by not explicitly modelling a policy, but instead use planning techniques like model-

predictive control to select actions[41]. Each time the agent takes an observation, it creates

22 State of the Art on Machine Learning for Robotic Soccer

a plan of all actions optimal according to its model that it needs to take in a fixed amount of

steps. When the agent executes the computed plan’s first action, it takes a new observation

and once again creates a plan from scratch, never reusing old plans.

• MBVE: Model-Based Value Expansion[16]. To augment training data, recent Model-Free

RL approaches try to build learned models to create additional training data. However,

these methods rely on heuristics that limit the usage of such models. MBVE attempts to

circumvent this problem by controlling model uncertainty by limiting imagination depth.

MVE uses a "dynamic model to simulate the short-term horizon and Q-learning to estimate

the long-term value beyond the simulation horizon"[16].

• I2A: Imagination-Augmented Agents[63]. In this algorithm, the planning model is directly

joined with the learning policy, where the created plans are information encoded in the

policy. Thus, the policy can choose if, how and when to use such planning, which may

boost results by decreasing the planning model bias, as if such model is wrong for some

environment states, the policy may learn to ignore it.

3.4.2.2 Given the Model

While there are other algorithms, the most well known Model-Based RL method with a given

model is AlphaZero[52]. Given a world model, AlphaZero uses Monte Carlo Tree Search to eval-

uate the quality of the current state and plan which actions to take in the future. This produces

better actions than the actions produced by the policy alone and may be considered "expert" analy-

sis. These actions are then used to train the policy in producing actions closer to the ones produced

by the planning algorithm (Monte Carlo Tree Search).

AlphaZero became famous as it was able to beat top computer engines in chess, shogi and Go

in a short amount of training time.[53] Also impressive was that it performed better than classical

engines while searching 1000x lower moves per decision. Figure 3.7 shows the results AlphaZero

obtained in the three games.

3.4.3 OpenAI Gym

To develop and test new deep reinforcement learning algorithms and compare them with other al-

ready implemented algorithms, OpenAI created Gym[39], a toolkit that allows for the definition of

training problems - environments - that can be used to test reinforcement learning algorithms. Fur-

thermore, it serves as a standard on how reinforcement learning algorithm implementations should

communicate with the environment to retrieve information on the environment’s state, transmit to

the agent the action it should take, and calculate the reward of said action. It was developed as

there was no benchmark for RL algorithms, unlike supervised learning where there are benchmark

datasets, and the public environments that did exist did not follow a standard and so were hard to

use, as each had differences in multiple aspects: the environment definition, the observations, the

3.4 Deep Reinforcement Learning 23

Figure 3.7: Results from games between AlphaZero and top classical engines in the games of
chess, shogi and Go[53].

rewards, and the actions; because of this, it was hard to compare results from research done in dif-

ferent publications. Gym also provides ready to use environments[40] for classical RL problems:

basic algorithm implementation, Atari games and robotic arms, among others. Along with Gym,

Open AI also provide baselines[42], a set of implementations of commonly used RL algorithms,

ready to be used with any Gym environment.

This toolkit allows for two different use cases:

• Researchers looking to improve or create new RL algorithms can use Gym to develop their

algorithms, needing only to define some function to interact with a Gym environment. They

can then use Gym environments to test their algorithms and compare them again others.

• Researches looking to optimize a problem only need to define their environment as a Gym

environment and are then able to use state of the art RL algorithm implementation to aid

them in the optimization problem.

To define a Gym environment or adapt one to be used by Gym, only a few steps are required:

• The definition of an initialization function which starts the environment; a reset function

which resets the environment after an episode and returns an initial environment observa-

tion; and a step function, which given an action, executes said action and returns an ob-

servation of the environment after the action is taken, the reward of taking said action and

whether the current training episode is finished.

• It is also required to define the action and observation spaces. The space reflects all the

values that an action or an observation may take.

24 State of the Art on Machine Learning for Robotic Soccer

3.4.3.1 FCPGym

To take advantage of OpenAI Gym, the FCPortugal team has created FCPGym[51]. FCPGym

works as a layer above Gym, allowing the team’s researchers to create Gym environments using

the code already developed for the FCPortugal robots in order to create new behaviours using Deep

Reinforcement Learning. Whenever an FCPGym environment is created, SimSpark (the robotic

soccer simulator) and an FCP agent are launched. This agent has all the capabilities of a regular

FCP robot player but without its decision making. Instead, for each timestep, the environment’s

step function is called for the training algorithm to request the environment to execute a given ac-

tion. The communication flow between the environment, the FCP agent and the learning algorithm

can be seen in Figure 3.8.

Figure 3.8: Communication between the agent, environment and the optimiser (RL algorithm).[51]

Since its creation, FCPGym has been improved to allow the parallelisation of environments, to

allow multiple instances of Simspark and FCP agents to be run simultaneously to increase training

speed. This advancement also allowed the training of multiple agents in the same environment.

Multi-agent environments, however, still has a few restrictions that may hinder the development

and training of environment with tasks for multiple agents. Of these restrictions, most can be

easily circumvented. Still, one of them may pose a problem for some environments: Every agent

must sync with the server simultaneously and the same amount of times, which means that, for a

given environment, all agents must finish their episodes at the same time, regardless of when their

task is complete.

3.5 Multi-Agent Deep Reinforcement Learning

While Deep Reinforcement Learning algorithms are well suited for single-agent tasks, they are

not optimal for multi-agent systems, as learning algorithms may not converge in environments

with multiple agents with goals. For this reason, the field of Multi-Agent Deep Reinforcement

3.6 Evolutionary Algorithms 25

Learning (MADRL) emerged to develop algorithms for the training of agents in cooperating to

achieve a common goal or agent competition for a singular goal.

The main benefits of MADRL come from a speedup of training as agents can learn in par-

allel, experience sharing by either agents teaching each other or by imitation, and a more robust

system, as if an agent fails, other can take over their tasks. The main challenges are the curse

of dimensionality, goal specification, a changing goal during training as other agents change their

policies, the single agent and agent group exploration-exploitation trade-off, and the need for agent

coordination/communication[8].

The most relevant MADRL algorithms found in literature are[54]:

• Independent Deep Q-Networks[60]. Based on DQN, each agent is controlled by an indepen-

dent Deep Q-Network. Work on this algorithm shows that is it possible to learn collaboration

and competition between agents by changing the rewards given to each agent.

• COMA: Counterfactual Multi-Agent Policy Gradients[17]. Based on actor-critic algorithms,

COMA uses a "centralised critic to estimate a Q-function and decentralised actors to op-

timise the agents’ policies"[17]. This means that while the training must be centralised,

agents’ execution can be independent, and agents may be run using only local information.

These advantages make the algorithm achieve slightly better results than other multi-agent

actor-critic methods, and the agents are competitive as centrally-executed agents.

• Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments[30]. This al-

gorithm is an extension to DDPG. Like COMA, the training must be centralised, but agents

execution can be independent. Further, it uses a centralised critic, but instead of using a

singular Q-function for all agents as in COMA, it uses an individual value function for each

agent. An advantage of having an individual value function is that it may be used for appli-

cations where agents have to perform different tasks or may not have a common goal shared

by all agents.

• Value-Decomposition Networks[58]. With Value-Decomposition Networks, agents learn a

multi-agent-action value based on their own observations and the junction of all agent’s

value functions is used to approximate a centralised value function. Results show that such

agent-based joint-action value functions can lead to superior results, especially "when com-

bined with weight sharing, role information and information channels"[58].

3.6 Evolutionary Algorithms

Evolutionary Algorithms (EA) provide a different perspective on the robot learning paradigm.

Evolutionary algorithms are not a field of machine learning, but instead a subset of Evolutionary

Computations and are important optimization and search techniques[62]. Due to their flexible

and robust behaviour, they can be used as a problem-solving method for many optimization prob-

lems. One such problem is the optimization of robots behaviours in a team coordination plan.

