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The amount of host DNA poses a major challenge to metagenome analysis. However,
there is no guidance on the levels of host DNA, nor on the depth of sequencing
needed to acquire meaningful information from whole metagenome sequencing (WMS).
Here, we evaluated the impact of a wide range of amounts of host DNA and
sequencing depths on microbiome taxonomic profiling using WMS. Synthetic samples
with increasing levels of host DNA were created by spiking DNA of a mock bacterial
community, with DNA from a mouse-derived cell line. Taxonomic analysis revealed that
increasing proportions of host DNA led to decreased sensitivity in detecting very low
and low abundant species. Reduction of sequencing depth had major impact on the
sensitivity of WMS for profiling samples with 90% host DNA, increasing the number of
undetected species. Finally, analysis of simulated datasets with fixed depth of 10 million
reads confirmed that microbiome profiling becomes more inaccurate as the level of
host DNA increases in a sample. In conclusion, samples with high amounts of host DNA
coupled with reduced sequencing depths, decrease WMS coverage for characterization
of the microbiome. This study highlights the importance of carefully considering these
aspects in the design of WMS experiments to maximize microbiome analyses.

Keywords: microbiome analysis, metagenomics, sample complexity, sequencing depth, mock community

INTRODUCTION

The collection of microorganisms present in a defined environment is known as the microbiota
(Marchesi and Ravel, 2015). These microorganisms, which comprise bacteria, archaea, viruses, and
microbial eukaryotes, along with their genetic information and specific characteristics of the niche
they occupy are generally known as the microbiome (Marchesi and Ravel, 2015).

Targeted 16S rRNA gene and whole metagenome sequencing (WMS) are sequencing-
based approaches that are currently used to explore the composition and functions of
the microbiome (Human Microbiome Jumpstart Reference Strains Consortium, et al., 2010;
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Human Microbiome Project Consortium, 2012a). WMS consists
on untargeted DNA sequencing of fragments of all genomes
within a sample, which produces high-complexity datasets with
millions of short reads (Quince et al., 2017). Since all DNA
present in the sample is captured, including bacterial, viral, and
eukaryotic DNA, this method allows extensive characterization
of the microbial communities living in a wide range of
environments (e.g., soil, human-associated samples, among
others) (Venter et al., 2004; Qin et al., 2010). In comparison
with targeted 16S rRNA sequencing, WMS typically yields a
more detailed taxonomic resolution, at the species or even strain-
level. It also provides a more accurate insight into the functional
composition of the microbiome (Qin et al., 2010; Abubucker
et al., 2012; Truong et al., 2015; Truong et al., 2017). Still, this
approach has been less implemented since it is more expensive
than 16S rRNA profiling, it requires a greater depth of coverage,
and the data analysis is more complex (Knight et al., 2012).

It is currently well recognized that the microbiome plays an
important role in human physiology and in the maintenance
of health, but also has a major impact in the development
of a wide range of diseases, including obesity, inflammatory
bowel disease, and cancer (Ley et al., 2006; Frank et al., 2007;
Kostic et al., 2013; Gilbert et al., 2018). A major technical
challenge in whole metagenome analysis of human samples
is the predominance of host DNA. Data from the Human
Microbiome Project (HMP) has revealed that the proportion of
human DNA differs significantly by body site and sample type
(Human Microbiome Project Consortium, 2012b; Lloyd-Price
et al., 2017). While stool samples comprise less than 10% of
human DNA, samples such as saliva, throat, buccal mucosa, and
vaginal swabs contain more than 90% of human-aligned reads
(Human Microbiome Project Consortium, 2012b; Lloyd-Price
et al., 2017). The latter type of samples, where only a limited
fraction of the DNA represents the microbial content, requires
a high quantity of sequences to obtain a reasonable coverage of
the microbial genomes when using WMS. Currently, very little
is known about the impact of this technical limitation on the
sensitivity of WMS to profile the microbiome of host-derived
samples. In addition, there is no guidance for the reasonable
amount of host DNA a sample should contain in order to
generate an accurate WMS analysis. Overcoming these issues is
crucial for future selection of appropriate sequencing depths that
will guarantee the return of the maximum useful information,
with a minimum cost possible. Therefore, this study aimed
to evaluate the sensitivity of WMS for taxonomic profiling of
microbiome samples, taking into account the wide range of host
DNA in a sample and sequencing depths.

