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Resumo

Atualmente, o cancro da pele é um dos tipos de cancro mais prevalente em todo o mundo, nomeada-
mente nas populações de pele clara, consistindo num problema para os serviços de saúde. Dado
o aspeto visual das lesões cutâneas, a teledermatologia tem vindo a permitir uma melhoria da
qualidade da prestação de cuidados médicos nesta área a toda a população, caraterizando-se
pela aquisição de imagens que são armazenadas e enviadas a um dermatologista de referência.
Com base nas orientações estabelecidas para as consultas teledermatológicas, é possível distin-
guir estas imagens em cinco modalidades diferentes: anatómica, dermoscópica, de corpo inteiro,
macroscópica, e também relatórios clínicos. Em algumas situações, as imagens adquiridas podem
mesmo incluir uma régua junto à lesão, permitindo ao médico inferir o seu tamanho.

Dado o aumento crescente que todos os anos é verificado nos registos médicos, sistemas au-
tomáticos capazes de diferenciar as imagens de acordo com as suas modalidades e atributos (como
a presença de uma régua) podem ser essenciais para que estes sejam melhor organizados. Visto que
os dados médicos estão sempre a evoluir, estes sistemas precisam de ser continuamente treinados,
permitindo a sua adaptação a novas condições sem a necessidade de recorrer a toda a informação
previamente disponível. No entanto, treinar modelos de formal incremental está geralmente as-
sociado a uma questão designada por esquecimento catastrófico, que consiste na diminuição do
desempenho relativamente aos conhecimentos anteriormente adquiridos. Assim, embora nos últi-
mos anos tenham sido feitos alguns esforços de modo a permitir que os modelos sejam progres-
sivamente treinados, poucos estudos foram realizados em contexto médico. Por este motivo, a
necessidade de desenvolver algoritmos neste sentido mantém-se, especialmente no caso da der-
matologia, podendo contribuir para uma otimização dos processos teledermatológicos entre as
unidades de cuidados primários e os serviços de dermatologia.

Tendo isto em conta, esta dissertação compreendeu dois grandes objetivos: o desenvolvimento
e implementação de vários algoritmos de classificação e de deteção de objetos, a fim de verificar
qual a melhor abordagem para prever se uma régua estava contida em imagens dermatológicas;
e o desenvolvimento de modelos capazes de classificar com precisão imagens dermatológicas
de acordo com sua modalidade, os quais devem utilizar diferentes estratégias de aprendizagem
incremental com o intuito de permitir o seu treino contínuo.

Na primeira parte do trabalho e em relação aos algoritmos de classificação, foram explorados
três modelos diferentes: uma simples CNN treinada de raiz, uma rede VGG-16 pré-treinada na
base de dados ImageNet e ajustada a este problema binário (fine-tuned), e uma rede VGG-16
pré-treinada na mesma base de dados e utilizada como extrator de caraterísticas. Foram feitos
diferentes estudos, nomeadamente em relação à loss function utilizada, a necessidade de aumento
de dados, e a influência da classe dermoscópica no desempenho dos algoritmos. Todos os modelos
alcançaram melhores resultados quando uma loss function ponderada foi considerada, e apenas o
fine-tuned VGG-16 beneficiou de um aumento do número de imagens durante o processo de apren-
dizagem. Relativamente à classe dermoscópica, verificou-se que os três modelos foram capazes
de alcançar melhores resultados quando esta foi tida em consideração. No que respeita aos algo-
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ritmos de deteção de objetos, foram considerados três detetores: o EfficientDet-D0, o RetinaNet,
e o Faster R-CNN, que foi o detetor capaz de obter os melhores resultados. No caso da Reti-
naNet, foram utilizadas duas redes de backbone: uma ResNet-50 e uma ResNet-101, não tendo
sido verificadas diferenças relevantes nos resultados obtidos por ambas. Em geral, os algoritmos
de classificação revelaram-se mais eficientes do que os de deteção de objetos na resolução desta
tarefa. O fine-tuned VGG-16 foi o modelo de classificação capaz de obter os melhores resultados
com uma precisão de 0.993, ultrapassando o valor de precisão de 0.925 alcançado pelo detetor
Faster R-CNN.

Relativamente ao outro objetivo deste trabalho, começaram por ser desenvolvidos dois mode-
los capazes de classificar com precisão imagens dermatológicas de acordo com a sua modalidade:
uma arquitetura VGG-16 e uma arquitectura MobileNetV2 pré-treinadas na base de dados Im-
ageNet, o que permitiu compreender a influência da complexidade do modelo no esquecimento
catastrófico. Estes modelos foram utilizados como modelos de base para o processo de aprendiza-
gem incremental, onde foram utilizadas três estratégias diferentes de aprendizagem incremental
considerando parâmetros distintos aquando da sua implementação: a Elastic Weight Consolidation
(EWC), a Averaged Gradient Episodic Memory (AGEM), e Experience Replay, sendo a primeira
uma estratégia de regularização e as duas últimas estratégias de ensaio. O treino da fase incremen-
tal foi feito considerando diferentes números de epochs e verificou-se que, à exceção do modelo
VGG-16 utilizando a estratégia AGEM com um tamanho de memória de 50 e a estratégia Experi-
ence Replay no mesmo modelo, para todas as outras estratégias, à medida que o número de epochs
aumentava, o desempenho dos modelos diminuía, levando a um maior esquecimento dos conhec-
imentos anteriormente aprendidos. Além disso, comparando o desempenho destas estratégias nos
dois modelos, a MobileNetV2 superou o modelo VGG-16, sendo capaz de preservar mais infor-
mação relativa à primeira tarefa. Ainda, a estratégia Experience Replay foi a que proporcionou os
melhores resultados, tanto em termos de precisão global como de esquecimento. A eficiência dos
modelos em termos de tempo de treino e memória RAM necessária foi também avaliada: a Expe-
rience Replay no caso do modelo VGG-16 foi a que levou mais tempo a ser treinada e a estratégia
AGEM demonstrou ser a que exigiu mais memória RAM durante o processo de treino em ambos
os modelos.



Abstract

Nowadays, skin cancer is one of the most prevalent types of cancer worldwide, namely in fair-
skinned populations, consisting of a problem for the healthcare services. Due to the visual ap-
pearance of skin lesions, teledermatology has enabled an improved quality of the medical care
provision to all population, comprising the acquisition of medical images that are stored and for-
warded to a reference dermatologist. Based on the established guidelines for teledermatological
consultations, it is possible to distinguish these images across five different categories: anatomic,
dermoscopic, full-body, macroscopic, and also clinical reports. In some situations, the acquired
images may even comprise a ruler next to the lesion, allowing the physician to infer its size.

Since medical records undergo an increased growth every year, automatic systems able to
differentiate images according to their modalities and attributes (such as the presence of a ruler)
may be essential for a better organization of the records. As medical data is always evolving,
these systems need to be continuously trained, allowing their adaptation to new conditions without
resorting to all of the already seen information. Nevertheless, training models incrementally is
usually prone to catastrophic forgetting, an issue that consists of a decrease on the performance
concerning the previously acquired knowledge. Hence, although some effort has been done in the
last years in order to allow models to be incrementally trained, only a few studies were performed
in medical context. For this reason, the requirement for algorithms in this sense, especially in
the case of dermatology, remains, allowing the optimization of the teledermatological processes
between the primary care units and the dermatology services.

Taking this into account, this dissertation comprised two major goals: the development and
implementation of several classification and object-detection algorithms in order to verify the best
approach in predicting whether a ruler was contained in dermatological images; and the devel-
opment of models able to accurately classify dermatological images according to their modality,
which should employ different incremental learning strategies in order to allow their continuous
training.

In the first part of the work and with respect to the classification algorithms, three different
models were explored: a simple CNN trained from scratch, a VGG-16 network pre-trained on
the ImageNet database and fine-tuned to this binary problem, and a pre-trained VGG-16 network
pre-trained on the same database and used as a feature extractor. Different studies were made,
namely concerning the employed loss function, the need for data augmentation, and the influ-
ence of the dermoscopic class on the algorithms performance. All models achieved better results
when a weighted cross-entropy loss function was considered, and only the fine-tuned VGG-16
benefited from an improved amount of images during the training process. With respect to the
dermoscopic class, it was verified that the three models were able to achieve better results when
this class was considered. Regarding the object-detection algorithms, three detectors were con-
sidered: EfficientDet-D0, RetinaNet, and Faster R-CNN, with the latter obtaining the best results.
In the case of RetinaNet, two different backbone networks were employed: a ResNet-50 and a
ResNet-101, and no marked differences were found in the results obtained by the two networks.
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In general, the classification algorithms proved to be more efficient than the object-detection ones
in solving this task, being the fine-tuned VGG-16 the classification model that provided the best
outcomes with an accuracy of 0.993, surpassing the 0.925 accuracy value achieved by the Faster
R-CNN.

Concerning the other goal of this work, two models that could classify dermatological images
according to their modality were firstly developed: a VGG-16 and a MobileNetV2 architecture
pre-trained on the ImageNet database, which allowed to understand the influence of the model’s
complexity in the catastrophic forgetting. These models were used as the base models for the incre-
mental learning process, where three different incremental learning strategies considering distinct
parameters upon their implementation were employed: the Elastic Weight Consolidation (EWC),
the Averaged Gradient Episodic Memory (AGEM), and the Experience Replay, being the first a
regularization strategy and the last two rehearsal strategies. The training of the incremental phase
was made considering different numbers of epochs and it was verified that, with the exception of
the VGG-16 model employing the AGEM strategy with a memory size of 50 and the Experience
Replay strategy, for all other strategies, as the number of epochs increased, the performance of
the models decreased, leading to a higher forgetting of the previously learned knowledge. Also,
comparing the performance of these strategies on the two models, the MobileNetV2 outperformed
the VGG-16 model, being able to preserve more information concerning the first task. Moreover,
the Experience Replay strategy was the one that provided the best outcomes both in terms of the
global accuracy and forgetting. The efficiency of the models in terms of training time and compu-
tation was also assessed: the Experience Replay in the case of the VGG-16 model was the one that
took longer to be trained and the AGEM strategy demonstrated to be the one that required more
RAM memory during the training process for both models.
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Chapter 1

Introduction

1.1 Context and Motivation

Skin cancer is the most frequent malignancy in fair-skinned populations with a worldwide increas-

ing incidence [1][2]. Skin cancer term is widely used to refer to any malignant lesion occurring in

the skin, comprising disorders as Basal Cell Carcinoma (BCC), Squamous Cell Carcinoma (SCC),

or Melanoma [1].

BCC and SCC, which are also known as non-melanoma skin cancers (NMSC), present an

incidence much higher comparing to melanoma and other types of cancer, growing up to 10%

every year [3]. Only in 2020, more than 1 million new cases were diagnosed worldwide, repre-

senting an increasing problem to the health services due to the impact on the healthcare costs and

limited resources to respond to all patients [4][5][6]. Among NMSCs, BCC is the most common

disease, corresponding to approximately 80% of all keratinocyte carcinomas, followed by SCC

which represents almost 20% of these cancers [1].

Regarding the cutaneous Melanoma, an annual increase of around 3 to 8% over the past

decades in Europe, the United States, Australia, and Canada was estimated [7][8]. In 2020, nearly

300 thousand new diagnoses were reported worldwide, a value much lower than the new NMSCs

cases. Although Melanoma is less common, it is much more lethal, having been reported around

60 thousand deaths in 2020 due to this disease [4].

On the one hand, if the detection of skin cancers only occurs when the malignant cancer has

already spread to other body organs distant to the origin site, the five-year relative survival rate

can drop from 92% to 25% [9]. On the other hand, when diagnosed in the earliest stages, most

skin carcinomas can be easily treated [10]. For this reason, a timely and accurate diagnosis of skin

lesions is clinically important to improve the prognosis of patients [11].

As skin cancer diagnosis is typically performed by visual inspection, it can be a very challeng-

ing task due to the similarities between the most common types of skin cancers and benign lesions.

Besides, this inspection is time-consuming and may take to subjective results. Hence, dermatol-

ogists usually resort to auxiliary techniques, such as dermoscopy, to assist noninvasive diagnosis

of skin disorders and improve its accuracy [11][12][13]. Dermoscopy is a standard procedure for

1
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skin imaging, namely in the case of melanocytic lesions, that magnifies both surface and subsur-

face structures, making them perceptible to the naked eye [12]. Although this technique enhances

the precision of the diagnosis, the corresponding learning curve is steep, requiring a lot of training

to be properly used [13]. Thus, in most cases, dermoscopy is only used by experienced dermatol-

ogists, being proved to have no relevant efficiency when used by less experienced dermatologists

[11].

Therefore, it is essential that technologies able to aid dermatologists dealing with the diagnosis

of skin lesions, avoiding the misdiagnosis of skin cancer, and anticipating its detection are devel-

oped. This is where computer-aided systems may play a relevant role, being increasingly used

to assist physicians in medical decision-making [14]. In the field of dermatology, for instance,

deep (and machine) learning approaches have already shown their effectiveness in skin lesions

diagnosis, achieving equal or even better results comparing to dermatologists [15][16][17].

Nevertheless, the automatic classification of lesions through these models also presents its

limitations. Training deep learning models involves a large amount of labeled data so they can be

applied to real-world problems. However, storing this amount of data may be expensive in terms of

the required memory and besides, the performance of these algorithms depends on the acquisition

properties of the trained images as well. In dermatology, the images used to feed deep learning

algorithms may come from teledermatological consults, in which the primary care physician takes

photos of the patient’s skin and forward them to a referenced dermatologist who will then analyze

and evaluate them. To facilitate the appraisal, in some situations, the acquired images may even

comprise a ruler next to the lesion, allowing the physician to infer its size.

Due to the improvements in medical imaging equipments, there has been an increased use of

teledermatology in the last years which contributes to the annual growth of around 20% to 40%

that is verified in the amount of acquired medical images [18]. This may represent a problem

for the organization of medical records since their categorization is mainly done manually, which

is time-consuming, and prone to errors. Taking this into account, the access to specific clinical

information may be demanding, and to tackle this problem, some clinicians have even assumed

that imaging modality was one of the most important filters to improve the search among medical

records, as it considers visual characteristics of images [19]. However, the existing databases are

not always categorized or filtered in this sense [18][20].

In terms of dermatology, according to the established guidelines [21], it is possible to catego-

rize the images acquired for teledermatological consults in different modalities. Having in mind

that different equipments are used to obtain these images, they may differ in terms of their vi-

sual appearance and properties. Thus, a system able to previously classify the received images

according to their modalities and attributes (such as the presence of a ruler) could be an asset to

better organize the existing databases and consequently improve the already implemented diagno-

sis algorithms. Moreover, as medical data is always evolving, these systems need to be updated as

new images are available. Nevertheless, on the one hand, the previously trained images may not

be available anymore due to memory issues and, on the other hand, training large networks from

scratch demands high computational cost and energy. Therefore, algorithms able to incrementally
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be trained are being required more and more, avoiding the access to all of the already seen images

and allowing models to adapt to new information [22].

1.2 Research Goals

Considering what was previously mentioned, this dissertation comprises two main goals.

As the clinical images acquired by physicians for teledermatological consults may contain a

ruler next to the lesion to later infer its size, the first goal of this work consists of developing and

implementing several classification and object-detection algorithms in order to predict whether

a ruler is contained in an image. Also, the performance of these two types of methodologies

should be compared to evaluate which is the best approach to find the presence of this object in

dermatological images.

This dissertation also aims to accurately classify different modalities of skin images, namely

anatomic, dermoscopic, full-body, macroscopic images, and clinical reports. To accomplish this

goal, several machine or deep learning approaches should be explored. Furthermore, in order to

allow these models to be continuously trained and to prevent that all images are maintained in the

memory after training, incremental learning techniques should be implemented allowing them to

be updated as new information is available without the need of retraining the entire network with

all data, nor forgetting what was previously learned. Taking this into account, it is expected to

overcome some of the limitations presented in the previous section.

1.3 Expected Contributions

This work is part of the "Derm.AI: Usage of Artificial Intelligence to Power Teledermatological

Screening” project carried out by Fraunhofer Portugal Research Centre (FhP-AICOS), with ref-

erence DSAIPA/AI/0031/2018, and supported by national funds through ‘FCT—Foundation for

Science and Technology, I.P.". The major goal of Derm.AI project is to contribute to the optimiza-

tion of Teledermatology processes between Primary Care Units and Dermatology Services of the

National Health Service, through the integration of a mobile application to acquire macroscopic

skin lesion images and the development of AI-powered Risk Prioritization and Decision Support

platform [23]. Hence, the ultimate contribution of this dissertation consists of a better organization

of the medical records in the dermatological field.

To achieve this final aim, the expected contributions of this work comprise:

• The implementation and comparison of different classification and object-detection algo-

rithms able to predict the presence of a ruler in different types of dermatological images.

• An annotated dataset concerning the localization of rulers in dermatological images.

• The development and comparison of several algorithms able to accurately classify the modal-

ities of different dermatological images.
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• The implementation and comparison of different incremental learning strategies to allow the

continuous training of the developed classification algorithms.

1.4 Document Structure

This document is composed of six chapters. The current chapter (Chapter 1) introduces the context

and motivation behind the work, the goals that are intended to be achieved and the contributions

that are expected to be provided. For a better comprehension of the developed work, Chapter 2,

Background, comprises different sections that intend to address the underlying concepts of this

dissertation. Thus, these sections concern skin cancer, Telemedicine and Teledermatology, the

basics of machine and deep learning, object-detection algorithms and the essentials of incremental

learning. The most common metrics used to evaluate the performance of the computer vision

models are also introduced in this chapter. In Chapter 3, State-of-the-Art, an overview of the

work already developed in these themes is given, namely the current methodologies found in

the literature regarding medical imaging modality classification, skin lesion classification, object

detection and incremental learning. The methodologies applied during this work are presented in

Chapter 4, whereas the achieved results and the corresponding analysis can be found in Chapter

5. Finally, in Chapter 6, Conclusions and Future Work, the main conclusions achieved during

the development of this dissertation are discussed, as well as some remarks about future research

directions.



Chapter 2

Background

For a better comprehension of the developed work, this chapter is composed of eight different

sections that intend to address the main background concepts approached throughout this dis-

sertation. The first section (Section 2.1) is regarding skin cancer, including a description of the

disease, where the different types are introduced, as well as the associated risk factors and diagno-

sis approaches; the following section (Section 2.2) concerns Telemedicine and Teledermatology,

approaching the current guidelines for its practice; the third section (Section 2.3) involves the pre-

sentation of the mainly used medical imaging techniques, focusing on the dermatological ones;

this chapter also comprises four sections dedicated to the basics of machine and deep learning

(Sections 2.4 and 2.5), the object-detection algorithms (Section 2.6) and also the essentials of in-

cremental learning (Section 2.7), respectively; the last section (Section 2.8) of this chapter presents

the most common metrics used to evaluate the performance of the computer vision models.

2.1 Skin Cancer

Skin Cancer is the most prevalent type of cancer in fair-skinned populations [1][7]. Only in 2020,

more than 1 million new cases of NMSCs were diagnosed worldwide, and new Melanoma diag-

nosis comprised more than 300 thousand cases, 1071 of which were reported in Portugal [4][24].

It is estimated that, every year, the incidence of this disease increases up to 10% [3], which poses a

problem for the health systems, namely in terms of the associated costs and responsiveness [2][7].

For this reason, since the treatment of skin lesions can be relatively simple if diagnosed in the

earliest stages, timely and accurate diagnosis can be the key to control this global public health

issue [9].

2.1.1 Skin lesions

Skin is the external covering of the body, consisting of the largest human body organ. Since it

is an interface with the environment, skin is subject to several factors that can compromise its

appearance, such as infections, allergic reactions, or even the genetics itself. These alterations in

the skin may consist of cutaneous lesions. The majority of skin lesions are benign and do not
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require special medical cares. Nevertheless, as it will be presented in this section, regular skin

inspection is essential, as benign lesions can be easily misdiagnosis as other types of more serious

injuries.

2.1.1.1 Malignant Skin Lesions

Malignant skin lesions are mostly related to non-melanoma skin cancers (NMSCs), also known as

keratinocyte cancers, and malignant Melanoma.

Regarding NMSCs, these are by far the most commonly diagnosed cancer type worldwide

[7][25]. However, the exact number of people living with this disease is unknown, since NMSCs

are not always reported in cancer registries [5][26]. For this reason, the incidence of these cancers

can be 18-20 times greater than the one verified for Melanoma [2][26]. On the other hand, although

the high incidence, the mortality rate associated to non-melanoma skin cancers is low [10], being

the overall five-year relative survival rate of around 92% [9]. Around 80% of these cancers occurs

in body areas exposed to sun, namely in the lips, nose, cheek, orbit nasolabial, ears, or in the

dorsum of the hands [7].

NMSCs comprise different types of cancers, being Basal Cell Carcinoma and Squamous Cell

Carcinoma the most frequent ones [1][5]. These two types of non-melanoma cancers consist of

around 95% of all NMSCs [5].

Basal Cell Carcinoma (BCC)
BCC represents almost 80% of all diagnosed non-melanoma skin cancers [1]. It can be defined

as a locally invasive slow-growing skin tumor [27][28] and results from the uncontrolled growth

of the basal cells of the skin in the external skin’s layer [29].

When promptly diagnosed and if the lesion starts to be treated in the earliest phases, BCC can

be straightforwardly cured [30]. Although BCC rarely leads to the formation of metastasis (the

metastatic rate varies from 0.0028% to 0.55%) this cancer results in high morbidity due to tissue

invasion and destruction in areas as the face and neck [1][27][31].

Early BCCs are mainly small, translucent, or pearly, with raised telangiectatic edges. Besides

the usual rodent ulcer composed by an indurated edge and ulcerated centre, other subtypes of

this cancer include nodular or cystic, superficial, pigmented, basisquamous, and morphoeic [32].

Therefore, as shown in Figure 2.1, BCC can be manifested in different ways, being the nodular

basal-cell carcinoma the most frequent one [1][33][34].

(a) Nodular (b) Superficial (c) Basisquamous (d) Morphoeic

Figure 2.1: Types of Basal Cell Carcinoma [35].
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Moreover, BCC presents a high recurrence rate that depends on the tumor subtype [36][37],

being the recurrent BCC, usually, harder to treat comparing to the primary disease [27]. People

who have already developed basal cell carcinomas is also more prone to get new ones in other

areas of the body [38].

Squamous Cell Carcinoma (SCC)
SCC comprises almost 20% of the NMSCs [1], being the second most common form of skin

cancer [29][39]. These cancers have origin in the flat cells of the upper layer of the epidermis and

are mainly associated with advancing age [7][38].

Clinically, SCC commonly appears in the form of smooth or hyperkeratotic papules or nodules,

that may crust, itch or bleed to the slightest touch [29][40]. At later stages, these lesions can

present central ulceration or even invade other tissues [40]. Some examples of SCC lesions may

be found in Figure 2.2.

SCC can also arise from other precancerous lesions, such as Actinic Keratosis (AK), which in

itself is typically a benign lesion (Section 2.1.1.2), or Bowen’s disease [1][39][41], mainly caused

by the excessive exposure to the sun [38]. Regarding AK, it is characterized by scaly lesions

that may vary from 2 to 6mm in diameter and can be more easily recognized by touch than by

visual inspection [41][40]. Bowen’s disease, on the other hand, consists of a slow-growing tumor

that arises in elderly skin damaged by the sun [42], and frequently appears as a well-demarcated

erythematous scaling patch [42][39], as presented in Figure 2.3.

Comparing to BCC, SCC presents a higher metastatic rate, that depends on the histopatholog-

ical subtype, dimension, site of the tumor, and others [41][43][44]. Concerning SCC of the lip and

ear, which is a severe lesion, it is estimated a rate ranging from 10 to 25% [41], involving more

complex treatments.

Figure 2.2: Examples of Squamous Cell Carcinoma [35].

(a) Actinic keratosis (b) Bowen’s disease

Figure 2.3: Types of SCC precancerous lesions [35].
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Melanoma
Malignant Melanoma presents high morbidity and mortality, representing around 65% of all

deaths related to skin cancer [45]. For this reason, although it only represents around 1% of all

skin cancers, it is the most deadly one [13].

A timely diagnosis of Melanoma is, therefore, crucial for a positive prognosis of this disease,

as the long-term survival rate of patients with metastasis is only 5% [45].

Melanoma arises from the uncontrolled growth of epidermal melanocytes namely due to muta-

tions in their DNA, resulting from ultraviolet (UV) radiation exposure [29]. Although this cancer

has different clinical appearances that depend on its subtype [29][46], the lesions tend to present

diameter higher than 6mm, asymmetry, unequal pigmentation, and irregularities in the borders

[45], as verified in Figure 2.4. Factors as the Melanoma thickness, body region, lesion’s histo-

logical type, or even the patient’s gender have a relevant influence on the course of the disease

[47].

(a) Typical (b) Amelanotic (c) Lentigo (d) Spindle

(e) Desmosplastic (f) Nodular (g) Acral

Figure 2.4: Types of Malignant Melanoma [35].

2.1.1.2 Benign Skin Lesions

The majority of the lesions existing in skin are benign, but can be easily misdiagnosed for malig-

nant lesions due to the similarity that often exists between them, as seen in Figure 2.5. Benign

skin lesions comprise diseases as Actinic Keratosis (already introduced in Section 2.1.1.1 as a pre-

cancerous lesion), Seborrheic Keratosis, Melanocytic nevi, Solar Lentigo, Dermatofibromas, and

others [48].

Concerning Seborrheic Keratosis (SK), this arises as sharply demarcated brown or light le-

sions with variable size, usually slightly elevated in the skin. SK is one of the most common

benign tumors and, in some cases, may be identified as malignant Melanoma because of its simi-

lar appearance [49][50].

Melanocytic nevi (MN), also known as moles, consists of a proliferation of melanocytes and

comprise different subtypes, such as congenital, acquired, blue nevi, or Spitz nevus [51]. Depend-

ing on the lesion subtype, MN presents different clinical appearances. As it will be seen in Section



2.1 Skin Cancer 9

2.1.2, although the risk of a specific mole become a malignant Melanoma is low [52], the amount

of MN lesions may be a risk factor for the development of malignant Melanoma.

Regarding Solar Lentigo (SL), as the name suggests, this is a non-cancerous lesion that tends

to appear in sun-damaged areas [48]. Clinically, SL lesions present well-defined borders, can be

either light yellow or dark brown, and are variable in size [53]. These lesions are accumulated

with age and affect more than 90% of Caucasian people after 50 years old [54].

Dermatofibromas may arise due to several factors and mostly affect young or middle-aged

adults. These benign lesions are characterized by firm and round papules or nodules with soft

surfaces that frequently appear in lower extremities. Dermatofibromas may vary from a few mil-

limeters to centimeters and may exhibit different colors [48][55].

(a) Seborrhoeic Keratosis (b) Melanocytic nevi (c) Solar Lentigo (d) Dermatofibromas

Figure 2.5: Types of Benign Sin Lesions [35].

