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Abstract

Chest radiography (CXR) is one of the most common imaging modalities globally, playing an
essential role in screening, diagnosis of several pathologies and disease management. However,
CXR interpretation is a time-consuming and complex task, requiring the availability and resources
of experienced radiologists. As such, automated diagnosis systems for multi-label pathology de-
tection could play a major role in reducing the burden on radiologists and reduce the variability in
image interpretation. Traditional machine learning and deep learning methods are usually applied
for the diagnosis of specific pathologies, such as lung nodules, tuberculosis or, more recently,
Covid-19. Modern computational capabilities allowed for the ascension of deep learning models
and together with the increasing size of datasets, the development of multi-disease deep learning
approaches has emerged, showing promising results.

Nevertheless, there are significant limitations in the developed algorithms. The lack of repre-
sentative data and annotations can hinder the robust training of deep learning approaches. Despite
the existence of large datasets, these tend to have highly unbalanced classes, with some pathologies
being significantly more represented than other classes, which can lead to a degraded performance
in the less-represented pathologies. Additionally, the presence of medical devices, annotations in
the image or even the position of the patient can be interpreted by the algorithm as a proxy for
certain pathologies, introducing bias, which is highly undesirable, as cases that do not fulfil these
conditions will not be detected. Furthermore, deep learning models act as black-boxes, lacking
the explainability of their decisions, which hinders the human understanding and the adoption of
these methods in clinical practice.

Generative Adversarial Networks (GAN) could play a significant role as a solution for both of
these challenges as they allow to artificially create new realistic images that are indistinguishable
from the real ones. This way, new CXR images could be used to increase the prevalence of
images in the less-representative pathologies, decrease the biases in the dataset and improve the
explainability of the decisions by generating samples that serve as examples or counter-examples
to the image being analysed, ensuring patient privacy.

The goal of this dissertation is to develop a GAN capable of generating high quality realistic
artificial CXR images to tackle the limitations of data representation and decision explainability.
To achieve this goal, a GAN variation, the Lightweight GAN, is trained on the VinDr-CXR dataset
to generate high quality data, and then evaluated quantitatively and qualitatively, by a group of
external evaluators of both radiologists and non-radiologists, and submitted to be used in two
applications of image classification and pathology detection.

This work shows that by using the LWGAN is it possible to successfully generate realistic arti-
ficial CXR images with a small training dataset and reduced computational power. It is also shown
that the generated images can improve training of pathology classification models, increasing the
applicability in clinical scenarios of automatic CXR screening and diagnosis tools.
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Resumo

A radiografia torácica (CXR) é uma das modalidades de imagem mais comuns a nível mundial, de-
sempenhando um papel essencial no rastreio, diagnóstico de várias patologias e gestão de doenças.
Contudo, a interpretação de CXR é uma tarefa morosa e complexa, exigindo a disponibilidade e
recursos de radiologistas experientes. Como tal, os sistemas automatizados de diagnóstico para
a deteção de múltiplas patologias podem desempenhar um papel importante na redução da carga
sobre os radiologistas e reduzir a variabilidade na interpretação de imagens. Os métodos tradi-
cionais de machine learning e de deep learning são geralmente aplicados no diagnóstico de pa-
tologias específicas, tais como nódulos pulmonares, tuberculose, ou mais recentemente, Covid-
19. As capacidades computacionais atuais permitiram a ascensão de modelos de deep learning e,
juntamente com o aumento dos datasets, o desenvolvimento de abordagens de deep learning de
múltiplas patologias tem vindo a emergir, mostrando resultados promissores.

No entanto, existem limitações significativas em relação aos algoritmos desenvolvidos. A
falta de dados e anotações representativas pode dificultar o treino robusto de abordagens de deep
learning. Apesar da existência de grandes datasets, estes tendem a ter classes altamente desequi-
libradas, sendo algumas patologias significativamente mais representadas do que outras classes, o
que pode levar a um desempenho degradado nas patologias menos representadas. Adicionalmente,
a presença de dispositivos médicos, anotações na imagem ou mesmo a posição do paciente pode
ser interpretada pelo algoritmo como um proxy para certas patologias, introduzindo viés, o que é
altamente indesejável, uma vez que não serão detetados casos que não cumpram estas condições.
Além disso, os modelos de deep learning atuam como caixas negras, faltando a explicabilidade
das suas decisões, o que dificulta a compreensão humana e a adoção destes métodos na prática
clínica.

As Generative Adversarial Networks (GAN) poderiam desempenhar um papel significativo
como solução para estes dois desafios, uma vez que permitem criar artificialmente novas imagens
realistas que são indistinguíveis das imagens reais. Desta forma, novas imagens de CXR pode-
riam ser utilizadas para aumentar a prevalência de imagens com patologias menos representadas,
diminuir os enviesamentos no dataset e melhorar a explicabilidade das decisões através da geração
de amostras que sirvam de exemplo ou contra-exemplo à imagem a ser analisada, assegurando a
privacidade dos pacientes.

O objetivo desta dissertação é desenvolver uma GAN capaz de gerar imagens CXR artificiais
realistas e de alta qualidade para combater as limitações da representação de dados e da explicabil-
idade das decisões. Para atingir este objetivo, a variação da GAN, a Lightweight GAN (LWGAN),
é treinada com o dataset VinDr-CXR para gerar dados de alta qualidade, sendo depois avaliada
quantitativa e qualitativamente, por um grupo de avaliadores externos radiolgistas e não radiolo-
gistas, e submetida para ser utilizada em duas aplicações de classificação de imagem e deteção de
patologias.

Este trabalho mostra que utilizando a LWGAN é possível gerar com sucesso imagens CXR ar-
tificiais realistas com um pequeno dataset de treino e capacidade de computação reduzida. Mostra-
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se também que as imagens geradas conseguem melhorar o treino de modelos de classificação de
patologias, aumentando a aplicabilidade em cenários clínicos de ferramentas de rastreio e diag-
nóstico de CXR.

Keywords: Aprendizagem Profunda, Redes Generativas Adversariais, Radiografia Torácica
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Chapter 1

Introduction

1.1 Context

The thoracic cavity contains several major organs susceptible to trauma and disease. Respiratory

and cardiovascular diseases are responsible for a large share of thoracic diseases. In 2015, 10.4

million people worldwide developed tuberculosis and 1.4 million died from it [1]. Lung cancer is

responsible for killing 1.6 million people every year at an increasing rate [1]. Chest radiography is

one of the most commonly performed medical examinations, with approximately 109 million CXR

exams performed in Europe and a total of 3.6 million CXR exams performed in Portugal in 2015.

Plain radiography is a very cost-effective method of screening and diagnosing pathologies and

other findings. It is widely available and portable, however, with such an extensive amount of ex-

ams performed each year, radiologists suffer a burden due to the complexity and time-consuming

characteristics of the task at hand.

CXR images show pathologies related to respiratory disease, such as lung opacities and pleural

pathologies, and are widely used to show heart and vascular pathologies and medical devices. This

shows the versatility of CXR images and suitability for diagnosing a large range of pathologies.

One of the challenges, however, when interpreting CXR images is the complexity of the image,

which can lead to variability between radiologists and incorrect diagnosis.

With this in mind, automated pathology screening and diagnosis systems have been rapidly

increasing in popularity, with the aim of reliably identifying and characterizing pathologies in

CXR images. The first automatic classification algorithms applied in the medical domain for CXR

images were used for single-label classification, such as the detection of lung nodules [2]. With

the increasing computational power and larger datasets, deep learning algorithms became more

complex and multi-label pathology diagnosis systems emerged. Numerous deep learning methods

have been proposed for multi-label classification of the most prevalent findings/pathologies [3–6].
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1.2 Motivation

Publicly available medical information is a scarce resource due to privacy laws, high costs and

slow bureaucratic processes. Initially, the available datasets were smaller due to the need of ex-

perienced radiologists for labeling, which is time consuming and expensive. Recent datasets are

larger, but lack correctly annotated labels. Additionally, these datasets have highly unbalanced

classes, having highly represented pathologies and less-represented pathologies, which can hinder

the training of the deep learning models for the less-represented classes and result in an unopti-

mized performance. Besides the unbalanced classes, the datasets can introduce bias due to the

presence of annotations, the positioning of the patients or even medical devices, such as pacemak-

ers or other prosthetics, in the images. These factors can be interpreted by the algorithm as features

of a certain pathology, which should be avoidable, as cases that do not have the same feature are

not detected. Furthermore, deep learning algorithms have a black-box behaviour, lacking the ex-

plainability of their decisions, resulting in a hindering of human comprehension and the adoption

of these methods in clinical practice.

To overcome these limitations, data augmentation techniques based on rotation, translation and

cropping are used to amplify the scale of datasets, however, these samples are highly correlated

with the existing ones and do not offer entirely new images to the training set. With the emergence

of generative models such as GANs, new artificial high-quality data can be generated that is indis-

tinguishable from real data. This way, less-represented pathologies could be complemented with

newly generated artificial images, while decreasing bias. Furthermore, GANs can be used to give

some degree of explainability by providing examples and counter-examples of the image being

analysed without the need to resolve privacy concerns associated with the use of real images for

this purpose.

Generative models such as GANs are, thus, a promising solution for this limitation and are

growing in the medical context.

1.3 Goals

The goals of this project are:

• The development of a deep learning GAN for the generation of high-quality artificial CXR

images resembling normal and abnormal images based on the images provided in the public

datasets.

• The evaluation and clinical validation of the developed methods, which consist of mathemat-

ical evaluation metrics along with qualitative metrics, and visual evaluation by radiologists.

• The application of the developed methods for the generation of artificial CXR images in the

context of training and explainability of a deep learning multi-label automated pathology

detection system.
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1.4 Contributions

This work aims at providing the following contributions:

• Development of a well performing GAN capable of generating high-quality CXR images,

that can be used as a benchmark for future work.

• Provide a

1.5 Document structure

The remainder of this thesis is divided into seven Chapters. Chapter 2 focuses on Chest Radiogra-

phy and the State of The Art of pathology detection. Chapter 3 presents the current approaches on

Automatic Image Generation, along with the state-of-the-art evaluation metrics and optimization

techniques, and the applications in Chest Radiography. Chapter 4 describes the methodology used

for this thesis. In Chapter 5 the experimental work is described and detailed. Chapter 6 presents

the results obtained throughout the development of this thesis. Chapter 7 focuses on the discussion

of the results from the previous chapter. Finally, Chapter 8 aggregates the planned Future Work

and the Conclusion of this thesis.



4 Introduction



Chapter 2

Chest Radiography

In this chapter, an extensive review on general radiography is presented. This review includes the

history of radiography, the physical principles behind it, the use and application of X-ray imaging,

the state of the art of medical imaging and X-rays and a more detailed view of chest radiography.

2.1 Radiography

X-ray imaging is a non-invasive imaging diagnosis technique that works by emitting X-rays

that pass through the human body. These are reflected and absorbed by the tissues and then

captured by a film cassette. The use of X-rays for imaging techniques was discovered in 1895 by

Prof. Wilhelm Conrad Röntgen. As he was experimenting with the newly discovered technology,

he saw the bones of his hand on a photographic plate on the opposite side of an electron beam

tube [7]. Afterwards, Röntgen also imaged the bones in his wife’s hand, obtaining the world’s first

X-ray image. A few years later, portable X-ray machines were becoming a reality and were useful

during the first world war.

2.1.1 Fundamental Physical Concepts

X-rays are a form of high energy radiation present in the universe. The wavelength (0,01 to 10

nanometers) of these rays is shorter than ultraviolet light but larger than gamma rays. X-rays

were first discovered when experimenting with Crookes tubes, light bulb shaped tubes with a low

pressure inside to minimize the amount of contained gas. These tubes are attached to a cathode

and an anode, usually composed by a tungsten filament. When the cathode and the metal anode

experience a large potential difference, electrons are accelerated in the vacuum, turning into X-

rays. Most of the energy from the electrode is converted into thermal energy as it travels from the

cathode and hits the anode, and the small amount that is not, is converted into the X-ray that will

reflect from the 45 degree angle of the metal of the anode and travel to the object with which it

collides.

An increase in the filament’s temperature leads to an increase in the release of electrons and,

therefore, an increase in the quantity of X-rays in the tube. As for the potential difference, an
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increase in the voltage results in a higher kinetic energy and, therefore, a higher velocity, which

will allow the X-ray to have more penetrating power.

The beam is received on a silver bromide plate sensitive to the electromagnetic radiation,

leading to the production of black metallic silver from silver bromide. A comparatively small

dose of X-rays is used to produce a subtle change in the plate, which is then amplified by chemical

development to become visually identifiable [8].

Figure 2.1 shows an illustration of the working principle of an X-ray emitter.

Figure 2.1: X-ray emitter along with the setup for collection of a CXR image. The potential
difference between the cathode and the anode accelerates electrons that hit the metallic plate,
producing x-rays. These go through the tissues and, with different energy levels, hit the receiver
plate, creating an image.

The resulting X-rays finally collide with a film and change the color of that film. Depending

on the anatomic structure that’s being irradiated, each will retain different amounts of radiation,

depending on the radiological density, resulting in absorption and reflection of different amounts

of radiation. The end result of the collected X-rays is an image representing the shadows of each

structure, where denser structures are colored in lighter tones, while less denser structures appear

darker. Therefore, structures such as bones look white and structures as the lungs, due to their

extensive air-filled volume, look darker. Figure 2.2 shows the color difference between bone and

the tissue of a hand.
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Figure 2.2: X-ray image of a hand [9]

2.1.2 Acquisition System and Image Formation

While this is how conventional X-ray works, it has now moved to digital. It was only in the 1980s

that X-ray radiography became digital, and named computed radiography, by the use of a laser

scanner to read the irradiated storage phosphor held in a cassette [10]. Today, digital radiography

(DR) has become the main competitor against conventional screen film radiography (SFR).

As mentioned, SFR is the most common type of radiography used, however, there are certain

limitations to this technology.

There are two main types of DR, computed radiography (CR) and direct radiography (DDR).

The image acquisition, processing, storage, and display are four different steps with different

processes. To maximize the efficiency of the whole process, the four sub-processes have to be

optimized. CR uses a photostimulable phosphor plate for detection of X-rays, instead of the

method used in SFR. A helium neon laser scans the exposed plate and a photomultiplier tube

captures the emitted light. It is then converted to an analogue electrical system, which is later

digitised. The other form of DR, DDR, cuts out the middle step of using latent image and an image

plate reader by using a semiconductor-based sensor to directly convert X-ray energy into electrical

signals. Solid state detectors and flat panel detectors are used as scintillators, which convert X-

ray photons to light and later converting it to electrons through amorphous silica arranged as a

photoiodide transistor [8]. Furthermore, DDR takes advantage of image intensification, which

is used in real time images, by using a digital sensor linked to video monitors. This feature is

very useful for screening several procedures such as vascular, orthopedic or radiological, due to

its capability of increasing the brightness by up to 6000 times without an increase in the radiation

dose.

Conventional SFR radiography is still the main technology used for plain radiography, how-

ever its lead to DR is progressively decreasing. The reasons behind this decreasing popularity are

the fixed dose latitude, fixed non-linear grey scale response and the impossibility to decrease the

radiation dose administered to the patient [8]. Other disadvantages include the lack of image pro-

cessing and high cost of capturing the images, as with DR, the hospitals save money from lower

film costs and lesser staff required to run the services. The film used is labour intensive, expensive

and uses chemical processors, which contain hazardous materials, leading to higher costs when
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compared to DR. Additionally, long term storage is difficult and the use of digital data archives

is not compatible with SFR, in which the acquisition, processing and storage of the image are all

done through the film. DR has the advantage of being available in digital format, which eliminates

the need for storage and treatment rooms, saves time and allows for data exchange between clin-

icians and immediate access to archives. Additionally, DR is highly optimizable, as each of the

four steps can be optimized separately. It is also faster, the imaging plates are reusable, the images

do not deteriorate over time and can be processed for further analysis, avoiding another exposure

to the patient.

2.2 Chest Radiography Imaging and Analysis

Plain radiography is a very cost-effective method of diagnosing and detecting pathologies and

other findings. Besides, it is very accessible, as every hospital or medical clinic has radiographic

equipment, and it can be portable. Portable X-ray machines provide care to patients in nursing

homes, prisons and other facilities where taking the patient to a hospital is challenging [11]. Plain

radiographs have also one of the best spatial resolutions (0.1mm) of all the imaging modalities.

X-ray images are used to diagnose and follow-up various types of conditions in a wide range of

parts of the body. The most commonly analysed area is the chest with an average for 36 European

countries of 194 images per 1000 of population every year, when compared to a frequency of

1100 X-ray examinations per 1000 of population for general X-ray procedures [12]. The number

of CXR exams performed in 2015 in Portugal was around 3,6 million, while the European average

for CXR exams was 109 million in the same year.

2.2.1 Other Chest Imaging Modalities

Given the wealth of clinical information that can be obtained from a single chest exam, there are

naturally other imaging techniques that collect information in different ways, such as the com-

puted tomography (CT), fluoroscopy, positron emission tomography (PET) and magnetic reso-

nance imaging (MRI).

CT is an X-ray based non-invasive imaging technique that combines multiple X-ray images

into a transverse two-dimensional view of the scanned area, which is used along with other parallel

images to reconstruct a 3D volume CT image. The final result is a set of two-dimensional slices of

a three-dimensional section [13]. Some of the advantages are its excellent depiction of anatomic

detail, very fast exam time, possibility to examine organ enhancement as well as blood vessels

with intravenous (IV) contrast and the three-dimensional view. However, it is relatively expensive,

it may require IV contrast and it requires a higher dose of radiation when compared to plain

radiography.

Fluoroscopy is a radiographic technique where several X-ray images are taken continuously to

create an X-ray sequence with the use of a contrasting agent that is injected into the patient. The

sequenced X-ray images allow the radiologist to have a detailed view of the path of the contrasting

agent or the movement of a body part. This technique has its benefits, such as a detailed view
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of several procedures in blood vessels, such as the implantation of stents, orthopedic surgery or

barium X-rays to view the gastrointestinal tract. However, the patient can be exposed to X-rays

for a long period of time for more complex procedures, resulting in a high dose of radiation being

absorbed. Therefore, fluoroscopy procedures should be performed during a minimal time to avoid

radiation risks [14].

