
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

An IDE Plug-in to detect security
vulnerabilities in

Infrastructure-as-Code Scripts

Tiago José Antunes Ribeiro

DISSERTAÇÃO DE MESTRADO

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Rui Filipe Lima Maranhão de Abreu

July 21, 2021

An IDE Plug-in to detect security vulnerabilities in
Infrastructure-as-Code Scripts

Tiago José Antunes Ribeiro

Mestrado Integrado em Engenharia Informática e Computação

July 21, 2021

Abstract

Cloud computing has made it possible for more individuals and corporations than ever to access
complex IT infrastructures. Although accessing them became easier, properly installing and con-
figuring them still remained a challenge, as this was still a long manual process that needed to be
repeated across all systems. Infrastructure-as-Code promises to change all of that, by automatizing
system installation and configuration. It allows the formalization of the configuration process in
sequences of lines of code that can then be executed multiple times in different places to ensure
consistency. This also means that any security vulnerability present in that same code will be
replicated across all infrastructure, revealing the importance of tools that are able to detect these.

For the Puppet language, only the SLIC tool exists. Although having promising results in
initial tests, further ones revealed several issues related to a low precision in detecting vulnerabil-
ities in code. This motivated the development of a new and improved tool, capable of addressing
these issues with high levels of precision and providing developers, in a convenient manner, the
assurance that their code is secure and ready for deployment.

The developed tool integrates seamlessly with the average developer workflow, providing
warnings to vulnerabilities in real time, right when they are written. Its architecture allows not
only this integration with virtually every IDE in the market, but it also provides the flexibility
and modularity to support the future improvement and integration with even more precise and
complete analysis rules. This seamless user experience was approved by the participants of the
conducted User Study.

Keywords: Infrastructure-as-code, Linter, Cybersecurity, Puppet, User Experience, Plugin

i

ii

Resumo

A Computação em Nuvem tornou possível o acesso a infraestruturas informáticas complexas por
parte de muitos mais indivíduos e organizações. Embora o acesso tenha ficado mais fácil, o pro-
cesso de instalação e configuração permaneceu um desafio, visto continuar a ser um processo
longo e manual que precisava de ser repetido por todos os sistemas. A "Infrastructure-as-Code"
(Infraestrutura como código) promete mudar tudo, automatizando a instalação e configuração de
sistemas. Permite a formalização do processo de configuração em sequências de linhas de código
que podem depois ser executadas múltiplas vezes em diversos locais, de modo a garantir consistên-
cia. Isto também significa que qualquer vulnerabilidade de segurança presente no código irá ser
replicada ao longo de toda a infraestrutura, realçando a importância da existência de ferramentas
que as possam detetar.

Para a linguagem Puppet, apenas a ferramenta SLIC existe. Embora esta apresentasse resulta-
dos promissores nos testes iniciais, após alguma investigação foram revelados diversos problemas
relacionados com a baixa precisão da ferramenta em detetar vulnerabilidades no código. Isto mo-
tivou o desenvolvimento de uma nova e melhorada ferramenta capaz de corrigir estes problemas,
com altos níveis de precisão e dando a garantia aos programadores, de uma forma conveniente, de
que o seu código é seguro e está pronto a ser lançado.

A ferramenta desenvolvida integra-se perfeitamente com a rotina de trabalho do desenvolvedor
comum, fornecendo avisos às vulnerabilidades em tempo real, no exato momento em que estas
são escritas. A sua arquitetura permite não só esta integração com virtualmente qualquer IDE no
mercado, mas também a flexibilidade e modularidade necessárias para suportar futuras melhorias
e integração com regras de análise ainda mais precisas e completas. Esta experiência de utilização
completamente integrada foi aprovada pelos participantes do estudo de utilização realizado.

Keywords: Infrastructure-as-code, Linter, Cybersecurity, Puppet, User Experience, Plugin

iii

iv

Acknowledgements

I would like to start by thanking Professor Rui Maranhão for orienting my Master Thesis. He,
together with Sofia Reis, were a very valuable help during the development and writing of this
project. Their continuous support and also previous experience and research made it possible for
me to build this program.

I would also like to thank everyone who volunteered to participate on my User Study. Their
availability to sit down during an hour to have a call with me was critical to ensure that my work
could be properly evaluated by potential users. Their feedback will definitely prove very valuable
for the future continuity of the project.

Finally, a special thanks to my family and to my girlfriend for their continuous support during
this long journey and for never letting me give4 up.

Tiago Ribeiro

v

vi

“You can never protect yourself 100%.
What you do is protect your self as much as possible

and mitigate risk to an acceptable degree.
You can never remove all risk.”

Kevin Mitnick

vii

viii

Contents

1 Introduction 1

2 Infrastructure-as-Code scripts security analysis 3
2.1 Infrastructure-as-Code explained . 3

2.1.1 Infrastructure-as-code in action . 3
2.1.2 Main advantages . 4

2.2 Security risks . 5
2.2.1 Practical example of a vulnerable IaC script 6

2.3 SLIC: A security analysis tool for Puppet . 7
2.3.1 The Seven Sins . 7
2.3.2 Tool analysis . 9

3 Building a better security linter for Puppet 11
3.1 Taking a better look at SLIC . 11

3.1.1 The importance of precision in a code analysis tool 11
3.1.2 Poor User Experience is also driving developers away 12

3.2 Where can improvements be made? . 13
3.2.1 An improved rule engine . 14
3.2.2 Providing a better User Experience . 15

4 Taking a deeper look into the tool’s Architecture 17
4.1 Challenges addressed . 17

4.1.1 Better integration with developers’ workflow 17
4.1.2 User customization of rules . 18
4.1.3 Powerful vulnerability detection rules 18

4.2 Architecture Overview . 18
4.3 In-depth sections and design patterns used . 21

4.3.1 Rule Engine . 21
4.3.2 Modular Rules . 21
4.3.3 Centralized Configuration Management 22

4.3.3.1 Configurations’ Web Page . 23
4.3.3.2 Configurations’ File . 24

4.3.4 Interaction with the User . 25
4.3.4.1 Command Line Interface . 25
4.3.4.2 Language Server Protocol . 26

4.4 Educational Purpose . 27
4.5 Ready for future expansion . 29

ix

x CONTENTS

5 Development Process 31
5.1 Choosing a Programming Language: Ruby . 31
5.2 Code Versioning and Distribution . 31

5.2.1 Using Ruby Gems . 32
5.2.2 Using the VSCode Extension Marketplace 32

5.3 Unit testing rules with Ruby MiniTest . 33

6 Working with IDEs 35
6.1 Fitting into a developer’s workflow . 35
6.2 Communication with the main core . 36
6.3 Basic requirements for an IDE extension . 37
6.4 Implemented IDE: Visual Studio Code extension overview 38

7 Tool’s Validation: Results from User Study 39
7.1 Importance of conducting an User Study . 39

7.1.1 Main goals . 39
7.2 Proposed structure . 40
7.3 Candidate Selection . 40

7.3.1 Participants’ background . 41
7.4 Results and User Feedback . 41

7.4.1 Vulnerability detection . 42
7.4.2 Follow-up questions . 46

7.5 Looking into future improvements . 50

8 Conclusions and future work 51

A User Study Flyer 53

B User Study Guide 63

References 73

List of Figures

2.1 IT Infrastructure manual configuration without IaC 4
2.2 IT Infrastructure automatic configuration with IaC 5
2.3 Diagram of the SLIC Architecture . 10

4.1 Puppet Security Linter Architecture . 20
4.2 Implemented Rule engine pattern classes . 21
4.3 Centralized Configuration Management System 22
4.4 User interfaces for configuration management 23
4.5 Web Page for User Configurations . 24
4.6 Configurations Webpage Sequence Diagram . 25
4.7 Command Line Interface . 26
4.8 IDE Integration Sequence Diagram . 27
4.9 Example of a Vulnerability details page . 28

5.1 Page of the developed linter in RubyGems . 32
5.2 Marketplace page of the VSCode extension . 33

6.1 Warnings displayed in real time right in the IDE window 35
6.2 Workflows for different analysis tools . 36
6.3 Core of the tool working with different IDEs from the market 37

7.1 Pre-Task questions results . 47
7.2 Task questions results . 48
7.3 Pos-Task questions results . 49

xi

xii LIST OF FIGURES

List of Tables

2.1 Examples of tokens generated by the SLIC Parser Module 9
2.2 Examples of regular expressions used by the SLIC Rule Engine Module 10

3.1 Comparison of the precision of SLIC in the several conducted studies 12

7.1 Study participants grouped into background experience groups 41
7.2 Analysis results for the first Puppet Manifest . 42
7.3 Analysis results for the second Puppet Manifest 43
7.4 Analysis results for the third Puppet Manifest 44
7.5 Analysis results for the fourth Puppet Manifest 45
7.6 Analysis results for the fifth Puppet Manifest 46

xiii

xiv LIST OF TABLES

Abbreviations

IT Information technology
IaC Infrastructure-as-Code
SLIC Security Linter for Infrastructure as Code scripts
IDE Integrated Development Environment
AWS Amazon Web Services
DevOps Development Operations
IP Internet Protocol
HTTP Hypertext Transfer Protocol
TLS Transport Layer Security
UML Unified Modeling Language
LSP Language Server Protocol
HTML Hypertext Markup Language
JSON-RPC JavaScript Object Notation - Remote Procedure Call
NLP Natural Language Processing
VSCode Visual Studio Code
CI/CD Continuous Integration/Continuous Delivery
GUI Graphical User Interface
GPG GNU Privacy Guard
APT Advanced Packaging Tool
SAT Static Analysis Tool
CSS Cascading Style Sheets

xv

Chapter 1

Introduction

With the growth in recent years of cloud computing, more complex IT infrastructures became

much more accessible to companies and individuals. Although these systems became more< af-

fordable to obtain, proper installation and configuration of the software still remained a very dif-

ficult and arduous task. Infrastructure-as-code promises a solution for this problem, by allowing

the formalization and automatization of these tasks. This saves greats amount of time and makes

the replication of systems a very easy task.

However, having a sequence of lines of code that can easily setup and deploy a system and

be replicated across several places also poses an essential security threat. These lines that are

consistently executed in several places make it so that a security flaw is also replicated the exact

same way everywhere. This makes the existence of tools that can detect security problems in

IaC very crucial. Focusing on the Puppet language1, the scenario is not very positive, with only

a relatively recent attempt at making a tool like this. The SLIC tool, created by Rahman et al.,

approaches the problem by looking for some common security vulnerabilities in the code, known

as The Seven Sins [13].

Although the author of the SLIC tool reported a precision2 of around 99% in his original study,

a later independent study showed a much worse scenario, with a precision as low as 8% [17].

This discovery highlights not only the weakness of the tool and the importance of independent

evaluation of software, but also the urgent need of a precise security analysis tool for the Puppet

language that will not scare developers away with a high amount of false positives3.

With this in mind, the goal of this project is to build a new tool, based on SLIC, which is

capable of analyzing Puppet code in real-time, capable of detecting security vulnerabilities and

other problems with a much higher degree of precision. Integration with several IDEs is the key

1Puppet is a declarative language used to describe system configuration, being one of several IaC tools available in
the market.

2The precision is calculated by the ratio of actual vulnerabilities detected and the total number of alerts given by the
tool

3False positives are alerts raised by the tool that do not correspond to real security flaws

1

2 Introduction

to ensure a good User Experience and a seamless integration into most development processes.

The final goal of the tool consists in preventing security vulnerabilities from being introduced into

systems early in the development process.

The list of contributions is:

• Development of a tool able to analyze Puppet code and detect, with great precision, vulnera-

ble sections that might pose a security risk. This tool was developed based on a universal and

expandable architecture able to adapt to new security vulnerability scenarios in the future.

• Development of a plugin to integrate the tool with an IDE, able to demonstrate the true

capabilities offered to the end user. This plugin feeds the tool with the code being written on

the IDE window and in real time display alerts and other useful information to the developer

about the vulnerabilities in his code.

• An User Study focused on evaluating the user experience of the tool and how likely is for

developers to start using it in the near future. The educational aspect of the tool is also a big

focus of the study, as teaching developers on how to avoid these vulnerabilities in the first

place is probably the most important contribute this tool can give to the community.