2.1.2 Risk factors

Different aetiology factors are associated with a higher propensity to develop skin lesions, includ-

ing endogenous or exogenous conditions [44][56]. Concerning endogenous factors, phenotypic

characteristics as the skin and eye color, the amount of melanocytic nevi, the existence of dysplas-

tic nevi, and history of Melanoma in family or in the individual may influence the arise of skin

lesions [56][57]. On the other hand, exogenous factors comprise exposure to UV radiation, recur-

rence of sunburn or care with sun protection [56]. Other factors as immunosuppression or arsenic

exposure may also trigger the arising of skin lesions [27]. Although it is known that these are the

main factors, their contribution to the emergence of cancer is still unclear [57]. Nevertheless, it

is estimated that exposure to UV radiation is the main factor for the development of skin cancers,

being associated to around 90% of all NMSCs and 67% of malignant Melanoma [30][31][58].

2.1.3 Diagnosis

As skin lesions are typically identified by their visual aspect, the first screening approach for

their diagnosis consists of a visual examination of the patient’s skin. Physicians should take into

account the clinical history of the patient, as this may contribute to the development of different

skin conditions, and evaluate the region around an identified lesion, as a secondary disease may

coexist [39].
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Due to the visual similarity between early-stage Melanomas, NMSCs, and benign skin lesions,

the differentiation of these conditions may be a demanding task even for experienced dermatolo-

gists [59]. Being so, as it will be described in Section 2.3.1, physicians may resort to dermoscopy,

an imaging technique that enables the access to deeper structures of the skin, improving the ac-

curacy of the diagnosis [11]. However, in doubtful situations, a biopsy should still be indicated

in order to perform a histologic examination [32][41], as well as additional exams, such as blood

analysis, computed tomography, or magnetic resonance imaging when bony involvement or inva-

sion of nerves are suspected [27].

Besides the common pattern analysis, which consists of a complex inspection of global and

local patterns in the lesion and requires experience to be performed, some criteria were developed

to aid dermatologists in the diagnosis and differentiation of similar skin disorders. Among others,

these criteria comprise the ABCD rule, the 7-point Checklist, and the Menzies method which are

described below [60].

ABCD(E) rule is widely used by dermatologists to assess the diagnosis of different skin le-

sions and to easily interpret clinical or dermoscopy images. Concerning the dermoscopy version,

it relies on four criteria (A-Asymmetry, B-Border, C-Color, and D-Differential structure) that must

be taken into account for the diagnosis [61]. Based on the image appearance, a score is assigned

to each criterion that has an associated weight factor, as presented in Table 2.1. Therefore, it is

possible to calculate the total dermoscopy score (TDS) which will correspond to the probability of

the lesion being malignant. On the other hand, for clinical images, the D criterion is replaced by a

diameter greater than 6mm and another criterion (E) is added, enabling the evolving of the lesion

to be also considered, which results in the ABCDE rule [62].

Table 2.1: ABCD rule of dermoscopy [63].

Criteria Description Score Weight
factor(q)

Assymetry (A)
Assess the symmetry of not only the
shape but also of the colors, and the
structures in 0, 1, or 2 axes.

0-2 1.3

Border (B)
Evaluates the abrupt cut-off of pigment
pattern border in 0-8 segments.

0-8 0.1

Colour (C)

Analyses the number of existing colors
(white, red, light-brown, dark-brown,
blue-gray, black). Each colour corre-
sponds to 1 point.

1-6 0.5

Differential structure (D)

Analyses the presence of five differ-
ent structures (structureless or homo-
geneous areas, streaks, dots, and glob-
ules). Each structure corresponds to 1
point.

1-5 0.5

T DS = (Ascore ∗Aq)+(Bscore ∗Bq +(Cscore ∗Cq)+(Dscore∗Dq)
T DS < 4.55, benign melanocytic lesion; 4.8 < T DS < 5.45 - suspicious lesion; T DS > 5.45 -
highly suspicious for Melanoma lesion



2.2 Telemedicine and Teledermatology 11

Concerning the 7-point checklist approach, this intends to characterize three major, and four

minor criteria on skin lesions, which are detailed in Table 2.2. These criteria also have different

associated scores that allow to assess skin lesions diagnosis. If the obtained score exceeds a given

threshold, the lesion is diagnosed as Melanoma [64][65]. The Menzies method (Table 2.3), on the

other hand, comprises a total of eleven features (nine positives and two negatives) and the score is

assigned depending on they are present or absent [66][67].

Table 2.2: 7-point Checklist criteria [65].

Major Criteria (Score=2) Minor criteria (Score=1)
Atypical pigmented network Irregular streaks
Blue-whitish veil Irregular pigmentation
Atypical vascular pattern Irregular dots/globules

Regression structures
* Total score<3 benign lesion; Total score>=3 malignant lesion

Table 2.3: Menzies method criteria [67].

Positive Features Negative Features
Blue-whitish veil
Multiple brown dots
Pseudopods
Radial streaming Symmetrical pattern
Scarlike depigmentation One Colour
Peripheral black dots/globules
Multiple colours (5 or 6)
Multiple blue/grey dots
Broad pigment network

2.2 Telemedicine and Teledermatology

Telemedicine corresponds to the usage of telecommunication technologies for medical informa-

tion delivery [68]. In the past years, there has been a growing increase in the use of this clinical

procedure thanks to the benefits that have been identified regarding its use [69][70]. These advan-

tages are many, as teleconsultations proved to enhance the clinical outcomes of the patients, due

to the improvements in healthcare access and delivery, and also their cost effectiveness [71].

Given the visual nature of skin problems, telemedicine is an extremely helpful resource in the

field of dermatology for accurate diagnosis or suitable treatment, as clinical information can be

gathered, saved, and transmitted [68][72][73]. During lesions’ evaluation, primary care physicians

may capture images of the patient’s skin so they can ask a more specialized dermatologist for a

second opinion if they are not totally convinced, or even to monitor the progression of lesions

[41]. This strategy is specially important in rural areas where medical specialties may be scarce

or unavailable [68]. Also, it is considered that teledermatology allows to reduce the time spent by
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dermatologists in clinical decision-making, increasing the accessibility and equity of consultations

in this specialty [74]. Teledermatology comprises two different approaches that take into account

both visual and prior information of the patient, namely store-and-forward (SAF) and real-time

consultation [71].

Regarding the firstly mentioned care delivery platform, SAF, this consists of an asynchronous

consultation whereby the medical images acquired by the patient or by the primary care physician

are "stored" and "forwarded" to the referring dermatologist [73]. The dermatologist is then able

to evaluate these images which are typically sent in a consultation package with other patient’s

clinical information [71]. Although this approach has been revealed as an effective way to indicate

a treatment plan and to accurately diagnose skin lesion, since there is no interaction between

patients and dermatologists, as they are distant both in time and space [68], it may be difficult for

the dermatologist to access more clinical information about the patient.

On the other hand, in real-time consultations patients, dermatologists, and often the primary

care clinician can interact via video conference systems. Through this synchronous platform,

dermatologists can obtain more detailed information about the patient, namely regarding their

clinic history, which resembles more like a normal consultation [71]. Being so, patients and

clinicians are separated in space but not in time, allowing a direct interaction [68].

Moreover, it is also possible to resort to hybrid teledermatology systems where both SAF and

real-time consultations are provided. Although this procedure allows to overcome some of the

limitations of the previously presented methodologies, this system is less common [73].

2.2.1 Practice Teledermatology Guidelines

Worldwide, different entities are responsible for establishing guidelines for the practice of telemedicine

and, more specifically, teledermatology.

In Portugal, the guidelines for conducting dermatological teleconsultations are established by

Direção-Geral da Saúde (DGS) [21]. Besides providing information about the procedure that

must be followed to schedule a teleconsultation, these recommendations also include technical

specifications for image acquisition that allow to maximize its quality and, therefore, provide

adequate health care to the patient.

In order to be referred to a teledermatological consult, the primary care physician must evaluate

the patient and find out the need for the intervention of a specialist. Therefore, if that is verified,

initial medical images of the lesion must be acquired and sent by the physician to a referring

hospital. In the hospital, images go through a screening process, to assess their priority. The

teleconsult is then scheduled in deferred and/or real-time and is performed by a dermatologist that

should inform the primary care physician about the outcomes of the evaluation [21].

In Table 2.4, a brief description of the images that should be acquired by primary clinicians

depending on the type of lesion is presented. Regarding photographs of hairy areas, these should

be collected at a short distance and without hairy interference, unless these are the object of con-

sultation.
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Table 2.4: Guidelines for skin lesions images acquisition in Portugal [21].

Type of lesion Requirements

Extensive lesions
1 anatomical region photo

1 typical lesion photo

1 full body photo (eventually)

Small lesions
1 macro photo of the lesion with a ruler

1 dermatoscopy photo (eventually)

Pigmented lesions
1 macro photo of the lesion with a ruler

1 dermatoscopy photo

Besides DGS, also the American Telemedicine Association (ATA), and the American Academy

of Dermatology Association (AAD) published recommendations concerning the pratice of teled-

ermatology in America, and the University of Queensland’s Centre for Online Health together

with the Australasian College of Dermatologists’ E-Health Committee also developed instructions

for teledermatological consults in Australia [72][73] [75][76]. These three guidelines have a lot in

common. As the Portuguese ones, they address clinical, technical, and administrative aspects of

these consults, ensuring the quality and safety of the service, and also the privacy of the patient,

namely related to the images or video transmitted in teleconsults. Besides, they also comprise

barriers and challenges that a dermatologist may face in several clinical contexts, and special con-

siderations that should be followed by the specialist during the examination of specific anatomical

regions of interest, as hair-bearing skin, pigmented lesions, or mucosal lesions.

2.3 Medical imaging modalities

The advances in medical imaging technologies and equipment have led to an increased amount

of collected medical images [77][78]. It is estimated that medical imaging data grows from 20%

to 40% every year [18], comprising different image acquisition modalities, such as Computed To-

mography (CT), X-ray, Magnetic Resonance Imaging (MRI), Ultrasound, or Microscopy [78][79],

as presented in Figure 2.6.

These images consist of a source of knowledge in the fields of education, research or even

to assist clinicians in medical decision making. However, due to the huge amount of data that is

acquired every year, handle these repositories in order to only extract the necessary information

can be a demanding task [81]. Typically, images are indexed and categorized manually using

keywords, being an expensive, subjective, time-consuming, and prone to errors process [78][82].

Moreover, the retrieval of these images is mostly text-based, using the caption or associated meta-

data which can be inefficient since describing images with words is not always easy and may lead

to a lack in their categorization [81].

Thus, identifying visual characteristics of medical images, such as their modalities can be

a fundamental task to aid in the image retrieval process and in the organization of the medical
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Figure 2.6: Medical Image modalities [80].

repositories [83]. To tackle this issue, modality was even defined by clinicians as one of the most

relevant filters to access the desired images, as it allows to narrow the search results, improving

the retrieval performance [82].

Taking this into account, the development of computer-aided systems may be an asset to make

the automatic classification of image modalities [81], which will not only aid clinicians to per-

form more accurate diagnosis and treatments but will also be a valuable technique for healthcare

students and patients [83].

2.3.1 Dermatological imaging techniques

Due to the visual appearance of skin lesions, imaging in dermatology plays a crucial role in their

diagnosis and monitoring. Similarly to other clinical specialties, also in dermatology the advances

in imaging technology and the improvement of the images’ quality have given rise to new acquisi-

tion techniques and also to an increase in their utilization [84]. These emerging techniques that aid

dermatologists comprise digital photography, dermoscopy, optical coherence tomography, confo-

cal microscopy, high-frequency ultrasound, and others, being the first two approaches the mostly

adopted ones by physicians [85][86].

Concerning digital photography, this technique has been getting more and more adherence

also due to the increase of teledermatological consults [84][87][88]. On the other hand, smart-

phones and portable cameras have been facilitating physicians to effortlessly depict the patient’s

skin condition. Being so, using anatomic, macroscopic, or full-body photos (modalities identi-

fied in the established teledermatology guidelines), dermatologists can track lesions over time in
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follow-up consults, which allows them to make comparisons concerning the progression of cuta-

neous disorders [84][86]. Moreover, digital images may include total-body photography (TBP), a

procedure that capture images of almost the entire patient’s skin. In the traditional method, several

images of the patient in different positions are taken, whereas in more recent approaches a soft-

ware is used to ensemble images taken by different cameras which acquire images of the patient

from different angles, being very useful for monitoring lesions’ growth [73]. Therefore, digital

photos have already proved to be effective in earlier diagnosis of Melanomas and other conditions

in high-risk patients [89][90]. However, since common digital cameras are often used to capture

images, this technique also present some limitations, namely due to the variations verified in the

acquisition conditions, as the distance, or illumination. Besides, the presence of hairs, reflections

or other artifacts may also influence the analysis of the lesion, as well as the image resolution [91].

Dermoscopy, as previously mentioned, is a non-invasive standard approach that enables der-

matologists to access structures down to the depth of dermis that cannot be visualized at naked

eye. Hence, it may contribute to the diagnosis of both pigmented and non-pigmented lesions. This

technique requires the use of a dermoscope, a handheld device that allows a surface magnification

up to 10x [85][92]. Dermoscopes can be divided into two categories: non-polarized dermoscopes

(NPD), the more traditional ones, and polarized dermoscopes (PD) [93]. Concerning NPD, these

devices require a contact medium between the skin and the device, resulting in a reduced amount

of reflected light at the surface which allows to observe structures beyond it. On the other hand, PD

enable the visualization of deeper skin structures avoiding the use of a liquid medium or contact

with the skin [93]. Besides, these devices can be attached to a capturing device, as the smartphone,

in order to acquire dermoscopic images of the cutaneous lesions of the patient. Being so, simi-

larly to digital photos, this technique also allows to monitor skin over time as it enables to detect

subtle changes in lesions [84]. Moreover, these dermoscopic images can be used in telederma-

tology consults, facilitating early screening of suspicious lesions [73][94]. Several studies have

already shown that dermoscopy is a valuable technique for skin lesions diagnosis, improving the

associated accuracy and physicians’ confidence [11]. Nevertheless, as this methodology requires

extensive training to be properly used, it is highly dependent on dermatologists’ experience, being

proved that its employment by untrained or less experienced physicians does not bring any benefits

to the diagnosis [11][84].

(a) Macroscopic image (b) Dermoscopic image

Figure 2.7: Macroscopic and dermoscopic images of a superficial spreading Melanoma [35].
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2.4 Machine learning

Machine learning (ML) is part of computer science, being a subfield of artificial intelligence. The

main goal of ML is to build mathematical algorithms able to solve complex problems that would be

hard to establish using conventional approaches. Basically, ML algorithms learn from sample data,

also known as "training data", in order to create models that allow to make predictions concerning

a new input [95]. Besides having the ability to learn automatically, machines can also improve

their performance with the experience, without requiring explicit programming [96][97]. Hence,

ML algorithms tend to be more effective than humans in solving complex problems as they are

capable of finding patterns and the underlying structure in data without any bias resulting from

previously acquired knowledge. Therefore, ML plays a relevant role in a wide range of areas, such

as medical image analysis, or natural language processing.

Depending on the nature of the training set, ML approaches can be categorized in different

paradigms, comprising supervised learning, unsupervised learning, semi-supervised learning, or

reinforcement learning, being the first two the most common approaches [98].

2.4.1 Supervised Learning

In supervised learning, besides the set of data points (i.e. dataset), the algorithm is also given a

ground truth associated to each example. Therefore, data is organized in pairs (xi,yi) that com-

prise both the inputs (x), which consist of feature vectors, and the desired labels (y), whereby

the algorithm can learn the key characteristics that correspond to each label in order to make the

predictions [96][99].

2.4.1.1 Classification vs. Regression

In a general way, supervised algorithms intend to solve one of these two main problems: classifi-

cation or regression [100][101].

Classification problems aim to make a prediction of the class (label) to which the new input

data belongs. Therefore, the output of a classification problem should comprise discrete values

[102]. On the other hand, the purpose of the regression problems is to predict values of a continu-

ous variable [96].

Naïve Bayes Classifier
Naïve Bayes classifier is a very popular and simple algorithm used in classification problems.

This classifier relies on a probabilistic approach, namely the Bayes rule, strongly assuming the

independence among features, although, in practice, this is rarely verified. Nevertheless, Naïve

Bayes has been widely used for many applications, achieving promising results comparing to the

state-of-the-art classifiers. The Bayes rule is represented in Equation 2.1, where P(w|x) represents

the probability of w, when x has already occurred; P(x|w) means probability of x, when w has

been verified; and P(x) and P(w), represent the probabilities of x and w, respectively [96].
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P(w|x) = P(x|w)P(w)
P(x)

(2.1)

Logistic Regression
Logistic Regression is an example of classifier typically used for binary classification prob-

lems. The classifier employs a sigmoid function, represented in Equation 2.2, so that it is imposed

that the outputs vary within the range 0 to 1. For this reason, it is possible to assume that the

outputs consist of probability values, which makes logistic regression a widely used classifier.

In machine learning, the variable z presented in the equation refers to a linear sum comprising

unknown parameters (weights and bias) that are estimated during the learning phase [96][103].

g(z) =
1

1+ e−z (2.2)

Decision Trees
The idea behind decision trees relies on the "divide and conquer" approach. The classifier splits

data according to a criterion in order to ensure maximum class separability, creating a tree-like

structure. Typically, the information gain is taken into account as a division criterion, ensuring that

at each split the decrease in entropy is maximized. The structure is composed of nodes and leaves,

representing deterministic decisions. One main advantage of decision trees is the possibility of

explaining the decisions based on rules, so that they are not black-box models [96] [104].

Support Vector Machines
Support Vector Machines (SVM) are binary classifiers whose aim is to find the hyperplane in

an N-dimensional feature space that best separates data in two classes. Being so, SVMs intend

to maximize the distance between data points which is given by the margin (Figure 2.8). Support

vectors consist of the points that are closer to the hyperplane and, for that reason, influence its

position and orientation. Therefore, the complexity of the classifier is not affected by the number

of features in the training set but by these points [105].

For N=2, the hyperplane is a line and may be obtained by:

y = w. f (x)+b (2.3)

where f (x) represents the feature vector, w is the weight assigned to the corresponding feature

vector, and b is a bias parameter.

In cases where data is not linearly separable and therefore a hyperplane does not exist, it

is possible to map input feature vectors in a higher dimensional space, where the training set is

separable. Therefore, as linear models do not work in this type of data, kernel functions that define

the feature space where the classification will be performed are required [96][105].

Although SVMs are essentially used for binary classification, they can also be applied in prob-

lems involving more than two classes. Being so, by combining a number of binary classifiers it is
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possible to obtain Multiclass SVMs. There are different strategies to handle with these problems,

namely One vs. All and One vs. One approaches [106]. As the name suggests, in an One vs. All

approach, each class is trained against all the others in combination, whereas in an One vs. One

approach all classes are trained against each other.

Figure 2.8: Representation of an SVM hyperplane [107].

k-Nearest Neighbours
The k-Nearest Neighbours (k-NN) consists of a supervised learning algorithm that can be both

applied in classification or regression problems. This algorithm differs from the others as, instead

of building a model, data is directly considered for classification without learning [104]. Thus,

assuming that similar information is together, the idea of the algorithm is to find the k-nearest

neighbours of a given point. The distance can be calculated by means of a distance function, such

as Euclidean distance, in order to find the closest points. Therefore, in case of a classification

problem, the new point is assigned with the label corresponding to the majority of its k-nearest

neighbours. In a regression problem, on the other hand, the average of label values may be con-

sidered [96].

2.4.2 Unsupervised Learning

In unsupervised learning, on the other hand, the labels of the input data are not provided to the

algorithm. Thereby, the learner must find out the most proper solution by itself, identifying rela-

tionships and patterns among data [96][95]. Unsupervised learning mainly comprises clustering

and dimension reduction techniques [99].

2.4.2.1 Clustering

Clustering is a typical method of unsupervised learning, where it is intended to group data accord-

ingly to patterns and similarities among data samples [97]. Hence, a clustering algorithm divides

data in a fixed number of subsets, also known as clusters, in order to join similar input instances

[101].
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K-means
Being a clustering algorithm, the k-means intends to divide input data in a predefined number

of clusters defined by k. The k-means assumption is that a cluster is able to represent a class.

Therefore, after establishing the number of clusters there is a random initialization of k points,

that correspond to the clusters’ centers. For each instance of the training data, the distance to the

predefined centers is calculated in order to determine which is the closest one. This represents

the cluster to which the point should be assigned. When all input data is assigned to a cluster,

its geometric center must be defined, corresponding to the new center of the cluster. Then, the

procedure must be repeated in order to verify if any of the points should be assigned to a different

cluster. The algorithm stops when it converges (i.e. when clusters’ centers do not update anymore)

or a predefined number of iterations is reached [96].

2.4.2.2 Dimensionality reduction

Dimensionality reduction comprises techniques that intend to reduce the number of input vari-

ables in training data, allowing to represent data with less features or lower dimensions. These

techniques are very useful, as they enable a better understanding and visualization of data [99].

Principal Component Analysis (PCA)
PCA is one of the most common methods for dimension reduction, due to its simplicity and

mathematical foundation. It employs simple matrix operations to map a set of correlated variables

into a smaller set of linearly uncorrelated variables, preserving as much variance as possible from

the original dataset [96].

2.5 Deep learning

Deep learning is a subfield of machine learning, being a valuable resource for supervised learning

in complex scenarios [108]. These models allow computers to learn data representations in multi-

ple levels of abstraction, as they are composed by several layers and units that enable to represent

functions of increasing complexity [108][109]. Through backpropagation (Section 2.5.3), deep

learning models teach the machine how the parameters that compute the representation of each

layer should be adjusted based on the results of the previous layer. Due to its already proved effec-

tiveness, deep learning has been changing the state-of-the-art concerning different areas, namely

image and video processing, or speech recognition [109].

2.5.1 Artificial Neural Networks

Neural Networks (NN) are inspired by the human visual cortex and intend to mimic the human

brain architecture, comprising several neurons connected to each other. Thus, neurons are the

fundamental unit of NNs, which may receive one or many inputs (x), as represented in Figure 2.9.

Through an activation function (a) of a linear transformation of the inputs, it is possible to produce
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an output (y). Therefore, the output generation implies the setting of the weights associated with

each input, as well as a bias parameter, followed by a non-linear operation of the corresponding

weighted sum, represented by the activation function. Equation 2.4 describes this transformation,

where wk concerns the weight of the xk input and b represents the bias [110].

y = a(
N

∑
k=1

(wkxk)+b) (2.4)

Figure 2.9: Schematic representation of a Neural Network.

Activation functions allow to introduce non-linearity along the model. The most popular ones

comprise sigmoid, hyperbolic tangent (tanh), and rectified linear unit (ReLU) which are repre-

sented in Figure 2.10. Both sigmoid and tanh suffer from the vanishing gradient problem, which

leads to an insignificant update in the weights that slows down the learning process. For this rea-

son, these functions are rarely used in hidden layers. On the other hand, since the work developed

by Krizhevsky et al. [111], the ReLU function has been gaining popularity among the activation

functions. This function allows a faster learning rate due to the fact that its derivative deviates

significantly from zero in positive values. Therefore, it is a valuable resource for neural networks

with a high number of layers.

(a) Sigmoid (b) Tanh (c) ReLU

Figure 2.10: Examples of Activation Functions.

2.5.2 Convolutional Neural Networks

Convolution Neural Networks (CNN) have been gaining popularity within the computer vision

community, proving to be a promising solution in knowledge extraction, namely for image related

tasks, as object detection or image recognition [112][113].
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CNNs consist of a type of feedforward neural networks since the information flows from an

input x that is evaluated through an intermediate function in order to generate an output y [108].

They are composed of multiple interconnected layers containing neuron structures that are able to

optimize themselves through learning [112][114]. CNN architectures are structured as a sequence

of stages, that comprise different types of layers, namely convolutional and pooling for feature

extraction, and fully-connected layers that perform the classification [109][115], as represented in

Figure 2.11.

Figure 2.11: Schematic representation of a CNN [116].

2.5.2.1 Layers

Convolutional Layers
Convolutional layers (ConvLayers) are the basis of CNNs. In these layers, neurons are not

connected to all neurons of the previous layer, but to a set of nodes from the preceding layer.

As the name implies, ConvLayers are based on the convolution operation, presented in Figure

2.12. Hence, these layers include banks of filters with different weights organized in kernels (or

filters). For each pixel on the input matrix, an element-wise product is performed with these

kernels, resulting in a feature or activation map. This operation allows that input information is

analyzed in a certain neighborhood, preserving important relations concerning spatial structures,

that depend on the filter properties.

As the depth of the input image should be maintained throughout the layers, the number of

filter channels must be in accordance, in order to generate the proper number of feature maps.

Considering an RGB image of [n x n x nd] as input, the convolution filter must have dimensions

[ f x f x fd], where fd = nd . Besides filter dimensions, other parameters as stride or padding

should be considered for filter design. The stride (s) concerns the size of the shift that must be

performed by the sliding-window technique in the input, this is, the step between pixels at each

convolution. The higher the stride, the smaller the output dimensions. Therefore, the stride is

useful for dimensionality reduction. On the other hand, the padding (p) is related to the number

of pixels that are added to the border of the feature map. Typically a zero padding is performed

so that the convolution output preserves the initial dimensions. Wider kernels result in a higher

amount of parameters and, consequently, to an increased computational cost. Taking this into

account, the size of the output image can be obtained by: [n+2p− f
s +1]x[n+2p− f

s +1].

Before the layer provides an output, the feature map that results from the convolution filters is

processed by an activation function similar to the ones previously described.
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Pooling Layers
Pooling layers are typically applied after ConvLayers and are used for down-sampling their

output. Therefore, since they reduce the representation’s dimensionality, they allow to decrease the

computational cost. It is important to refer that, although the width of the feature maps is reduced,

their depth is maintained. Depending on the kernel used for pooling, it is possible to ensemble

neighbor pixels into a single value through different operations. These operations comprise aver-

age, maximum (max-pooling), minimum, or median, being the first two the most relevant ones.

Being so, the kernel scans the input matrix and computes the corresponding operation on the set of

selected pixels. An example of max-pooling process can be observed in Figure 2.12. In this case,

pooling pixels do not overlap as it happened with convolution kernels, since typically the size of

the kernel is equal to the stride [117].

Figure 2.12: Convolutional (left) and Max-pooling processes (right) [112].

Fully-connected Layers
As the name implies, fully-connected or dense layers are directly connected to all neurons of

the two adjacent layers. The inputs of these layers must be unidimensional and, for that reason, if

the previous layer is a convolutional or pooling one, there is the need for flattening it into a one-

dimensional vector [118]. The features extracted and down-sampled from these layers are mapped

by a subset of fully-connected layers. Every fully-connected layer is followed by a nonlinear acti-

vation function, able to provide the outputs. The final layer must be adapted for the corresponding

classification problem. For this reason, this layer typically contains the same number of neurons

and classes, since it generates the probabilities for each class that is being predicted.