PET is a noninvasive imaging modality that provides physiological information through the

injection of radioactive tracer compounds (radiotracers), detection of radiation, and reconstruction

of the distribution of the radiotracer [15]. On one hand, this technology can provide information

that other methodologies can not, such as increased activity in the cells by absorption of a larger

quantity of radiotracers, indicating disease. Additionally, it can be combined with CT to provide

further information and complement the other technique. On the other hand, there are fundamental

trade-offs between resolution and noise and the quantitative accuracy of the measurements. Fur-

thermore, PET requires a higher radiation dose when compared to the other conventional imaging

techniques and is more expensive.

MRI is a non-invasive nuclear imaging technology that produces three-dimensional images

of anatomical structures. The technology is based on the physical principle of "spin", exciting

and detecting the change in the direction of the rotational axis of protons present in the water of

living tissues. This technology is very expensive and is not widely available, with long waiting

lists. Additionally, it is susceptible to the movement of the patient, due to its long examination

period, and it requires preparation from the patient. Nevertheless, it allows for multiplanar and

three-dimensional imaging, it produces high quality images, including images of soft tissue and

organ contrast differences, and it requires no radiation [16].

When compared to these modalities, plain radiography has the advantage of requiring lower

radiation doses, being widely available and cheap, and requiring very little preparation, making it

ideal in screening and triage scenarios.

2.2.2 Chest Radiography in Clinical Practice

The thoracic cavity is enclosed by the spine, ribs and sternum, and the diaphragm separates the

organs in the cavity from the abdomen. As shown in Figure 2.3a, it encloses the lungs, the heart,

the aorta and esophagus among other organs. The pleura is a membrane that lines the whole

extent of the thoracic cavity, covering the inside wall of the rib cage and spreads to the lungs. The

purpose of the pleura is to lubricate the lungs by producing a liquid, protecting the lungs from

friction during respiration [17].
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(a) Anatomy of the chest cavity [18] (b) CXR image

Figure 2.3: Thoracic cavity

Given the complex anatomical structures observable in a CXR image, a number of radiological

findings can be observed by radiologists to infer a diagnosis. Some of the pathologies whose

diagnosis is performed with or supported by CXR images are pneumonia, emphysema and cancer

and it is through the analysis of these findings, together with other relevant clinical parameters

(anamnesis, clinical reports, other exams, etc.) that can lead to a diagnosis. The same CXR image

can, naturally, have multiple of these radiological findings. The main findings observable on

CXR are described in Table 2.2, grouped into four categories related to the underlying anatomical

structure where the findings are observed.

Heart and Greater Vessels

A classified enlarged mediastinum can result from findings such as the enlarged cardiomedi-

astinum, cardiomegaly and a hilar prominence. An enlarged cardiomediastinum occurs mainly

due to a cardiomegaly, which is an enlargement of the heart that occurs due to an increase in the

transverse diameter of the cardiac silhouette, resulting in it being greater than or equal to 50% of

the transverse diameter of the chest (increased cardiothoracic ratio) on a posterior-anterior projec-

tion of a chest radiograph or a computed tomography [19]. A hilar prominence is a unilateral or

bilateral enlargement of the hila, which consist of vessels, bronchi and lymph nodes.

Lung Opacities

Findings related to lung opacity can result from infiltration and fibrosis (lung opacity), atelecta-

sis, lung lesions (masses and nodules), pneumonia, consolidation and edema. These pathologies

translate to the presence of denser material or structures, resulting in a higher level of opacity.

According to Barratt et al., pulmonary fibrosis is an interstitial lung disease characterised

by chronic, progressive scarring of the lungs and the pathological hallmark of usual interstitial
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pneumonia [20]. Pulmonary infiltration can have several infectious and non-infectious causes,

such as acute leukemia, and it is defined as the presence of an abnormal substance that gradually

accumulates in the tissue.

According to the National Heart, Lung and Blood Institute, lung atelectasis occurs when

there’s a collapse or incomplete expansion of pulmonary parenchima. This can happen due to

conditions such as complete obstruction of an airway or due to a pneumothorax or pleural effu-

sion, which limit the lungs’ capacity to expand [21].

Masses and nodules are denser portions of mass that can be found in CT scans and in CXR

images. Some of these nodules and masses may represent early disease and, importantly, can

indicate lung cancer, which requires prompt diagnosis and definitive treatment.

Pneumonia is an infection caused by bacteria, virus of fungi. CXRs are commonly used to

search for pneumonia because it is possible to distinguish it from other tract infections with this

imaging modality [22].

Consolidation occurs when the alveoli and small airways in the lungs get filled with denser

material. This can happen due to an infection, presence of blood, fluid or a cell mass.

CXR is also one of the most common methods to identify pulmonary edema. Pulmonary

edema is defined by an abnormal accumulation of extravascular fluid in the lung parenchyma. This

process leads to a diminished gas exchange at the alveolar level, progressing to potentially causing

respiratory failure. It can be split into cardiogenic or noncardiogenic pulmonary edema [23].

Lung Pleura

Another set of findings relate to the pleura, such as pleural thickening, pneumothorax and pleural

effusion. These pathologies relate to accumulation of air or fluid inside the pleura, which can

result in a limited expansion of the lungs.

Pleural thickening occurs due to the presence of scar tissue in the lining of the lungs or the

pleura. According to [24] it is the most common finding in CXR images.

A pleural effusion is an excessive accumulation of fluid in the pleural space, indicating an

imbalance between the fluid production and removal by the pleura. This finding can have several

causes, such as cancer, cirrhosis or tuberculosis [25].

Pneumothorax can be caused by physical trauma to the chest or as a complication of medical

or surgical intervention (biopsy). Symptoms typically include chest pain and shortness of breath.

Diagnosis of a pneumothorax requires a CXR or CT scan.

Other Findings

Other findings do not relate to one of the previous groups, such as fractures, medical devices, her-

nias and emphysemas. The identified medical devices are usually pacemakers or other prosthetics.

As for hernias, a hiatal hernia is a condition in which parts of the abdominal contents, mainly the

gastroesophageal junction and the stomach, are proximally displaced above the diaphragm through

the esophageal hiatus into the mediastinum [26]. The other condition, pulmonary emphysema, is
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a progressive lung disease in the form of chronic obstructive pulmonary disease, characterized by

respiratory and airflow limitations usually caused by abnormalities, due to significant exposure to

noxious particles or gases, such as the ones inhaled when smoking [27].

CXR images can have one or several pathologies, ranging from smaller areas of disease, such

as masses or nodules, to larger areas such as the ones affected by an enlarged cardiomediastinum.

Because of the extensive complexity of these images, radiologists spend large amounts of time

analysing and labeling CXR images, still with uncertain results [28]. Additionally, as mentioned

before, CXR is the most performed radiological exam worldwide, resulting in large numbers of

exams to analyse and diagnose. These two factors combined result in a very time consuming

and inefficient task. Thus, one of the solutions proposed for huge resource consumption is the

implementation of automatic CXR pathology diagnostics systems [29].

Figure 2.4: Eight common thorax pathologies found in the ChesX-ray8 dataset [30]

Figure 2.4 shows a set of commonly recurrent pathologies in the CXR images found in the

one of the available public CXR datasets, ChestX-ray8. These images show the complex and,

therefore, time consuming work performed by radiologists. As can be concluded, there is a need

to develop automated systems capable of performing the classification of pathologies in these

images.

2.3 Automatic Chest Radiography Analysis

Automatic computer aided systems for detection and diagnosis in CXR images can be based on

traditional image analysis techniques, however, deep learning or machine learning methods have

shown to be more accurate and have been evolving due to the advancement of new image signal
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processing and more advanced methods. Traditional Computer Aided Diagnosis (CAD) systems

rely on the manual extraction of visual features from image segments, so called rule-based pro-

cessing as described by Bram van Ginneken [31]. Machine learning algorithms have the potential

to be better alternatives against rule-based processing, however, feature extraction is still decided

by the programmer and not by the computer. Deep learning differs from both methods in the way

that it takes the images as inputs and puts them trough a network, passing them through multiple

layers of processing steps and transforming them, having the feature extraction process occur in

the intermediate layers of the network. Convolutional neural networks are considered the most

promising path for the combination of feature extraction and classification in one [31].

Machine Learning

Machine Learning algorithms are systems that can learn and improve from experience without

being explicitly programmed to do a task. These systems are based on a selection of features

relative to the given data that are specified by the user, allowing the computer to learn and find

patterns in the given data, resulting in the capability of making decisions based on that data.

Machine learning algorithms are divided into two fields: supervised learning and unsuper-

vised learning. The former is a learning method based on labeled data, learning the input and

the outcome and being able to learn from past examples in order to apply that knowledge to new

unlabeled data using the labels of past data. The system is able to provide predictions for any

new input after sufficient training. As for the latter, unsupervised learning methods receive data

without labels, exploring it drawing inferences from datasets to describe hidden structures from

unlabeled data [32].

In the medical research field, machine learning algorithms are used for image segmentation,

abnormality detection and diagnosis of specific diseases, such as tuberculosis, lung nodules and

Covid-19 [33]. In [34], an overview of the automatic machine learning based lung nodule detection

systems was performed, collecting 41 studies related to the topic. Al-Timemy et al. propose a

method based on machine learning for the detection of Covid-19 and tuberculosis in CXR images

in undeveloped resource-limited countries [35].

Deep Learning

Machine learning algorithms fail to represent the wide array of pathologies encountered in the

clinical environment. Increasing computational capabilities have led to the development of deep

learning approaches with larger capabilities and better performances, making way for the devel-

opment of multi-label detection approaches.

Deep Learning is a subset of machine learning with an increasing popularity for diagnostics

systems and automatic pathology detection. It uses successive layers of representations to find hid-

den features and patterns in data. While in machine learning algorithms, the features are supplied

by the programmer, in deep learning models the whole learning process is done through the use of
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layered networks. Deep neural networks find the input-to-target pathway via a deep sequence of

simple data transformations that are learned by exposure to examples [36].

Automatic CXR pathology diagnostics systems can be divided into two groups: abnormality

detection and multi-label thoracic pathology classification systems. Abnormality detection sys-

tems classify CXRs as being normal or abnormal, where abnormal signifies that the patient is

not healthy or at least one pathological finding was found. As for the multi-label classification

systems, these identify the presence or absence of one or several pathological findings.

Abnormality detection systems are focused on more urgent abnormal cases, helping clinicians

to manage their time. However, many CXRs have more than one pathology and single-label clas-

sification approaches are not adequate to evaluate these cases. With this problem in mind, multi-

label classification approaches are being developed with the intent of covering many pathologies

and not letting a major condition pass by unnoticed.

Regarding the abnormality detection approaches, Yates et al. proposed an algorithm based

on Google’s Inception convolutional neural networks (CNN), using transfer learning, such as the

method proposed by [37], to overcome the computationally expensive task of training a CNN

from scratch and training the binary normality classification of plain film CXR on the final layers

of the neural networks [38]. For this approach, two datasets were used, the ChestX-ray14 database

and the Indiana University hospital network chest radiograph (Open-I) database, having selected

a mixed training set of frontal CXR images. In this approach, the authors did not use image

augmentation, deeming it an unfit representation of the real-world dataset of CXR images. The

end result of this approach showed promising results, having a final model accuracy of 94.6%,

sensitivity of 94.6% and specificity of 93.4% with an Area Under the Curve (AUC) of the Receiver

Operating Characteristic (ROC) of 0.98.

Tang et al. presented a comparison between several already established CNN-based algo-

rithms trained with the ChestX-ray14 database for binary image classification [3]. In this paper,

the algorithms being compared are AlexNet, VGG16, VGG19, ResNet18, ResNet50, Inception-

v3 and DenseNet121. All CNN’s were both trained from scratch and also used transfer learning,

pretraining with ImageNet, however the pretrained approaches outperformed the methods trained

from scratch, having better AUC values. As for the comparison results, AlexNet achieved inferior

results and DenseNet achieved the best results of all tested methods. The authors concluded that

deeper neural networks do not significantly influence the performance of the binary classifica-

tion task. Nevertheless, Dunnmon et al. concluded that while for larger datasets transfer learning

methods or trained from scratch methods do not differ in accuracy, for moderate sized datasets

this factor sets a significant difference in performance. The authors also presented a comparison

between off-the-shelf methods, namely AlexNet, ResNet, and DenseNet. In this paper, ImageNet

weights were used for pretraining. The final results showed a better performance for binary clas-

sification by the DenseNet algorithm [4].

Other approaches are based on alternative deep learning models, such as the approach pro-

posed by Tuluptceva et al.. It consists of an autoencoder-based model, which values a subset of

anomalous images to select the model’s hyperparameters, on the contrary to common methods,
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conveying a more flexible understanding of normality. Additionally, the authors chose to per-

form optimization with regard to perceptual loss in the regime of progressive growing training.

Consequently, the deep perceptual autoencoder is capable of learning common patterns between

normal observations and so accurately restore them, using the perceptual loss function to measure

pattern dissimilarity [6]. In line with this method, Mao et al. propose a binary classification sys-

tem based on autoencoders to take normal CXR images as inputs and simultaneously output the

reconstructed input image along with the estimation of the pixel-wise uncertainty in reconstruc-

tion [5]. The reconstruction of normal images is prone to relatively large reconstruction errors

around the boundaries of different regions, resulting in false abnormal classifications. This way,

abnormal images can be identified considering the uncertainty-weighted reconstruction error as a

measurement for abnormality presence.

As these methods evolve, different approaches emerge. In the case of the work developed

by Tang et al., the authors propose an architecture for abnormal chest X-ray identification using

generative adversarial one-class learning. In this approach, three deep neural networks are trained

with normal CXR images while competing and cooperating to better model the underlying struc-

ture of normal images, resulting in a model fitted to properly reconstruct normal images and poorly

reconstruct abnormal images [3].

As mentioned, several classification systems try to identify one or several pathologies in CXR

images, the multi-label classification systems.

Guan et al. proposed a multi-label pathology classification approach based on a three-branch

attention guided CNN [39], similar to the one proposed by [30]. Since some of the most common

pathologies lie in a smaller area of the CXR images, the noise of the irrelevant part of the image can

significantly impact the learning of the model. However, focusing only on the disease area can lead

to information loss. The solution proposed by the authors consists of a global and a local branch

classification networks, complementary to each other, where the global branch is trained with the

global images and the local branch with the cropped disease area, being both fused together in a

final fine-tuning network. In a similar work, Chen et al. propose a classification method based

on two asymmetric subnetworks, a ResNet and a DenseNet, that complement each other with the

asymmetric features collected by each network [40]. Each network learns different features from

several pathologies. Both asymmetric feature sets are later fused in a third classifier, preserving the

complementary discriminative features, and being evaluated by a unified loss function, speeding

up the convergence of the training phase. The authors also support an iterative training strategy,

optimizing each asymmetric stream alternatively, effectively improving the generalization ability

of the proposed approach.

Lastly, Zhang et al. introduce a classification algorithm based on the use of weakly supervised

distance learning to learn discriminative features from triplets of images and region verification

module that feeds back class-specific common attentive regions [41]. The purpose of using dis-

tance learning is to set images with common pathologies in a nearer feature space. As for the

region verification, the authors propose to feed another region classifier with the common atten-

tive regions.
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The methods mentioned above show the capabilities of deep learning algorithms in multi-

label classification problems and show the progressive growth in the variety of these method in the

search for the best solution.

2.3.1 Datasets

Given the dependence of deep learning in large amounts of data, an effort has been made by

several entities to create larger and higher quality CXR datasets. These enable the improvement

of the overall deep learning models’ performance, and a higher level of state-of-the-art methods

for automated diagnosis systems.

Nº of findings Nº of samples Image label Label Method

ChestX-ray8 [30] 8 108 948 Global and Local NLP

ChestX-ray14 14 112 120 Global NLP

CheXpert [42] 14 224 316 Global NLP

MIMIC-CXR [43] 14 377 110 Global NLP

VinDr-CXR [44] 28 18 000 Local Manual

Table 2.1: List of the five largest CXR datasets with corresponding number of images, labels and
labelling method

One of the most used dataset is the ChestX-ray8. This dataset comprises 108 948 front-view

CXR images collected between 1992 and 2015 from 32 717 different patients, as shown in Table

2.1. Each image is labeled with one or several of the eight most common disease labels. The

images were diagnosed and classified by radiologists, with some of them containing local labels.

The corresponding labels for the images were mined using Natural Language Processing (NLP)

algorithms from the medical reports [30].

Later on, the ChestX-ray8 evolved into the ChestX-ray14. The improved dataset became the

largest and highest quality dataset available in 2017, with 112 120 images from 30 805 unique

patients, labeling 14 instead of 8 common pathologies. This dataset was created by the National

Institutes of Health (NIH) and is widely used by the state-of-the-art methods for automatic pathol-

ogy diagnosis systems [45].

Developed in 2019, the MIMIC-CXR dataset is the largest CXR images dataset, with 377 110

front-view and lateral-view images taken from 65 379 patients between 2011 and 2016 from the

Beth Israel Deaconess Medical Center. Each image was diagnosed and classified by a radiologist.

The extraction of the labels for each image also derived from two NLP algorithms applied to the

radiology reports associated to each image [43, 46].

Besides the datasets mentioned, there is also the CheXpert dataset. This public dataset labels

the images with one or several of 14 common pathologies, similar to the ones used in the ChestX-

ray14 dataset, however there are additional labels for medical devices and fractures. The dataset

is comprised by 224 316 front-view and side-view CXR images collected from 65 240 patients
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between 2002 and 2017 by the Stanford Hospital [42]. The labeling for the CheXpert images is

done using an automated rule-based labeler.

Lastly, the VinDr-CXR dataset is the most recent collection of images available. It contains

more than 100 thousand CXR images. Nevertheless, this dataset is still unlabeled for the majority

of the images. In December 2020, a set of 18 000 images manually labeled by radiologists was

released to the public, becoming the largest dataset to be manually labeled, containing bounding

boxes limiting the region of the identified finding [44].

The identified labels of each dataset are shown in Table 2.2.