The document will start with a deeper analysis on what IaC is, how it works and its benefits

for companies and IT professionals, alongside with some of the security dangers that it might

introduce. This will be followed by an overview of the state of the art of Security Tools for IaC

software, namely the SLIC tool for Puppet. A deeper analysis on how it works, its structure and

logic will also be conducted, alongside its weaknesses and points for improvement. Taking on

the lessons from this analysis, the developed tool is presented. First, by a deep analysis of its

modular and expandable architecture, followed by the process used to implement this designed

architecture into practice. The integration with IDE is also mentioned, as it constitutes one of the

main differentiating points of the linter. Finally, the results of the User Study made to evaluate the

user experience of this software are presented, with the lessons learned from it being an important

contribute to the conclusion and future improvements of this Thesis.

Chapter 2

Infrastructure-as-Code scripts security
analysis

2.1 Infrastructure-as-Code explained

Infrastructure-as-Code (IaC) consists in the provisioning, configuration and deployment of IT in-

frastructures using machine readable and reusable scripts, contrasting with the traditional inter-

active and manual process carried out by a human. Using a tool like Puppet for example, it is

possible to write code that sets up a complete IT infrastructure without ever needing to manually

install or configure software using interactive tools or even by physically configuring the hardware

[8].

2.1.1 Infrastructure-as-code in action

Using a practical example, it is possible to imagine an online service, like a store that needs to

be deployed into production. The company has already the hardware available, in the form of

several servers commissioned from an Cloud Computing service and needs to configure them to

run the already developed software1. This software consists in the website that is going to be

available to customers and all the supporting applications that will allow staff to see, process and

ship orders, while being able to properly account all transactions made. All of these applications

will also need available storage for all the data generated. Because the company operates in several

different countries around the globe, they commissioned redundant servers in several locations that

need to be similarly configured.

Traditionally, this would be a very tedious process. A team of professionals would need to

manually login into every server, install the operating system, make all network configurations,

setup load balancers2 according to the expected demand of customers in a particular area, install

1As a simplification, the hardware is commissioned from a Cloud Computing service like AWS or Azure, meaning
that its maintenance and configuration is not handled by the store company.

2A load balancer allows a system to handle a large amount of concurrent users, by distributing them across several
similar running servers that can satisfy their requests [14].

3

4 Infrastructure-as-Code scripts security analysis

the website application in a server, alongside all the other supporting applications and many other

tasks. The problem only gets worse when considering the fact that this process will need to be

repeated across all regions where the company will operate, meaning a lot more time spent and

the possibility of errors or inconsistencies in the configuration.

Figure 2.1: IT Infrastructure manual configuration without IaC

A much better alternative to this scenario would be if a team of developers wrote a script

that described exactly how to configure the system: How many servers, the software needed in

each server, network and any other configuration needed. This script could then be run on the

environment and after some time, the entire infrastructure should be configured and the website

up and running. When configuring other regions, the same script can be used, ensuring that all

configurations will be identical.

2.1.2 Main advantages

As shown in the previous example, Infrastructure-as-Code has the potential to completely change

the way IT infrastructures are configured. Suddenly, this process can also be included into the

DevOps3 cycle, meaning that software can not only be continuously versioned and tested, but also

deployed.

Automating the infrastructure management process allows for rapid and consistent provision-

ing of systems. The code written can be documented and versioned, allowing for much greater

3DevOps is the set of practices aiming to merge software development with IT Operations, allowing for much faster
development cycles by automating continuous delivery processes and incorporating many Agile philosophies.

2.2 Security risks 5

Figure 2.2: IT Infrastructure automatic configuration with IaC

transparency in tracking defects or changes. As with the software code itself, different parts of

an infrastructure can easily be reused for other purposes, allowing for a much quicker process of

assembling new environments [5].

Companies using IaC will definitely have an advantage, especially in a dynamic software

environment, where requirements change and quick adaptation is vital. Software development

following Agile methodologies no longer needs to be held back by the time it takes to deploy it.

Instead, this deployment process can be brought into the Agile cycle and also be easily adapted

whenever needed.

2.2 Security risks

Just like any other piece of code in an IT infrastructure, IaC is also vulnerable to security threats.

Security is one of the main aspects of any IT system, especially if dealing with personal or confi-

dential information that is highly desirable to a malicious entity. Security breaches are big business

[10] and a secure infrastructure that is properly protected goes a long way to prevent these kind of

attacks.

It is true that IaC can increase security by avoiding instances where vulnerabilities are intro-

duced by human error during a manual configuration process, but this does not mean that those are

not a possibility. Actually, because IaC ensures consistency across every instance by centralizing

all configuration into a script file, any flaw in that same file will replicate itself across the entire

infrastructure. This becomes an even worse problem considering the fact that this flawed configu-

ration is now formalized into a code file, being in plain sight of a malicious attacker able to access

its location. This raises the need to ensure the security of all IaC produced.

6 Infrastructure-as-Code scripts security analysis

Although the security consequences of bad coding practices are a well-known phenomenon

for several programming languages and tools, for IaC and specifically for the Puppet language,

there is a huge lack of studies and knowledge [13]. This is a very worrying scenario because it

makes it easy for developers to unknowingly produce vulnerable code without ever realizing its

true consequences. For IaC to truly have a chance to become the new industry standard, good and

safe code practices need to be studied and then made easily available to everyone who works in the

area. These practices should then be enforced by trusted linters4 and other security tools, ensuring

the quality and safety of the code to developers and companies.

2.2.1 Practical example of a vulnerable IaC script

To illustrate how important is ensuring security on IaC scripts, an example will be used. In the

following Puppet class, a new user will be created in the system, with a username, password and

home folder defined.

1 class add_user {

2 # add user, create homedir and set a password

3 user { ’john’:

4 ensure => ’present’,

5 comment => ’Example user’,

6 managehome => true,

7 password => ’password123456’,

8 }

9 }

After this code is run, the system should have a new user named "john" with the password

"password123456". Assuming a best case scenario, where the system properly encrypts pass-

words, it is easy to assume that no malicious attacker will ever get hold of the credentials of the

account, even if it manages to gain access to the system. If this password is used to encrypt

sensitive files, it is impossible for him to steal any important information.

This would be true in an infrastructure assembled in the traditional way, where a professional

would pick a password that only he knew. Even if the password never gets changed, only this

individual knows it and assuming that he does not write it down in any dangerous place, no one

else will ever know. The problem here is that the password is defined not by a professional at the

moment of setup, but it is already written down in the script. After the system is set up, the script

code will still continue to exist, meaning that the password will be there in plain sight to anyone

who gains access to the file.

It is easy to imagine a scenario where this file is kept in a code repository. This location could

then be compromised by a malicious attacker, who is able to gain access to all files. By opening

4A linter is a software tool able to analyze static code in search of problems like errors, bugs or lack of compliance
with a convention.

2.3 SLIC: A security analysis tool for Puppet 7

this one, he can easily understand that the password for that user is the one written down on the

code. With this information, he is able to finish the attack and gain access to the entire system.

In this particular example, the best solution is to invest in a password management software.

All passwords of the system would be stored in a secure location and the IaC scripts would simply

query it for the values. No password would be left exposed in any piece of code.

A security analysis tool should be able to identify this piece of code as a vulnerability and warn

the developer immediately, informing him of the risks he is being subjected to and the potential

ways this could be fixed. This way, vulnerabilities like this one are avoided right at development

time.

2.3 SLIC: A security analysis tool for Puppet

During the development of IaC scripts, developers can introduce security smells into their code.

These are code fragments that are proven to be security weaknesses. They are weak points in the

software that can potentially be exploited by a malicious attacker. In the previous IaC security

vulnerability example at 2.2.1 it was possible to see that the presence of an hard-coded5 password

in the source code opened a door for a malicious attacker to entry in the system. This is a clear

example of a code smell. Rahman et al. in his study of thousands of Puppet scripts [13] was able

to find more code smells like this. He listed them as The Seven Sins. This knowledge was then

used to build an automated code analysis tool named SLIC.

2.3.1 The Seven Sins

Rahman et al. worked on finding and categorizing types of code smells that could be present in

Puppet scripts. For this, he gathered thousands of scripts from several different projects and after

a process of analyzing the source code, he came up with a list organized by type, which he named

The Seven Sins [13]. This list is composed by the following code smell types:

1. Admin by Default - An user is given administrator privileges by default, making it easier

for accounts to have more authorizations than what they need, violating the principle of least

privilege6.

1 $username = ’admin’

2. Empty Password - An account with an empty password makes it very easy for attackers to

guess its value during an attack.

5Hard-coding is the practice in software development of embedding data directly into the source code, meaning that
the only way of editing it is by modifying and recompiling the source code. It also means that it is visible to anyone
with access to the source files.

6The principle of least privilege is the concept of giving users only the strictly necessary authorizations in the system
for the tasks they need to perform. This grants a greater protection against malware, confidential data loss and other
kinds of attacks by limiting what an attacker could do if he gained access to the user’s credentials [12].

8 Infrastructure-as-Code scripts security analysis

1 $password = ’’

3. Hard-coded secret - As shown in a previous example 2.2.1, having secrets written on the

source code itself can open the door for attacks as password management becomes nearly

impossible (recompilation of source code is needed for any change of credentials) and some-

one with access to the code repository could easily get all the passwords to attack the system.

1 $password = ’securepassword1234’

4. Invalid IP address binding - Using the 0.0.0.0 IP address can cause security issues as this

address allows connections from any other address in the network.

1 listen_ip => ’0.0.0.0’,

5. Suspicious Comment - A comment in the source code indicating a problem or a feature

that was not done can be a rather obvious indication to an attacker that the system is not

finished or possibly not fully protected in that specific area.

1 # TODO: secure this password

6. Use of HTTP without TLS - HTTP connections without TLS are not encrypted at all,

meaning that they are vulnerable to Man-in-the-middle7 attacks.

1 update_server => ’http://company.com/updates/latest’,

7. Use of weak cryptography algorithms - Security flaws can be found on cryptography

algorithms, rendering them vulnerable to malicious attacks. Using vulnerable algorithms

(Rahman et al. gives MD5 and SHA-1 as examples) to encrypt sensitive information will

not ensure their confidentiality.

1 $encrypted_pass = md5($password)

7In a Man-In-The-Middle attack, the communication between two endpoints is compromised by an attacker, who is
able to intercept and even modify the traffic without anyone being aware of it [4].

2.3 SLIC: A security analysis tool for Puppet 9

These are the types of code smells found in the study and later used as a basis to build the tool.

This does not exclude the existence of more types of code smells in IaC scripts that can open the

door for security attacks.

2.3.2 Tool analysis

After organizing the list of different types of security smells, Rahman et al. realized that the

only way to ensure that developers would stop committing them was through the development

of a linter. So he presented the Security Linter for Infrastructure as Code Scripts. This tool

promised the ability to scan through Puppet code and automatically detect the presence of any of

the studied code smell types. The tool itself was developed using Python and from studying the

source code8 and the document itself, it is possible to conclude that its architecture is based off

two main modules:

• Parser - This module reads through all Puppet code and each element detected is converted

to a standard notation known as Token. Tokens are presented in the following format:

1 <TYPE, NAME, CONFIGURATION VALUE>

Some examples of tokens for different types of elements present in Puppet scripts are pre-

sented in table 2.1.

Table 2.1: Examples of tokens generated by the SLIC Parser Module

Puppet code Respective token
$username = "John Doe" <VARIABLE, ’username’, ’John Doe’>
user => ’John’ <ATTRIBUTE, ’user’, ’John’>
#This function adds an user <COMMENT, ’This function adds an user’>

• Rule Engine - After having every element of the script standardized into tokens, the tool

uses rules to try to recognize patterns that give away the existence of a code smell. Each

rule consists on the combination of several functions that recognize different patterns in the

tokens. Each function uses a regular expression9 to detect that pattern. If the combination

of all functions happens, then the tool knows that the smell type associated with that rule

is present in the script and it returns an alert. Here is the rule used to detect the previously

mentioned Admin by default code smell type:

1 (isParameter(x)) ^ (isAdmin(x.name) ^ isUser(x.name))

8https://github.com/akondrahman/IacSec/tree/master/SLIC
9A regular expression is a pattern that can be matched against a string of characters [16].