MATERIALS AND METHODS

Mock Microbial Community
Genomic DNA from Microbial Mock Community B (Staggered,
High Concentration), v5.2H, for Whole Genome Shotgun
Sequencing, HM-277D, was obtained through BEI Resources,
NIAID, NIH as part of the HMP. This mock microbial
community is composed of a combination of 20 bacterial

genomic DNAs that differ in %GC content (30 to 69%), and
contains staggered ribosomal RNA operon counts differing by
bacteria, ranging from 104 to 107 copies per organism per µL
(as indicated by the manufacturer). The genomic GC content
of each species was obtained from the NCBI Genome Database.
To estimate the expected relative abundance of species, the
theoretical number of genome copies per species was calculated
by the ratio of input 16S rRNA copies to 16S rRNA copies per
genome, and normalized by the sum of all theoretical genome
copies of the species present in the mock (sum up to 100). The
detailed composition of the mock community, including %GC
content, the number of 16S rRNA copies per genome, the number
of 16S rRNA input copies, the number of species genome copies,
and the expected relative abundance of species, is available in the
Supplementary Table S1.

Mouse Cell Line and DNA Isolation
Total genomic DNA was extracted from the MC-38 cell line (a
kind gift from Professor J. Machado, University of Porto), which
is derived from C57BL/6 murine colon adenocarcinoma cells,
with the QIAamp DNA Tissue kit (Qiagen, Germany), according
to the manufacturer’s instructions. DNA was eluted in 100 µl
Microbial-DNA free water (Qiagen).

Generation of Synthetic Samples
To create different synthetic samples (SS) with well-defined
ratios of host to bacterial DNA, the mock microbial community
DNA was spiked with DNA from the mouse cell line. DNA
concentrations of the mock microbial community and of the
mouse cell line were measured using the NanoDrop 2000 UV
spectrophotometer (Thermo Fisher Scientific), and the exact
volumes to be mixed in each condition were determined. SS
with increasing ratios of host to bacterial DNA were generated
containing 10% (SS10), 90% (SS90), and 99% (SS99) host DNA.
The mock microbial community sample (MS), which contains
only microbial DNA, was used as control.

Library Preparation and Whole
Metagenome Sequencing
Samples were first quantified and normalized to 0.2 ng/µl DNA
material, using a Quant-It PicoGreen dsDNA assay (Thermo
Fisher Scientific), in order to use 1 ng input DNA for the library
construction. Metagenomic library preparation was automated
on the Hamilton Microlab STAR Liquid Handling Workstation,
using a Nextera XT DNA library preparation kit (Illumina Inc.,
CA, United States) according to the manufacturer’s protocol.
Briefly, after normalized samples were fragmented and tagged
by tagmentation, a limited-cycle PCR was performed to add
the Index 1 (i7), Index 2 (i5) and full adapter sequences
required for cluster generation. Amplification was followed by
a cleanup step that purified the library DNA and removed
small library fragments by using Agencourt AMPure XP
beads (Beckman Coulter, Inc.). The quality of the library was
assessed using an Agilent Technology 2100 Bioanalyzer (Agilent
Technologies, Wokingham, United Kingdom) and then, a bead-
based normalization was performed using beads Nextera XT to
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ensure more equal library representation in the pooled library.
Finally, the pooled library was sequenced as a paired-end 150-
cycle run on the Illumina NextSeq 550 platform, at an expected
sequencing depth of 5.5 Gb/sample.