26 State of the Art on Machine Learning for Robotic Soccer

EA algorithms are inspired by biological evolution mechanisms such "as reproduction, mutation,

recombination, and selection."[62]. Generally, EA follow the flow presented in Figure 3.9 and can

be split into the following steps: initially, a population is created with random individuals; after-

wards, multiple iterations (generations) are run. For each generation, each individual executes the

task proposed and is evaluated according to a fitness function. Then, the best individuals, accord-

ing to the previous evaluation, are kept and are reproduced to create new individuals for the next

generation.

Figure 3.9: Evolutionary Algorithms execution flow[62].

EA algorithms can be split into four categories:

• Genetic Algorithm: Most popular type of EA, typically "used for machine learning, pattern

recognition and optimization problems"[62], uses recombination and mutation to find the

solution of a problem, which often comes as a binary representation of the genes.

• Genetic Programming: Instead of representing genes as binary numbers, genes represent

sets of programming instructions, which allows for solutions to be computer programs, and

their suitability for the task can be measured by fitness functions. These algorithms are

typically used for boolean and arithmetic operations, as well as mathematical functions.

• Evolutionary Strategy: Often used with complex functions, genes are represented as vectors

of real numbers, and mutation rates are self-adaptive. Often used in Biochemistry, Optics

and Engineering design.

• Evolutionary Programming: Similar to Evolutionary Strategies, with the main difference

of not having any restrictions in the genes data type. Used in Forecasting, Games and

Automatic control.

The performance of EA can be improved further by the use of two extensions[62]: Memetic

algorithms, which use heuristics in order to facilitate the search for the optimal solution, and

distributed EA, which can be used to speed up the algorithm by offloading computation to other

computers or execute computations in parallel (usually, the computation can get heavy for larger

population or more complex fitness functions).

Chapter 4

Setplay Frameworks

This chapter presents already developed setplay frameworks. Section 4.1 provides a definition on

setplays and the multiple types of setpieces that exist in human and robotic soccer. An overview of

the previously developed setplay framework for the FCPortugal 2D team is given in Section 4.2.

4.1 Setplay

In soccer, both human and robotic soccer, setpieces are moments where the game’s flow is stopped,

and the ball returns to open play. Setpieces are important as many goals are directly or indirectly

scored from them. The importance of such moments leads teams to create multiple specific plans -

setplays - for each setpiece, as the training of such setplays leads to higher chances at goals. Teams

need to train both the execution of setpieces and the defence of the setpieces from the opposing

team. The training of such setpieces by players is fundamental, and some players specialize in

setpieces, mainly on free-kicks and penalties. In the last years, teams have tried to capitalize on

setpieces by having coaches specifically to train setplays.

In games of robotic soccer, setplays are as important as or even more important than in human

soccer games. While the game of human soccer has already evolved for many years, and players

and teams have elevated the playing quality, robotic soccer is still a young field, and, especially

in the case of simulated 3D soccer, agents are still learning low-level skills, such as walking, run-

ning, shooting or passing the ball and coordination is difficult to achieve in real-time multi-agent

environments. Setplays, as pre-planned collaborative team interactions[36], defined by series of

player movements, passes and shots, provide robotic soccer teams with higher chances of scoring

goals.

The following are setpieces in the game of soccer[11]:

• Kick-offs. A soccer game is usually split into two haves. At the start of each half, the ball

is positioned in the centre of the field, and each team occupies their respective half of the

field. One player from one of the teams (one team starts the first half, the other starts the

27

28 Setplay Frameworks

second) is allowed to pass the ball to one of his teammates, but direct kick-off goals are not

allowed. Furthermore, whenever a team scores, the game is reset with a kick-off, where the

team who conceded the goal restarts the game. While kick-offs do not directly lead to many

goal chances in human soccer, they allow teams to position themselves according to their

tactic and provide a chance for the team to initiate an attack quickly. On the other hand, in

robotic soccer, they provide an excellent scoring chance as robots’ techniques are not yet

developed enough to stop a well defined and executed kick-off setplay;

• Goal Kicks. Goal Kicks happen when the ball gets out of play after leaving the field through

one of the lines parallel to the goal (goal line), and the ball was last touched by a player of

the team opposing the goal’s line. Goal kicks are the setpiece with the lower scoring chance

for the team taking them, but, as other setpieces, they allow the team to re-position on the

field and plan an attack.

• Throw-ins. Throw-ins are awarded to a team when the ball leaves the pitch through one of

the lines perpendicular to the goal line (side lines) and was last touched by a player from the

other team and are performed on the side line. As some other setpieces, direct goals may not

be scored from throw-ins. The probability a goal is scored after a throw-in is related to the

distance the throw-in is from the opposing team’s goal. With players’ evolution, throw-ins

closer to the opponent goal line are almost as effective as corners, as players can throw the

ball directly into the opponent’s team penalty area.

• Corners. Corners happen when the ball gets out of play after leaving the field through one

of the goal lines, like in goal kicks, but in this case, the ball was last touched by a player

from the team whose goal line the ball went over and are performed on the corner closest to

where the ball left the pitch. Corners are one of the most dangerous setpieces, as they allow

a team to move most players to the opposing team’s penalty area and allow a player to pass

the ball there, where other players can kick it into the goal. Although scoring directly from

corners is allowed, such goals are hard to perform and are unlikely to happen.

• Free-kicks. Free-kicks are awarded when an opposing team’s player does a foul outside

their team’s penalty area and are performed on the spot where the foul occurred. Depending

on which specific foul is performed, free-kicks may be direct (where a goal may be directly

scored from the free-kick) or indirect (direct goals are not allowed). As throw-ins, the danger

of the free-kick to the opposing team is related which the distance to their goal. Goals

from free-kicks, either direct or from plays leading indirect free-kicks, are fairly common.

To make the task of scoring from direct free-kicks, the opposing team may place players

forming a "wall" close to the spot where the free-kick is taken, though the distance still

allows players to kick the ball over this barrier.

• Penalties. Penalties are the most effective setpiece, where there is a higher probability of

scoring than not scoring. Penalties happen when a player does a foul on their team’s penalty

area, are awarded to the opposing team and are performed on the penalty spot (a specific

4.2 FCPortugal Setplay Framework 29

spot in the middle of the penalty area). Due to their importance, teams usually have a player

who is effective in converting them and is also an important part of goalkeepers’ training.

4.2 FCPortugal Setplay Framework

As previously stated, the main focus from the FCPortugal team on high-level strategies was when

the team was still competing in the Simulated 2D League. It was during this phase that most high-

level skills and tools were developed for the project. For setplays definition, a setplays library,

along with PlayMaker[29], a tool that allowed users the graphic design of setplays. This tool was

later reworked into SPlanner[9], which re-designed the graphical user interface and integrated the

2D Soccer Simulator within the application.

With the switch to the 3D league, during the first years, while the robot’s models were only

a sphere, and the movement and low-level skills were easy to develop, the setplays framework

was still successfully applied to the 3D team[36]. But with the switch to humanoid robot models,

and the increase in the difficulty of implementing low-level skills, such as walking, running and

shooting the ball, research was moved to improve those skill, and the setplays framework was

abandoned.

In the FCPortugal Setplay Framework, setplays are defined by a name, region of the field

where the setplay is supposed to start, the type of setpiece and the players involved[36]. Setplays

are represented as sequences of Steps. Each Step contains a time to wait before executing the step,

the time the step should take (if the actual time taken reaches this time, the setpiece is aborted),

a list of Participants, one or more Transitions (list of Actions that must be taken to reach another

Step), and may contain a condition that must be satisfied before entering the step. Each Participant

is a player from the team, to which is assigned a specific role and a region of the field. Figure 4.1

represents the diagram of the setplays domain model.