10 Infrastructure-as-Code scripts security analysis

This can be translated as having a token that is a parameter and it represents an user which

is also an administrator. For each function, a regular expression allows the detection of that

pattern in text. The regular expressions used in this rule, plus a more complex one used to

detect if a private key exists inside a Token are represented in table 2.2.

Table 2.2: Examples of regular expressions used by the SLIC Rule Engine Module

Rule function Regular Expression used
isAdmin() ‘admin’
isUser() ‘user’
isPvtKey() ‘[pvt|priv]+*[cert|key|rsa|secret|ssl]+’

The end result of the script, for each line of Puppet code analyzed, is either the confirmation

that no code smell was detected or the type that was detected.

Figure 2.3: Diagram of the SLIC Architecture

Chapter 3

Building a better security linter for
Puppet

3.1 Taking a better look at SLIC

Rahman et al., in his study of the SLIC tool [13], reported near perfect precision and recall values

for his SLIC software. These results raised some questions, especially because achieving these

kind of results in a tool that performs very simple pattern-matching in text, without any awareness

of the context, seems to be too good to be accurate. These worries were addressed in a later

independent study [17], where the tool was evaluated against different and much more varied

datasets, composed of Puppet scripts from several open-source projects from GitHub, with the

results being represented in table 3.1.

Two evaluations were conducted in the study:

• Firstly, a sample of 9144 Puppet scripts, where SLIC detected security smells, was collected.

These where then evaluated by the authors of the study by hand in order to understand if

they were actual problems or just false positives1. In the end, the overall precision of the

tool never got over 64% for every type of security smell detected.

• Intrigued by the preliminary results, the authors conducted a second study, where an auto-

mated tool was built to run SLIC in several open source GitHub repositories. Any detected

alerts were automatically posted as issues on the respective projects. The high number of

false positives ended the project abruptly and after analyzing the responses from the authors,

the final precision came around 8%.

3.1.1 The importance of precision in a code analysis tool

When studying code analysis tools, precision is one of the most important measures of the overall

performance of a program, as it allows for a representation of the total number of false positives

1A warning from the tool is considered a false positive when it is determined that the issue does not exist or the
developer considers that it does not affect the overall software security.

11

12 Building a better security linter for Puppet

Table 3.1: Comparison of the precision of SLIC in the several conducted studies

Study Overall Precision
Original study by the author 99%
Preliminary Independent Study 64%
Large Scale Independent Study 8%

generated. One of the main difficulties faced by this kind of tools is the high presence of alerts that

are then dismissed by developers as being false or simply not important enough to be dealt with.

An high presence of these in the program results will seriously affect the confidence in the tool,

besides being an enormous inconvenience and disruption of a product development workflow [15].

Most developers try to maximize their work efficiency and analyzing false positives is a waste of

that same precious time, meaning that this is, in many occasions, the main reason why a tool like

this is abandoned.

This is why precision was the highlighted result from the analyzed studies, and by comparing

the results, it is possible to conclude that SLIC has significant problems in this area. Just by

observing the results obtained by each study, it is possible to conclude that:

• The original author of the tool seems to have significantly overestimated the performance

of his tool. Besides the ethical problems this might bring, the false expectations created in

potential users will only make the experience worse. As they expected a near perfect list

of results, the tolerance for the many errors that are expected (from the previous results)

to occur will be minimal and will certainly drive them away immediately from this kind of

tools.

• The results from the independent study reveal a much darker picture, where the large ma-

jority of warnings that the tool produces are completely false. For a developer, this means

massive amounts of time wasted looking for rare true positives that may or may not appear

in the middle of the list of estimated 92% of completely false alerts.

Considering all of this, good precision will definitely be the main goal of the projected tool, as

it constitutes one of the most important metrics and factors that potential developers will take into

consideration when evaluating its value for their projects.

3.1.2 Poor User Experience is also driving developers away

Besides the low precision reported by the tool, the analysis of the feedback from the several dif-

ferent developers that were targeted by one of the conducted studies [17] also reveals that they do

not approach all security alerts the same way. Some of the detected smells were definitely severe

and they needed to be dealt with as soon as possible. However, this is not the case with most of

them, where their resolution can wait for less intensive development periods or not even be im-

portant enough to spend time addressing them. Unfortunately, SLIC treats all of them in the exact

same way, creating a large and unorganized list that developers need to sort through manually. In

3.2 Where can improvements be made? 13

larger projects, where the number of warnings can grow considerably, it is easy to understand that

this will negatively impact the user experience. Organizing this list in a hierarchical structure that

makes sense to developers and combining it with a measure of the importance of each detected

issue goes a long way in not only providing a much more pleasant User Experience, but also in

easing the burn of dealing with non-relevant or even false warnings [9].

SLIC is also not customizable at all. This means that developers are not able to adjust how

or which warnings are analyzed and returned by the tool. This has a considerable impact on the

type and amount of potential false positives that might be displayed. For this reason, developers

highly value the possibility of customizing the analysis process, by changing the parameters on

how different types of warning are detected or even by suppressing some completely if they do not

find them relevant [9].

Another issue with the tool is the very weak output it produces. Simply stating which type of

vulnerability was detected, without providing any explanation, context or suggestion on how to fix

it makes it very easy for developers to simply ignore them, contributing to a bad and dangerous

experience, where important flaws might get overlooked [9]. This fact combined with the total lack

of organization of the output results constitutes an additional reason for developers to overlook this

solution on their Puppet project.

Finally, developers usually do not stop their development process to run additional analysis

tools [15]. SLIC is an isolated Python script that is not incorporated into any kind of development

tool or workflow. This creates an additional barrier for its use, meaning that either by lack of

will to perform an additional command or just by pure laziness, developers might not run the tool

regularly, causing a pilling up of warnings that catalyzes the previous analyzed user experience

issues. A new and improved tool, to have a chance to be regularly used by developers, needs to

integrate into the development cycle, either by running periodically in the code infrastructure or

by detecting issues in real time inside the programming software.

These problems reveal the importance of a good User Experience even in a simple code anal-

ysis tool. This can either convince users to use the tool regularly, spending time in learning how

it works, customizing and optimizing it for their needs and getting the benefit of having an addi-

tional confirmation of their code quality, or drive them away from static analysis altogether after a

frustrating experience. It also highlights the fact that SLIC is still far away from being a feasible

tool for anyone who wishes to analyze their potentially vulnerable Puppet code.

3.2 Where can improvements be made?

It is clear that SLIC has a lot of room to improve before it can become the standard security analysis

for Puppet programmers. As it was described in section 2.3.2, it has a very simple architecture

which reflected itself on the very naive errors committed during the precision studies described in

section 3.1. It became clear that a critical step to avoid the false positives presented by the tool is

getting an idea of the context where the Puppet code is executed. The instructions used and even

the naming of the variables can have completely different meanings depending on the programmer,

14 Building a better security linter for Puppet

the software where is inserted and even the section where is written. Besides, developers, due to

several external factors like the security level of the tool or budget, can intentionally use one or

more smell types in the code.

Alongside with the problems with precision, User Experience is also an area for big improve-

ments. Like discussed in section 3.1.2, it plays an important role in the decision of developers

to use or not use the tool. It also became clear that developers are not going to get out of their

development routines to run a separate tool neither deal with large, unorganized lists filled up with

false alerts.

3.2.1 An improved rule engine

The architecture of SLIC, analyzed in section 2.3.2, has two main sections of data processing: A

Parser which is able to analyze every line of code and convert it to a standard token form; and

a rule engine which is responsible for analyzing the generated tokens against a set of rules and

regular expressions that represent the different types of code smells.

After a preliminary analysis of the source code, the Parser module seems to accomplish its goal

of translating all different lines of code into a standardized and easy to analyze form. Because of

this, very few changes can actually be made to improve it and it will, most certainly, be reused in

the new and improved analyzer.

The biggest source of problems is, by far, the Rule Engine. After a preliminary analysis of

the author’s paper [13] and the source code, it is evident that the tool is still very simplistic in its

approach to the problem in hand. The simple pattern matching of certain words and expressions

is behind the vast majority of false positives returned to the user. The only way of improving the

precision, like discussed previously, is going further in terms of complexity of the analysis. This

could theoretically be accomplished in several ways:

• Customizable rules - Developers, better than anyone else, know exactly the context of the

program and all special factors specific to it that have to be taken into account during a

security analysis. They also know which kind of bugs and smells they are more prone to

commit and as such, they know which kind of rules should be enforced [11]. This means

that the rules cannot be hard-coded into the Rule Engine like they are currently on SLIC.

Instead, they need to be adaptable to any type of configuration made by the user. There

could also be the possibility for the introduction of new rules by the developers anytime

they find it adequate.

• Machine Learning - To better understand the context in which the instructions are inserted,

comparison with other scripts with similar contexts and which are known to be secure can be

very valuable. Machine learning can be used here as a way of making the Rule Engine very

powerful and aware of different development patterns and types of software. By having a

3.2 Where can improvements be made? 15

model which is constantly trained2 using, for example, other open source Puppet scripts that

are known to be secure and have a very similar application context [1], it is possible to detect

any unusual variation that could certainly be a signal of the presence of a vulnerability.

Other improvements that could have a positive impact on the precision of the tool will also be

analyzed.

3.2.2 Providing a better User Experience

Besides an increased precision, ensuring a good and pleasant user experience is also vital to en-

courage developers to adopt this new software. The current SLIC tool is basically an isolated

Python script that is run manually against isolated Puppet scripts. As it has been seen previously

in 3.1.2, developers do not want to constantly stop their development process to periodically run

code analysis tools. Because of this, it is imperative that the new tool becomes part of any devel-

opment process. To satisfy this requirement, the new tool will integrate seamlessly with several

different IDEs, meaning that code alerts will be provided in real-time right in front of developers.

Instead of having to worry about running it manually, the tool will provide its output automatically

where it matters the most: At the place where the vulnerability is in the code. This will effectively

make the tool an integral part of the entire process.

In addition, the provided alerts will have to be classified according to their importance and

urgency to be addressed. Using a simple classification system of colors displayed [9], for example,

will enable developers to have an immediate idea of the severity of the potential smell they just

wrote.

Lastly, for each kind of code smell detected, an explanation and several examples of how it

can be a problem will be provided in a "More information" button. This will contextualize the

user on the consequences of the code smell he iAntroduced. Machine learning could once more

be used to suggest a possible fix to the problem based on other pieces of code that are known to

be correct.

2A model is a program that can be trained via the observation of several examples that are known to be correct. It
is able to identify patterns and similarities between them that then can be used in analyzing new data. By trying to
apply these learned patterns to the new data, it can try to classify it. Classifications are possible, like in which type from
several it is part of, if its relevant or not to the training data or even making a mathematical prediction of a certain value,
by the use of regression algorithms.

16 Building a better security linter for Puppet

Chapter 4

Taking a deeper look into the tool’s
Architecture

4.1 Challenges addressed

The tools’ architecture was developed with several challenges in mind: From the need to integrate

with several different IDEs to allow for a much better User Experience and integration with most

developer workflows, to having highly customizable rules able to be tuned up for every situation.

With these in mind, the end result was an highly modular architecture, with possibilities for

user customization and also future expansion in several key components, from new rules to IDEs

and even configuration interfaces.

4.1.1 Better integration with developers’ workflow

One of the main problems of the existing SLIC tool is the fact that it is only a command line

linter. This means that any developer interested in analyzing his code needs to stop working to

manually run the linter. Unless a CI/CD solution capable of running the software periodically is

used, the most likely scenario is that users will eventually stop running the command, as that is a

major disruption of their workflow [15]. Even with an automated solution, the feedback will not be

immediate, which might promote the accumulation of vulnerabilities and the increased likelihood

of them not being properly addressed.

As such, the proposed security linter needs to integrate much more tightly with the average

developers’ workflow, allowing them to get instant feedback on their code without any extra effort.

For that, the architecture was built from the ground up with abstraction in mind, separating the core

functionality from the presentation. With this system, different plugins can be built for any IDE

on the market, all working from the same universal core.