2.4 Towards Robust Chest Radiography Pathology Detection

The search for highly accurate automatic CXR pathology detection systems has proven to show

promising results, as mentioned in the related work. Nevertheless, these systems still pose some

limitations regarding the models and the datasets. The limitations seen in the developed models

are taken into account in the modern developments for promising models, however, the limitations

with the datasets are harder to solve, due to the fact that the datasets are created by a singular

entity.

The current available datasets provide large amounts of high-quality information to be used

in automatic CXR pathology detection systems, however, there are still several barriers to be

overcome. The datasets mentioned above are limited by a list of predefined labels without the

location of the findings, lacking the ground truth location for the abnormalities. Some datasets,

such as the VinDr and the ChestX-ray8 datasets, have a very limited set of images with bounding

boxes to locate the findings, but with a high inter-observer variability between the radiologists.

Another major problem identified by many authors is the accuracy of the NLP algorithms

for the label retrieval [44]. The NLP algorithms and the rule-based labelers are inconsistent,

uncertain and can deliver wrong labels, still being unclear on how to annotate the large amounts

of images, which can result in a poor performance of the deep learning models [47,48]. Although

the larger datasets provide large amounts of images, the labels are not accurate in some cases. As

for the datasets that have manually labeled images, most still lack the size of the larger datasets,

however, the VinDr dataset is an example of an acceptably large dataset manually labeled on local

regions [49].

As stated by [40], having global images as inputs to train new deep learning models leads to

a lot of noise-related features, due to the complicated background. The excess noise can generate

distractions and misguide the learning phase of the models. Additionally, noisy backgrounds

hinder the task of detecting smaller abnormalities, such as masses or nodules.

Another noise-related problem mentioned by Guan et al. is the existence of irregular borders

in the CXR images, due to poor alignment of the patient. This can result in a significantly negative

effect on the classification accuracy [39].

The major problem that still cannot be solved by an optimized labeling algorithm is the class

imbalance. Some pathologies are much rarer than others, resulting in an insufficient amount of
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images to be used for training the deep learning algorithms. This uneven division leads to poor

performance in the detection of some pathologies. Parallel to this notion of the lack of information

on the location of the findings, is the lack of explainability. Deep learning algorithms have a black-

box nature, which limits the clinical use of developed algorithms. Explainability is defined as a

set of domain features such as pixels of an image that contribute to the output decision of the

model. These models lack the ability to explicitly represent the knowledge for a given performed

task. This limitation fails to assure the transparency and fails to gain the trust of the medical

community [50].

Additionally, these algorithms find patterns, such as annotations or the positioning of the pa-

tient, that are not based on legitimate features, leading to a biased classification. These biased

decisions can affect the whole database or just some classes or features. For this reason, it is

necessary to have some degree of explainability to assure the correct unbiased decision by the

system.

Regarding the poor alignment of the CXR images, despite it being a setup difficulty and not

a technical one, some solutions include discovering the lesion region by mapping or dividing the

image in separate segments and training each segment individually.

Generative models are able to artificially create new CXR images based on real normal and

abnormal images. These images can be used for training, increasing the amount of minority class

images containing rare pathologies and decreasing biases present in the datasets, while avoiding

the privacy concerns associated with the use of real images in clinical testing. Roth et al. demon-

strate the end result of applying data augmentation strategies by comparing the same models with

and without it [51]. Furthermore, these models can provide some explainability of the decisions

made by the deep learning solutions, by generating examples and counterexamples, which have

strong similarities and lack the similarities, respectively, to the images being analysed. This feature

is of great importance to understand the decision for each image.

With all of the above arguments in mind, the proposition of this dissertation is to use generative

models to create new CXR examples to balance the uneven distribution of the abnormality classes,

provide explainability for each decision, decrease bias in the dataset, eliminate heterogeneous

setup and appearance of CXR across datasets, and to create a method of obtaining new realistic

images for data augmentation.
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Chapter 3

Automatic Image Generation in Chest
Radiography

In this chapter, the state-of-the-art of the generative models will be presented. Additionally, the

applications of generative models in CXR images will also be described.

3.1 State of the Art in Image Generation

Given its potential applications, artificial image generation has been the subject of extensive re-

search and literature. Besides what is discussed in Section 2.4, image generation could be used for

image synthesis, reconstruction, segmentation, noise reduction and classification purposes [52].

Given a set of images, generative models aim at artificially generating new images by learning

the distribution of the training data. Based on unsupervised learning, generative models generate

data from a vector of random numbers, called latent space. However, some models can generate

images from other images. The learning phase of a generative model assures that the model creates

a correct sample based on the features of the training set. The generative process of data retains

value due to the fact that it naturally expresses casual relations of the context of the data, instead

of just generalizing from mere correlations [53].

The most commonly used generative models are Variational Autoencoders (VAE) and Gen-

erative Adversarial Networks (GAN). While for GANs the focus is on how to arrive at a model

that approximates the input distribution, VAEs attempt to model the input distribution from a de-

codable continuous latent space [54]. This is one of the reasons why GANs are able to generate

more realistic data when compared to VAEs. GANs produce high-resolution and realistic-looking

images, while VAEs generate images that are less sharp. The major disadvantage of GANs is the

proven difficulty of efficiently and correctly training the models. However, with the correct stable

training, GANs have a powerful capability of generating new data that cannot be met by a VAE or

other generative models. For these reasons, the state of the art of this section is limited to GANs

and these will be the main tools used for the generation of high quality and resolution CXR images

in this dissertation.

21
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Generative Adversarial Networks were first proposed in 2014 by Ian Goodfellow [55]. A

GAN is an unsupervised learning method, meaning that it can be trained with unlabeled data and

learn density distribution of data, the internal representations, generating samples that are closely

similar to real data.

GANs are capable of generating artificially realistic sets of data such as images or sounds. The

particular characteristic about GANs is the adversarial component of the network. This algorithm

learns through a process of iteration between a generator (G) and a discriminator (D). When used

to artificially generate images, G iteratively learns to create better quality images, both at the pixel-

level details and at the larger scale features. D, on the other hand, is a classifier network whose

purpose is to classify the image created by G as real of fake.

Figure 3.1: Simple GAN representation: Generator and Discriminator [54]

G captures the data distribution and D estimates the probability of a sample coming from

the model distribution or the data distribution [55]. The rationale behind the training of G is to

maximize the probability of the classification by D being a mistake.

One of the most commonly used comparisons for GANs is the one of a counterfeiter artist

and an art expert. G, the counterfeiter, tries to replicate a certain painting style from an artist by

learning from completed artwork. D, the art expert, classifies the forged artwork as looking real or

fake, and both G and D learn from this feedback, iteratively improving the quality of the paintings

created until D can no longer distinguish a real from a fake.

The process consists of the input of a noise vector into the generator network, resulting in an

artificially generated image. Meanwhile, the discriminator receives a generated sample or a true

sampled data. The discriminator network labels the valid or real data with 1.0 and the fake data

with 0.0, meaning a 100% probability of it being sampled from the real data and 0% probability of

it being real, respectively. The discriminator network learns from the supplied dataset on how to

distinguish real data samples from generated ones and its parameters are updated with the input of

real and fake data. Occasionally, the generator network creates an artificial batch of samples that is
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fed to the discriminator network as real data and the discriminator should classify it as fake. At this

time, the GAN will let the backpropagation of the gradients from the last layer of the discriminator

network to the first layer of the generator network. However, during this iteration, the discriminator

parameters are temporarily frozen. The goal of the process for the generator is to iteratively learn

from the feedback of the discriminator network, improving gradually. Once the discriminator

network can’t distinguish the generated sample from real sampled data, the generator’s learning

phase is complete and the discriminator is discarded [54]. At this point the generator network is

capable of generating artificial samples with a realistic look and high quality.

(a) Training process of the Generator network (b) Training process of the Discriminator network

Figure 3.2: Training phase of the two networks that constitute a GAN [54]

The training process of the overall model is often described as a zero-sum game, known as min-

max game. The discriminator network can be trained by minimizing the loss function described

by Equation 3.1. The loss function is a standard binary cross-entropy cost function. The training

cost is evaluated based on two differentiable functions, one for each network, where the loss is

defined by the negative sum of the expectation of successfully identifying real data, D(x), and that

same expectation of 1.0 minus correctly identifying the synthetic data, 1-D(G(x)). It is described

by the loss function L, that depends on both networks. Real data labeled with 1.0 is defined as

x∼ pdata and z is the noise vector used by the generator.

L(G,D) = Ex∼pdata logD(x) +Ezlog(1−D(G(z))) (3.1)

To minimize the loss function, the discriminator parameters, represented by D, are updated by

backpropagation, by correctly classifying the real data, D(x), and artificial data, 1-D(G(z)), where

correctly identified real data translates to D(x) being close to 1.0 and correctly identifying fake

data is equivalent to D(G(z)) being close to 0.0.

Due to the loss function being a zero-sum game, the generator loss function is the negative of

the discriminator loss function:

L (G) (G,D) = −L(D) (G,D) (3.2)
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converted to a value function:

V (G) (G,D) = −L(D) (G,D) (3.3)

According to Equation 3.3, the equation should be minimized, from the perspective of the

generator, and maximized, from the discriminator’s point of view.

G∗ = min
G

max
D

V(G) (G,D) (3.4)

Periodically, the generator tries to fool the discriminator by feeding a fake data sample with

a label of 1.0. By maximizing with respect to D, gradient updates are sent to the discriminator

parameters to consider the fake data as real. Simultaneously, by minimizing with respect to G, the

generators parameters are trained on how to fool the discriminator network. The gradient updates

are small and increasingly diminished as they propagate through the generator’s layers, sometimes

leading to non-convergence, which consists of both networks’ parameters failing to stabilize and

converge. The loss function of the generator results in:

L (G) (G,D) = −Ez logD(G(z)) (3.5)

This function maximizes the probability of the discriminator network believing the artificial

data is real, by training the generator.

3.1.1 Deep Convolutional GAN

GANs are known for being unstable at training, which often results in a generator that produces

wrong outputs, and are affected by several factors:

• mode collapse, defined by the generation of different samples from the latent space to the

same output, resulting in similarly generated images,

• diminished gradients, where the discriminator network learns at a fast pace and becomes

successful, resulting in a vanishing gradient in the generator network,

• a stage of non-convergence, where the generator and the discriminator fail to stabilize and

converge,

• high sensitivity to hyper-parameters.

The Deep Convolutional GAN (DCGAN), firstly proposed by Radford et al., is a CNN based

GAN that became a success at improving the training stability of GANs [56]. The most notable

change regarding this method is the swap of the maxpoolings with strided convolutions in the dis-

criminator network and fractionally strided convolutions in the generator network. This allowed

the CNNs to resize the feature maps. Apart from this change, several other aspects are character-

istic from the DCGAN such as:
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• Avoiding Dense layers, replacing with CNN in all layers, except the first layer of the gener-

ator, for it accepts the z-vector

• The batch normalization, used for stabilizing learning by normalizing each layer’s input to

have zero mean and unit variance

• Rectified Linear Unit (ReLU) is used in all layers of the generator network, except in the

output layer, which uses Tanh

• Leaky ReLU in all layers of the discriminator [54]

• Adam optimizer instead of Stochastic Gradient Descent with momentum [57]

.

3.1.2 Conditional GAN

With the DCGAN there is no control over the specific output to be produced by the generator.

There is no mechanism for requesting a specific output, therefore the generated images are random

and cannot be used to fulfill a specific purpose or request.

Conditional GANs (CGAN) are based on DCGANs. A CGAN differentiates itself from the

original architecture by the addition of an imposed condition label to the generator and the dis-

criminator. CGAN is similar to DCGAN in most of its extent except for the additional one-hot

vector input. For the generator network, this label is concatenated with the first layer, and with

the discriminator network, a new layer is added. This layer has the sole purpose of processing

the one-hot vector for the discriminator. The fundamental working principle of a CGAN is the

same as the original GAN, however, the generator and discriminator networks are conditioned on

one-hot labels.

An example of the application of the CGAN is the generation of digits, such as the developed

work with the MNIST dataset [58], where a CGAN would generate specific digits conditioned by

the one-hot labels [54]. Another use of the CGAN in the medical domain is described in [59] for

the task of lung segmentation on a given CXR. The CGAN was trained to generate a segmented

mask of a given input CXR, while being as realistic as possible compared to the ground truth

masks.

Taking into account the incorporation of the condition, the resulting loss function for the dis-

criminator and generator are shown in Equation 3.6 and 3.7, respectively:

max
D

min
G

V (D)(G,D) = Ex∼pdata(x) logD(x|y) +Ez∼pz(Z) log(1−D(G(z|y))) (3.6)

max
D

min
G

V (G)(G,D) = Ez logD(G(z|y)) (3.7)

The improved loss function from the discriminator network aims at minimizing the error of

falsely predicting the true label of images, real images sampled from the dataset and fake generated

images, given their one-hot label.
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Figure 3.3 shows an illustration of the training phase of a CGAN’s discriminator network,

where both the generated and real images are conditioned with their corresponding one-hot label.

Figure 3.3: Training of the CGAN discriminator, where both the generated and real images are
conditioned by a one-hot label [54]

As for the training phase of the generator, shown in Figure 3.4, it aims at minimizing the

correct prediction of the discriminator on fake one-hot labeled conditioned images. The genera-

tor network learns how to generate a specific image according to its one-hot vector, fooling the

discriminator.

Figure 3.4: Training of the CGAN generator, where both the generated fake images are condi-
tioned by a one-hot label [54]

The Auxiliary Classifier Generative Adversarial Network (ACGAN) is a type of CGAN, pro-

posed by Odena et al., that differs from the original CGAN at the input and output levels [60].

The input to the discriminator is an image, whilst the output is the probability that the image is

real and its class. Instead of feeding the side-information (label) to the network, which is done in
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the CGAN, the ACGAN tries to reconstruct the side-information with an auxiliary class decoder

network [54].

Besides the above mentioned GANs, there are other conditional GAN models, such as the

InfoGAN [61] and the Semi-Supervised GAN [60].

3.1.3 Style GAN

The StyleGAN is a style-based GAN, meaning it is able to control several scale-specific features

in an image, generating very high-quality images with control over very fine detail. This model

can introduce higher levels of image sharpness and control than other conditional-based GANs.

The StyleGAN algorithm, firstly proposed by Karras et al. [62], is based on the original GAN

architecture, with a resembling baseline configuration from the Progressive GAN (ProGAN) [63].

This algorithm has the fundamental aim of controlling the image synthesis process, motivated by

style transfer, first proposed in [64].

Unlike most GAN architectures that attempt to improve the discriminator and its training, the

StyleGAN aims at improving the generator network, even without modifying the discriminator or

the loss function. The generator network starts with a learned input and adjusts the style at each

convolution layer, based on the latent code, which allows it to control the weight of image features

at a wide range of scales, modifying high-level attributes as well as stochastic features, such as

hair strands and freckles on a human face [62].

The common method of introducing the latent code in the generator is done through the input

layer, however, in the StyleGAN, the input layer is omitted and replaced by a learned constant. The

generator network embeds the input latent code, z, into an intermediate latent space, W, through

a non-linear mapping network, which has a significant weight on how the factors of variation

are represented in the network. The intermediate latent space W controls the generator through

adaptive instance normalization (AdaIN) at each convolutional layer [65]. Figure 3.5 shows the

architectural structure of the StyleGAN algorithm.

Each feature map xi is separately normalized, scaled and biased using the corresponding scalar

components from style y. AdaIN is defined by the following equation:

AdaIN (xi,y) = ys,i
xi−µ(xi)

σ(xi)
(3.8)

where, xi is the feature map, y is the style input, σ(xi) corresponds to the variance of the feature

map input and µ(xi) to the mean of the feature map input.

The input latent space must follow the probability density of the training data, which leads

to a limited ability to control visual features with the input vector. This results in a unavoidable

entanglement, due to the model not being capable of mapping parts of the input. However, the

intermediate latent space does not follow the same data distribution and can reduce the correlation

between features, therefore being allowed to be disentangled.
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Figure 3.5: Comparison between the architecture of a conventional GAN and a StyleGAN [66]

This algorithm also allows for mixing regularization where a two latent codes are used to

generate a given percentage of images, instead of having just one latent code, during training. The

process of switching from a latent code to another is referred to as style mixing.

As for the stochastic features, common GANs receive only one input of random noise through

the input layer. Thus, the generators still have to find a way to generate spatially-varying pseudo-

random numbers from earlier activations whenever they intend to implement stochastic variation.

This additional process can cause a loss of control over other features due to feature entangle-

ment. StyleGANs controls the stochastic variation by adding per-pixel noise after each convolu-

tion, which allow for available noise in each layer, disregarding the need for generating stochastic

features from earlier activations, leading to a localized effect.

3.1.4 Few-shot Image Generation

State of the art GANs require large computational capacities, large training times and large datasets

to perform at the desired level. Due to the demanding requirements by these large GAN variations,

more compact and lighter GANs are sought after by the scientific community. Several GAN

variations have been developed with the goal of allowing for faster and easier training with few

training samples.

Some methods try to fine-tune larger or more complex models with images from the target do-

main and this task often shows better performance than a model trained from scratch with images
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from the target domain. This is due to the fact that pre-trained models acquire useful weights that

cannot be obtained using a small target dataset.

Nevertheless, due to the limitations of fine-tuning GANs, regarding the number of training

images and distant source and target domains, the training of these models can often lead to poor

results when on small datasets.

Lightweight GAN

The Lightweight GAN (LWGAN), originally developed by Liu et al., is a compact and light un-

conditional GAN that has the ability to converge from scratch with few training hours and small

training sets. In the original paper, it was shown to be able to consistently gain superior quality

on 1024× 1024 resolution images [67], even when compared with state of the art GANs. The

LWGAN is ideal for scenarios where the available datasets are small or with class imbalances

and when the available computational power limits the array of trainable models. Additionally,

fine-tuning pre-trained models can lead to worse performances due to bias, hence the need for a

lightweight and compact GAN.

The demanding conditions of a small dataset and small computational power can lead to a high

risk of over-fitting and mode-collapse. In order to avoid these setbacks, the generator has to learn

fast and the discriminator has to continuously provide useful information to train the generator.

The LWGAN variation differs from the original GAN in that it integrates skip-layer channel-wise

excitation modules and a self-supervised discriminator as a feature-encoder.

