
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Real-Time Ethernet Networks: a
practical approach to cycle time
influence in control applications

Simão Paulo Marques de Amorim

FOR JURY EVALUATION

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Paulo José Lopes Machado Portugal

October 26, 2021

© Simão Paulo Marques de Amorim, 2021

Abstract

We live in an increasingly digital and computerised world where there is a constant need for inter-
connection between everything and everyone. Ethernet networks quickly became the communica-
tion standard in office and home environments, but their adoption in the industrial environment has
been much slower. This reduced speed of adoption is mainly due to the non-deterministic commu-
nication that Ethernet network provides, which does not make it a viable option for automation and
robotics systems that require predictable and deterministic communications. Modern automation
and robotic systems do not escape the accelerated need for constant interconnection and, therefore,
it is necessary to adapt them, taking into account their real-time requirements. There are several
well-established real-time Ethernet network solutions on the market, but we find the same gap on
all of them: the scarcity of educational and demonstration equipment.

This document aims at presenting a solution for this gap, describing a distributed control sys-
tem developed with education in mind. The presented system focuses on the variable that mostly
contributes to the deterministic characteristic of real-time Ethernet networks: the network cycle
time. The main objective is to develop a conceptual distributed control system capable of produc-
ing experimental data that demonstrates the impact that the communication network’s cycle time
has on control applications. The proposed system will base itself on the implementation of a slave
device for the EtherCAT network, implemented on a Raspberry Pi platform, and on the description
of a possible implementation of a master device for the same network. The implementation of the
master device will purposely not be specified in detail to encourage greater involvement from the
users of this system in implementing their own educational or demonstration system.

The document will begin with a presentation of the context in which this work was developed,
followed by the motivation that led to the beginning of the project and a presentation of the ob-
jectives that we propose to achieve. The state-of-the-art will consist of a presentation of real-time
Ethernet networks in a generic way and an in-depth presentation of the working principle and
characteristics of the EtherCAT network. The presentation of generic real-time Ethernet networks
will describe the existing categories and different approaches to the problem of non-deterministic
communication in Ethernet networks. The presentation and description of the architecture of the
proposed distributed control system will follow. Next, an explanation on how the implementation
of the slave device was planned and executed, both in terms of hardware and software. Finally,
experimental results will also be presented. These show that the developed concept is valid and
fulfils the intended characteristics.

i

ii

Resumo

Vivemos num mundo cada vez mais digital e informatizado onde existe uma constante necessi-
dade de interligação entre tudo e todos. As redes Ethernet rapidamente se tornaram no stardard da
comunicação em ambientes empresariais e domésticos, mas a sua adoção no ambiente industrial
tem sido bastante mais lenta. Esta reduzida velocidade de adoção deve-se principalmente à comu-
nicação não-determinística que a rede Ethernet proporciona, o que não a torna uma opção viável
para sistemas de automação e robótica que necessitam de comunicações previsíveis e determinís-
ticas. Os automatismos e sistemas robóticos modernos não escapam à acelerada necessidade de
constante interligação e, por isso, é necessário adaptá-los tendo em consideração os seu requisitos
de tempo-real. Existem no mercado várias soluções de redes Ethernet de comunicação de tempo
real, já bem estabelecidas, mas em todas se encontra a mesma lacuna: a escassez de equipamento
educativo e de demostração das mesmas.

O presente documento pretende apresentar uma solução para tal lacuna, descrevendo um sis-
tema baseado em controlo distribuido desenvolvido a pensar na educação. O sistema apresentado
foca-se na variável com maior impacto na característica determinística das redes de Ethernet de
tempo-real: o tempo de ciclo da rede. O objectivo principal é desenvolver um conceito de um
sistema de controlo distribuído capaz de produzir dados experimentais que mostrem o impacto
que o tempo de ciclo da rede de comunicação tem em aplicações de controlo. O sistema proposto
será baseado na implementação de um dispositivo escravo para a rede EtherCAT, implementado
numa plataforma Raspberry Pi e na descrição de uma possível implementação de um dispositivo
mestre para a mesma rede. A implementação do dispositivo mestre será propositadamente deixada
em aberto para incitar um maior envolvimento dos utilizadores deste sistema na implementação
do seu próprio sistema educacional ou de demonstração.

O documento iniciar-se-á com uma apresentação do contexto em que este trabalho foi desen-
volvido, seguido da motivação que levou à realização do projeto e da apresentação dos objetivos
que propomos cumprir. A revisão bibliográfica consistirá na apresentação de redes Ethernet de
tempo-real de uma forma genérica e na apresentação aprofundada do modo de funcionamento e
características da rede EtherCAT. A apresentação de redes Ethernet de tempo-real genérica irá
descrever as várias categorias existentes e as diferentes abordagens ao problema da falta de de-
terminismo na comunicação Ethernet. Seguir-se-á a apresentação e descrição da arquitetura do
sistema de controlo distribuído proposto. Seguidamente será explicado como foi planeada e ex-
ecutada a implementação do dispositivo escravo, tanto em termos de hardware como software.
Finalmente também irão ser apresentados resultados experimentais que mostram que o conceito
desenvolvido é válido e cumpre com as características pretendidas.

iii

iv

Acknowledgements

I want to thank professor Paulo Portugal for his continuous availability to provide me with the
best and most informed feedback possible, during all stages of the project. Even though getting
feedback has not always been easy due to the full-remote work conditions that the CODIV-19
pandemic imposed, professor Paulo Portugal made sure that all interactions were used to the fullest
of what was possible, every single time.

I would also like to thank my family for putting up with my working habits and routines while
we were all working from home. Sometimes it wasn’t easy to reconcile work and personal life, but
these were definitely times where everyone had to adapt to a new reality. As such, I’m thankful
for being able to have my own time management and working habits, but I’m also thankful that
my family advised me from overworking at certain times.

I want to dedicate this work to my good friend Ania who helped me get through some rough
times on my personal life. Sometimes life throws a curve ball at us and suddenly nothing seems
to be going the right way. But, eventually, things become easier to overcome, especially when one
has a friend that motivates us and pushes us to do our best, no matter the circumstances.

Simão Amorim

v

vi

“Tell me and I forget. Teach me and I remember. Involve me and I learn.”

Benjamin Franklin

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Objectives . 3
1.4 Document structure . 4

2 State of the art 5
2.1 Real-time applications . 5
2.2 Real-time Ethernet networks . 6
2.3 EtherCAT . 7

2.3.1 Working principle . 7
2.3.2 The protocol . 8
2.3.3 Topology . 9
2.3.4 Distributed clocks . 10
2.3.5 EtherCAT P . 11
2.3.6 Error detection and diagnostics . 12
2.3.7 High availability and redundancy . 12
2.3.8 Safety over EtherCAT . 13
2.3.9 Communication profiles . 13
2.3.10 Interfaces . 14

2.4 Summary . 16

3 System architecture 17
3.1 Requirements analysis . 17

3.1.1 Simplicity . 17
3.1.2 Low-cost . 18
3.1.3 Modularity . 18
3.1.4 DCS based architecture . 18

3.2 Proposed architecture . 20
3.2.1 Hardware . 20
3.2.2 Software . 23

3.3 Conceptual experiments . 26
3.4 Summary . 27

4 Implementation 29
4.1 Concept development . 29
4.2 Proposed implementation . 30

4.2.1 Master node . 30

ix

x CONTENTS

4.2.2 Slave node . 31
4.3 Parts choice . 32

4.3.1 Raspberry Pi 4 . 33
4.3.2 Motor & encoder . 33
4.3.3 DFRobot’s DFR0592 . 35
4.3.4 Hilscher’s netHAT 52-RTE . 36
4.3.5 Screw terminal GPIO interface . 37