Sequencing Data Analysis
For each sample, the two FASTQ files with the forward and
reverse paired-end reads were concatenated into one single
FASTQ file, which was used as input for our in-house pipeline
of WMS sequencing data analysis.

Sequencing Data Pre-processing
Sequencing data pre-processing was performed by KneadData
(version 0.6.1), a computational tool designed to perform quality
control on metagenomic sequencing data. KneadData integrates
the tools FastQC (version 0.11.5) (Andrews, 2016), Trimmomatic
(version 0.33) (Bolger et al., 2014), and Bowtie2 (version 2.2)
(Langmead and Salzberg, 2012), to do quality check, quality
filtering, and host sequences decontamination, respectively.

First, reads were trimmed based on a sliding window trimming
approach, cutting once the average base Phred quality score
within a four-base sliding window dropped below 20, and then
were discarded when the length of the read was shorter than
60 bp. After the quality-filtering step, KneadData used Bowtie2
to identify and remove the mouse contaminant reads present in
the datasets, by mapping the reads against the C57BL/6 reference
genome (GCA_001632555.1 assembly). The non-mouse filtered
reads were then used for the downstream analysis. Bowtie2 was
used with the default parameters (–very-sensitive end-to-end
alignment). FastQC, as a component of KneadData, performed
quality control checks on raw whole metagenome sequencing
data but also on reads after sequencing data pre-processing,
in order to assess the efficiency of the quality filtering and of
host sequences decontamination steps in the generation of high-
quality reads. FastQC was used with the default parameters
(Andrews, 2016).

Taxonomic Profiling – MetaPhlAn2
In our in-house pipeline of analysis, the host-filtered microbial
reads were taxonomically profiled using MetaPhlAn2 (version
2.7.5), an assembly free taxonomic profiler (Segata et al.,
2012; Truong et al., 2015). This computational tool mapped
the quality-controlled shotgun reads to a database of unique
clade-specific marker genes (read-based profiling) with high
discriminatory power, estimating the relative abundances of each
microbial clade in the samples with species-level resolution
(Segata et al., 2012; Truong et al., 2015). Bowtie2, a fast
DNA aligner, is used by MetaPhlAn2 to map the metagenomic
reads against the unique clade-specific marker genes. Clade-
specific markers constitute coding sequences that unambiguously
identify specific microbial clades (at different taxonomic levels).
MetaPhlAn2 relies on ∼1 million unique clade-specific marker
genes identified from ∼17,000 reference genomes and >7,000
unique species. Markers are now identified not only for
Bacteria and Archaea (∼13,500 bacterial and archaeal genomes),
but also for Viruses (∼3,500 viral genomes) and Eukaryotic

microorganisms (Fungi and Protozoa; ∼110 eukaryotic genome
(Truong et al., 2015).

Generation of Datasets With Reduced
Sequencing Depths
The sample with the largest sequence dataset (SS90) comprising
50.8 million single-end reads and a high predominance of
host DNA was used. Four datasets with reduced sequencing
depths were generated by random subsampling paired-
end reads using an in-house script. From the original
SS90 dataset, we subsampled 50, 25, 10, and 5%, which
correspond to 25.4, 12.7, 5.1, and 2.5 million single-end reads,
respectively. For subsampling, the same random seed was
used in order to guarantee that the reads from the same
pair were subsampled in the forward and reverse FASTQs.
Then, it was created a new set of paired FASTQ file for each
random subset. At each depth, the subsampling analysis was
repeated five times.

Generation of Simulated Datasets of
Microbiome Samples With Different
Host-Microbial Ratios
Simulated datasets (SD) of microbiome samples with different
host: microbial ratios were created by randomly selecting host
and microbial reads from our previously sequenced datasets, and
combining them in different proportions at a fixed sequencing
depth of 10 million single-end reads, using an in-house script.
Microbial single-end reads were randomly picked from the
MS raw dataset, to assure that only microbial reads were
selected. Host single-end reads were randomly picked from
the mouse contaminant sequences removed by KneadData
from the SS99 raw dataset, to guarantee sufficient sequences
with host origin (the raw SS99 dataset contained 33.201.587
mouse single-end reads). Eighteen SD were generated, nine
with progressive 10% increases in host reads (SD10 to SD90)
and nine with progressive 1% increases in host reads (SD91
to SD99). For each simulated dataset, five replicates were
randomly generated.