Few-Shot GAN

The Few-Shot GAN (FSGAN) is a simple and effective method for adapting GANs in few-shot

conditions (less than 100 images). FSGAN learns to modify the singular values of the pre-trained

weights while freezing the corresponding singular vectors via repurposing component analysis

techniques. This creates a large parameter space for adaptation while keeping changes to the

pre-trained weights limited [68].

The FSGAN trains using a minimal number of training images from a new target domain, a

method for adapting a pre-trained GAN to create unique, high-quality sample images. To do so,

the number of trainable parameters is limited to a few highly expressive parameters that modulate

orthogonal characteristics of the pre-trained weight space.

The network weights of a pretrained GAN (generator + discriminator) are first decomposed

using singular value decomposition (SVD). With fixed left/right singular vectors, the singular

values are then adapted using GAN optimization on the target few-shot domain. The authors

demonstrate that changing single values in the weight space causes semantically relevant changes

in the synthesized image while maintaining natural structure. The FSGAN has better picture

quality after adaptation than other approaches that finetune all GAN weights [69], particular layers

[70], or just alter batch norm statistics [71].
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SinGAN

SinGAN is an unconditional generative model that can be learned from a single natural image [72].

It is trained to capture the internal distribution of patches within an image, and it can subsequently

provide high-quality, diverse samples with the same visual content as the image.

The SinGAN is made up of a pyramid of fully convolutional GANs, each of which is in charge

of learning the patch distribution at a different image scale. This enables the creation of new

samples of any size and aspect ratio with high variability while maintaining the training image’s

global structure and fine textures. It allows to work with complex structures and textures without

having to rely on a database of images belonging to the same class.

SSGAN

The SSGAN is a new strategy for moving the pre-trained generator’s prior knowledge from a large

dataset to a small dataset in a different domain [71]. The model can generate images based on this

previous knowledge, which is something that can’t be learned from a short sample. The strategy

that focuses on the hidden layers in the generator’s batch statistics, scale, and shift parameters. The

GAN achieves stable training of the generator by simply training these parameters in a supervised

manner, and the end model can generate higher quality photos than earlier approaches without

collapsing, even when the dataset is smaller, with approximately 100 images.

The SSGAN focuses on the scale and shift parameters of batch statistics in the generator to

adjust prior knowledge. The active filter in the convolution layer is controlled by these parameters,

and adjusting the scale and shift parameters selects filters that are useful for generating images that

are similar to the target domain. As a result, the SSGAN is a new generator transfer method that

just updates the generator’s scale and shift parameters. The number of images required to train the

generator is decreased by updating only these parameters and fixing all kernel parameters in the

generator.

3.1.5 Image-to-image Translation

While the previously mentioned GANs aim to generate images from a random noise input, image-

to-image translation GANs aim at the conversion of an image of a certain domain into an image

of a different domain [73].

Pix2Pix

The Pix2Pix algorithms bear resemblance to the previously mentioned CGAN, since in this case

the condition of the image is to be translated. The working principle revolves around the idea of

learning the mapping between an input and an output image using a set of training image pairs [74].

Pix2Pix is a generative model that applies a classification strategy to N×N patches of the input

images. This model uses a U-Net [75] for the generator network and a Convolutional PatchGAN

[76] for the discriminator network. Equation 3.9 shows the loss function of the Pix2Pix GAN and
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Figure 3.6 shows an example of the Pix2Pix model. This algorithm is trained by optimizing the

CGAN loss function with an additional factor to measure the similarity between corresponding

real and generated images, L1, which results in a minimized blurring in the generated image.

The weight of the L1 distance term is controlled by the hyper-parameter λ . As for the generator

network, it was trained to maximize log(D(x,G(x,z))), to prevent vanishing gradients.

Figure 3.6: Example of Pix2Pix model translating an image from one domain to another

argmin
G

max
D

Ex,y[logD(x,y)] +Ex,y[log(1−D(x,G(x,z))) + λEx,y,z[||y−G(x,y)||1] (3.9)

Noise is fed trough dropouts in the network, due to the generator being able to learn to ignore

the noise when provided as a direct input. Additionally, the discriminator network’s objective

function is optimized to slow down the learning rate.

The major disadvantage of the Pix2Pix algorithm is the requirement of paired images, which

can be expensive or even impossible to generate.

CycleGAN

Oppositely to the previous method, CycleGANs do not need paired images, for this unsupervised

model can use uncorrelated images, as long as there is a sufficient amount and variation between

source and target data [54].

This generative model is characterized by having two cycles, as shown in Figure 3.7, translated

into four networks, of which two are generator networks, G and F, and the remaining two are

discriminator networks, Dx and Dy.
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(a) Forward Cycle of the CycleGAN (b) Backward Cycle of the CycleGAN

Figure 3.7: Network model of the CycleGAN [54]

Generator G converts data from the source domain, x, to the target domain, y. This generator is

trained by a GAN similar to the original GAN, presented in Figure 3.2a, where the discriminator

network Dy is trained in the same adversarial structure. There is no need for supervised learning,

since only real available images, x, are used in the source domain, and real images, y, in the target

domain.

As shown in Figure 3.7, the forward cycle-consistency network guarantees that the real source

data can be reconstructed from the fake data, which is done by minimizing the cycle-consistency

L1, defined by Equation 3.10. The cycle-consistency check assures that the source data x can be

transformed to the domain y, maintaining the original features of x intact in y and being able to

recover them. The backwards cycle of the CycleGAN is symmetric to the forward cycle, but the

roles of the source data and target data are reversed. The source data becomes y and x the target

data, as well as the generators G and F, in which F is just another generator network that takes

part in the backward cycle. The backward cycle-consistency loss function is as shown in Equation

3.11. In the forward cycle, G was the generator network and F the network used to recover the

data.

L f orward−cyc = Ex∼pdata(x)[||F(G(x))− x||1] (3.10)

Lbackward−cyc = Ey∼pdata(y)[||G(F(y))− y||1] (3.11)

In summary, the ultimate goal of the CycleGAN is for the generator G to learn how to syn-

thesize fake target data, y’, fooling the discriminator, Dy, in the forward cycle. Since the network

is symmetric, CycleGANs intend for the generator F to learn to synthesize fake source data, x’,

fooling the discriminator, Dx, in the backward cycle.

3.1.6 GAN Optimization

The training of GANs is still considered the most challenging aspect of GAN architecture, with it

being an ongoing research topic. Diminished gradients, non-convergence and mode collapse are

some of the common limitations with GAN training. In [77], several processes related to GAN
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training have been highlighted as solutions to improve training and reduce the incidence of the

mentioned limitations:

• Feature matching requires the generator network to generate data that matches the statistics

of real data, making the generator match the expected value of the features on an intermedi-

ate level of the discriminator.

• Minibatch discrimination aims at avoiding mode collapse, by allowing the discriminator to

look at multiple data examples in combination.

• Historical averaging tracks previous model parameters, penalizing changes that largely dif-

ferent from the average changes, which improves convergence.

• One-sided label smoothing replaces the binary classification with a smoothed classification,

replacing 0 and 1 with values such as 0.1 and 0.9, which reduces the vulnerability of neural

networks to adversarial examples [78]. Some authors advise not smoothing fake labels.

• Virtual batch normalization consists of normalizing each input sample to a referenced batch

fixed statistic, which avoids the dependency on other inputs from the same minibatch.

• Progressive growing of GANs consists of progressively growing the generator and discrim-

inator network, starting with lower resolution images and progressively improving training

by adding layers to the networks for the higher resolution details. It starts by extracting the

lower frequency information first and progressively decreasing the scale of the features and

learning more fine scale information. The training process of each newly added layer is also

progressive, with progression in the amount of images passed through the layer, until it is

completely faded, as shown in Figure 3.8 [63].

Loss Functions

Since the original GAN appeared, dozens of newly developed GANs have been proposed. The

majority of these GANs try to optimize the loss function by adding new penalties and other ways

of computing the cost values. Besides the original formulation in Equation 3.1, the Wasserstein

and Least Squares loss functions are the most commonly used for optimizing the learning phase

in a large variety of GANs.

The Wasserstein GAN (wGAN) differs from the original GAN loss function in the discrimina-

tor network, as it does not classify instances into real or fake [79]. In the wGAN, the discriminator

outputs a factor related to the "realness" of images, where a real images gets a higher value than

a fake image. From this point on, the discriminator classifies the level of "realness" and not just a

discriminating factor of either real or fake. The loss function of the wGAN results in the following

equations for the discriminator network and generator network, respectively:

L(D) = −Ex∼pdata Dw(x) + Ez Dw(G(z)) (3.12)
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Figure 3.8: Progressive growing of both the generator and the discriminator network. Starting with
lower resolution images and progressively improving training by adding layers to the networks for
the higher resolution details. It extracts the lower frequency information first and progressively
decreases the scale of the features, learning more fine scale information [63]

L(G) = −Ez Dw(G(z)) (3.13)

The Wasserstein loss provides a useful gradient, allowing for a continued training of the mod-

els. A lower Wasserstein loss equates to a better fake image quality, which means that the genera-

tor network’s goal is to minimize this function. Additionally, to prevent a vanishing gradient, the

generator penalizes the generated images that fall too far form the real images. The discrimina-

tor network is modified to minimize the sum squared difference between predicted and expected

values for real and artificial images:

min
D

(D(x) −1)2 + (D(G(z)))2 (3.14)

The generator network aims at minimizing the sum squared difference between predicted and

expected values, as though the artificial images were real:

min
G

(D(G(z))−1)2 (3.15)

The Least Squares GAN (LSGAN) provides a loss function that penalizes larger errors, which

results in a larger correction rather than a vanishing gradient and no model update [80]. For the

least squares loss function, as long as the fake sample distribution is far from the real sample

distribution, the gradients do not vanish. Thus, the generator network will keep trying to improve
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its estimate of real density distribution even if the fake samples are on the correct side of the

decision boundary [54].

The mean squared error aims at minimizing the generator loss function and, consequently,

fooling the discriminator to incorrectly classify the generated data as real. Minimizing the dis-

criminator loss function implies that the mean squared error between real data classification and

the true label 1.0 should be close to zero.

L(D) = Ex∼pdata (D(x)−1)2 + Ez D(G(z))2 (3.16)

L(G) = Ez (D(G(z)−1)2 (3.17)

3.2 Evaluation

The evaluation of GANs is still an underdeveloped area and an open problem, being one of the

major barriers regarding the development of these algorithms. In order to properly evaluate a

GAN’s performance, it is important to choose evaluation metrics that cover the disadvantages

of each other. Despite there being several evaluation measures, there is no consensus on which

are most adequate and best translate the strengths and weaknesses of GAN models as well as

evaluating the generated image quality. The most commonly used quantitative evaluation methods,

such as FID and IS, are flawed and are therefore often used in conjunction for more comprehensive

and complementary quantitative evaluation methods.

As defined before, the objective function of both the generator and discriminator networks

measures the ability of these networks to perform against each other. While this can be a good

measure for the overall GAN architecture, it isn’t adequate to measure the quality and similarity

of the generated images when compared to the real images. Thus, there is the need for a set of

qualitative and quantitative metric measures.

As defined in Borji et al., qualitative measures, such as having a person distinguish between a

real and an artificially generated image, can be useful for the evaluation of the image from the large

scale point of view [81]. However, such measures may favor models that concentrate on limited

sections of the data. On the opposite end, quantitative measures, while being less subjective, can

relate to other aspects and be more efficient for the overall modeling.

According to [81], a good performance measure should:

• favor models that generate high fidelity samples i.e, the ability to distinguish generated from

real samples,

• favor models that provide diversity of samples, being sensitive to overfitting, mode collapse

and mode drop,

• favor models with disentangled latent space as well as space continuity,

• be sensitive to image-level transformations and distortions,
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• agree with human perception and ranking of the models, and

• have low sample and computational complexity.

With the above characteristics in mind, several GAN evaluating measures have been developed

and studied.

Qualitative Measures

Perceptual studies consist of asking humans to classify images as real or fake and evaluate the

results to create a metric to quantify the quality of the model. Because this method is based on

a subjective evaluation, the results can vary between annotators, the setup or by the use of hand-

picked samples.

Another qualitative evaluation metric is the Visual Turing Test (VTT), firstly proposed by

Geman et al.. It consists of a set of binary questions proposed by the system, regarding a set of

images, and answered by the operator to assess the system’s capability of recognizing objects and

identifying attributes and relationships in images [82].

In [83], the authors performed a VTT to two radiologists to evaluate the generated samples of

CT images with lung nodules for diagnosis of lung cancer, with the goal of evaluating the perfor-

mance of the DCGAN that was developed to generate the images. Both radiologists had a mean

inter-observer agreement for malignant and benign cases of 58.56% and for real and generated

cases of 44.91%, which indicates the algorithm used had the capability of generating high-quality

lung nodules.

Quantitative Measures

The Inception Score (IS) [77] is a classification performance metric and one of the most commonly

used metrics for evaluating GAN models. It was initially proposed as a way to overcome the

downsides of some qualitative methods subject to human evaluation. This metric uses a pre-

trained neural network (Inception net) which is trained on ImageNet [37] to obtain the conditional

label distribution p(y|x). The IS measures two parameters simultaneously:

• Image variation, namely if the generated image is coming from a unique label.

• Meaningfulness of the objects, i.e., if each generated image uniquely looks like a meaningful

sample.

For a given image output, if both the above statements are true, then a high IS is assigned and

if one or both statements are not fulfilled, the IS is low, resulting in a low performance. The

mathematical definition of the IS is shown in Equation 3.18:

IS = eExDKL(p(y|x)||p(y)) (3.18)

where x is the sampled image, DKL is the KL-divergence from the distributions, p(y|x)is the

conditional class distribution and p(y) is the marginal class distribution.
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Despite the advantages of the IS, this evaluation metric still has some limitations [81, 84]:

• The IS is limited by the pre-trained network, being dependent on the classes of the ImageNet

training set. If the classes of the generated image differ from the ones in the training set, the

IS score is low.

• It is sensitive to small variations on the pre-trained weights, meaning the same test set can

have different scores. The randomness associated with the training of a network leads to

different training procedures to produce different weights.

• There is no difference to the IS if the generator replicates the training images or generates

new ones, assigning high scores in either case.

• The IS has no evaluating measure for intra-class variability, meaning the IS will not be

affected in the case of the generator only generating one type of image.

• The IS is an asymmetric measure, which is affected by image resolution.

The Fréchet Inception Distance (FID) [85] is a statistical metric and currently one of the state-

of-the-art measures for evaluating GANs. It is strongly affected by mode collapse and has a

relatively low variance, when given sufficient samples. The FID is based on the Inception network

which extracts features from an intermediate layer, with which the FID between two multivariate

Gaussian distributions with mean µ and covariance Σ is calculated, for both real and generated

images, r and g, respectively. It can be calculated by the following equation:

FID = ||µr−µg||2 + Tr(Σr + Σg−2(ΣrΣg)
1
2 ) (3.19)

where r is the real data distribution, g the generated data distribution, µ r and µg the mean of real

and generated data, respectively, and Σr and Σg the covariance of the real and generated data,

respectively.

The lower bound of the FID scale is zero and it has no upper bound, where a lower FID

indicates a higher similarity between a real image and its corresponding synthetic counterpart,

equating to a high quality artificial image. The FID score is more robust to noise, in other words,

in case of a single generated image per class, the IS is high, however, the FID score does not follow

the same logic and returns the inferior results achieved, making the FID adequate to evaluate image

diversity.

The Kernel Inception Distance (KID) is a metric similar to the FID [86]. Also based on the

Inception network, it measures the dissimilarity between two probability distributions Pr and Pg

using samples drawn independently from each distribution. i.e., computes the squared Maximum

Mean Discrepancy (MMD) between the feature representations of real and generated images [87].

A lower value of the KID indicates a larger visual similarity between real and generated images,

with a minimum value of zero. Unlike the FID, the KID is unbiased, which provides increased
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reliability, especially when there are fewer test images than the dimensionality of the Inception

features [88]. The KID is calculated by the following equation:

MMD(Pr,Pg) = (Exr,x
′
r∼Pr,xg,x

′
g∼Pg

[k(xr,x
′
r)−2k(xr,x

′
g) + k(xg,x

′
g)])

1
2 (3.20)

The FID evaluation metric is a good indicator for a GANs performance, however, it is calcu-

lated by first computing the 2048-feature vector resulting from the pool3 layer from the Inception

V3 network, which is trained on the ImageNet dataset. This dataset is composed of millions of

labeled RGB images, however, the images contained in the dataset may not have a representation

of the image domain being used for the training of the GAN subjected to evaluation, meaning

the feature vector may not be meaningful for the specific purpose of the task at hand. Neverthe-

less, the FID is still the metric used as benchmark for comparison with other architectures and

methodologies.

The IS is also a benchmark metric used for comparison with other related works, however, it

is not as accurate as the FID or other more recent metrics, such as the KID. Additionally, the IS is

indifferent to intra-class variability and re-generation of training samples or new original data.

The KID is adequate for quantitatively evaluating GANs, since it is an accurate and unbiased

metric, unlike the FID [86]. It provides a more adequate value which correctly translates the

GAN’s performance.

Precision measures the quality of the generated images and recall the proportion of real distri-

bution over generated distribution. The IS covers precision but not recall, while the FID measures

both precision and recall. The main limitation is that it is impractical to apply these scores for

largely variant image datasets and their use is limited to evaluations on synthetic data [89].

The Likeness Score (LS) is a distance-based separability index created to evaluate three main

aspects of GAN generated images [90]:

• Creativity: non-duplication of the real images. Checks for GAN overfitting.

• Inheritance: generated images should keep the same style as the real images, without com-

promising the creativity aspect.

• Diversity: Artificial images should always be different from each other.

LS uses the Euclidean distance to measure difference or similarity between images. Addi-

tionally, this metric could provide some degree of explainability regarding the three main aspects

previously mentioned. Results showed the LS metric can effectively measure the performance of

GANs with some degree of explainability and in a less computationally expensive process.