Finally, the developer ends up with a tool that presents all vulnerabilities right were they will

be definitely noticed - on the code being developed.

17

18 Taking a deeper look into the tool’s Architecture

4.1.2 User customization of rules

All software projects are different, and Puppet is not immune to that. Rules that might be obvious

in some situations can be completely unthinkable to enforce in others. As such, one of the most

critical features of any Static Analysis tool is the ability to be user configurable [9].

To overcome this important challenge, the architecture was built with a central system to man-

age, display and apply all sorts of configurations to every rule. This system is what makes it

possible for users to easily customize the exact behavior of the linter on their particular project,

ultimately reducing the number of false positives generated.

4.1.3 Powerful vulnerability detection rules

Arguably the main problem with the existing SLIC tool was that high presence of false positives.

This was due, among other factors, to the low complexity of the applied rules, being mainly based

in non configurable regular expressions. This was made worse by that fact that adding new rules

was neither easy or officially supported.

Being expandable to new challenges was a priority from day one. The designed rule archi-

tecture is fully modular, allowing for an easy future expansion with new fully user configurable

rules. Tomorrow, a new developer can come around adding new powerful features like machine

learning or natural language processing with ease, allowing for almost endless possibilities on the

vulnerability detection capabilities.

4.2 Architecture Overview

Considering the challenges presented previously, an UML Class diagram with the software archi-

tecture for the Security Linter was designed. It includes practically all classes that were developed

in the final code.

The usual workflow starts either by the Command Line Interface or via the LSP server classes,

if the user decides to use an IDE such as Visual Studio Code. These classes serve as the gateway

to the logical core of the analysis, providing access to the content of the file and receiving the list

of results from the analysis to be presented to the user.

The most important class in this entire schema is without doubt the Rule Engine. It is the

center piece that coordinates all activities. It keeps track of all rules currently created and being

applied, being responsible for receiving the content of the file and controlling which rules will be

called and applied, returning the end result. It is also responsible for transforming the received

Puppet code into a list of tokens, importing for this task the Tokenizer class from the existing

Puppet-Lint gem.

The Rules themselves are represented by their own class. It has all the logic that evaluates if a

certain kind of vulnerability is present in the list of tokens being analyzed. If yes, it then returns

the list of locations where that happens.

4.2 Architecture Overview 19

Inside these rules lives the Configuration class, being home to the value and properties of

all user-configurable aspects of the applied rules. There are several configuration subclasses ac-

cording to the data type of the configuration, which require different kinds of input fields to be

presented to the user. Another possibility is having rules that are called by other rules, very useful

if there is the need of sharing the same logic across different rules.

This is the normal flow of information, from the input of a file to analysis until the production

of the list of vulnerabilities found, represented by the Sin class that can also have different types.

Another important feature of the tool is the amount of user customization supported. The user

can configure the rules’ behavior via a HTML page, generated and managed by the Configura-

tionPageFacade class. These rules are then persisted in a file using the ConfigurationFileFacade

class. Both of these classes use the ConfigurationVisitor to obtain the list of all configurations

present on the system that are spread across all rules.

20
Taking

a
deeperlook

into
the

tool’s
A

rchitecture

Figure 4.1: Puppet Security Linter Architecture

4.3 In-depth sections and design patterns used 21

4.3 In-depth sections and design patterns used

4.3.1 Rule Engine

A linter is a collection of different rules that are applied over a piece of code that it being evaluated.

This tool is no different. As such, a solution to properly organize all rules is essential to ensure the

maintainability and expandability of the software.

An easy solution would be to just have all rules being applied to the same code file with

conditional branches to determine what kind of tokens should be evaluated there. This is not a

very good solution as all the code is concentrated on the same place, making hard to read and

properly maintain.

As such, a better solution was designed, based on the Rule Engine design pattern [6]. All rules

have their own class, based on an abstract Rule class. All of them share a common method that

executes the logic. The rule engine has the important role of keeping track of all rules, choosing

and executing them.

Figure 4.2: Implemented Rule engine pattern classes

This ensures that all rules are implemented on separated independent classes, allowing for a

much greater modularity. This in turn makes it easier to maintain the current code and also to

improve or add more rules in the future, ensuring the continuous improvement of the quality of

analysis as analyzed in the next component.

4.3.2 Modular Rules

Precision is an essential aspect of any code analysis tool [15]. This is directly correlated with

the ability of the rules to detect the correct security vulnerabilities. After recognizing that achiev-

ing great levels of precision without a group of fairly sophisticated rules and that these involve

working with complex technologies (like Natural Language Processing or Machine Learning) that

are projects on their own, the best way to ensure that the tool can eventually achieve this level

22 Taking a deeper look into the tool’s Architecture

of precision is to design it in a way that future projects can build upon it. This demands a rule

architecture able to be modular and easily expanded.

As such, based on the Template design pattern [7], the designed system makes it so that every

rule is its own logical class, derived from a common abstract one. This makes it possible to see

and run all rules the same way (making it possible for the rule engine to work), but with each one

having it is own logic implemented behind the common method.

In the future, another developer interested in improving the tool precision or adapting it to new

scenarios can easily add new rules, without ever having to modify anything from the existing ones.

Much more complex technologies can, as such, be integrated later on.

4.3.3 Centralized Configuration Management

A very requested feature of any linter is the ability of the user to customize the behavior of the

analysis [9]. For this same reason, it was given an high importance to the design and incorporation

of a customization system in the Software Architecture.

Because of the previously mentioned Modular Rules, and also because each Rule has its own

set of configurations, hard-coding them inside the already developed Rules would not be a feasible

solution. As developers can change and add Rules at will, the system needs to be able to accept new

Configurations without too much trouble. Also, the configurations are all spread across different

Rules, so without a default policy of uniformization, it would be impossible to provide to the user

a centralized place to customize everything. At worst, most rules would have to be changed in

different places or even in the source code itself, creating an extremely user unfriendly system to

use and making it very difficult to be adopted by the Puppet Community.

Figure 4.3: Centralized Configuration Management System

4.3 In-depth sections and design patterns used 23

To avoid this situation, a Centralized Configuration Management system was designed. Each

Rule has a set of different objects from the abstract Configuration class, representing the different

parameters that can be user customizable. Inspired by the Strategy Design Pattern [7], each sub-

class from the abstract one represents a different type of data, as different types of data require

different kinds of fields to be displayed and also different strategies to process and validate that

data. Inside each Rule, all configurations are instances of these subclasses according to the type

of data stored in them.

Inspired by the Visitor design pattern [7], these configurations that are spread across different

rules are all managed by a Visitor class who goes around all Rule classes and lists every rule that

exists, creating effectively a list of all configurations in the system. Because this list is compiled

in execution time, it allows each rule to be developed and customized any way the developer sees

fit, with worrying updating any centralized configuration list in the code. This list is then used to

centrally manage all configurations.

Figure 4.4: User interfaces for configuration management

4.3.3.1 Configurations’ Web Page

In any configurable system it is essential to the User Experience that the user is able to configure

it from a single place, preferably at run time without any sort of source code modification. To

achieve this, an HTML web page is generated at runtime containing all data fields to edit any kind

of configuration data needed. The user can then, from his web browser, manage the entire system.

This is done using a system based on the Facade design pattern [7]. The Facade class provides

this simple to use web interface to the user to view and manage all configurations in the system.

Behind the scenes, the class is responsible for using the previously referenced Visitor to compile

the list of all configurations and then it generates the HTML code adequate to each element of that

list, meaning that different kinds of configurations get different data fields displayed.

24 Taking a deeper look into the tool’s Architecture

Figure 4.5: Web Page for User Configurations

After the user is done with tuning up the system, pressing save makes the Facade read the

values of all HTML fields and store them back into the original Configuration classes at runtime,

effectively allowing the system to be configured in real-time.

4.3.3.2 Configurations’ File

Another important aspect is the persistence of the configurations. It is not practical to demand a

system configuration everytime the user needs to analyze a different code file. As such, a way to

persist the user settings was needed.

This was achieved again by using the Facade Design Pattern [7]. Similarly to the Configura-

tion’s Web Page, the class uses the Visitor to obtain the list of current configurations. Then, when

the User modifies these configurations, the class is responsible for generating a .ini file with all

values. This file is then persisted in the machine file system. When the program is called again for

a new analysis, the same configurations facade is called, but this time it reads the contents of the

settings file and makes sure that all configuration classes have the appropriate values.

This way, the system can maintain all User defined configurations everytime a new analysis is

done, contributing to a much better User Experience. It is also technically possible to use this file

to configure the system, bypassing the previously mentioned Settings Web Page in systems that

do not have a graphical user interface for example.

4.3 In-depth sections and design patterns used 25

Figure 4.6: Configurations Webpage Sequence Diagram

4.3.4 Interaction with the User

The interaction with the user is arguably the most important contribute to a positive User Experi-

ence. It is what the User sees and uses to interact with the system, inputting data and obtaining the

resulting output.

For this linter, besides the Console Interface standard in any software of his kind, an LSP

interface was also design, allowing for an easier integration with IDEs.

4.3.4.1 Command Line Interface

Similar to many code linters on the market, the user can perform an analysis from the Command

Line interface.

26 Taking a deeper look into the tool’s Architecture

Figure 4.7: Command Line Interface

From this Command Line it is possible to perform any action, using flags to specify which

one the user needs. He can just start the LSP server running the command without anything.

Specifying a file or a folder will make the software perform an analysis recursively (in the case of

the folder), displaying the results immediately on the console itself. There are also flags available

to launch the configuration page, run in Verbose mode or even to specify in which port the LSP

server should run in.

From the Architecture point of view, this is the main entry point which gives access to all

previously mentioned components and also to where their output is conducted to.

4.3.4.2 Language Server Protocol

As previously mentioned, one of the options to the the software is to start a LSP server. The Lan-

guage Server Protocol was created to address the problem of how to implement multiple languages

on different IDEs without replicating the code [3]. By decoupling and centralizing the language

logic on a server, all IDEs only need to send and receive a standardized JSON-RPC message to

process the input of the user. This way, the same implementation of a language can be shared in

real time across multiple IDEs with minimal effort.

In this particular case, the LSP server is responsible for receiving the code of the Puppet

Manifest currently open and returns to the IDE the location and description of the security vul-

nerabilities. This means that only a simple plugin is needed for each IDE capable of handling

the message exchange with the LSP Server and displaying the results on the screen (which in a

lot of cases, like in Visual Studio Code, can be easily accomplished with an API). This makes it

possible to incorporate the software with virtually any IDE in the market that supports expansion

by Plugins, making the application accessible to even more developers.

For the purpose of this project, a plugin was developed for Visual Studio Code, as described in

6.4. This plugin sends to the LSP server the code that the user is currently working on and receives

the location of the security vulnerabilities if found. The LSP server simply calls the previously

mentioned Rule Engine in 4.3.1, which is responsible to conduct the analysis process and return

the list of results back.

4.4 Educational Purpose 27

Figure 4.8: IDE Integration Sequence Diagram

4.4 Educational Purpose

The main function of a security linter is to analyze the code and detect any vulnerability that might

compromise the system if left unchecked. The developer can then look at them and decide if he

wants to address them or not. But what happens if he does not know how to address them or what

those vulnerabilities even mean? As such, one of the main priorities in building this linter is not

only making sure that vulnerabilities are detected and presented in a convenient way, but also to

educate the user on the importance of addressing them. This is the best way to ensure that not only

these warnings are properly addressed by anyone who uses the tool, but also that developers in

general become more knowledgeable about how they can avoid introducing these vulnerabilities

into their code in the first place. This is arguably one of the most noble and important contributes

the tool can give to the Puppet Community and to the security and future of the language itself.

To achieve then this critical goal, besides providing a simple description of the warning inside

the interface of the IDE, a page was made for each type of vulnerability. This page contains a

more detailed description of the problem. More specifically:

• What is it? - Section dedicated to explain in a more detailed way in what exactly the vulner-

ability consists on. Some examples are also provided to demonstrate how this vulnerability

can be found in a Puppet Manifest. The goal is to contextualize the developer on what

exactly the warning message means.

