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Abstract

Customer feedback is one of the most powerful tools that any company has in order to evaluate

the validity of its products and services. In an ideal world, the company could use the feedback

from a client to understand its overall needs and wishes and use this insight to provide a better

service or product, making both the company and the customer satisfied. Parallel to this is the

immense improvement in technology that has been accomplished in the last decade, some of

the most promising being in the area of artificial intelligence in particular in the use of deep

neural networks to intelligently retrieve and analyze valuable information from data.

Using the data from the call centers of the partner Telecom Company, this work applies

deep learning techniques to this data in order to explore and evaluate the degree of valuable

information that could be gained from it. It begins by exploring and deciding what would be a

good target for a classification problem and then it experiments with various model architectures

to make predictions. The classification problem is the probability of a customer to do churn, that

is, to abandon the partner Telco services. From traditional methods, like logistic regressions

coupled with a TF-IDF approach, to advanced recurrent neural networks, like bidirectional

LSTMs coupled with word embeddings, the various models’ show surprisingly similar results.

The apparent lack of advantage in using deep learning versus more traditional approaches

justifies an analysis of the data provided by the partner Telecom Company. This analysis is

performed and attempts to justify the results obtained with the particularities of the original data.

Keywords: Neural Networks, Deep Learning, Natural Language Processing
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Resumo

O feedback dado pelos clientes é uma das ferramentas mais poderosas que qualquer empresa possui

para julgar a validade dos seus produtos e serviços. Idealmente, a empresa poderia usar o feedback

de um cliente para entender as suas necessidades e vontades de uma forma geral e usar esse insight

para fornecer serviços ou produtos melhores, deixando tanto a empresa como o cliente satisfeitos.

Paralelamente a isto, está o tremendo desenvolvimento tecnológico realizado na última década, sendo

um dos campos mais promissores a área de inteligência artificial, em particular o uso de redes neurais

’deep’ para descobrir e analisar conhecimento num conjunto de dados.

Usando o conjunto de dados do call center da empresa de telecomunicações parceira, este trabalho

tenta aplicar algumas técnicas de deep learning a estes dados, a fim de explorar e avaliar a qualidade

das informações que poderiam ser obtidas com eles. Começa por explorar e decidir qual seria um

bom objetivo para um problema de classificação e depois experimenta várias arquiteturas de modelos

de redes neuronais para fazer previsões. O problema de classificação escolhido foi a probabilidade

de um cliente fazer churn, ou seja, de abandonar os serviços da empresa parceira. Desde métodos

tradicionais, como regressões logísticas acopladas a uma abordagem usando TF-IDF, até redes neurais

avançadas, como LSTMs bidirecionais acopladas a embeddings de palavras, os vários modelos treinados,

surpreendentemente, obtiverem resultados similares. A aparente falta de vantagem em usar deep

learning em vez de métodos mais tradicionais justifica uma análise aos dados fornecidos pela empresa

de telecomunicações parceira. Esta análise foi realizada e tenta justificar os resultados obtidos com as

particularidades dos dados originais.

Palavras-chave: Redes Neuronais, Deep Learning, Processamento de Linguagem Natural
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Chapter 1

Introduction

Contents

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

This chapter provides an introduction to the context in which this thesis was developed and tries to lay out

the motivation that drove the execution of the work. The goals and objectives that were aimed at are also

exposed and explained along with the description of the structure of the entire thesis.

1.1 Context

Customer feedback is one of the most powerful tools that any company has to evaluate the validity of

its products and services. A company can obtain feedback from its clients from a variety of channels

and forms, one of which is from its call centers. The information received by a company in its customer

support services can be difficult to exploit because usually when someone contacts a call center it is to

complain or discuss a specific product or a specific service and that means the information received is

also very specific and could be hard to extract general knowledge from it. In an ideal world, the company

could use the feedback from a client to understand the customer overall needs and wishes and use

this insight to provide a better service or product making both the company and the customer satisfied.

21



22 Chapter 1. Introduction

Unfortunately, that is not the case and even though most companies have access to millions of customer’s

calls and records it can still be difficult to translate this huge amount of data into something actionable.

Parallel to this is the immense improvement in technology that has been accomplished in the last decade,

and it has since made it possible to process and extract information from the enormous amount of data

that is available. Some of the most promising is in the field of data science and machine learning were the

use of Deep Neural Networks (DNN) has provided the tools to intelligently analyze and retrieve valuable

information from the data that the companies already have. Deep learning can be used to amplify and

improve on previous technologies that were used to understand patterns and behaviors from its clients,

and use that information to drive companies’ decisions on what path to follow.

In the area of the telecommunications the competition can be very fierce, customers can be very fast

to switch between service providers if they encounter any problem and given that the realm where

a Telecom Company (Telco) operates in inherently digital it is paramount that any Telco use the new

machine learning technologies to increase the value and quality of its services otherwise it will quickly be

consumed by its competitors.

1.2 Motivation

For a Telco, being able to understand the real needs of its customers is of critical importance, in many

situations there are services or products that would improve the customer life but he is not aware that

they exist, other times the customer knows of the existence of the product or service but its still hesitant in

adhering to it. A company can improve dramatically the success of its publicity and marketing campaigns

if she knows precisely whom to target.

Being able to identify customers that are dissatisfied with the services provided or that are in need of an

upgrade in its services is tremendously valuable. If a Telco recognizes that a customer is considering

abandoning its services, known as a customer doing churn, in some time in the future then it can start to

take preventive measures like give that particular customer a specific promotion or upgrading its services

without charging more for it and in doing so it can retain the customer for a longer period of time which in

the end will bring more profit for the Telco. Another situation that can occur is if a customer that uses a

product or service and is relatively satisfied with it but would be more happy with something better and is

willing to pay for it but for some reason it has not yet made the decision to make the upgrade, if a Telco

can recognize this situation it can target this particular customer and actively offer him the upgraded

service. These kind of actions improves the value of the customers that the Telco already has giving it an

increased revenue without the need to acquire more customers.

The Telco’s customer support services are a source of data that can be mined to extract information about

its clients. Having the ability to process, analyze and retrieve value for the data generated in a Telco call
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center is very important, it can help support and strengthen the decisions made by other departments

regarding a specific customer. Doing this automatically using DNN can be a cheap and easy way to

deal with millions of records and calls that are generated and that would be very difficult to process and

analyze using manual labor. This work tries to do exactly that, it aims to explore the best ways to use

the most recent advancements in deep learning and apply them to the data from the partner Telco’s call

center in order to extract valuable insights.

1.3 Objectives

The partner Telco possesses data that is produced in its call centers and is interested in exploring data

science techniques to evaluate what and how much value can be extracted from this data. In order to do

this, a first step is to explore the data itself and analyze some statistics about it. Given that one of the

objectives is to ultimately get actionable value from these textual reports it is necessary to define in what

categories the customers are going to be classified based on the interaction with the call center.

With the idea of using the textual reports generated by the call center operators to make predictions about

the customers, it is important to begin with some solid and more traditional approaches. There have been

other studies [Kamath et al., 2018] that made the comparison between traditional and deep learning

approaches but a big part of this work is to use the specific data from the partner Telco so it is important

to try traditional methods as well. The next step is then to apply methods like the Bag-of-Words (BoW)

and the Term Frequency-Inverse Document Frequency (TF-IDF) to the texts in order to create features

and then use these features to make predictions using a logistic regression model.

The most challenging step is to use deep learning techniques to generate predictions for the churn

problem. Since this work has a component of exploration, several different architectures need to be tested

to see which ones give the best results. Models based on multilayer perceptrons, based on convolutional

neural networks and models based on recurrent neural networks need to be trained to gain a sense of

the differences between them and the impact that they have on the results.

The end objective is to, after testing which of the various models perform the best, use it on the reports of

the Telco call centers to obtain predictions on which customers are more likely to churn in the six months

after the interaction.

1.4 Contributions

The main contributions of this work are as follows:

• The Telco partner gained insights about the advantages and disadvantages of applying deep
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learning approaches to the data used in this work, which may be relevant in decisions regarding

future projects using the reports from the call centers.

• The partner Telco ended with more than one model that predicted if a customer was going to do

churn in the next six months with reasonable results. These predictions were based solely on a

single interaction of the customer with the Telco’s call centers.

• A new case study about the use of deep learning techniques with real-world data is presented,

where it shows that the performance of these advanced techniques can be halved when working

with a dataset built with practical limitations and constraints.

1.5 Thesis Structure

The remainder of this thesis is structured as follows:

• Chapter 2, provides a literature review on the main techniques and subjects used in this work. It

presents an overview of the neural networks framework and details the model architectures used in

this work. It also explains traditional methods like BoW and TF-IDF.

• Chapter 3, presents the work done on the creation of the dataset and subsequent analyzes and

provides a description of the problem tackled in this thesis.

• Chapter 4, presents and explains the experimental work performed, the models trained and the

results obtained. The chapter ends with a discussion of the results.

• Chapter 5, concludes the main ideas about this work and gives some suggestions for further work.



Chapter 2

Literature Review

Contents

2.1 Traditional Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Word Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

The purpose of this chapter is to summarize the techniques most relevant to this work. It presents a brief

description and explanation of methods and model architectures that are currently being used in the field

of machine learning and that were implemented in this thesis. By the end of this chapter, it should be

easier to understand some concepts and ideas related to deep learning and the reasoning behind some

of the decisions made in this work.

2.1 Traditional Methods

When dealing with the classic problem of document representation there has been several methods and

approaches over time. Many of them tried to extract a set of features from the words of the documents

and then use these features as input to a machine learning model so to obtains the predictions. The

extracted features and their representation play a major role in the accuracy given by a classifier [Jurafsky

and Martin, 2009] therefore it is important to choose the best way to perform this task.

In this work the methods used to generate the features, to give to the classifier were the following:

25



26 Chapter 2. Literature Review

• Bag-of-Words (BoW)

• Term Frequency-Inverse Document Frequency (TF-IDF)

These two techniques can be seen in sections 2.1.1 and 2.1.2. The features produced were used to

make predictions with the help of a logistic regression model, described in section 2.1.3.