4.4 Hardware integration . 37
4.4.1 Motor assembly . 38
4.4.2 Motor support . 38
4.4.3 Raspberry Pi stack . 39

4.5 Software development . 42
4.5.1 DFR0592 driver . 43
4.5.2 Raspberry Pi’s GPIO encoder driver . 44
4.5.3 Speed and position algorithm . 45
4.5.4 PID control algorithm . 46
4.5.5 netHAT 52-RTE handler library . 46
4.5.6 Main control task . 48
4.5.7 Initialisation code and debug output . 49

4.6 Summary . 51

5 Proposal evaluation 53
5.1 Practical experiment . 53

5.1.1 Master node implementation . 56
5.1.2 Slave node configuration . 57

5.2 Experimental data . 58
5.2.1 Data analysis . 62

5.3 Limitations . 62
5.3.1 Hardware . 62
5.3.2 netHAT 52-RTE driver . 63
5.3.3 Encoder interface . 64
5.3.4 Speed calculation . 64

5.4 Summary . 65

6 Conclusions 67
6.1 Experimental results . 67
6.2 Goals met . 67
6.3 Future work . 68

References 69

List of Figures

2.1 EtherCAT frame structure [1] . 8
2.2 Example of a hybrid topology EtherCAT network [1] 10
2.3 EtherCAT P example diagram [1] . 11
2.4 EtherCAT cable redundancy [1] . 12
2.5 EtherCAT factory-wide communication of safety-critical information [2] 13

3.1 Example of a DCS architecture (adapted from [3]) 19
3.2 Graphical representation of the local control scheme (adapted from [4]) 20
3.3 Graphical representation of the remote control scheme (adapted from [4]) 21
3.4 Hilscher’s netHAT 52-RTE board . 22
3.5 Detail of the magnetic encoder . 23
3.6 DFRobot’s DFR0592 board (adapted from [5]) 24
3.7 Graphical representation of the slave architecture 24

4.1 Slave device’s software dependency graph . 32
4.2 Detail of the DC gearmotor and attached magnetic encoder 34
4.3 Working principle of an incremental quadrature encoder (Adapted from [6]) . . . 34
4.4 Detail of the quadrature count mode (Adapted from [6]) 35
4.5 DFRobot’s DFR0592 board (adapted from [5]) 36
4.6 Hilscher’s netHAT 52-RTE board . 37
4.7 Hardware connection diagram of the proposed slave device 38
4.8 Motor encoder board connections . 39
4.9 Support foot preview . 39
4.10 Support arc preview . 40
4.11 Motor disc preview . 40
4.12 Fully assembled motor with support . 41
4.13 Fully assembled Raspberry Pi stack . 41
4.14 Overview of the entire slave device hardware 42
4.15 Overview of the module cyclic steps . 45
4.16 Overview of the ‘comm’ module cyclic steps 47
4.17 Overview of the control steps . 49

5.1 Graph illustrating the local control mode . 53
5.2 Graph illustrating the remote control mode . 54
5.3 Preview of the defined speed curve . 55
5.4 SFC state machine overview . 57
5.5 Overview of the FBD POU . 58
5.6 Set-point and feedback value curves for local control with 5ms network cycle time 59
5.7 Set-point and feedback value curves for remote control with 5ms network cycle time 59

xi

xii LIST OF FIGURES

5.8 Set-point and feedback value curves for local control with 10ms network cycle time 60
5.9 Set-point and feedback value curves for remote control with 10ms network cycle

time . 60
5.10 Set-point and feedback value curves for local control with 20ms network cycle time 61
5.11 Set-point and feedback value curves for remote control with 20ms network cycle

time . 61
5.12 3D printed support, fixed with hot glue . 63

List of Tables

4.1 Encoder step sequence mapping . 44

5.1 PID tuning values . 56
5.2 Step-response evaluation of each test case . 62

xiii

xiv LIST OF TABLES

List of Listings

4.1 Definition of the DFR0592 pseudo-object C struct 44
4.2 Output showing the help information . 50
4.3 Example configuration values passed as arguments 50
4.4 Excerpt from an experimental data CSV output file 51
5.1 Contents of the wrapper script to launch application with predefined parameters . 65

xv

xvi LIST OF LISTINGS

Abbreviations and Symbols

API Application Programming Interface
ASIC Application-Specific Integrated Circuit
CAD Computer-Aided Design
CPU Central Processing Unit
CSV Comma Separated Values
DMA Direct Memory Access
EEPROM Electrically-Erasable Programmable Read Only Memory
ESC EtherCAT Slave Controller
ESI EtherCAT Slave Information
FPGA Field-Programmable Gate Array
GPIO General Purpose Input Output
HAT Hardware Attached on Top
PCIe Peripheral Component Interconnect Express
PPR Pulses Per Revolution
PWM Pulse Width Modulation
SBC Single Board Computer
SII Slave Information Interface
STL Standard Triangle Language / Standard Tesselation Language

xvii

Chapter 1

Introduction

This chapter will present several considerations that should be taken into account to better under-

stand why this project was developed and the reasoning behind most choices.

The context under which this thesis was developed will be presented first, followed by the

motivation behind it. The objectives we have set out to achieve will follow, as well as a brief

description of this document’s structure.

1.1 Context

Modern process control systems include advanced features which were virtually impossible to

implement even two decades ago. Most of these are only possible with the introduction of real-

time Ethernet networks in the last few decades.

For many years now, industrial processes have been managed by specialized control hardware

such as Programmable Logic Controllers (PLC). In the early days, these were very limited in

terms of performance and Input/Output (I/O) count, so when a process to be controlled was too

complex, dividing it into simpler parts was needed. This way, a single complex process was

automated by independently automating different parts of it. This was done by giving each part its

own dedicated controller and then creating some sort of communication between them, therefore

building a Distributed Control System (DCS). Because these controllers were very simple, such

communication had to be limited to just a couple of I/O signals between PLC’s or very limited

digital communication channels like RS-232 [7]. This created a major choke point on the amount

of information that could be shared between controllers within the same process, ultimately posing

hard obstacles to development and troubleshooting of such systems. If somehow these controllers

could share more information, not only development and troubleshooting would be easier, but it

would also make these complex control systems more adaptable, allowing the development of

even more complex automation systems.

With the emergence of digital communication networks, some manufacturers started to intro-

duces fieldbuses into the industry. These were simple networks that could interconnect all nodes

into a single shared communication medium. Such networks, as they were, provided far more

1

2 Introduction

information throughput than the legacy I/O signals but, in order to provide some determinism in

message deliveries, their total data throughput was still limited.

As industrial processes grew in complexity, the amount of data that needed to be shared be-

tween nodes also increased. The existing fieldbuses provided far more information throughput

than the legacy I/O systems, but for certain systems, they were not enough. Fast communication

networks such as Ethernet [8] started to become potential targets for the industry due to their data

transfer capacities, but the methods employed to achieve the higher transfer speeds meant there

was no determinism in message deliveries. As such, in order to reliably replace the industrial

fieldbuses in use, modifications needed to be made. In the last twenty years, several adaptations

of the standardized Ethernet protocol have emerged, such as Ethernet/IP (2001) [9], EtherCAT

(2003) [1] or PROFINET (2003) [10].

The technology advancements in both hardware and software fields have allowed DCSs to

grow in popularity. With the fourth industrial revolution, modern control systems typically follow

Distributed Control System (DCS) architectures, which in turn indirectly require the usage of

communication networks between all devices. Within this, devices that directly interact with

sensors and actuators are called field devices. In DCS systems the overall process computation

is done in a decentralized manner, utilizing the processing power from all devices in the network.

These developments have allowed for DCSs to progressively automate more advanced pro-

cesses. When these involve motion control, the requirements on the communication network em-

ployed tighten, as short response times and deterministic network transfers become critical aspects

of the process itself.

1.2 Motivation

As modern control systems evolve in complexity, providing automation students with adequate

training on the technologies used today is vital to ensure their integration on the industry is as

smooth as possible. Learning what benefits and disadvantages a certain component or system

brings to the automation world allows the future engineers to make more informed decisions when

designing new control systems.