28 Taking a deeper look into the tool’s Architecture

• How can it be exploited? - After contextualizing on what the vulnerability is, in this section

it is demonstrated how a potential attacker could exploit it when targeting a system. The goal

is to demonstrate to the user why it is important to address this vulnerability by showing the

possible consequences of having it in the system.

• How to avoid it? - The final objective of this page is to convince the end user to address the

vulnerability found on his code. As such, it is critical to show how to actually accomplish

this, as it is natural for someone who does not even know about the existence of the vulner-

ability to have no clue on how to mitigate it. Some examples might be provided on how to

do it with a Puppet Manifest, having the user only to adapt these to the context of his code.

• More related information - At the end, links to additional resources that detail the impor-

tance of the vulnerability are provided for further consultation and to validate the content of

the page itself.

Figure 4.9: Example of a Vulnerability details page

These pages are hosted on the GitHub repository of the main core and they are accessible

either by the command line, presented as a link on each detected vulnerability, or by the IDE,

where the user can click in the link shown in the warning message.

4.5 Ready for future expansion 29

4.5 Ready for future expansion

Arguably the most important aspect of the designed architecture is the attention given to the pos-

sibility of expanding the software functionality. Several aspects of the tool were designed in a

modular fashion with this precise goal in mind.

Firstly, the compatibility with several IDEs is one of the biggest differentiating features com-

pared to other previous offers on the market. As mentioned earlier in 4.3.4.2, the tool uses a LSP

server to make its functionality available to external programs. This makes it so all complicated

analysis logic stays on the server side, with the client (in this case, a plugin for the IDE) respon-

sible only for the input and display of data. This makes it very easy to develop new plugins for

various IDEs, all compatible with the core software and all sharing the same exact functionality.

For this study, only a Visual Studio Code Plugin was developed, but for the future, plugins for

other popular programs on the market can be easily developed and integrated into the linter. This

ensures that the tool has the potential to be used by virtually every developer in the community,

independent of which IDE they use on their workflow, which naturally is a very import condition

for it to become the standard among the Puppet Community.

Secondly, the precision of the analysis is a critical aspect evaluated by developers who intend

to use a Static Analysis tool. As seen previously in 3.1.1, an high number of false positives is

enough to turn away potential users, as it is a big waste of precious development time. Increas-

ing precision means developing much more powerful and complex rules capable of recognizing

different contexts and adjusting its analysis accordingly. This clearly requires a great amount of

development time and effort, being practically impossible in the context of the current project to

incorporate more advanced technologies like Machine Learning and NLP. As such, a big effort

was put into developing a Modular Rule system, as described in 4.3.1, meaning that the linter can

be later expanded with these more complex rules, developed by dedicated experts. This is very

important, as multiple dedicated development teams can contribute and work on the same tool,

freeing up the pressure on the original developer to predict and include ever possible functional-

ity. Another important aspect of the world we live in is the constant evolution and appearance of

new security threats. This architecture gives to the linter the possibility of adapting to the always

evolving threats, allowing for the update of current rules and constant addition of new ones.

Lastly, the configuration system mentioned in 4.3.3 allows for the easy and complete cus-

tomization of the behavior of the system. Besides the possibility of adding new settings, the

already existing ones allow the system to adapt to new and evolving scenarios in various differ-

ent projects. This effectively means that the tool is adaptable and expandable to be used in new

projects in the future.

30 Taking a deeper look into the tool’s Architecture

Chapter 5

Development Process

A considerable part of the project was dedicated to the development of the software itself. The

choice of programming tools was then a very important process with a crucial influence in the

potential success of the thesis.

5.1 Choosing a Programming Language: Ruby

One of the first decisions regarding the development of the Puppet Security Linter was which

programming language to use. Considering that previous linters developed for Puppet (on which

this tool is built on), including the tokenization function which is part of the existing Puppet-

Lint gem, are all developed in Ruby, the decision to use this language brought great easiness in

integrating with all of these external dependencies.

Ruby itself is a very powerful and easy to learn language and it was perfectly possible to

implement the designed architecture with it.

The Visual Studio Code extension was developed in Typescript, as this is the default language

used in those extensions.

5.2 Code Versioning and Distribution

The tool used for the code versioning was Git, more precisely, the GitHub website 1 2, as it provides

a reliable and easy to use repository able to store and version all the source code. The possibility

to have CI/CD pipelines to run unit tests and code analyzers is also a big plus. The author was also

already very familiarized with the platform.

1The source code for the linter core is available at Github in https://github.com/TiagoR98/
puppet-sec-lint

2The source code for the Visual Studio extension is also available at Github in https://github.com/
TiagoR98/puppet-sec-lint-vscode

31

https://github.com/TiagoR98/puppet-sec-lint
https://github.com/TiagoR98/puppet-sec-lint
https://github.com/TiagoR98/puppet-sec-lint-vscode
https://github.com/TiagoR98/puppet-sec-lint-vscode

32 Development Process

5.2.1 Using Ruby Gems

The use of Ruby gems 3 to distribute the core software was also a relatively easy decision, as this

system allows for a very easy installation on the part of the end user. Considering that he already

installed Ruby and Ruby gems on its machine, the installation of the tool can be done with a simple

"install" command on the command line. Integration with existing dependencies was also made

very easy as gems can be included on each other.

The easiness of publishing a gem from the source code was also a deciding factor in choosing

this distribution method.

Figure 5.1: Page of the developed linter in RubyGems

5.2.2 Using the VSCode Extension Marketplace

To distribute the Visual Studio Code plugin, the logical choice was the Microsoft provided Mar-

ketplace 4. This is the default way to distribute extensions for the IDE. The publishing process is

fairly easy and the end user can install the extension right from the IDE itself.

3The gem of the linter core can be installed from https://rubygems.org/gems/puppet-sec-lint
4The Visual Studio extension can be installed from https://marketplace.visualstudio.com/items?

itemName=tiago1998.puppet-sec-lint-vscode

https://rubygems.org/gems/puppet-sec-lint
https://marketplace.visualstudio.com/items?itemName=tiago1998.puppet-sec-lint-vscode
https://marketplace.visualstudio.com/items?itemName=tiago1998.puppet-sec-lint-vscode

5.3 Unit testing rules with Ruby MiniTest 33

Figure 5.2: Marketplace page of the VSCode extension

5.3 Unit testing rules with Ruby MiniTest

In order to easily validate the correct functioning of the different Rules, a Ruby library called

MiniTest was used. It is a widely used way of developing unit tests and in this case it demonstrated

total ability to represent the intended test cases.

For each rule, a couple of test cases were developed evaluating if for a piece of Puppet code the

rule returned the expected list of vulnerabilities. If any error was made during the implementation

of these, it would show up as a failure in the test. This also allows future developers to first

develop the tests and then guide the development of the rule on them, following a Test-Driven-

Development process [2].

34 Development Process

Chapter 6

Working with IDEs

6.1 Fitting into a developer’s workflow

As seen previously in 3.1.2, developers do not want to stop their work to evaluate if their code is

vulnerable or not. As such, blending with the existing workflows is a very critical requirement for

this new software solution.

To achieve this, besides the traditional Command Line interface, the tool was also integrated

with the Visual Studio Code IDE, as mentioned in 4.3.4.2. This allows the tool to analyze the

code in real time, displaying the detected vulnerabilities right in the IDE window while the code

is being developed. This way, the developer gets immediate feedback without having to stop the

process to run any external tool. The traditional Command line interface makes it also possible to

integrate the analysis with a CI/CD solution to validate any new addition to the code.

Figure 6.1: Warnings displayed in real time right in the IDE window

35

36 Working with IDEs

With a more traditional command line only linter, developers needed to stop the development

process and manually open and run the analysis themselves. Only then the vulnerabilities would

be detected and they would have the chance to address them. This caused several problems as it

is not very convenient for developers to perform this manually. A lot of times, the analysis would

not be run at all, leaving important vulnerabilities reaching production without detection. Even for

those teams that managed to integrate these tools with their CI/CD pipelines, running the analysis

only periodically usually leads to an accumulation of vulnerabilities that are more difficult to deal

with than if they were detected right at the moment they were written.

This is where IDE integrated tools like this one shine. As soon as a new vulnerability is in-

troduced, the developer gets an immediate warning and has the opportunity to address it while his

mind is still focused on the feature in hand, not later when the feature might already be imple-

mented, being harder to make any corrections.

Figure 6.2: Workflows for different analysis tools

6.2 Communication with the main core

As detailed previously in 4.3.4.2, the IDE communicates with the core of the linter through the

LSP protocol. In practice, this means that they exchange JSON-RPC messages requesting and

receiving information about the code to be analyzed and the detected vulnerabilities. The goal

when choosing this kind of implementation was to take off as much logic as possible from the

6.3 Basic requirements for an IDE extension 37

IDE’s responsibility, meaning that it acts as a thin client in the overall system architecture. The

big advantage in this is that the same linter core (running as a local socket server) is compatible

with any IDE prepared to deal with LSP messages. This can be easily achieved in a lot of cases by

building a simple plugin, as detailed in 6.3.

Figure 6.3: Core of the tool working with different IDEs from the market

This enables then a potential compatibility with most IDEs in the market, meaning that without

a lot of effort the tool can reach to the vast majority of developers independently of the software

they use. This is a crucial condition in the big goal of becoming the default security linter in the

Puppet Community.

6.3 Basic requirements for an IDE extension

As explained in section 6.2, the architecture of the communication between the main core and IDE

made it so the latter has the least amount of logic on its side. This was essential as there are many

different IDEs available in the market and maintaining a plugin for each one of them is not an easy

task.

Looking closely at exactly what is needed to integrate an IDE with this linter, it needs to be

able to send and receive the JSON-RPC messages that are part of the Language Server Protocol.

Several plugins like VSCode for example already offer integration out-of-the-box with this pro-

tocol, meaning that the plugin only needs to activate it when Puppet files are open. The IDE can

automatically send the code for analysis to the core and receive/display the resulting vulnerabili-

ties on the IDE’s interface. Other IDE’s might need an additional interpreter to be developed, able

to do this task of sending and receiving LSP messages while the developer works on the code.

Besides this, the plugin only needs to call the core server at startup, which is a simple command

line tool. It runs in the background as a local socket server, receiving and sending messages to the

IDE. No other functionality is required from the IDE plugin.

38 Working with IDEs

As such, this makes it fairly easy to develop plugins for new IDEs. As a bonus, changes can be

performed to the linter core, such as adding and changing rules or configurations, while keeping

full compatibility with the existing IDE plugins.

6.4 Implemented IDE: Visual Studio Code extension overview

As an implementation example for this thesis, it was decided to integrate the tool with Visual Stu-

dio Code, as it is a fairly easy IDE to work with (the author has already experience developing

code for it) and also used by a considerable amount of developers, meaning that this initial plugin

would already have a big impact. This integration, besides allowing for Visual Studio Code devel-

opers to use the new tool, has also the task of allowing for the practical demonstration inside this

project of how the tool will work.

As mentioned previously in 6.3, Visual Studio code already has native support for the Lan-

guage Server Protocol. As such, the plugin, developed in Typescript as it is standard across VS-

Code extensions, only needs to activate this library (named Language Client) everytime a Puppet

manifest is opened inside the IDE. This simplified development even more, as the logic of sending

and receiving of the JSON-RPC messages was already done. Even the display of the warnings in

the GUI is already taken care of. The only thing left to do was to activate the core of the linter,

calling a simple command line process.

As mentioned in 5.2.2, the plugin was made available in the Visual Studio Code Marketplace.

Chapter 7

Tool’s Validation: Results from User
Study

7.1 Importance of conducting an User Study

As previously mentioned in section 3.2.2, one of the most important goals of this project was to

significantly improve the user experience over the existing tools. This was demonstrated to be one

of the main causes of complaints with the existing software and stated by developers as one of the

main reasons why they avoid using static analysis tools.

As such, an User Study with actual developers from several backgrounds is the best way to

evaluate how does the interface perform in a realistic scenario. The feedback from the participants

corresponds to the real life experience of developers interested in adopting the software, providing

an accurate evaluation of how well would the tool be received by the general public if released

today.