2.1.1 Bag-of-Words

One of the simplest forms of feature extraction to use with a classifier is the Bag-of-Words (BoW) method

[Harris, 1954], [McTear et al., 2016]. It consists of transforming a text or document into a vector with size

equal to the vocabulary where each element of the vector contains the number of times a specific word

appears in that particular document. An illustrative example can be seen in figure 2.1.

Figure 2.1: Bag-of-Words example1

This approach accounts for the number of times the word appears but disregards the order in which

the words appear and the entire document grammar which limits its ability in representing the words

meaning. The size of the vocabulary also plays an important role because if it is too small it will be

unable to represent correctly all the documents but if it is unnecessarily big it can have an impact on the

performance of the classifier.

1Inspired in [Jurafsky and Martin, 2009]
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2.1.2 TF-IDF

Term Frequency-Inverse Document Frequency (TF-IDF) [Salton and McGill, 1986] is a technique similar to

BoW but that tries to be more sophisticated and accurate by weighting the various words in the vocabulary.

TF-IDF is the product of two terms, each term capturing one of these two ideas:

• Term Frequency [Luhn, 1957]: It is, basically, the frequency of the word in the document. This

reflects the intuition that if a word appears many times in a document then it must be important. It

also helps to control the weight of words for very large documents versus very small documents.

See equation 2.1 where t denotes a term and d denotes a document.

TF (t, d) = count(t, d)
count(all_terms, d) (2.1)

Usually, it is important to down-weight the raw frequency of a word a bit, because if it appears

ten times it does not make that word ten times more relevant to the meaning of the document.

Resulting in the slightly changed definition for the term frequency weight. Equation 2.2.

TF (t, d) =

 1 + log count(t, d) if count(t, d) > 0

0 otherwise
(2.2)

• Inverse Document Frequency [Jones, 1972]: It attributes a higher weight to terms that occur only

in a few documents. This reflects the intuition that words that occur frequently across the entire

collection of documents are not as helpful. See equation 2.3.

IDF (t) = log
(

# documents

# documents containing t

)
(2.3)

We can then obtain the TF-IDF weight for the term t in document d by doing TF (t, d) ∗ IDF (t).

2.1.3 Logistic Regression

Logistic regression is a model used for classification, where the probabilities for the different outcomes

of a single sample are modeled by the logistic function [Defazio et al., 2014]. The logistic function is

represented by the equation 2.4 where e is the natural logarithm base, x0 is the x-value of the sigmoid’s

midpoint, L is the curve’s maximum value, and k is the logistic growth rate or steepness of the curve.

f(x) = L

1 + e−k(x−x0) (2.4)
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2.2 Word Embeddings

Word embedding is a popular method of representing a term or word or even an entire sentence by a

vector of continuous real values, it is used widely in the majority of Natural Language Processing (NLP)

tasks and is practically mandatory when working with deep neural networks to solve complex problems.

There are many approaches to create these vectors, one of the most popular being Word2Vec [Mikolov

et al., 2013], this method consists of training a neural network on a large corpus of text. It uses one of

two predictive tasks to calculate the embedding:

1. SkipGram: It is a task in which, given a word, it tries to predict the words around it, basically it tries

to predict the context where the given word appears.

2. Continuous-Bag-of-Words: It is the reverse of SkipGram prediction, given a context it tries to predict

the word that belongs to this context which translates to basically, given a short sentence where

the middle word is missing the model then tries to predict that missing word.

These tasks have the purpose of providing the embedding with an understanding of context. This means

that the embedding representation of the word will contain different meanings depending on the context

in which it appears.

Another popular method of calculating word embeddings is GloVe [Pennington et al., 2014]. GloVe is

a method were the vector representations for words are obtained by calculating how frequently words

co-occur with one another. The training is done using an aggregated global word-to-word co-occurrence

statistics matrix with non-zero entries. The intuition behind this idea is the observation that ratios of

word-to-word co-occurrence probabilities could encode some form of meaning.

Yet another method of creating word embeddings is to use the FastText [Bojanowski et al., 2016] word

representations. This one follows a different approach where it decomposes a word in sub-words made

of only a few characters and them attributes a vector to each sub-word in which the original word is

then represented by the sum of the vectors of the corresponding sub-words. This approach helps to

deal with vocabularies that are very large and contain many rare words, it also solves the problem of

out-of-vocabulary words elegantly and efficiently.

2.3 Deep Learning

The concept of neural networks [McCulloch and Pitts, 1943] has existed since the middle of the past

century but it was never considered very practical. It was only after critical advancements in hardware

architectures that were made available at the very end of the XX century, that brought with it an increase in
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performance that allowed for this field to reborn. Coupled with the creation of new algorithms, techniques

and methods that gave better results for some complex problems a new age was created for the neural

networks field leading to an expansion and subsequent re-branding as deep learning.[Goodfellow et al.,

2016]

Another critical factor that affected not only the deep learning methods but the entire field of machine

learning was the huge volume of labeled data that appeared with the proliferation of computers and the

new digital era.

Deep Neural Networks (DNN) has been used and applied across several kinds of applications such

as NLP, image data processing, speech recognition, audio processing, and many other well-known

applications [Pouyanfar et al., 2018]. It has revolutionized the way people see artificial intelligence and its

ability to learn very complex tasks from zero human knowledge [Silver et al., 2017] has made it reach

world news.

For this work, three main architectures of deep neural networks were studied:

• Multilayer Perceptrons (section 2.3.1)

• Convolutional Neural Networks (section 2.3.2)

• Recurrent Neural Networks (section 2.3.3)

2.3.1 Multilayer Perceptrons

Multilayer perceptrons [Rosenblatt, 1961] also known as feedforward neural networks can be described as

a series of layers connected sequentially between themselves where each layer has several perceptrons

also known as neurons and each neuron in one layer is connected to every other neuron of the next layer.

Figure 2.2 has an illustrative example.

The first layer or input layer receives data and the last layer or the output layer provides the result of the

computation made within the network. Between the input layer and the output layer, there can be one

or more layers called hidden layers. The flow of the computation goes from the input to the output in a

unidirectional fashion without any cycle or feedback loop, hence the name feed-forward neural network.

For each connection between the neurons is associated a weight and when the value from a neuron

passes to the next layer it is applied a weighted linear summation, using the weights from the connections

and then a non-linear activation function. Some popular activation functions are the sigmoid function

(equation 2.5), hyperbolic tangent function (equation 2.6) and the rectified linear function (equation 2.7).

Figure 2.3 shows an example of each activation function.

sigmoid(W tx) = 1
1 + e−W tx

(2.5)
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Figure 2.2: Multilayer perceptron example2

tanh(W tx) = eW tx − e−W tx

eW tx + e−W tx
(2.6)

ReLU(W tx) = max(0, W tx) (2.7)

During the training process, the neural network the connection weight are changed using a technique

called backpropagation [Rumelhart et al., 1986]. The aim of this technique is to update the weights based

on how much difference there was between the expected result and the actual output. The updating of

the weights are applied recursively, layer by layer, from the output layer to the input layer in a backward

manner.

2.3.2 Convolutional Neural Networks

A convolutional neural network [Lecun et al., 1998] is a particular type of feedforward neural network.

CNNs usually are more associated with computer vision where they had great success [Krizhevsky et al.,

2012] since then they have been used to perform other tasks, including sentence classification [Kim,

2014].

The convolution operation consists of applying a sliding window, named filter or kernel, over a matrix,

while the window is sliding its values are multiplied element-wise with the ones in the matrix and then

2Inspired in [Kamath et al., 2018]
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Figure 2.3: Graphs of the activation functions Sigmoid, Tanh and ReLU

Figure 2.4: Representation of a convolution of a 3*3 matrix with a 2*2 filter3

they are summed up. Doing this for every element gives the total convolution on the full matrix. Figure 2.4

shows a convolution of a 3*3 matrix with a 2*2 filter and the produced feature map.

CNNs, usually consist of convolutional layers followed by a subsampling layer called pooling and normally

end with a dense layer that maps to the output classes for classification. As the activation function CNNs

tend to use non linear functions such as tanh (equation 2.6) or ReLU (equation 2.7). Figure 2.5 illustrates

the steps of a convolution neural network.

The process for the convolution layer involves a kernel sliding through the input sequentially and

aggregating the information in so-called feature maps. The kernel which has the same number of

3Inspired in [Kamath et al., 2018]
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Figure 2.5: Convolutional neural network example4

dimensions as the input but is smaller in size joins together adjacent input values and produces a feature

that contains localized information, as the kernel slides through the input it calculates localized information

for the entire input. Doing this procedure multiple times allows the network to capture different kinds of

features for a particular position. The extracted features possess a strong spatial correlation because the

method enforces a local connectivity pattern between adjacent neurons and between adjacent layers.

Following this part is typically applied a layer of max pooling that condenses these feature maps and

reduces their size which allows the network to train faster while also controlling overfitting [Pouyanfar

et al., 2018]. Doing so also permits to find particular features independently of their position which helps

the network deal with inputs that only vary in small positional differences.

For a classification problem the network typically has a fully connected layer with softmax, as the final

layer.

2.3.3 Recurrent Neural Networks

Unlike the previous networks, RNNs [Elman, 1990] can not truly be considered feedforward neural

networks because their architecture contains a feedback loop in its internal memory. As the inputs are

being consumed the hidden state or the memory of the network remembers the previous elements

consumed in the sense that it reuses the same internal weights for all the inputs. This makes RNNs

perfect to work with sequential data like text or time-series data. Figure 2.6 presents a general structure

of a regular unidirectional RNN.

When processing a sequence, RNNs receive all the inputs at the same time but the computation is

4Inspired in [Kamath et al., 2018]
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Figure 2.6: Regular unidirectional RNN, folded in the left and unfolded in the right5

performed at one element at a time. For every element of the input, it gives an output which means

that the output of an RNN has the same length as the length of the input sequence. While the various

elements are being processed the internal weights are being reused, because of that, it has an implicit

short memory, this means that when the time comes to process a new element the network remembers

the information from the previous ones creating a context in which to evaluate this new element.