The 1-Nearest Neighbour Classifier (1-NNC) measurement consists of assessing whether two

distributions are identical in two-sample tests, showcasing the generated images to the nearest

real images in the training set [91]. Given two sample sets, the leave-one-out (LOO) accuracy is

calculated. This parameter is calculated using the Euclidean distance, which is sensitive to minor

perceptual disturbances. If the two distributions match, the 1-NNC classifier yields around a 50%
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LOO. If the accuracy is lower than 50%, it means the GAN overfits, where 0% means a complete

overlap of the images and the sample of the other set [92]. This metric is considered an appropriate

measure to evaluate GANs, for it has the same advantages of other metrics and outputs a score in

the interval [0,1], similar to the accuracy in classification problems.

Furthermore, to quantify the disentanglement of the latent space, two metrics - perceptual path

length and linear separability - are used. The perceptual length metric measures the difference of

two consecutive images by interpolating with two random inputs, where significant changes imply

multiple features have changed, suggesting these might be entangled. As for the linear separability,

it measures how well the latent-space points can be separated into two distinct sets through a linear

hyperplane, making each set correspond to a specific binary attribute of the image [93].

In addition to these, there are many other commonly used evaluation metrics such as the

Structural Similarity Index (SSIM) [94], the Average Log-Likelihood [55] and the Mode Score

(MS) [95].

For the best evaluation of a GANs performance, both qualitative and quantitative metrics

should be used, for they complement each other and provide a more complete evaluation process.

3.3 Applications in Chest Radiography

Despite GANs being a fairly recent type of generative models, as mentioned, the medical domain

has a lot to gain from high quality generation of data due to the large barriers, such as the highly

unbalanced datasets and the difficulty of obtaining medical data. With this in mind, over the last

years, the number of developed papers regarding the application of GANs in chest radiography

has significantly increased, as shown in Figure 3.9. Figure 3.10 shows the distribution of GAN

related publications categorized according to the image modality.

A systematic review on the creation of artificial images for radiology applications using GANs,

proposed in [96], presents the evolution of GANs in radiology.
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Figure 3.9: Evolution of GAN related publications in chest radiology between 2018 and 2021.
Publications were searched for in the "Web of Science" website with the keywords: generative
adversarial network; chest x-ray; GAN. Note that in 2021 only the publications published until
February were taken into account [97]

Most of the GAN related publications available in medical imaging use either MRI or CT

images. Since CXR is one of the most performed annual examinations, there is a disproportional

representation of the CXR frequency in the available GAN publications. Still, GANs are useful

for several types of applications in the medical domain such as data augmentation of datasets,

translation of one image type to another and even improving the quality of existing images. In

CXR applications, the majority of the developed GANs are used for data augmentation and only a

small number is reported to be used for image translation.

Figure 3.10: Categorization of GAN related papers according to image modality. The statistics
presented are based on papers published on or before January 1st, 2019 [52]
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Data Augmentation

In the work developed by Venu et al., a DCGAN is used for data augmentation of normal CXR

images with the goal of training a deep neural network to classify the images as normal or as having

pneumonia [98]. The dataset used in this work is highly unbalanced with a large predominance of

the pneumonia class, which results in an over-fitted model, especially in the limited dataset that

was used. The performance of the GAN was evaluated by the FID, resulting in a score of 1.289.

Waheed et al. propose a similar approach, for the detection of Covid-19 in CXR images [99].

Using an ACGAN based model, named CovidGAN, the authors aimed at generating CXR images

to increase the available data to train deep learning algorithms for the classification and detection

of pathologies related to Covid-19. The detection algorithm is based on CNNs, which can easily

overfit in smaller datasets due to the large number of parameters. Classical data augmentation does

not provide completely unseen images, therefore, synthetic data augmentation was used. Adam

optimizer was used as the optimizer function during the training of the GAN, having the authors

considered it the best choice for the optimization of the model. To evaluate the performance of the

classification of both real and the generated images, the precision, recall, F1 score and sensitivity

were calculated. However, no evaluation metrics were used to evaluate the GAN’s performance.

As for the classification algorithm, the accuracy achieved with the generated images was 95%,

significantly improving the results.

The same logic was applied in the work developed by Salehinejad et al., where a DCGAN was

used to artificially generate high resolution CXR images that mimic five common chest patholo-

gies, to improve the distribution and size of an unbalanced dataset. A Deep Convolutional Neural

Network (DCNN) was used to perform the chest pathology classification. For this purpose, the

algorithms was based on the AlexNet, with some fundamental changes regarding the kernels, fea-

ture map sizes and convolutional layers. To optimize the learning phase of the DCGAN, an Adam

optimizer was implemented. As for the evaluation, both quantitative and qualitative measures

were used. The images were subjected to a qualitative analysis by a radiologist and the accuracy

of each generated image was calculated, showing a significant improvement in the classification

performance, when the generated images were used.

In [100] a DCGAN based generative model was used to generate artificial images of normal

and abnormal cases containing cardiovascular abnormalities. The goal was to train an abnormal-

ity detector for cardiovascular pathologies, where a VGG-like structure was trained and used to

classify the images. The classifier’s performance was measured through the accuracy, which again

proved to be improved with the presence of the generated images in the training set.

Image-to-image Translation

In the work developed by Liang et al., the authors propose two GANs for image-to-image transla-

tion between conventional and bone suppressed radiographs by Dual-Energy (DE) technique for

chest radiographs [101]. The aim was to learn the mapping between conventional radiographs and

bone suppressed radiographs, and classify thoracic pathologies. The two GANs are, respectively,
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a Pix2Pix trained with patient-wisely paired radiographs, and a Cycle-GAN trained with unpaired

radiographs. The purpose of using both GANs is to compare the effectiveness of using variations

of GANs to suppress bone from standard CXRs. DE subtraction imaging captures several radio-

graphs with different level energy, which are then combined to generate a bone suppressed image.

Image-to-image translation is used to translate the standard radiograph into a soft tissue only ra-

diograph [101]. The classification of the abnormality classification was done through the use of

a VGG-19 [102] network. The chosen metric evaluation for this work consists of the Structural

Similarity Index and Peak Signal-to-Noise Ratio (PSNR). In conclusion, the CycleGAN showed

superior results over the Pix2Pix, which, according to the authors, is explained by this model not

being restricted by paired CXRs, leading to a better generalization to unseen radiographs.

DeGrave et al. developed a CycleGAN to improve the explainability in the model’s deci-

sion regarding the classification of Covid-19 [103]. While several very recent studies have been

published regarding the high performance models applied to this subject, most of them lack the

capability of providing an explanation for the model’s decision. The commonly used machine

learning classification methods capture features related to dataset-level differences, such as posi-

tioning of the patient and other markers, which can lead to undesirable shortcuts for the model’s

performance. Therefore, the work developed in this paper consisted of developing a GAN to

transform Covid-19 negative samples into Covid-19 positive samples and vice-versa, in order to

better comprehend what features could be used by machine learning algorithms to differentiate

between the two types of samples. The rationale behind this was the fact that GANs are better at

extracting all possible features that differentiate different datasets, instead of using saliency maps.

As a result, the machine learning models used for the classifications were capable of predicting

the GAN generated images as the images being transformed, demonstrating that the majority of

features used by the classifiers were altered by the CycleGAN. The authors therefore concluded

that machine learning models owe the majority of their models to the learning of shortcuts.

As described in this chapter, GANs show promising results in task of synthetic data augmenta-

tion and, with further development of optimization and training techniques, can achieve the desired

purpose of generating high-quality artificial images.



Chapter 4

Methodology

4.1 Dataset

The data required for training generative models must be high-quality data, due to the model’s

high dependency on the training data for optimal performance. Some of the available datasets

gather data from several sources and lack correct labels. With this in mind, the data used for

training generative models in this project was collected from the VinDr-CXR dataset, due to its

high-quality content.

4.1.1 VinDr-CXR Dataset

The VinDr-CXR dataset is a public dataset that was built with the intention of providing a large

volume of CXR images with high-quality labels. The dataset consists of more than 100000 images

in DICOM format. These images were collected from two major hospitals in Vietnam, Hospital

108 and Hanoi Medical University Hospital. Although the full dataset consists of more than 100

thousand images, the publicly available dataset is a subset of the full dataset, which contains 18000

postero-anterior (PA) view of CXR scans. The labels were manually annotated by at least three

radiologists from a group of 17 radiologists with both the localization of critical findings and the

classification of some common thoracic diseases [104].

The dataset is divided into 15000 images for the training set and 3000 images for the test set.

The training set images were classified by three radiologists each, while the test set images were

labeled by five radiologists. At the time of the development of this project, the test set labels were

unavailable due to an ongoing competition that required the labels to be kept undisclosed.

The images of the VinDr-CXR dataset are divided into 22 critical findings, which are locally

labeled with bounding boxes, and 6 global labels, with some examples shown in Figure 4.1. The

resolution and format of the images is not fixed, varying in width and height, with a median value

of 2788 by 2446 pixels.

43
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Characteristics Training Set Test Set

Collection Statistics

Years 2018 to 2020 2018 to 2020
Number of scans 15 000 3 000
Number of human annotators per scan 3 5
Image size (pixel× pixel, median) 2788×2446 2788×2394
Age (years, median)* 43.77 31.80
Male (%)* 52.21 55.90
Female (%)* 47.79 44.10
Data size (GB) 161 31.3

Local Labels

Aortic enlargement (%) 2348 (15.65%) -
Atelectasis (%) 62 (0.41%) -
Cardiomegaly (%) 1817 (12.11%) -
Calcification (%) 177 (1.18%) -
Clavicle fracture (%) 1 (0.01%) -
Consolidation (%) 121 (0.81%) -
Edema (%) 1 (0.01%) -
Emphysema (%) 14 (0.09%) -
Enlarged PA (%) 21 (0.14%) -
Interstitial lung disease (ILD) (%) 152 (1.01%) -
Infiltration (%) 245 (1.63%) -
Lung cavity (%) 21 (0.14%) -
Lung cyst (%) 4 (0.03%) -
Lung opacity (%) 547 (3.65%) -
Mediastinal shift (%) 85 (0.57%) -
Nodule/Mass (%) 410 (2.73%) -
Pulmonary fibrosis (%) 1017 (6.78%) -
Pneumothorax (%) 58 (0.39%) -
Pleural thickening(%) 882 (5.88%) -
Pleural effusion(%) 634 (4.23%) -
Rib fracture (%) 41 (0.27%) -
Other lesion (%) 363 (2.42%) -

Global Labels

Lung tumor (%) 132 (0.88%) -
Pneumonia (%) 469 (3.13%) -
Tuberculosis (%) 479 (3.19%) -
Other diseases (%) 4002 (26.68%) -
COPD (%) 7 (0.05%) -
No finding (%) 10606 (70.71%) -

Table 4.1: VinDr-CXR dataset and label prevalence.
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Figure 4.1: Examples of images found in the VinDr-CXR dataset with local labels by the bounding
boxes and global labels listed at the bottom of each image [104]

4.2 Chest X-ray Image Generation

4.2.1 Lightweight GAN

State of the art GANs require large computational capacities, large training times and large datasets

to perform at the desired level. Due to the demanding requirements by these large GAN variations,

several GAN variations have been developed with the goal of allowing for faster and easier train-

ing. For this project, it was necessary to find a GAN that could use the available datasets and that

could be trained with the few images available for some of the pathological classes. Furthermore,

it was sought that this GAN was light and compact enough not to require large computational

capacity, such as computing power and memory, allowing versatile training with the possibility

of running several experimental tests in short periods of time. For this reason, the LWGAN was

chosen as the GAN architecture used in this thesis.

The LWGAN architecture was based on the original publication [67]. The architecture consists

of the original features, the SLE module and the self-supervised discriminator. The design was

meant to be minimalist, using a single convolutional layer on each resolution in the generator and

applying only three channels for the convolutional layers on resolutions of 512×512 in both the

generator and the discriminator.

The LWGAN implementation was done with PyTorch [105] and all modifications were done

in Python and through the use of other packages.

Figure 4.2 shows the structure of the skip-layer excitation module and the generator network

of the LWGAN. The skip-layer excitation (SLE) module leverages low-scale activations to revise
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the channel responses on high-scale feature-maps. This allows for a more robust gradient flow

throughout the model weights for faster training. For the generation of higher resolution images,

the generator is required to become deeper, which translates to more convolutional layers in con-

cert with up-sampling needs. A deeper model leads to a larger number of model parameters and a

weaker gradient flow through the generator, requiring larger training times [63, 106, 107].

Figure 4.2: Generator network and skip-layer excitation module structures. Feature-maps are
represented by the yellow boxes, the up-sampling structures are represented by blue boxes and
arrows and the red boxes contain the SLE modules, as shown on the left [67]

Evidence shown in [102, 108] shows that network depth is of crucial importance, especially

in computer vision tasks. A Residual Structure (ResBlock) is used to train the deep models by

using a skip-layer connection as an element-wise addition between the activations from different

conv-layers, however, as this required the spatial dimensions of the activations to be the same,

channel-wise multiplications are applied between the activations, eliminating the heavy computa-

tion of convolution. The skip-connection idea is reformulated into the SLE module [109], which

inherits the advantages of the ResBlock with a shortcut gradient flow, without the additional heavy

computational burden.

The SLE module combines both the ResBlock and the Squeeze-and-Excitation (SE) mod-

ule, proposed by Hu et al., which leads the LWGAN to benefit from the channel-wise feature

re-calibration just as the SE, while strengthening the whole model’s gradient flow with Res-

Block [110]. According to the authors of the LWGAN, the channel-wise multiplication in SLE

also coincides with Instance Normalization [65, 111], which is widely used in style transfer. The

authors also show that SLE, similarly to the StyleGAN [66], enables the generator to automatically

disentangle the content and style attributes.

As mentioned, the discriminator network in the LWGAN is a self-supervised discriminator. It

is treated as an encoder paired with two small decoders, with which it is trained. It is a simple

architecture, as shown in Figure 4.3, however, it has shown to be efficient and to provide a strong

regularization for the discriminator. The auto-encoding forces the discriminator network to extract

image features that the decoders can give good reconstructions on a smaller scale. For this, the

discriminator is paired with the two decoders and optimized together in a reconstruction loss,
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which is only trained on real samples, given by equation 4.1.

Lrecon = E f∼Dencode(x),x∼Ireal
[||G( f )− τ(x)||] (4.1)

In this equation, f is the intermediate feature-maps from the discriminator, the function G

contains the processing on f and the decoder, and the function τ represents the processing on

sample x from real images Ireal.

Figure 4.3: Structure and forward flow of the discriminator. Blue boxes represent the same residual
down-sampling structure, green boxes represent the same decoder structure [67]

The two decoders are employed for two feature-maps with different scales: f1 on 162 and f2

on 82, and since the decoders only have four convolutional layers for the upsampling to 128×128,

there are little extra computations involved. As described by the authors, f1, the decoder on the

feature-map 16× 16, gets randomly cropped with 1/8 of its height and width. The real image

gets cropped on the same portion to get Ipart, as shown in Figure 4.3. The real image also gets

resized to get I. The decoders produce I’
part from the cropped f1, and I’ from f2, the decoder

on the feature-map of 8× 8, from f2. At the end the discriminator and the decoders are trained

together to minimize the reconstruction loss in equation 4.1, by matching I’
part to Ipart and I’ to I.

The self-supervised strategy for the discriminator network allows it to be able to extract a more

comprehensive representation of the inputs, since it is able to cover overall compositions, such as

the features collected from f2, and more detailed structures from the features collected by f1. Other

models and approaches aimed at improving a model’s robustness and ability to generalize also

employ similar methods involving auto-encoding approaches [112–115]. Additionally, the authors

of the LWGAN also found that self-supervised discriminator network approaches significantly

improve the synthesis quality of the generator network, among which auto-encoding showed the

best performance boost.

With the addition of the SLE module and the two decoders, the LWGAN is able to effectively

train with a small dataset and small batch-size, while assuring a fast training and avoiding over-

fitting and mode-collapse.

The LWGAN implementation used in this thesis followed the original architecture. However,

some of the parameters for the training of the model were altered from the start of the experimen-

tation stage, such as changing the input images from RGB to greyscale.
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4.2.2 Attention Modules

In addition, the implementation of the LWGAN used in this thesis is complemented by global

self-attention. In neural networks, self-attention is a method that focuses on modeling long-range

dependencies. Its superiority over other techniques, like convolution and recurrence, in terms of

building global dependencies, has made it popular in modern deep learning [116]. Several recent

efforts in computer vision have included global self-attention modules into Convolutional Neu-

ral Networks and showed promising results for various image understanding tasks [69, 117–120].

The high spatial dimensions of the input are the key problem when applying the global attention

mechanism for computer vision applications. In a computer vision task, an input image often

contains tens of thousands of pixels, and the attention mechanism’s quadratic computational and

memory complexity make global attention prohibitively expensive for such big inputs. The self-

attention mechanism introduced in [116] is a global self-attention module, the GSA module, that

performs attention while taking into account both the content and spatial placements of the pixels.

The outputs of two parallel layers, a content attention layer and a positional attention layer, are

summed at the end of the module. The content attention layer pays attention to all pixels at the

same time, only on the basis of their content. It employs an efficient global attention method, com-

parable to [119, 120], with linear computational and memory complexity as the number of pixels

increases. The attention map for each pixel is computed by the positional attention layer based on

its own content and relative spatial positions to other pixels. As for the positional attention layer,

a column-only attention layer precedes a row-only attention layer [116]. And so the used GSA

module uses a non-axial global content attention mechanism that attends to the entire image at

once rather than just a row or column. Figure 4.4 shows a representation of the GSA module.

Figure 4.4: Representation of the GSA module [116]

The keys, queries, and values (constructed using 1x1 convolutions) are processed in parallel

by the content attention and positional attention layers. The positional attention layer is divided

into two sections: column-only and row-only, with learnt relative position embeddings Rc and Rr

as keys. The output of the GSA module is generated by adding the outputs of the content and

positional attention layers. Batch normalization [121] is denoted by BN, while positional attention

is denoted by PA.

The GSA module is efficient enough to act as the backbone component of a deep network and

so a global attention-based network composed of GSA modules instead of spatial convolutions to

model pixel interactions is possible. In the implementation of the LWGAN in this thesis, the GSA
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module and GSA network was available for use to try to further improve the training of the GAN

model.