Dropout Layers
Another possible type of CNN layers are Dropout layers. These consist of a regularization

technique for fully-connected layers, very useful to avoid overfitting. In these layers, a percentage

of the previous layer outputs is randomly deactivated, which proved to be effective in enhancing

the model’s performance [119]. Although Figure 2.13 shows an example of a dropout network,

the approach is similar in the case of dropout layers, as random neurons of the previous layers are

set to zero.
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(a) Neural Network
comprising two hidden
layers.

(b) Dropout network
where crossed units
have been dropped.

Figure 2.13: Example of Dropout Network approach [119].

2.5.2.2 Key Architectures

In the last years, several architectures and techniques have been proposed in order to improve

CNNs performance. These works comprise not only deep networks such as AlexNet [111], VGG

[120], GoogleNet [121], or ResNet [122], but also other approaches that allow to optimize the

training of neural networks, as batch normalization [123], momentum [124], or adagrad [125].

Therefore, some of these methods will be addressed in this section.

AlexNet
In 2012, Krizhevsky et al. [111] proposed the AlexNet architecture within the scope of the Im-

ageNet Scale Visual Challenge [126]. The approach comprises eight learned layers, five of which

convolutional and the other three fully-connected layers, as well as three max-pooling layers, as

represented in Figure 2.14. This was a revolutionary breakthrough since it consisted of one of

the largest CNNs trained to the date, achieving promising results compared to the state-of-the-art

methodologies. Besides the high architecture depth, the authors also considered the ReLU as the

nonlinear activation functions, instead of the tanh function, and implemented a dropout technique

in order to prevent overfitting.

Figure 2.14: AlexNet architecture [111].
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VGG
The VGG architecture was proposed by Simonyan et al. [120] two years after the AlexNet.

The work intended to evaluate the application of small convolution filters (3x3) in increasing depth

networks from 16 to 19 layers. Thus, the VGG network is composed by several convolutional

layers using 3x3 kernels followed by ReLU activation functions, max-pooling layers with stride

and kernel size of 2, and three fully-connected layers. Therefore, due to the reduced size of the

filters used in convolutional layers, the VGG comprises more weight layers, which, in addition to

the depth of the network, can be seen as an advantage. Furthermore, the fact that the convolutional

and pooling properties are the same for every layer simplifies its implementation.

GoogleNet
Szegedy et al. [121] proposed the GoogleNet architecture, a convolutional neural network that

comprises 22 parameter layers and 5 pooling layers. This is based on the Inception architecture,

employing Inception modules that allow the network to choose the size of the filters and the type

of layers. Bearing this in mind, it is possible to achieve a total of 5 million parameters. 1×1 con-

volutions using 128 filters are also employed in this architecture in order to reduce dimensionality

and rectified linear activation is considered. GoogleNet has seen several follow-up versions, being

the Inception-V4 the most recent one [127].

ResNet
The ResNet architecture was introduced in 2015 by He et al. [122] representing a major break-

through in terms of the concept of depth. The ResNet comprises 152 layers structured in residual

blocks, which allow to overcome issues related to the training of very deep convolutional neural

networks. Residual blocks (Figure 2.15) allow to skip some of the layers, working as shortcuts, in

a process called "skip connection". Assuming that the underlying mapping corresponds to H(x),

where x represents the input, it is possible to establish a residual mapping where stacked nonlinear

layers can be fitted, which is given by F(x) = H(x)− x. The original function can then be recast

from F(x)+ x. Therefore, for each residual block, there is a residual mapping that allow stacked

layers to fit in, instead of directly fitting the desired underlying mapping. As a consequence,

ResNet allows that new relevant information is extracted without using extra parameters [122].

Figure 2.15: Possible residual block [122].
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MobileNet
Howard et al. [128] proposed the MobileNet, a lightweight neural network architecture de-

signed for mobile and embedded vision applications. The size and complexity of the model are

reduced due to a depthwise separable convolution technique. This technique consists of a depth-

wise convolution in all channels followed by a pointwise convolution, which is a 1x1 convolution

that allows to change the dimension of the output. After each convolution step, batch normal-

ization and also a nonlinearity using a ReLU function are applied. It is worth noting that the

MobileNet using depthwise separable convolution contains less 25.1 million parameters and only

1% loss in accuracy when compared to the MobileNet using a standard convolution.

Following the MobileNet, the MobileNetV2 network was proposed by Sandler et al. [129] in

2018. This network introduces a new module with an inverted residual structure where the input

and the output of the residual block consist of thin bottleneck layers. Besides, in this network, the

nonlinearities presented in the narrow layers were removed to preserve representational power. In

Figure 2.17 are presented the architectures of both MobileNet (2.16a) and MobileNetV2 (2.16b).

(a) MobileNet [128]. (b) MobileNetV2 [129].

Figure 2.16: MobileNets acrchitectures.

EfficientNet
In 2019, Tan et al. [130] introduced the EfficientNet, a novel network architecture and scaling

approach able to uniformly scale all dimensions of depth, width and resolution using a simple but

effective compound coefficient, as illustrated in Figure 2.17. The authors developed a baseline

network, the EfficientNet-B0, to demonstrate the effectiveness of the proposed scaling method

in obtaining new scaled networks, namely from the EfficientNet-B1 to the B7. This network

comprises inverted bottleneck residual blocks, as the ones used in MobileNetV2 [129], with a

squeeze-and-excitation optimization [131].

2.5.3 Backpropagation

One of the methodologies used for training NN relies on the backpropagation concept. Backprop-

agation enables to compute an objective function’s gradient, namely the loss function, taking into

account the weights throughout the layers, and, hence, consisting of a direct application of the

derivatives chain rule [109]. This process may be done in combination with a gradient descent
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Figure 2.17: Model Scaling. (a) is a baseline network example; (b)-(d) are conventional scaling
that only increases one dimension of network width, depth, or resolution. (e) is the compound
scaling method that uniformly scales all three dimensions with a fixed ratio proposed in [130].

algorithm, as the Stochastic Gradient Descent (SGD), that intends to minimize the difference be-

tween the prediction and the ground truth. Therefore, the aim is to minimize the loss function, by

updating the hyperparameters (weights and bias) in the opposite direction to the gradient [132].

2.5.4 Strategies for Model Performance Improvement

Training a model suitable for a certain task may be a demanding process. Many times, the problem

requires the implementation of too complex models that are impossible to be properly trained with

the amount of available data. As a consequence, some strategies, as transfer learning or data

augmentation, have been developed in order to overcome this limitation.

Transfer Learning is a popular technique used in computer vision that intends to improve

the algorithm’s performance, leveraging knowledge from another task [133]. This approach takes

advantage of the fact that the first CNN layers enable the extraction of more generic features that

are shared among different datasets. Therefore, it is possible to transfer information from a model

pre-trained on a sizable dataset, such as the ImageNet that contains around 1.4 million images

divided by 1000 classes, and fine-tune the last layers (i.e. the more specific ones) to the desired

task [134]. Hence, larger CNNs can be trained using a smaller amount of data, without the problem

of overfitting.

Data Augmentation is another approach commonly employed when the amount of labelled

data is insufficient for the problem purpose. It consists of the creation of synthetic data from the

existing dataset, being quite useful in image-related tasks. The involved techniques may comprise

not only rotations, scale transformations, or flippings, but also changes in color, amount of noise,

and other more complex techniques.
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2.6 Object Detection

Object detection is a fundamental and challenging problem of computer vision, having attracted

the attention of the scientific community in recent years [135]. Its aim is not only to identify

the categories of objects contained in an image but also to return their spatial location by means

of a bounding box, for instance [136]. The classic approaches of object detection were based

on the sliding-window paradigm, becoming computationally expensive [137]. As such, these

techniques have been evolving, and deep learning approaches are being widely adopted in this

field [138]. Deep learning-based object detection comprises two main categories of detectors:

two-stage detectors and one-stage detectors [139]. Typically, two-stage detectors achieve higher

localization and object recognition accuracy, whereas one-stage detectors are associated to higher

speed.

2.6.1 Two-stage detectors

With two-stage detectors, the detection task is divided into two phases: the first one concerning

the generation of proposals, and the second one that intends to make predictions regarding the

proposals. Therefore, the detectors start by proposing the regions of interest (RoI) in the image,

this is, the regions that eventually contain an object, intending that each object contained in the

image belongs to at least one of the proposed regions. Then, a deep learning-based model is used,

which, after feature extraction, is able to predict the category of the object in the proposed region

[135].

R-CNN [140], proposed by Girshick et al., is a classical example of this methodology. The

system is composed of three modules concerning region proposal, feature extraction, and region

classification, which are presented in Figure 2.18. Through selective search [141], 2000 regions

of interest are generated for each image, being the approach designed to reject regions related

to the background. Each proposal is warped or resized and it is used a pre-trained CNN to ex-

tract a fixed-length feature vector. Regions are then classified using class-specific linear SVMs

and bounding-boxes around the objects are adjusted by linear regression. R-CNN presents some

limitations, namely because training and testing are extremely time-consuming since the features

are separately extracted from each region. Moreover, these features are stored on the disk, which

requires extensive memory capacity while training. Therefore, He et al. proposed SPP-net [142]

in order to decrease R-CNN training time and to make it learn more distinctive features. Differ-

ently from the R-CNN, instead of performing convolutions for each region proposal for feature

extraction, SPP-net convolves the input image only once to obtain a feature map. The region pro-

posals are then defined by correspondence between the original image coordinates and the feature

map coordinates, and features are extracted by a Spatial Pyramid pooling (SPP) layer, avoiding

the need to warp or resize regions.

Similarly to SPP-net, with Fast R-CNN [143] the entire image is processed by multiple con-

volutional and pooling layers in order to obtain a feature map. An RoI pooling layer, which is

a particular case of the SPP layer, is then used to extract a fixed-length feature vector from the
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Figure 2.18: R-CNN system representation [140].

feature map, as presented in Figure 2.19. The features are provided into a sequence of FC lay-

ers resulting in two sibling output layers: one classification layer, responsible for generating the

softmax probabilities of each object class, and one regression layer that outputs four real-valued

numbers for each object that encode the bounding-box position. Fast R-CNN proved to be faster

than R-CNN and SPP-net both in the training and test phases.

Figure 2.19: Fast R-CNN system representation [143].

Ren et al. proposed Faster R-CNN [144], which introduces a Region Proposal Network

(RPN) that is used in combination with Fast R-CNN. This is a fully convolutional network that

can be end-to-end trained in order to generate high-quality region proposals. This network enables

to accelerate the generation of region proposals since it shares convolutional features of the whole

image. It also introduces a method for different size object detection, using multi-scale anchors

as reference. The following architecture is similar to the Fast R-CNN detector. Therefore, two

outputs are provided, which concern object classification and bounding-box regression.

Mask R-CNN [145] was proposed by He et al. and is an extension of Faster R-CNN. The

system considers an additional module to predict an object segmentation mask in a pixel-to-pixel

manner on each RoI. It consists of a fully convolutional network that runs in parallel with the

already existing branches of Faster R-CNN (classification and bounding-box regression). Nev-

ertheless, some alterations are performed in Faster R-CNN. Instead of an RoI pooling layer, it

is used a RoIAlign to extract a small feature map from each region, in order to prevent RoI and

extracted features to be misaligned due to spatial quantization operations of RoI pooling. Mask

R-CNN surpassed all existing single-model entries, including the COCO 2016 challenge winners,

being a breakthrough in the object detection field.

2.6.2 One-stage detectors

One-stage detectors, on the other hand, are able to predict objects’ bounding boxes, without

the need of proposed regions of interest [135]. The most popular detectors of this category in-
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clude YOLO [146], single shot detector - SSD [147], RetinaNet [137], and EfficientDet [148]

approaches.

YOLO [146], You Only Look Once, was proposed by Redmon et al. and considers a single

convolutional network to predict both bounding boxes and class probabilities. YOLO, firstly,

divides the image into a grid, assigning the object to the cell that contains its mid-point. It is

calculated a confidence score for the bounding boxes predicted by each cell, taking into account

the probability of a box contains an object and the accuracy of an object is contained in that cell,

which is given by the intersection over union. Thereby, although YOLO shows to run extremely

fast (it is able to detect 45 frames per second), its location accuracy falls short of the two-stage

detectors. Some improved versions of YOLO were already developed, namely YOLOv2 [149] and

YOLOv3 [150].

Concerning SSD [147], this system also splits the image into grid cells and assign default

bounding boxes of different dimensions. For each default bounding box, a prediction of the off-

sets and confidences concerning each object class is made. SSD considers several feature maps

extracted with VGG-16 to deal with multiple object dimensions. Depending on the receptive field

of each feature map, it is possible to detect objects of different scales. Therefore, the final pre-

diction results from a combination of all feature maps detections. As the number of predictions is

quite higher than the number of objects, hard negative mining is considered, in order to decrease

the number of negative proposals and prevent class imbalance. SSD proved to be effective in

object detection, outperforming Faster R-CNN in terms of speed and localization accuracy.

Lin et al. [137] developed RetinaNet an object detector that uses as classification loss func-

tion the focal loss, instead of the standard cross-entropy loss. This function was proposed with

the aim of reducing the number of negative locations which are typical of one-stage detectors.

Therefore, the focal loss enables to decrease the weight of the loss that is assigned to the well-

classified or easy samples, focusing the model on the hard samples. The detector is composed of a

main network that computes the convolutional feature map of the entire input image, and two sub-

networks responsible for the object classification and the bounding-box regression, respectively.

RetinaNet proved to be as fast as the previously described one-stage detectors, with the advantage

of overcoming the class imbalance problem.

EfficientDet [148] was introduced by Tan et al., presenting a new family of highly efficient,

accurate and faster detectors. These detectors use EfficientNets [130] as backbone networks along

with Bidirectional Feature Pyramid Networks (BiFPNs) that allow fast multi-scale feature fu-

sion. Since the contribution of features with different resolutions to the final output is unequal,

the authors proposed three methodologies that allow to assign weights to different feature maps.

Moreover, inspired by the EfficientNets [130], the authors proposed a compound scaling method

for the detectors that allows to scale the resolution, depth, and width of the backbone, feature net-

work, and box/class prediction networks at the same time. Comparing to the other state-of-the-art

object-detectors, EfficientDet proved to be the most efficient one. In Figure 2.20, it is possible to

find the architecture of this detector.
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Figure 2.20: EfficientDet architecture [148].

2.7 Incremental Learning

As previously mentioned, data is continuously evolving and being collected whereby the access to

all the information is rarely achieved at once [22]. Thus, it is possible that over time, the acquisition

properties of data change, leading to alterations that affect its distribution. Nevertheless, traditional

ML-based computer vision systems are static, requiring a dataset with fixed data distribution in

order to optimize the learning process. Therefore, in order to complement their learning with new

information from unseen data, these models need to be retrained using both previous and new

data, which may be unfeasible due to the high computational cost involved or because data from

the past may not be available anymore due to memory issues, for instance [151]. The capability

of the models to adapt to new conditions is then closely related to their capability of learning

incrementally. Taking this into account, there has been an increased interest in models able to

be incrementally modified as new data becomes available, without compromising the knowledge

acquired in previous tasks, nor the need of having access to all data at the same time [152].

Incremental learning, also known as continuous learning or lifelong learning [153], intends to

overcome these situations, comprising models able to preserve and extend the already acquired

knowledge in order to solve new tasks [154]. However, it is a demanding process to effectively

learn without resorting to future data (and possibly to previous data) nor forgetting the already

learned information. For these reasons, learning new tasks sequentially remains challenging and

incremental learning approaches typically have to face several issues such as concept-drift [155],

catastrophic forgetting [156], or the stability-plasticity dilemma [157][158], being this last one

also reported for biological systems [159][160].

2.7.1 Challenges Addressed by Incremental Learning

Regarding the concept-drift, this incremental learning challenge is essentially associated to vari-

ations in the data stream over the various tasks, being possible to identify two different scenarios:

virtual or real concept-drift. Virtual concept-drift occurs when the input data distribution changes,

due to the imbalance of classes over time, for instance. Real concept-drift, on the other hand,

concerns novelty on data, which may result from the insertion of new features or from different
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image acquisition protocols, or even the introduction of new classes, leading to alterations in the

capacity of the model to solve the new problem [155][160].

Another major challenge (and probably the most popular one) when implementing incremental

learning approaches relies on the catastrophic forgetting problem [156]. This problem occurs

when a model is sequentially trained on new concepts and a performance degradation is verified

on the previously learned concepts as new data is added [161][162][163]. Thus, catastrophic

forgetting prevents models to learn multiple tasks continuously, and for that reason, strategies able

to mitigate this problem are being increasingly developed [164][165].

Moreover, due to memory limitations, sometimes it is not possible to store all data related to

previous tasks when new tasks are added [166]. Incremental learning approaches then differ in

the way they handle memories of the previously learned tasks, in order to avoid the catastrophic

forgetting. Different mechanisms may be used to store this information, such as raw data, model

weights, regularization matrices, and others. However, it is almost impossible to predict which

information will be important in the future, and, for this reason, a trade-off between the precision

of the stored information and the acceptable forgetting should exist. This trade-off is also called

the stability-plasticity dilemma, which is related to the required balance between the learning

stability and plasticity of the model. Stability concerns the model ability to preserve previous

knowledge and plasticity denotes the adaptation to new knowledge. On the one hand, if a model is

too stable, although it preserves the acquired knowledge, it cannot learn new information. On the

other hand, if a model is too plastic, it easily accommodates new knowledge, but prior knowledge

is forgotten [167][168].

2.7.2 Content Update Scenarios

Describing the context of an incremental learning problem is essential to understand how it can be

approached. The complexity of incremental learning models may depend on the type of content

that is used to update them at each training batch, and therefore, three different scenarios can be

considered [155][169]:

• New Instances - this scenario assumes that the new training batches are composed of data

belonging to the same classes contained in the previous batches, but which may include new

information to be learned.

• New Classes - on the other hand, it is also possible to admit that the content of the new

training batches includes classes that were never observed in previous batches, as presented in

Figure 2.21.

• New Instances and Classes - this is a more realistic scenario which considers that new data

is composed by both new instances (examples) of previously observed classes and new classes.
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Figure 2.21: Incremental learning process for new classes update [170].

2.7.3 Incremental Learning Strategies

In order to alleviate the catastrophic forgetting when training models incrementally and while deal-

ing with the concept-drift, different techniques have been taken into account. Due to the sudden

and increased motivation for incremental learning in the last years, there is still no well-defined and

common terminology among the scientific community in this field. However, having as reference

Lesort et al. [155], Kember et al. [167], and Zenke et al. [171], besides the baseline strategies,

these methodologies may be associated to a three-way categorization that comprises architectural

strategies, regularization strategies, and rehearsal strategies. It is worth noting that these strategies

do not contradict each other and can be used in combination to mitigate the catastrophic forgetting.

2.7.3.1 Baseline strategies

Before moving on to the more complex approaches, it is possible to define two methodologies that

can be used as standard baselines for incremental learning approaches, which are the Naïve and

the Cumulative (also called Offline) strategies.

• Naïve - In this strategy, the model is simply fine-tuned with the new examples without using

any mechanism to avoid the catastrophic forgetting [172]. Thereby, if the data distribution faced

by the model varies a lot, this approach is specially prone to lead to a decrease on the previously

acquired knowledge (i.e. catastrophic forgetting).

• Cumulative - This strategy intends to tackle the catastrophic forgetting by training the model

using all previous examples together with the new ones. Therefore, since it requires all data to be

stored in memory, it cannot properly be defined as an incremental learning approach, but rather as

a means of comparison [173].
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2.7.3.2 Architectural strategies

Since the architecture of a model strongly influences the way it learns, the catastrophic forget-

ting problem may be smoothed with this kind of strategies by resorting to network architecture

manipulations, without changing the objective function. Thus, these changes can be seen by the

accommodation of new neurons or layers, changing the activation functions, or even by freezing

specific weights within the network.

2.7.3.3 Regularization strategies

Regularization strategies, on the other hand, extend the loss function with a regularization term,

constraining the update of the weights depending on the neurons importance. Therefore, it is pos-

sible to improve the stability of the model, since the previously learned and important knowledge

is not affected, which, consequently, allows to mitigate catastrophic forgetting. Regularization

strategies further comprise two categories: weight regularization strategies and distillation strate-

gies.

•Weight Regularization Strategies:

In this type of strategies, a regularization term is added to the loss function of the new task,

which can be obtained by:

L(θ) = Ln(θ)+λR(θi) (2.5)

where Ln represents the loss function of the new data, λ consists of an hyperparameter, R is the

regularization term, and θi is related with the relevant parameters to the old knowledge.

Thus, the update of the most important weights can be limited and, thereby, the knowledge

learned in the previous tasks can be preserved.

• Distillation Strategies:

With distillation strategies it is intended that after a larger neural network learns a certain task,

a smaller neural network will mimic its ability. Hence, when the two networks are given the same

input, it is supposed that both of them generate the same output. The new model is then coherent

with the old one, since both the new and the old weights are constrained. Knowledge distillation

[174] is implicit in this kind of strategies, minimizing the loss when knowledge is transferred

between models. In this case, the probability of each class can be addressed using a softmax

output layer, which is obtained by:

qi =
exp(zi/T )

∑ j exp(z j/T )
(2.6)

where qi concerns class probability, zi corresponds to the logits, and T is a temperature coefficient

that when set to 1, corresponds to the standard softmax function.
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2.7.3.4 Rehearsal strategies

The approach considered by the rehearsal methods to mitigate catastrophic forgetting consists of

reproducing a subset of previous data on the current model, in order to strengthen connections

regarding information that was already learned, as observed in Figure 2.22.

Pseudo-rehearsal is another possible incremental learning strategy that involves the generation

of pseudo patterns based on the input data distribution which are used by the new model, allowing

to stabilize older memories without storing all previously learned information.

Figure 2.22: Rehearsal strategy for new classes update [170].

In Chapter 3, different methodologies concerning the three presented types of incremental

learning strategies that have been developed in the last years in order to mitigate catastrophic

forgetting are reviewed and compared.

2.8 Performance Metrics

Several key metrics can be used to evaluate the performance of the developed computer vision

models. The selection of the most suitable metrics must take into account the intended goals of

the work.

Although the confusion matrix, represented in Figure 2.23, is not truly a performance metric,

it enables a representation of the true positives (TP), true negatives (TN), false positives (FP) and

false negatives (FN).
• TP - when both the prediction and the ground-truth are positive
• TN - when both the prediction and the ground-truth are negative
• FP - when the prediction is positive but the ground-truth is negative
• FN - when the prediction is negative but the ground-truth is positive

These concepts are fundamental for the understanding of other metrics, such as accuracy,

precision, sensitivity, specificity, and others. In Table 2.5, some of the most common performance

metrics are explained .

Other metrics as the Receiver Operating Characteristic (ROC) curve or the Area Under the

Curve (AUC) are also commonly used to evaluate the models.
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Figure 2.23: Confusion matrix representation.

ROC curve is obtained by plotting the TPR against the FPR (1-Specificity) for several thresh-

old properties and enables to visualize the performance of a classification model for each one of

them, as represented in Figure 2.24. The optimal cut-point value corresponds to the trade-off be-

tween sensitivity and specificity that provides the highest sensitivity and the highest specificity.

Hence, the further away from the diagonal line (random guessing) the ROC curve is, the better the

model’s performance. This leads us to the concept of AUC, which corresponds to the area under

the ROC curve. Therefore, the AUC gives the probability of the classifier to rank a randomly

chosen positive sample higher than a randomly chosen negative one, varying between 0 and 1

[175].

Figure 2.24: Receiver Operating Characteristic (ROC) curve [176].

With respect to the evaluation of incremental learning, different metrics have been developed

in order to assess the performance of the corresponding strategies.

For instance, Lopez et al. [177] proposed the Backward Transfer (BWT), and the Forward

Transfer (FWT) in order to evaluate the capacity of the model to transfer knowledge across differ-

ent tasks. The higher the BWT and the FWT, the better is the model’s performance.

• Backward Transfer (BWT) represents the influence of the current task on the performance

of the preceding task. If the task leads to an increase on the performance of the previous task,

a positive Backward Transfer is verified. On the other hand, if learning a new task results in a

decrease on the preceding task’s performance, we are facing a situation of negative Backward
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Table 2.5: Performance metrics.

Metric Formula Definition / Main applications

Accuracy T P+T N
T P+FP+T N+FN

Number of correctly classified samples. Applica-
tions: Classification, Object Detection, Segmen-
tation

Precision T P
T P+FP

Ratio of positive labeled samples that actually
are. Applications: Classification, Segmentation

Sensitivity, Recall or True
Positive Rate (TPR)

T P
T P+FN

Proportion of correctly identified positive sam-
ples. Applications: Classification, Segmentation

Specificity T N
T N+FP

Proportion of correctly identified negative sam-
ples. Applications: Classification, Segmentation

False Positive Rate (FPR) FP
T N+FP

Ratio between the number of FP and the num-
ber of negative samples. Applications: Classifi-
cation, Segmentation

F1-Score 2x PrecisionxRecall
PrecisionxRecall

Harmonic mean of precision and recall. Applica-
tions: Classification, Segmentation

Jaccard coefficient T P
T P+FP+FN

Measure of the similarity between the ground
truth and the predicted labels. Applications: Seg-
mentation

Dice coefficient 2T P
2T P+FP+FN

Measure of the spatial overlap extension between
two binary images. Applications: Segmentation

Intersection over Union (IoU) target∩prediction
target∪prediction

Measure of the overlap between two regions. Ap-
plications: Object Detection, Segmentation

Transfer. Hence, the computation of the BWT is given by:

BWT =
1

T −1

T−1

∑
i=1

RT,i−Ri,i (2.7)

where T represents the tasks and R is the training-test accuracy matrix, where Ri, j is the test

classification accuracy of the model on task t j after observing the last sample from task ti.
• Forward Transfer (FWT) consists of the opposite of BWT, representing the influence that the

current task has on the performance of a future task. The FWT is then calculated by:

FWT =
1

T −1

T−1

∑
i=2

Ri−1,i−bi (2.8)

where b corresponds to the test accuracies vector for each task at random initialization.

Nevertheless, although several other metrics have been proposed in the last years in order to as-

sess the accuracy, train/test time, or storage requirements of the incremental models [167][178][179],

there is still no consensus among the computer vision community in evaluating incremental learn-

ing algorithms and, the equations of BWT and FWT have even already suffered some modifica-

tions by other authors [178].



Chapter 3

Literature Review

3.1 Medical Imaging Modalities Classification

The main goal of medical imaging modality classification is to distinguish different types of medi-

cal images, such as CT, MRI, X-ray, and others, as presented in Section 2.3. This objective follows

the need of having effective classification systems that allow to better organize medical records,

which every year suffer a huge increase in the amount and diversity of saved medical information.