7.1.1 Main goals

The main goal of the User Study was to provide an accurate and independent evaluation of the

User Experience provided by the integration of the software with an IDE 1. Important aspects

like intuitiveness, workflow integration, and even the educational capability need to be tested by

real developers who can give an independent opinion about the idea, implementation and possible

improvements that could be made.

The integration with the developers’ workflow, as mentioned previously in section 3.1.2, is

critically important, as programmers will not stop their development process to run analysis tools.

As shown, this often leads to the tools being seldom used, resulting in the accumulation of vulner-

abilities that makes them much harder to be properly addressed, or even in the complete abandon-

ment of the solution. One of the goals of this User Study is to understand how well does this tool

fit into their workflows and if that would be enough to convince them to adopt it.

1Only Visual Studio Code was evaluated in this study, being the only IDE with an implemented plugin so far, but
the basic User Experience is not expected to significantly change with other IDE’s on the market.

39

40 Tool’s Validation: Results from User Study

It was also given a considerable amount of attention to the educational aspect of the software.

As detailed in the section 4.4, the purpose of a software security tool should not only be in detect-

ing problems but also teaching their users about the details and the importance of avoiding said

problems in future occasions. That is arguably the best contribution given as it has the potential to

considerably reduce the security vulnerabilities introduced in the future and the resulting software

breaches and problems. To properly evaluate this, some of the participants chosen had less expe-

rience in the area and the goal of their contribution was to evaluate how well did the tool educate

them on the vulnerabilities that they were previously unaware of.

7.2 Proposed structure

The User Study was conducted in remote interviews through video calls. The author interviewed

all participants during these sessions and the feedback was recorded during the software utilization

and in some questions done in the last part.

Most interviews started with the installation of the tool, being skipped if the candidate already

had everything configured beforehand. After a small presentation talk and an introduction to the

User Study itself, some Puppet Manifest Files with several security vulnerabilities were provided.

The main task consists in opening these files in the IDE and trying to find the vulnerabilities,

learn about them and solve. At the same time, the interviewer took notes on the degree of difficulty

felt by the participant.

Finished the search for all vulnerabilities, some questions were presented where the participant

could rate their experience with the tool and also provide valuable feedback and suggestions for

future improvement.

More details about the structure of the conducted User Study can be found on the original flyer

distributed to all candidates of the study in appendix A.

7.3 Candidate Selection

The main candidates for the study were IaC developers who were looking for new tools to improve

the quality and security of their code. Users of existing Static Analysis tools were without doubt

the most fitted candidates for the job as their understand exactly what needed in a tool like this to

be able to reach the market.

Besides them, students and more junior developers with a lower awareness for Cybersecurity

were also very welcomed. Due to the importance of the educational potential detailed in section

4.4, another important goal of the study was to evaluate how well would the tool teach more naive

users about how could they improve their code quality. As such, having these kinds of candidates

allowed for a more complete evaluation and feedback of how well the tool was able to help them

developed their skills further.

7.4 Results and User Feedback 41

7.3.1 Participants’ background

As mentioned before, the participants of the study have a fairly diverse background experience

with IaC, Static Code Analysis Tools and programming in general.

Number of participants Occupation Years of experience IaC Technologies

2 IT Professional 2
Puppet, Ansible,

Terraform, Kubernettes

3 IT Professional 0 Ansible,Terraform

1 Student 0 -
Table 7.1: Study participants grouped into background experience groups

This made it possible to get different perspectives. The IT professionals with more years of

experience had almost no problems in starting up the tools and doing the exercise. The vulnera-

bilities were already part of their day-to-day activities and their focus was completely directed at

what the tool could do to improve their workflow and the results they obtained from it. Aspects

like the user experience and customizability and how could they be improved in the future made

the majority of the suggested improvements.

Professionals with less experience felt a little more difficulty in performing the task. Their ex-

perience definitely helped them understand how the linter worked, but some of the vulnerabilities

were not immediately clear to them, forcing them to spend some time consulting the provided help

pages detailed in section 4.4. This was of course essential to evaluate how well could the supplied

materials help in educating users about the importance of solving these security vulnerabilities.

The students that participated still without any professional experience had to spend some

time understanding what IaC was and also how to read and interpret the supplied Puppet Mani-

fests. They also spent considerable amounts of time consulting the provided materials about the

vulnerabilities, which was also essential to evaluate the educational potential of the software.

As shown then, this wide array of participants’ backgrounds made the results of this study

much more complete and allowed for the evaluation of how the tool could be received by different

types of elements in the Puppet community, from absolute beginners to senior developers.

7.4 Results and User Feedback

The final User Study had the collaboration of 6 participants, ranging from professionals with

some years of experience with Infrastructure as code to IT students still finishing up college with

an interest in pursuing these kinds of technology. Each of them was subjected to the same online

interview process described in the previous section 7.2. The result of that interview was a sheet

of answers and feedback, which will now going to be compiled and analyzed in the study final

results. The feedback obtained from participants will be the important building block for the

future outlook for the tool described in section 7.5.

42 Tool’s Validation: Results from User Study

7.4.1 Vulnerability detection

As mentioned before, the main task of the User Study consisted in taking 5 Puppet manifests,

opening them inside Visual Studio code with the Puppet Security Linter extension enabled, and

try to detect and fix the vulnerabilities presented. The participant was also encouraged to use the

configuration page when convenient.

The complete list of vulnerabilities is available in Appendix B, with also a small description

and context of each one. Below are the results of the task for all participants. For each vulner-

ability, the type is presented alongside the percentage of participants who successfully identified

the location of the vulnerability in the manifest and the percentage of participants who success-

fully solved it. The last column represents the distribution of the effort of everyone in solving the

vulnerability, ranging from 1 (very easy - green) to 5 (very hard - red).

Vulnerability Type Was identified? Was solved? Effort

1.
HTTP without

TLS
100% 100%

Table 7.2: Analysis results for the first Puppet Manifest

In the first Manifest, only one vulnerability was present. This HTTPS without TLS vulnerabil-

ity was very easily identified and solved by all participants, as it only consisted in switching the

link protocol from HTTP to HTTPS.

7.4 Results and User Feedback 43

Vulnerability Type Was identified? Was solved? Effort

2.
HTTP without

TLS
100% 100%

3.
Hard-coded

credentials
100% 100%

4.
Admin by

default
100% 100%

5.
Hard-coded

credentials
100% 100%

Table 7.3: Analysis results for the second Puppet Manifest

On the second manifest, some participants had some trouble in removing the Hard-coded

credentials from the manifest, as working those without any experience working with Puppet had

to learn what Hierra is and how it works. In this study, only the function call was required to be

written, meaning that participants did not need to build the actual secret file.

In general, the provided help page was effective in teaching how to use Hierra to remove the

credentials from the file, meaning that the only effort was really opening and reading this help.

44 Tool’s Validation: Results from User Study

Vulnerability Type Was identified? Was solved? Effort

6.
HTTP without

TLS
100% 0%

7.
HTTP without

TLS
100% 0%

8.
HTTP without

TLS
100% 0%

9.
HTTP without

TLS
100% 0%

Table 7.4: Analysis results for the third Puppet Manifest

In the third manifest, things were much more complicated. The presented scenario was the

use of HTTP inside a resource that downloaded and installed a package form an APT repository.

It also validated the package itself with a GPG key. As presented in a previous study [17], in a lot

of real life scenarios, these packages are retrieved from an unsecured HTTP connection precisely

because the use of an GPG key guarantees the integrity of the received package.

On the previous SLIC tool, this caused a false positive because a warning was produced,

but the developer had a good reason to keep it as it is. This scenario was included in the study

because one of the main features of this new tool is the possibility of customizing rules and this

this particular case, the participant of the study was incentivized to open the Configurations’ Page

and add this particular resource to the list of resources where the use of HTTP is allowed. This

way, the warning was suppressed and the developer was free to keep using HTTP without a false

positive.

Most participants did not know about this and instinctively tried to change the protocol from

HTTP to HTTPS. This forced the intervention of the interviewer and after the explanation, most

of them immediately recognized the need to add an exception to the rule there. This explains the

7.4 Results and User Feedback 45

higher effort.

Vulnerability Type Was identified? Was solved? Effort

10.

Cyrillic

Homograph

Attack

100% 100%

11.
Suspicious

comment
100% 100%

12.
Invalid IP

address binding
100% 84%

13.
Hard-coded

credentials
100% 100%

14.
Empty

password
100% 100%

Table 7.5: Analysis results for the fourth Puppet Manifest

In the fourth Puppet Manifest, the main difficulty was in understanding what an Homograph

attack was, as it seemed that most participants did not know the existence of this kind of vulner-

ability. But after consulting the included help page, all participants understood that characters of

different alphabets could have the same appearance and be used as a way of fooling the user to

connect to a malicious address. As such, re-writing the address was the obvious choice to fix it.

The higher effort in solving the Suspicious comment is related with the wildly different ap-

proaches that all participants used. While some simply erased the comments, others tried to re-

move the suspicious words that triggered the tool, trying this way to "circumvent" the tool. One

46 Tool’s Validation: Results from User Study

participant argued even that the suspicious comment could be left and as such, the rule could be

disabled there. This caused some discussion and a little more effort in understanding exactly what

vulnerability was described in the help page.

Vulnerability Type Was identified? Was solved? Effort

15.
Weak crypto

algorithm
100% 100%

16.
Hard-coded

credentials
100% 100%

17.
Admin by

default
100% 100%

Table 7.6: Analysis results for the fifth Puppet Manifest

Finally, in the last Puppet Manifest, there were no relevant Vulnerabilities that required an

higher effort to resolve. Removing Hard-Coded credentials was very easy here as participants

already learned about Hierra in a previous Manifest, thus demonstrating the effectiveness of the

provided help pages in educating users.

7.4.2 Follow-up questions

After the vulnerability detection was completed, some questions were then made to participants

so they could formally evaluate the tool, the study, and the feedback they got from this process.

All questions required a rating of 1 (very negative) to 5 (very positive). This allowed for

the uniformization of all answers, making it possible to establish comparisons between different

participants, which was practically impossible if only open answers were accepted. The answer

distribution of all questions are presented below, divided up into three categories: Pre-task ques-

tions that are about the experience of using the tool before the study; Task questions about the

performed vulnerability detection itself; and finally Pos-Task questions about the general impres-

sion obtained by the users after the completion of the task and feedback for the future.

7.4 Results and User Feedback 47

1 - Rate your previous experience on SATs

2 - Rate your previous experience on IaC

3 - How easy was it to follow the provided in-

structions to install and configure the linter?

4 - How intuitive it was to first

understand how the tool works?

5
4
3
2
1

Figure 7.1: Pre-Task questions results

Most participants reveal here some experience with Static Analysis tools, although most admit

that it is pretty basic and does not evolve more advanced tasks like deep customization or the

development of new rules.

Experience with Infrastructure-as-Code was pretty poor across the board. Except for some of

the most experienced professionals which work with tools like Ansible or Puppet, most partici-

pants reveal complete inexperience with this kind of software. This naturally explains some of the

difficulties felt regarding interpreting the Puppet Manifest and also identifying some of the more

complex vulnerabilities.

In a positive note, both the installation and first impressions of the Puppet Security Linter

were considered very positive by nearly all participants, demonstrating the results of the work

in simplifying these processes and integrating with Visual Studio Code warning system. On the

negative side, some participants reported some difficulty in running the tool on Windows2 and also

in accessing the tool configurations’ page3.

2In one of the interviews where the participant was using the Microsoft Windows operating system, it was revealed
that Visual Studio Code was unable to launch the core of the linter with the Ruby Windows installation, thus preventing
the tool from working. This was since then mitigated by releasing a patch.

3Having to open a terminal window to run a command was considered by some participants as not very intuitive
and a way of launching the configurations’ page from the IDE was since incorporated in a later version.

48 Tool’s Validation: Results from User Study

1 - How clear and easy to understand

were the provided Puppet manifests?

2 - How easy was it to find the vul-

nerabilities detected by the tool?

3 - How easy was it to un-

derstand those vulnerabilities?

4 - How easy was it to solve those vulnerabilities?

5 - How important and useful are

the provided configurations to you?