In theory, RNNs could remember sequences of any length and make use of that information but because

it is sensitive to the vanishing and exploding gradients problem [Glorot and Bengio, 2010] it is limited to

remember only a few steps.

A powerful way to enhance this architecture is to consider a bidirectional RNN [Schuster and Paliwal,

1997] which is can be thought of as two RNNs placed one beside of the other where the first reads the

input from right to left and the second reads the input from the left to the right, allowing the network to

create an information context in both directions. In practice, bidirectional RNNs create twice the outputs

of a normal RNN because, in reality, it is receiving the input two times. If the output from both directions is

combined it means that the evaluation of a particular element in from the input sequence can depend on

the previous and next elements of the sequence providing a much stronger understanding of the meaning

of the element.

Another technique used it to stack various RNNs one on top of the other creating what are called deep

recurrent neural networks [Pascanu et al., 2013]. Accomplishing this task is not as simple as it may

appear on the surface as the RNNs are already considered deep neural networks. Attempts to achieve

build deep RNNs have already been done more than one time ([Schmidhuber, 1992], [El Hihi and Bengio,

1995]). They all are based on the hypothesis that a deep, hierarchical model can represent functions at

an exponentially more efficient way than normal shallow one [Bengio, 2009].

5Inspired in [Schuster and Paliwal, 1997]
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2.3.3.1 LSTM

Long Short-Term Memory networks [Hochreiter and Schmidhuber, 1997] are an advancement in RNNs in

which it tries to solve some of its problems, in particular, the vanishing and exploding gradients problem.

RNNs are built around one block that repeats itself by a feedback loop but LSTMs are significantly more

complex having four blocks that perform different tasks. Figure 2.7 shows an illustration of the blocks

present in an LSTM unit.

Figure 2.7: LSTM blocks diagram6

Every block of the LSTM has a hidden state or memory that it uses to perform its function allowing it to

take different actions on different time steps. One block of the LSTM is the Forget Gate and its function is

to decide what part of the LSTM Memory Cell is going to be thrown away which permits the network to

select what information is not useful for a given time and forgets it. The Input Gate in conjunction with an

tanh function decide what new information from the input is going to be added to the Memory Cell of the

LSTM. The last block, the Output Gate, chooses which parts of the Memory Cell are going to actually

be in the output in that particular time step. This process of actively deleting information and updating

information helps in controlling the problem of vanishing and exploding gradients that afflicts the RNNs in

general.

Like with the normal RNNs, LSTMs can be used in a bidirectional fashion. A bidirectional LSTM [Graves

and Schmidhuber, 2005] provides all the advantages of the bidirectional RNN with the added bonus that

6Inspired in [Graves et al., 2013]
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it possesses all the benefits of LSTMs. This makes them one of the most powerful architectures of neural

networks that can be used in problems of Natural Language Processing.

2.3.4 FastText

FastText [Joulin et al., 2016] is a model architecture based on deep learning created and released by

the Facebook AI research lab. Although it’s main feature is the ability to produce word embeddings,

the FastText model is also capable of making text classification. To make a prediction, it feeds a linear

classifier with an embedding that is the representation of the text on which the prediction is going to be

based upon. This latent text embedding is created by making an average of the word embeddings that

compose the text, which in turn are produced by summing the individual embeddings of the character

n-grams that constitute each word. In the end, a hierarchical softmax is applied to speed up the class

prediction task.

Figure 2.8 ilustrates the model architecture of fastText for a sentence with n n-gram features X1, ... , Xn.

The n-grams are embedded and their mean is calculated to create the hidden variable.

Figure 2.8: FastText model architecture7

Given the relatively simple approach that FastText uses coupled with some efficient algorithms to save the

internal representations of the n-grams, it manages to be much faster than other deep learning models.

2.4 Summary

The velocity at which new developments about deep neural networks appear is sometimes overwhelming.

Therefore, considerations made about the state-of-the-art for them have a very limited time window.

7Inspired in [Joulin et al., 2016]
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Nevertheless, this chapter tries to provide basic knowledge about the main techniques and architectures

relevant for this thesis.

At the end of this chapter, it should be easier to understand chapter 4, where all the experimental work is

described and detailed without major difficulties.
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This chapter focuses on presenting the work done in the creation and analysis of the dataset, containing

three years’ worth of reports. It also states the problem on which this thesis focuses.

3.1 Dataset

The work presented in this thesis relies on the data collected in the partner Telecom Company (Telco)’s

call centers during the last three years but there was no clear and simple dataset, this meant that a

significant portion of the work was the creation and definition of the dataset including the labels or classes

in which the models were going to predict and classify the data.

3.1.1 Dataset Construction

The dataset used was constructed using the reports made in a call center and associating them to the

client that made them. Originally there was a huge amount of reports, around 89 million, but after filtering,

processing and linking the reports to a specific client of the partner Telco the total number of reports

reduced to approximately 5 million which was still a very large. The table 3.1 shows the number of reports

after some of the steps taken during the construction of the final dataset.

37
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Number of Reports

All 89 067 491

That contain text 30 501 302

From Telco clients 16 011 618

After preprocessing 5 172 980

Table 3.1: Number of reports after each stage

A large amount of the reports did not have a textual description of the situation and therefore could not be

used, so the first step was to remove any report that didn’t contain a text and this step alone eliminated

more than 65% of all the reports leaving only around 30 million.

The reports made in the call center were based on phone calls from any person, including individuals that

were not clients of the Telco at that particular time. Because one of the objectives of this work was to use

the data from the Telco to generate actionable predictions on its clients, the next mandatory step was to

associate each report to a specific user that was registered in the Telco database at the time of the report

creation. Since many reports originated from phone calls made from persons who were not, at the time,

customers of the Telco, another 16% of the total reports were lost, leaving approximately 16 million.

Before the texts could be used in the training of the models three preprocessing steps needed to be done

and are briefly summarized below:

1. Anonymization: Because of obvious legal and ethical reasons, a step of anonymization was taken

to remove all references to any particular person, also, leaving personal or unique information

about the clients withing the texts could potentially create data leakages or make the models biased

for some particular people or towards a specific geographic area. Therefore this was an important

step to ensure that the models were as general as possible. A more detailed description of this

step can be found in section 3.1.1.1.

2. Minimum length: This work has a component of exploration but also it needs to train models to

make predictions with reasonable results, therefore, some care was taken to guaranty that the

texts had some quality and contained relevant information withing it, therefore all reports that were

simple short machine logs and all reports which texts had less than one hundred characters were

eliminated.

3. Duplicates removal: For similar reasons as in the previous step, having duplicate reports in the

dataset was redundant and useless, besides, it could potentially create some bias in the models or

give too much importance to a particular text just because it had too many duplicates, skewing the

models towards a wrong prediction.
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The final set of reports had a size of approximately 5 million. The main idea behind these steps of

filtering and preprocessing was to end up with a number of texts, written by the call center operators, with

sufficient information and detail so that it could be said with some confidence that it carried some amount

of value.

3.1.1.1 Anonymization

One of the very first preprocessing tasks done to the data was anonymization. This was necessary to

fulfill the privacy requirements that the Telco needs to uphold. Because of the large amount of data, it

was impractical to make any kind of manual anonymization, therefore, it was required to find a method

that could be done automatically and with a minimum amount of human interference.

In order to maintain the maximum information in the texts, all information that needed to be removed

was replaced with a tag that identified the type of information that was there, this way, for example, the

individual name of a person would be removed but the information that there was a name there would be

kept.

The task of entity recognition is an ongoing research task and as such it would not be reasonable to

expect perfect names anonymization, since this task, although important, was not the objective of this

work and because of time constraints it was decided to approach the anonymization step with a technique

that could be relatively simple but efficient. A dictionary of names1 and surnames2 was used to match,

remove and replace all names from the clients with a tag, although it can not be guaranteed that the

removal of names was perfect, from a simple inspection of some texts it was clear that the end results

were relatively good.

Personal names were not the only thing that had to be removed, financial information, phone numbers,

e-mails, dates, and other numerical values needed also to be cleared. For this part, since this type of

data follows a relatively strict format, it was created a series of regular expressions to match, remove

and replace, these pieces of information, with a tag. Table 3.2 contains some of the information replaced

along with the tag and regular expression used.

3.1.1.2 Target Label Construction

To explore the intrinsic value that these reports had, it was required to attribute a label to a text that

had meaning and at the same time could be useful to the Telco. There was no simple way or straight

forward method to classify the reports and it was required some exploration of the Telco’s database and

1https://www.irn.mj.pt/sections/irn/a_registral/registos-centrais/docs-da-nacionalidade/vocabulos-admitidos-

e/downloadFile/file/NomesAdmit.pdf?nocache=1214922851.67
2https://pt.wikipedia.org/wiki/Lista_de_apelidos_de_família_da_língua_portuguesa

https://www.irn.mj.pt/sections/irn/a_registral/registos-centrais/docs-da-nacionalidade/vocabulos-admitidos-e/downloadFile/file/NomesAdmit.pdf?nocache=1214922851.67
https://www.irn.mj.pt/sections/irn/a_registral/registos-centrais/docs-da-nacionalidade/vocabulos-admitidos-e/downloadFile/file/NomesAdmit.pdf?nocache=1214922851.67
https://pt.wikipedia.org/wiki/Lista_de_apelidos_de_fam�lia_da_l�ngua_portuguesa
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Information Tag Regular expression

Name #NAME

Phone number #PHONE \b(?:9[1236]\d{7}|2\d{8})\b

Fiscal number #NIF nif\s*:?\s*\d{9}

E-mail #EMAIL [A-Za-z0-9\.\+_-]+@[A-Za-z0-9\._-]+\.[a-zA-Z]*

Date #DATE \d+[/-]\d+[/-]\d+|\d{2}[/-]\d{2}

NIB or IBAN #NIB (?:nib|iban)\s*[ \-:=]?\s*(?:[a-z]{2}[ \-]?[0-9]{2})?(?:[ \-]*\d{3,5}){4,6}(?:[ \-]*\d{1,3})?