4.2.3 Loss Functions

The loss functions used by GANs varies with each architecture, however, for some architectures

the importance of the loss function is more or less significant than for others. In the case of the

original implementation of the LWGAN, a simple hinge version of the adversarial loss was used

and the same loss was used for the majority of the experimental phase of this thesis [122, 123].

The hinge loss is defined by the following equations:

LD =−Ex∼Ireal [min(0,−1 + D(x))]−Ex̂∼G(z)[min(0,−1−D(x̂))] + Lrecon (4.2)

LG =−Ez∼N [D(G(z))] (4.3)

According to the authors of the LWGAN and other approaches, different loss functions do not

necessarily have a large contribution for the performance of the GAN and the overall training. The

reason for the hinge loss as the chosen loss function lies with the fact that it computes the fastest.

Another loss function used for this project is the dual contrastive loss function [124]. The

authors of the dual contrastive loss associate the replacement of loss functions, such as the logistic

loss from the StyleGAN2 implementation, with an attention mechanism. Models coupled to at-

tention with their re-weighting mechanisms provide a possibility for long-range modeling across

distant image regions. Contrastive learning associates data points and their positive examples and

disassociates the other points within the dataset which are referred to as negative examples, i.e.,

targeting a transformation of inputs into an embedding where associated signals are brought to-

gether and distanced from the other samples in the dataset. This type of learning has been shown

to be an effective tool for unsupervised learning and in generative models [125–127]. According

to the authors, the contrastive loss function aims at combining the teaching of the discriminator

network to disassociate a single real image against a batch of generated images with the learning

to disassociate a single generated image against a batch of real images, as shown in Figure 4.5.

As for the generator network, it tries to minimize the dual contrasts. The equations for both

cases in the dual contrastive loss function are the following:

Lcontr
real (G,D) = Ex∼p(x)[log

eD(x)

eD(x) + Σz∼N (0,Id)e
D(G(z))

] (4.4)

Lcontr
f ake (G,D) = Ez∼N (0,Id)[log

e−D(G(z))

e−D(G(z)) + Σx∼p(x)e−D(x)
] (4.5)
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Figure 4.5: Architectural representation of both actuating parts of the dual contrastive loss in the
discriminator network [124]

When compared with other loss functions, the dual contrastive loss function outperformed

other losses on four out of five different datasets [124]. Additionally, the authors of the dual

contrastive loss found the dual contrastive features to be consistently more distinguishable than

the original discriminator features, which back-propagates more effective gradients to incentivize

the generator network.

4.3 Quantitative Evaluation

On each evaluation checkpoint during training, the FID was calculated by comparing a set of 5000

real CXR images with a set of 5000 generated CXR images. Upon the final iteration of the training

stage, the best model was selected, based on the FID values calculated throughout training, and

the 5000 images were generated for the calculation of all three evaluation metrics, FID, KID and

IS. The FID and KID were calculated using generated artificial CXR images and real CXR images

from a set which did not contain any images used for training. The IS was calculated using only

the set of generated artificial CXR images.

Besides evaluation metrics, other evaluation methods were used to assess the quality of the

generated images. One of the methods was to run a set of artificially generated images in a binary

classification model trained to classify CXR images as normal or abnormal. The goal was to eval-

uate whether the artificial images were considered normal in a more objective and computational

evaluation, complementing the qualitative evaluation methods. The other quantitative evaluation

method to be used consisted of comparing a classification network’s performance when trained

with a set of real images with the performance of the same classification network when trained

with both real and artificial images. The goal was to assess if the artificial images had enough

quality to be used for training in computer vision models.
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4.4 Qualitative Evaluation

To complement the quantitative evaluation metrics, qualitative evaluation methods were also used,

since these evaluation methods provide an insight on different aspects of the generated images,

such as the human perception of the image quality and structure. To evaluate the images generated

by the LWGAN, artificial images were submitted to be perceptually validated.

The perceptual validation consists in submitting generated images to be evaluated by radiolo-

gists. Comparison of real CXR images with artificially generated CXR images can provide a good

indication of image quality at the overall image and structural level as well as at the detailed level

of the images with regard to detail and resolution.

Figure 4.6: Platform for evaluation of CXR images

The goal was to assess the quality of the images and the overall similarity between real and

artificially generated images from a human perspective and collect feedback regarding the deci-

sions.

For this validation step, an evaluation platform was required so that participants could evaluate

the images at random and anonymously, in order to avoid bias led by indicators regarding the

source of the images.

This was done using an in-house software which presented a randomly selected subset of

images. The platform allows for a window center/width adjustment, zooming and panning. Ad-

ditionally, it is also possible to draw rectangles of any size on the image, covering any labels or

marks, while saving the corresponding coordinates.

Figure 4.6 shows an example of a randomly selected image ready for classification by the user.

The participant selects one option for each class, image source and pathology classification, and

proceeds to the next image. Once all the images have been assessed, the results are automatically

stored and ready for analysis.
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Chapter 5

Experiments

This chapter presents the description and evolution flow of the development of the LWGAN ap-

plied to CXR images for artificial image generation. The approach taken and the goal for each test

will be described and analysed in this chapter.

5.1 Data Preparation

For the training of the LWGAN, the images in the training set had to be prepared to be used

in the model. 4000 images were randomly selected from the available images labeled as No

Finding in the VinDr-CXR dataset. All of the performed tests used the complete set of the 4000

images or smaller subsets extracted from the training set. This value was chosen due to the fact

that the pathological class with the largest number of images has 4000 samples, and there are a

considerable amount of classes that have between 1000 and and 4000 images. This would allow for

the replication of the training conditions if there was a need to train the LWGAN with pathological

images.

5.2 Chest X-ray Image Generation

In this section, the experiments and ideology behind them will be explored along the four main

areas.

This stage of the development of the LWGAN focused on experimenting with four main ar-

eas: resolution, self-attention, loss functions and hyper-parameters. Hyper-parameters, such as

the training batch size, the augmentation technique types and augmentation probability were em-

pirically adjusted according to initial experiments (cf. Hyper-parameters on Section 5.2.5). This

adjustment was based on hardware limitations, such as GPU memory, and the results of tests

carried out throughout the development of the LWGAN.

53
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5.2.1 Resolution

Image resolution is an important factor when dealing with image classification models. Ideally,

the resolution of training images is on par with the resolution of the real test images. However, in-

creased image sizes lead to an increased computational cost and time, and decreases the maximum

possible batch sizes for training. In this experiment, two image resolutions were tested: 256×256

and 512×512. Smaller resolutions, such as 128×128 were not relevant, since these may not pro-

vide sufficient detail for pathology diagnosis or description. Furthermore, and as shown by [128],

the best results for image classification models in radiography were obtained with image resolu-

tions larger or equal to 256×256 for the training images.

At this point, no attention mechanisms were added to the model, the hinge loss was used and

the hyper-parameters were set as shown in Table 5.1.

Test Image Resolution Hyper-parameters and other specifications

256 Resolution 256×256
Batch-size: 6, 2000 images

Augmentation types: Translation, Cutout, Color
Augmentation Probability: 0.25

512 Resolution 512×512
Batch-size: 6, 2000 images

Augmentation types: Translation, Cutout, Color
Augmentation Probability: 0.25

Table 5.1: Image resolution comparison test

5.2.2 Self-Attention

From this point on, the resolution chosen for all of the experiments was 512× 512, unless spec-

ified otherwise in the detailed description of each test, since besides obtaining the best results, it

is not limited by the computational cost with regard to new additions and manipulations of the

architecture. .

In order to further improve the training of the LWGAN, several tests were performed with the

addition of attention in one or multiple layers of the model. These models were compared to the

benchmark, which consists of the same architecture without the addition of attention in any layer.

The tests shown in Table 5.2 were performed with the goal of comparing different implemen-

tations of self-attention in the network’s layers. The first test to be carried out trained a model

with self-attention in the 32×32 layer with an image resolution of 512×512. The following tests

consisted of experimenting with self-attention in different layers, such as 256× 256. Later on,

tests with attention in multiple layers were performed, such as the combination of the first three

layers, 32×32, 64×64 and 128×128, and also a combination of self-attention in every layer up

until the largest resolution.

The goal of carrying out a large amount of tests is to provide a solid foundation for the under-

standing of the influence of self-attention in the LWGAN architecture.
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Test GSA Layers Hyper-parameters and other specifications

32 GSA 32×32
Batch-size: 6, 2000 images

Augmentation types: Translation, Cutout, Color
Augmentation Probability: 0.25

256 GSA 256×256
Batch-size: 1, 4000 images

Augmentation types: Translation, Cutout, Color
Augmentation Probability: 0.25

32-128 GSA
32×32
64×64

128×128

Batch-size: 6, 2000 images
Augmentation types: Translation, Cutout, Color

Augmentation Probability: 0.25

All Layers

32×32
64×64

128×128
256×256
512×512

Batch-size: 6, 4000 images
Augmentation types: Translation, Cutout, Color

Augmentation Probability: 0.25

Table 5.2: Experiments done with with the goal of evaluating the influence of self-attention in the
training of the LWGAN

5.2.3 Loss Functions

In order to compare the performance of the hinge loss against the dual contrastive loss, two models

were trained, one with each loss function. Both tests were performed with attention in one of the

architecture’s layers, namely the 32×32 layer. In the case of the hinge loss, the test described as

32 GSA (Table 5.2) was the one used to compare against the dual contrastive loss test. Table 5.3

shows the model parameters and settings the test.

Test GSA Layers Hyper-parameters and other specifications

Dual Contrastive Loss 32×32
Batch-size: 6, 2000 images

Augmentation types: Translation, Cutout, Color
Augmentation Probability: 0.25

Table 5.3: Executed experiment for the comparison of a different loss function against the loss
function used in the remaining tests

5.2.4 Large Resolution

A larger resolution model was trained to evaluate the GAN’s capacity of training and generating

high-resolution images. The images found in the VinDr-CXR dataset, and the ones commonly

found in clinical practice, are high-resolution images, in this case with a median resolution of

2788×2446 pixels. Additionally, during the diagnosis process by radiologists, very small details

and structures are used to identify and correctly diagnose pathologies. With this in mind, having

larger resolution images being generated by GANs is ideal for applications such as pathology clas-

sification models. Nevertheless, larger resolution images require heavy computational capabilities

and were, therefore, only used in this experiment.

To evaluate this test, it was compared against a similar architecture trained model that just

differed in the resolution. Both tests were performed with attention in one of the architecture’s
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layers, namely the 32×32 layer. The test used for comparison was the 32 GSA model (Table 5.2),

as it already met the requirements of the test for the remaining parameters. Table 5.4 shows the

model parameters and settings for the large resolution test.

Test GSA Layers Hyper-parameters and other specifications

1024 Resolution
1024×1024

32×32
Batch-size: 6, 2000 images

Augmentation types: Translation, Cutout, Color
Augmentation Probability: 0.25

Table 5.4: Experiment done with with the goal of evaluating the difference in training with large
resolution images with the same hyper-parameters as the best performing model

5.2.5 Hyper-parameters

There are several parameters that underwent changes in addition to those previously mentioned.

Most of these changes were made to hyper-parameters, as stated in this section.

Data augmentation techniques were used to increase the amount of training data provided for

the model. These techniques include image translation, horizontal flip, contrast, brightness and

saturation changes, image cutouts and offset, and are all randomly applied. Since CXR images are

content-sensitive images, introducing random augmentations to the training set could negatively

affect training. For example, setting a probability p = 0.5 for the horizontal flip augmentation,

which is common practice in image augmentation strategies during training, in CXR images can

lead to a wrong training of the model, since these images are sensitive to structure placement, i.e.

the heart is almost always on the right side of the image (left side of the patient). With this in mind,

only translation, horizontal flip, cutout and color related augmentation techniques were applied for

all tests, taking into account the data augmentation probability. For all of the performed tests, the

augmentation probability, ranging from 0 to 1, was set at 0.25 including for the horizontal flip

augmentation.

The batch size of training images is dependent on the computational power and the computa-

tional cost of the model being trained. As a result, the batch size was limited for some of the larger

models due to the hardware limitation. Nevertheless, to work around this limitation, the LWGAN

is fitted with the option to update the gradient after a specific number of batches, meaning the gra-

dient accumulates with values from past batches until it reaches a specific number of batches set as

a parameter of the GAN. For this specific case, the batch size was kept at 6 images for most tests

and the gradient accumulation feature at 12 batch sizes, totaling at 72 images. For the tests where

the batch size could not be as large as 6, the gradient accumulation feature could be increased to

achieve the same result.

Lastly, the number of random images available for training was also subject to experimenta-

tion. The original training set is composed of 4000 randomly selected images from the No Finding

class of the VinDr-CXR dataset. Two additional training sets were created, one with 1000 ran-

domly selected images from the 4000 image training set and another one with 2000 randomly
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selected images from the same source. The goal was to assess the influence of the size of the

training dataset on the performance of the LWGAN.

Collecting the above mentioned tests, Table 5.5 shows the detailed architecture and parameter

selection for each test.

Test GSA Layers Hyper-parameters and other specifications

1000 Image Set 32×32
Batch-size: 6, 1000 images

Augmentation types: Translation, Cutout, Color
Augmentation Probability: 0.25

4000 Image Set 32×32
Batch-size: 6, 4000 images

Augmentation types: Translation, Cutout, Color
Augmentation Probability: 0.25

4000 Image Set
Larger Batch Size 32×32

Batch-size: 32, 4000 images
Augmentation types: Translation, Cutout, Color

Augmentation Probability: 0.25

4000 Image Set
Horizontal Flip p = 0.5

32×32
Batch-size: 6, 4000 images

Augmentation types: Translation, Cutout, Color
Augmentation Probability: 0.25

Table 5.5: Hyper-parameter variations in tests with similar architecture and 512×512 resolution

5.3 GAN Validation

5.3.1 Quantitative Metric Evaluation

Each test was run for a maximum amount of 150 epochs, however, all of the performed tests

collapsed and diverged before they could reach that checkpoint. The FID was calculated every

epoch for each test, which allowed for a continuous control of the performance and training. The

results shown in Chapter 6 are the results for the best checkpoint of each model’s training, which

was then used to calculate the three evaluation metrics. For the calculation of the FID and KID,

5000 real images and 5000 artificially generated images were used. As for the IS, only the 5000

artificially generated images were used.

The artificial images were generated using a parameter averaging of the generator, Exponential

Moving Average (EMA), which according to [129] improves the overall results, as shown also in

this LWGAN’s results. With this in mind, every image set for evaluation was artificially generated

with this method.

5.3.2 Perceptual Validation

For the evaluation of the LWGAN, a mixed set of real images and artificially generated images was

created and sent to six individuals: two radiologists, two PhD students in medical image analysis

acquainted with CXR images and two individuals unacquainted and inexperienced with analysis

of CXR images. This allowed to evaluate the level of knowledge required and the influence of the

absence of knowledge regarding CXR images in distinguishing real from generated images. The
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images were evaluated with regard to authenticity of the image and also, for the two radiologists,

a binary classification of normal or pathological.

A total of 100 randomly selected images were submitted for validation, 50 artificial normal im-

ages, 25 real normal images and 25 real pathological images. The artificial images were generated

by the 32 GSA model.

5.3.3 Binary Classification Model

In order to establish if the generated images contained features representative of normal CXR

images, an image set of generated normal CXRs was submitted for classification by a binary CXR

classification algorithm.

The artificially generated image set was compared against the real image set from the VinDr-

CXR dataset using the binary classification model. This model is based on a MobileNet [130] and

was trained on three folds of, on average, 2121 normal images and 878 pathological images from

the VinDr-CXR dataset. Two other sets were used for validation and testing. The validation set

was used to calculate the classification threshold, 0.42, which is the best operating point of the

RoC curve. The 6000 artificially generated normal images were submitted for classification and

another 2120 normal real images were randomly selected for a comparison test. None of the real

images submitted for classification were part of the training set for the classification model.

Each image was awarded a probability associated with the certainty of its predicted class.

Images classified as normal got a probability close to zero and images classified as abnormal got

a probability close to one.

5.3.4 Training of a Pathology Classifier

In order to establish if the generated images were of sufficient quality for the training of deep

learning models, a YOLOv5 [131] object detection network was used. For this purpose, the 15000

CXRs of VinDR-CXR were randomly divided into train (60%), validation (20%) and test (20%)

sets, preserving the approximate prevalence of each pathology as much as possible between the

three divisions. Additionally, 6000 CXRs were artificially generated using the 32 GSA model of

the LWGAN, whose parameters are shown in Table 5.2. Three different training strategies were

used:

• First, using only real pathological images;

• Second, using all real images, both normal and pathological;

• Third, using both real pathological images and artificially generated normal images.



Chapter 6

Results

6.1 Chest X-ray Image Generation

6.1.1 Resolution

Table 6.1 shows the results of the resolution related experimental LWGAN tests with regard to the

IS, FID and KID.

Test IS FID KID

256 Resolution 1.895±0.038 123.18 0.16380±0.00354

512 Resolution 2.047±0.0267 24.13 0.01743±0.00083

Table 6.1: Resolution-related experimental tests and respective quantitative metric results for arti-
ficial CXR image generation. Bold values in each column indicate the best result for each metric.

Comparing the initial tests with different resolutions, the LWGAN trained with larger resolu-

tion images, 512×512, achieved a significantly better performance in all three evaluation metrics,

shown in Table 6.1. Figure 6.1 shows two artificially generated samples from the two LWGAN

models in Table 6.1, trained with different resolution images, 256× 256 and 512× 512. The

images shown support the corresponding metric results for each image regarding its quality.

6.1.2 GSA

Regarding the experiments related to self-attention in the layers, shown in Table 6.2, the overall

best result was achieved with the 32 GSA test, in spite of the IS value for the 256 GSA test being

superior.
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(a) 256×256 (b) 512×512

Figure 6.1: Artificially generated CXRs with different image resolutions

Test IS FID KID

32 GSA 2.109±0.034 17.83 0.01211±0.00072

256 GSA 2.317±0.040 65.61 0.06771±0.00175

32-128 GSA 2.318±0.051 77.22 0.08154±0.00195

All Layers 2.065±0.047 52.39 0.05846±0.00169

Table 6.2: GSA-related experimental tests and respective quantitative metric results throughout
the development of the LWGAN for artificial CXR image generation. Bold values in each column
indicate the best result for each metric.