Statistical Analyses
Statistical treatment was performed using the GraphPad
Prism software (v. 6.01, GraphPad Software Inc., La Jolla,
CA, United States). Pearson’s correlation was used to assess
correlations between the species genomic %GC content and the
ratio between observed and expected relative abundances in
the MS control. A ≥2-fold difference was selected as arbitrary
threshold to consider species as underestimated or overestimated
in comparison with a reference condition. Differences between
groups, when performing the random subsampling analysis
and the simulated dataset analysis, were evaluated using
the Kruskal–Wallis non-parametric test, followed by multiple
comparisons versus a control group using the Dunn’s test. The
differences were considered statistically significant with P values
lower than 0.05.
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RESULTS

Generation of Synthetic Samples and
Pre-processing of Sequencing Data
To assess the influence of host DNA on the sensitivity of WMS for
taxonomic profiling of the microbiome, three synthetic samples
with distinct host: bacteria DNA ratios were generated to contain
10, 90, and 99% host DNA (SS10, SS90, and SS99, respectively).
As control, the mock microbial community DNA sample (100%
bacterial DNA; MS) was used (Figure 1A).

The four datasets yielded a large number of raw single-
end reads ranging from 35 to 51 million. After sequencing
data pre-processing (quality filtering and host sequences
decontamination), the number of reads differed considerably
between samples, being higher in MS (33.3 million reads) and
SS10 (29.9 million reads) in comparison with SS90 (5.5 million
reads) and SS99 (7.5 hundred thousand reads). The relative low
number of pre-processed reads in SS90 and SS99 samples was due
to high number of host DNA sequences removed rather than to
reads dropped during quality filtering (Supplementary Table S2).

Of the total raw single-end reads, the proportion of discarded
reads during quality filtering was similar between all samples
(ranging from 16 to 19%), confirming that differences in the
number of pre-processed reads across samples were associated
with the host sequences decontamination step (Supplementary
Figure S1A). These results are consistent with the overall good
quality of all raw datasets (between 80 and 90% of the reads
with average quality ≥Q30). They also indicate that quality
filtering was appropriate, resulting in datasets with reads of
extremely high quality (99% of the reads had an average quality
≥Q30; Supplementary Figures S1B,C). Quality-filtered reads
were comparable with the expected ratios of host to microbial
DNA for each condition (Supplementary Figure S1A).

Overall, synthetic samples with the expected host to bacterial
DNA ratios were successfully generated.

Effect of the Level of Host DNA on the
Sensitivity of WMS for Microbiome
Taxonomic Profiling
After sequencing data pre-processing, the taxonomic profile of
all samples was determined with MetaPhlAn2, with the aim to
evaluate the effect of host DNA on the sensitivity of WMS for
microbiome profiling. For that, bacteria species were grouped
into the following categories, according to the number of 16S
rRNA copies in the mock community: very low (104), low (105),
high (106), and very high (107) abundant. The relative abundance
of each taxa was then quantified at species-level and represented
in a heat map (Figure 1B).

In the control MS, all 20 species of bacteria were successfully
identified with a similar taxonomic profile compared to that
of the expected, calculated based on the theoretical number
of genome copies (Figure 1B). In three species, there was
over- or underestimation of the relative abundances due to
the GC content bias introduced during Illumina sequencing
(Supplementary Table S1 and Supplementary Figure S2).