With industrial automation systems continuously improving their connectivity to the digitized

world, it becomes essential to give students first-hand contact with the technology. Keeping this

purpose in mind, the course on Electrical and Computers Engineering at Faculdade de Engenharia

da Universidade do Porto is expanding its curricular suite with a class on real-time industrial

communication networks. As real-time Ethernet networks have dominated the market for some

years now, these will be the main focus of the class.

In order to provide these students with the best possible experience, a practical demonstrator

focused on education about the pros and cons of industrial real-time Ethernet networks needs to

be developed. Solutions on the market usually target end customers who are already considering

1.3 Objectives 3

adopting the technology on their plant-floors. As such, manufacturers tend to restrict their demon-

strators to very specific scenarios where the technology works best, is pre-configured and also

intentionally leaves out any disadvantages that may exist on a generic approach.

With this mind, students can learn more about the features, limitations and how to implement

and configure an industrial real-time Ethernet network by actually needing to do so on a practical

approach. So, a demonstrator which needs to be configured, have its implementation completed,

to a certain extent, and allows several experiments to be executed when fully implemented seems

to fit the purpose of providing a good tool for first-hand contact with industrial real-time Ethernet

networks.

1.3 Objectives

This thesis mainly intends to produce a solid foundation for practical demonstrators of industrial

real-time Ethernet networks. The work developed on this dissertation will build upon the concept

of network cycle time, known as a periodic deadline for the sequential delivery of data packets on

the network. The solution should provide the user a practical and reality-based experimentation

tool to observe the effects of network cycle time in control applications. Because we intend to

create a good foundation for more advanced demonstrators, we aim at providing a robust and well

documented solution with a high level of reusability and adaptability.

When automating industrial processes, especially in the robotics department, some sort of

movement control is usually implied. The most common are velocity and position control, so

our demonstrator will focus on these while simultaneously using a real-time Ethernet network

to communicate with a remote controller. This remote controller will provide either the control

set-points or the control algorithm itself.

With that being said, we aim at creating a demonstrator system comprised of 2 nodes, con-

nected through a real-time Ethernet network. The slave device (known as a field device in DCSs)

will be the main focus of our development and will provide a motor control interface and an in-

cremental quadrature encoder interface. The combination of these two interfaces will allow us to

perform control of the motor’s position or velocity using a simple PID controller. This field device

will have two modes of operation:

• Local control: the control loop will be closed on the field device itself by means of a simple

PID control algorithm, receiving set-points from the real-time Ethernet network. This type

of control is expected to barely be impacted by the network performance.

• Remote control: the field device will act as a simple remote I/O card, synchronising the

physical inputs and outputs with values being transmitted on the real-time Ethernet network.

This will effectively mean the control loop will be closed on the master device, which will

run the control algorithm, making it very susceptible to the effects of network cycle time.

4 Introduction

These configurations will allow the user to create a base dataset from the local control and

compare the data generated by the remote configuration with the local control dataset, while using

different values for the network cycle time.

1.4 Document structure

The present document intends to describe not only the concept of the proposed educational real-

time network demonstrator, but also present all the research and experiments performed to achieve

the final solution. As such, the following chapters will disclose:

• Chapter 2: Current state of industrial real-time networks with examples given and some

in-depth explanation of how they work, both from generic and specific perspectives;

• Chapter 3: Description of the final proposed solution for the demonstrator;

• Chapter 4: Development of software and hardware, including research exercises;

• Chapter 5: Evaluation of the proposed solution with real-life experimental data analysis;

• Chapter 6: Conclusions regarding the proposed solution and its evaluation, as well as an

analysis on possible future work.

Chapter 2

State of the art

This chapter will present the state of the art of the most relevant concepts and technologies relating

to the developed solution. These are considered essential for the understanding of the base concept

and technical aspects of the implementation.

The concepts and technologies explored here are:

• Real-time applications - A brief introduction to the concept of time-dependant processes;

• Real-time Ethernet networks - An explanation of what these networks are and why they

exist;

• EtherCAT - A detailed and in-depth presentation of the EtherCAT network, a real-time in-

dustrial Ethernet network.

2.1 Real-time applications

Modern automation systems have adopted a distributed computing architecture, as processing

power is increasing every year and, consequently, becoming cheaper. Real-Time control appli-

cations don’t necessarily require fast execution, but it means the process itself depends on the

passage of time to be correctly executed. [11]

These systems don’t depend only on the data that is gathered on the plant-floor, but also on

when it is acquired. In the robotics field, for instance, it’s important to have a solid and short

control period for motion applications, but it’s even more important to make sure the sensor data

used to perform the calculations is the most recent possible.

Now, depending on the application itself, it may have stricter or looser timing requirements.

As such, they are classified as hard real-time (HRT) or soft real-time (SRT) applications.

• Hard Real-Time: These systems have the strictest set of requirements in terms of time-

liness, meaning the incorrect operation of such systems may cause a catastrophic failure

of the entire process, with the possibility of putting lives in danger. Systems such as self

driving cars or medical-grade robotics have such requirements.

5

6 State of the art

• Soft Real-Time: These systems have much leaner requirements as incorrect operation due

to failed deadlines, even though not desirable, does not mean a loss of life or equipment. A

couple of examples are GPS systems or radio broadcast systems where delays may not be

desirable but they are also not critical.

2.2 Real-time Ethernet networks

As industrial automation systems have been moving towards decentralized processing architec-

tures, lean coupling methods between the different parts have started to evolve. As the industry

demands for a single network type to fulfil the needs across all hierarchy levels (from plant-floor

to boardroom), Industrial Ethernet systems started to gain popularity on the industrial automation

world.

As most applications that control industrial processes have some sort of real-time require-

ments, the introduction of an Ethernet network into the control system needs not to disrupt its

real-time characteristics. As such, Real-Time Industrial Ethernet networks have strict timing re-

quirements which makes the usage of common Ethernet not adequate, because the IEEE 802.3

standard, as is, does not guarantee a deterministic timing for the delivery of message packets.

A few adaptations of this standard have surfaced over the years, focusing mostly on providing

such deterministic delivery. Some implementations categorize data packets based on their priority

relative to the control system so that, at least the ones that are critical, are delivered as fast as

possible.

Commercial Ethernet systems can be described by a 7-layer encapsulating scheme named

OSI (Open Systems Interconnection). Several standard approaches have been defined for how to

achieve deterministic communication. Three different approaches have been explored in depth by

describing the key concepts on their basis. These were named ‘Top of TCP/IP’, ‘Top of Ethernet’

and ‘Modified Ethernet’ [12], according to the approach each made to solve the deterministic

delievery of messages.

The first category implements mechanisms on top of the TCP/IP protocol stack, without any

modifications applied to it. Networks using this approach communicate trasparently over over

network boundaries, even through routers. It is therefore possible to create networked automation

systems anywhere on the world, just like Internet technology. The biggest disadvantage of this

category is that the TCP/IP stack requires large amounts of memory and processing power, which

will still introduce nondeterministic delays [12]. Industrial networks such as Modbus/TCP and

EtherNet/IP [9] adopted this type of approach for realizing deterministic communication.

The second category of RTE networks called ‘On top of Ethernet’ do not use the protocol

stacks that the previous category is based upon. Instead, these networks implement a dedicated

protocol stack on top of the Ethernet frame, and each one of them specifies a different Ethertype

field. Such protocols can coexists with standard IP stacks and some even use them [12]. Examples

of solutions following this approach are the PROFINET CBA and Ethernet for Plant Automation.

2.3 EtherCAT 7

The third category, unlike the previous two, provides a modified Ethernet protocol or hardware.