Client ID #CLIENT_ID [sc]\d{9}|u\d{8}

Service request #SR_NUMBER \d-\d{11}|sr\d{8}

Phone’s IMEI #IMEI \b\d{15}\b

Hour #HOUR \d{1,2}h\d{0,2}|\d{1,2}:\d{2}(?::\d{2})?

Price #PRICE \b\d+[,\.]\d{1,2}\b

Table 3.2: Regular expressions used to replace sensitive information by generic tags

posterior data processing in order to attribute some labels to the reports. With the intent of making some

preliminary analysis on the data and evaluate what would be a proper target class/label to be used during

the model testing stage the following five classes were created:

• Upsell: This classified a report with the label true if the customer increased its service bill (not

including premium services) by at least two euros within the next six months after the phone call,

and false otherwise.

• Premium: This classified a report with the label true if the customer adheres to a premium service

within the next six months after the phone call, and false otherwise.

• Churn: This classified a report with the label true if the customer left the Telco within the next six

months after the phone call, and false otherwise.

• Refidelization: This classified a report with the label true if the customer renews its service

fidelization plan with the Telco within the next six months after the phone call, and false otherwise.

• New report in 30 days: This classified a report with the label true if the customer made a complaint

(a new report) within the next thirty days after the phone call, and false otherwise.

All of these classes were important actions that a customer could take and were impactful to the Telco.

As the table 3.3 shows, all had a significant percentage and were actions that the customers often took

after contacting the Telco’s call centers.

After careful consideration of what would be more important to the Telco and more interesting to study

and after making some preliminary models and evaluating the results it was decided that this work would

focus on the Churn class and leave the other ones in the background. Although all classes ended being
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Action Percentage

Upsell 18.0%

Premium 16.5%

Churn 20.8%

Refidelization 16.0%

New report in 30 days 50.9%

Table 3.3: Percentage of reports with the label True for the various classes

tested in all major model architectures the majority of the work and effort went to testing and exploring

with the churn class.

3.1.2 Texts distributions

The approximately five million reports that constitute the dataset used in this work were produced during

the last three years, it spans over thirty-seven months between January of 2016 and January of 2019.

It means that on average, there are more than 135 thousand reports per month which gives a solid

representation of the customer base that the partner Telco has and therefore it brings some confidence to

the statistical relevance of this work. Figure 3.1 presents the distribution of the number of reports per

month.

Figure 3.1: Number of reports per month
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The texts associated with the reports had a huge variance in quality and size, because these texts were

written by human operators and because every person has a different style to express itself, the texts

could be very short and succinct with only the most relevant information or could be very long with a

detailed description of the phone call and of the customer complain. As can be seen in figure 3.2, that

shows the distribution of the number of characters in the texts per month, there is a significant portion of

very big texts, some being more than three thousand characters long.

Figure 3.2: Distribution of the number of characters in a report per month with outliers

Although there were some texts very big, the median was relatively small, meaning that the average

operator wrote less than four hundred characters per report text, this can be observed more clearly in

figure 3.3 where the outliers were removed in order to have a better view of the distribution of the number

of characters per report around the median value.

The length of the texts is important in particular when dealing with neural networks, because the texts

usually are consumed in an input layer of embeddings this means that very large texts will need to be

truncated in order to satisfy the limitations on the size of the embeddings input layer, to be noted here

that it is not a limitation on the size of the embedding per word but the length of the input layer.

3.2 Problem Definition

Although the objective of this work has a component of data exploration, the problem to tackle during the

process of experimenting with the various deep learning techniques needs to be defined clearly.
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Figure 3.3: Distribution of the number of characters in a report per month without outliers

The problem type chosen for this work is a classification problem. The texts contained in the reports are

associated with a customer from the partner Telco. An important goal is to use these texts, representing

the interaction of the customer with the Telco, to classify the customer with a label that gives an indication

of some particular actions that he or she could potentially take in the future.

In Section 3.1.1.2, it is explained that several target labels were produced for the texts in the dataset.

Each target label represents an action from the customer - to churn, to buy some premium service

or others. All of them have their own merits, but in the end, the target label chosen to use during the

experimental evaluation of our work was the churn label.

Having the ability to predict if a customer is going to churn is, arguably, of tremendous importance. After

some discussion with the partner Telco we concluded that if this work could retrieve value from this

dataset in regard to predicting the churn of a customer, that would be very relevant. This value could later

be integrated with other methods and models, and help with the Telco customer retention.

3.3 Summary

In this chapter, a description of the construction of the dataset was given and the problem is defined giving

the tools to understand the purpose of the next chapter where the results are exposed and analyzed.
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This chapter focuses on presenting all the experimental work that was done and give a description of

the models build and trained using both traditional methods and deep learning methods. The results are

presented for each model architecture and parameterization tested. The chapter ends with a discussion

of the results.

4.1 Implementation

The work done was developed with the python language [Rossum, 1995], it is one of the most relevant

and used programming languages in the field of data science and deep learning in particular. Python

provides access to a myriad of libraries and packages that helps with the most common tasks one needs

to do while working in data science. The python programming language is also very easy to install and

use, and integrates perfectly with TensorFlow [Abadi et al., 2015].

45
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TensorFlow in conjunction with Keras [Chollet et al., 2015] is the library that was used to create and train

all the deep learning models. Using it is possible to, basically, make all the architectures that one could

think of in a relatively easy and fast way, it also provides some mechanisms to analyze and follow up

during training using the visualizing tool TensorBoard that it is incorporated within TensorFlow. All the

different deep learning models developed during this work were made with the help of TensorFlow and

Keras.

Worth of note is also the library scikit-learn [Pedregosa et al., 2011], it contains functions to perform tasks

for preprocessing data, training models and evaluating the results of said models. It was used extensively

in all experiments that were made and it was the library chosen to train and evaluate the models based

on traditional approaches. During the preprocessing of the data used later in the traditional models a list

of stopwords was needed and the one used came from the NLTK [Loper and Bird, 2002] library.

Computation was carried out using a remote server with two Intel Xeon CPU E5-2660 @ 2.60GHz and

400GB of RAM. Because this machine was shared between several other users, that were also using it

to perform data science tasks, the amount of time that a model took to train was very erratic and very

dependent on the amount of work that the other users were doing. Therefore it was not possible to collect

any relevant time statistics for the models trained.

4.2 Evaluation Metrics

When trying to compare models and their results its important to choose the evaluation metric very

carefully because it might ruin the conclusions if a wrong metric is used. In this work, two metrics were

used extensively:

• F1-score

• Area Under ROC Curve (AUC)

These were chosen because they are resistant when dealing with an imbalanced dataset and because

when working with a binary target class, as it is done in this work, they do not favor some specific

orientation, like predicting everything true or everything false.

4.2.1 F1-score

The F1-score metric is composed of the precision and recall, both of which are metrics also. The precision

metric tries to answer the question "How many selected items are relevant?" and recall metric tries to

answer the question "How many relevant items are selected?". They are complementary metrics and
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usually increasing the performance in one reduces the performance in the other. The way precision and

recall are calculated can be seen in equations (4.1) and (4.2) respectively.

Precision = True Positives

True Positives + False Positives
(4.1)

Recall = True Positives

True Positives + False Negatives
(4.2)

The F1-score aims at levering these two metrics by calculating the harmonic mean of both, this means

that to have a high value in the F1-score, both the precision and the recall need to be high too. The exact

formula to the F1-score can be found in equation 4.3.

F1 = 2 ∗ recall ∗ precision

recall + precision
(4.3)

4.2.2 AUC

The AUC [Bradley, 1997] metric is the value of the area under the Receiver Operating Characteristic (ROC)

curve. The ROC curve represents the ability of a model at all classification thresholds, it is the graph of

the true positive rate (a.k.a recall) against the false positive rate (equation 4.4).

False Positive Rate = False Positives

False Positives + True Negatives
(4.4)

Since the AUC is the entire two-dimensional area underneath the ROC curve it basically provides an

aggregate of the performance of a model across all thresholds. It has one important feature, that it

is scale-invariant, it means that it takes into account how the predictions are ranked in the order of

probabilities instead of the absolute values of the predictions. This can be fundamental when there is a

need to compare models while trying to predict a relatively rare event. The figure 4.1 show examples of a

typical ROC curve and its corresponding AUC.

4.3 Traditional Models

The main objective of this work was to experiment with deep learning approaches but to be able to

correctly evaluate their performance it was fundamental to find some baseline results to compare with. For

that, two traditional approaches were tried, the first one used a simple Bag-of-Words (BoW) to generate

features and use a logistic regression model to train and make predictions. The other approach, slightly
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Figure 4.1: A ROC curve on the left and the area under the ROC curve in yellow on the right1

more advanced, was to use Term Frequency-Inverse Document Frequency (TF-IDF) to generate features

and, again, use a logistic regression model to make predictions.

During these early experiments, two sets of texts were used, one set where the texts were anonymized

and another where the texts were not. This had the purpose of seeing if the process of anonymization

had a relevant impact on the utility/value of the texts, and also, to see how differently the models would

behave.

When using traditional techniques the preprocessing task is very important, this is because they are more

sensitive to certain particularities of the text that do not carry intrinsic value, like for example, the different

frequencies of each word in the text, or spelling mistakes. Because of this, the texts used in the traditional

models suffered three simple preprocessing tasks that were not done for the deep learning models:

1. Remove stopwords: All the stopwords were removed from the texts. The NLTK package for python

was used to obtain the Portuguese stopwords list.

2. Remove high frequency words: The words that appeared in more than 85% of all the reports were

removed. This was to remove words that although not being a stopword it behaved like one and

most likely did not carried any value.