The microbial profile of SS10 was comparable to the MS
control, since all 20 bacterial species were detected with
similar relative abundances to those of the MS (Figure 1B
and Supplementary Table S3). In SS90, however, there was
a decrease in the ability to detect very low abundant species.
Specifically, Deinococcus radiodurans could not be identified
(Figure 1B), and the relative abundances of Actinomyces
odontolyticus, Enterococcus faecalis, and Bacteroides vulgatus
were underestimated (Supplementary Table S3). The reduction
in sensitivity was more striking in SS99, where only two of the
low abundant and none of the very low abundant species were
identified (Figure 1B).

In all conditions, unclassified clades were identified at low
relative abundances (<2%), which likely represent bacterial
species from the mock microbial community that were identified
only at the genus or family level. Also, in synthetic samples
with the highest amount of host DNA (SS90 and SS99), a
mouse mammary tumor virus was identified (Figure 1B).
Since viruses are not included in the mock community, the
virus was likely introduced in the generation of the synthetic
samples by the spiking with DNA from the mouse cell
line, which could have the virus integrated in its genome.
Besides, viruses are not included in the database used by
Bowtie2, and therefore viral sequences have not been filtered as
host contaminant.

These results show that the taxonomic profile of the mock
microbial community was accurately reconstituted. Results also
demonstrate that high ratios of host: bacterial DNA interfere with
the sensitivity of WMS for taxonomic profiling. The increase
in the proportion of host DNA leads to decreased sensitivity of
WMS to detect very low and low abundant bacterial species.

Impact of Sequencing Depth on the
Sensitivity of WMS for Microbiome
Taxonomic Profiling
To assess the impact of sequencing depth on the sensitivity of
WMS to detect bacterial species in samples with a high level
of host DNA, reads from the SS90 metagenome were randomly
subsampled, generating four datasets with reduced sequencing
depths, corresponding to 50, 25, 10, and 5% of the original dataset
(SS90D50, SS90D25, SS90D10, and SS90D5, respectively). Their
taxonomic profile was compared to that of the original SS90
dataset (SS90D100; Figure 2A).

When the SS90 dataset was reduced to half of its original
size (SS90D50), the number of very low abundant species that
were not identified increased from one to three (Figure 2B),
and the relative abundance of E. faecalis significantly decreased
(P = 0.006; Supplementary Tables S4, S5). In SS90D25, none of
the very low abundant species could be identified (Figure 2B). In
comparison with the original dataset, no statistically significant
differences were observed in the relative abundances of the
remaining species (Supplementary Tables S4, S5). In SS90D10
and SS90D5, however, in addition to not identifying all very low
abundant species, there were statistically significant decreases in
the relative abundances of the low abundant species (Figure 2B
and Supplementary Tables S4, S5).
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FIGURE 1 | Effect of the levels of host DNA on the sensitivity of WMS for microbiome taxonomic profiling. (A) Schematic representation of the experimental design
to generate synthetic samples. DNA samples from a mock microbial community staggered (HM-277D) were spiked with DNA from a mouse cell line (MC-38 cells),
generating three synthetic samples containing 10, 90, and 99% host DNA (SS10, SS90, and SS99, respectively). DNA from the mock microbial community was
used as control (MS). (B) Taxonomic profile of the metagenomes of the synthetic samples determined with MetaPhlAn2, and expressed as relative abundance of
species in a heat map. The expected (Exp) taxonomic results were estimated based on the theoretical number of species genome copies present in the mock.
Species were sorted from the highest to the lowest expected relative abundances.

The reduction of the dataset to 5% of its original size led to
significantly lower relative abundances of the majority of high
and very high abundant species (Figure 2B and Supplementary
Tables S4, S5). In addition, a misclassified species (Pseudomonas
phage Pf1) with a relative abundance of 40% was identified
(Figure 2B). This likely constitutes an artifact originated by the
reduction of the size of the dataset.

Overall, these results demonstrate that sequencing depth has a
major impact on the sensitivity of WMS for taxonomic profiling
of samples with 90% host DNA. When decreasing sequencing
depth, the number of microbial species that are not detected
increase, along with unclassified and misclassified clades.