Taking this into account, it is pressing to develop methods able to facilitate access to this data,

which can be a demanding task. Medical image modality may be one of the most important filters

for image retrieval, allowing to restrict the results of the search, and get more accurate outcomes.

Thus, many studies have been done in this sense, in order to achieve automatic algorithms capa-

ble of classifying medical imaging modalities. These systems comprise both feature engineering

methods and deep learning-based approaches.

Therefore, the developed works using these two main approaches for modality classification

will be presented in this Section. Moreover, an overview of the considered methodologies can be

found in Appendix A.

3.1.1 Hand-crafted feature based approaches

Kalpathy et al. [83] proposed a hierarchical neural network based classifier able to classify grey-

scale images as CT-scans, MRI or X-ray, as well as colour images as microscopic or endoscopic

images. For this, the authors used the CISMeF database and the ImageCLEFmed 2006 database,

respectively, considering six modalities of each one. As inputs to the network a combination of

histogram and texture features was taken into account. Two different models were considered in

the developed system, depending on the images’ characteristics. In the case of colour images, the

neural network implemented a two-layer architecture, whereas for grey-scale images it was used

a multilayer perceptron architecture with one hidden-layer. The results show an accuracy greater

than 95% for both classifiers, being higher in the case of colour images.

The work developed by Song et al. [180] as part of their participation in the ImageCLEF

2012 consisted of a mono-modal visual-based image classifier. The experiments were based on

37
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three kinds of feature extraction techniques: Edge Histogram, Tamura and Gabor. The authors

made different combinations of these features and used the LibSVM library to train one-versus-all

classifiers. The better performance was verified when the three features were considered at the

same time, achieving an accuracy of 60.01% on image modality classification.

Khachane et al. [181] used support-vector machine (SVM) and k-nearest neighbors (k-NN)

supervised techniques and a fuzzy rule-based approach for image modality classification. The

experiments were performed on five different image modalities, comprising CT, X-Ray, MRI,

Microscopic, and Ultrasound images. The extracted features were the mean, standard deviation

and contrast of the image. The fuzzy systems were also included in the training phase in order to

design the member functions and to plan the rule base. The authors defined a set of twenty-three

rules to classify each medical image in one of the mentioned modalities. The developed model

reached an accuracy of 86%, which is worse than the obtained results using the SVM classifier

(88%), but higher when compared to k-NN (84%).

A model implementing discrete Bayesian network classifiers (BNC) for hierarchical medical

image modality classification was proposed by Arias et al. [182], using the ImageCLEFmed 2013

dataset. From a combination of five initial sets of descriptors (Bag-of-Visual-Words (BoVW)[183]

using Scale Invariant Feature Transform (SIFT), Bag-of-Colors (BoC), Color and Edge Directivity

Descriptor (CEDD), Fuzzy Color and Texture Histogram (FCTH) and Fuzzy Color Histogram

(FCH)), the authors were able to create 31 different combinations that were used for data pre-

processing, as well as for feature subset selection. For the classification problem, various semi-

naive BNC models were analysed, being the averaged one dependence estimator (AODE) the

one that provided better results when an hierarchical classification was conducted. The highest

accuracy obtained by this model was 69.21%, corresponding to the 3rd place of ImageCLEF 2013

contest for the modality classification task.

Cao et al. [184] adopted two strategies to deal with the medical modality classification task

of ImageCLEF 2012. Firstly, the authors tried to augment the training examples, using other

databases and images beyond the original ImageCLEF2012 dataset, and, then, explored several

feature extraction approaches. Seven sets of features based on Local Binary Patterns (LBP), edge

and color histograms, SIFT descriptors, and others were created and used for modeling. A mul-

ticlass SVM classification was taken into account, by means of the LibSVM library and a 5-fold

and a 3-fold cross validation were performed in the original dataset and the augmented one, re-

spectively. Early, late, and kernel fusion were analysed as feature fusion methods. The best

performance was achieved when considering the augmented dataset in combination with the early

fusion strategy, corresponding to an accuracy of 69.7%.

The strategy adopted by Valavanis et al. [185] consisted of a merge between BoVW and BoC

models, applying early and late fusion. These models contain Pyramid Histogram of Visual Words

(PHOW) and Quad-Tree Bag-of-Colors (QBoC) descriptors, respectively, that were considered for

image visual representation. The classification task involved the implementation of linear SVMs.

The best result achieved, using only visual categorization, corresponded to an accuracy of 84.01%

associated to an early feature fusion.
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The model proposed by Markonis et al. [186] consisted of a visual and textual approach

that uses a k-NN classifier for medical image modality classification and retrieval. The authors

used a Bag–of–Visual–Words approach considering SIFT descriptors for each image. Through a

clustering method, it was possible to define the visual words, which corresponded to the centroids

of the descriptors clusters. A GNU Image-Finding Tool (GIFT) mechanism was also considered in

the classification task, allowing to obtain the distance value for the nearest neighbor classification

(1-NN). The best accuracy was obtained using a mix of textual and visual characteristics (86.9%),

being the results of GIFT using 1-NN classification the worst.

Also Dimitrovski et al. [82] developed a model for medical image modality classification as

part of the ImageCLEF competition. Beyond four visual and one textual types of features, the

authors also used combinations of them to describe the images. Visual features comprised LBP,

FCTH, CEDD, and SIFT descriptors. Regarding the textual feature, it consisted of a standard Bag-

of-Words (BoW) textual representation associated to TF-IDF (term frequency/inverse document

frequency) weighting. Similarly to Cao et al. [184], the classification task also involved the

implementation of SVM through the LibSVM library. Different SVM classifiers were used for

visual and textual features, due to the variations verified among them. It was considered a one-

vs-all strategy using a binary classifier for the multi-class classification. Since this approach led

to unbalanced data, the weights of positive and negative classes were adjusted. The performance

of the algorithm was evaluated in ImageCLEF 2011, 2012 and 2013 databases. The best accuracy

was verified for the 2011 database when visual and textual features were mixed, corresponding to

a value of 87.10%.

Within the scope of ImageCLEF 2013 contest, also Kitanovski et al. [187] implemented

a method for medical image modality classification, similar to the one described in [82] since

some authors are common to both works. In the proposed model each SVM classifier was trained

with χ2 kernel and an one-vs-all approach was used. As features, the authors considered SIFT

descriptors, using a BoVW approach, and TF-IDF weights of the surrounding text. These two

features were combined using high level feature fusion strategy. Due to the imbalanced ratio

between classes, the weights were adjusted. The highest accuracy was verified for the mixed run,

this is, when the high level feature fusion was performed: it was achieved an accuracy of 77%

using the ImageCLEF 2012 dataset and of 78.04% using the ImageCLEF 2013 dataset.

Besides the work presented by Pelka et al. within the scope of ImageCLEF 2015 competi-

tion[188], the authors developed another model that combines both visual and textual features for

the image modality classification purpose [189]. As visual features, local and global features were

taken into account. Regarding local features, the authors considered Bag-of-Keypoints (BoK),

using SIFT descriptors, and Pyramid Histogram of Oriented Gradients, whereas global features

comprise Tamura, Gabor, FCH, and others. Regarding textual features, a Bag-of-Words approach

was applied. For the classification task, a Principal Component Analysis (PCA) was used in order

to reduce the dimensionality of features. Concerning modality classification, beyond a Random

Forest classifier, a multi-class SVM was also considered. The final prediction consisted of a fusion

between Random Forest and SVM prediction. The best accuracy achieved by the model was of
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67.6%, corresponding to a mix between visual and textual features.

The approach developed by Wu et al. [190] was similar to the one described in [187]. The

authors used visual features as SIFT, LBP, Gabor, and Tamura, in combination with textual fea-

tures, defined by a vector space model (VSM) weightened by TF-IDF, through a lp-norm multiple

kernel learning (MKL). For the multi-class classification task, it was also considered an one-vs-all

approach, using an SVM classifier. Comparing to other feature combination methods as early or

late fusion, MKL provide better results, corresponding to an accuracy of 95.15%.

Gál et al. [191] also proposed a model that combines visual and textual features, using nor-

malised kernel function in SVM for medical image modality classification. The extracted features

comprised the caption text, the colour histogram, the mean of pixels, meta-data, Bag-of-Visual-

Words, considering SIFT descriptor and TF-IDF weighting, and others. The authors used different

combinations of the mentioned features. The best performance corresponded to an accuracy of

86.03% in the test phase.

In the work developed by Csurka et al. [81] also visual and textual features were considered

for modality classification. For image representation, the authors used both BoVW and its Fisher

extension, also known as Fisher Vector. The extracted features comprised SIFT-like Orientation

Histograms and local color averages and standard deviations of the RGB channels, that were

combined using late fusion. Regarding textual representation, BoW was employed. A logistic

regression classifier with Laplace Prior was used for each modality, in order to achieve the images’

classes. Considering only visual features, the best performance was verified when the features

were fused and the image was represented by the Fisher vector, corresponding to an accuracy of

86.9%. However, when the textual features were also considered, this value increased, achieving

categorization accuracy of 94.4%.

That being said, although hand-crafted designed approaches for medical image modality clas-

sification are prevalent in the literature, it can be seen that there is a great variation between the

obtained results. This occurs because the algorithm’s efficiency is highly dependent on the fea-

tures’ selection, both in terms of the number and type of the extracted features. For this reason

and also because the considered methodologies are typically specific for a certain task or dataset,

involving different procedures to be used whenever a new task is required, it is a demanding work

to predict the most suitable features for modality classification. As a result, much of the effort in

this problem concerns the design of a strategy for image pre-processing and data transformation,

which can be an intensive and time-consuming work.

Hence, less human-dependent approaches are increasingly being developed and adopted, in

order to achieve more efficient medical image modality classifiers. Thereby, some state-of-the-art

examples concerning this other kind of methodologies are explored in the next Section.

3.1.2 Deep neural network based approaches

CNNs are able to learn features autonomously from data and, for this reason, are preferable ap-

proaches in many situations. Regarding modality classification, several techniques using deep
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learning-based models can be found in the literature, some of them using transfer learning tech-

niques for feature extraction.

Starting by the work developed by Kumar et al. [192], the authors considered a method that

uses a combination of different convolution neural networks (CNN) architectures for medical im-

age classification, extracting features at various levels. AlexNet and GoogleNet architectures were

fine-tuned, being then used as image features extractors and as classifiers. The classification com-

prised both softmax and three one-vs-one multiclass SVMs classifiers considering the features

extracted with AlexNet, GoogleNet and both, respectively. The image class was determined using

the probabilities from the combination of softmax and SVMs classifiers. The method achieved

competitive accuracy values (82.48% - top 1 and 96.59% - top 5) comparing to other baseline

methods, showing its ability to differentiate between image modalities with subtle variations.

Within the scope of ImageCLEF 2016 competition, another methodology for medical imaging

modality classification was proposed by Kumar et al. [193]. In this work, the AlexNet architecture

was pre-trained on the ImageNet dataset and fine-tuned using medical images of the ImageCLEF

2016 database, that allowed to extract features more specific to the problem context. Besides data

augmentation, also dropout was considered in order to avoid overfitting and PCA was used to

reduce the dimensionality of the feature vector. For the classification problem, six crops of each

image were taken into account, and a multi-class support vector machine was employed, allowing

to obtain the posterior probability of each class. The best result of this approach corresponded to

a correctness of 77.55%, associated to the mean SVM probabilities of all crops.

Also Semedo et al. [194] participated in ImageCLEF 2016 competition suggesting an ap-

proach for modality classification. In this work, different CNN models were considered, namely

two VGG-like models, which differ in the depth, and one model based on using Parametric ReLU

(PReLU) activation function in the hidden layers with Batch Normalization. Regarding the VGG

models, a ReLU function was used in all of the hidden layers. A softmax function was employed in

the last layer of the three models, assigning the classification of each image. The best performance

corresponds to an accuracy of 65.31%, resulting from the deeper VGG model and considering the

dropout technique to avoid overfitting.

Yu et al. [19] started by proposing a method that trains from scratch various CNNs for med-

ical images modalities classification. The authors considered a DropConnect (DC) technique (a

generalization of Dropout)[195], in order to avoid the overfitting problem due to the small amount

of data. After training the created DNNs, these were combined using different fusion strategies

(average, maximum, majority and median) to improve the algorithm’s performance. In this work,

the ImageCLEFmed 2013 dataset was taken into account. The best results were achieved by train-

ing 5 neural networks and combine them using a fusion strategy based on average. Also, the input

images were resized to 192x192 pixels, achieving an accuracy of 74.90%.

The subsequent work developed by Yu et al. [196] consisted of a transfer learning approach

using two data augmentation strategies for medical image modality classification. The authors

started by consider VGGNet and ResNet networks with different depths and pre-trained on Im-

ageNet natural image dataset [126]. The first layers, this is the ones corresponding to the most
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generic features, were fixed, and only the layers corresponding to the domain-specific features

were trained. After this, a CNN with only six weight layers was trained from scratch. The pre-

diction probabilities for each CNN were obtained using the softmax function in the last layer. The

results of the three CNNs were then combined in order to obtain the image class. In these experi-

ments ImageCLEF2015 and ImageCLEF2016 datasets were considered, resizing the input images

to 224x224 pixels. The developed CNN-6 achieved promising results, satisfying accuracy values

of 66.13% and 81.86% for ImageCLEF2015 and ImageCLEF2016, respectively.

To implement a medical image modality classification system, also Hassan et al. [79] con-

sidered a transfer learning approach using a pre-trained ResNet50 for feature extraction. Image-

CLEF2012 dataset was used and the extraction of features was followed by a linear discriminant

analysis (LDA) classification, in order to ensure the maximum class separability. The proposed

algorithm achieved an accuracy of 88%, being its performance also compared with hand-crafted

features based classification approaches and using a softmax classifier instead of the LDA. In both

cases, the developed model showed an improved classification accuracy.

Singh et al. [78] compared the results of seven different pre-trained DCNN (VGG-16, VGG-

19, ResNet-50, MobileNet, Inception-v3, Inception-ResNet-v2, and Xception), using transfer

learning for medical image modality classification. Being so, the weights regarding generic fea-

tures were loaded, while only the last fully-connected layers were trained from scratch for feature

extraction. A Logistic Regression classifier was then trained using the extracted features. The best

performance was achieved by Google Inception-v3 model, corresponding to an overall precision

of 99% on the test set, whereas the worst results were verified for VGG-16 and ResNet-50 models.

Khan et al. [77] intended to compare Deep Learned and Hand Crafted Features in the classifi-

cation of medical imaging modalities. Regarding the proposed deep learning approach, the authors

trained a CNN from scratch, that was composed by two convolutional layers, two pooling layers

and a softmax layer as a classifier. On the other hand, the selected handcrafted method comprised

a BoVW using SIFT keypoint descriptor in combination with Harris corner and LBP texture fea-

ture. It was verified that handcrafted features outperformed deep learned features, corresponding

to an accuracy of 90.1% and 81.2%, respectively. Nevertheless, these results can be explained by

the small amount of images used to train the CNN.

The system developed by Zhang et al. [197] used a synergic deep learning (SDL) approach.

This methodology allows to enhance the ability of deep neural networks in differentiating images

that may be confused, which is the case of brain and pleural CT images, for example, that seem

to belong to different modalities. It consists of a data pair input layer and a pre-trained dual deep

convolutional neural network in combination with a synergic signal system. This system allows to

supervise the learning, verifying if the two images in the input belong to the same modality. The

proposed SDL model was evaluated using the ImageCLEF2016 dataset, being its performance

then compared with other state-of-the-art methodologies using the same dataset. The proposed

algorithm achieved the highest accuracy, corresponding to 86.58%.
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That being said, CNNs proved to be effective in the medical image modality task. It was veri-

fied that the usage of transfer learning allows to increase the performance of the created algorithms

and that the combination of different models also provides promising results. Moreover, some of

the presented works emphasized that deep learning models require large amount of data to be

trained with the possibility of overfitting when considering small datasets. Hence, also data aug-

mentation, or dropout techniques are common solutions to take into account in order to overcome

this issue.

3.2 Skin Lesion Classification using Convolutional Neural Networks

Due to the similarities between different types of skin lesions, algorithms that aid dermatologists

in the diagnosis task are an asset. In the last years, many studies considering CNNs have been

done in this sense, allowing to assist the differentiation between benign lesions from those that

may reach worrying malignant stages.

CNNs can either be employed as feature extractors being the classification performed by an-

other classifier (SVM, k-NN,...) or directly as classifiers, in an end-to-end learning. In this last

case, the network can either be trained from scratch or employ transfer learning. Therefore, in

this section, some of the proposed approaches using CNNs for skin lesion classification will be

explored.

3.2.1 CNN as feature extractor

Pomponiu et al. [198] presented a model that uses a pre-trained deep neural network to extract

features that are useful for skin lesion diagnosis. As the available amount of data was reduced and

there was a large diversity in images, the authors considered a transfer learning approach, using the

architecture presented in [111]. Firstly, data augmentation was performed in order to avoid over-

fitting, as well as pre-processing which consisted of data resize and normalization. The features

were extracted from the last three layers of the CNN and used by a k-NN classifier, which allowed

to classify lesions. For the evaluation of the algorithm only cross-validation was performed, not

being used a different test dataset. The proposed method achieved an accuracy higher than 90%

for the features extracted from the last three layers of the CNN. Its performance was also compared

with state-of-the-art hand-crafted feature models, proving to obtain better results.

The method proposed by Codella et al. [199] consisted of a combination of deep learning,

sparse coding, and support vector machine learning algorithms for skin lesions classification.

Hence, besides the features extracted from a pre-trained CNN, the authors also considered un-

supervised feature learning, by means of sparse coding. For the classification task, dermatoscopic

images from the International Skin Imaging Collaboration (ISIC) database were used, intending

to classify not only melanoma vs. non-melanoma lesions, but also melanoma vs. atypical lesions.

In order to achieve this goal, non-linear SVMs classifiers were employed and the obtained models

were combined in late fusion. In the first classification task, an accuracy of 93.1% was achieved,

whereas in the second one the authors reported an accuracy of 73.9%. Besides, a comparison
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with prior state-of-art modeling approaches using only hand-crafted low-level features was made,

having the proposed model achieved promising results.

For feature extraction, Kawahara et al. [200] slightly changed the pre-trained AlexNet ar-

chitecture, converting fully connected layers into convolutional layers, and thus creating a fully-

convolutional neural network. The responses of the new convolutional layer were then used to

train a logistic regression classifier in order to classify several categories of skin lesions. The ap-

proach was validated on Dermofit Image Library, which contains 10 different lesion categories.

The classification was made considering not only groups of 2 or 5 classes of lesions, but also over

the full 10-class dataset, achieving an accuracy of 94.8%, 85.8%, and 81.8%, respectively, and

outperforming previously presented studies.

3.2.2 End-to-end learning

The work developed by Esteva et al. [15] was a milestone in the field of skin lesions classification.

For the first time, a dataset containing around 130 thousand clinical images of different diseases

was used, a considerably higher amount of data than the previously analyzed. In this work, to train

the Deep Neural Network (DNN), the authors considered a GoogleNet Inception v3 CNN archi-

tecture, pretrained on ImageNet[201], in order to improve the learning process. The classification

into skin lesions was possible due to the fine-tuning of the CNN model using transfer learning.

For data balancing, a novel tree-structured taxonomy for the skin diseases was also introduced,

corresponding the individual diseases to the leaf nodes. In this approach, a binary classification

was carried out, taking into account two critical use cases: keratinocyte carcinomas versus be-

nign seborrheic keratoses, which as mentioned in Chapter 2 intends to represent the most frequent

skin cancers; and malignant melanomas versus benign nevi, which intends to identify the dead-

liest types of skin cancer. The algorithm performance was then tested against 21 board-certified

dermatologists on biopsy-proven clinical images. It was verified that the developed model outper-

forms more than half of the dermatologists at skin cancer classification. When tested on a larger

dataset, the CNN evinced reliable results for the classification of skin lesions, presenting an AUC

of 0.96 both for carcinoma and melanoma and 0.94 for melanomas classified through exclusively

dermatoscopic images.

Similarly to Esteva et al. [15], also Haenssle et al. [17] considered an adapted pretrained

GoogleNet Inception architecture for skin lesion classification, using transfer learning. The pur-

pose of this study was to classify only melanocytic lesions through dermoscopic images and be-

nign nevi. The performance of the developed model was then compared to the evaluation of 58

dermatologists, which was made in two levels. In level-I, clinicians were only provided with der-

moscopic images, while in level-II, beyond these images, clinicians also had access to close-up

images and additional clinical information. The results showed an improvement in the diagnostic

performance of dermatologists when they received supplementary information (level-II). Regard-

ing the performance of the algorithm, the CNN model achieved an AUC of 0.86 both for study

level-I and level-II. On the other hand, the evaluation of dermatologists’ performance took into

account the values of the mean ROC area for the two situations, corresponding to 0.79 and 0.82,
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respectively. Thereby, the algorithm achieved promising results comparing to the dermatologists

involved in the study, proving to be capable of assist physicians in the classification of lesions with

a melanocytic origin.

Han et al. [202] used a Microsoft ResNet-152 architecture in order to develop an algorithm

able to classify 12 different types of skin lesions. Besides, the authors implemented a Grad-CAM

method to better understand the prediction of the CNN considering gradient-based localization

[203]. Three datasets were taken into account for the evaluation of the proposed model’s perfor-

mance (Asan, Edinburgh and Hallym), comprising a total of around 19 thousand images. The

AUC values corresponding to the first one were 0.96, 0.83, 0.82, and 0.96 for the diagnosis of

BCC, squamous cell carcinoma, intraepithelial carcinoma, and melanoma, respectively, whereas

the achieved AUC values for the same classes in the Edinburgh test dataset were of 0.90, 0.91,

0.83, and 0.88, respectively.

In the approach proposed by Marchetti et al. [204] for lesion classification, all of the automated

predictions resulting from the participation of 25 teams in the ISBI 2016 Challenge were fused

into a unique classification system, using 5 different fusing methods. These methods comprised

both non-learned approaches, as prediction score averaging and voting, and machine learning

procedures, namely greedy ensemble fusion, linear binary SVM, and non-linear binary SVM. The

algorithms were tested using 100 dermoscopic images of different lesions. In order to evalute the

algorithm’s performance, similarly to the work proposed in [15], the results were also compared

to the classification provided by dermatologists. Greedy fusion was the best-performing fusion

algorithm, achieving a ROC area of 0.86 against the mean ROC area of 0.71 corresponding to the

8 dermatologist’s performance.

Regarding lesion classification, Bi et al. [205] followed three different approaches. In the first

one, the original three-class problem was accessed, while the second one comprised two binary

classification problems that allowed to distinguish melanoma vs. others and seborrheic keratosis

vs. others, respectively. Concerning the third approach, it consisted of an ensemble of the two

other approaches in order to obtain the classification results. In all of them, pre-trained ResNet

architectures were fine-tuned, having the number of neurons in the last layer been modified to

match the number of classes. As such, the three CNNs were evaluated, resulting in an average

AUC of 90.60%, 91.30%, and 91.50% for the three approaches, respectively.

Besides the previously proposed work of Kawahara et al. [200], the authors also developed a

method using end-to-end learning for lesion classification [206]. The developed CNN architecture

was composed of several tracts that allowed to learn simultaneously information of an image at

different resolutions, employing hybrid pre-trained AlexNet networks. The CNN comprised an

end layer that incorporates the outputs corresponding to the different image resolutions to a single

layer. Also, auxiliary supervised loss layers were added to each tract, in order to regularize the

results. The algorithms’ performance was tested on Dermofit Image Library, being the best average

accuracy achieved of 79.5%.

Sun et al. [207] introduced a new dataset for real-world skin lesions classification which com-

prises 198 different categories of lesions. Apart from hand-engineered features, the authors also



46 Literature Review

applied CNNs for skin lesion classification. Regarding the classification based on deep features,

a pre-trained CNN model was considered, having the weighting parameters be fine-tuned. More-

over, in the test phase, a comparison between the CaffeNet model for deep feature extraction in

combination with an SVM classifier and the pre-trained VGGNet model for image classification

was made. This last one provided a best average accuracy value over all 198 classes, correspond-

ing to 50.27%. However, when compared to the performance of hand-crafted features extraction,

which achieved an accuracy of 52.19%, these results showed to be worst.

Also Lopez et al. [208] proposed a method based on the VGGNet convolutional neural net-

work architecture. The work comprised three different approaches for skin lesion classification,

whose performance was compared. The first approach consisted of training the CNN from scratch;

in the second one, the transfer learning paradigm was employed, freezing convolutional blocks and

only training the fully-connected layers of a pre-trained VGGNet; finally, in the third approach,

transfer learning was also considered, having been made a fine-tuning of the weighting parameters

of the pre-trained VGGNet network. The three presented methods were tested on the ISBI 2016

Challenge dataset and the best testing result corresponded to an accuracy of 81.33%, associated

with the last approach.

Nasr-Esfahani et al. [209] developed a CNN from scratch in order to distinguish between

melanoma and benign cases. To achieve this goal, the clinical images used as input to the neural

network were firstly pre-processed and data augmentation was also performed, due to the limited

amount of available images. The proposed CNN comprises two convolutional layers followed

by pooling layers and a linear transfer function is used to predict the diagnosis. Regarding the

performance of the proposed algorithm, an accuracy of 81% was obtained.

3.3 Object Detection in Dermatology

In the field of dermatology, many works comprising object detection have been developed, namely

with the purpose of localizing skin lesions in images. In this section, two of the proposed methods

are presented.

Vesal et al. [210] developed a framework for skin lesion detection that is then used to assist

segmentation. Firstly, a network similar to Faster-RCNN was used to localize the lesion in the

skin and generate a bounding box around the proposed region. This network comprises shared

convolution layers for feature extraction, a region proposal network that defines the anchor boxes

and provides the probability of a lesion is contained in the proposed box, and also an R-CNN that

improves the predicted regions of interest, providing the bounding box coordinates and classifying

if the lesion is present or not. Then, the generated regions of interest are used as input for SkinNet

[211], a modified version of U-Net also proposed by Vesal et al., in order to allow skin lesion

segmentation. The achieved results were promising, having outperformed other state-of-the-art

methods for lesion segmentation, with a Jaccard index of 88%.

Also Qian et al. [212] proposed a methodology for first detecting and then segmenting skin

lesions in dermoscopy images, under the scope of ISIC Challenge 2018. For the detection process,
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Mask R-CNN was applied in order to obtain the RoI of the lesion. The images were cropped not

exactly by the bounding box, but with a random expansion and contraction. Then, they were used

as input for a network that contains an atrous spatial pyramid pooling (ASPP) block to extract

information in different scales and to provide the segmentation map of the lesion. This method

was the winner of the challenge, obtaining a Jaccard index of 80.2%.

Although a few studies have been presented, several methods concerning object detection

were already developed in dermatology [213][214]. However, these works are mainly focused on

skin lesion detection, not aiming to localize other objects, such as rulers, which are sometimes

considered as artifacts [215][216].