Figure 4.1: Setplay domain model[36].

30 Setplay Frameworks

The main concept in the setplays domain is Action. Actions are the concepts behind the phys-

ical movements made by the players that are executed between steps. Actions may be linked with

players, both from the same and the opposing teams, with regions of the pitch, or linked directly

to the ball. The actions linked to other players are: tackling an opponent, marking a passing line

between opponents, passing to a teammate, and marking an opponent. The actions which refer

to zones of the field are, among others, dribbling the ball to a position, moving to a position and

marking a position. Other actions are holding the ball, shooting the ball and intercepting the ball.

An action may also be a sequence of actions. Figure 4.2 shows the implemented actions.

Figure 4.2: Implemented actions[36].

SPlanner, the most recent graphical interface, allow the user to graphically create new setplays

or edit setplays already created. As can be seen in Figure 4.3, when creating a new setplay, the

user can select the type of play (either offensive when the team has ball possession, defensive

otherwise), the situation of the setplay (usually associated to which setpiece is being taken), and

the position, which may be a point in the field, the whole field or one or more regions of the field.

Figure 4.3: Creation of a new setplay[36].

After creating the setplay, a screen is displayed with the setplay main information, as seen in

4.2 FCPortugal Setplay Framework 31

Figure 4.4. On the left side, the user can name the setplay and introduce a comment to explain

what the setplay. Furthermore, the user can set the abort conditions and check the graph of steps.

For each step, the wait and abort times can also be altered. On the right side, in the pitch, the user

can add players to a step, by moving them to the pitch and assign actions by clicking in each one

of them. The actions available to assign to players are direct pass, forward pass, dribble, hold ball,

shoot, hold position, move to position and run to offside line[36]. The visual representation of

each action can be seen in Figure 4.5

Figure 4.4: Defining a setplay in SPlanner[36].

Figure 4.5: Visual Representation of player actions[36]. a) direct pass, b) forward pass, c) dribble,
d) hold ball, e) shoot, f) hold position, g) move to position, h) run to offside line.

Figure 4.6 displays three steps from a complete corner setplay involving three players. On

the first step, player 6 takes the kick and passes the ball to player 7, while player 8 run to the

opponent’s team penalty area. On the second step, player 7 passes the ball to player 8, who shoots

to the goal on the third and final step. Using SPlanner, the user can create complex setplays which

can lead to higher chances of scoring and lower chances of conceding goals. To evaluate and test

the implemented setplays, it is possible to run a 2D simulation of the setplay.

32 Setplay Frameworks

Figure 4.6: Example of complete corner setplay[36].

Chapter 5

New Setplay Optimization Framework

This chapter presents the new framework developed during this dissertation, which was based on

the old framework for the FCPortugal 2D team previously presented.

Changes were made for the framework to work with the FCPortugal 3D team and to take

advantage of the new tools developed for the team, such as FCPGym. Furthermore, the language

was defined not only as a setplay definition language but also as a setplay optimization language

definition, as the primary intent of the new setplay framework is not only to allow researchers

the definition of setplays for the FCPortugal 3D team but also their optimization using machine

learning along with FCPGym.

Section 5.1 presents the new setplay language definition. In Section 5.2, the parser developed

to translate the definition of a setplay into a trainable FCPGym environment is explained.

5.1 Setplay language definition

The setplay language definition was adapted by removing, modifying or adding elements. Multiple

reasons led to this modification: some aspects that worked for the 2D team don’t work for the 3D

team, the way the team works changed, and the language has been extended to allow for the

optimization of the setplay.

The optimizations proposed by the framework do not imply that the robots, individually or

collectively, learn to change the behaviours defined in the setplay to improve it. While that would

be the ideal scenario, that level of advancement is not yet possible. Instead, the proposal is to max-

imize the efficiency of the setplay by learning to optimize the parameters used in the behaviours

previously learned. Most behaviours used by the FCPortugal 3D team have parameters to define

how they should be executed, whether it is the position to where the robot should move, the po-

sition to where it should kick the ball, or if the robot should try to avoid obstacles, among others.

These parameters influence the efficacy of the behaviours, and while it is possible to set them by

33

34 New Setplay Optimization Framework

hand, their optimization using machine learning can bring benefits to the setplay, especially on

behaviours with more parameters (some have more than 10).

Figure 5.1: Setplay Optimization domain model.

Figure 5.1 represents a diagram of the domain model of the new setplay optimization language

definition. Setplays are defined by the following parts:

• Name;

• Description;

• Training Parameters: Some parameters are required to allow for the training of the setplay

with FCPGym:

– Number of Environments: Number of multiple environments being run at the same

time. These environments run in parallel, allowing the speedup of the training process.

Each environment is connected to a different instance of the robotic soccer simulator

and to the number of robots required to run the defined setplay correctly;

– Algorithm: The deep reinforcement learning algorithm that will be used to train the

setplay;

5.1 Setplay language definition 35

– Policy Network: The neural network that will be used as a policy network for the robot

to learn and then use to translate observations into actions;

– Timesteps: The number of timesteps that the setplay will be trained. Each time step

corresponds to a timestep in the robotic soccer simulator (by default, 0.02 seconds);

– Actions Space: List of all action spaces used by the setplay. While for training robot’s

behaviours, the number of action spaces is the number of available robot’s joints, and

each action space usually corresponds to the minimum and maximum acceleration

that a joint can take at each timestep, the setplay framework uses them differently. The

action spaces are used to optimize the parameters of the behaviours used on the setplay.

Their minimum and maximum values can be set when defining each action space and

can then later be rescaled according to the need of each behaviour’s parameters.

• Ball: The position of the ball in the field. This may be either a set position (X and Y

coordinates) or a rectangular region (defined by two X coordinates and two Y coordinates)

where the ball will be randomly positioned each episode. While some setpieces require the

ball to be in a specific spot, the framework allows the ball to be placed anywhere on the

field to add flexibility to the setplays. This decision also led to the decision of removing the

type of setpiece that the setplay is used in. Once again, this gives the setplay flexibility but

comes with the drawback of not enforcing the rules each setpiece has (for example, on a

team’s kickoff, no player may move to the other half until a team’s player touches the ball);

• Players: A list of players that participate in the setplay. For each player, their player model

number is required. There are currently five different types of players NAO models, num-

bered from 0 to 4, that can be used, with each having different benefits and drawbacks. Also,

some behaviours were trained only with a specific model and only work for that model. For

each player, their position is also required. As for the ball, this position may be a set position

of a rectangular region where the player will be randomly set for each episode;

• Rewards: A list of rewards given to all players in an episode according to a condition.