Hardware modifications can be employed on the devices or the network infrastructure. Nonethe-

less, these modifications allow non real-time traffic to be transmitted without modifications. These

networks are commonly used to replace older fieldbus networks, which mostly used bus or ring

topologies. As such, in order to provide faster and easier replacement of such fieldbuses, the de-

vices used in RTE networks of this category will include switching capabilities [12]. Typically,

networks in this category aim at providing communications capable of meeting the requirements

for hard real-time applications. Networks such as SERCOS, EtherCAT [1] and PROFINET IO

[10] follow this approach.

2.3 EtherCAT

EtherCAT is a real-time Ethernet network for the industry and was initially developed by Beckhoff

Automation [13], but it is now under the control of the EtherCAT Technology Group (ETG). It

is described in the IEC61158 standard from the International Electrotechnical Committee (IEC)

and is appropriate for automation solutions requiring real-time capabilities. The first objectives

during development were short cycle times, low communication jitter, precise synchronization

and reduced hardware costs [1].

2.3.1 Working principle

The EtherCAT protocol employs a master/slave architecture. Only the master device is allowed to

initiate transmissions and it fully controls its slaves. The commands issued by the master evoke

responses from the slave devices.

The master node is responsible for maintaining periodic communication with all nodes. It only

requires a simple Ethernet Medium Access Controller (MAC), which means it can be implemented

in virtually any device with a standard Ethernet port.

The communication is based on simple Ethernet telegrams encapsulating EtherCAT frames.

The telegrams are identified via the Ethertype field on the Ethernet header. If the value of such

Ethernet header field matches the EtherCAT identifier (0x88A4), then the contents of this telegram

will be treated as an EtherCAT telegram.

The EtherCAT frame is composed of an EtherCAT header and one or more EtherCAT com-

mands. Because EtherCAT frames can contain several commands, the master device can address

several slaves using a single frame. This improves the bandwidth utilization and makes a more

efficient usage of the Ethernet frame.

EtherCAT networks typically employ an open ring topology, leaving the master Ethernet in-

terface to be connected to one of the ends. The master device issues the EtherCAT packets to the

MAC address of the first slave device.

Slave devices receive a telegram, process it and forward it to the next slave device on the

ring all at the same time. This means EtherCAT slave devices process the telegrams on-the-fly.

8 State of the art

If a certain slave device determines it is being addressed by an EtherCAT command, the data is

retrieved and/or put into the frame on-the-fly, as the frame is traversing it. After the last device

on the ring has received and processed the frame, it gets sent back to the master device so it can

process the responses to the commands it sent.

The frame processing and forwarding on the slave devices is entirely done in hardware. As

such, slave devices require a specialized Application Specific Integrated Circuit (ASIC) called an

EtherCAT Slave Controller (ESC). The ESCs are specialized in the described operations and only

introduce a small and predictable processing delay for such operations, on the order of nanosec-

onds. This allows the EtherCAT network segment performance to be predictable and independent

of specific slave device implementations.

Each EtherCAT command contains a Working Counter (WC) field that is incremented each

time an addressed slave processes the frame. This allows the master device to determine if every

addressed slave is actively communicating, although it does not guarantee data integrity. For that

purpose the standard Ethernet CRC is used to verify the message correctness [14].

2.3.2 The protocol

The EtherCAT protocol embeds its own frames into a standard Ethernet frame, signing it with

an hexadecimal value of 0x88A4 on the Ethernet’s type header field. Other protocol stacks like

TCP/IP or UDP/IP can be used concurrently with EtherCAT, but they are not required. These are

encapsulated into a separate mailbox so they do not disrupt real-time process data transmissions.

The fact that this network does not use these stacks means it has lower communication overhead.

The EtherCAT frames are, themselves, divided into several datagrams, as show in Figure 2.1.

These can be addressed to specific devices using their node address or be sent to multiple devices,

concurrently, using a logical address. The datagram header contains information about the type

of operation to perform, which can be one of three options: read, write of concurrent read-write

operations.

Figure 2.1: EtherCAT frame structure [1]

Datagrams include all information regarding data access which permit the master device to

decide what data to access and when, meaning a fixed process data structure is not required.

Effectively, master devices can update variables with different cycle times, possibly relieving some

processing power. As an example, for a system that requires motion control, the motor drives

can get their parameters updated with a 1ms period, while discrete Inputs/Outputs (I/Os) can be

updated with a 20ms period (typical control applications).

2.3 EtherCAT 9

Each slave contains a unique node address which is assigned during network configuration.

Because node addresses are static, they can be used to target the specific node, even if the under-

lying network topology changes. In addition, slaves can also be addressed by their location on the

network, but this is usually only used during network initialisation to check for topology changes.

This is done by comparing a configured list of node addresses and their location on the network

with the discovered topology.

On system initialisation, multiple logical addresses can be configured on each node, allowing a

single datagram to target multiple physical devices. The cyclical exchange of process information

uses logical addressing to execute the data transfers.

This type of addressing scheme also allows slave-to-slave communication. There are two

possibilities of achieving this:

1. If the process structure is constant, sending data to another slave which is further down-

stream can be done in the same bus cycle;

2. If the process is not constant or the network has a dynamic topology, slave-to-slave commu-

nication can go through the master device and, because of EtherCAT’s performance, this is

still faster than other traditional communication stacks (TCP/IP, UDP/IP, etc.).

EtherCAT can also benefit from the modern system’s Direct Memory Access (DMA) feature,

which removes the necessity for a CPU to explicitly transfer data from physical RAM to a periph-

eral device. This means that a master device application only needs to construct the EtherCAT

frame and place it on a specific memory region, leaving the DMA controller to actually pass the

data over to the Ethernet MAC controller, saving CPU for the actual data processing.

2.3.3 Topology

EtherCAT supports a variety of network topologies like line, tree, star or daisy-chain. Many ESCs

and I/O modules already include ports to create network branches, which eliminates the need to

use switches or any other type of infrastructure components. Regardless, classical Ethernet star

topology can be used to implement an EtherCAT network. When designing a certain network,

multiple topologies can be combined into a hybrid topology network. Figure 2.2 presents a possi-

ble illustration of such case.

ESCs also include support for a “Hot Connect” feature which means existing nodes can be

removed and new nodes can be added to the network during runtime. The controllers can detect

these changes in a very short time (typically less than 15µs), allowing a smooth state transition

without interfering with the rest of the network.

There is also a big flexibility in terms of available cabling option, from inexpensive industrial

Ethernet cables to fiber optics, having the entire Ethernet wiring possibilities available for use.

EtherCAT gateways provide the means to incorporate other fieldbus networks as a subnet-

work. This allows a gradual changeover between fieldbuses by keeping network sections that may

contain components which still do not support the EtherCAT interface.

10 State of the art

Figure 2.2: Example of a hybrid topology EtherCAT network [1]

Due to the fact that EtherCAT uses a 16-bit address length, up to 65535 devices can exist in

a single network segment, which makes scalability virtually unlimited. This large device count

removes the need to use bus extension methods, like traditional gateways, providing even the

largest EtherCAT networks the best possible performance, without unnecessary delays.

2.3.4 Distributed clocks

Certain types of control applications require simultaneous actions to be taken. In the robotics field,

for instance, movement control implies that several servo controllers synchronize their actions in

order to achieve the desired speed or position path. In a DCS, it is common for these actions to

span multiple nodes on the network. Therefore, these nodes require some sort of subsystem that

is capable of guaranteeing action synchronicity between them. EtherCAT employs a method for

providing synchronization capabilities called distributed clocks (DC).

Every ESC contains a highly precise clock source in its design, as well as a purely hardware

based calibration system. The first slave DC in an EtherCAT network is used as a reference value,

being distributed to all other slave nodes. This way, all these clocks present on the network are

adjusted to the same reference value, allowing hardware propagation times to be calculated and

taken into account on the calibration process. This can either be done during network initialization

or continuously throughout the operational period.