3.4 Incremental Learning

The problem of catastrophic forgetting in machine learning algorithms has led to the develop-

ment of different methodologies that aim to enable models to acquire new knowledge incremen-

tally, maintaining information related to previous tasks. As previously mentioned, these strategies

comprise three main categories, namely: architectural strategies, regularization strategies, and re-

hearsal strategies. Since these categories do not contradict each other, it is possible that they are

used in combination, resulting in hybrid strategies. Thus, some of the developed works concerning

the three mentioned strategies will be addressed in this section.

3.4.1 Architectural strategies

Learn++ [168] was proposed by Polikar et al. and is inspired by the adaptive boosting (Ad-

aBoost) algorithm. This model consists of an ensemble of weak classifiers that are trained with

different training sets, according to a distribution. These classifiers are considered as weak since

the prediction accuracy is close to random guessing. However, through a boosting procedure,

these weak learners are transformed into effective classifiers, being the final classification ob-

tained by combining the outputs of the different learners through weighted majority voting. Due

to the implementation of weak classifiers, the algorithm converges faster and overfitting issues are

eliminated.

Another architectural strategy was developed by Roy et al. [22]. The proposed system consists

of a tree-structured CNN architecture, as presented in Figure 3.1, that hierarchically grows when

new classes are introduced. The structure is extended by adding new leaves dependent on the

similarities between the old and the new classes. Therefore, the knowledge is transmitted through

the nodes of the structure. Although this approach allows the attenuation of catastrophic forgetting

problem, as the Tree-CNN continues growing with time, more memory and computational costs

are required.

Rusu et al. [217] proposed Progressive Neural Networks (PNNs). This approach allows to

transfer knowledge across sequential tasks, without forgetting previously learned information.

PNNs maintain a pool of pre-trained models that, through lateral connections, enable the extrac-

tion of knowledge that will be considered in the following tasks, as presented in Figure 3.2a. For
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Figure 3.1: Incremental learning stages of the Tree-CNN [22].

each task a new neural network is created which is connected to all of the preceding tasks, preserv-

ing the knowledge acquired since the beginning. However, similarly to the previously presented

model [22], this can also be a limitation, as the number of parameters to be considered by each

task will gradually increase.

Expert Gate [218], proposed by Aljundi et al., allows to learn and add new tasks to the model

based on what was already learned. However, in this approach, data from previous tasks (experts)

are not stored, which consists of an advantage when comparing to the models presented before.

Instead, auto-encoder gates are considered, which are able to produce outputs similar to the inputs.

Therefore, the encoder allows the selection of the most relevant expert for the new task by learning

its representation and, at the test phase, directly forwards it to the proper expert. A schematic

diagram of this strategy may be founf in Figure 3.2b.

(a) Progressive Neural Net-
works representation [217].

(b) Expert Gate representation
[218].

Figure 3.2: Representation of some architectural strategies for incremental learning.

3.4.2 Regularization strategies

Concerning regularization strategies, Kirkpatrick et al. developed the Elastic Weight Consolida-

tion (EWC) [219]. Depending on the importance of the weights in the preceding tasks, the system

slows down the learning process. In this way, it is possible to selectively constrain the update of

parameters, ensuring that no relevant variations are verified in important weights when the model
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is fine-tuned on new tasks. The importance of the weights is evaluated through the Fisher infor-

mation matrix, which is also considered in the loss function of the new task.

Synaptic intelligence (SI) was presented by Zenke et al. [171], consisting of an approach sim-

ilar to EWC. Nevertheless, instead of computing the weights importance offline by means of the

Fisher information, in SI, the relevance of weights (synapses) is evaluated online, during stochas-

tic gradient descent processing. Therefore, by identifying the relevant synapses, the algorithm

prevents them from suffering alterations in future tasks. This way, are the least important synapses

that intervene in the learning of new tasks, avoiding catastrophic forgetting. The process implies a

modified loss function where it is also considered a quadratic surrogate loss and a dimensionless

strength parameter. Despite the implementation differences, when comparing SI performance to

EWC, both approaches yield similar results.

Learning without Forgetting (LwF) is another regularization strategy to tackle catastrophic

forgetting proposed by Li et al. [220], being one of the first methods to consider knowledge

distillation for incremental learning. This approach takes into account the outputs of the previous

model to learn new tasks, which works as a regularizer for the new learning. Basically, before

the new task is trained, its data is trained on the old classifier. The generated predictions are

then considered during the train phase in order to limit the update of the parameters on the new

task via distillation. Therefore, the loss function comprises not only the popular cross-entropy

loss function but also a knowledge distillation loss component, which intends to preserve a stable

response.

3.4.3 Rehearsal and pseudo-rehearsal strategies

Rebuffi et al. developed iCarl (Incremental Classifier and Representation Learning) [221], a model

intended for class-incremental learning. For each already observed class, iCarl retains a set of

samples. Being so, since the current training set comprises both stored and new examples, it

allows to transfer knowledge from the previous to the new tasks. The classification is based on the

nearest-mean-of-exemplars, which consists of the selection of the class that presents the nearest

distance to prototypes. The update of the parameters is based on the minimization of a modified

loss function which also comprises a distillation loss. For this reason, iCarl may be considered as

an hybrid strategy.

FearNet was proposed by Kember et al. [222], inspired by the mammalian hippocampal com-

plex. FearNet is composed of three networks, as presented in Figure 3.3: one for long-term storage

(mPFC), another one for recent memories (HC), and the other one that defines which of the pre-

vious networks is required for prediction (BLA). Differently from iCarl, in FearNet, previous

examples are not stored, increasing the memory efficiency of the system. Nevertheless, pseudore-

hearsal strategy is used, allowing to take into account previous memories without storing them

and enabling the consolidation of recent memories. Catastrophic forgetting is mitigated by the use

of an autoencoder. During the sleep phase, the autoencoder generates pseudo-examples using a

Gaussian distribution, allowing to train mPFC to accommodate the inputs stored in HC. Therefore,
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the generation of previously learned instances in combination with the new samples are used to

fine-tune mPFC for memory consolidation.

Figure 3.3: FearNet modules [222].

Another rehearsal strategy is Gradient of Episodic Memory (GEM) [177] that was developed

by Lopez et al.. In this system, a subset of already seen patterns for each class is stored. The goal

of the model is to minimize the negative backward transfer, this is, the decrease on the model’s per-

formance when a new task is considered. Moreover, contrary to what is verified in other strategies

that prevent important weights to be update, in GEM the authors allow positive backward transfer,

which tolerates the weights to change in case it leads to an increased performance on some of

the preceding tasks. A-GEM [223] is also a rehearsal strategy and consists of an upgraded and

more efficient version of GEM. In this strategy, it is intended to ensure that the average loss of the

episodic memories over the previous tasks does not increase. To achieve this goal, the dot product

between a reference gradient corresponding to the average of the previous tasks and the gradient

of the current task is considered. In case it is negative, the gradient is projected on the current task.

Comparing to other strategies such as EWC [219] or iCarl [221], the A-GEM strategy presented

the best trade-off between efficiency and accuracy.

Chaudhry et al. [224] explored a rehearsal approach, dubbed Experience Replay, that com-

bines both examples of the current tasks and some random examples that are stored in an external

memory in the training batches. The authors also evaluated different methods to populate the

memory: reservoir sample, ring buffer, k-Means, and mean of features. In the case of the reser-

voir sample, having a memory buffer with size "memsize" and being "n" the number of already

seen points, each data point is sampled with a probability of memsize
n . Concerning the ring buffer

approach, it assumes a FIFO (first-in-first-out) buffer for each class, which contains memsize
num_classes

samples. This way, it ensures equal representation of all classes in the memory, storing the last

samples of each class. With the k-Means approach, k centroids are estimated for each class. Then,

the examples whose feature representation is closer to those selected centroids are the ones stored

in the memory. Regarding the mean of features, the average feature vector is computed before

the classification layer and the examples whose feature representation is closer to this vector are

stored. The results showed that Experience Replay is able to outperform other strategies such as

EWC or A-GEM. Concerning the methodology to populate the memory, the reservoir sample ob-

tained the best performance for bigger episodic memories, while ring buffer performed better for

tiny episodic memories.
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3.4.4 Incremental learning in Medical context

In the last years, some approaches implementing incremental learning techniques for medical

applications have been proposed, namely for classification and segmentation tasks.

Meng et al. [225] proposed ADINet, an incremental system for retinal image classification.

This approach considers both class label prediction and attribute prediction in order to improve

classification performance. The authors assume that the attribute prediction of each class works

as an encoder for models representation. Hence, knowledge distillation is used to retain knowl-

edge from the previous classes, as well as an attribute distillation loss that allows to constrain

the attribute prediction for the previous and new models. The classification of the image label is

made simultaneously with the attribute prediction, which involves the calculation of the attributes

weights in each image, taking into account the information entropy of each attribute. Thereby,

the overall loss function combines the distillation loss and the classification loss which takes into

account both the loss function for image-level classification and the loss function for attribute clas-

sification. The system achieved an accuracy of 82.7% using a fundus image dataset, outperforming

some state-of-the-art approaches, as is the case of iCarl [221] or LwF [220].

Ravishankar et al. [226] developed an incremental learning method based on feature trans-

formers whose performance was then demonstrated on two medical applications: X-ray pneu-

mothorax classification and ultrasound cardiac view classification. In this approach, besides the

extracted features being mapped into a new representation by adding dense layers, the classifica-

tion loss is modified by the addition of a center-loss, which ensures class-wise separation. In a first

approach, the experiments comprised both multi-task and single incremental task settings of the

iCIFAR100 dataset, and were then demonstrated in real-life medical problems. In the multi-task

setting, the proposed method outperformed all of the considered state-of-the-art methods, such as

EWC [219], iCarl [221], or GEM [177], whereas in the single incremental task iCarl performed

better. Concerning the pneumothorax classification, a pretrained VGG network was implemented,

considering the ChestXRay dataset. The features to take into account comprised the ones extracted

from two pooling layers and fully connected layers. After each step, a dense layer was added in

order to map the features into a new representation, consisting of the feature transformers. The

validation accuracy after each layer was evaluated, resulting in a lower value for the deepest lay-

ers, due to the increased fine-tuning. In terms of the cardiac view classification, four common

views of adults and pediatrics images were considered. In the first task, only two adult views were

used, being then considered the pediatrics images of the same view in order to infer the domain

adaptation of the system. In the following task, the other two views were added to simulate new

task learning. It was verified that alterations in the domain do not affect the model’s performance

and that it can learn new tasks without the problem of catastrophic forgetting.

Since in clinical practice the protocols and policies used to acquire images are continuously

changing, Hofmanninger et al. [172] implemented a rehearsal method that considers a dynamic

memory in order to mitigate forgetting when CT data is obtained using different scanner protocols.

The authors started by finetuning a pretrained ResNet50 that is continuously being updated with
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new data. To retain information from one task to another, some previously seen data (dynamic

memory) is stored and together with the new examples is used to create the new training data. The

memory update is made according to some established criteria. This update depends on a high

level metric based on the gram matrix, in order to ensure that previous cases are not replaced if

they are visually distant. The proposed approach was compared to other strategies, such as the

EWC [219], showing to be more efficient in dealing with forgetting. Different memory sizes were

also explored. On the one hand, it was verified that increasing the memory size can reduce the

catastrophic forgetting. On the other hand, this increase slows the adaptation to new tasks.

For glioma segmentation from MR imaging, Garderen et al. [227] employed the previously

presented EWC system [219], in order to evaluate its performance on the desired purpose. The

segmentation task involved a 3D U-Net neural network in different scenarios: one network to

train both domains (source and target) at the same time for 100 epochs, and another network that

trained firstly the source domain (composed by low and high-grade glioma) for 50 epochs, and

then the target domain (containing non-enhancing low-grade glioma) also for 50 epochs. This was

performed with and without EWC on the loss function. Dice score results showed that the use of

EWC allowed an improvement of performance in the source domain, but a decrease in the target

domain. Therefore, it is concluded that EWC, on the one hand, allows to prevent catastrophic

forgetting, but, on the other hand, limits the ability of the model to adapt to a new domain.

Similarly to Garderen et al. [227], also Baweja et al. implemented EWC [219] in order to

perform incremental segmentation in brain MRI. The segmentation comprised two tasks: task A

was related to normal structures, namely cerebrospinal fluid, grey matter, white matter, while task

B consisted of white matter lesions. In this work, the DeepMedic 3D network was considered, and,

once again, the results showed that EWC allows to mitigate catastrophic forgetting, preserving the

performance of the first task.

Also Karani et al. [228] developed an incremental method for brain MR segmentation. This

approach consisted of using a CNN that shares convolutional filters and batch normalization lay-

ers which consider specific parameters for each domain. Different datasets were considered and

divided in five domains, from which two domains were not used from the beginning. The authors

implemented a U-Net network with slight alterations to achieve the intended goal, since batch

normalization layers can be included in any CNN. The results showed that the proposed method

lead to an increase of the Dice score for the old domains.

That being said, it is notorious that some effort has been done in the last years in order to

avoid catastrophic forgetting and allow models to be trained incrementally. However, there is

still a long way to go, since these strategies present some limitations and only a few studies were

performed in medical context. Concerning regularization approaches, due to the constant addition

of loss terms, it is possible that after several tasks there is a saturation of the model, which can

compromise the tasks performance. On the other hand, in the case of rehearsal approaches, these

may require a separate memory which can also be considered as a limitation. Therefore, it is seen

that incremental learning is a challenging part of artificial intelligence systems, and for that reason,

new systems that ensure robustness, and flexibility of the models continue to be required.



Chapter 4

Methodology

As previously introduced, this dissertation aims to achieve two major goals. On the one hand,

classification and object-detection algorithms should be developed and implemented in order to

evaluate what is the most suitable approach to predict if an image contains a ruler or not. On

the other hand, various models able to accurately classify dermatological images according to

their modality should be developed. These models must explore different incremental learning

techniques to allow them be updated as new images are available, without losing performance

on the already trained images and without the need of having access to all of previous images to

retrain the model from scratch. Therefore, this chapter comprises three main sections. Section 4.1

covers the dataset that was employed during the development of this work; Section 4.2 presents

both the classification and object-detection algorithms that were exploited; and, finally, the models

and incremental learning strategies that were implemented with the aim of classifying images

according to their dermatological modality are presented in the last section (Section 4.3).

4.1 Dataset

To achieve the intended goals, a dataset containing a total of 5203 dermatological images from the

Portuguese National Health System from retrospective data related to the referral requests from

Local Health Care Units for the first Dermatology Hospital consultation in the scope of DermAI

project was firstly considered. This dataset is composed by several anatomic, dermoscopic, macro-

scopic, and full-body images, some of them containing a ruler in order to allow the inference of

the lesion size in teledermatological consults.

The first steps of the work comprised the preparation of these images since some of them were

duplicated, contained two photos (in some cases from different modalities), or included white

frames that could interfere with the results, as shown in Figure 4.1. Hence, the repeated images

were removed, the photos were separated, and the white padding was eliminated, respectively.

Moreover, namely in the dermoscopic class, images where the ruler was imperceptible due to blur

issues were removed too. After this preparation steps, the dataset was composed by a total of 4955

images.

53
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(a) (b)

Figure 4.1: (a) Example of image containing two photos corresponding to different modalities: the
upper photo belongs to the anatomic modality and the bottom one to the dermoscopic modality;
(b) Example of image with white padding.

Besides the aforementioned modalities of images, primary-care clinicians may also send other

clinical information for teledermatological consults, such as medical reports. Due to confidential-

ity issues, this data could not be directly used in the work and, for this reason, images that could

represent this information had to be acquired from other sources. To accomplish this purpose, a

Chrome extension called "Imageye" 1 was used in order to collect this class of images from Google

Images. The search included terms as "medical report", "clinical report", "report", "medical form"

and others, resulting in a total of 1020 images. In summary, the amount of images corresponding

to each dataset’s class is presented in Table 4.1.

Table 4.1: Dataset composition according to images’ modality and presence of ruler.

No Ruler Ruler Total
Anatomic 1502 75 1577
Dermoscopic 1052 245 1297
Full-body 352 1 353
Macroscopic 1209 519 1728
Clinical reports 1020 0 1020
Total 5135 840 5975

Although the dermatological images contained in the dataset are associated with an anon-

imysed patient ID, in some cases, the same patient has more than one ID by mistake. Therefore, in

order to avoid biased results when splitting the dataset, besides grouping images that corresponded

to the same patient ID, a K-means algorithm was implemented with the aim of clustering similar

images. The algorithm employs a pre-trained VGG-16 network for feature extraction, whereby

the last layer of the CNN was not considered in order to only obtain a feature vector from each

image. After applying PCA to reduce the features vectors’ dimensionality, these were used as the

K-means input. Different numbers of clusters were considered, according to the number of images

1https://chrome.google.com/webstore/detail/image-downloader-imageye/
agionbommeaifngbhincahgmoflcikhm

https://chrome.google.com/webstore/detail/image-downloader-imageye/agionbommeaifngbhincahgmoflcikhm
https://chrome.google.com/webstore/detail/image-downloader-imageye/agionbommeaifngbhincahgmoflcikhm
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associated with each dermatological modality, to ensure that all similar images were assigned to

the same set.

The new dataset was split into three different sets for training, validation, and testing purposes

in a proportion of 60:20:20, respectively. Since one of the goals of the work involves incremen-

tal learning techniques, 900 images were stored in order to later feed the algorithms intended for

image modality classification, maintaining the proportion of each class. Hence, the dataset distri-

bution after the splitting process can be found in Table 4.2. Besides, in Figure 4.2, some examples

concerning the different modalities may be found.

Table 4.2: Dataset after splitting process.

Train Validation Test Incremental
No Ruler Ruler No Ruler Ruler No Ruler Ruler No Ruler Ruler Total

Anatomic 766 37 255 13 255 13 226 12 1577
Dermoscopic 536 125 179 41 179 42 158 37 1297
Full-body 179 1 60 0 60 0 53 0 353
Macroscopic 616 264 206 88 205 89 182 78 1728
Clinical report 521 0 173 0 173 0 153 0 1020
Total 2618 427 873 142 872 144 772 127 5975

(a) Anatomic. (b) Dermoscopic. (c) Full-body. (d) Macroscopic.
(e) Clinical report.

Figure 4.2: Examples of images from the different modalities.

4.2 Ruler inference

As previously mentioned, some of the images that are considered in teledermatological consults

contain a ruler that allows dermatologists to infer the size of a skin lesion. In order to predict

the presence of a ruler in different modalities of dermatological images, several classification and

object-detection algorithms were implemented (Sections 4.2.1 and 4.2.2, respectively) and the

performance of these two types of methods’ was then compared.

Here, the goal was only to know if an image contained a ruler or not and, for this reason,

nor the images intended for incremental learning, nor the clinical reports were taken into account.

Moreover, images’ modalities were not distinguished, and only two classes were considered: im-

ages with a ruler and images without a ruler, as presented in Table 4.3. The data distribution was

preserved, maintaining a proportion of 60:20:20 for training, validation, and testing.



56 Methodology

Table 4.3: Dataset considered for ruler inference.

No Ruler Ruler Total
Train 2097 427 2524
Validation 700 142 842
Test 699 144 843
Total 3496 713 4209

4.2.1 Classification algorithms

As introduced in Chapter 3, the efficiency of traditional machine learning algorithms is highly

dependent on the extracted features that are used to train them, which may not be the most suit-

able ones. Moreover, the selection of the most proper features is a complex and time consuming

process. For this reason, the preference for deep learning approaches in the last years have been

remarkably increasing. These models have already proved their effectiveness in the image clas-

sification field, being able to perform feature extraction by themselves and to achieve promising

performance results.

Hence, for this binary problem, three different approaches using CNNs were considered to ac-

complish the feature extraction and subsequent image classification. The first approach consisted

of a neural network that was conceived from scratch, whereas the other two approaches employ

transfer learning using a VGG-16 architecture pre-trained on the ImageNet database [126]. The

implementation of these models was made using the Tensorflow API 2.4.1 in Python 3.7.1 on a

CPU with 16GB of RAM. Concerning the developed CNN, it is composed by three convolutional

and max-pooling layers, including batch normalization (BN) and dropout techniques too, in order

to stabilize the learning process and avoid overfitting, as presented in Figure 4.3. In the case of

the VGG models, one of the approaches consisted of fine-tuning the already pre-trained model by

unfreezing and continuing to train all of the layers, which allows to better learn the patterns spe-

cific to the considered dataset. In the other approach, feature extraction was performed using the

pre-trained model and only the last layers were adapted to this classification problem, leveraging

generic features that are shared among different images and optimizing the process for the in-

tended purpose. Hereinafter, the first VGG approach is called "FT VGG-16", whereas the second

one is simply called "VGG-16".

Figure 4.3: Representation of the developed CNN.

Due to the high class imbalance that was verified between the two classes (Table 4.3), an

oversampling of the training images corresponding to the class with less amount of images, this
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is, the set of images containing a ruler, was performed. This oversampling was made offline,

involving horizontal and vertical flipping with a probability of 0.5, and also random channel shifts

in the range [0,55], and alterations in brightness in the percent range of [0.4,0.8], resulting in a

total of 1996 images with ruler during the training phase. The process did not include rotations

nor cropping, since as in some images the rulers were localized in the periphery, these techniques

could have removed them.

As deep learning algorithms can handle raw data, the pre-processing of the images only com-

prised their normalization, and resizing since the dataset was composed by a wide variety of im-

ages’ sizes. Thus, pixel intensities were transformed to fit between the range 0 and 1, and images

were resized to 224x224 pixels. It is worth noting that, after the oversampling and resizing, all

images were verified in order to ensure that no damaging alterations that could compromise the

visibility of the rulers had been applied.

In the three models, different approaches were exploited in order to optimize the algorithms

and assess the influence of different parameters in the learning process. After slight variations

on the hyperparameters, the three models were trained for 20 epochs using a batch size of 16,

the sigmoid classifier, and considering the Adam algorithm to optimize the process. Considering

that the learning range defines how much the weights are updated at each step, this fundamental

hyperparameter was optimized. Hence, different values were tested in the range of 1x10−3 to

1x10−7 and, in the case of the CNN trained from scratch, it was set to 1x10−7 and to 1x10−6 in

the transfer learning models. These were the chosen values because when higher learning rates

were considered, some volatility on the validation curves were verified, especially in the case of

the simple CNN. This could indicate that the employed learning rates were resulting in a high

modification in the weights, providing very different predictions on the validation examples. For

this reason, the corresponding values were decreased to the mentioned ones.

Since the aim of these algorithms was to predict if a ruler was presented in the images or not,

the amount of false detections is an aspect that must be taken into account. Thus, beyond the

standard binary cross-entropy loss function (Equation 4.1), a weighted cross-entropy loss function

that aims to penalize both false positives and false negatives was also applied. This function is

given by Equation 4.2, which introduces weights both in the cost of a false positive and of a false

negative.

Jbce =−
1
M

M

∑
i=1

[yi ∗ log(hθ (xi)+(1− yi)∗ log(1−hθ (xi))] (4.1)

Jwbce =−
1
M

M

∑
i=1

[w f n ∗ yi ∗ log(hθ (xi)+w f p ∗ (1− yi)∗ log(1−hθ (xi))] (4.2)

In these equations, M represents the number of training examples, yi is the ground truth for

the training example i, hθ represents the model with weights θ , xi is the input for the training

sample i, and w f n and w f p represent the cost of a false negative over a true positive and the cost of

a false positive over a true negative, respectively. As the aim was to compare the influence of the
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loss function in the amount of false detections, different sets of weights were applied as it will be

further discussed in the next chapter.

Since the performance of deep learning algorithms depends on the amount of data available

to train them (Figure 4.4), the influence of data augmentation was also explored, using techniques

similar to the ones used in the oversampling task. This augmentation was made online during the

training process, where at each epoch, every image was randomly transformed.

Figure 4.4: Impact of the amount of available data on the performance of traditional machine
learning and deep learning algorithms [229].

Finally, as presented in Figure 4.5, the rulers contained in dermoscopic images differ a lot

from traditional rulers that are used in the other modalities. Therefore, the considered models

were trained with and without this modality of images, allowing to understand if this class could

interfere with the results.

(a) Anatomic image. (b) Dermoscopic image. (c) Macroscopic image.

Figure 4.5: Differences in rulers depending on image’s modality.

An overview of the most relevant approaches that were applied to the models in order to

optimize their learning process is presented in Table 4.4.

Table 4.4: Approaches considered for classification model’s selection.

Approach

Loss function
Binary Cross-Entropy

Weighted Cross-Entropy

Data augmentation
With augmentation

Without augmentation

Dataset
With dermoscopic class

Without dermoscopic class
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4.2.2 Object-detection algorithms

For training and testing the object-detection models, the Tensorflow Object Detection API 2 was

used. This repository contains the implementations of several state-of-the-art algorithms and it is

possible to find models pre-trained on the COCO dataset [230]. Within the scope of this work,

Tensorflow 2.4.1 in Python 3.7.10 on a NVIDIA T4 GPU with 8GB of memory was considered.

As the dataset used in the work did not contain annotations regarding the rulers’ localization,

firstly, all images that contain a ruler had to be labelled. The annotations were made using an intern

platform of Fraunhofer AICOS that allowed to obtain the coordinates of the rulers’ bounding-

boxes by computing the coordinates of the upper left corner and its width and weight.

In the object detection API, data is read using a TFRecord file format, which must comprise

the bounding-boxes’ normalized coordinates (x/width, y/height) defined by four floating-point

numbers [ymin, xmin, ymax, xmax], as well as the class of the objects, and the encoded RGB

images themselves. Thus, it was necessary to create three files in order to train, validate, and test

the models.

Three state-of-the-art algorithms, already described in Chapter 2, were explored to detect the

existence of rulers in the images. More specifically, this selection comprised the EfficientDet-D0

[148], the RetinaNet [137], and the Faster R-CNN [144] detectors. The EfficientDet-D0 was se-

lected because it is part of a new family of detectors, reporting high efficiency and accuracy; the

RetinaNet and the Faster R-CNN were also considered because they are very popular detectors,

able to achieve promising results in the literature. All of them were pre-trained on the COCO

dataset and trained for 3000 steps. Although some minor changes have been made, namely con-

cerning the batch size and the data augmentation techniques, all of the other training variables

were similar to the original implementation.

Concerning the EfficientDet-D0, this detector uses the EfficientNet-B0 as the backbone net-

work, requiring an input size of 512x512 pixels. Differently from the original implementation

where besides horizontal flipping also image cropping is performed for data augmentation, in this

work only the first technique was employed. Similarly to what was previously mentioned concern-

ing the classification algorithms (Section 4.2.1), this decision had to do with the fact that in some

cases the rulers are located in the periphery of the images, whereby the crop could have removed

them. Also, due to computational costs, a batch size of 16 had to be used in this model, since this

was the maximum size that did not raise memory errors.