Influence of the Level of Host DNA on
the Sensitivity of WMS for Microbiome
Taxonomic Profiling at a Fixed
Sequencing Depth
Having shown that high proportions of host DNA and reduced
sequencing depths interfere with the sensitivity of WMS for
microbiome profiling, the next aim was to investigate the
influence of the level of host DNA on the sensitivity of the
method at a fixed sequencing depth. For that, SD were generated
with progressively greater proportions of host DNA (SD10
to SD99, ranging from 10 to 99% host reads), at the fixed

sequencing depth of 10 million single-end reads with 150 bp
length (1.5 Gb). This depth was chosen based on the recent
guidelines for best practices for shotgun metagenomics, which
suggest a minimum of 1 Gb sequencing depth per-sample
(Quince et al., 2017). SD were composed of microbial and
mouse reads, randomly picked from our previously generated
MS and SS99 raw datasets, respectively (Figure 3A). For each of
the SD, 5 replicates were generated, and the taxonomic profile
was estimated with MetaPhlAn2, after sequencing data pre-
processing, and compared to that of MS.

In SD10 to SD60, all 20 species of bacteria were successfully
detected, without significant differences in their relative
abundances in comparison with the MS control (Figure 3B and
Supplementary Tables S6, S7). In SD70 to SD90, there was a
progressive reduction of the number of very low abundant species
identified, none of them being detected in SD90 (Figure 3B
and Supplementary Tables S6, S7), a result in line with the
random subsampling analysis performed above (Figure 2B).
In SD92 to SD99, in addition to not identifying all of the
very low abundant species, there was a statistically significant
decrease in the relative abundance of low abundant species
(Figure 3B and Supplementary Tables S6, S7). In particular,
when host reads represented 97 to 99% of the datasets, the
low abundant species were mostly undetected, and the relative
abundance of the majority of high abundant species significantly

Frontiers in Microbiology | www.frontiersin.org 5 June 2019 | Volume 10 | Article 1277

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-01277 June 10, 2019 Time: 13:26 # 6

Pereira-Marques et al. Host DNA and Sequencing Depth in WMS

FIGURE 2 | Impact of sequencing depth on the sensitivity of WMS for microbiome taxonomic profiling. (A) Schematic representation of the experimental design to
generate random subsampling reads from the SS90 original dataset (90% host DNA). Random subsampling corresponding to 50, 25, 10, and 5% of the reads from
the original dataset (SS90D50, SS90D25, SS90D10, and SS90D5, respectively) were generated. (B) Taxonomic profile of the generated datasets are represented as
the average relative abundance from five independent experiments, and shown in a heat map. Data was sorted from the highest to the lowest relative abundances of
species in the mock microbial community (MS).
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FIGURE 3 | Influence of host DNA on the sensitivity of WMS for microbiome taxonomic profiling at a fixed sequencing depth. (A) Schematic representation of the
experimental design to generate simulated datasets (SD) with different host: microbial ratios. Microbial and host single-end reads were randomly selected from the
mock microbial community (MS) and from the SS99 raw datasets, and were combined in different proportions, at a fixed sequencing depth of 10 million reads, to
generate 18 simulated datasets (SD) with progressively higher host reads (ranging from 10 to 99%). (B) Taxonomic profile of the SD are represented as the average
relative abundance from five independent simulations, and shown in a heat map. Data was sorted from the highest to the lowest relative abundances of species in
the mock microbial community (MS).

decreased. Additionally, the Pseudomonas phage Pf1 was again
identified with high relative abundances in these highly complex
datasets (Figure 3B). In the most complex dataset (SD99) a
Staphylococcus phage StauST398-2 was also identified.

Overall, these results show that at the fixed depth of 10 million
reads, which is currently used in metagenomic studies, high levels
of host DNA interfere with an accurate reconstitution of the
microbiome profile.