5
4
3
2
1

Figure 7.2: Task questions results

During the task, some participants had some trouble in understanding the syntax of the Puppet

manifests, mainly due the previously mentioned lack of experience with this kind of IaC technolo-

gies. This required some effort form the interviewer to help them interpret the code and have the

proper context for the vulnerabilities.

Finding and solving the vulnerabilities was universally considered very trivial by the fact that

the warnings are displayed right in the code itself. The developer only needs to rewrite the selected

code to solve the problem. This is precisely the result that motivated the integration of the tool with

IDE’s, mentioned in section 3.2.2. Participants gave very positive feedback on this integration and

how it could really fit into their development workflows.

Understating vulnerabilities, in the opinion of participants, was made easy by the existence of

the help pages, described in section 4.4. These provided critical insight into why the vulnerabilities

are a problem and on how to actually solve them in the code.

Finally, the configurations’ page, detailed previously in section 4.3.3.1, revealed to be a very

useful resource in the performed task. Participants were generally impressed by the degree of

customization offered, meaning that they could adapt the tool to the different projects they could

develop. By establishing parallels with previous experiences with others SAT’s, they could see the

usefulness in having this kind of customization available to prevent false positives and a generally

7.4 Results and User Feedback 49

better experience. The main complaints revolved around the poor design and intuitiveness of the

page, which is still very basic in terms of appearance.

1 - How well does this tool (or a similar one made

for a language you use) fit into your workflow?

2 - How well did the tool alert you for the impor-

tance of avoiding these vulnerabilities in the future?

3 - How likely are you to adopt this

tool if you are/were a puppet developer?

5
4
3
2
1

Figure 7.3: Pos-Task questions results

Finally, the last questions about the impressions after the realization of the task revealed that

this tool fits very well into their workflows. The integration with the IDE ensures the minimal

disruption into their development process, combined also with the good performance of the tool,

capable of performing an almost real-time analysis. The only complaint was related to how the

configuration’s page is accessed through the terminal, which takes a little more time.

The educational purpose of the tool, as mentioned in section 4.4, was definitely recognized

by the participants, who mentioned the importance of having this knowledge built into a tool like

this. They agreed that this should be one of the main purposes of this kind of software. Someone

also mentioned that with the further development of the tool and participation of more developers,

the knowledge present in these pages could be very easily expanded, improving even more this

educational potential.

Lastly, most participants agree that they would adopt this tool if they were Puppet developers,

recognizing its usefulness in preventing costly security breaches and its easy of use. They also

mentioned that this could clearly take some time as the tool still needs some more polishing and

also a bigger and more active development community in the near future.

50 Tool’s Validation: Results from User Study

7.5 Looking into future improvements

As mentioned in the previous section, participants gave several improvement suggestions to the

tool during the task and also at the end, during the feedback stage. Some of them were already

mentioned in the analysis of the answers given, like the improvement of the configurations’ page.

There are still some important improvements to be done and some sections that need to be pol-

ished. Firstly, the access to the page itself is still considered very primitive. The page can be

accessed by running the tool in a Terminal with a configurations flag, which breaks the immersion

provided by integration with the IDE. With a later patch, it is now possible to click on a link inside

the output window of Visual Studio Code, but this can still be improved and even integrated inside

the IDE. Besides that, the page itself still has some rough aspects, like the design which lacks any

CSS and the submit button, which could be placed in a more visible place floating at the bottom

of the screen. Some configurations could also be more clear in their descriptions. Lastly, while

this should not be the perfect behavior, in a lot of situations the participants where forced to restart

Visual Studio Code to apply their configurations. This of course is not convenient and causes

some disruption to a developer workflow. As such, it should be addressed in the future ensuring

that changes are actually applied in real-time.

About the Vulnerabilities’ explanation pages, although the feedback was generally positive,

most participants agree that accessing them is currently a bit difficult. This is done by a hyperlink

present in the warning message generated inside VSCode. This is the default behavior for most

VSCode linters and the page can be accessed by Ctrl+clicking on the link. Admittedly, this is not

very intuitive for users who are not used with VSCode and it is something that could definitely be

addressed not only in this one but also in all future supported IDEs.

Regarding the rules, some suggestions were made like expanding the Homograph attack to

include more alphabets besides Cyrillic, like the Greek alphabet which also has some problematic

characters. Moreover, the suggestions were made to implement some kind of tag that could be

written on the manifest to prevent a specific line form being analyzed by the linter. The IP binding

tool could also recognize subnets besides individual IP addresses.

Finally, one user demonstrated a great interest in the fact that more rules and configurations

could be easily added to the tool. To also improve on this feature, he suggested that in the future,

another User Study similar to this one could be conducted, but this time focusing on developers

trying to add new rules and configurations to the linter and how easily that could be achieved.

To conclude this section, all participants gave a general good feedback about the tool and the

User Study conducted. They also took the time to give valuable feedback on what they think

that could help the software to achieve even more success in the community. This feedback will

definitely prove very valuable in the future development of the tool following the conclusion of

this thesis.

Chapter 8

Conclusions and future work

Infrastructure-as-code is becoming much more relevant in a world increasingly connected to the

cloud. As the complexity of IT infrastructures grows, the role of automation becomes much more

prevalent to avoid ever increasing teams of expensive professionals and to reduce the prevalence

of human errors and inconsistencies.

Security is vital to any kind of IT system and with the new paradigm of IaC comes along a

completely new set of security vulnerabilities and challenges that need to be addressed. Automated

static code analysis tools play an important role in dealing with these by providing developers with

an important feedback on the quality of their code and giving companies an additional insurance

that their code is secure.

Focusing only on the Puppet language, there is a considerable lack of options for developers

who are looking for security linters. To address this, Rahman et al. built the SLIC tool, which

promised to be the new standard tool for developers who want to ensure the security of their

code. Although the author provided very impressive results in terms of precision of his tool, later

independent studies revealed its countless flaws that caused an incredibly high number of false

positives.

With this knowledge about the current state of IaC and the existing SLIC tool, a new tool

was developed with a focus on increased precision and a better User Experience. This software,

developed in Ruby, was designed from the ground up with the intention of being expanded in the

future. By using a modular architecture, new rules and configurations can be added in the future

with little to no effort. This will make it possible for new developers to integrate complex analysis

technologies like Machine Learning or Natural Language Processing, enabling the tool to reach

even higher levels of precision. The designed architecture enables the integration with virtually

any IDE in the market. This is possible due to the centralization of all analysis logic into a central

core that runs in a web socket server. By using the universal LSP protocol, developed by Microsoft,

it can communicate with any supporting IDE. Plugins can be developed to aid in this process. This

enables for a much better User Experience than the previous solutions on the market, allowing

developers to detect and fix vulnerabilities easily without ever disrupting their workflow. This was

also proved by the participants in the realized User Study, which independently evaluated how

51

52 Conclusions and future work

good and intuitive the usability of the tool really was. The possibility to customize the analysis

rules was also one feature that developers considered in previous studies to be essential to any

Static Analysis tool. As such, it was incorporated here, allowing for the full configuration of the

behavior of the rules, although future improvements were requested during the User Study.

This Modular Architecture allows also for the potential adaptation of the tool to work with

other IaC languages, like Ansible. By adapting the Tokenizer, the rest of the architecture can work

without problems with the new language.

Another critical aspect addresses during the development process was the educational purpose

of an analysis tool like this. Developers who still are not familiarized with security vulnerabilities

need to be educated about them, as this is the only way that they will be able to actually address

them. The final tool incorporates several tools, like help pages, to achieve this goal and the par-

ticipants in the User Study agree. This is considered the most noble contribution to the Puppet

community by the software.

To validate the work done and the usability of the software, a User Study was conducted,

counting with the participation of not only professional developers in the IaC area, but also junior

and student developers who are just now giving their first steps in this world. The individual

interviews realized and the several questions answered allowed them to express their generally

positive feedback of the developed tool. Both the intuitiveness of the IDE integration and the high

degree of customization were praised by developers, although some aspects revealed their need

to still be further polished. Arguably the most important result form this study was the long and

insightful list of improvements and features suggested by the participants, which can definitely

help the tool to achieve even better results and cement itself as the go-to solution in the Puppet

community.

Gathering everything achieved in the Thesis, it is possible to affirm the the main objective of

developing an improved Security Analysis tool for Puppet which could integrate with IDEs on the

market was achieved with success. Not only the tool was developed, but was also subjected to an

independent analysis via an User Study. All of this demonstrates its high potential and justifies

the continuation of its development in the future after this project. With more time and a bigger

development team, it can definitely become the standard in the Puppet community, which is the

ultimate goal that inspired the entire project.

Appendix A

User Study Flyer

This flyer was distributed to all candidates who were interested in participating in the User Study.

It explains what the study is about, what Infrastructure as Code is and exactly where does the

evaluated tool fits in this scenario. Some information about the types of participants who were

wanted is also present in the document.

It also contains instruction on how to install the software so that they could also try it out and

get ready before the interview.

53

Some background info
Puppet is an infrastructure-as-code language, where IT infrastructure configuration and deployment is
written in a programming language, allowing for the automatic and consistent deployment of
applications and services.

The entire infrastructure for an application can now be described in a script file (called manifest), making
it possible to version and manage all environment configurations just like the rest of the code. But in the
same way that a development team has a great view over all the configurations of a software
environment, a malicious attacker can also have an easier time spotting server misconfigurations and
vulnerabilities left unchecked that he might take advantage of to compromise the system.

As such, the need arises for a tool capable of spotting these potential vulnerabilities and then warning
the developer about them, as soon as they are written. The Puppet Security Linter promises exactly that,
displaying the vulnerabilities right inside the IDE, without disrupting the developer’s usual workflow.

Who are we looking for?
We are looking for developers who are interested in using static analysis tools to improve the quality of
their work or that already use them regularly. Students and junior developers motivated to start having
more experience in the CyberSecurity world are also very welcomed!

Selection Criteria

✓ Developer or Student (experience in Puppet, IAC or scripting languages is a plus)

✓ Interested in contributing to build an accurate tool able to help them better
secure their code.

✓ Knowledge about Static Analysis Tools (regular user or having past experiences,
either positive or negative) is a good to have.

✓ Experience in software security is optional, as one of the goals of the study is to
assess how well does the tool educate about good security principles.

How will the study be conducted?

At the end of this paper, we have available quick instructions on how to set up and use the software. You
can start by downloading and then getting used to it.

We will schedule a call (maximum 45 minutes) to conduct the actual study and receive your valuable
feedback.

The call will consist of two parts:

1. Hands-on experience
We will provide, in the beginning, a folder of simple Puppet Manifests. Some will be okay but
others will contain a variety of security vulnerabilities.

You will use the linter to help you locate, identify and solve those vulnerabilities so that you can
secure them and avoid malicious attackers who could exploit them in the future.

Don’t worry if you have any doubt or problem. We will be present and help you with any
technical issue you might encounter. We want to evaluate how well the tool works for you in a
realistic scenario.

We are expecting this part to last from 20 to 30 minutes.

2. Feedback interview
After you get the chance to test the tool in a “real-world” scenario, we are interested to know
everything you might have to say about it (good aspects, bad experiences, non-intuitive
interfaces, etc.).

We will present a shortlist of questions where you will rate your experience on a scale of 1 to 5
regarding the pre-task (installing and using the tool before the call), task (the test you just
performed on-call) and pos-task (what impression did you get from the tool for the future).

Afterward, we can also have a more informal talk about your feedback, suggestions and general
impressions you got from the tool, according also to your experience and background.

We are eager to know what you will have to say!

Installing Puppet Security Linter
If you are getting ready for the call or just curious about the tool, here are the instructions on how to
install and use it.

Installation

Prerequisites:
✓ Have Visual Studio Code installed;

✓ Have Ruby installed (version 2.3 and up);

✓ Have RubyGems installed;

Firstly, install the Puppet Security Linter Ruby gem, responsible for all the analysis logic, by running the
following command in a terminal window:

To test if the gem is installed and working, run the following command on your terminal:

You should be able to see the following output:

If everything is working correctly so far, it’s then time to install the Visual Studio Code extension, so that
we can detect the vulnerabilities in real-time, right inside the IDE (more IDEs will be supported in the
future).