In the case of the RetinaNet, the authors reported that using a ResNet-101 architecture as the

backbone network led to better results than when using a ResNet-50 [137]. Therefore, in order

to allow a comparison of the detector’s performance depending on the employed backbone, these

two networks were considered, as presented in Table 4.5. Similarly to the previously mentioned

detector, data augmentation during training only employed horizontal flipping techniques too for

the same reasons, and the batch size was set to 8, as, in this case, it was the maximum size for this

model with the available memory.

2https://github.com/tensorflow/models/tree/master/research/object_detection

https://github.com/tensorflow/models/tree/master/research/object_detection
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Regarding the Faster R-CNN, in the original paper it is also mentioned that using the ResNet-

101 architecture as the network for region proposal instead of the VGG-16 increases the system

performance. However, due to the associated computational costs, only the ResNet-50 network

was employed in this detector. In the same way as the aforementioned models, data augmentation

only comprised horizontal flipping techniques and the batch size was also set to 8 because of the

same reasons.

In Table 4.5 it is possible to find a summary referring to the previously mentioned alterations

concerning each one of the detectors.

Since in some images the input sizes required by the detectors differ a lot from their original

sizes, in order to ensure that the rulers were not affected by this resizing and were still visible for

such dimensions, before feeding the detectors, all images were resized (for 640x640 and 512x512

pixels), stored, and individually analysed.

Table 4.5: Object detection model’s configuration.

Backbone net. Input
size

Batch
size Data aug.

EfficientDet-D0 EfficientNet-B0 512 16 Horiz. flipping

RetinaNet ResNet-50 640 8 Horiz. flipping
ResNet-101 640 8 Horiz. flipping

Faster R-CNN ResNet-50 640 8 Horiz. flipping

4.3 Image Modality Classification

4.3.1 Data preparation

Since one of the aims of incremental learning is to allow algorithms to adapt to new conditions,

the dataset considered in the previous phase was readjusted in order to simulate the presence of the

concept-drift, already described in Section 2.7.1. To achieve this, some particular types of images

were only used on the incremental phase, as shown in Figure 4.6. In the case of the anatomic

modality, all images that contained hands or feet were only considered in the second phase of the

learning process. Concerning the dermoscopic modality, the images selected for the second task

comprised the ones that presented a pink coloring, like the one presented in Figure 4.6b. Regarding

the full-body modality, this selection refers to images where legs and arms are presented, and in

the case of macroscopic images, images that contained regions of the face were only used in the

incremental phase.

The distribution of the dataset considered in this part of the work can be consulted in Table 4.6,

where a proportion of 60:20:20 was maintained for training, validation and testing, respectively,

in the first task. With regard to the 900 images intended for the incremental task, these were split

in a proportion of 80:20 for training and testing, respectively. To simplify the comprehension in

some situations throughout this document, the first task is also called task A, and the incremental

part corresponds to task B.
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(a) Anatomic. (b) Dermoscopic. (c) Full-body. (d) Macroscopic.

Figure 4.6: Types of images only considered in the incremental phase for each modality.

Table 4.6: Dataset distribution for image modality classification before oversampling.

First task (A) Incremental task (B)
Train Validation Test Train Test

Anatomic 803 268 268 190 48

Dermoscopic 661 220 221 156 39

Full-body 180 60 60 43 10

Macroscopic 880 294 294 209 51

Clinical reports 521 173 173 123 30

Total 3045 1015 1016 721 178

In this table, it is possible to verify the imbalance that exists across the five modalities. For

this reason, an oversampling of the training images corresponding to the less representative classes

(i.e. dermoscopic, full-body and clinical reports) was also applied in this phase, resulting in around

4000 images related to the first task and around 1000 in the case of the incremental task. Once

again, this oversampling was made offline, including techniques, such as horizontal and vertical

flipping with a probability of 0.5, alterations in brightness with a percent value p∈ [0.4,0.8], zoom

shifts using a percent value p ∈ [0.8,1.2], and width shifts in the percent range of [-0.15,0.15].

After employing these techniques, all images were assessed to ensure that they have not gone

through damaging alterations. Similarly to what was previously mentioned (namely, in Section

4.2.1), after this procedure, the images’ pre-processing only comprised normalization and resizing

approaches, due to the nature of deep learning algorithms.

4.3.2 Base models selection

After preparing the data, different models that could accurately classify images’ modalities were

developed in order to be later used as the base models for the incremental learning process. The

implementation of these models and of the following work was made adopting the PyTorch API

1.8.1 in Python 3.7.10 on a NVIDIA T4 GPU with 8GB of memory. The choice relied on two

different networks, allowing to understand the differences verified in the behaviour of the con-

sidered incremental learning strategies according to the complexity of the models. Therefore, the

VGG-16 architecture was chosen because it is a very popular and effective network used for im-

age classification purposes and, as reported in the previous chapter (Section 3.1.2), it has already
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been employed for image modality classification in other medical fields; and the MobileNetV2

architecture since it is a smaller network able to achieve great results in image classification too.

Both networks were used in a transfer learning approach, having been previously trained on

the ImageNet dataset. The pre-trained networks were used as feature extractors, being a new set

of layers added to the top of the extracted features which were trained to this modality classifica-

tion problem. Thus, in the case of the VGG-16 network, around 12 million trainable parameters

were considered, whereas in the MobileNetV2 model, only about 650 thousand parameters were

trainable.

The models were optimized and the selected configurations are presented in Table 4.7. In both

of them, the Adam optimizer was considered and a Cross-Entropy loss function was applied.

Table 4.7: Configuration of the selected base models.

Model Epochs Batch
size LR Dropout

VGG-16 50 16 1x10−5 Yes (0.5)
MobileNetV2 50 16 1x10−5 Yes (0.4)

Considering these configurations, each model was trained three times using merely the images

corresponding to the first task. The models’ parameters after each of the three runs were stored to

allow a later comparison of the results, and only the run that provided the best outcomes for each

network was later used as a starting point for the incremental task, corresponding to the training

of task A.

4.3.3 Incremental Learning of Image Modalities

To implement different incremental learning approaches, the Alpha version of the Avalanche li-

brary, which is an end-to-end open-source library, specifically designed for incremental learning,

was adopted [231]. This decision had to do with the fact that, usually, incremental learning al-

gorithms have to be implemented from scratch, using different assumptions and settings, which

makes it difficult to compare their performance, even when the same benchmarks are considered.

Besides, due to the fast-growing interest in incremental learning, often different terminologies are

considered. Hence, the Avalanche allows to favor the flexibility and simplicity of incremental

learning implementations, without employing a strict nomenclature.

4.3.3.1 Incremental Learning approaches

Besides the Naïve and the Cumulative approaches which were used as baseline strategies (Section

2.7.3.1), three incremental learning approaches were explored. The choice relied on the EWC

[219], AGEM [223], and Experience Replay [224] since these are popular strategies that were

previously considered in medical context, as presented in Section 3.4.4.

As previously presented (Section 3.4.2), being the EWC a regularization strategy, it introduces

a new term in the loss function that aims to penalize alterations in the most important weights of
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the following tasks. The importance of the weights is given by the diagonal of the Fisher matrix,

which measures the amount of information carried by a given variable, in this case, the trainable

variables of the model. Thus, the function that is intended to be minimized in the incremental

training is given by:

L(θ) = LB(θ)+∑
i

λ

2
Fi(θi−θ

∗
A,i)

2 (4.3)

where LB(θ) is the loss corresponding to the incremental task only, λ is an hyperparameter that

sets how important the previous task is compared with the new one, F represents the diagonal of

the Fisher matrix, θi is the set of weights and bias of the current (incremental) task, θ ∗A,i represents

the sets of weights and bias of the previous task, and i labels each parameter.

Concerning the AGEM and the Experience Replay, both of them are rehearsal strategies, which

means that some information from the first task is maintained in the memory and will then be

trained together with the new task.

In the case of AGEM, this strategy considers a fixed memory to store patterns from a previous

task. A reference gradient is then computed, consisting of the average of the gradients from a

random set of examples contained in this memory. If the dot product between this reference

gradient and the gradient of the current task is negative, the gradient is projected via Equation 4.4,

ensuring that the loss over the previous tasks does not increase.

g̃ = g−
gT gre f

gT
re f gre f

gre f (4.4)

In this equation, g refers to the gradient of the current task and gre f is the reference gradient.

In Experience Replay, on the other hand, a random subset of images from the previous task

which are contained in an external memory is concatenated with the incremental dataset at each

training batch. The examples considered in each batch are balanced, ensuring an equal number of

images from the various tasks.

These strategies require that some variables are tuned, in order to be implemented. Regarding

EWC, the λ hyperparameter must be set to ponder the penalization that should be assigned to

the loss function. The higher this value, the greater the regularization that will be applied. In

what concerns the rehearsal strategies (AGEM and Replay), the size of the memory buffer must

be adjusted.

Therefore, the chosen values were based on values reported in the literature (EWC: [223],[173];

AGEM: [223]; Replay: [232]) and can be found in Table 4.8.

A wide range of λ values is usually employed in the case of the EWC approach because it

is an hyperparameter that must be set according to the problem. Concerning the AGEM strategy,

although other memory sizes are also encountered in the literature, the maximum memory size

that was possible to explore within the scope of this work was 150, due to memory limitations.

With respect to the Replay strategy, on the other hand, since the incremental task only comprised

around 1000 training images (after oversampling), it was decided to restrict the memory size to
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500 examples from the previous tasks, although larger memory sizes are also reported on the

literature.

Table 4.8: Parameters used in the incremental learning approaches.

Strategy Parameter

EWC

λ = 100
λ = 50
λ = 1

λ = 0.5

AGEM
Mem = 50
Mem = 100
Mem = 150

Replay
Mem = 100
Mem = 250
Mem = 500

4.3.3.2 Incremental task training

In order to establish a more reliable comparison between the performance of the different incre-

mental learning strategies, the code of the Avalanche library had to be slightly adjusted to prevent

the training of the first task and to employ the models previously trained on this task. Thus, the

training of task B started from the same point for the various incremental strategies.

Similarly to the base models training (Section 4.3.2), the previously mentioned learning rates

were considered, the Adam optimizer was used and the Cross-Entropy loss function was employed

in this training. Concerning the batch size, this had to be set to 8 due to the involved computa-

tional cost. Moreover, in the case of the number of epochs, a lower number was also considered.

As presented in Figure 4.7, it is verified that although the incremental training affects the learning

process of the MobileNetV2 in terms of stability, in the case of the VGG-16 model, it converges

after around 20 epochs. For this reason and also because training models sequentially is usually

prone to catastrophic forgetting, it was evaluated if training longer had an influence on the perfor-

mance of the first task. To do so, the second task was trained for 10, 20, and 30 epochs, allowing

to understand the alterations namely in what concerns the forgetting.

For both models, each configuration was implemented for 10 iterations, in order to provide

more robust and reliable results.

4.3.3.3 Incremental Learning evaluation

As it was possible to understand by the literature review that was made, there is still no consensus

among the computer vision community in what concerns the evaluation of the incremental learn-

ing strategies’ performance. However, it was verified that this assessment typically relies on the

accuracy’s computation at different levels (among the different tasks or global performance) and

on the efficiency of the models. Therefore, within the scope of this work, the evaluation of the
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(a) Example of the VGG-16 model consid-
ering the Naïve approach.

(b) Example of the MobileNetV2 model
considering the Naïve approach.

Figure 4.7: Accuracy evolution during the training of the incremental task (Task B).

employed incremental learning strategies was based on these two main aspects: the accuracy and

the efficiency.

In what concerns the accuracy, the BWT and the FWT metrics, previously introduced on

Section 2.8, were implemented. These metrics require the computation of an accuracy matrix (R),

which is given in Table 4.9. Basically, the performance of the model after it finishes learning

about the training task Tri is evaluated on all test tasks Tei, even the ones referring to future tasks.

Hence, for instance, RB,A refers to the test accuracy of the task A after the model have been trained

on task B.

Table 4.9: Accuracy matrix R. Tri = training; Tei = testing.

R TeA TeB

TrA RA,A RA,B

TrB RB,A RB,B

The higher the BWT and the FWT, the better. Besides, a negative BWT is usually related

to catastrophic forgetting, which means that the performance of the previous task decreased after

performing the incremental training.

Furthermore, also the accuracy of all testing images (task A and task B together) after the two

training processes was computed. This evaluation was made in order to evaluate the performance

of the obtained models on a set of examples containing images belonging to the two employed

distributions.

Concerning the efficiency of the different approaches, for every incremental learning strategy,

both the time required to train each epoch and the maximum RAM memory used throughout the

learning process were assessed. The evaluation of the RAM memory usage was made every 0.5

seconds and the maximum value that was reached was considered.
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Chapter 5

Results and Discussion

This chapter presents the obtained results and the corresponding analysis concerning the two major

goals of this dissertation: the ruler inference (Section 5.1) and the incremental image modality

classification (Section 5.2).

5.1 Ruler inference

To predict whether a ruler is contained in different dermatological images or not, several clas-

sification and object-detection algorithms were developed and implemented in order to ascertain

the most advantageous configuration in solving this task. Therefore, in this section, the achieved

results for each type of models are presented.

5.1.1 Classification algorithms

As mentioned in the previous chapter (Section 4.2.1), three different approaches were considered

for this binary classification problem: a simple CNN conceived from scratch, a fine-tuned VGG-

16 network previously trained on the ImageNet database (FT VGG-16), and a VGG-16 network

pre-trained on the same database that was used for feature extraction. These three approaches were

chosen allowing to compare the performance of a simpler network with a more complex one that

have already proven its effectiveness in image classification problems, as seen in Chapter 3, and

also to compare two transfer learning methodologies.

In order to establish the most suitable models for the intended goal, different strategies were

exploited. The influence of the employed loss function on the number of false detections was

studied considering two different functions. Firstly, a binary cross-entropy was used in the three

models and then a new weighted cross-entropy loss function was implemented. In this last case,

different weights were assigned to the false negatives and to the false positives to evaluate their

impact on the learning process. The achieved results for the most relevant sets of weights can be

consulted in Table 5.1. Nevertheless, other weight values were also tested.

By looking over these results and in what concerns the fine-tuned VGG, it is possible to infer

that, although the number of false detections had decreased when the weighted cross-entropy

67
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Table 5.1: Ruler classification algorithms results depending on the loss function.

Model Loss Function Weights FN FP TN TP Acc.

Simple CNN

Binary Cross-Entropy — 27 87 612 117 0.865
Weighted Cross-Entropy FN: 1; FP: 2 40 30 669 104 0.917
Weighted Cross-Entropy FN: 1; FP: 4 60 13 686 84 0.913
Weighted Cross-Entropy FN: 1.5; FP: 4 50 36 663 94 0.898

FT VGG-16

Binary Cross-Entropy — 4 5 694 140 0.989
Weighted Cross-Entropy FN: 1; FP: 2 3 3 696 141 0.993
Weighted Cross-Entropy FN: 1; FP: 4 3 5 694 141 0.991
Weighted Cross-Entropy FN: 1.5; FP: 4 4 3 696 140 0.992

VGG-16

Binary Cross-Entropy — 11 15 684 133 0.969
Weighted Cross-Entropy FN: 1; FP: 2 11 12 687 133 0.973
Weighted Cross-Entropy FN: 1; FP: 4 31 2 697 113 0.961
Weighted Cross-Entropy FN: 1.5; FP: 4 14 10 689 130 0.972

function was considered, the difference on the results depending on the employed sets of weights

was not very significant and with the binary cross-entropy it was already possible to achieve a

good performance.

In the case of the other pre-trained VGG and of the simple CNN, on the other hand, the

difference in the results depending on the employed loss function and among the different sets of

weights was more notorious. When the weighted cross-entropy loss function was used and only

the false positives were penalized with a weight of 4, although this function allowed to decrease the

number of false positives, it is also possible to notice an increase in the number of false negatives,

resulting in fewer true positives. Nevertheless, when the weight associated with a false negative

was set to a value different from 1 (it was increased to 1.5) and the penalization of a false positive

was kept in 4, it may be verified that despite the number of false positives had increased compared

to the previous setting, the growth in the number of false negatives is less pronounced compared to

the results achieved using the binary cross-entropy function, allowing to obtain more true positives.

Moreover, when the penalization of a false positive was twice as the weight associated with a

false negative, the results seem to be more balanced in terms of false detections (number of false

positives and false negatives). Comparing the three sets of weights, this is the setting that provides

less amount of false detections in the three models. With respect to the simple CNN, for instance,

although the number of false negatives had increased compared to the binary cross-entropy, this

increase was not significant when looking at the total number of false predictions which dropped

from 114 (in the case of the binary cross-entropy) to 70 when the weighted cross-entropy was

taken into consideration.

Therefore, it is possible to infer that, when compared to the binary cross-entropy, the weighted

cross-entropy loss function allowed to decrease the number of false detections (false negatives plus

false positives) in the three models and for almost all of the three weights configurations. Also, it

is possible to see that when the weighted cross-entropy loss function is used, there is the need of

establishing a trade-off between the number of false positives and false negatives, which may be

tuned taking into account the ratio between the associated weights.
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That being said, through the analysis of these results, the weighted cross-entropy loss function

was selected for the three models, considering a weight of 1 and of 2 to penalize the false negatives

and the false positives, respectively.

As previously mentioned, the influence of data augmentation on the results was also explored,

since the amount of data used to train the models may influence the outcomes. Hence, the same

model configuration was used to evaluate the alterations verified in the models’ performance. In

Table 5.2, it is possible to find the obtained results concerning the three models.

Table 5.2: Ruler classification algorithms results with and without data augmentation, using
weighted cross-entropy with 1:2 weights.

Model Approach Acc. Prec. Sens. Spec. AUC

Simple CNN Without aug. 0.917 0.776 0.722 0.957 0.952
With aug. 0.875 0.617 0.715 0.908 0.923

FT VGG-16 Without aug. 0.988 0.965 0.965 0.993 0.998
With aug. 0.993 0.979 0.979 0.996 0.998

VGG-16 Without aug. 0.973 0.917 0.924 0.983 0.994
With aug. 0.968 0.921 0.889 0.984 0.993

By analysing the results contained in this table, it may be inferred that in the context of this

problem, data augmentation does not provide any benefit to the VGG model used for feature

extraction, nor to the simple CNN. In fact, in the majority of the metrics, the performance of

these two models decreased when this approach was considered. This may be due to an increased

difficulty of the problem during the training phase resulting from the different patterns that had

to be learned. Nevertheless, in the case of the fine-tuned VGG, there is an improvement on the

algorithm’s performance when more data is considered during the training process. A possible

explanation for this fact relies on the higher amount of parameters that had to be tuned in the

learning phase, since, in this case, the whole pre-trained model was unfreezed to better adjust to

the proposed problem. For this reason, more data was required in order to allow the model to learn

effectively.

Another study intended to evaluate how the dermoscopic modality could compromise the re-

sults due to the differences verified in the rulers’ appearance. Therefore, the same models were

trained with and without the images corresponding to this class. Taking into account the results

obtained in the previous study, data augmentation was applied to the FT VGG-16. As it is possible

to see in Table 5.3, the results for all models did not improved when the dermoscopic class was

not considered. This may result from the smaller amount of images considered during the training

phase, since the dermoscopic modality represents more than 20% of all images contained in the

dataset, as presented in Table 4.2. Thus, it is possible to infer that this modality does not affect

the performance of the models, and consequently, it may be maintained in the dataset without

penalizing the results.

Moreover, both the results presented in Table 5.2 and in Table 5.3 show that the VGG mod-

els outperformed the simple CNN model in all of the considered metrics for the two scenarios

(with and without data augmentation, and with and without the dermoscopic class). This can be
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Table 5.3: Ruler classification algorithms results with and without the dermoscopic modality.

Model Dataset Acc. Prec. Sens. Spec. AUC

Simple CNN With dermo 0.917 0.776 0.722 0.957 0.952
No dermo 0.878 0.649 0.556 0.941 0.918

FT VGG-16 With dermo 0.993 0.979 0.979 0.996 0.998
No dermo 0.980 0.934 0.944 0.987 0.994

VGG-16 With dermo 0.973 0.917 0.924 0.983 0.994
No dermo 0.955 0.874 0.844 0.976 0.983

explained by the fact that these models employ transfer learning and, for this reason, even with

limited data, they were able to achieve good results, since they had already been trained on a larger

dataset, which enabled them to learn generic features common to every images. Another possible

explanation relies on the simplicity of the CNN trained from scratch, since its low complexity

may have prevented the model to learn representative features. Furthermore, it is also possible

to compare the performance of the two VGG approaches that take into account transfer learning.

The fine-tuned VGG surpassed the pre-trained VGG network for feature extraction. This result

was more or less expected since with fine-tuning, on the one hand, the model could already iden-

tify generic features, such as edges or textures and, on the other hand, was further able to learn

features more intrinsic to the dermatological dataset that were not previously seen in the ImageNet

database and that the pre-trained VGG for feature extraction was not able to adjust to.

Therefore, considering the comparison on the results when using different approaches, the

configurations of the selected classification models are presented in Table 5.4.

Table 5.4: Selected classification models.

Model Loss
function Weights Dataset Data aug.

Simple CNN Weighted FN: 1; FP: 2 With dermo No
FT VGG-16 Weighted FN: 1; FP: 2 With dermo Yes
VGG-16 Weighted FN: 1; FP: 2 With dermo No

To ensure that these models were reaching the desired behavior, the curves corresponding to

the learning process were plotted and can be found in Figure 5.1. In the case of the VGG model

pre-trained for feature extraction (Figure 5.1c), it can be seen that during the entire process, the

validation accuracy surpassed the one achieved during the training phase. This may result from the

fact that regularization techniques, such as dropout, are only employed during the training phase

but not in the validation phase. This phenomenon may also result from the oversampling that

was done in order to balance the number of training images belonging to each class, which could

have increased the complexity of the problem. Nevertheless, it is possible to verify that for the

three models the loss function decreased throughout the learning process, whereas the accuracy

increased, both in the case of the validation and the training phases, as supposed.
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(a) Simple CNN.

(b) Fine-tuned VGG.

(c) VGG as feature extractor.

Figure 5.1: Learning curves of the three selected models.

The predictions provided by the classification algorithms were also visually inspected. In Fig-

ure 5.2, the misclassifications of the fine-tuned VGG can be consulted. The upper row comprises

the false positives whereas the bottom row contains the false negatives. With respect to the identi-

fied false negatives, as presented in Figure 5.2b, its difficulty in recognizing rulers localized in the

periphery of the images was demonstrated. Regarding the pre-trained VGG as feature extractor,

some examples of the wrong predictions can be found in Figure 5.3. In what concerns the images

related to the false positives, it is possible to verify that they essentially comprise images where

straight edges may be found.
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(a) False positives.

(b) False negatives.

Figure 5.2: Misclassifications of the fine-tuned VGG.

(a) False positives.

(b) False negatives.

Figure 5.3: Misclassifications of the pre-trained VGG as feature extractor.

5.1.2 Object-detection algorithms

Concerning the object-detection algorithms, different detectors were employed allowing to com-

pare the performance of both one-stage and two-stage detectors. The selection relied on the

EfficientDet-D0, RetinaNet, and also Faster R-CNN, as introduced in Section 4.2.2 of the pre-

vious chapter.

A common metric that is used to evaluate the performance of the detectors in terms of the

spatial location of the predictions is the mean Average Precision (mAP). This metric is based on

the Intersection over Union (IoU) (Table 2.5) which allows to compute the overlap between the
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predicted and the ground-truth bounding boxes. Establishing a threshold, it is then possible to infer

if the provided detection is a true detection or not, enabling to estimate the number of true positives

(TP), false positives (FP), and also false negatives (FN). In other words, if IoU > threshold, the

prediction is considered as a TP; on the other hand, if IoU < threshold, it is a false positive; if no

prediction is made but a ground-truth bounding box exists, it is classified as a false negative. Based

on these values, the Precision and Recall metrics (Table 2.5) may be computed, allowing to obtain

the precision-recall curve of each model. Therefore, the Average Precision (AP) corresponds to

the area under this curve. In some cases the AP is computed for each class, and is then averaged to

get the mAP. However, in other cases, as in the COCO evaluation challenge, there is no difference

between these metrics [230]. Moreover, as in this work it is just intended to find rulers in the

images, only one class is considered, and for this reason, AP and mAP correspond to the same

metric.

The mAPs were computed for two different IoU thresholds: 0.5 and 0.75. In Table 5.5, it is

possible find the achieved test results for both of them.

Table 5.5: Object-detection algorithms comparison.

Backbone net. mAP50 mAP75

EfficientDet-D0 EfficientNet-B0 0.940 0.760

RetinaNet ResNet-50 0.144 0.022
ResNet-101 0.361 0.085

Faster R-CNN ResNet-50 0.977 0.913

By analysing the results, Faster R-CNN achieved the best results compared to the other detec-

tors, both when using a threshold of 0.5 and of 0.75. Being a two-stage detector, it was expected to

achieve high accuracy and to be slower than the one-stage detectors, what was verified. However,

the results do not totally match with what was reported in the literature, since usually, RetinaNet

is able to achieve better results than both Faster R-CNN and EfficientDet-D0 [137][148]. In this

case, this was not verified with the ResNet-50 backbone, nor when using the ResNet-101, having

its performance fell short of expectations. This may be due to the employed hyperparameters that,

as will be further analysed in Section 5.1.3, may have not been completely optimized.

Since the aim of this phase of the work was to compare the performance of the object-detection

algorithms with the classification ones in predicting if an image contains a ruler or not, besides

the mean Average Precision that allows to compare the detectors among them, other metrics were

also considered, as presented in Table 5.6. As each image contains at most one ruler and the mod-

els output multiple detections for the same object, only the predicted bounding-box with higher

confidence was maintained. In this case, the amount of TP, TN, FP, and FN in the test phase

was computed considering an IoU threshold of 0.5. The metrics were then calculated using the

equations presented in Table 2.5.

By looking at Table 5.6, once again, it is possible to see that Faster R-CNN outperformed

the other detectors in almost all of the considered metrics. Furthermore, on the one hand, the

difference between the RetinaNet results when considering the ResNet-50 or the ResNet-101 as
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Table 5.6: Object-detection results.

Backbone net. Acc. Prec. Sens. Spec.
EfficientDet-D0 EfficientNet-B0 0.836 0.506 0.908 0.822

RetinaNet ResNet-50 0.848 0.667 0.210 0.979
ResNet-101 0.848 0.647 0.231 0.974

Faster R-CNN ResNet-50 0.925 0.698 0.979 0.914

the backbone network is not marked, and beyond that, the associated computational cost when

using this last network was higher, taking more time to perform the training process. Hence, in the

context of this work, it was not advantageous to use the ResNet-101 network. In the next section

(Section 5.1.3), these results will be further analysed and compared with the ones achieved using

the classification algorithms.