Currently, there are two types of global rewards, but more can easily be incorporated in the

future:

– Goal: The robots are rewarded with a user-defined value if they can score a goal;

– Ball Position: The robots may be positively or negatively rewarded with a user-defined

value if the ball gets inside a specific region. This may be used to positively reward

the robots in, for example, defensive setplays where the goal is to move the ball to the

opposition’s half or negatively to simulate, for example, that the ball is far away from

where it was supposed to be and, in a real match, would be near opposing players;

• Finish Conditions: A list of conditions that, if any is true at a given point in time, success-

fully finish the setplay/episode. Currently, the same ones as the rewards (Goal and Ball

Position);

36 New Setplay Optimization Framework

• Abort Conditions: List of conditions that, if any is true, abort the setplay. Currently, there

are three implemented conditions and another one that was thought of but not implemented:

– Timeout: All setplays must have a timeout where the episode will end if it reaches a

certain timestamp and has not yet finished or aborted by any other condition. This is

needed to ensure all training episodes eventually finish;

– Goal: Same as in Rewards;

– Ball Position: Same as in Rewards;

– Fall: If a robot falls, it usually is no longer important for a setplay. However, as

previously mentioned, in FCPGym when using multi-agent environments, all agents

must finish each training episode simultaneously. Because of this, an agent may not

finish the episode because he fell while other agents are still training in that episode;

• Steps: As in the original FCPortugal Setplay Framework, the setplay is defined as a sequence

of steps. Each step contains:

– Duration: Amount of time that step takes;

– Actions: List of actions that each robot should do in each step. Not all players need

to be in each action. Each action is defined by the behaviour that should be executed

and the uniform number of the player that will execute the action. Each action also

contains:

* List of Parameters: Each behaviour needs a different number of parameters. These

parameters may be a set value if the robot should not try to optimize them, or a

minimum and maximum value, where the robot will try to learn the best value for

the parameter based on its current observations;

* Reward: An individual reward may be given at each timestamp to the robot to re-

ward or penalize it. This reward may be based on its distance to a specific position

or based on the ball’s distance to a specific position. To tune the importance of

this individual reward, another attribute of the reward is a multiplier. This reward

is negative by default, so the closer the robot is to its objective, the higher the

reward;

For the ease of declaration and parsing, setplays are defined in XML files. Listing 5.1 shows

an example of the definition of a setplay.

1 <?xml version="1.0"?>

2 <Setplay>

3 <Name>Name</Name>

4 <Description>Description</Description>

5 <TrainingParameters>

6 <Envs>1</Envs>

7 <Algorithm>Training_Algorithm</Algorithm>

5.1 Setplay language definition 37

8 <PolicyNetwork>Policy</PolicyNetwork>

9 <TimeSteps>1000000</TimeSteps>

10 <ActionSpace>

11 <Parameter Type="float" Min="-15" Max="15"/>

12 <Parameter Type="float" Min="-10" Max="10"/>

13 </ActionSpace>

14 </TrainingParameters>

15 <Ball>

16 <Region X1="-15" X2="15" Y1="-10" Y2="10"/>

17 </Ball>

18 <Players>

19 <Player Type="0">

20 <Pos X="0" Y="0"/>

21 </Player>

22 </Players>

23 <Rewards>

24 <Reward Type="Goal" Value="10000"/>

25 <Reward Type="BallPos" Value="-10000">

26 <Region X1="-15" X2="0" Y1="-10" Y2="10"/>

27 </Reward>

28 </Rewards>

29 <FinishConditions>

30 <Condition Type="Goal"/>

31 </FinishConditions>

32 <AbortConditions>

33 <Condition Type="BallPos">

34 <Region X1="-15" X2="0" Y1="-10" Y2="10"/>

35 </Condition>

36 <Condition Type="Timeout" Value="15"/>

37 </AbortConditions>

38 <Steps>

39 <Step Duration="10">

40 <Actions>

41 <Action Type="kick" PlayerNumber="1">

42 <Parameter Min="0" Max="1"/>

43 <Parameter Min="2.5" Max="5"/>

44 <Reward Type="BallDistance" X="10" Y="10" Multiplier="0.5"/>

45 </Action>

46 <Action Type="run" PlayerNumber="2">

47 <Parameter Value="10"/>

48 <Parameter Value="3"/>

49 <Reward Type="PlayerDistance" X="10" Y="10" Multiplier="0.25"/>

50 </Action>

51 </Actions>

52 </Step>

53 </Steps>

54 </Setplay>

Listing 5.1: Setplay Declaration

38 New Setplay Optimization Framework

5.2 Setplay language parser

To use the setplays defined in the language previously presented, a parser is needed to translate the

XML file into FCPGym environments and training scripts. For developing the parser, Python was

chosen as it allows rapid development and comes with a built-in XML parser. After parsing the

data from the setplay definition, the parser must generate two different pieces of code: FCPGym

environments which must be written in C++ and a training script in Python. Thus, the code

generation phase can be split into two parts.

For the generation of both the environment and the training script, a templating technique was

used, where code that is shared between all possible setplays is stored in a template file. Then,

when a new environment or training script is created, the code generated is placed in previously

defined zones in the template file.

The process of generating code for the training script is simple, and only the following infor-

mation and validation is needed:

• Name of the environment, which is the same as the name of the setplay;

• Number of environments that will be run in parallel;

• Number of players that will be used in each environment;

• Number of timesteps that the setplay will be trained for;

• The reinforcement learning algorithm to be used for training. The implementations of the

algorithms used are from Stable Baselines[5] which is a fork from the original OpenAI

Baselines commonly used by the FCPortugal team. The algorithm must be one implemented

by Stable Baselines;

• The Policy Network is used to translate observations into actions. Once again, this network

is provided by Stable Baselines, so the selected network must be supported by them.

However, the process does get trickier when generation code for the environments, as they are

more complex. An environment can be split into four different parts/functions: initializing the

environment, taking an observation from the environment, doing a step in the environment and

resetting the environment. The function that does a step in the environment does not perform a

step as defined in the setplay (which will be called stage from now on to avoid confusion) but

instead a step as defined in Gym by the agent performing an action, taking a new environment

observation, calculating the reward of the action performed and check if the episode is complete.

For the initialization of the environment, the following steps are done:

• The name of the setplay is encoded so that it may be used as the name of both a file and a

C++ Class name;

• The types of each robot present in the setplay is declared;

5.2 Setplay language parser 39

• The action spaces are defined as in the setplay definition;

• The observation space is defined. It is the same for all setplays. For each observation, the

following information is given as an input to the Policy Network for the network to learn to

optimize the actions based on this information:

– The uniform number of the player;

– The current timestamp;

– The current stage (step in the setplay declaration);

– The position of the ball;

– The velocity of the ball;

– The position of the player;

• The ball and each player are moved to their initial positions, which may be set or random in

a given region;

• A list of variables is initiated: the current timestamp, the current stage and the stage on the

last timestamp (as some behaviours need to know if this is the first timestamp they are being

executed);

The observation function is simple, as it only retrieves the information of the observations

previously stated and returns it. The reset function is also straightforward as it resets the value

of the current timestamps and current stage and returns the ball and the players to their original

positions. The step function is where most of the code is generated and is divided as follows:

• The current timestamp is incremented, and the current stage is calculated based on the du-

ration of each stage defined in the setplay. While in the setplay definition the duration does

not contain any unit, seconds are assumed, which are converted into timesteps according to

the time between each episode;

• The robot, depending on the current stage and on its uniform number, executes a behaviour

and calculates the individual reward based on the reward type defined in the setplay. This is

the main piece of code that is generated and can be broken down into the following:

– First, a C++ switch is used to identify the piece of code to be executed by the robot by

looking first at the current stage and then at the robot’s uniform number.

– Afterwards, the code that executes the behaviour is generated based on the type of

behaviour being performed. The type of behaviour then needs to be translated into the

actual code that the FCP agent will execute. For that, a map of the currently available

behaviours was developed, which maps an identifier (the type that should be used in

the setplay definition) of the behaviour to the code needed to execute that behaviour.

Currently, there are 21 behaviours implemented (thirteen kicks and nine movement

40 New Setplay Optimization Framework

behaviours), which may not work for all types of robots and may not all be optimized.

This mapping also uses templates in the code definition that will later be replaced by

the parameters associated with the action. By using a map of behaviour code with

template parameters, new behaviours will be easier to add in the future;

– Each parameter defined under the action is associated with a template in the behaviour

code definition. This parameter may be a set value or a parameter to be optimized dur-

ing training. If it is the latter, the value from the action given by the training algorithm

is rescaled from the original action limits to the limits set for this specific parameter;

– Finally, the individual rewards, if it is declared, is calculated based on the distance be-

tween the player and a particular point declared on the setplay or the distance between

the position of the ball and that specific point. This reward is then multiplied by the

multiplier defined in the setplay;

– Listing 5.2 shows an example of the code generated for the actions of a given setplay.