3. Remove rare words: The words that appeared in less than ten reports in total were removed. This

was done because they were either a very rare word and therefore probably not significant in the

text or, more likely, a spelling mistake. Given that there are more than five million reports, this step

should not remove important and relevant words.
1Inspired in https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc

https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
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4.3.1 Bag-of-Words

A traditional approach when working with texts is to apply the BoW method, described in section 2.1.1,

where a set of features are generated using the words in the texts. When the BoW procedure was applied

to the texts the number of features was limited to the thirty thousand words more frequent in the entire set

of reports, doing this allowed to maintain the memory requirements lower while not being too restrictive to

the point where the texts would lose significance and value. The features obtained from this were used

in conjunction with a logistic regression model to obtain all the predictions presented here. From here

onward, this arrangement will be referenced as a bag-of-words model.

The results are shown in table 4.1 and it can be seen that, curiously, the model trained on the anonymized

texts managed to obtain better results both on the F1-score and the AUC metrics.

F1-score AUC

Without Anonymization 0.360 0.7244

With Anonymization 0.453 0.7665

Table 4.1: Results using Bag-of-Words with a Logistic Regression model

4.3.2 TF-IDF

TF-IDF is a technique for generating features when working with textual data and it’s usually better and

produces more value than the BoW method. By giving relevant weights to each word, it captures more

information making the generated features more powerful. The way it works is explained with more detail

in subsection 2.1.2. The features created using this approach consisted of n-grams of size one and two,

this way they were more powerful and expressive in representing the real meaning of each word. The

features obtained from this were used in conjunction with a logistic regression model to obtain all the

predictions presented here. From here onward, this arrangement will be referenced as a TF-IDF model.

Similarly to the BoW approach, models were trained using texts both anonymized and not anonymized but

for the TF-IDF two more models were built. These two models were trained while taking into consideration

the fact that the dataset is somewhat imbalanced and that techniques could be used to make the dataset

more balanced, so two ideas were tested:

• Resampling: To balance the dataset, the original percentage of true labels was increased

from approximately 20% to around 40%. This was done by applying both oversampling and

undersampling [Branco et al., 2016]. The oversampling was accomplished by simply duplicating all
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true samples and the undersampling was applied in the form of randomly removing 25% of the

negative samples.

• Class weights: When training the logistic regression model its possible to attribute different weights

to each class, this means that during the training stage the model will give more importance to a

class with a bigger weight. Although this aims to get the same result as the resampling idea since

the imbalance of the dataset is kept and there is no duplication or removal of samples the model

may focus/learn different things. The weights given to each class was inversely proportional to its

frequency in the dataset.

The results are shown in table 4.2 and we can see that the model trained on the anonymized texts

manage, again, to obtain better results both on the F1-score and the AUC than the one trained on

texts not anonymized. The two models trained while dealing with the imbalance of the dataset got the

best results on the F1-score for all the traditional models tested, although on the AUC metric they got

marginally worst results than the best model.

F1-score AUC

Without anonymization 0.423 0.7450

With anonymization 0.522 0.7907

With anonymization and class weights 0.545 0.7891

With anonymization and resampling 0.563 0.7891

Table 4.2: Results using TF-IDF with a Logistic Regression model

4.4 Deep Learning Models

In this section, all deep learning architectures, explored in this work, are presented and their results

showed while highlighting some of the most relevant comparisons between models of the same

architecture but with different parameters.

The different architectures tested can be classified into three major types, those based in multilayer

perceptrons, those based in convolutional layers and those based on recurrent neural networks. For

each, different sizes for the networks were experimented, both in the number of neurons as in the number

of layers. Various ideas and mechanisms associated with neural networks were also tested, things like

dropout and batch normalization.

FastText, which is a model architecture released by Facebook, was another model type that was
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experimented with. Both the model, pre-trained, available from its creators [Joulin et al., 2016], and

a model trained from scratch using the dataset from the Telecom Company (Telco) were tested and

evaluated.

A layer of embeddings was applied in all the networks tested, this is because when working with textual

data the use of embeddings is a fantastic way to represent words. Different sizes for the embeddings

were tested and experimented with. Most of the models trained the embeddings from scratch but some

models were trained while using pre-trained embeddings, more details can be read in section 4.4.1.

The texts in the reports had a large variance in their length, as can be seen in section 3.1.2, with some

texts having huge sizes. In order to limit the impact of the length of the texts in the performance of the

models, the texts needed to suffer a step of preprocessing. The following three tasks were done:

1. Remove rare words: The very rare words were removed, this was accomplished by deleting the

words that appeared in less than five reports in total. Most of those words were, in fact, spelling

mistakes and those that were not, did not have a strong impact on the meaning of the text.

2. Vocabulary size: The texts were limited to a vocabulary of one hundred thousand words where

only the most frequent ones were used. Given that these texts came from a very specific domain

this was not a problem, nonetheless, different vocabulary sizes tested in order to see how much

the number of different words impacts the model’s performance.

3. Limit texts length: The length of the texts had a real impact on the model’s training speed so in

order to limit the impact on performance every text was truncated to a length of 120 words.

Similarly to what was done in the approach with TF-IDF which trained models that used resampling and

class weights to manage the imbalance of the dataset, these mechanisms were also used here and for

every major architecture type, different models were trained while applying either resampling or class

weights.

The various parameterizations used in the deep learning experiments were chosen semi heuristically

because there was not enough time to do a complete grid search on the parameters for each architecture,

so only a few different parameterizations were tested, regardless of this, it was trained enough models

with enough parameterizations to be able to draw some insights and some intuitions on what parameters

worked best for every type of architecture used.

4.4.1 Word Embeddings

When working with Deep Neural Networks (DNN) in Natural Language Processing (NLP) a common

technique is to use embeddings as a form of representing the words, this method is particularly effective
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because they can be trained to capture the meaning of a word given a particular context. A full description

of what are word embeddings can be read in section 2.2.

Various sizes for the embeddings layer were tried with the smallest being of size twenty and the biggest

being of size fifty for those trained from scratch and three hundred for those that were pre-trained. Most

models trained during the development of this work used embeddings that were built from scratch in

parallel with the training of the model, although a few models, for each architecture type, were trained

while using pre-trained embeddings. The pre-trained embeddings were obtained using three different

methods, that are described next:

• FastText base: This method was to obtain the pre-trained embeddings from the FastText model

that is distributed online and is available for the Portuguese language. The creators explain [Grave

et al., 2018] that the embeddings were trained using Continuous-Bag-of-Words (CBoW) with

position-weights, in dimension 300, on texts from Common Crawl and Wikipedia.

• FastText custom: Using also the FastText architecture, a FastText model was trained from scratch

using the Telco reports and using embeddings of size 50, after training this model the embeddings

produced were retrieved and used in the other models.

• Custom: The third method was to pre-train the embeddings using a custom approach. For each

major architecture a new model, that contained an embeddings layer, was trained to predict a

special label that described the type of report. After the training of this new model, the embeddings

were retrieved and transferred to the real model that was going to be trained to predict the churn

class.

All three methods of embeddings were applied to all three major architectures in order to verify how the

different pre-trained embeddings would impact the results.

4.4.2 MLP

Multilayer perceptrons are ubiquitous in neural networks and therefore it was important to try an approach

where the core layers were multilayer perceptrons. Various parameterizations were tried, including

different sizes for each layer and different amounts of layers but all of them followed a basic structure.

This structure was constituted by a layer of embeddings followed by a layer of max pooling where the

dimensionality of the embeddings layer was reduced and after this, a series of dense layers were added,

with and without dropout. The neurons on the dense layers used a Rectified Linear Unit (ReLU) as the

activation function, with these layers it was also used regularization L2. A general scheme is presented in

figure 4.2.

The table 4.3 presents some of the most interesting results for the models based on MLPs. The results

obtained for all the models trained using MLPs as the core are presented in the appendix in table A.1.
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Figure 4.2: General scheme used for the MLP Architecture

Name Dropout AUC

MLP-4 Yes 0.6498

MLP-5 No 0.6170

Name Vocabulary size AUC

MLP-3 50k 0.6235

MLP-7 75k 0.6484

MLP-8 100k 0.6475

Name Embeddings [size] AUC

MLP-10 From scratch [50] 0.6855

MLP-11 Custom [50] 0.7082

MLP-13 FastText base [300] 0.6083

MLP-14 FastText custom [50] 0.6690

Name Imbalance AUC

MLP-11 - 0.7082

MLP-15 weight 0.7784

MLP-16 resampling 0.7687

Table 4.3: Results using the MLP models

From the results of the MLP models trained and tested some values are worth mentioning. Experiments

where the only difference between them was the dropout, the ones that used dropout performed better

than the ones that did not, in some cases more than five percent in AUC. Also, the models trained with

inputs which had a bigger vocabulary generally performed better. Another parameter that influences the

success of the models was the size of the embeddings being trained with smaller sizes having lower

scores of AUC. A technique used that had an important role in the performance of the models was

pre-training the embeddings in which the three methods were used and are described in section 4.4.1.
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The model that performed better was the last one and it achieved a AUC score of 0.7082, more than

three percent better than the models where the embeddings were trained with the model from scratch.

Although some experiments performed better than others, almost all of them got an F1 score of zero, this

is because these models were basically always predicting the label false. The only two model variants that

managed to improve on this were the approaches where the problem of class imbalance was addressed.

A model was trained while giving each class a weight where the weight was inversely proportional to its

representation on the training set, this model achieved an F1 score of 0.5286 and a AUC 0.7784 making

it one of the most successful. The other model that got an F1 score better than zero was the one trained

using resampling in a similar fashion as it was when training the traditional model using TF-IDF 4.3.2.

The results for this model was an F1 score of 0.5353 and an AUC of 0.7687.

4.4.3 CNN

Convolutional neural networks are primarily associated with images but recently they have been applied to

textual data with great success, therefore, it made sense to make some experiments using architectures

based on convolutional layers. Like with the other major architectures tested, various parameterizations

were tried but all followed a similar structure. The models had a layer of embeddings that received

the input and were followed by two convolutional layers, then a step of max-pooling was applied and

after it, two more convolutional layers and in the end an average pooling was done. Unlike with the

experiments based in MLP, it was not applied dropout between the convolutional layers, instead, steps

of batch normalization were done in-between them. The activation function used in conjunction with

the convolutional layers was a ReLU. To manage the weights in the convolutional layers is was used

regularization L2. A general scheme of the convolutional architectures used is shown in figure 4.3.