This distributed clock technology has been proven to introduce much less jitter on the com-

munication system, when compared to synchronous protocols, with common values below the mi-

crosecond mark. Very precise output updates and very accurate timestamping on the input values

are achieved with this implementation. It is a very important feature needed by the aforementioned

movement control systems, as these rely heavily on precise input timestamping to accurately cal-

culate velocities, as these are usually derived from position measurements. These systems also

2.3 EtherCAT 11

require the position measurements to be taken in periodic intervals, with as little jitter as possi-

ble. The distributed clocks also factor in on this topic, as they can generate much more accurate

triggers than the network bus itself.

In addition, this technology removes the ensuring of actions’s synchronicity between slave

nodes from the scope of the master device. In fact, the local clocks can be utilized to trigger ac-

tions on the slave nodes, such as updating outputs and reading inputs. Consequently, the master’s

EtherCAT communication stack can be implemented entirely in software or on simple Ethernet

hardware because the master’s stack jitter becomes practically irrelevant, for as long as the Ether-

CAT datagram is sent early enough to reach the slave device before its local clock triggers the

relevant action.

2.3.5 EtherCAT P

EtherCAT + Power (EtherCAT P) is an optional augmentation of the standard EtherCAT protocol

that transports supply voltage on the same Ethernet cable. This allows a single connection cable

to provide both power and data transmission to nodes on a network, as graphically represented in

Figure 2.3. This addition is very similar to the Power-over-Ethernet technology (IEEE 802.3af),

alternative A [15], except it specifically uses a 24V power source instead of the standard 48V.

Two individual 24V supplies are injected on the same two communication lines used on the

100BASE-TX [15] physical connection. As this only affects the Physical Layer of the OSI model,

there is no need for additional ESCs. Therefore, EtherCAT and EtherCAT P can be used inter-

changeably on the same network, even in a hybrid configuration. The black and red connections

shown in Figure 2.2 represent an example of an EtherCAT P segment integrated on a standard

EtherCAT network.

Figure 2.3: EtherCAT P example diagram [1]

Machines that include small parts with low power sensors and actuators can benefit from this

addition by reducing the overall cabling complexity. This creates cost-effective solutions with

12 State of the art

reduced wiring, possibly smaller form factor devices and lower system costs.

2.3.6 Error detection and diagnostics

The first diagnosis feature present in EtherCAT is the ability for the master device to lookup the

actual topology of the network segment it is present in, as referred in subsection 2.3.3. This

provides a first insight on a possible cause for problems in the communication system, as a non-

ideal network topology may prevent or limit the capabilities of the control system itself.

ESCs also have the ability to perform checksums on the fly, while processing the incoming

packets. Each EtherCAT packet contains a Working Counter field which is incremented each time

the packet is processed on an addressed node. If a checksum fails at any point, both the slave

devices that are placed downstream of where this check failed and the master device are notified.

The latter will then discard such information, not forwarding it to the control application, and can

request the Working Counter values from the slaves to try and identify where in the network the

error was introduced. This is a type of error identification which is impossible to be performed

on a typical fieldbus network, as the physical medium is common to every single device o such

networks (typical bus system).

If communication problems are suspected, network traffic sniffers such as the popular Wire-

shark application can be utilized to visualize the actual information being transmitted on the net-

work. This is possible because EtherCAT transmits its frames transparently inside the Ethernet

frame, as was shown in Figure 2.1.

2.3.7 High availability and redundancy

Some DCSs may require a 24/7 period availability, which means communication stability is cru-

cial. The most common network failures are a cable break or an intermediate node failure, both of

which can prevent communication with downstream stations. ESCs are prepared to adapt quickly

in case of network failures, with link detection times below 15µs, losing at most one communi-

cation cycle. So, if an additional cable is employed to connect the last slave device back to the

master node, creating a ring topology (see Figure 2.4), access to all devices is guaranteed in the

event of a cable breakage or device malfunction.

Figure 2.4: EtherCAT cable redundancy [1]

2.3 EtherCAT 13

2.3.8 Safety over EtherCAT

In order to simplify electrical wiring even further, industrial equipment can use the EtherCAT

network to distribute safety-critical information regarding its state. This is a protocol called Safety

over EtherCAT (FSoE - Fail safe over EtherCAT), which works by integrating a specialized data

frame named Safety Container as if they were generic datagrams inside the standard EtherCAT

frame. This means the safety-critical information is distributed over the network along side the

process data, in a cyclic fashion. This protocol is standardized in IEC 61784-3.

Having this type of safety data transmission allows to more easily expand an existing process

with additional hardware or safety features, without having to possibly restructure the entire safety

circuit. Diagnostic functions integrated into the communication mechanism also allow for faster

and easier fault detection and correction.

EtherCAT integrates the Safety Containers in a transparent way inside the EtherCAT frame

and, in turn, this one is transparently embedded on a standard Ethernet frame. This way, both

the process data and the safety-critical data can traverse different subnetworks or even be routed

to other networks, meaning a factory-wide network can distribute the safety-critical data across

all existing processes (see Figure 2.5). Effectively, factory-wide safety functions can easily be

implemented without the need for specialized equipment.

Figure 2.5: EtherCAT factory-wide communication of safety-critical information [2]

2.3.9 Communication profiles

Similarly to how EtherCAT frames can traverse different networks, other communication protocols

can be transmitted over an EtherCAT segment. As an example, it is perfectly possible to open a

standard TCP/IP channel with a node on this network and request a management webpage using

HTTP.

14 State of the art

The ESC places messages from other protocols onto a dedicated mailbox which can be ac-

cessed by the control application. This way, the cyclic real-time transfer of process-data is not

disturbed by any non-cyclic transmissions of non-real-time data. As one can expect, not every

slave device needs to actually support different communication profiles other than the cyclic pro-

cess data transfers, so the master device is informed about which protocols are supported by each

slave through its description file. These are called EtherCAT Slave Information (ESI) files which

inform the master device’s application (and potentially some IDEs) about the capabilities of a

certain slave node on the network. Some examples of protocols that can be transmitted over this

network are:

• Ethernet over EtherCAT (EoE);

• SERCOS’s ™ Servo drive profile (IEC 61800-7-204) over EtherCAT (SoE);

• File access over EtherCAT (FoE).

2.3.9.1 Ethernet over EtherCAT

In IT applications, the term Ethernet is used to generically refer to data transfers using TCP/IP,

UDP/IP, etc. Similarly to how these internet protocols are tunnelled through Ethernet, Ethernet

frames are tunnelled through the EtherCAT protocol, making this network transparent to stan-

dard Ethernet devices. Devices that have a “switchport” property insert Ethernet packets onto the

EtherCAT traffic, making sure the real-time transmissions on the network are not affected.

2.3.9.2 Servo drive profile over EtherCAT

The SERCOS ™ real-time network defines a profile for servo drives, described in the IEC 61800-

7 standard, which includes a port of such profile to the EtherCAT network. The functions and

parameters described on the standard are mapped to the EtherCAT Mailbox.

2.3.9.3 File access over EtherCAT

This is a simple protocol identical to the Trivial File Transfer Protocol (TFTP) which gives filesys-

tem access to the node over the EtherCAT segment. Its simplicity does not require the use of a

protocol stack like TCP/IP, meaning it can even be used in boot loaders, where simplicity prevails.

2.3.10 Interfaces

One of the priorities EtherCAT development took in consideration was the ability to implement

both master and slave devices with a low cost. For master devices, no special hardware is required

and for slave devices, inexpensive EtherCAT Slave Controllers are available. This permits the

hardware itself to be tailored to the application needs so that if the process to control is simple

enough, an inexpensive CPU will work just fine for both master and slave devices.

2.3 EtherCAT 15

In several scenarios, the end user may have the necessity to use EtherCAT products from

different vendors, which imposes the challenge of maintaining all device implementations inter-

changeable. To achieve this, everyone developing an EtherCAT device must submit it for a Con-

formance Test where the product’s functionality is extensively tested to make sure all parameters

and functions conform to the EtherCAT standard. This ensures devices from multiple vendors will

work well together because they both conform to the same standard.