In the example, containing only a single stage, the robot with number 1 performs

a running behaviour with two parameters that will be optimized between [0,10] and

[−5,5] respectively and will be rewarded by its distance to the (5,0) position with a

multiplier of 1. On the other hand, the robot with number 2 will simply perform a

kicking behaviour with two parameters with a value equal to 0 and will be rewarded

by the distance between the ball and the point (0,0) with a multiplier of 0.25;

1 float rescale(float value, float newMin, float newMax, float oldMin,

float oldMax)

2 {

3 return (newMax - newMin) * (value - oldMin) / (oldMax - oldMin) +

newMin;

4 }

5

6 float execBehaviour(const vector<float> &action)

7 {

8 float reward = 0;

9

10 switch(this->stage)

11 {

12 case 0:

13 switch(this->unum)

14 {

15 case 1:

16 runBehaviour(rescale(action[0], 0, 10, this->

action_space[0].min, this->action_space[0].max),

rescale(action[1], -5, 5, this->action_space[1].

min, this->action_space[1].max));

17 reward = -1 * distance(playerPos().X, playerPos().Y,

5, 0);

18 break;

5.2 Setplay language parser 41

19 case 2:

20 kickBehaviour(0, 0);

21 reward = -0.25 * distance(ballPos().X, ballPos().Y,

0, 0);

22 break;

23 default:

24 break;

25 }

26 break;

27 default:

28 break;

29 }

30

31 return reward;

32 }

Listing 5.2: Action Code Example

• The global reward conditions are checked. If any is true, the corresponding reward is added

to the individual reward already calculated. For the Ball Position reward, the position of the

ball is compared with the defined region. For the Goal reward, the position of the ball is

compared to the goal’s region;

• All the finish and abort conditions are checked. If any is true, the episode is terminated.

The calculation done is the same as the one for the global reward, except for the Timeout

condition, where the timestamp is simply compared to the timeout value;

After declaring the setplay and building both the environment and the training script, the set-

play is ready to be trained.

42 New Setplay Optimization Framework

Chapter 6

Evaluation

In order to evaluate the new setplay framework, a setplay was defined, built, trained and tested.

Section 6.1 describes the defined setplay as well as the generated environment’s observation and

action spaces, rewards, finish and abort conditions, and explains the different steps of the setplay.

In Section 6.2 the training process is described. Section 6.3 presents the results obtained by the

trained setplay during the training process as well as against other teams. Finally Section 6.4

draws a conclusion from the results obtained.

6.1 Defined Setplay

In order to test the capabilities of the framework, a simple kickoff setplay was defined. The kickoff

was the chosen setpiece as it is generally the one that happens the most during a game of robotic

soccer and the one with higher direct scoring chances. In this kickoff, involving two players, the

first passes the ball to a position near the goal while the other runs to that position and then kicks

the ball into the goal. Listing 6.1 contains the definition of the setplay.

1 <?xml version="1.0"?>

2 <Setplay>

3 <Name>SimpleKickOff</Name>

4 <Description>One player passes the ball close to goal and another runs to the

ball and tries to score</Description>

5 <TrainingParameters>

6 <Envs>2</Envs>

7 <Algorithm>PPO2</Algorithm>

8 <PolicyNetwork>MlpPolicy</PolicyNetwork>

9 <TimeSteps>15000000</TimeSteps>

10 <ActionSpace>

11 <Parameter Type="float" Min="-15" Max="15"/>

12 <Parameter Type="float" Min="-10" Max="10"/>

43

44 Evaluation

13 </ActionSpace>

14 </TrainingParameters>

15 <Ball>

16 <Pos X="0" Y="0"/>

17 </Ball>

18 <Players>

19 <Player Type="4">

20 <Pos X="-1" Y="0"/>

21 </Player>

22 <Player Type="4">

23 <Pos X="-1" Y="5"/>

24 </Player>

25 </Players>

26 <Rewards>

27 <Reward Type="Goal" Value="10000"/>

28 <Reward Type="BallPos" Value="-2500">

29 <Region X1="-15" X2="-1" Y1="-10" Y2="10"/>

30 </Reward>

31 </Rewards>

32 <FinishConditions>

33 <Condition Type="Goal"/>

34 </FinishConditions>

35 <AbortConditions>

36 <Condition Type="BallPos">

37 <Region X1="-15" X2="-1" Y1="-10" Y2="10"/>

38 </Condition>

39 <Condition Type="Timeout" Value="30"/>

40 </AbortConditions>

41 <Steps>

42 <Step Duration="10">

43 <Actions>

44 <Action Type="kick" PlayerNumber="1">

45 <Parameter Min="9" Max="11"/>

46 <Parameter Min="2.5" Max="3.5"/>

47 <Reward Type="BallDistance" X="10" Y="3" Multiplier="0.5"/>

48 </Action>

49 <Action Type="run" PlayerNumber="2">

50 <Parameter Value="10"/>

51 <Parameter Value="3"/>

52 <Reward Type="PlayerDistance" X="10" Y="10" Multiplier="0"/>

53 </Action>

54 </Actions>

55 </Step>

56 <Step Duration="10">

57 <Actions>

58 <Action Type="kick" PlayerNumber="2">

59 <Parameter Min="15" Max="15.5"/>

60 <Parameter Min="-1" Max="1"/>

61 <Reward Type="BallDistance" X="15" Y="0" Multiplier="0.25"/>

6.1 Defined Setplay 45

62 </Action>

63 </Actions>

64 </Step>

65 </Steps>

66 </Setplay>

Listing 6.1: Defined Setplay

6.1.1 Observation & Action Spaces

The observation space of the environment generated for this setplay, as well as all others generated

by the framework, is composed of: the uniform number of the robot, which ranges between 1 and

the number of players; the timestamp, which ranges from 0 to the timeout value; the stage, which

varies between 0 and the number of the stage; and the x, y, z coordinates of the ball, coordinates of

the player and velocity (in each axis) of the ball. These are the inputs of the network being trained.

The action space contains only two actions as the behaviours used in the setplay have at most

two parameters.

6.1.2 Global Rewards, Finish & Abort Conditions

As the intent of the setplay is to score a goal, the finish condition chosen was Goal. In the worst

scenario, that the ball ends up in our teams’ half, the setplay is aborted. Finally, each episode has

a timeout of 30 seconds, which is more than the maximum time it may take for the first player to

pass the ball and the second to run and shoot to goal.

As for the global rewards, the robots are collectively rewarded with a value of 10000 if they

can score a goal and penalized with a reward of -2500 if the ball goes back to their team’s half.

6.1.3 Steps

Initially, the ball is placed in the centre of the field (as it is on a kickoff in a game). One of the

players starts near the ball, ready to pass it, and the other starts on the side of the field near the

halfway line prepared to run to the place where the first player will pass the ball, as seen in Figure

6.1.

Afterwards, in the first stage, the robot close to the ball kicks it forward to a position that will

be optimized (inside a user-defined region, declared as the minimum and maximum values of the

kick parameters) and the other runs to the position where he expects the ball to go to. The first

robot is negatively rewarded, for every timestamp of the stage, based on the distance that the ball

is to the point (10,3). This is used to incentivize the robot to kick the ball somewhere near that

position but still try to optimize the best kicking stop by using a bigger reward for goals. As for the

second robot, because the setplay directly defines the position where it should run to, the reward

multiplier is set to 0, as the parameters are not being optimized. Figure 6.2 shows an intermediate

state of stage 1.

46 Evaluation

Figure 6.1: Setplay: Initial Player Positions.

In the second stage, the robot who passed the ball does not participate, and the other player

tries to score by kicking the ball into the goal. The specific position in the goal that the player

targets is not specified. Instead, it is optimized to be somewhere inside the goal during training.