The table 4.4 shows the more relevant models based on CNNs and their results. The results obtained for

all the models trained using CNN layers as the model core are presented in the appendix in table A.2.

Various models were trained using CNNs as the core layers and generally, they obtained better results

than the models based on MLPs. The differences between the various experiments when testing with

different parameterizations maintained the same behavior as when using MLPs. Models that used dropout

had better values of AUC, increasing the size of the embeddings and the number of units in the layers

also appears to improve the results and give better values of AUC and F1, with the best among these

with an AUC of 0.7626. Curiously the models that used pre-trained embeddings did not seem to improve

on the best results obtained by the models where the embeddings were trained from scratch with the

model, the best value of AUC gotten from pre-trained embeddings was 0.7565.

Similar to the models based on MLPs, the models that used CNNs got better results when the problem

of class imbalance was addressed, both the models trained with class weights and with resampling

outperformed all other models based on CNNs, the first one got an AUC of 0.7751 and an F1 of 0.549,
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Figure 4.3: General scheme used for the CNN Architecture

the second got an AUC of 0.7764 and an F1 of 0.548.

4.4.4 RNN

Recurrent neural networks are at the forefront in the recent advancements when working with textual data.

The tests made where the core layers of the models were RNNs followed a relatively simple structure.

Like with the other architectures the models had a first layer of embeddings that received the input after

that a bidirectional LSTM was applied followed by a layer of dropout and after it came a simple LSTM layer.

Many parameterizations were tested including the amount of dropout applied, the size of the layers and

the size of the embeddings. Although this type of model appears simple the LSTMs were very powerful

and gave great results. A general scheme of the architecture based on RNNs is shown in figure 4.4.

The table 4.5 has some of the best results obtained while using models based on RNNs. The results

obtained for all the models trained using RNN layers as the model core are presented in the appendix in

table A.3.

Basically, all the models based on RNNs trained obtained better results than any other based on neural
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Name Embeddings [size] AUC

CNN-5 From scratch [50] 0.7626

CNN-6 Custom [50] 0.7565

CNN-7 FastText base [300] 0.6994

CNN-8 FastText custom [50] 0.7380

Name Vocabulary size AUC

CNN-2 50k 0.7554

CNN-3 75k 0.7558

CNN-5 100k 0.7626

Name Imbalance AUC

CNN-5 - 0.7626

CNN-9 weight 0.7751

CNN-10 resampling 0.7764

Table 4.4: Results using the CNNs models

Figure 4.4: General scheme used for the RNN Architecture

networks. The various parameterizations, that included changing the size of the embeddings, changing

the number of units in the LSTM layers, changing the size of the vocabulary and others, strangely did

not play a significant role in the final performance of the models. With the exception of the model that

was trained with the fewest LSTM units, smallest embeddings size and smallest vocabulary that got the

worst result for this architecture with only 0.7587 of AUC pretty much all the others got approximately the

same values for AUC, these values were in the range of 0.7834 to 0.7914. Similar to the models based

on CNNs using pre-trained embeddings did not have and impact on the final results of the models.

Unlike the previous architectures, dealing with the problem of class imbalance did not improve the AUC

scores already obtained by the other RNN models. The best AUC score obtained is 0.7908 when applying

class weights during training. The F1-score did improve from 0.533, for the model ’RNN-10’, to 0.564 for

the model that used class weights (named ’RNN-12’).
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Name Embeddings [size] AUC

RNN-7 From scratch [50] 0.7865

RNN-8 Custom [50] 0.7885

RNN-9 FastText base [300] 0.7893

RNN-10 FastText custom [50] 0.7914

Name Vocabulary size AUC

RNN-1 50k 0.7587

RNN-2 75k 0.7870

RNN-4 100k 0.7867

Name Imbalance AUC

RNN-10 - 0.7914

RNN-12 weight 0.7908

RNN-13 resampling 0.7817

Table 4.5: Results using the RNNs models

4.4.5 FastText

FastText is a model architecture distributed by the research team of Facebook and had some success in

the text classification task. It also has a very fast training speed which makes it very interesting given that

usually, deep learning models tend to be very slow while training. Two FastText models were trained, one

with resampling and one without.

The table 4.6 has the results obtained.

Name Imbalance F1-score AUC

FastText-1 - 0.463 0.7703

FastText-2 resampling 0.534 0.7716

Table 4.6: Results using the FastText model

There was no significant difference in the results of both models considering the AUC values, with one at

0.7703 and the other with 0.7716 but when looking at the F1 scores the model where resampling was

applied performed much better with and F1 of 0.534 while the other only got 0.463 which means and

improvement of fifteen percent.
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4.5 Discussion

One of the objectives of this work was to evaluate how DNNs would perform with the data provided by

the partner Telco. In particular, its performance when trying to predict churn using the Telco’s call center

reports. The way this problem was tackled was to compare the results from models based on traditional

approaches against the results from models based on DNNs. After looking at the predictions and the

results obtained from the models trained it appears that the deep learning models did not manage to

outperform the traditional models despite being substantially more complex and significantly more time

consuming to train. Both approaches ended up with results very similar.

Using the best models from both approaches, we can make a more detailed comparison of the results. The

model with the best AUC value from the traditional side was the one that used TF-IDF with anonymization

and the one from the deep learning side was the model ’RNN-10’. The results for both can be seen in

table 4.7 and as it can be observed the AUC values are very similar.

Name F1-score AUC

TF-IDF with anonymization 0.522 0.7907

RNN-10 0.533 0.7914

Table 4.7: Results from the models with best AUC

Another way of observing the closeness of both results is to visualize the ROC curves of the two models

in figure 4.5 where it can be seen how strikingly similar they are.

Figure 4.5: Comparison of ROC curves between models RNN-10 and TF-IDF
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Yet another way to see that the two approaches manage to give predictions very similar to one another it

to look at the confusion matrices of both in figure 4.6. The values in the confusion matrices are normalized

for each class label.

Figure 4.6: Comparison of confusion matrices between models RNN-10 and TF-IDF

It is also possible to verify how much the two models agree with each other. Making the intersection of

the set of elements that are classified with the label True by the models its possible to see how many they

give the same label. This can be extended to other sets of elements. Table 4.8 has the percentages on

which both models agree on the same label for various sets.

Set Percentage

True 0.9347

False 0.9860

True Positives 0.3621

False Positives 0.0195

True Negatives 0.9665

False Negatives 0.5726

Table 4.8: Sets percentages that the RNN-10 and TF-IDF give the same label

Although the results from both approaches are not equal, they are very similar and that fact raises the

question of why that happened. Given that deep learning models are much more powerful than simple

logistic regressions accompanied by simple generators of features it would be reasonable to expect
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that they would outperform easily the traditional approaches tested in this work. Since DNNs routinely

outperform other forms of machine learning one can make the assumption that part of the problem must

rely on the dataset used. In order to understand if and why the dataset was to blame, three different

analysis of the texts were done:

1. Frequency Analysis: The word frequencies were calculated to verify if there was any particular

group of words that appeared more frequently for the set of True examples or the set of False

examples. This would indicate that some words could be giving too much information and facilitating

the problem for the traditional approaches. More details in section 4.5.1.

2. Weights Analysis: The weights that the traditional model attributed to each word were analyzed

to see what the model considered the most important words. These words could then be used to

measure how much the model was depended on them. More details in section 4.5.2.

3. Entropy Analysis: A more generic way to understand how much information the words carried

about the target class is to calculate the entropy of each word for the entire dataset. This could

reveal that a small group of words carried too much information, trivializing part of the problem.

More details in section 4.5.3.

4.5.1 Frequency Analysis

In order to verify if the distributions of the different words between the sets of True examples and False

examples were skewed, all the texts from the test set were divided into two groups, the one with the True

examples and one with the False examples. After this, it was counted how many times each different

unigram and bigram appeared in each of the two groups. Bigrams were used instead of only single words

because the traditional model TF-IDF used both unigrams and bigrams for its features and it would be

inaccurate to consider the impact of only individual words.

The figure 4.7 shows how much more each n-gram (considering only unigrams and bigrams) appears in

a set in relation to the other set.

It can be seen that approximately 30% of all n-grams from the False set appears at least five times more

in the False set than in the True set. In the True set, it is not as dramatic but still, around 8% of all n-gram

from the True set appear five times or more in the True set than in the False set. Additionally, it can be

seen that there is a significant percentage of words, in both sets, that appear more than twenty times in

that particular set.
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Figure 4.7: Distributions os unigrams and bigrams between the True and False sets

4.5.2 Weights Analysis

The traditional approach model trained using TF-IDF in conjunction with a logistic regression managed

to achieve performance on par to the best deep learning models tested in this work. In order to try

to understand how this happened, an effort was made to determine what n-grams (considering only

unigrams and bigrams) the traditional model was focusing on. The weights attributed to the n-grams by

the TF-IDF method and the weights from the logistic regression model were used to create a rank of the

most important n-grams.

By multiplying the TF-IDF weights for each report by the logistic regression weights it is possible to

leverage the relevance that each part is giving to each n-gram. After that, by taking the average of

the weights of each n-gram for all the reports, the impact of the particular frequency of each n-gram is

reduced. Equation 4.5 shows roughly the calculations done. Doing this gives a value for each n-gram that

can be related to its importance for the traditional model.

N − grams V alues = Average(TF_IDF weights ∗ Logistic Regression weights) (4.5)

The table 4.9 contains the first eight n-grams with the highest values, and therefore more important.

It is curious to see that for some reason the model is giving particular attention to the tag ’#DATE’ that

represents a date that was removed during the anonymization step. Intuitively the n-grams ’rescisao’,

’nao retido’ and ’desligamento’ make perfect sense to be important because the model is trying to predict

churn.