Install it from the marketplace or search for the extension “Puppet Security Linter” inside Visual Studio
Code.

Usage

After the extension is installed, it should be activated automatically every time a Puppet file (.pp
extension) is opened.

As an example, a simple Puppet manifest was opened:

All the vulnerabilities are immediately detected and displayed as regular Visual Studio Code warnings,
underlining the relevant code.

Each contains a small description of the problem and a link to a webpage where more information can
be found about the vulnerability, how an attacker could potentially exploit it and suggestions on how to
solve it.

Customization

As every developer is different and different projects follow different conventions, a crucial part of any
linter is the degree of customization of the rules applied. This ensures that the tool can be tuned up to
any specific aspect of a software project and avoid unnecessary false positives.

The Puppet Security Linter was developed from the ground up with this in mind, allowing the user to
customize several parameters of all the rules applied. If you need to configure how the linter detects the
vulnerabilities, access the configurations page by running the following command in a terminal:

A window of your default web browser should open immediately with all the configurations available.

Configure each vulnerability detection rule to your preferences and then click “Submit” to save your
settings. All changes should be applied immediately.

Final Remarks
And that’s everything needed to perform the user study. Any questions can be answered by contacting
me at up201605619@up.pt.Any questions can be answered by contacting me at up201605619@up.pt.

62 User Study Flyer

Appendix B

User Study Guide

This is the guide that supported the User Study interviews. For each participant, the information

and results were filled in during the interview process.

The data collected ranged from some personal information and the background of the profes-

sional, which is important to contextualize the results of the interview, to the difficulty to address

each vulnerability and finally, the feedback obtained from the experience and suggestions to im-

prove the software.

The last section was used to fill in any additional information or feedback that came up during

the call and that did not fit any of the previous sections.

63

Puppet Security Linter User Study Guide

Participant information

Name:

Background experience (years):

Current activity:

Experience and expectations about IaC, SAT’s and Puppet-Sec-Lint:

Interview Vulnerabilities Cheat Sheet:

Vulnerability Information

File Location Type

example1.pp Line: 5
Column: 22

HTTP
without TLS

This is a basic http vulnerability where the .jar file could be downloaded from an https
address, ensuring its authenticity.

example2.pp Line: 2
Column: 18

HTTP
without TLS

This is a basic http vulnerability where the .jar file could be downloaded from an https
address, ensuring its authenticity.

example2.pp Line: 21
Column: 2

Hard-coded
credentials

The username is hardcoded into the puppet manifest.

example2.pp Line: 21
Column: 2

Admin by
default

The username is an administrator of the node being created, having a high probability of
having more privileges than needed, violating the “Least Privilege Principle”.

example2.pp Line: 22
Column: 2

Hard-coded
credentials

The password is hard-coded into the puppet manifest

example3.pp Line: 4
Column: 20

HTTP
without TLS

This is not actually a vulnerability, as the package authenticity is ensured by a gpg key.
The user should be incentivized to use the tool configurations to add an exception here.

example3.pp Line: 7
Column: 20

HTTP
without TLS

This is not actually a vulnerability, as the gpg key authenticity is ensured by its
signature. The user should be incentivized to use the tool configurations to add an
exception here.

example3.pp Line: 12
Column: 22

HTTP
without TLS

This is not actually a vulnerability, as the package authenticity is ensured by a gpg key.
The user should be incentivized to use the tool configurations to add an exception here.

example3.pp Line: 15
Column: 22

HTTP
without TLS

This is not actually a vulnerability, as the gpg key authenticity is ensured by its
signature. The user should be incentivized to use the tool configurations to add an
exception here.

example4.pp Line: 59
Column: 18

Cyrillic
HomographA
ttack

The url contains the letter ‘a’ from the Cyrillic alphabet which looks identical to the one
in latin. This is a strong indication of a malicious website distributing a malware
infected version of the ‘yarn’ package.

example4.pp Line: 87
Column: 4

Suspicious
comment

This is a suspicious comment as it indicates that the developer is not that confident
about the solution used to fix the permission of the file.

example4.pp Line: 102
Column: 5

Invalid IP
address
binding

This mail server has the 0.0.0.0 ip address binding, meaning that it doesn’t filter
connections from anywhere in the internet, which is usually a point of entry for
malicious actors.

example4.pp Line: 103
Column: 6

Hard-coded
credentials

The username is hard-coded into the manifest.

example4.pp Line: 104
Column: 15

Empty
password

An empty password is very easy to be guessed.

example5.pp Line: 15
Column: 26

Weak crypto
algorithm

The md5 algorithm used to hash the password is not secure, meaning that’s possible to
generate the hash without the right password.

example5.pp Line: 76
Column: 10

Hard-coded
credentials

The username is hard-coded into the manifest.

example5.pp Line: 76
Column: 10

Admin by
default

The username is an administrator of the node being created, having a high probability of
having more privileges than needed, violating the “Least Privilege Principle”.

Interview vulnerabilities result:

Vulnerability Was
identified?

Was
solved?

Effort?
(1-5)

Notes

File Location Type

example1.pp Line: 5
Column: 22

HTTP without
TLS

example2.pp Line: 2
Column: 18

HTTP without
TLS

example2.pp Line: 21
Column: 2

Hard-coded
credentials

example2.pp Line: 21
Column: 2

Admin by
default

example2.pp Line: 22
Column: 2

Hard-coded
credentials

example3.pp Line: 4
Column: 20

HTTP without
TLS

example3.pp Line: 7
Column: 20

HTTP without
TLS

example3.pp Line: 12
Column: 22

HTTP without
TLS

example3.pp Line: 15
Column: 22

HTTP without
TLS

example4.pp Line: 59
Column: 18

Cyrillic
HomographAt
tack

example4.pp Line: 87
Column: 4

Suspicious
comment

example4.pp Line: 102
Column: 5

Invalid IP
address
binding

example4.pp Line: 103
Column: 6

Hard-coded
credentials

example4.pp Line: 104
Column: 15

Empty
password

example5.pp Line: 15
Column: 26

Weak crypto
algorithm

example5.pp Line: 76
Column: 10

Hard-coded
credentials

example5.pp Line: 76
Column: 10

Admin by
default

Pre-task questions

Question (On a scale of 1 to 5…) 1 2 3 4 5 Main thoughts

Rate your previous experience on SATs.

What’s your opinion on them?

Rate your previous experience on IaC.

What’s your opinion on it?

How easy was it to follow the provided instructions to
install and configure the linter?

Did you face any technical difficulty?

How intuitive it was to first understand how the tool
works?

What could be improved?

Task Questions

Question (On a scale of 1 to 5…) 1 2 3 4 5 Main thoughts

How clear and easy to understand were the provided
Puppet manifests?

How easy was it to find the vulnerabilities detected by
the tool?

Do you think that the tool overlooked vulnerabilities?

How easy was it to understand those vulnerabilities?

What are your thoughts on the explanation page?

How easy was it to solve those vulnerabilities?

What are your thoughts on the explanation page?

How important and useful are the provided
configurations to you?

Pos-Task Questions

Question (On a scale of 1 to 5…) 1 2 3 4 5 Main thoughts

How well does this tool (or a similar one made for a
language you use) fit into your workflow?

How well did the tool alert you for the importance of
avoiding these vulnerabilities in the future?

Do you feel that the linter is also an educational tool?

How likely are you to adopt this tool if you are/were a
puppet developer?

Additional considerations from the user:

References

[1] Vera Barstad, Morten Goodwin, and Terje Gjøsæter. Predicting source code quality with
static analysis and machine learning. Oct 2014.

[2] Kent Beck. Test-driven development: by exemple. Addison-Wesley, 2015.

[3] Hendrik Bünder. Decoupling language and editor - the impact of the language server protocol
on textual domain-specific languages. Proceedings of the 7th International Conference on
Model-Driven Engineering and Software Development, 2019.

[4] Mauro Conti, Nicola Dragoni, and Viktor Lesyk. A survey of man in the middle attacks.
IEEE Communications Surveys Tutorials, 18(3):2027–2051, 2016.

[5] Toma Fernandez. What is infrastructure as code?, Jan 2020.

[6] Ryan Van Fleet. Basic rules engine design pattern, Nov 2019.

[7] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design patterns: ele-
ments of reusable object-oriented software. Addison-Wesley, 2016.

[8] Michele Guerriero, Martin Garriga, Damian A. Tamburri, and Fabio Palomba. Adoption,
support, and challenges of infrastructure-as-code: Insights from industry. 2019 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME), 2019.

[9] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. Why dont
software developers use static analysis tools to find bugs? 2013 35th International Confer-
ence on Software Engineering (ICSE), 2013.

[10] Kaspersky Lab. Damage control: The cost of security breaches it security risks special report
series.

[11] P. Louridas. Static code analysis. IEEE Software, 23(4):58–61, 2006.

[12] Sara Motiee, Kirstie Hawkey, and Konstantin Beznosov. Do windows users follow the prin-
ciple of least privilege? Proceedings of the Sixth Symposium on Usable Privacy and Security
- SOUPS 10, 2010.

[13] Akond Rahman, Chris Parnin, and Laurie Williams. The seven sins: Security smells in
infrastructure as code scripts. 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), 2019.

[14] Mazedur Rahman, Samira Iqbal, and Jerry Gao. Load balancer as a service in cloud com-
puting. 2014 IEEE 8th International Symposium on Service Oriented System Engineering,
2014.

73

74 REFERENCES

[15] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera Jas-
pan. Lessons from building static analysis tools at google. Communications of the ACM,
61(4):58–66, 2018.

[16] R. Sidhu and V. K. Prasanna. Fast regular expression matching using fpgas. In The 9th An-
nual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’01),
pages 227–238, 2001.

[17] Marcelo D’Amorim Sofia Reis and Rui Abreu. A critical study on the precision of a state of
the art infrastructure-as-code security linter. Submitted for publication 2021.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Infrastructure-as-Code scripts security analysis
	2.1 Infrastructure-as-Code explained
	2.1.1 Infrastructure-as-code in action
	2.1.2 Main advantages

	2.2 Security risks
	2.2.1 Practical example of a vulnerable IaC script

	2.3 SLIC: A security analysis tool for Puppet
	2.3.1 The Seven Sins
	2.3.2 Tool analysis

	3 Building a better security linter for Puppet
	3.1 Taking a better look at SLIC
	3.1.1 The importance of precision in a code analysis tool
	3.1.2 Poor User Experience is also driving developers away

	3.2 Where can improvements be made?
	3.2.1 An improved rule engine
	3.2.2 Providing a better User Experience

	4 Taking a deeper look into the tool's Architecture
	4.1 Challenges addressed
	4.1.1 Better integration with developers' workflow
	4.1.2 User customization of rules
	4.1.3 Powerful vulnerability detection rules

	4.2 Architecture Overview
	4.3 In-depth sections and design patterns used
	4.3.1 Rule Engine
	4.3.2 Modular Rules
	4.3.3 Centralized Configuration Management
	4.3.3.1 Configurations' Web Page
	4.3.3.2 Configurations' File

	4.3.4 Interaction with the User
	4.3.4.1 Command Line Interface
	4.3.4.2 Language Server Protocol

	4.4 Educational Purpose
	4.5 Ready for future expansion

	5 Development Process
	5.1 Choosing a Programming Language: Ruby
	5.2 Code Versioning and Distribution
	5.2.1 Using Ruby Gems
	5.2.2 Using the VSCode Extension Marketplace

	5.3 Unit testing rules with Ruby MiniTest

	6 Working with IDEs
	6.1 Fitting into a developer's workflow
	6.2 Communication with the main core
	6.3 Basic requirements for an IDE extension
	6.4 Implemented IDE: Visual Studio Code extension overview

	7 Tool's Validation: Results from User Study
	7.1 Importance of conducting an User Study
	7.1.1 Main goals

	7.2 Proposed structure
	7.3 Candidate Selection
	7.3.1 Participants' background

	7.4 Results and User Feedback
	7.4.1 Vulnerability detection
	7.4.2 Follow-up questions

	7.5 Looking into future improvements

	8 Conclusions and future work
	A User Study Flyer
	B User Study Guide
	References