Once again, the robot is penalized by the distance from the ball’s position to the centre of the goal.

This incentivizes the robot to kick the ball as fast as possible, and the global goal reward should

help the robot learn the best place in the goal to aim for. Figure 6.3 displays the robot after kicking

the ball in stage 2.

The setplay may end if the robots can score a goal or will eventually end when the timer

reaches the defined timeout.

6.2 Training

To train the setplay, the parser was used to transform the setplay definition into a trainable FCP-

Gym environment. A stable baselines[5] MlpPolicy, a neural network with two hidden layers of 64

nodes, was trained using the stable baselines’ implementation of the PPO2 reinforcement learning

algorithm, a modified PPO algorithm made to take advantage of GPU capabilities. It was trained

on two parallel environments for 15 million timesteps with default stable baselines PPO2 settings.

In order to train FCPGym environments, some settings of the robotic soccer simulator need to

be changed. One of them allows the simulation to simulate events in the game faster than real-time

speed, which helps speed up training. The other disables some of the soccer game rules, so the

robot is free to train without being restricted by the simulation. While the robots must still obey

normal physical restrictions, some other rules, such as moving the robot outside of the field if

deemed incapacitated, aren’t enforced as they could mess up the training process.

6.3 Results 47

Figure 6.2: Setplay: Stage 1.

6.3 Results

To start analyzing the results, let’s first look at the training results. Figure 6.4 presents a graph with

the reward of the episodes over the training process. The dark orange line represents the smoothed

average reward, while the more transparent line shows the real reward obtained in each timestep.

From the graph, it is possible to see that overall the reward did not improve over time, which

hints that the robots could not learn to optimize the behaviour parameters to score goals. To

confirm this, a test was done where the setplay, first untrained and then with training, was run by

1000 episodes, and the number of goals scored by each was compared. The untrained setplay was

able to score 165 goals, meaning it had an effectiveness rate of 16.5%. The trained setplay has

slightly better results: 196 goals with a 19.6% effectiveness rate. While the results of the trained

setplay are better than the untrained ones, the difference is small, and the overall results are still

low given that there was no opposing team to try to stop the team from scoring.

One possible explanation for such low results was discovered during both the training process

and the first tests. The robots would, sometimes, fall to the ground when executing a behaviour.

This can be seen in Figure 6.5, where both robots fell at the start of the setplay. This impacted

the effectiveness of the setplay, and the learning process as the robots sometimes were not able

to perform the requested behaviours. This appears to happen to the first robot at the start of the

setplay and to the second robot at the start and when it attempts to kick the ball into the goal.

While at least one of the robots did fall on a high number of episodes during training, if the

robotic soccer simulator’s setting that allows the events to happen faster than real-time was turned

off, it did not occur as frequently. To test the impact of the setting, the trained setplay was once

again tested for 1000 episodes while recording the number of goals scored. It managed to score

48 Evaluation

Figure 6.3: Setplay: Stage 2.

276 goals with an effectiveness rate of 27.6%. While this value presents an improvement, it is still

fairly low.

For the final test of the effectiveness of the setplay, the setplay was tested against real teams

that participated in the 2021 edition of RoboCup and compared with the results obtained by the

FCPortugal team. While FCPGym does not directly support the addition of other teams, and

so they were not able to be used for training because, among other reasons, the code for the

other teams is not available, a workaround was used to run the teams binaries which connect

to the robotic soccer simulator that FCPGym uses. For this workaround to work, the setting that

enables the soccer rules must be turned on, once again making it impossible to use opposing teams

while training the setplay. Furthermore, by turning the setting, which is active in real games, the

effectiveness of the setplay may be reduced as, for example, in the kickoff, no player may pass the

half-line before a member of the team touches the ball.

The binaries of the teams, as well as the 2021 results, were obtained from RoboCup archive1.

Figure 6.6 shows the setplay being tested against one of the RoboCup 2021 teams, Wrighto-

cean3D. The results may be seen in Table 6.1. For each opposing team, the number of kickoffs

that the trained setplay was tested against and the number of kickoffs FCPortugal had against

them in the tournament, as well as the percentage from both which lead to a direct goal, are pre-

sented. However, against some teams, it was not possible to test the trained setplay even with the

previously mentioned workaround.

The obtained results by the trained setplay are quite poor, especially when compared with the

ones obtained by the FCPortugal team. Multiple reasons lead to these results:

• The defined setplay is too simple. It only uses two players and relatively simple behaviours.

Comparatively, the setplay used by FCPortugal uses five players: one player kicks the ball

1https://archive.robocup.info/Soccer/Simulation/3D/

https://archive.robocup.info/Soccer/Simulation/3D/

6.4 Conclusion 49

Figure 6.4: Setplay training episode rewards.

forward while four other players run fast in the direction of the ball and try to collide with

it at an angle that will shoot the ball into the goal. It also uses some functionalities that are

not yet present on the setplay framework: the initial position of the players and the position

to where the ball is initially kicked is dynamic according to the opponents’ position;

• As previously stated, the robots sometimes fall at the start of the setplay, which means that

in some attempts, the setplay is unsuccessful from the start. To add to this, when the soccer

rules setting is activated, the robot that is attempting to run may not pass the halfway line

before the other robot has touched the ball, which is not a problem during training, but

happens during an actual game which leads to the robot being reset to a backwards position

if he crosses the line.

6.4 Conclusion

After taking into account the poor results obtained by the training of the defined setplay, we cannot

conclude that the new setplay optimization framework can, by itself, be used to optimize robotic

soccer setplays. However, the framework can be used to define setplays and translate them into

FCPGym environments, which may then be changed to create and optimize better setplays. There

are multiple factors that hampered the results, and that may be tackled in order to enhance them:

• The defined setplay was too simple. While this was done to facilitate the training process

and provide results that could show that the optimization could improve any defined setplay,

it came with the drawback that it did not achieve good results when tested against other

teams. Furthermore, it leads to the conclusion that the most important part of implement-

ing a setplay is defining a good setplay that will work against other teams, which requires

experience and knowledge from the user;

• The concept of splitting the setplay into steps, while good for 2D robotic soccer, may not

be the best approach for 3D robotic soccer, as robots should be able to decide to start a new

behaviour without having to wait for other robots to finish a step. This is also supported by

50 Evaluation

Figure 6.5: Robots falling at the start of the setplay.

the fact that the behaviours used in the 2D league are usually simpler and less prone to error,

which gives the setplay a higher degree of trust;

• The behaviours used were either not optimized enough to be used freely in a setplay in any

scenario or were incorrectly used by the framework. This can be seen by the fact that the

robots sometimes would fall when starting the setplay;

• The definition and training of an environment may be a process too complex to be solved by

just being defined automatically and may need changes to be handmade by someone with

knowledge of both the team and the league. A knowledgeable researcher can vastly improve

the definition of rewards, observation and environment spaces on a setplay by setplay basis.

6.4 Conclusion 51

Figure 6.6: Setplay being tested against Wrightocean3D team.

Table 6.1: Trained and FCPortugal Setplay Results

Team FCPortugal FCPortugal Trained Setplay Trained Setplay
Goal % Attempts Goal % Attempts

Apollo3D 6.67% 15 — —
BahiaRT 0.00% 0 — —

FCPortugal — — 1.00% 100
HFUTEngine2021 50.00% 4 — —

ITAndroids 50.00% 2 — —
KgpKubs 33.33% 3 2.00% 100

magmaOffenburg 0.00% 25 — —
Miracle3D 50.00% 4 — —

MIRG 0.00% 1 — —
WITS-FC 0.00% 1 8.00% 100

Wrightocean3D 66.67% 6 5.00% 100

52 Evaluation

Chapter 7

Conclusion

In this dissertation, we explore the use of machine learning to optimize setplays for robotic soccer.