Figure 6.2 show two artificially generated samples by the 32 GSA. Both images show a very

clear and fine detail of the structures as well as an overall correct representation of the anatomical

structures of a CXR.
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Figure 6.2: Artificially generated CXR samples from the 32 GSA model

Figure 6.3: Discriminator accuracy at predicting the image source (left), loss functions (right) and
FID (center) values from the 32 GSA model throughout training

Figure 6.3 shows the evolution of the discriminator’s accuracy, the generator and discriminator

loss functions and the FID evolution, from the previously mentioned trained model throughout the

development. Looking at the accuracy from the discriminator’s predictions (Figure 6.3), the 32

GSA’s discriminator network was able to correctly predict the origin of each image with certainty.

Additionally, all three graphs show a behaviour change at around epoch 33.

Figure 6.4 shows two samples generated by the 256 GSA model. By including GSA in the
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256×256 layer, the network learned to generate images with very different overall pixel intensi-

ties, which led to poor quality images.

Figure 6.4: Artificially generated CXRs from the 256 GSA model

Additionally, the overall detail is not sharp and the anatomical structures have some imperfec-

tions such as ripples in the edges of the ribs.

6.1.3 Loss Functions

Regarding the different loss functions used for training, the introduction of the dual contrastive

loss did not result in a superior performance when compared to the original hinge loss function as

shown in Table 6.3.

Test IS FID KID

Hinge Loss
32 GSA 2.109±0.034 17.83 0.01211±0.00072

Dual Contrastive Loss 2.102±0.028 39.30 0.04182±0.00157

Table 6.3: Loss-related experimental tests and respective quantitative metric results throughout
the development of the LWGAN for artificial CXR image generation. Bold values in each column
indicate the best result for each metric.
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Figure 6.5: Artificially generated CXRs from the Dual Contrastive Loss trained model

(a) Discriminator accuracy throughout training (b) Loss functions development throughout training

Figure 6.6: Discriminator accuracy at predicting the image source (left), loss functions (right) and
FID (center) values from the Dual Contrastive Loss model throughout training

Supporting the metric evaluation results, the overall image quality lacked better detail and a

more correct representation of the anatomical structures, such as the vertebrae and ribs, than the

models trained with the hinge loss, as shown in Figure 6.5. Additionally, the loss functions’ evo-

lution throughout training showed a rapid development from the start, the generator loss quickly
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degraded leading to a gradually worsening model, as shown in Figure 6.6. The FID showed a rapid

evolution until it started to stabilize and reach a plateau. As for the accuracy of the discriminator,

it shows an irregular accuracy regarding the generated images, whereas the accuracy of the real

image predictions showed a an irregular behaviour at the beginning of training and kept decreasing

to zero throughout training.

6.1.4 Large Resolution

Figure 6.7 shows two generated samples by the 1024 Resolution model. This model was the worst

performing GSA-related model, since it did not converge and failed to train correctly. Table 6.4

compares this model’s performance with the 32 GSA model with which it is directly comparable,

since both have the same hyper-parameters and only differ in resolution.

Figure 6.7: Artificially generated CXRs from the 1024 Resolution model

Figure 6.8 presents the discriminator’s accuracy at predicting the source of the images, the loss

functions and the calculated FID for the 1024 Resolution model. The three graphs show a normal

behaviour and development throughout training, except the FID that does not improve over time.
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Figure 6.8: Discriminator accuracy at predicting the image source (left), loss functions (right) and
FID (center) values from the 1024 Resolution model throughout training

Test IS FID KID

32 GSA
512×512

2.109±0.034 17.83 0.01211±0.00072

1024 Resolution
1024×1024

2.039±0.031 316.03 0.44153±0.00316

Table 6.4: Comparison between larger resolution and smaller resolution tests with GSA in the
32×32 layer and respective quantitative metric results throughout the development of the LWGAN
for artificial CXR image generation. Bold values in each column indicate the best result for each
metric.

6.1.5 Hyper-parameters

Finally, none of the tests performed for the assessment of the importance of the hyper-parameters

selection outperformed the model trained with the 2000 image set and a batch size of 6 images.

The results in Table 6.5 also show there was no improvement with an increased batch size or

either an increased or decreased size of the image set. Additionally, the increased horizontal flip

probability also leads to a poorer performance.
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Test IS FID KID

32 GSA 2.109±0.034 17.83 0.01211±0.00072

1000 Image Set 1.988±0.043 94.80 0.11675±0.00234

4000 Image Set 2.079±0.042 50.96 0.05808±0.00178

4000 Image Set
Larger Batch Size 2.016±0.031 57.78 0.0696±0.00176

4000 Image Set
Horizontal Flip p = 0.5

2.017±0.036 60.74 0.07365±0.00194

Table 6.5: Hyper-parameter related experimental tests and respective quantitative metric results
throughout the development of the LWGAN for artificial CXR image generation. Bold values in
each column indicate the best result for each metric.

(a) 4000 Image Set model (b) Generated sample from the 4000 Image Set model trained with
the horizontal flip feature at p = 0.5, as shown by the heart on the
left side of the image (right side of the patient) and inverted later-
ality marker. White arrows show horizontally flipped structures

Figure 6.9: Artificially generated CXRs from different Hyper-parameter related models

Figure 6.9 shows a generated sample from the 4000 Image Set trained model, on the left, and

a generated sample from the test related to the horizontal flip feature. The image on the left shows

there is no particular improvement in the anatomical structure representation and overall detail.

As for the image on the right, it shows an image horizontally symmetrical to the real CXRs,

as shown by the heart on the left side of the image (right side of the patient) and inverted laterality

marker.
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(a) Augmentation leak (b) One breast missing

Figure 6.10: Examples of training failures from the trained models throughout the development of
the GAN

Figure 6.10 presents two examples of failures during the training of the models. The image

on the left shows an example of augmentation leaks during training. Training images are aug-

mented to increase the number of training samples and in the case of a high probability for the

augmentation operations, leaks of these augmentation samples can be learned by the model. In

this case, the image shows two black rectangular cutouts in the two top corners. The image on the

right shows another commonly found failed sample. In this image, only one breast can be found.

Although in reality these cases do exist due to illness or trauma for example, there are not enough

representations of those cases in the datasets for the model to learn it and represent it at such a

large scale in the generated images.

6.2 Perceptual Validation

6.2.1 Authenticity Classification

The results of the image authenticity validation are shown in Figure 6.11, corresponding to the

classification made by the radiologists, PhD students and the inexperienced individuals. Table

6.6 shows the accuracy, specificity and sensitivity regarding the classification by each participant.

The specificity, or true negative rate, shows the number of images correctly classified as real in all

truly real images in the test set. As for the sensitivity, or true positive rate, it shows the number of

images correctly classified as generated in all truly generated images.
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(a) Radiologist 1 (b) Radiologist 2 (c) PhD Student 1

(d) PhD Student 2 (e) Inexperienced Individual 1 (f) Inexperienced Individual 2

Figure 6.11: Authenticity classification by all six participants

As can be observed in Table 6.6, the pair of radiologists performed the best at the overall

classification task, followed by the PhD students and lastly by the inexperienced participants. As

for the individual sets of images, the radiologists showed better accuracy at identifying real images

than the other two pairs of participants, this time followed by the inexperienced individuals and

then the PhD students. Regarding the sensitivity, the PhD students outperformed the two pairs,

followed by the radiologists.

The PhD students were more capable at identifying the artificially generated images and the

radiologists, as mentioned, the real images. The inexperienced participants did not outperform the

two pairs in any of the image sources.
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Participant Accuracy Specificity Sensitivity

Radiologist 1 98/100 (98) 49/50 (98) 49/50 (98)

Radiologist 2 80/100 (80) 48/50 (96) 32/50 (64)

PhD student 1 65/100 (65) 30/50 (60) 35/50 (70)

PhD student 2 100/100 (100) 50/50 (100) 50/50 (100)

Inexperienced individual 1 91/100 (91) 44/50 (88) 47/50 (94)

Inexperienced individual 2 67/100 (67) 38/50 (76) 29/50 (58)

Table 6.6: Authenticity classification accuracy by the two Radiologists. Values in parenthesis are
percentages.

Figure 6.12 presents one sample of each image source, real and generated, used in the classi-

fication task.

(a) Real normal image (b) Artificially generated normal image

Figure 6.12: Representation samples of both real and generated images used in the authenticity
classification task

6.2.2 Normality Classification

As mentioned in Chapter 5, the two radiologists performed the additional task of classifying each

of the 100 images as normal or pathological. Figure 6.13 shows the confusion matrix with the

results for the normality classification. Both radiologists achieved similar results, having classified

most of the pathological images with the correct label corresponding to high sensitivity. However,

both radiologists misclassified normal images, leading to a lower specificity.

Table 6.7 shows the results for the perceptual validation of each type of image. To evaluate

the performance of the radiologists in the normality classification, the images were divided into

real and artificial, which allows for an interpretation of the structural representation in each type
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(a) Radiologist 1 (b) Radiologist 2

Figure 6.13: Label classification of 100 test images by both Radiologists

of image. Both radiologists performed poorly on the classification of real normal images, which

means a significant number of these images were classified as pathological.

Rad 1 Rad 2 Average

Accuracy 87/100 (87) 84/100 (84) 85.5/100 (85.5)

Specificity 62/75 (83) 60/75 (80) 61/75 (81.4)

Sensitivity 25/25 (100) 24/25 (96) 24.5/25 (98)

Specificity Real 16/25 (64) 18/25 (72) 17/25 (68)

Specificity Artificial 46/50 (92) 42/50 (84) 44/50 (88)

Table 6.7: Normality classification accuracy by the two Radiologists. Values in parenthesis are
percentages.

Figure 6.14 shows four images used in the authenticity and normality classification tasks. The

two images on the top row are real and were annotated as normal by the responsible group of

radiologists. However, the two radiologists that participated in the classification tasks deemed

them incorrectly labeled. The image on the top left shows a cardiomegaly, as indicated by the

arrow. The image on the right shows a CXR with an aortic enlargement. Both of these findings

were not identified by the VinDr-CXR radiologists and were labeled as normal.

The two images in the bottom row were artificially generated and classified as such and also

as pathological due to structural irregularities. The image on the bottom left shows an apical

asymmetry, which is what led to it being classified as pathological by the pair of radiologists.

Additionally, a distorted clavicle was mentioned by one of the radiologists as a the structural

irregularity that led to it being classified as an artificial sample.

The image on the right was classified as pathological due to a cardiomegaly. Additionally, the
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radiologists were led to believe it was fake due to an irregularity in the clavicle, as shown by the

arrow.

(a) Cardiomegaly (b) Aortic enlargement

(c) Apical asymmetry (d) Incomplete clavicle

Figure 6.14: Two examples of real normal images classified by the two participating radiologists
as pathological (top) and two artificially generated normal images correctly classified as fake but
incorrectly classified as pathological by the radiologists due to structural irregularities. Yellow
arrows show the pathological finding and red arrows the structural irregularities

Summing up the results from the authenticity classification, Table 6.6 pairs the accuracy

achieved by each group of participants. The overall best performance was achieved by the pair of

Radiologists.
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6.3 Application in Image Classification/Detection

6.3.1 Binary Classification Model

Figure 6.15 shows the two relative frequency histograms of the predicted abnormality probability

by the MobileNet architecture for the real and artificial images.

Figure 6.15: Relative frequency histogram for the real and generated images of binary abnormality
classification of CXR images

It can be seen that the set of real images has a higher percentage of very low probability

images, corresponding to a prediction of normality. However, the real image set also has a higher

percentage of higher probability predictions, corresponding to a prediction of pathology.

Image Set

Classification

Normal Pathological

Total (%) Total (%)

Real Images 1979 (93.35) 141 (6.65)

Artificial Images 5947 (99.12) 53 (0.88)

Table 6.8: Binary classification accuracy on the real and artificial images.

Table 6.8 shows the accuracy of the binary classification model with regard to each set of

images. The overall results were similar, with a slight performance increase in the artificial image

dataset.

6.3.2 Training of a Pathology Classifier

To assess the change in performance of each model, the classification accuracy of each class was

evaluated, along with the average of each model’s accuracy. All of the pathological classes were
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classified with the trained YOLOv5 network.

Class A B C

Aortic Enlargement 0.55 0.61 0.87

Atelectasis 0.30 0.22 0.27

Calcification 0.09 0.09 0.11

Cardiomegaly 0.56 0.68 0.87

Consolidation 0.19 0.27 0.23

ILD 0.26 0.24 0.28

Infiltration 0.21 0.26 0.28

Lung Opacity 0.16 0.24 0.27

Nodule/Mass 0.22 0.28 0.33

Other Lesions 0.09 0.11 0.14

Pleural Effusion 0.50 0.51 0.54

Pleural Thickening 0.15 0.17 0.24

Pneumothorax 0.34 0.58 0.54

Pulmonary Fibrosis 0.30 0.35 0.38

Average 0.33 0.37 0.42

Table 6.9: AUC of the precision-recall curve of each trained model for each pathology class.
Column A represents the model trained with real pathological images, column B represents the
model trained with real pathological and artificial normal images and column C represents the
model trained with real pathological and normal images.

Table 6.9 shows the area under the precision-recall curve of each model for each of the patho-

logical classes with the best-performing model being highlighted, and Figure ?? shows a graphical

representation of the same comparison. The best performing model was the one trained with both

real normal and pathological images, followed by the one trained with real pathological images

and artificial normal images, and lastly the model trained with just real pathological images.
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Figure 6.16: Graph showing the comparison between the area under the precision-recall curve of
each model for each of the pathological classes



Chapter 7

Discussion

In this section, the results of the LWGAN evaluation will be analysed and interpreted. Overall, the

results in the tables in the previous chapter indicate that the overall best performing architecture is

the one described by the 32 GSA test with an image resolution of 512×512 pixels, self-attention

in the 32×32 layer, 2000 training images, a batch of 6 images, augmentation probability at 0.25

and translation, cutout and color as augmentation techniques. It showed the best performance

regarding the evaluation metrics and also the overall image quality.

7.1 Chest X-Ray Image Generation

7.1.1 Quantitative Metric Evaluation

There is no publicly available related work to compare with the results of the evaluation metrics

used to assess the performance of this GAN, therefore, the performance is comparable only within

the performed experiments of the LWGAN.

The FID is a biased metric, dependent on the number of evaluation images, the IS is suboptimal

and does not take into account the intra-class variability of the images, and the KID has a high

variance. Although the three evaluation metrics are flawed, these are considered to be the state-

of-the-art evaluation metrics for GANs. However, when combined, the three metrics have shown

to adequately represent the quality of the models and contribute for the overall interpretation of a

GAN’s performance.

Through the comparison of the generated images and the evaluation metric results used to

compare the experimental tests it is possible to conclude that the evaluation metrics do adequately

represent the quality of the images when used together. The FID, as shown in the tables of the

previous chapter, has a strong correlation with the values of the KID. However, the same does not

always apply for the IS when compared to the other two metrics. The IS value for the 256 GSA

test, for example, does not translate the global performance of the generated images.

75
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7.1.2 Resolution

The first experiment was related to the image resolution. Although the easiest model to train would

be the one trained with 256× 256 resolution images, the best performing model turned out to be

the one trained with the 2000 images of 512×512 pixels. The number of representative features

in larger resolution images should have made it harder to train, nevertheless, it showed a larger

ease of training and better results. Additionally, the training time was similar to the training time

of the lower resolution model.

7.1.3 GSA

The GSA implemented in the second experiment showed a significant improvement on the overall

performance of the LWGAN. As mentioned in the previous chapter, the best performing model

had GSA in the 32× 32 layer. The comparison between the tests with GSA in different layer

sizes shows that it is especially impactful in smaller layers, enabling the network to connect lower

resolution long-distance features between them. When compared against the tests with GSA in

larger layers or multiple layers, the end result of this operation led to a more detailed image with

better representations of the anatomical structures. It is not clear why the models with GSA in

multiple layers, including the 32× 32 layer, experienced worse results to such an extent. Nev-

ertheless, there is no indication that by combining layers with GSA, such as a good performing

layer, 32× 32, with a bad performing layer, 256× 256, would improve the overall performance.

It is also possible that this problem might be associated with difficulty in converging and not with

the architecture in it self.

Regarding the loss functions and discriminator prediction accuracy of the 32 GSA model, it

can be seen that a collapse of the training occurred on epoch 32. During training, discriminator and

generator are kept in a close balance, with a discriminator loss close to 2 and generator loss close

to 0 indicating that the discriminator cannot successfully distinguish real from artificial images.

However, Figure 6.3 shows a disruption of this balance and collapse of the GAN with a steep

increase in the generator loss and a decrease in the discriminator loss, leading to a near perfect

classification of both real and artificial samples (Figure 6.3). However, the model’s performance

in terms of FID (Figure 6.2) improved at a faster rate up until epoch 50 where it then began to

worsen at a slower rate. From this point onward, it kept getting worse and never achieved the

same performance again. With this in mind, the discriminator accuracy supported the idea of

vanishing gradients, since the discriminator got too good at classifying the images, however, as

mentioned, there was an improvement in the overall performance of the model.

Comparing the 32 GSA model to those with GSA in larger layers, in particular to the 256 GSA

model for example, it can be seen that both quantitative and qualitative results were worse with

GSA in larger layers. Shown in Figure 6.4 are two samples generated by the 256 GSA model, with

more examples shown in Figures A.3 and A.4. The overall pixel intensity of both images is largely

different. The set of image tiles in Figure A.4 shows that this occurrence is common in most of

the generated images by the 256 GSA model. This model includes GSA in the 256× 256 layer,
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which is believed to have led to this difference in the generated images, since the occurrence did

not happen with any of the remaining trained models.

With this in mind, comparing this model’s performance with the 32 GSA model, which in-

cludes GSA in the 32×32 layer, and other models with GSA in multiple layers, one can conclude

that GSA in a larger resolution layer can likely lead to an increased focus on irrelevant features.

7.1.4 Loss Functions

The dual contrastive loss function did not outperform the model trained on the hinge loss function.