The predictions of the three detectors were then visually analysed. In these images, the

bounding-boxes plotted in blue correspond to the ground-truth bounding-boxes, whereas the green

boxes are the predicted ones. Some common errors were identified among the three detectors. For

instance, both in the case of the EfficientDet and of the Faster R-CNN, the detectors considered

that some of the bras’ back strips were a ruler, as shown in Figure 5.4 on the upper line. Also, it was

verified that some objects contained in the background were being identified as rulers, possibly

due to the presence of straight edges, as presented in the same figure on the bottom line.

(a) EfficientDet. (b) RetinaNet. (c) Faster R-CNN.

(d) EfficientDet. (e) RetinaNet. (f) Faster R-CNN.

Figure 5.4: Visual results of the object-detection algorithms - False Positives.

Moreover, specially concerning the rulers contained in the dermoscopic images, when these

were localized in the periphery of the image, the EfficientDet algorithm could not detect them.
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Some examples of this issue are presented in Figure 5.5. The RetinaNet, on the other hand, was

not able to detect any ruler contained in the dermoscopic images.

Figure 5.5: Visual results of the object-detection algorithms - False Negatives of EfficientDet.

Concerning the Faster R-CNN, only three rulers were not identified by this detector, being

these images shown in Figure 5.6. The image on the far right was misclassified by the three

detectors perhaps due to the shape and color of the ruler which is not as evident as in the other

images. This image was also not predicted by the fine-tuned VGG, as previously presented in

Figure 5.2.

Figure 5.6: Visual results of the object-detection algorithms - False Negatives of Faster R-CNN.

Besides, in Figure 5.7 some examples of rulers that were correctly localized by the three

detectors can be found. Other examples of the algorithms’ predictions may be consulted in the

Appendix on Section B.1.

(a) EfficientDet. (b) RetinaNet. (c) Faster R-CNN.

(d) EfficientDet. (e) RetinaNet. (f) Faster R-CNN.

Figure 5.7: Visual results of the object-detection algorithms - True Positives.
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5.1.3 Algorithms comparison

In Table 5.7, the best results concerning the classification and object-detection algorithms are

presented.

Table 5.7: Comparison of the best classification and object-detection algorithms.

Acc. Prec. Sens. Spec.
FT VGG-16 0.992 0.979 0.972 0.996
Faster R-CNN 0.925 0.698 0.979 0.914

Considering what was previously discussed, it is possible to infer that, in general, the classifi-

cation algorithms were able to achieve better results comparing to the object detection ones. Some

possible explanations were found that may be responsible for the lower object-detection models’

performance. For instance, the fact that these models require a rectangular bounding-box, and,

in some situations, depending on the ruler’s position, it may occupy most of the image, leading

to the introduction of noise in the training phase and to an increased difficulty of the problem.

An example of this issue is represented in Figure 5.8, where the corresponding bounding-box is

represented in blue and includes practically the whole image.

Figure 5.8: Example of a bounding-box (blue) that occupies almost the entire image.

Besides, the object detection algorithms were pre-trained on the COCO dataset [230], which

contains more than 200 thousand images belonging to 80 different object categories. However,

although these categories comprise common objects, none of them contains rulers. Furthermore,

in this dataset the number of small objects is higher than the number of large objects. Around 41%

of the objects as an area smaller than 32x32 pixels and only 24% corresponds to objects larger than

96x96 pixels in terms of the associated segmentation mask [230]. Taking this into account, since

the dimensions of the rulers contained in dermatological images are mostly higher than 96x96

pixels, the fact that the models have been pre-trained on this dataset may have compromised the

results.

Then, it is also important to mention that since the main goal was not to precisely localize

rulers in the image, but only to infer if they were present or not, the algorithms were not completely

optimized, having been used almost all of the original settings of the detectors. Especially in the

case of the RetinaNet detector, the employed configuration may not have been the most suitable

one.
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Moreover, it is noteworthy that all of the considered object-detection models were trained

using only one GPU provided by Fraunhofer. However, the original implementations of RetinaNet

and Faster R-CNN report the usage of 8 GPUs for the training process [137][144]. Thus, the

achieved object-detection results may indicate that further training was required to obtain results

more similar to the ones reported in the literature.

As a conclusion, considering all of the explored approaches and the obtained results, the em-

ployed classification models proved to be effective in predicting if an image contain a ruler or not.

Even a simple CNN is able to tackle this binary problem successfully, whereby it is possible to

infer that this is a relatively simple classification task. Therefore, in order to predict if an image

contain a ruler or not, the classification algorithms are preferable over the object-detection models,

specially when transfer learning is considered.

5.2 Image Modality Classification

5.2.1 Base models selection

As introduced in Section 4.3.2 of the previous chapter, after preparing data, two different archi-

tectures were explored in order to define the base models corresponding to the training of the

first task. Therefore, only the images belonging to task A were considered in these implementa-

tions. The models were trained three times using the same configurations and only the train that

provided the best results for each architecture was considered. The results corresponding to the

selected models can be found in Table 5.8, whereas the results concerning the other two runs of

the VGG and of the MobileNetV2 models can be found in the Appendix C.1.

Table 5.8: Results of the selected base models tested on task A.

Model Modality Accuracy Precision Recall F1-score

VGG-16

Anatomic

0.9084

0.9032 0.7313 0.8082
Dermoscopic 0.9955 1.0000 0.9977

Full-body 0.6486 0.8000 0.7164
Macroscopic 0.8636 0.9694 0.9135

Clinical reports 1.0000 1.0000 1.0000
Macro average — 0.8822 0.9001 0.8872

Weighted average — 0.9132 0.9084 0.9070

MobileNetV2

Anatomic

0.8837

0.8071 0.7649 0.7854
Dermoscopic 0.9865 0.9955 0.9910

Full-body 0.6232 0.7167 0.6667
Macroscopic 0.8658 0.8776 0.8716

Clinical reports 1.0000 0.9942 0.9971
Macro average — 0.8565 0.8698 0.8624

Weighted average — 0.8850 0.8837 0.8840

As it is possible to verify by the results presented in this table, both in the case of the VGG-16

model and of the MobileNetV2 model, the modality that most negatively influenced the results was
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the full-body one, taking into account the F1-score. This may be due to the smaller variability of

images belonging to this category since the full-body modality was the less representative class of

the original dataset where only 180 examples were available for training (Table 4.6). Nevertheless,

although an oversampling has been made in order to balance the classes during the training phase,

this technique is not as efficient as considering different images, due to the fact that a small feature

diversity is introduced.

In addition, comparing the results achieved by the two models, the VGG-16 model surpassed

the performance of the MobileNetV2 in what concerns the four computed metrics. These out-

comes may result from its higher complexity, being able to better identify features intrinsic to

each modality.

In order to reinforce these results and provide their visual analysis, the confusion matrices

corresponding to the two models were plotted and can be found in Figure 5.9.

(a) VGG model. (b) MobileNetV2 model.

Figure 5.9: Confusion matrices of the two selected models.

Through these matrices, it may be verified that some anatomic, full-body, and macroscopic

images were confused by the two models; some examples of these misclassifications are presented

in Figure 5.10. It is worth noting that in some cases, the images belonging to these classes are very

similar, being difficult to effectively differentiate them. Hence, as the labeling of the images was

manually made by various people, it is possible that different labels have been assigned to identical

images, as shown in Figure 5.11, which may have influenced the results. However, in general, both

the VGG-16 and the MobileNetV2 were able to correctly predict the modalities of the different

dermatological images, which is represented by the darker shades on the diagonal of the matrices.

(a) Anatomic image
classified as full-body.

(b) Anatomic image
classified as macro.

(c) Full-body image
classified as anatomic.

(d) Macroscopic image
classified as anatomic.

Figure 5.10: Images misclassified by the two selected models.
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(a) Anatomic (left) | Full-body (right). (b) Anatomic (left) | Macroscopic (right).

Figure 5.11: Examples of similar images belonging to different modalities.

Moreover, to ensure that the models were achieving the desired behaviour, also the learning

curves corresponding to the accuracy and the loss throughout the training and validation phases

were plotted and are represented in Figure 5.12. In both cases, it is possible to verify the conver-

gence of the models besides an increase on the accuracy and decrease on the loss as more epochs

are concluded.

(a) VGG-16 model.

(b) MobileNetV2 model.

Figure 5.12: Learning curves of the two selected models.

These models were also evaluated on the testing images belonging to the incremental task

(task B) and on the global test set containing the testing images corresponding to both tasks (tasks

A and B), to allow a later comparison with the results obtained after the implementation of the
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incremental learning strategies. The corresponding accuracy results may be found in Table 5.9.

Regarding the considered terminology, as explained in Section 4.3.3.3, RA,B corresponds to the

test accuracy of task B after being trained on task A, for instance.

The confusion matrices concerning task B were also plotted and are represented in Figure

5.13. It is seen that, although the performance on this task has been lower when compared to

task A, in general, both the VGG-16 and the MobileNetV2 base models were already able to

predict the modalities of the images assigned to the incremental set, although they have not been

trained on this task. Furthermore, the obtained accuracy with respect to this task (task B) was

similar for both models. However, in the case of the VGG model it is possible to notice that more

anatomic images were confused, whereas in the case of the MobileNetV2, the modality where

most misclassifications were identified was the macroscopic one.

Table 5.9: Test accuracy of tasks A and B considering the selected based models. R stands for
accuracy.

RA,A RA,B RA,(A+B)
VGG-16 0.9084 0.8652 0.9019
MobileNetV2 0.8837 0.8596 0.8801

(a) VGG model. (b) MobileNetV2 model.

Figure 5.13: Confusion matrices of the two selected models on task B.

5.2.2 Incremental Learning

After training the first task considering the selected base models, these were used as the starting

point for the training of the incremental task. As already introduced, different incremental learn-

ing strategies, considering various parameters, were explored and ran for 10 iterations in order to

achieve more reliable results. Also, to evaluate if training longer had an influence on the perfor-

mance of the models when continuously trained in terms of forgetting, the incremental task was

trained for 10, 20, and 30 epochs. As mentioned in Section 4.3.3.3, the evaluation of the employed

incremental learning strategies essentially relied on their accuracy and efficiency, despite other

metrics being also addressed. In what concerns the accuracy, in Tables 5.10 and 5.11, it is possible

to find the achieved results, for the VGG-16 and MobileNetV2 models, respectively, and for the
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different numbers of epochs. The presented results are namely in terms of the global test accuracy

(considering the test images belonging to both task A and B, represented by RB,(A+B)) after the

two tasks have been trained sequentially, and of the catastrophic forgetting (given by the BWT

metric). In these tables, the best performance of each strategy depending on the number of epochs

is highlighted in bold. These results may further be visually analysed through Figures C.1 and C.2

contained in the Appendix.

The analysis of these tables demonstrate that, despite not being possible to completely avoid

the catastrophic forgetting (as the BWT value remains negative), all of the explored incremental

learning strategies allowed to reduce it. This may be verified by the increase on the BWT values

when compared to the ones obtained with the Naïve strategy which works as a baseline strategy.

Moreover and as a consequence, when the incremental strategies were employed, the global test

accuracy also improved when compared to when the models were simply fine-tuned (Naïve strat-

egy), which results from the fact that they allowed to preserve more information concerning the

first task, as will be further discussed.

Table 5.10: VGG-16 test results for 10, 20, and 30 epochs considering different incremental learn-
ing strategies. Results averaged over 10 iterations (± SD).

10 epochs 20 epochs 30 epochs
RB,(A+B) BWT RB,(A+B) BWT RB,(A+B) BWT

Naïve 0.8459±0.0025 -0.0767±0.0029 0.8453±0.0023 -0.0773±0.0025 0.8438±0.0032 -0.0793±0.0039
EWC100 0.8500±0.0025 -0.0718±0.0029 0.8480±0.0026 -0.0742±0.0030 0.8454±0.0031 -0.0772±0.0036
EWC50 0.8517±0.0039 -0.0699±0.0046 0.8493±0.0021 -0.0727±0.0025 0.8464±0.0041 -0.0761±0.0049
EWC1 0.8500±0.0028 -0.0718±0.0033 0.8474±00023 -0.0750±0.0027 0.8448±0.0027 -0.078±0.0033
EWC0.5 0.8500±0.0032 -0.0719±0.0038 0.8480±0.0029 -0.0741±0.0036 0.8453±0.0036 -0.0775±0.0042
AGEM50 0.8483±0.0030 -0.0738±0.0035 0.8495±0.0036 -0.0724±0.0042 0.8467±0.0034 -0.0758±0.0040
AGEM100 0.8502±0.0030 -0.0716±0.0035 0.8488±0.0030 -0.0733±0.0034 0.8476±0.0022 -0.0747±0.0025
AGEM150 0.8522±0.0030 -0.0693±0.0035 0.8489±0.0024 -0.0732±0.0029 0.8481±0.0015 -0.0741±0.0018
Replay100 0.8576±0.0046 -0.0629±0.0055 0.8597±0.0044 -0.0606±0.0050 0.8602±0.0056 -0.0600±0.0071
Replay250 0.8653±0.0036 -0.0534±0.0043 0.8695±0.0043 -0.0482±0.0050 0.8654±0.0043 -0.0537±0.0053
Replay500 0.8740±0.0055 -0.0427±0.0067 0.8786±0.0045 -0.0372±0.0056 0.8750±0.0051 -0.0419±0.0065

Table 5.11: MobileNetV2 test results for 10, 20, and 30 epochs considering different incremental
learning strategies. Results averaged over 10 iterations (± SD).

10 epochs 20 epochs 30 epochs
RB,(A+B) BWT RB,(A+B) BWT RB,(A+B) BWT

Naïve 0.8313±0.0049 -0.0688±0.0047 0.8190±0.0067 -0.0890±0.0078 0.8073±0.0039 -0.1037±0.0040
EWC100 0.8337±0.0072 -0.0659±0.0065 0.8224±0.0086 -0.0830±0.0097 0.8167±0.0096 -0.0952±0.0098
EWC50 0.8367±0.0065 -0.0628±0.0065 0.8241±0.0082 -0.0825±0.0082 0.8117±0.0113 -0.0972±0.012
EWC1 0.8348±0.0059 -0.0652±0.0057 0.8208±0.0059 -0.0862±0.0075 0.8107±0.0066 -0.1000±0.0071
EWC0.5 0.8339±0.0060 -0.0655±0.0055 0.8205±0.0074 -0.0862±0.0075 0.8158±0.0070 -0.0941±0.008
AGEM50 0.8432±0.0063 -0.0567±0.0065 0.8301±0.0078 -0.0755±0.0085 0.8205±0.0114 0.0889±0.0127
AGEM100 0.8436±0.0055 -0.0563±0.0064 0.8332±0.0059 -0.0721±0.0073 0.8265±0.0078 -0.0818±0.0095
AGEM150 0.8453±0.0034 -0.0551±0.0044 0.8358±0.0063 -0.0692±0.0078 0.8256±0.0055 -0.0828±0.0067
Replay100 0.8516±0.0059 -0.0448±0.0070 0.8485±0.0082 -0.0510±0.0095 0.8382±0.0124 -0.0643±0.0149
Replay250 0.8588±0.0051 -0.0368±0.0040 0.8534±0.0084 -0.0451±0.0090 0.8520±0.0063 -0.0481±0.0073
Replay500 0.8604±0.0065 -0.0344±0.0070 0.8559±0.0061 -0.0432±0.0073 0.8539±0.0055 -0.0456±0.0061

Regarding the influence of the number of epochs used to train the incremental task and in what

concerns the VGG-16 model (Table 5.10), in the case of the Naïve, the EWC, and the AGEM strat-

egy considering a memory size of 100 and 150, it is verified that when a higher number of epochs
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was considered, the global performance of the model decreased and the catastrophic forgetting

increased. Therefore, it is preferable to consider a lower number of epochs when implementing

these strategies. On the other hand, in the case of the AGEM strategy with a memory buffer of

50 examples and of the Experience Replay strategy considering 250 and 500 images from the first

task, it was advantageous to use an intermediate number of epochs, since when the model was

trained for 20 epochs, it was possible to further reduce the forgetting, compared with the results

achieved for 10 and for 30 epochs. Finally, only the Experience Replay strategy with a memory

size of 100 demonstrated an improvement on the global performance when the model was trained

for a larger number of epochs. In this case, even though the number of images from task A was

lower, the models trained in this strategy resisted better to the catastrophic forgetting of task A for

a higher number of epochs. Despite that, the longer training also resulted in a higher adaptation

to the incremental images, which led to an improved global performance in the 30 epochs. Con-

cerning the MobileNetV2 model (Table 5.11), on the other hand, it is verified that all strategies

benefited from being trained for a lower number of epochs. Although the performance on task B

has improved as more epochs were considered, due to the lower amount of images assigned to the

incremental task, this improvement was not sufficient to compensate the increase observed on the

catastrophic forgetting, leading to the decrease of the global performance of the model.

Bearing this in mind, the best performance concerning the number of epochs (the highlighted

ones) was chosen for each model and strategy. Thus, in Figures 5.14 and 5.15, a comparison of the

global test accuracy and the forgetting (assessed through the BWT metric), respectively, achieved

by the two models and using the various incremental learning strategies may be found.

Figure 5.14: Test accuracy of both models after the incremental training.The dashed lines represent
the global test accuracy after training the first task. Results averaged over 10 iterations.

Since the same base models were considered as a starting point for the incremental task, the

global test accuracy after the models have been trained on the first task is the same for all strate-

gies, and corresponds to 0.9019 and 0.8801 for the VGG-16 model and for the MobileNetV2

model, respectively (Table 5.9). Hence, in the first plot (Figure 5.14), it is possible to find two

reference lines that are associated to these accuracy values. This plot also show that, after being

trained incrementally, the VGG-16 model was able to achieve a higher accuracy compared to the
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MobileNetV2 model. However, since the performance of the base model was already higher, the

values corresponding to the difference between the accuracy achieved after the first training (rep-

resented by the dashed lines in the plot) and the accuracy achieved after the incremental one for

the various strategies were considered in order to compare the performance of both models. The

resulting effective values are presented in Table C.3 of the Appendix C. Taking them into account,

it is possible to infer that the MobileNetV2 model outperformed the VGG-16 model since the

difference between the initial accuracy and the accuracy after the training of the incremental task

was lower than the difference obtained for the VGG-16 model in all of the considered strategies.

Moreover and in line with this conclusion, by observing Figure 5.15, it is also possible to verify

that the MobileNetV2 model surpassed the VGG-16 model in what concerns the forgetting, being

able to preserve more information related to the first task. This is demonstrated by the higher BWT

values obtained for all of the implemented incremental learning strategies when the MobileNetV2

model was employed, which means that the catastrophic forgetting verified with this model was

lower.

Figure 5.15: BWT of both models after the incremental training. Results averaged over 10 itera-
tions.

Furthermore, other conclusions, namely concerning the comparison of the different incremen-

tal strategies, may be easily taken from these plots and from Tables 5.10 and 5.11. It is possible to

infer that for both models, the rehearsal strategies (AGEM and Experience Replay) demonstrated

to outperform the employed regularization strategy (EWC), for almost all of the considered λ val-

ues and memory sizes. This may result from the fact that these strategies imply the introduction

of examples belonging to the first task during the incremental training, which allow them to better

retain some of the previously acquired knowledge. Moreover, in the case of the EWC regulariza-

tion strategy, the λ value that provided the best results in terms of global accuracy and forgetting

corresponded to 50. On the other hand, in the case of the rehearsal strategies, it is verified that, as

a higher number of patterns from the first task was considered (i.e. as the memory size increased),

the performance of the models improved. Therefore, for each incremental learning strategy, a

more detailed analysis was addressed taking into account the λ value (in the case of the EWC)

and the memory sizes (in the case of the rehearsal strategies) that led to better outcomes. In Table

5.12, the accuracy results corresponding to the implementation of the incremental strategies using
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these parameters among the different tasks may be found. Nevertheless, in Table C.4, it is possible

to consult these results with respect to all of the other considered strategies. These results are in

line with what was previously mentioned: on the one hand, for all strategies, a decrease on the

performance of the first task was verified after the incremental training has been performed, which

results from the catastrophic forgetting; on the other hand, it was possible to improve the results

of task B (RB,B), when compared with the ones obtained right after the training of task A (RA,B),

since the incremental training allowed the models to fit to the incremental images.

Table 5.12: Test results in terms of accuracy concerning the best approaches for the two models.
Results averaged over 10 iterations (± SD).

Strategy RA,A RA,B RB,A RB,B

VGG-16

Naïve

0.9084 0.8652

0.8316±0.0029 0.9270±0.0000
EWC50 0.8385±0.0046 0.9270±0.0000

AGEM150 0.8391±0.0035 0.9270±0.0000
Replay500 0.8711±0.0056 0.9213±0.0038

MobileNetV2

Naïve

0.8837 0.8596

0.8150±0.0047 0.9242±0.0100
EWC50 0.8209±0.0065 0.9270±0.0102

AGEM150 0.8287±0.0044 0.9404±0.0054
Replay500 0.8494±0.0079 0.9236±0.0100

In relation to the FWT, this metric was also assessed for the two models. Since only two tasks

were explored and the first training was the same for all strategies, the variables involved in the

computation of this metric simply correspond to the b vector, and the RA,B, which do not change

among the various strategies. Hence, in the case of the VGG-16 model, a FTW value of 0.7303

was achieved, while in the case of the MobileNetV2 this value corresponded to 0.6910, which

means that after being trained only on task A, the VGG-16 model could better perform on task B.

Although the accuracy is a standard metric used to evaluate incremental learning approaches,

in order to assess the performance of the models in what concerns the predicted classes after they

have been trained incrementally, other metrics were also computed. Once again, the evaluation

of each strategy was made with respect to the parameter that provided the best results (λ value in

the case of the EWC and memory sizes in the case of the rehearsal strategies). Nevertheless, in

order to avoid biased results in terms of the predicted classes, an analysis concerning the results

accomplished by the other parameters was also made, although the values are not presented in

this document. Also, since each incremental learning strategy was ran for 10 iterations, the pre-

sented results concern a randomly selected iteration of each strategy for both models. The results

concerning task A may be found in Tables C.5 and C.6 of the Appendix C. Moreover, in order to

allow a visual analysis of these results, the confusion matrices corresponding to the two tasks were

also plotted and are shown in Figures 5.16 and 5.17 for the VGG-16 model and the MobileNetV2,

respectively.
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(a) Naïve strategy.

(b) EWC50 strategy.

(c) AGEM150 strategy.

(d) Replay500 strategy.

Figure 5.16: Confusion matrices achieved with the VGG-16 model for both tasks after the incre-
mental training. The images on the left correspond to the test results of task A, and the images on
the right to the results of task B.
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(a) Naïve strategy.

(b) EWC50 strategy.

(c) AGEM150 strategy.

(d) Replay500 strategy.

Figure 5.17: Confusion matrices achieved with the MobileNetV2 model for both tasks after the
incremental training. The images on the left correspond to the test results of task A, and the images
on the right to the results of task B.
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By inspecting the matrices achieved by the various strategies, it is possible to verify an identi-

cal behaviour among them and for the two considered models. In the case of task A (left images

of Figures 5.16 and 5.17), confronting these plots with the ones achieved after the first training

(Figure 5.9), it may be observed that the anatomic modality was the one that underwent the most

changes when the incremental training was performed, being these images essentially misclassi-

fied as full-body or macroscopic images. This outcome is also demonstrated by comparing Table

5.8 with Tables C.5 and C.6 contained in the Appendix, where a steeper decrease on the F1-score

metric is verified for the anatomic modality after the incremental task has been trained. This may

indicate that some features of the anatomic images associated to task A are similar to the ones

verified in the full-body and macroscopic images contained in the set of images assigned to the

incremental task, meaning that part of the previously acquired knowledge was forgotten. Some ex-

amples of images from task A that were correctly classified after the first training but misclassified

after the incremental one can be found in Figures 5.18 and 5.19, corresponding to the VGG-16

and to the MobileNetV2 model, respectively. By looking at these images, it is then possible to

infer that they present a similar appearance comparing to the images that were considered in the

incremental task (Section 4.3.1), despite belonging to different modalities. This may explain the

alteration verified in their classification, as for instance, the anatomic modality of task B comprised

images of hand and feet, whereas in the first task these images were assigned to the macroscopic

class, as is the case of Figures 5.18c and 5.19c.

(a) Anatomic image
classified as full-body.

(b) Anatomic image
classified as macro.

(c) Macroscopic image
classified as anatomic.

Figure 5.18: Examples of images from task A correctly classified after the first training but mis-
classified after the incremental training by the VGG-16 model.

(a) Anatomic image
classified as full-body.

(b) Anatomic image
classified as macro.

(c) Macroscopic image
classified as anatomic.

Figure 5.19: Examples of images from task A correctly classified after the first training but mis-
classified after the incremental training by the MobileNetV2 model.
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Regarding task B, on the other hand, an improvement on its performance was verified after

the models have been trained on this task. In Figures 5.20 and 5.21, some examples that demon-

strate this situation are presented, corresponding to images that were previously misclassified by

the models trained on the first task only but that the incremental training allowed to correctly

classify. However, despite the enhanced outcomes, the shuffle between the anatomical, full-body

and macroscopic modalities remained, which may even result from some aspects previously intro-

duced, as a labeling issue, for instance.

(a) Anatomic image pre-
viously classified as full-
body.

(b) Anatomic image
previously classified as
macro.

(c) Full-body image
previously classified as
anatomic.

(d) Macroscopic image
previously classified as
anatomic.

Figure 5.20: Examples of images from task B correctly classified after the incremental training by
the VGG-16 model.

(a) Anatomic image pre-
viously classified as full-
body.

(b) Anatomic image
previously classified as
macro.

(c) Full-body image
previously classified as
anatomic.

(d) Macroscopic image
previously classified as
anatomic.

Figure 5.21: Examples of images from task B correctly classified after the incremental training by
the MobileNetV2 model.

Besides, as demonstrated by the corresponding matrices and by the results presented in Table

5.12, in the case of the VGG-16 model, the amount of wrongly classified images belonging to

task B was the same for almost all strategies. Therefore, an analysis of the wrong predictions

concerning this task was made in order to find out if the models were always failing on the same

images and if these images were the same among the different strategies, which was verified.

Hence, some examples of these misclassifications may be found in Figure 5.22.
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(a) Anatomic image
classified as full-body.

(b) Anatomic image
classified as macro.

(c) Full-body image
classified as anatomic.

(d) Macroscopic image
classified as anatomic.

Figure 5.22: Examples of images belonging to task B misclassified by the VGG-16 model after
the incremental training.

Furthermore, besides the Naïve strategy, the Cumulative strategy was also explored as a base-

line strategy. As previously introduced (Section 2.7.3.1), this strategy consists of a models’ retrain-

ing considering all examples from previous and new tasks. Hence, in the context of this problem,

the VGG-16 and the MobileNetV2 models were trained considering both images belonging to task

A and B together. The models were then tested on the images concerning the task A (RA), task

B (RB), and on the global test set (task A + B), and the accuracy results obtained through this

approach are presented in Table 5.13.