2.3.10.1 Master devices

In terms of hardware, master devices only require the presence of a standard Ethernet MAC con-

troller. As previously mentioned, EtherCAT nodes benefit from modern system’s DMA feature,

relinquishing CPU time from the data transfer to the Ethernet MAC controller. As slave devices

also write their information to a specific location on the cyclic process data (also called process

image), there is no need to perform any sorting of the data because all of it is sorted by design. This

allows the usage of less powerful CPUs in order to do the processing, if the control application so

permits.

When it comes to software, members from the ETG offer a broad range of EtherCAT Mas-

ter Libraries for many operating systems (OS) and CPU architectures, including Windows® and

Linux®, enabling integrators to chose the most appropriate for the occasion.

These libraries need to be informed about the process image structure and about specific boot-

up commands for the nodes on the network. This is done via the EtherCAT Network Information

(ENI) files, which can be generated from the aforementioned ESI files using a specialized config-

uration tool.

Depending on the complexity of the process to be controlled, master devices may not require

the entire set of features available. Especially when using embedded platforms to implement them,

it is particularly useful to completely remove unneeded functionality in order to maximize resource

utilization, both in the hardware and software fronts. These implementations are categorized into

two classes: Class-A-Master and Class-B-Master. Every implementation should aim at resulting in

a Class-A-Master, which includes all possible functionality. On the case described above, having

a master with only a subset of functions is classified as a Class-B-Master.

2.3.10.2 Slave devices

The unique hardware component EtherCAT slave devices require is an inexpensive EtherCAT

Slave Controller (ESC), which are commonly available as Application-Specific Integrated Circuits

(ASICs), Field-Programmable Gate Arrays (FPGAs) or even integrated as part of a microcontroller

chip. These implementations can provide access to the process data through different Process Data

Interfaces (PDIs), such as:

• Directly using a 32-bit parallel port from the ESC as simple I/O bits, connecting them to the

necessary input and output signals. This is a good choice if the slave device is not required

to perform any data processing;

16 State of the art

• Serial Peripheral Interface (SPI), for devices that may require limited processing, such as

analog I/O cards, encoder interfaces or simple servo drives;

• Parallel 8/16-bit Microcontroller Interface, for applications that need more processing done

on the slave devices;

• Specific Synchronous Buses, for when the ESC is integrated in a microcontroller of FPGA.

As mentioned in subsection 2.3.9, each slave device is accompanied by the respective ESI file

that describes the communication interfaces and features implemented by this particular node. It

is used by the master to know how he can communicate with such device. If, by any chance,

the ESI file is not available, each slave device contains a dedicated EEPROM chip named Slave

Information Interface (SII), aimed at storing hardware configuration about the most basic features

present on the device. This allows the master node to read such information during the network

boot-up phase, making it always able to communicate with the slave, even if in a limited manner.

2.4 Summary

In conclusion, as industrial processes grow in size and complexity, distributing the processing of

control actions across several devices has become a wide-spread practice. Maintaining a cyclic,

fast and correct transfer of data between all devices in a control system is a necessity. For more

demanding processes, real-time industrial Ethernet networks have dominated the field due to their

high throughput capacity, flexibility in terms of network topologies, deterministic delivery of mes-

sages, very high scalability and easy integration with higher-level information systems.

Chapter 3

System architecture

In this chapter we will present the architecture that has been defined for the system. During the

course of this project’s development phase, its architecture was continuously adapted as difficulties

and possibilities emerged with the advancements made.

The following descriptions will reflect the final state of the proposed demonstrator, after sev-

eral incremental iterations. In relevant parts of this work, some comparisons will be made with

the initial planned architecture to, not only to show the iterative development process adopted but

also to highlight some key aspects that benefited from this type of approach.

We will begin this chapter with an analysis of the requirements we should meet in order for

the demonstrator to have certain characteristics, then present a detailed explanation of the actual

proposed architecture, including the chosen hardware and software, finishing with a brief and non-

exhaustive description of some conceptual experiments that could be possibly demonstrated on the

proposed platform.

3.1 Requirements analysis

When considering the development of a practical demonstrator, some general requirements should

be taken into consideration due to the scope of such products. These become even more relevant

when the demonstrator is designed for educational purposes, as this is one such scenario.

The following subsections will delve into the main requirements of the project, explaining why

they are being considered a requirement, how they were dealt with during development phase, what

difficulties were encountered to meet such need and in which manner each requirement influenced

the final system.

3.1.1 Simplicity

The most important characteristic every demonstrator should own is simplicity. No matter how

complex or extensive the concept might be, good demonstrators are conceptually simple. Designs

that focus solely on the concept at hand and leave out superfluous functionality tend to be more

effective at conveying the main message. Having the ability to further explore the concept beyond

17

18 System architecture

the initial scope of the demonstrator by extending its capabilities could be an advantage, but only

when the implications of doing so do not hurt the initial simplicity.

To consider different approaches based on simple concepts is crucial to ensure the end result

is focused on the correct concept. It is also very important to not allow underlying characteristics

or design choices to outweigh the core concept.

3.1.2 Low-cost

Demonstrators whose purpose is to serve as a first contact with the technology, with educational

purpose, should be as low-cost as possible. Students tend to learn more easily when left to their

own experiments, learning by themselves how things work and how to operate them.

When looking through the point of view of the education institution, the best way to provide

students with such contact is to allow them to individually, or in small groups, utilise the equip-

ment. Ideally, one equipment per work desk would be used, which quickly increases the amount

of demonstrators the institution should own and, consequently, the expenses of acquiring them. As

such, keeping a low-cost vision for these equipment will help education institutions provide their

students with the best experience possible.

Accidents, bad practices or the simple lack of necessary knowledge can lead students and first-

timers to, unintentionally, damage such educational equipment. As such, this equipment should

not impose limitations on the user freedom and, to meet such goal, low-cost is generally considered

a good idea. Students must be able to experiment and learn without having to constantly worry

about possible damage to expensive equipment.

3.1.3 Modularity

Designing a system based on well defined modules is always a good thing. Modularity helps

divide the most complex systems into several parts, which are easier to handle and understand.

This characteristic also helps reduce costs, especially when considering the integration of pre-

made modules, instead of developing new ones.

When there is possibility to design a product that reuses components and modules available

on the market, production, maintenance and repairs become simpler and cost-effective. With this

approach, a damaged physical module can simply be replaced and software modules become easier

to work with. When developing software modules, one needs to pay close attention to the planned

boundaries of each module, making sure their functionality is entirely self-contained. This way,

if we wish to replace a physical module we can also simply swap the respective software module

with a new one, targeted at the new physical module.

3.1.4 DCS based architecture

With our aim being the influence of network cycle time on control applications, it’s imperative

for us to use an architecture that resembles a Distributed Control System (DCS). An example of

a DCS architecture can be seen in Figure 3.1. It only makes sense to evaluate such influence on

3.1 Requirements analysis 19

systems where it is applicable, meaning, we must replicate a real world case where the usage of an

RTE network might actually influence the system performance. With this in mind, we decided to

replicate the concept of a networked servo drive controlled from a centralised processing unit, with

the ability to close the control loop either locally on the servo drive (the current typical scenario)

or remotely on the processing unit.

Figure 3.1: Example of a DCS architecture (adapted from [3])

3.1.4.1 Local Vs. Remote control

In order to better visualise the effects of network cycle time in control applications, a baseline

should be defined to serve as a basis for comparison. The field device will be capable of performing

full control of position and/or velocity of the DC motor or serve as a simple remotely controlled

servo drive.

With the first configuration (local control), the field device will receive only the set-point

values from the RTE and then perform the position/velocity control of the motor using an internal

control algorithm. This will generate a baseline dataset of control performance, which is expected

to barely be affected by the network cycle time.