After giving background on robotic soccer, examining the state of the art in machine learning for

robotic soccer and analyzing the previous work done on the topic, we proposed a new setplay op-

timization framework that may be used to define, train and test setplays for the FCPortugal team.

Furthermore, we created and optimized a simple setplay to understand if the framework could be

used to define setplays that could work in real matches. Taking into account the results obtained,

we could not prove that the framework, by itself, is able to optimize a setplay to be used compet-

itively. However, it can be used as a starting point to create new setplays and translate them into

reinforcement learning training environments that may then be changed to use the already devel-

oped behaviours to their maximum. We found that at this stage, the main task of creating good

setplays continues to be their definition by someone knowledgeable of the team and the league.

Still, this work does come up with some contributions, detailed in Section 7.1, and proposes future

work, in Section 7.2, that may be developed on this topic.

7.1 Main Contributions

The main contributions of this dissertation are:

• A setplay optimization definition language that allows the definition of setplays to be opti-

mized using reinforcement learning;

• A parser to translate setplays defined in the language mentioned above into trainable FCP-

Gym environments that can later be edited to improve the effectiveness of training and the

results obtained by the setplay;

• A small study into how the optimization may improve the effectiveness of simple setplays,

including the comparison of the results obtained by an untrained and an optimized setplay,

by themselves and against multiple other teams;

• An automatic mechanism to test setplays defined in FCPGym (and possibly, other FCPGym

environments) against other teams that regularly compete against FCPortugal.

53

54 Conclusion

7.2 Future Work

Even though the framework presented in this dissertation is ready to be used, there are still multiple

improvements that can be made to enhance the results obtained by its use. Among them are:

• Improvements into the definition of steps in the setplay could provide better results, as in

such a complex environment, the robots should not have to wait before the next step starts

in order to execute a new behaviour;

• If possible, the addition of opposing players during training of FCPGym environments could

provide a good opportunity to allow the players to optimize the setplay against opponents

and even learn how best to use the setplay against each specific opponent;

• A more complex and robust way to define observation and action space and to better utilize

rewards will improve the optimization possible for a given setplay;

• A better study of the capabilities of the current framework by utilizing a more complex

setplay;

• The addition of a graphical user interface to facilitate the process of defining setplays, in the

same way one exists for the FCPortugal 2D framework.

References

[1] A. Abdolmaleki, D. Simões, N. Lau, L. P. Reis, and G. Neumann. Learning a Humanoid Kick
with Controlled Distance. In RoboCup 2016: Robot World Cup XX, pages 45–57. Springer
International Publishing, 2017.

[2] M. Abreu, L. P. Reis, and N. Lau. Learning to Run Faster in a Humanoid Robot Soccer
Environment Through Reinforcement Learning. In RoboCup 2019: Robot World Cup XXIII,
pages 3–15. Springer International Publishing, 2019.

[3] P. Amaro, L. P. Reis, and A. J. Sousa. Multi-Robot Learning of High-Level Skills in
RoboCup. Master’s thesis, Faculdade de Engenharia da Universidade do Porto, 2019.

[4] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. To-
bin, P. Abbeel, and W. Zaremba. Hindsight Experience Replay, 2018.

[5] Stable Baselines. Stable Baselines Docs. https://stable-baselines.
readthedocs.io/en/master/, 2018. Accessed: 2021-09-13.

[6] M. G. Bellemare, W. Dabney, and R. Munos. A Distributional Perspective on Reinforcement
Learning, 2017.

[7] F. Bre, J. Gimenez, and V. Fachinotti. Prediction of wind pressure coefficients on building
surfaces using Artificial Neural Networks. Energy and Buildings, 158, 2017.

[8] L. Busoniu, R. Babuska, and B. De Schutter. A comprehensive survey of multiagent rein-
forcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applica-
tions and Reviews), 38(2):156–172, 2008.

[9] J. Cravo, L. P. Reis, and F. Almeida. SPlanner. Strategy Planner: Graphical definition of
soccer set-plays. Master’s thesis, Faculdade de Engenharia da Universidade do Porto, 2011.

[10] W. Dabney, M. Rowland, M. G. Bellemare, and R. Munos. Distributional Reinforcement
Learning with Quantile Regression, 2017.

[11] Premier Skills English. Football Shout-out: Set-Pieces. https://
premierskillsenglish.britishcouncil.org/skills/listen/
football-shout-out-set-pieces, 2021. Accessed: 2021-01-29.

[12] RoboCup Federation. A Brief History of RoboCup. https://www.robocup.org/a_
brief_history_of_robocup, 2016. Accessed: 2021-01-25.

[13] RoboCup Federation. Objective. https://www.robocup.org/objective, 2016. Ac-
cessed: 2021-01-25.

55

https://stable-baselines.readthedocs.io/en/master/
https://stable-baselines.readthedocs.io/en/master/
https://premierskillsenglish.britishcouncil.org/skills/listen/football-shout-out-set-pieces
https://premierskillsenglish.britishcouncil.org/skills/listen/football-shout-out-set-pieces
https://premierskillsenglish.britishcouncil.org/skills/listen/football-shout-out-set-pieces
https://www.robocup.org/a_brief_history_of_robocup
https://www.robocup.org/a_brief_history_of_robocup
https://www.robocup.org/objective

56 REFERENCES

[14] RoboCup Federation. RoboCup Federation official website. https://www.robocup.
org/, 2016. Accessed: 2021-01-25.

[15] RoboCup Federation. RoboCupSoccer. https://www.robocup.org/domains/1,
2016. Accessed: 2021-01-25.

[16] V. Feinberg, A. Wan, I. Stoica, M. I. Jordan, J. E. Gonzalez, and S. Levine. Model-Based
Value Estimation for Efficient Model-Free Reinforcement Learning, 2018.

[17] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson. Counterfactual Multi-
Agent Policy Gradients, 2017.

[18] S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-
critic methods, 2018.

[19] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor, 2018.

[20] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–
778, 2016.

[21] J. Schulman and S. Levine and P. Moritz and M. I. Jordan and P. Abbeel. Trust Region Policy
Optimization, 2017.

[22] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement Learning: A Survey. J.
Artif. Int. Res., 4(1):237–285, 1996.

[23] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa. RoboCup: The Robot World
Cup Initiative, 1995.

[24] J. Kober. Robot Learning, pages 1–9. Springer London, 2019.

[25] RoboCupSoccer Simulation League. 3D History. https://ssim.robocup.org/
3d-simulation/3d-history/. Accessed: 2021-01-26.

[26] RoboCupSoccer Simulation League. 3D Rules. https://ssim.robocup.org/
3d-simulation/3d-rules/. Accessed: 2021-01-26.

[27] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

[28] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning.

[29] R. Lopes, L. P. Reis, and N. Lau. Coordination Methodologies applied to RoboCup: a
Graphical Definition of Setplays. Master’s thesis, Faculdade de Engenharia da Universidade
do Porto, 2009.

[30] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch. Multi-Agent Actor-Critic
for Mixed Cooperative-Competitive Environments, 2020.

[31] magmaOffenburg. RoboViz. https://github.com/magmaOffenburg/RoboViz,
2020. Accessed: 2021-01-26.

https://www.robocup.org/
https://www.robocup.org/
https://www.robocup.org/domains/1
https://ssim.robocup.org/3d-simulation/3d-history/
https://ssim.robocup.org/3d-simulation/3d-history/
https://ssim.robocup.org/3d-simulation/3d-rules/
https://ssim.robocup.org/3d-simulation/3d-rules/
https://github.com/magmaOffenburg/RoboViz

REFERENCES 57

[32] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning, 2016.

[33] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Daan, and M. Riedmiller.
Playing Atari with Deep Reinforcement Learning, 2013.