However, the development of the generator and discriminator loss functions showed a promising

development. As Figure 6.6 shows, the generator and discriminator loss functions adapted quite

rapidly and at a faster pace than the hinge loss, however, after epoch 3, the generator’s loss function

output started increasing. Similarly to the losses of the 32 GSA model, the Dual Contrastive Loss

model did improve up until epoch 44, where it began to progressively worsen.

Regarding the generated image quality, although the evaluation metric results are amongst the

best, the anatomical structures such as ribs and the distance between them, shoulder blades and

vertebrae are poorly represented. Additionally, the overall image resolution and detail lack the

sharpness required to properly identify structures and consider the images good artificial samples.

7.1.5 Large Resolution

Regarding the results of the 1024 Resolution model, although the loss functions developed as ex-

pected, maintaining a stable and constant value for both the discriminator and generator network,

which in case of this implementation of the LWGAN with the hinge loss is at around 2 and 0

approximately, the model did not converge and did not improve the overall generation quality. As

observed in Figure 6.7, the FID did not improve significantly over the 43 epochs and stabilized.

The fact that the accuracy and loss functions behaved as expected for a normal test, it shows that

both the discriminator and generator failed to learn the representations and there was no collapse

of the overall training.

Unfortunately, since it did not train correctly, higher resolution images could not be gener-

ated and the original 512× 512 resolution was kept during the following experiments and GAN

validation.

7.1.6 Hyper-parameters

The hyper-parameter related tests showed that the LWGAN is sensitive to variability in these pa-

rameters. However, neither decreasing or increasing the number of available images for training

improved the overall performance of the model, when compared to the best trained model. Addi-

tionally, a larger batch size did not improve the performance as well, even when compared against

a model trained with the same number of training images. In deep learning applications, an in-

crease in the volume of training data leads to an improvement until a saturation point is reached

where adding further samples does not lead to an increase in performance. However, in smaller
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more compact variations, this saturation level may be reached with a smaller amount of images.

The models trained with 4000 images did not improve in comparison to the models trained with

2000 images, however it is not clear if this is caused by the amount of training images or other as-

pect of training, such as the loss function behaviour of different models. Nevertheless, all models

trained on 4000 images showed inferior performance when compared to the models trained with

2000 images.

Regarding the model trained with the horizontal flip augmentation with 0.5 probability, it

was shown that the higher probability led to an augmentation leak, where the generator learns

to generate not only the original image characteristics but also the introduced augmentation. In

this case, this leads not only to a worse performance in terms of FID, KID and IS but also leads

to the generation of images which are not suitable to be used in clinical practice. With many

deep learning applications, especially health and medical applications such as CXRs, input from

medical doctors, in this case radiologists, is essential. To be accepted for clinical use, deep learning

algorithms have to be validated by someone with field-knowledge. Therefore training these models

while empirically validating the results and methods with medical doctors is crucial.

The right side image in Figure 6.9, as mentioned in the previous chapter, shows an example

of the augmentation leak of the horizontal flip. In this case, the heart and label marker are some

examples introduced during training that can negatively affect the training of the model and are

not suitable for clinical practice.

The two examples showed in Figure 6.10 occurred due to the model learning incorrect repre-

sentations of the statistical representation of the data. In the case for the augmentation leak, having

a large augmentation probability, which is the probability of a batch being augmented, can lead to

a large number of augmented samples being fed to the model’s input for training. These images

do not correctly represent and, just as the images with a horizontal flip, are not suitable for use in

clinical practice.

Nevertheless, as with the horizontal flip feature, data augmentation, when introduced in a

smaller scale, does not negatively affect the training of the model, since the image volume is not

large enough to represent those features as a statistical significance.

The image on the right shows only one breast, which in reality and clinical practice does

exist. However, the volume of generated images with this structural difference is quite significant,

which supports the idea that the model is not learning the statistical representation of the data. It is

assumed that the model is mixing features from CXRs taken from male patients with features from

CXRs taken from female patients. This operation is common in GANs, however, for the use in

clinical practice it is not clear if it will introduce bias or other limitations to classification models.

7.1.7 Summary

Despite the results for the hyper-parameter related tests, or any of the above mentioned tests for

that matter, it should be taken into account that none of the mentioned tests had a loss function

behaviour similar to the one in the 32 GSA model, except for the 512 Resolution model (Appendix

A.14). Since the larger performance improvement in the 32 GSA model originated simultaneously
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to a collapse of the discriminator-generator balance, it is not entirely correct to assume that the

performance of the remaining models with different loss function behaviour would underperform

when compared to a 32 GSA model if the same imbalance had occurred. Figure 6.2 shows that

around epoch 33, before the FID curve dove to a better performance, the FID was at roughly

around 63. It is still hard to form any conclusions, however, it shows that the performance of all

other models would likely not be far behind the best performing model, if the same GAN collapse

and simultaneous improvement had occurred.

Regarding the overall model performance, none of the trained models showed indications of

mode collapse, i.e., did not constantly produce the same plausible output that could be misinter-

preted by the discriminator. Every model showed a varied set of images without obvious repetition,

as shown in the mosaic figures in the appendix A.

Nevertheless, the best overall performing LWGAN model is the 32 GSA model, which is capa-

ble of generating high-quality CXR images with adequate detail, correctly represented anatomical

structures and without suffering from mode collapse or other limitations associated with GANs.

7.2 Perceptual Validation

7.2.1 Authenticity Classification

The six participants of the authenticity classification task presented interesting results. After ques-

tioning the participants and asking the reason that led to the classification choices, two main ap-

proaches were described: three participants noticed the difference in detail and resolution of the

structures and based their decisions on that parameter, and the remaining three participants tried

to find structural irregularities and did not take into account the detail and resolution as much as

the previous three. The main irregularities sought after by the participants were details such as

ripples in the edges of the bones, distortion of the clavicles, asymmetries and angulation of other

anatomical structures, with some examples shown in Figure 6.14.

Radiologist 1, PhD Student 2 and Inexperienced Individual 1 all followed the first approach.

As expected, since the generated images are not perfect with regard to detail and pixel resolution,

all three performed very well, with an overall average accuracy of over 96%.

The other three participants, which took into account the structural representation and overall

quality of the generated image, were not as accurate at distinguishing real from generated images.

Radiologist 2 mentioned that some of the generated images posed as lower quality real CXRs,

which are quite common in reality. With this in mind, the decision process of radiologist 2 was

not influenced by this issue and since the structural elements were correctly represented, generated

images looked real and were classified as so. The same logic was proposed by the two other par-

ticipants. The overall average accuracy in the authenticity classification by these three participants

was above 70%, quite different from the first three participants.

As for the split into real and artificial images, specificity and sensitivity, as expected, real

images were more often correctly classified as real images than the generated images. This means



80 Discussion

that real images were easier to identify and generated images were often classified as real, which

in an ideal situation would happen with every image.

The best performing pair of participants was the pair of radiologists, followed by the PhD stu-

dents and lastly the inexperienced individuals. One may conclude that higher level representations

and overall image quality are enough to lead to incorrect classifications for the pair with less field-

knowledge, and as it increases, it becomes easier to notice the differences and main limitations of

the generated images.

7.2.2 Normality Classification

The results of the normality classification task performed by the two radiologists were not as orig-

inally expected. Both radiologists accurately labeled the pathological images, with an average

accuracy of 98%, as expected. However, for both individuals, the labeling of the normal images

was not accurate, having both incorrectly labeled a similar amount of images. Upon a more de-

tailed review of the image labeling, it was concluded that a significant amount of the incorrectly

labeled images by both radiologists were the same, i.e., both radiologists incorrectly labeled the

same images.

When discussed with the two radiologists, they confirmed that most of these images could not

be considered normal and that the ground truth label was incorrect, meaning that images labeled

as normal on the dataset presented in fact pathologies which were not identified/labeled by any of

the radiologists that participated in the original annotation of the dataset. This meant that from the

25 real normal images, a significant amount (up to 7 images) was mislabeled and the images were

in fact pathological images.

These cases occurred more commonly in real images than in the generated images, where

only 6 images in a total of 50 were classified as having pathologies. Additionally, the findings

found in the generated images that led to the two participating radiologists classifying them as

pathological, were mainly distortions in anatomical structures, whereas with real images, these

findings were identifiable pathologies belonging to the VinDr-CXR dataset classes. The most

common pathologies identified by the radiologists in real images were cardiomegaly as well as

opacities/nodules in the ribs and clavicles. Aortic enlargement and enlarged mediastinum were

also identified.

Since the VinDr-CXR dataset is the only large volume dataset with manual annotations, it is

important to be aware of the large amount of misannotated labels. This dataset may be preferable

when compared with other large datasets that are not manually annotated, however, it has shown

to be flawed and future studies should have this into account.
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7.3 Application in Image Classification/Detection

7.3.1 Binary Classification Model

The results shown in Table 6.8 show a larger number of artificial images were classified as normal

images by the binary classifier.

As discussed in the previous section, a small but significant amount of images in the VinDr-

CXR dataset appear to be incorrectly labeled. These images are mainly labeled as normal images

by the radiologists who performed the original dataset annotation.

The influence of the mislabeled images can be seen in the histogram of classification predic-

tions for real images, as shown in Figure 6.15, where the classification model classifies some of

the real images as abnormal with a high level of certainty. Since the LWGAN learns a statistical

representation of the features of the images, the model does not learn to generate abnormal images

as normal even though they may be present in the training dataset, since these have significantly

different features and are likely considered as outliers during training.

Figure 6.15 shows a higher number of real images classified as normal images with a high

level of certainty. However, it also classified a large number of images as abnormal. As for the

generated images, these are not classified as normal with such a high level of certainty, since the

LWGAN is not capable of generating perfect authentically-looking CXRs. Nevertheless, a larger

number of artificial images are classified as normal, shown as light red in the figure, and very few

images are classified as abnormal.

The results support the idea of the VinDr-CXR dataset being a flawed dataset. Additionally, the

generated images seem to accurately represent and pose as real normal CXRs when analysed by an

objective classifier with regard to the overall image structure. Directly comparing the distributions

of the real and artificial images one might even consider that the artificial images are more normal

than the normal data from which they were generated, since the pathological outliers have been

filtered out. This is supported also by the perceptual validation performed by the radiologists and

the higher specificity obtained in artificial images in normality classification.

7.3.2 Training of a Pathology Classifier

The use of artificial images for the training of classification models is one of the goals of image

generation. In an ideal scenario, the addition of artificially generated images would provide the

same training performance as if the model had been trained with the same number of real images.

As mentioned in the previous chapter, Table 6.9 and Figure ?? show the performance of three

trained classifiers. The goal was for the model trained with real pathological images and artificial

normal images to be able to outperform the model trained with real pathological images, which it

did successfully. Ideally, the generated images would be on par with real normal images and be as

successful at training a classification model. However, and as expected, since the LWGAN is not

capable of generating images that completely represent and pose as real images, the result of the
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classifier trained on artificial images did not achieve the same performance as the one trained only

on real images.

Nevertheless, as mentioned, when compared to the performance of the model trained with

only real pathological images, the model trained on both real pathological and artificial normal

images has shown to improve the overall classification performance. This indicates that, although

the generated images are not on par with real images, they still provide an improvement on the

overall performance of the classification model for pathological classes.

7.4 Limitations and Future Work

The work developed throughout this dissertation met several constraints. The main limitation

found in the whole development stage was the dataset. The VinDr-CXR dataset is the only pub-

licly available completely manually labeled CXR dataset, which means it is not susceptible to

NLP annotation errors like other commonly used datasets, giving it an advantage when compared

to those other datasets. Nevertheless, it turned out to have a significant amount of incorrectly

labeled images. An incorrectly annotated dataset leads to poorly trained models and is a major

disadvantage for future clinical applications. High quality datasets are one of the main limita-

tions for CXR automatic diagnostics systems, since all of the available datasets, including the

VinDr-CXR, are flawed. In future work and development, an improved or new dataset should be

a priority, for it impacts the overall performance of the models, especially in applications where

only small amounts of data are available.

Throughout the development of the LWGAN models, a large set of data was available, since

the No Finding class holds the majority of the available images. However, training with only the

No Finding class is a limitation since it does not train models on pathological findings, which

are less represented classes. Additionally, most cases who require some degree of explainability

of the model’s decisions are cases with pathological findings. Some of the available pathological

images in the VinDr-CXR dataset have more than one pathology, which can lead to conflicts during

training. Ideally, each training image would contain findings related to just one pathological class.

This would allow the models to train and learn specific features to each single pathology. In future

developments there should be a focus on having models trained on pathological images, since it is

where the data representation limitation lies. Another aspect that could be advantageous is the idea

of the disentanglement of features, which could allow specific pathologies to be added to specific

locations in normal images, such as nodules. Parallel to this, human perceptual validation should

be included in the development, since it is essential for a correct training and progression of the

models to be later used in clinical applications.

A major limitation of the work developed in this dissertation is the quality of the generated

images. Although the 512×512 resolution appears to be enough for training classification models,

the goal is to fully represent the native data, even regarding the resolution. With this in mind, the

work developed in the future should have a focus in progressively growing a few-shot GAN, in
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this case the LWGAN, to allow for larger resolution images to be generated. The available data

has the required quality for it and should be one of the main focuses.

GAN evaluation metrics are one of the commonly known limitations regarding this type of

algorithm. Although the evaluation metrics used in this work were capable of providing additional

information regarding the LWGAN’s performance, none of these metrics adequately represents

the whole range of quantitative analysis that is required to understand the performance and quality

of a GAN. This is an issue that is actively addressed by the GAN development community and is

a problem with a much needed solution.

These limitations show that the work developed in this thesis is a stepping stone to future

developments. These limitations can be looked upon and new methodologies and tools can be

developed in future work to further improve the algorithms.
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Chapter 8

Conclusion

The state of the art of deep learning models for automated pathology classification systems has

been progressively improving, but significant limitations remain due to the available data and the

lack of knowledge regarding the decisions made by these models.

The goal of this dissertation was to research and develop the artificial generation of high qual-

ity CXR images when trained on small datasets. The final purpose is to be able to provide medical

imaging and computer vision researchers with better tools to allow for more robust methods of

automatic detection or diagnosis of several pathologies. The artificial generation of realistic CXR

images would allow to supplement the amount of available training data for automatic multi-

label diagnostic systems and to provide some degree of explainability of the decisions made by

deep learning models. The process began by understanding the necessity regarding diagnostics of

CXR images and automatic chest radiography analysis, followed by reviewing the best available

datasets. Secondly, the state of the art of image generation and evaluation was reviewed and re-

searched, with a focus on generative adversarial networks and commonly used evaluation metrics.

This thesis’ contributions lie on the LWGAN development methodology to explore the poten-

tial of the architecture and evaluation methods to successfully assess its performance. Regarding

the architecture, a systematic approach was explored, where the architecture was empirically de-

veloped with regard to several key aspects, including image resolution, global self-attention, loss

functions and the model’s hyper-parameters. The developed models achieved an adequate per-

formance, generating high quality images capable of being used in the training of classification

models while improving the overall performance.

To ensure a complete validation of the developed solutions, both quantitative and qualitative

methods of evaluation were employed. The quantitative evaluation was ensured by the FID, KID

and IS. The results showed that these metrics, when combined, complement each other and provide

a useful quantitative evaluation of GANs. Nevertheless, these metrics are known to have limita-

tions. The qualitative evaluation was assessed by a perceptual validation performed by several

participants with different experience levels in CXR image analysis, who showed that the gener-

ated samples still lack the detail and resolution of real images, however, represent the anatomical

structure of real CXRs. Finally, the models were also assessed by the performance on two applica-
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tions in image classification and pathology detection. The results in both applications showed that

the generated images are high quality images with a correct representation of the native CXRs,

adequate to be used in classification models and successfully improve overall classification per-

formance in pathological classes.

Altogether, the development of this work was essential for an understanding of the needs and

limitations of generative models in medical image applications. It was done in a structured manner

with a complete assessment of the models’ performance. The used architecture, the LWGAN,

enabled a fast development due to its short training time and low computational needs, and has

shown to be efficient for the development of a quality GAN that is able to generate quality images.
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Additional Results

Figure A.1: 64 generated samples by the 256 Resolution model
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Figure A.2: 64 generated samples by the 512 Resolution model
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Figure A.3: 64 generated samples by the 32 GSA model
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Figure A.4: 64 generated samples by the 256 GSA model
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Figure A.5: 64 generated samples by the 32-128 GSA model
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Figure A.6: 64 generated samples by the All Layers model
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Figure A.7: 64 generated samples by the Dual Contrastive Loss model
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Figure A.8: 16 generated samples by the 1024 Resolution model
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Figure A.9: 64 generated samples by the 1000 Image Set model
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Figure A.10: 64 generated samples by the 4000 Image Set model
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Figure A.11: 64 generated samples by the 4000 Image Set - Larger Batch Size model



108 Additional Results

Figure A.12: 64 generated samples by the 4000 Image Set - Horizontal Flip p = 0.5 model
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Figure A.13: Discriminator accuracy at predicting the image source (left), loss functions (right)
and FID (center) values from the 256 Resolution model throughout training

Figure A.14: Discriminator accuracy at predicting the image source (left), loss functions (right)
and FID (center) values from the 512 Resolution model throughout training
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Figure A.15: Discriminator accuracy at predicting the image source (left), loss functions (right)
and FID (center) values from the 256 GSA model throughout training

Figure A.16: Discriminator accuracy at predicting the image source (left), loss functions (right)
and FID (center) values from the 32-128 GSA model throughout training
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Figure A.17: Discriminator accuracy at predicting the image source (left), loss functions (right)
and FID (center) values from the All Layers model throughout training

Figure A.18: Discriminator accuracy at predicting the image source (left), loss functions (right)
and FID (center) values from the 1000 Image Set model throughout training
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Figure A.19: Discriminator accuracy at predicting the image source (left), loss functions (right)
and FID (center) values from the 4000 Image Set model throughout training

Figure A.20: Discriminator accuracy at predicting the image source (left), loss functions (right)
and FID (center) values from the 4000 Image Set - Larger Batch Size model throughout training
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Figure A.21: Discriminator accuracy at predicting the image source (left), loss functions (right)
and FID (center) values from the 4000 Image Set - Horizontal Flip p = 0.5 model throughout
training
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