The second configuration (remote control) will use the field device as a simple servo drive,

without using its internal control algorithm. It shall receive the velocity reference to be applied

to the motor from the RTE network and send back the decoded position/velocity, acquired from

the motor’s incremental encoder, through the same network, as a feedback variable. This will

mean the control loop will be closed on the remote processing unit, making this loop’s output

and feedback values traverse the RTE network. The control performance of this configuration is

expected to be affected by the network cycle time.

3.1.4.2 Velocity and position control

In order to give the demonstrator a bit more flexibility and broaden the range of conceptual experi-

ments, we aim to develop a demonstrator capable of controlling the motor’s velocity and position.

20 System architecture

To clarify, we do not plan to provide simultaneous control of both these movement types. Having

the ability to chose the type of movement we want to control each time the field device is powered

on will allow us to develop new and interesting experiments, including more advanced movement

control.

3.2 Proposed architecture

By the end of the development phase, we created a system that fulfils all requirements described

previously. The system mimics a simplified DCS architecture by employing a simple master-slave

configuration using an RTE network.

As explained in subsubsection 3.1.4.1, using the local control topology, the master node will

act as a motion controller, feeding the motor controller (the field device) with position/velocity

references through the RTE network. This one, in turn, will perform the necessary algorithm com-

putations to achieve motor position/velocity control using the references provided by the master

node and the feedback values it acquires from the motor’s encoder.

When using the remote control topology, the master node will be responsible for all compu-

tations in the system. The field device will act as a simple I/O interface to the motor, generating

the waveform fed to the motor and acquiring and decoding the motor’s speed and position. The

decoded position and velocity values are then sent to the master node as feedback variables and

the motor output is received from it as an output variable.

Graphical representations of both these scenarios can be seen in Figure 3.2 and Figure 3.3,

respectively.

Figure 3.2: Graphical representation of the local control scheme (adapted from [4])

3.2.1 Hardware

While keeping a careful consideration of characteristics between options and maintaining the re-

quirements in focus, hardware parts were chosen to build each section of the demonstrator.

After some careful consideration and planning, we decided to focus our system on utilizing

only one of the supported RTE networks. After studying current implementations of several RTE

network master nodes we concluded EtherCAT [1] would provide us with more flexibility across

3.2 Proposed architecture 21

Figure 3.3: Graphical representation of the remote control scheme (adapted from [4])

almost all fields. Taking into account their characteristics and features, especially the cyclic com-

munication timings, we decided to use EtherCAT as our RTE network of choice.

3.2.1.1 Master node

Taking into account the two operation modes the demonstrator should have, we extrapolated that

the master node must be able to perform numeric calculations and serve as an EtherCAT master

device. As the EtherCAT master implementation can be done using a generic Ethernet MAC

interface card (refer to subsubsection 2.3.10.1 for an explanation), everything the master node

requires in term of hardware is a computational platform (computer, microcontroller, etc.) with

access to a generic Ethernet MAC interface card.

As of today, most education facilities provide students with access to desktop computers. For

many years now, motherboard vendors have integrated Ethernet MAC interface cards into the

motherboards themselves, as it has become the de facto standard for Internet connectivity in desk-

top computers.

As such, we decided to implement the master device in a desktop computer in order to min-

imize costs and leverage the computational power modern computer systems possess. Our slave

device solution includes hardware support for running either slave or master nodes for EtherCAT

and other RTE networks, so it is also possible to implement the master node on a Raspberry Pi.

3.2.1.2 Slave node

On the other hand, the slave node’s hardware was harder to choose. In order to implement the

desired EtherCAT slave (see subsubsection 2.3.10.2), one must be aware when choosing a compu-

tational platform to check the availability of a compatible EtherCAT Slave Controller (ESC) board

and, simultaneously, the support for motor and encoder interfaces.

After some research, two options presented themselves as possible platforms for the slave

device: an Arduino UNO or a Raspberry Pi. ESC boards exist for both these platforms, as well as

good support in terms of ‘shield boards’ for motor interfaces. In the end, we decided to go with a

solution based on a Raspberry Pi, as it provides a more robust and versatile computing platform,

especially considering the local control configuration, where position/velocity control algorithms

will need to be executed on this platform.

22 System architecture

The ESC chosen for the Raspberry Pi was the Hilscher’s netHAT 52-RTE board [16]. Fig-

ure 3.4 shows the board used on the system. This board supports communication with three real-

time Ethernet protocols (PROFINET, EtherNet/IP or EtherCAT), chosen with a simple firmware

loading procedure. It complies with the Hardware Attached on Top (HAT) specification for the

Raspberry Pi [17] and uses the SPI0 interface to communicate with it. The board also includes

the respective Electronic Data Sheet (EDS) files to be imported by the EtherCAT master. These

are used to identify the characteristics, functionality and addresses of slave devices expected to be

present on the network.

Figure 3.4: Hilscher’s netHAT 52-RTE board

As previously expressed, we intend to make the slave device mimic, to a certain degree, a

servo motor drive. For this two hardware components are fundamental: a motor and a position or

velocity feedback mechanism. As we intend to support position control, we will focus on position

feedback products, as velocity can be extrapolated from the sequence of position points. The most

simple and widely used position feedback mechanism is the incremental quadrature encoder, so

we’ll focus our research efforts into motors that support it. The most appropriate products we

found, keeping in mind the low-cost requirement, are the Pololu’s micro metal gear motor with

extended motor shaft [18] paired with the brand’s magnetic encoder kit [19] (Figure 3.5). As this

is a DC motor, it’s power output can be indirectly controlled if fed with a PWM electrical signal,

varying this signal’s duty-cycle.

With the intention to include a dedicated board to drive the motor, we included the DFRobot’s

DFR0592 [5] (Figure 3.6) board onto the design. This board also complies with the HAT spec-

ification and communicates with the Raspberry Pi via the Inter-Integrated Circuit (I2C or I2C)

interface. It provides interface with two DC motors and two incremental encoders, all managed by

3.2 Proposed architecture 23

Figure 3.5: Detail of the magnetic encoder

an STMicroelectronics’s STM32 chip. The motor interface also includes the necessary DC-motor

driver chip, allowing direct connection of the motor’s terminals and power supply to the board

itself.

Initially we planed on using this board’s incremental encoder interface to also relieve the

Raspberry Pi from such task but, as our preliminary tests concluded, it only exports the Revolutions

Per Minute (RPM) value extrapolated from the encoder’s pulse count and not the pulse count itself.

Furthermore, this RPM value is only updated once every 100ms, which is to large of a period for

motion control. To overcome this limitation, we decided to connect the encoder signals directly on

the Raspberry’s GPIO pins and create a software module to handle them. This way we will be able

to separate the logic that decodes the pulse signals and the position/velocity tracking, allowing us

to configure the update period for the latter.

The end result of this process can be seen on Figure 3.7, which represents the final architecture

of the slave device developed throughout this project’s lifetime.

3.2.2 Software

As can be expected, recent digital computing platforms require software to perform the necessary

tasks. As such, both the master node and the slave device will each require an Operating System

(OS) to manage the execution of tasks.

The Raspberry Pi has a dedicated Linux OS called Raspberry Pi OS [20], which is a fork from

Debian [21]. We will be using the Lite version of this OS for the slave node as it is the easiest to

setup and the most tested and stable OS for the Raspberry Pi platform.

24 System architecture

Figure 3.6: DFRobot’s DFR0592 board (adapted from [5])

Raspberry Pi OS LiteRaspberry Pi

GPIO I2C SPI 0

I2C

DFR0592

MotorEncoder Power Supply

SPI netHAT 52-RTE

ETH
Port 0

ETH
Port 1

Master

Figure 3.7: Graphical representation of the slave architecture

3.2 Proposed architecture 25

Regarding the master node, if it is to be implemented on a generic PC, we will be using

Microsoft’s Windows 10™ [22] as the chosen OS. Not only because most computers come pre-

installed with it, but also because it is one of the few supported OSes by the CODESYS develop-

ment application [23], presented below. In the event the master node is to be implemented on a

Raspberry Pi, the Raspberry Pi OS Lite can be used. A computer with Windows 10 will always be

necessary to run the CODESYS Development Environment.