DISCUSSION

Samples with a high amount of host DNA remains a major
challenge in whole metagenome analysis, affecting the efficiency
of microbiome profiling (Quince et al., 2017). Here, we show
that high proportions of host DNA, reduce the sensitivity of
WMS for microbiome profiling, in particular to detect very low
and low abundant species of bacteria. It is plausible that high
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ratios of host: bacteria DNA reduce sequence coverage of the
microbial genomes, hindering subsequent taxonomic analysis.
This is consistent with previous studies addressing the issue of
human DNA contamination on WMS detection of the malaria
parasite in clinical samples (Auburn et al., 2011; Oyola et al.,
2013). Although these reports were not focused on microbiome
characterization, they showed that low levels of human DNA
(≤30%) in blood samples, resulted in higher average Plasmodium
genome coverage (Auburn et al., 2011), whereas clinical samples
containing >80% human DNA, yielded a low number of reads
assigned to P. falciparum genome (Oyola et al., 2013). In line with
these observations, Hasan et al. (2016) found that by decreasing
the human DNA background in a clinical sample, the sensitivity
to detect microbial species was improved.

We also show that sequencing depth influences the sensitivity
of microbiome profiling by WMS in samples that contain high
levels of host DNA. The generation of SS90 datasets with reduced
sequencing depths, resulted in gradually decreased capacity to
accurately profile the microbiome. A reduction in sequencing
depth from 51 million to 25 million reads already decreased
WMS sensitivity, by preventing the identification of 60% of
the species with very low abundance. In agreement with these
findings, Jovel et al. (2016) showed that an increase in the
size of the dataset leads to both an improvement of detection
of microbial species and a more consistent estimation of their
relative abundances. Moreover, in a metagenomic study of the
fecal microbial community from beef cattle, the identification of
new microbial taxa markedly improved with larger sequencing
depths (Zaheer et al., 2018).

We also demonstrate that, besides preventing the
identification of all species with very low abundance, a
reduction in sequencing depth to five million reads additionally
affected the relative abundance estimates of low abundant
species. A depth as low as 2.5 million reads also resulted in major
impairment in estimating the relative abundances of high and
very high abundant species. In contrast with our findings, a
recent study found no differences in the taxonomic profile of a
mock community at divergent sequencing depths ranging from
0.1 to 7.5 single-end million reads (Walsh et al., 2018). These
discrepancies may reflect the absence of host DNA in the mock
sample analyzed in that study, as compared to the high levels
of host DNA in our study samples (90%). Taken together, our
data and that of others, suggest that similar sequencing depths
have distinct effects on the sensitivity of WMS for taxonomic
profiling, depending on the sample. In fact, our analysis of SD
with 10 million reads indicated that the reconstitution of the
microbiome profile becomes more inaccurate as the amount of
host DNA in a sample progressively increases.

Interestingly, and based on this analysis, the outcomes of
sequencing different types of host-derived samples, at a depth
of 1.5 Gb per sample, can be extrapolated. For example, when
sequencing a stool sample, the whole microbial community
is expected to be accurately reconstituted, considering the
low amount of host DNA in this type of sample [<10%;
(Human Microbiome Project Consortium, 2012b)]. However,
when sequencing samples like saliva, throat, buccal mucosa,
and vaginal swabs (>90% host DNA), the detection of very low

and low abundant species is expected to be impaired. This
becomes more problematic in case of sequencing a tissue sample,
as the detection of very low to high abundant species will be
hampered, since this type of sample contains mostly human
DNA (97 to 99% reads) and a low microbial biomass (Zhang
et al., 2015). This also highlights another important aspect, which
is the urgent need for effective host DNA depletion and/or
microbial enrichment methods for whole metagenome analysis
of tissue samples.

To the best of our knowledge, this is the first in-depth analysis
demonstrating that greater proportions of host DNA, together
with low sequencing depths, reduce the sensitivity of WMS
for microbiome profiling. Therefore, the results of this study
can assist in the design of WMS experiments, by highlighting
the importance of sample type and sequencing depth when
characterizing the microbiome.
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