[34] M. Mohammadi and A. Al-Fuqaha. Enabling Cognitive Smart Cities Using Big Data
and Machine Learning: Approaches and Challenges. IEEE Communications Magazine,
56(2):94–101, 2018.

[35] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning. MIT press,
2018.

[36] L. Mota, J. A. Fabro, L. P. Reis, and N. Lau. Collaborative Behavior in Soccer: The Setplay
Free Software Framework. In RoboCup, 2014.

[37] L. Mota and L. P. Reis. Setplays: Achieving coordination by the appropriate use of arbitrary
pre-defined flexible plans and inter-robot communication. In RoboComm ’07: Proceedings
of the 1st international conference on Robot communication and coordination, 2007.

[38] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine. Neural Network Dynamics for Model-
Based Deep Reinforcement Learning with Model-Free Fine-Tuning. In 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 7559–7566, 2018.

[39] OpenAI. OpenAI Gym Documentation. https://gym.openai.com/docs/. Accessed:
2021-09-11.

[40] OpenAI. OpenAI Gym Environments. https://gym.openai.com/envs/. Accessed:
2021-09-11.

[41] OpenAI. Kinds of RL Algorithms. https://spinningup.openai.com/en/latest/
spinningup/rl_intro2.html, 2018. Accessed: 2021-01-28.

[42] OpenAI. Baselines. https://github.com/openai/baselines, 2020. Accessed:
2021-09-11.

[43] J. Peters, R. Tedrake, N. Roy, and J. Morimoto. Robot Learning, pages 865–869. Springer
US, 2010.

[44] L. P. Reis. FC Portugal. https://web.fe.up.pt/~lpreis/FCPortugal.htm, 2006.
Accessed: 2021-01-25.

[45] L. P. Reis and N. Lau. FC Portugal Team Description: RoboCup 2000 Simulation League
Champion. In RoboCup 2000: Robot Soccer World Cup IV, pages 29–40, 2000.

[46] L. P. Reis and N. Lau. Coach unilang - a standard language for coaching a (robo) soccer team.
In RoboCup 2001: Robot Soccer World Cup V, pages 183–192. Springer Berlin Heidelberg,
2002.

[47] SoftBank Robotics. NAO the humanoid and programmable robot. https://www.
softbankrobotics.com/emea/en/nao, 2016. Accessed: 2021-01-25.

[48] Festival Nacional de Robótica. Festival Nacional de Robótica 2021. https://www.
festivalnacionalrobotica.pt/, 2021. Accessed: 2021-09-03.

https://gym.openai.com/docs/
https://gym.openai.com/envs/
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://github.com/openai/baselines
https://web.fe.up.pt/~lpreis/FCPortugal.htm
https://www.softbankrobotics.com/emea/en/nao
https://www.softbankrobotics.com/emea/en/nao
https://www.festivalnacionalrobotica.pt/
https://www.festivalnacionalrobotica.pt/

58 REFERENCES

[49] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimiza-
tion algorithms, 2017.

[50] N. Shafii, N. Lau, and L. P. Reis. Learning to Walk Fast: Optimized Hip Height Movement
for Simulated and Real Humanoid Robots. Journal of Intelligent & Robotic Systems, 80:1–
17, 02 2015.

[51] T. Silva, L. P. Reis, and A. J. Sousa. Humanoid Low-Level Skills using Machine Learning
for RoboCup. Master’s thesis, Faculdade de Engenharia da Universidade do Porto, 2019.

[52] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis. Mastering Chess and
Shogi by Self-Play with a General Reinforcement Learning Algorithm, 2017.

[53] D. Silver, T. Hubert, J. Schrittwieser, and D. Hassabis. Reinforcement
Learning: Deep Q Networks. https://deepmind.com/blog/article/
alphazero-shedding-new-light-grand-games-chess-shogi-and-go,
2018. Accessed: 2021-01-28.

[54] D. Simões, N. Lau, and L. P. Reis. Learning Coordination in Multi-Agent Systems. PhD
thesis, Universidade de Aveiro, 2019.

[55] P. Singh. Reinforcement Learning: Deep Q Networks. https://blogs.oracle.com/
datascience/reinforcement-learning-deep-q-networks, 2020. Accessed:
2021-01-28.

[56] Stefan Glaser. Models. https://gitlab.com/robocup-sim/SimSpark/-/wikis/
Models, 2017. Accessed: 2021-01-26.

[57] Stefan Glaser. Soccer Simulation. https://gitlab.com/robocup-sim/SimSpark/
-/wikis/Soccer-Simulation, 2017. Accessed: 2021-01-26.

[58] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg, M. Lanctot,
N. Sonnerat, J. Z. Leibo, K. Tuyls, and T. Graepel. Value-Decomposition Networks For
Cooperative Multi-Agent Learning, 2017.

[59] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2018.

[60] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru, and R. Vicente. Multi-
agent Cooperation and Competition with Deep Reinforcement Learning, 2015.

[61] H. Teixeira, T. Silva, M. Abreu, and L. P. Reis. Humanoid Robot Kick in Motion Ability
for Playing Robotic Soccer. In 2020 IEEE International Conference on Autonomous Robot
Systems and Competitions (ICARSC), pages 34–39, 2020.

[62] P. A. Vikhar. Evolutionary algorithms: A critical review and its future prospects. In 2016
International Conference on Global Trends in Signal Processing, Information Computing
and Communication (ICGTSPICC), pages 261–265, 2016.

[63] T. Weber, S. Racanière, D. P. Reichert, L. Buesing, A. Guez, D. J. Rezende, A. P. Badia,
O. Vinyals, N. Heess, Y. Li, R. Pascanu, P. Battaglia, D. Hassabis, D. Silver, and D. Wierstra.
Imagination-Augmented Agents for Deep Reinforcement Learning, 2018.

[64] L. Weng. Policy Gradient Algorithms. lilianweng.github.io/lil-log, 2018.

https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go
https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go
https://blogs.oracle.com/datascience/reinforcement-learning-deep-q-networks
https://blogs.oracle.com/datascience/reinforcement-learning-deep-q-networks
https://gitlab.com/robocup-sim/SimSpark/-/wikis/Models
https://gitlab.com/robocup-sim/SimSpark/-/wikis/Models
https://gitlab.com/robocup-sim/SimSpark/-/wikis/Soccer-Simulation
https://gitlab.com/robocup-sim/SimSpark/-/wikis/Soccer-Simulation

REFERENCES 59

[65] Y. Xu and H. Vatankhah. SimSpark: An Open Source Robot Simulator Developed by the
RoboCup Community. In RoboCup 2013: Robot World Cup XVII, pages 632–639. Springer
Berlin Heidelberg, 2014.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Document Structure

	2 Robotic Soccer
	2.1 RoboCup
	2.2 Soccer Simulation 3D League
	2.2.1 Simulation
	2.2.2 Player Model

	2.3 FCPortugal

	3 State of the Art on Machine Learning for Robotic Soccer
	3.1 Machine Learning
	3.2 Robot Learning
	3.3 Deep Learning
	3.4 Deep Reinforcement Learning
	3.4.1 Model-Free RL
	3.4.2 Model-Based RL
	3.4.3 OpenAI Gym

	3.5 Multi-Agent Deep Reinforcement Learning
	3.6 Evolutionary Algorithms

	4 Setplay Frameworks
	4.1 Setplay
	4.2 FCPortugal Setplay Framework

	5 New Setplay Optimization Framework
	5.1 Setplay language definition
	5.2 Setplay language parser

	6 Evaluation
	6.1 Defined Setplay
	6.1.1 Observation & Action Spaces
	6.1.2 Global Rewards, Finish & Abort Conditions
	6.1.3 Steps

	6.2 Training
	6.3 Results
	6.4 Conclusion

	7 Conclusion
	7.1 Main Contributions
	7.2 Future Work

	References