To verify how much these n-grams are actually important, they were removed from the reports texts and

new predictions were made with each model. Table 4.10 presents the values of metric F1 and how much

they changed.
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Rank N-gram

1 #DATE

2 rescisao

3 sr

4 servico

5 nao retido

6 desligamento

7 tm

8 #NOME oferta

Table 4.9: Top 8 n-grams according to TF-IDF and logistic regression weights

Name New F1-score F1-score change

TF-IDF with anonymization 0.408 -21.86%

RNN-10 0.490 -8.24%

Table 4.10: Results change after removing TF-IDF important n-grams

Has it can be seen the deep learning model was much more robust to the removal of the n-grams showing

that although the traditional model got comparable results to the deep learning model it was too reliant on

a particular small set of words.

The figure 4.8 has the confusion matrices of the new results of each model.

Figure 4.8: Confusion matrices after removing TF-IDF important n-grams
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The set of True positives, arguably the most important predictions, got smaller for both models but the

RNN-10 model suffered much less than the TF-ÎDF model, losing only 12.82% against the 31.01% lost by

the traditional model, again showing its resilience.

4.5.3 Entropy Analysis

Entropy is a generic technique that can be used to understand the amount of information that exists within

some piece of data [Goodfellow et al., 2016]. In this work, it was used to try to extract the words that

were more descriptive and valuable when predicting churn. Following on the idea of the Shannon entropy

[Shannon, 1948] the formula 4.6 was to calculate the entropy of each n-gram (considering only unigrams

and bigrams).

Entropy = −
∑

p(x) ∗ log2 p(x) (4.6)

Table 4.11 shows the top four n-grams with the lowest entropy, which means that they carried the most

information about churn than any other n-gram in the texts.

Rank N-Gram

1 rescisao

2 nao retido

3 nao recuperado

4 pedido rescisao

Table 4.11: Top 4 n-grams with the least entropy values

In similarity to what was done the the previous section (4.5.2), these four n-grams were removed from the

texts and new predictions were made using these new texts, this way it was possible to see it the models

were focusing too much on a few words or if they were catching the general value from the texts. The new

results are presented in table 4.12.

Name New F1-score F1-score change

TF-IDF with anonymization 0.425 -18.63%

RNN-10 0.515 -3.54%

Table 4.12: Results change after removing the n-grams with least entropy
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Like it was seen before the traditional model lost significantly more performance than the model based

on neural networks, and this was with a setup where only four n-grams were removed. These results

raise serious concerns about the generality and robustness of the models tested in this work based on

traditional approaches.

The confusion matrices for these new results can be seen in the figure 4.9 and pretty much like in the

experience done in the section 4.5.2 the model RNN-10 managed to suffer much less consequences

from the removal of these important n-grams. Considering only the set of True positives, the RNN-10

model lost 5.95% while the TF-IDF models lost 26.03% nearly five times more.

Figure 4.9: Confusion matrices after removing the n-grams with least entropy

4.5.4 Imbalance Considerations

The main topic of discussion is centered on the fact that deep learning approaches had similar results to

more traditional approaches, but another discussion that can be made is to look at how the imbalance of

the dataset affected the overall results and how each model architecture was impacted by the dataset

imbalance.

Looking at the best results from each approach it can be seen that the impact of the imbalance on the

results is dependent on the metric used and the model architecture. The various model architectures

suffered differently with the imbalance. The TF-IDF model shows (table 4.2) an improvement when using

the F1 score but no improvement when using the metric AUC. The same can be seen with the results from

the FastText models (table 4.6) and from the RNN models (table A.3). The other models, those based on

the MLP and CNN architectures got better results when training with resampling or class weights for the

F1 score and had a slight improvement on the metric AUC as shown in tables A.1 and A.2 respectively.
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Overall, it can be said that training with resampling and class weights helped the models to increase the

confidence of its predictions. This is seen in more examples being classified with the True label which

made the F1 scores increase. The relative ranking of its predictions, on the other hand, remained pretty

much the same which is shown by the AUC score stability. This means that applying these techniques

brought and artificial sense of improvement. The rise in the F1 score was not due to the model gaining

more information from the dataset but because it simply skewed all predictions towards the True label.

Using resampling and applying class weights during training, aims to the same objective which is to

combat the dataset imbalance by trying to make the less represented class more important and relevant to

the model. Although these two methods function differently, by looking at the results from the experiments

conducted in this work it is not possible to consider one better than the other. There were cases where

using resampling originated in better results like when training the TF-IDF models (table 4.2) and cases

that were the other way around like when training the RNN models (table A.3).

4.6 Summary

Throughout chapter 4, results concerning predictions of churn, obtained from several models, were

presented. Although each model has its strengths and weaknesses, most of them performed very

similarly, especially when considering the dramatic difference between traditional approaches and deep

learning approaches. We find that models trained using TF-IDF features, which is a simple and fast model

to train, obtained very good results when comparing with recurrent neural networks which are complex

and very slow to train.

This leads to the immediate conclusion that using deep learning approaches with this dataset is not

worth the effort. However, this conclusion requires additional explanation and study. One possible

reason for this behavior, and probably the most convincing argument, comes from analyzing the dataset

and understanding that, despite being very large, it fails to contain more than superficial and obvious

information. When just a few words, like ’rescisao’, have such a strong impact on the results, it shows that

the information that predicts churn is easily obtainable and even simple approaches manage to capture

it. The fact that the deep neural networks fail to retrieve more information than what is on the surface

is probably a reflection of the origin of the reports. The operators in the call center have the task to

summarize the phone call in a few lines of text, thus removing many of the subtext and intrinsic value

from the phone call interaction. This process removes important information that would aid in pushing the

DNN models above the traditional models.
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This chapter presents the conclusions of this work and how the result compares to the objectives proposed

in the beginning. It is also shown what future work could be done to further improve what was explored in

this thesis.

5.1 Conclusions

In conclusion, we can infer that the main objective of this thesis was accomplished. An extensive

exploration of the value of the reports from the Telecom Company (Telco) was done and multiple models

were trained using various approaches and technologies.

It can be considered an advantage to use deep neural networks to mine value from this particular set of

reports, although more simple methods appear to give similar results they are too brittle are prone to

slight changes of the words on the texts. It should also be said that the human operators that wrote the

reports most likely had already filtered and condensed the information in the reports, making it easier for

the simple models but much harder for the more complex approaches to utilize their full capabilities.

One can easily conclude that although there is value to be extracted from these reports it is not a simple

job. Trying to predict what a customer will do based on a single report from a phone call is an ingrate

proposition and it would benefit greatly from other sources of information. Regardless of all the difficulties,

the results obtained with the predictions are reasonably good, considering the difficulty of the problem.
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The most important conclusion that can probably be made is to make the supposition that the reports are

possibly being handicapped by the fact that they are written by humans. The human operator that makes

the phone call, writes the report based on his opinion of what happened and that does not necessarily

reflect the opinion or the interaction that actually happened with the customer. This layer of indirection

between the reports and the customers makes it especially hard to retrieve value from them.

5.2 Future Work

There are many avenues that can be taken to improve and proceed with the work done in this thesis:

• A simple and obvious way would be to explore further with the different target classes that were

created but were not selected for further work.

• Another rather simple proposition to continue on the path of exploration of this work would be to

experiment with more powerful neural network architectures, like for example the new Bert model

[Devlin et al., 2018] developed recently by Google research team.

• One task that needed to be done in this work and that definitely could be improved is the step of

anonymization. Deep neural networks could be used to perform the anonymization step and very

likely obtain a better dataset, possibly improving the final results.

• The results could probably be improved if extra information from the customers was used together

with the reports from the call center. Adding this new information to the dataset and making new

tests would be another way of progressing with this work.

• Of all the possibilities to continue with the work of finding value on the reports the best one is

probably not to use these reports at all. Instead, use the soundtrack from the phone call to generate

automatic text and afterward use it in the prediction models. This would have the advantage of

truly containing all the information from the phone call and bypassing the judgment of the human

operator.
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Appendix A

Full Tables

The following tags are used in the tables:

• Scratch #: Embeddings trained from scratch with size #

• Custom #: Embeddings pre-trained while predicting the ’symptom’ with size #

• FastText base #: Embeddings obtained from Portuguese model of FastText with size #

• FastText custom #: Embeddings obtained from FastText model after training it on Telco data with

size #

• Dr#: Dropout layer with probability percentage #

• De#: Dense layer with # units

• Emb: Embeddings layer

• GAP: Global Average Pooling layer

• GMP: Global Max Pooling layer

• C#1|#2: 1 dimensional convolucional layer with #1 feature maps and kernel of size #2

• MP#: Max Pooling layer of size #

• BN: Batch Normalization layer

• BiLSTM#1|R#2|#3: Bidirectional LSTM layer with #1 units and Recurrent Dropout of #2 using

operation #3 to join both outputs.