Table 5.13: Cumulative strategy results. Results averaged over 5 iterations (± SD).

RA RB R(A+B)
VGG-16 0.8802±0.0034 0.9224±0.0062 0.8865±0.0023
MobileNetV2 0.8617±0.0087 0.9371±0.0047 0.8742±0.0079

By comparing the results achieved with the Cumulative strategy and the ones corresponding

to the incremental learning strategies (Table 5.13 and 5.12, respectively), it may be verified that

the performance of task A was benefited when the models had access to all images (A+B) from

the beginning, instead of being trained incrementally. This is demonstrated by the higher RA value

reached with the Cumulative strategy, compared to the RB,A values obtained with the incremen-

tal learning approaches. A possible explanation for this relies on the difference observed on the

amount of images belonging to the two tasks, since as the first task contains more images, when

the models were trained with all images together, they were not as affected by the incremental

images as when the incremental training was done. On the other hand, regarding task B and the

VGG-16 model, it was verified that, when all images were available (Cumulative strategy, RB),

the performance of this task was penalized in relation to an incremental training (RB,B), except for

the the Experience Replay with a memory buffer of 500 examples from the first task that achieved

lower results on the incremental scenario. This exception may result from the fact that when more

images from task A were considered in the incremental training, due to their higher representative-

ness, the incremental model could not fit so well to task B. Thus, the same aforementioned reason

may be responsible for the lower performance on the cumulative scenario, since due to the fewer

amount of images belonging to the incremental task, when the model was trained with all images
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at the same time, it was not able to adjust so properly to it. Nevertheless, in what concerns the

MobileNetV2 model, in general, the task B performance was better when the model was trained

with all images together. This turns out to be in accordance with what was previously verified,

as the forgetting of the MobileNetV2 was lower, which means that when trained incrementally,

the model did not fit as well to the images belonging to task B, whereas when all images were

trained together it was adjusted to the global domain. Moreover, comparing the overall outcomes

of the models when using the incremental learning strategies (RB,(A+B) in Tables 5.10 and 5.11)

and when trained in a cumulative scenario (R(A+B)), it is possible to see that when the models

are trained with images regarding the two tasks from the beginning, their performance improves.

However, this scenario implies that all images are available at the training time, which may be

unfeasible in terms of the required memory to store all examples, or even due to the computational

cost involved to train them. Bearing this in mind, training models incrementally may be preferable

over retraining them as new images are available.

As previously mentioned, the incremental learning strategies were also evaluated concerning

their efficiency. This assessment was made both in terms of the time taken by each epoch at the

learning phase, and also of the RAM memory in MegaBytes (MB) required to train the models.

Although this evaluation has been made for all strategies, only the results with respect to the

parameters that led to a better performance of each strategy are presented in Table 5.14.

Table 5.14: Training results in terms of efficiency concerning the best approaches for the two
models. Results averaged over 10 iterations (± SD).

Strategy Time/epoch(s) RAM (MB)

VGG-16

Naïve 59.38±2.66 3805.22±1360.07
EWC50 60.98±0.64 4017.37±149.99

AGEM150 166.01±3.44 6127.38±284.36
Replay500 123.54±3.46 4441.09±105.13

MobileNetV2

Naïve 53.04±2.46 4437.26±226.91
EWC50 54.88±2.23 4428.37±7.97

AGEM150 83.91±2.97 6457.83±3.98
Replay500 109.56±3.35 4554.59±144.08

These values demonstrate that, in terms of time, each epoch of the rehearsal strategies took

longer to be trained. This results from the higher amount of considered examples, as some in-

formation concerning the first task is trained together with the incremental one. Therefore, since

with respect to the VGG-16 model and in the case of the Experience Replay strategy that uses

500 examples from the first task 20 epochs were considered in the learning process, among the

strategies presented in the table, this was the strategy that took the longest to be trained.

Besides that, regarding the required RAM memory, the AGEM strategy involved a higher

computational cost when compared to all other strategies, being even unfeasible to be trained

when a memory size higher than 150 was applied. This increase on the necessary memory may be

due to the need for this strategy to estimate the averaged reference gradients using the examples

contained in the memory, which implies that more information is stored at the training time.
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In summary, bearing in mind the results presented in this section, it was demonstrated that:

• For both models, with the exception of the AGEM50 strategy and the Experience Re-
play in the case of the VGG-16 model, it was advantageous to train for a lower number
of epochs. This happens because when the models were trained longer, although the perfor-

mance on the incremental task had improved, the observed catastrophic forgetting prevailed,

leading to a decrease on the global performance of the models.

• Comparing the performance of both models, the simpler model, i.e. the MobileNetV2,
was able to preserve more the previously acquired knowledge due to its lower adap-
tation to the incremental task. Thus, it may be preferable over the VGG-16 model that,

although have achieved a better global performance, experienced higher catastrophic forget-

ting.

• When the models were trained with all images from the beginning (cumulative strategy), the

performance of task A improved, compared to when the models were incrementally trained.

Also, concerning the task B, in the case of the VGG-16 model, the incremental training

allowed it to better fit to the images contained in this task, enhancing its results. On the

other hand, in the case of the MobileNetV2 model, the results of task B were better when all

images were trained together, which may result from its lower capacity to adapt to the new

task.

• The rehearsal strategies (AGEM and Experience Replay) were able to achieve a better
performance in terms of accuracy and forgetting when compared to the employed reg-
ularization strategy, being the Experience Replay strategy the one that obtained the best

results. It was also verified that as the memory size increased, the outcomes improved.

• Despite the performance of the rehearsal strategies being better comparing to the EWC,

these strategies require that some previous images are maintained in memory to be later

used in combination with the incremental set. Thus, if it is not possible to use these images
at all, taking into account that the regularization strategy was also able to achieve
promising results (although lower), this strategy may be preferable over the AGEM or
Experience Replay.

• For both models, the rehearsal strategies demonstrated to take longer to be trained
when compared to the regularization strategy. Thereby, if the training time is a relevant

conditioning, the EWC strategy may be advantageous.

• With respect to the efficiency of the different strategies, the AGEM strategy demonstrated
to be the most computationally demanding one, requiring more RAM memory to be
trained.

• Comparing the two employed rehearsal strategies, although especially in the case of the

VGG-16 model the Experience Replay has taken longer to be trained due to the higher num-

ber of epochs, in what concerns the efficiency in terms of the required RAM memory
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and taking into account the obtained accuracy and forgetting results, the Experience
Replay strategy may be preferable when compared to the AGEM strategy.



Chapter 6

Conclusion and Future Work

6.1 Conclusions

In the last years, the incidence of skin cancer has been increasing more and more, compromising

the capacity of the medical services to respond to all patients. For this reason and thanks to

the advances in medical imaging equipments, teledermatology has been an asset, ensuring an

improved quality of medical care for all population. Due to the visual appearance of skin lesions,

these consultations are characterized by the acquisition of images representing the patient’s lesion

that are stored and forwarded to a reference dermatologist, enabling the communication between

the primary care units and the dermatology services. In order to facilitate the appraisal, in some

cases, these images comprise a ruler next to the lesion that may be useful to later infer its size.

Nevertheless, every year, the medical records undergo an increase of around 20% to 40%,

which may pose a problem for their organization since the categorization is mainly done manu-

ally, which is time-consuming, and prone to errors. In what concerns dermatology and based on

the established guidelines for teledermatological consultations, it is possible to distinguish derma-

tological images across five different categories: anatomic, dermoscopic, full-body, macroscopic,

and also clinical reports. Thus, automatic systems able to differentiate the acquired images ac-

cording to these modalities and attributes (such as the presence of a ruler) may be essential to

the organization of the records and consequent optimization of the teledermatological processes,

as they take into account their visual characteristics. As seen in Chapter 3, different approaches

have been employed in order to facilitate the access to medical images, namely through the iden-

tification of the corresponding modality. However, these systems are not specifically applied to

dermatological image modalities, but to other modalities, such as CT, MRI, X-ray, and others, and

for this reason, more efforts should be done in this sense.

Also, as medical data is always evolving, these systems need to be updated as new images

are gathered without resorting to all of the previously seen images, as they may not be available

anymore due to memory issues or the computational cost involved may be unfeasible. For these

reasons, the interest for algorithms able to be incrementally trained has been growing in the last

93
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years, allowing models to adapt to new conditions. However, training artificial intelligence sys-

tems continuously is usually prone to catastrophic forgetting which is characterized by a decrease

in the performance related to the previously acquired knowledge as new data is trained. Therefore,

one of the major objectives of incremental learning approaches is to face this problem, avoiding

that the information already learned is lost after learning the new one.

Taking this into account, this dissertation comprised two main goals: the first one intended to

compare the performance of different classification and object-detection algorithms in order to in-

fer which was the best approach to predict whether a ruler was contained in several dermatological

images; the other one consisted of the development of models able to accurately classify derma-

tological images according to their modality, which should employ different incremental learning

strategies in order to allow their continuous training.

Concerning the first part of the work and with respect to the classification algorithms, three

different models were explored: a simple CNN trained from scratch, a VGG-16 network pre-

trained on the ImageNet database and fine-tuned to this binary problem, and a pre-trained VGG-

16 network pre-trained on the same database and used as a feature extractor. For each model, the

influence of the loss function was evaluated, having been employed a weighted cross-entropy loss

function with different weights besides the standard binary cross-entropy loss. It was verified that

the best configuration corresponded to the weighted cross-entropy employing a weight of 1 and of

2 to penalize the false negatives and the false positives, respectively. Moreover, data augmentation

was also applied. In this case, it was demonstrated that only in the case of the fine-tuned VGG-16,

there was an improvement on the algorithm’s performance when more data was considered during

the training process, which may result from the higher amount of parameters to be tuned in this

approach. Due to the visual differences encountered in the rulers belonging to the dermoscopic

class when compared to the ones contained in the other modalities, it was evaluated if this class

could be compromising the results. However, this was not verified, as the performance of the

three models decreased when this modality was not taken into account during the training process.

Hence, considering the best configuration for each model, the simple CNN was able to achieve

an accuracy of 0.917; in what concerns the fine-tuned VGG, it was possible to obtain an accuracy

of 0.993, and finally, in the case of the VGG-16 used as feature extractor, an accuracy of 0.973

was reached, proving the fine-tuned VGG to be the most appropriate model to solve this binary

problem.

Regarding the object-detection algorithms, on the other hand, three different detectors were

considered: EfficientDet, RetinaNet, and Faster R-CNN. With the exception of the batch size and

the data augmentation techniques, the considered configurations were similar to the ones used in

the original implementations. In the case of EfficientDet-D0, the EfficientNet-B0 was used as

backbone network; in RetinaNet two different backbone networks were explored: the ResNet-50

and the ResNet-101; and in Faster R-CNN, the ResNet-50 was also employed as the backbone

network. Comparing the performance of the three detectors, the Faster R-CNN outperformed the

other ones, achieving a mAP50 of 0.977, followed by the EfficientDet-D0 that achieved a mAP50

of 0.940. On the other hand, the results achieved with the RetinaNet fell short of expectations,
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achieving a mAP50 of only 0.144 when the ResNet-50 was used and of 0.361 when the ResNet-

101 was applied. Besides, in order to allow a comparison with the performance of the classification

algorithms, the detectors were also evaluated considering other metrics, namely the accuracy, pre-

cision, sensitivity and specificity. Once again, Faster R-CNN provided the best results, obtaining

an accuracy of 0.925.

Comparing the achieved results using both approaches (classification and object-detection), it

is possible to infer that the classification algorithms surpassed the object-detection ones in the task

of predicting if a ruler was contained in different dermatological images.

In what concerns the second part of the work, two models that could accurately predict the

images’ modalities were firstly considered: a VGG-16 and a MobileNetV2 networks pre-trained

on the ImageNet database. Different regularization and rehearsal strategies were explored. Con-

cerning the regularization strategies, the EWC strategy was implemented, whereas in the case of

the rehearsal strategies, both the AGEM and the Experience Replay were addressed. These strate-

gies were explored considering different parameters, namely the λ value in the case of the EWC

strategy and the memory size in the case of the rehearsal strategies. Despite not being possible to

completely avoid the catastrophic forgetting, comparing the results with the ones achieved with the

Naïve strategy that works as a baseline strategy, it was demonstrated that all of the explored strate-

gies were able to reduce it. Also, it was shown that, with respect to the rehearsal strategies, as the

memory size increased, it was possible to further reduce the forgetting. Moreover, with the excep-

tion of the AGEM strategy using a memory buffer of 50 and of the Experience Replay strategy for

the VGG-16 model, it was verified for all other strategies that a longer training of the incremental

task led to a decrease on the models’ outcomes, increasing the forgetting of the knowledge pre-

viously acquired on the first task. Furthermore, comparing the performance of the two models in

terms of the ability to be incrementally trained, it was verified that the MobileNetV2 outperformed

the VGG-16 model, being able to preserve more information related to the first task, as the for-

getting was lower in all of the considered strategies. Comparing the outcomes of the incremental

strategies to the Cumulative strategy (the other considered baseline strategy), it was verified that

the performance of the first task was better when both models were trained with all images. On the

other hand, in the case of the task B, whereas it has been possible to improve its performance with

the incremental training employing the VGG-16 model, when using the MobileNetV2 model, its

performance was better when the model had access to all images from the beginning, which may

be due to its lower adaptation to the new images when performing the second training. Concerning

the global performance of the models, an improvement was verified when trained with all images

at the same time. However, this approach implies that images belonging to all tasks are avail-

able at the training time, which may be unfeasible. In addition, the efficiency of the incremental

learning strategies was also assessed. Both rehearsal strategies demonstrated to take longer to be

trained, being the Experience Replay strategy in the case of the VGG-16 model the one that took

the longest, and, beyond that, the AGEM strategy was the one that required more RAM memory

during training.
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6.2 Future work

Regarding the first part of this work, promising results were achieved for both the classification

and object-detection algorithms implemented. Nevertheless, in relation to the employed object-

detectors, the results could be further improved, namely in the case of the RetinaNet detector,

whose outcomes were not in line with what was expected. Therefore, this detector could be further

optimized, namely with respect to the hyperparameters employed during the training phase.

Also, although this work had allowed to draw conclusions regarding the behaviour of the

incremental learning approaches, there is still a lot that can be done in order to reinforce and

improve the obtained results.

Firstly, as incremental learning strategies intend to enable the models to adapt to new condi-

tions, in the case of a new-instances scenario which was the one here involved (Section 2.7.2), they

expect that new information is included in the incremental tasks, in order to represent the concept-

drift. Therefore, since within the scope of this work, the images considered in the incremental task

were part of the same original dataset and this selection was visually made, it could be interesting

to use different images on this task, in order to verify if the main conclusions still hold.

Due to the limited amount of data, it was not possible to investigate the performance of the

incremental learning strategies in more than one incremental task. Hence, to corroborate the

achieved results, more data should be considered allowing to include another incremental task.

This task could take into account images with different skin tones (as the ones used in this work

were essentially from a fair-skinned population) or even the dataset could be divided among the

different tasks according to the images’ acquisition protocols, for instance.

Concerning the AGEM strategy, due to the involved computational cost, the higher memory

size that could be explored was of 150. However, to allow a better comparison of the rehearsal

strategies’ performance in terms of accuracy and forgetting, in a future work, the same memory

sizes should be considered for both strategies.



Appendix A

State-of-the-Art of Medical Imaging
Modality Classification

A.1 Hand-crafted based approaches

Table A.1: Hand-crafted approaches for modality classification

Reference Types of
features Features or methods Classification

strategy
Best

accuracy

Kalpathy et al.[83] Visual
Histogram and texture

features
Neural network

based
>95%

Song et al.[180] Visual
Edge Histogram, Tamura

and Gabor
SVM 60.01%

Khachane et al.[181] Visual
Mean, standard deviation

and image contrast
Fuzzy rule-based

system
84.00%

Arias et al.[182] Visual
BoVW-SIFT, BoC, CEDD,

FCTH, FCH
BNC-AODE 69.21%

Cao et al. [184] Visual
LPB, edge and color

histograms, SIFT, and others
Multiclass SVM 69.70%

Valavanis et al.[185] Visual PHoW and QBoC Multiclass SVM 84.01%

Markonis et al.[186] Visual BoVW-SIFT and GIFT k-NN 86.90%
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Table A.1: Hand-crafted approaches for modality classification (cont.)

Reference Types of
features Features or methods Classification

strategy
Best

accuracy

Dimitrovski et al.[82]
Visual

and
Textual

Visual: LBP, FCTH, CEDD,
and SIFT; Textual: BoW
with TF-IDF weighting

Multiclass SVM 87.10%

Kitanovski et al.[187]
Visual

and
Textual

Visual: BoVW-SIFT;
Textual: TF-IDF weighting

SVM with χ2

kernel
78.04%

Pelka et al.[189]
Visual

and
Textual

Visual: Tamura, Gabor,
FCH, BoK-SIFT, and others;

Textual: BoW

SVM and Random
Forest

67.60%

Wu et al.[190]
Visual

and
Textual

Visual: SIFT, LBP, Gabor,
and Tamura; Textual: VSM

with TF-IDF weighting
Multiclass SVM 95.15%

Gál et al.[191]
Visual

and
Textual

Visual: BoVW-SIFT, colour
histogram, mean of pixels
and others; Textual: Image

caption, meta-data

SVM 86.03%

Csurka et al.[81]
Visual

and
Textual

Visual: BoVW and Fisher
vector; Textual: BoW

Logistic regression
with Laplace Prior

94.40%
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A.2 Deep neural network based approaches

Table A.2: Deep neural networks based approaches for modality classification

Reference Database Base
Architecture

Classification
strategy

Best
Accuracy

Kumar et al. [192]
ImageCLEF

2016
AlexNet and
GoogleNet

Softmax and
multiclass SVM

82.48%
(top 1) and

96.59%
(top 5)

Kumar et al. [193]
ImageCLEF

2016
AlexNet Multiclass SVM 77.55%

Semedo et al. [194]
ImageCLEF

2016

VGG and
VGG with

PReLU
Softmax 65.31%

Yu et al. [19]
ImageCLEFmed

2013
CNNs from

scratch
Softmax 74.90%

Yu et al. [196]
ImageCLEF2015

and Image-
CLEF2016

VGGNet;
ResNet and
CNN from

scratch

Softmax
81.86%
(Image-

CLEF2016)

Hassan et al. [79] ImageCLEF2012 ResNet50 LDA 87.91%

Singh et al. [78]

Open-i
Biomedical

Image Search
Engine

VGG-16,
ResNet-50,

Inception-v3,
and 4 others

Logistic
regression

—

Khan and Yong[77] ImageCLEF2012
CNN from

scratch
Softmax 81.2%

Zhang et al. [197] ImageCLEF2016 ResNet50 Softmax 86.58%
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Appendix B

Ruler inference

B.1 Object-detection algorithms

Figure B.1: Visual results of the object-detection algorithms - Examples of EfficientDet’s True
Positives.

Figure B.2: Visual results of the object-detection algorithms - Examples of RetinaNet’s True Pos-
itives.

Figure B.3: Visual results of the object-detection algorithms - Examples of Faster R-CNN’s True
Positives.
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Appendix C

Image Modality Classification

C.1 Base model selection

Table C.1: Results of the non-selected VGG-16 base models.

Model Modality Accuracy Precision Recall F1-score

VGG-16

Anatomic

0.8985

0.9073 0.6940 0.7865

Dermoscopic 0.9778 1.0000 0.9888

Full-body 0.6098 0.8333 0.7042

Macroscopic 0.8576 0.9626 0.9071

Clinical reports 1.0000 1.0000 1.0000

Macro average — 0.8705 0.8980 0.8773

Weighted average — 0.9064 0.8985 0.8968

VGG-16

Anatomic

0.8985

0.9029 0.6940 0.7848

Dermoscopic 0.9821 1.0000 0.9910

Full-body 0.6282 0.8167 0.7101

Macroscopic 0.8503 0.9660 0.9045

Clinical reports 1.0000 1.0000 1.0000

Macro average — 0.8727 0.8953 0.8781

Weighted average — 0.9052 0.8985 0.8964
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Table C.2: Results of the non-selected MobileNetV2 base models.

Model Modality Accuracy Precision Recall F1-score

MobileNetV2

Anatomic

0.8818

0.8047 0.7687 0.7863

Dermoscopic 0.9733 0.9955 0.9843

Full-body 0.6515 0.7167 0.6825

Macroscopic 0.8615 0.8673 0.8644

Clinical reports 1.0000 0.9942 0.9971

Macro average — 0.8582 0.8685 0.8629

Weighted average — 0.8819 0.8818 0.8816

MobileNetV2

Anatomic

0.8768

0.8240 0.7164 0.7665

Dermoscopic 0.9777 0.9955 0.9865

Full-body 0.5465 0.7833 0.6438

Macroscopic 0.8667 0.8844 0.8754

Clinical reports 1.0000 0.9942 0.9971

Macro average — 0.8430 0.8748 0.8539

Weighted average — 0.8833 0.8768 0.8778
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C.2 Incremental Learning

(a) Global test accuracy.

(b) Backward Transfer.

Figure C.1: Test results of the VGG-16 model after the incremental learning in terms of the
considered number of epochs.

(a) Global test accuracy.

(b) Backward Transfer.

Figure C.2: Test results of the MobileNetV2 model after the incremental learning in terms of the
considered number of epochs.
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Table C.3: Effective values corresponding to the difference between the global test accuracy after
training on task A and after training on task B.

Naïve EWC100 EWC50 EWC1 EWC05 AGEM50 AGEM100 AGEM150 Replay100 Replay250 Replay500
VGG-16 0.0560 0.0519 0.0502 0.0519 0.0519 0.0524 0.0517 0.0497 0.0417 0.0335 0.0233

MobileNetV2 0.0488 0.0464 0.0434 0.0453 0.0462 0.0369 0.0365 0.0348 0.0285 0.0213 0.0197

Table C.4: Accuracy results over the various tasks for both models. Results averaged over 10
iterations (± SD).

Strategy RA,A RA,B RB,A RB,B

VGG-16

Naïve

0.9084 0.8652

0.8316±0.0029 0.9270±0.0000

EWC100 0.8366±0.0029 0.9270±0.0000

EWC50 0.8385±0.0046 0.9270±0.0000

EWC1 0.8365±0.0033 0.9270±0.0000

EWC05 0.8365±0.0038 0.9270±0.0000

AGEM50 0.8360±0.0043 0.9270±0.0000

AGEM100 0.8367±0.0035 0.9270±0.0000

AGEM150 0.8391±0.0035 0.9270±0.0000

Replay100 0.8484±0.0071 0.9275±0.0062

Replay250 0.8602±0.0049 0.9224±0.0024

Replay500 0.8711±0.0056 0.9213±0.0038

MobileNetV2

Naïve

0.8837 0.8596

0.8150±0.0047 0.9242±0.0100

EWC100 0.8178±0.0065 0.9213±0.0116

EWC50 0.8209±0.0065 0.9270±0.0103

EWC1 0.8185±0.0057 0.9275±0.0111

EWC05 0.8181±0.0055 0.9236±0.0110

AGEM50 0.8271±0.0066 0.9348±0.0093

AGEM100 0.8275±0.0064 0.9354±0.0055

AGEM150 0.8287±0.0044 0.9404±0.0054

Replay100 0.8389±0.0070 0.9242±0.0100

Replay250 0.8469±0.0049 0.9264±0.0120

Replay500 0.8494±0.0079 0.9236±0.0100
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Table C.5: Results achieved with the VGG-16 model for a random iteration after the incremental
learning tested on task A.

Strategy Modality Accuracy Precision Recall F1-score

Naïve

Anatomic

0.8355

0.9062 0.4328 0.5859
Dermoscopic 0.9778 1.0000 0.9888

Full-body 0.4173 0.8833 0.5668
Macroscopic 0.7901 0.9728 0.8720

Clinical reports 1.0000 1.0000 1.0000
Macro average — 0.8183 0.8578 0.8027

Weighted average — 0.8752 0.8355 0.8255

EWC50

Anatomic

0.8365

0.9084 0.4440 0.5965
Dermoscopic 0.9692 1.0000 0.9843

Full-body 0.4173 0.8833 0.5668
Macroscopic 0.7955 0.9660 0.8725

Clinical reports 1.0000 1.0000 1.0000
Macro average — 0.8181 0.8587 0.8040

Weighted average — 0.8755 0.8365 0.8275

AGEM150

Anatomic

0.8453

0.9124 0.4664 0.6173
Dermoscopic 0.9821 1.0000 0.9910

Full-body 0.4380 0.8833 0.5856
Macroscopic 0.7972 0.9762 0.8777

Clinical reports 1.0000 1.0000 1.0000
Macro average — 0.8260 0.8652 0.8143

Weighted average — 0.8810 0.8453 0.8371

Replay500

Anatomic

0.8759

0.8783 0.6194 0.7265
Dermoscopic 0.9955 1.0000 0.9977

Full-body 0.5258 0.8500 0.6497
Macroscopic 0.8328 0.9490 0.8871

Clinical reports 1.0000 1.0000 1.0000
Macro average — 0.8465 0.8837 0.8522

Weighted average — 0.8904 0.8759 0.8739
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Table C.6: Results achieved with the MobileNetV2 model for a random iteration after the incre-
mental learning tested on task A.

Strategy Modality Accuracy Precision Recall F1-score

Naïve

Anatomic

0.8217

0.8593 0.4328 0.5757
Dermoscopic 0.9692 1.0000 0.9843

Full-body 0.4240 0.8833 0.5730
Macroscopic 0.7669 0.9286 0.8400

Clinical reports 1.000 0.9942 0.9971
Macro average — 0.8039 0.8478 0.7940

Weighted average — 0.8546 0.8217 0.8125

EWC50

Anatomic

0.8227

0.8451 0.4478 0.5854
Dermoscopic 0.9692 1.0000 0.9843

Full-body 0.4060 0.9000 0.5596
Macroscopic 0.7889 0.9150 0.8472

Clinical reports 1.0000 0.9942 0.9971
Macro average — 0.8018 0.8514 0.7947

Weighted average — 0.8561 0.8227 0.8164

AGEM150

Anatomic

0.8266

0.8497 0.4851 0.6176
Dermoscopic 0.9524 1.0000 0.9756

Full-body 0.4000 0.9000 0.5538
Macroscopic 0.8117 0.8946 0.8511

Clinical reports 1.0000 0.9942 0.9971
Macro average — 0.8028 0.8548 0.7991

Weighted average — 0.8600 0.8266 0.8238

Replay500

Anatomic

0.8463

0.8352 0.5672 0.6756
Dermoscopic 0.9648 0.9955 0.9799

Full-body 0.4815 0.8667 0.6190
Macroscopic 0.8098 0.8980 0.8516

Clinical reports 1.0000 0.9942 0.9971
Macro average — 0.8182 0.8643 0.8246

Weighted average — 0.8631 0.8463 0.8440
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