• LSTM#1|R#2: LSTM layer with #1 units and Recurrent Dropout of #2

75



76 Appendix A. Full Tables

N
am

e
Layers

Im
balance

E
m

beddings
Inputs

F1
A

U
C

M
LP

-1
E

m
b

-D
r20

-G
A

P
-D

e32
-D

r20
-D

e16
-D

r20
-

S
cratch

20
100k

0.000
0.5702

M
LP

-2
E

m
b

-D
r20

-G
M

P
-D

e32
-D

r20
-D

e16
-D

r20
-

S
cratch

30
100k

0.000
0.6395

M
LP

-3
E

m
b

-D
r20

-G
M

P
-D

e32
-D

r20
-D

e16
-D

r20
-D

e8
-D

r20
-

S
cratch

30
50k

0.000
0.6235

M
LP

-4
E

m
b

-D
r20

-G
M

P
-D

e32
-D

r20
-D

e16
-D

r20
-D

e8
-D

r20
-

S
cratch

30
50k

0.000
0.6498

M
LP

-5
E

m
b

-G
M

P
-D

e32
-D

e16
-D

e8
-

S
cratch

30
50k

0.000
0.6170

M
LP

-6
E

m
b

-G
M

P
-D

e64
-D

e32
-D

e16
-

S
cratch

40
75k

0.000
0.6288

M
LP

-7
E

m
b

-D
r20

-G
M

P
-D

e64
-D

r20
-D

e32
-D

r20
-D

e16
-D

r20
-

S
cratch

40
75k

0.000
0.6484

M
LP

-8
E

m
b

-D
r20

-G
M

P
-D

e64
-D

r20
-D

e32
-D

r20
-D

e16
-D

r20
-

S
cratch

40
100k

0.000
0.6475

M
LP

-9
E

m
b

-D
r20

-G
M

P
-D

e64
-D

r40
-D

e32
-D

r40
-D

e16
-

S
cratch

40
75k

0.000
0.6394

M
LP

-10
E

m
b

-D
r30

-G
M

P
-D

e64
-D

r30
-D

e32
-D

r30
-D

e16
-D

r30
-

S
cratch

50
100k

0.000
0.6855

M
LP

-11
E

m
b

-D
r30

-G
M

P
-D

e64
-D

r30
-D

e32
-D

r30
-D

e16
-D

r30
-

C
ustom

50
100k

0.000
0.7082

M
LP

-12
E

m
b

-D
r30

-G
A

P
-D

e64
-D

r30
-D

e32
-D

r30
-D

e16
-D

r30
-

S
cratch

50
100k

0.000
0.5697

M
LP

-13
E

m
b

-D
r30

-G
M

P
-D

e128
-D

r30
-D

e64
-D

r30
-D

e32
-D

r30
-

FastTextbase
300

100k
0.000

0.6083

M
LP

-14
E

m
b

-D
r30

-G
M

P
-D

e128
-D

r30
-D

e64
-D

r30
-D

e32
-D

r30
-

FastTextcustom
50

100k
0.000

0.6690

M
LP

-15
E

m
b

-D
r30

-G
M

P
-D

e64
-D

r30
-D

e32
-D

r30
-D

e16
-D

r30
w

eight
C

ustom
50

100k
0.529

0.7784

M
LP

-16
E

m
b

-D
r30

-G
M

P
-D

e64
-D

r30
-D

e32
-D

r30
-D

e16
-D

r30
resam

pling
S

cratch
50

100k
0.535

0.7687

Table
A

.1:
FullM

LP
results



77

N
am

e
La

ye
rs

Im
ba

la
nc

e
E

m
be

dd
in

gs
In

pu
ts

F1
A

U
C

C
N

N
-1

E
m

b
-D

r2
0

-C
16

|3
-B

N
-C

16
|3

-B
N

-M
P

2
-C

32
|3

-B
N

-C
32

|3
-B

N
-G

A
P

-
S

cr
at

ch
20

10
0k

0.
46

9
0.

76
51

C
N

N
-2

E
m

b
-D

r2
0

-C
16

|3
-B

N
-C

32
|3

-B
N

-M
P

2
-C

64
|3

-B
N

-C
12

8|
3

-B
N

-G
A

P
-

S
cr

at
ch

30
50

k
0.

44
0

0.
75

54

C
N

N
-3

E
m

b
-D

r2
0

-C
16

|3
-B

N
-C

32
|3

-B
N

-M
P

2
-C

64
|3

-B
N

-C
12

8|
3

-B
N

-G
A

P
-

S
cr

at
ch

30
75

k
0.

43
7

0.
75

58

C
N

N
-4

E
m

b
-D

r2
0

-C
32

|3
-B

N
-C

64
|3

-B
N

-M
P

2
-C

12
8|

3
-B

N
-C

25
6|

3
-B

N
-G

A
P

-
S

cr
at

ch
50

10
0k

0.
39

3
0.

73
83

C
N

N
-5

E
m

b
-D

r2
0

-C
32

|3
-B

N
-C

64
|3

-B
N

-M
P

2
-C

12
8|

3
-B

N
-C

25
6|

3
-B

N
-G

A
P

-
S

cr
at

ch
50

10
0k

0.
49

5
0.

76
26

C
N

N
-6

E
m

b
-D

r2
0

-C
32

|3
-B

N
-C

64
|3

-M
P

2
-C

12
8|

3
-B

N
-C

25
6|

3
-G

A
P

-
C

us
to

m
50

10
0k

0.
43

4
0.

75
65

C
N

N
-7

E
m

b
-D

r2
0

-C
32

|3
-B

N
-C

64
|3

-M
P

2
-C

12
8|

3
-B

N
-C

25
6|

3
-G

A
P

-
Fa

st
Te

xt
ba

se
30

0
10

0k
0.

40
9

0.
69

94

C
N

N
-8

E
m

b
-D

r2
0

-C
32

|3
-B

N
-C

64
|3

-M
P

2
-C

12
8|

3
-B

N
-C

25
6|

3
-G

A
P

-
Fa

st
Te

xt
cu

st
om

50
10

0k
0.

41
0

0.
73

80

C
N

N
-9

E
m

b
-D

r2
0

-C
32

|3
-B

N
-C

64
|3

-B
N

-M
P

2
-C

12
8|

3
-B

N
-C

25
6|

3
-B

N
-G

A
P

w
ei

gh
t

S
cr

at
ch

50
10

0k
0.

54
9

0.
77

51

C
N

N
-1

0
E

m
b

-D
r2

0
-C

32
|3

-B
N

-C
64

|3
-B

N
-M

P
2

-C
12

8|
3

-B
N

-C
25

6|
3

-B
N

-G
A

P
re

sa
m

pl
in

g
S

cr
at

ch
50

10
0k

0.
54

8
0.

77
64

Ta
bl

e
A

.2
:

Fu
ll

C
N

N
re

su
lts



78 Appendix A. Full Tables

N
am

e
Layers

Im
balance

E
m

beddings
Inputs

F1
A

U
C

R
N

N
-1

E
m

b
-D

r20
-B

iLS
TM

32|R
20|concat-D

r40
-LS

TM
32|R

20
-D

r40
-

S
cratch

30
50k

0.475
0.7587

R
N

N
-2

E
m

b
-D

r20
-B

iLS
TM

32|R
10|concat-D

r20
-LS

TM
16|R

10
-D

r20
-

S
cratch

40
75k

0.528
0.7870

R
N

N
-3

E
m

b
-D

r30
-B

iLS
TM

32|concat-D
r40

-LS
TM

16
-D

r40
-

S
cratch

50
100k

0.525
0.7834

R
N

N
-4

E
m

b
-D

r30
-B

iLS
TM

32|R
10|concat-D

r40
-LS

TM
16|R

10
-D

r40
-

S
cratch

50
100k

0.530
0.7867

R
N

N
-5

E
m

b
-D

r30
-B

iLS
TM

32|R
10|sum

-D
r40

-LS
TM

16|R
10

-D
r40

-
S

cratch
50

100k
0.520

0.7854

R
N

N
-6

E
m

b
-D

r30
-B

iLS
TM

32|R
10|m

ul-D
r40

-LS
TM

16|R
10

-D
r40

-
S

cratch
50

100k
0.530

0.7868

R
N

N
-7

E
m

b
-D

r30
-B

iLS
TM

64|R
10|concat-D

r40
-LS

TM
32|R

10
-D

r40
-

S
cratch

50
100k

0.532
0.7865

R
N

N
-8

E
m

b
-D

r30
-B

iLS
TM

64|R
10|concat-D

r40
-LS

TM
32|R

10
-D

r40
-

C
ustom

50
100k

0.514
0.7885

R
N

N
-9

E
m

b
-D

r30
-B

iLS
TM

64|R
10|concat-D

r40
-LS

TM
32|R

10
-D

r40
-

FastTextbase
300

100k
0.529

0.7893

R
N

N
-10

E
m

b
-D

r30
-B

iLS
TM

64|R
10|concat-D

r40
-LS

TM
32|R

10
-D

r40
-

FastTextcustom
50

100k
0.533

0.7914

R
N

N
-11

E
m

b
-D

r20
-B

iLS
TM

64|concat-A
M

-
S

cratch
50

100k
0.542

0.7853

R
N

N
-12

E
m

b
-D

r30
-B

iLS
TM

64|R
10|concat-D

r40
-LS

TM
32|R

10
-D

r40
w

eight
FastTextcustom

50
100k

0.564
0.7908

R
N

N
-13

E
m

b
-D

r30
-B

iLS
TM

64|R
10|concat-D

r40
-LS

TM
32|R

10
-D

r40
resam

pling
S

cratch
50

100k
0.559

0.7817

Table
A

.3:
FullR

N
N

results


	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Tables
	List of Figures
	Acronyms
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Contributions
	1.5 Thesis Structure

	2 Literature Review
	2.1 Traditional Methods
	2.1.1 Bag-of-Words
	2.1.2 TF-IDF
	2.1.3 Logistic Regression

	2.2 Word Embeddings
	2.3 Deep Learning
	2.3.1 Multilayer Perceptrons
	2.3.2 Convolutional Neural Networks
	2.3.3 Recurrent Neural Networks
	2.3.3.1 LSTM

	2.3.4 FastText

	2.4 Summary

	3 Dataset and Problem Definition
	3.1 Dataset
	3.1.1 Dataset Construction
	3.1.1.1 Anonymization
	3.1.1.2 Target Label Construction

	3.1.2 Texts distributions

	3.2 Problem Definition
	3.3 Summary

	4 Experimental Work and Results
	4.1 Implementation
	4.2 Evaluation Metrics
	4.2.1 F1-score
	4.2.2 AUC

	4.3 Traditional Models
	4.3.1 Bag-of-Words
	4.3.2 TF-IDF

	4.4 Deep Learning Models
	4.4.1 Word Embeddings
	4.4.2 MLP
	4.4.3 CNN
	4.4.4 RNN
	4.4.5 FastText

	4.5 Discussion
	4.5.1 Frequency Analysis
	4.5.2 Weights Analysis
	4.5.3 Entropy Analysis
	4.5.4 Imbalance Considerations

	4.6 Summary

	5 Conclusion
	5.1 Conclusions
	5.2 Future Work

	Bibliography
	A Full Tables