3.2.2.1 Master node software

In order for us to create a control application on a generic computer, an appropriate software

platform must be chosen. Because we are working with industrial technology, a proper industrial

control and automation software should be used.

CODESYS is a generic platform to develop industrial control and automation applications

based on the IEC 61131-3 standard. It includes support for hardware from multiple vendors as

well as the ability to create a Software PLC (SoftPLC) from any generic computer hardware. This

platform makes the software editor available to use for free and allows control applications to run

for two hours in demonstration/testing mode, uninterrupted. This is a great option for develop-

ment and testing purposes as only the final product with uninterrupted execution requirements for

unknown periods of time will require a license to be purchased. Additionally, CODESYS natively

supports the most common industrial communication networks, including EtherCAT, meaning one

can develop a device with communication capabilities with one or more of these networks.

With all this, we will use the CODESYS platform to create a SoftPLC to act as an EtherCAT

master device for or demonstrator. As we are looking forward to develop a proof-of-concept

system, we don’t require application run-times larger than two hours.

Because we want to involve the end-user into the process of setting-up and running the ex-

periments by themselves, we decided to leave the implementation of the master node’s software

to be dealt with by the end-user. By doing such, we will also be indirectly expanding the set of

conceptual experiments the demonstrator can handle by allowing anyone to implement their own

ideas, as the slave device will always work the same way.

3.2.2.2 Slave node software

After having chosen the Hilscher’s ESC HAT for the Raspberry Pi (see subsubsection 3.2.1.2),

which will be running a Linux distribution, and decided to use the CODESYS platform for the

master, we initially planned to also use CODESYS to program the slave device. Although its editor

is only designed to work under Windows, the SoftPLC runtime can run under Linux, with a ver-

sion specifically targeting the Raspberry Pi platform. Unfortunately, CODESYS doesn’t support

developing programs for EtherCAT slave devices, specifically, as these are usually programmed

by manufacturers themselves and not by a system integrator or end-user.

Additionally, Hilscher only provides a library and accompanying API definitions for the C

programming language, meaning at least the software module that needs to interact directly with

26 System architecture

the ESC will need to be programmed in C language. As this is the most widely used programming

language in the Linux universe, if during development we conclude we require some library to

provide us with some advanced functionality, the probability of existing one for the C language

is much higher than with less widespread languages. As such, this is going to be our preferred

programming language for implementing the EtherCAT’s slave software running on the Raspberry

Pi.

In order for the slave device to behave according to our plans, we will develop a control

application that will allow the user to perform the desired control: local or remote. It will be

possible to fully parametrize the run-time by providing the application with some configuration

values as command-line arguments. It should also be able to log the performance and control

values of the slave device during run-time, essential for the described scenario in section 3.3. The

necessary control algorithms for the slave device will be provided but it will also be possible for

students to implement their own version of the control software.

3.3 Conceptual experiments

With the proposed architecture in mind, which was described in section 3.2, we have envisioned

a generalized conceptual experiment to fulfil the main goal of demonstrating the effects of the

network cycle time influence in control applications. We have defined it in a generic way so that

variations and extensions to the base idea can easily be developed. This way the demonstrator

does not focus on a single possible experiment but on a set of experiments that share the same

foundation.

The first and most basic conceptual experiment we considered involves predefining a velocity

curve over a certain amount of time and executing it using both available control modes: the local

control and the remote control. Each of these will generate a trace log of velocity points (in this

case) measured during execution.

Naturally, the definition of the movement curve can be randomly generated or taken from any

real-world example, whatever interests the user the most. Independently of which control mode

is going to be be executed, the predefined movement curve is to be stored in the master node by

whatever means, either hard-coded into the control program or by some form of data storage and

interpretation. Because the master node’s software implementation will be left to the end-user’s

responsibility, so will the generation or interpretation of reference values from the predefined

movement curve.

In either case, the only thing to be taken into account is that depending on which control mode

is being executed at a certain time on the slave node, it expects to receive different types of data:

for local control the slave device expects to receive the control reference values directly taken from

the predefined movement curve (the ‘input’ values of the control loop) and for remote control it

expects to receive the duty-cycle percentage to be applied to the motor (the actual ‘output’ value

of the control loop). Independently of the chosen control mode, the feedback values returned to

3.4 Summary 27

master node via the network will always remain constant: the motor’s relative angular position (in

degrees) and velocity (in RPMs).

As we aim to allow the export of the recorded reference and feedback values onto a CSV file,

we can then import these files onto any data processing software and perform relevant operations

between the two traces. The most simple operation, and possibly the most effective, is to generate

a graph that includes the two datasets simultaneously. This will create a visual comparison of

the system’s performance in both control cases, making any differences in their behaviour quickly

perceivable. Depending on the accuracy and granularity of the results, more detailed and advanced

processing methods can naturally be used to compare the datasets.

One variation that can be derived from the afore mentioned case is to perform the same set of

operations but while controlling and recording data regarding position control. Position control

systems are typically more sensible to performance differences than velocity control ones, so al-

though the experiment complexity increases slightly, more subtuble diferences in behaviour might

be perceivable. The increase in complexity is mostly due to the fact that position control implies

simultaneous velocity control so, in fact, instead of controlling one single property (velocity), we

will now be controlling two (position and velocity). In this case, we may not really care about the

velocity control per se, but we still need to control it in order to control the position. In a way, we

need to provide a velocity reference value in order to be able to control the position effectively.

Naturally, any variation of these conceptual experiments will probably remain valid for the

desired demonstration purposes for as long as the designed control loop is susceptible to perfor-

mance variations on the underlying communication channel. If, by any chance, an experiment

is designed with a high enough robustness to not be affected by the communication performance

and, consequently, have its results be barely impacted, it doesn’t invalidate the demonstrator. It

just means the experiment itself is not suited for the task at hand, which is to demonstrate the

influence of the communication channel’s cycle time on the control loop.

3.4 Summary

In this chapter we have presented the proposed architecture of the practical demonstrator we have

designed during the development phase of this thesis. In section 3.1 we explored and explained

the requirements we have defined as crucial for the success of the project. In section 3.2 we

describe how the system is intended to work on a conceptual basis, both from high-level and

low-level points of view. The latter was done by diving deep on how the system works in terms

of hardware and software fronts, independently. Last but not least, in section 3.3 we presented

a set of conceptual experiments we planned on implementing for validation purposes, leaving

important information about the core concept which is relevant for future works to develop more

sophisticated and advanced experimental concepts.

28 System architecture

Chapter 4

Implementation

After having presented the proposed system architecture we will now move forward to describing

how the project implementation was performed, starting with the evolution of the initial concept

and then going through the hardware and software implementations.

This chapter will include many technical details, especially during the software implementa-

tion explanations. These will range from technical details about the components used to specific

techniques used during the development process.

4.1 Concept development

In the beginning of this project we explored several possibilities of creating a demonstrator based

on a robotic arm. The conceptual idea was to preprogram a path on the robotic arm that had to

be followed when its actuators were commanded through a real-time network. One could define

a 2D path on a sheet of paper and the robotic arm would have to follow it with a pen, drawing

the travelled path. This way, the effects of network cycle time would be indirectly visible when

comparing the preprogrammed path and the actual travelled path.

This concept had an interesting potential but soon enough we came across a not so obvious

problem: from the user’s point of view, when looking at a robotic arm system, the attention would

almost certainly go towards what the robotic arm could do instead of focusing on what was hap-

pening in the background, especially in terms of communications and how they affected the control

system.

After deciding this was not the way to go, we performed a retrospection exercise and analysed

what was good about this first idea and why we had it in the first place. The underlying concept

that made us consider this approach is that robotic systems are characterised by one traversal

aspect: movement control. In fact, wanting to show the effects of network cycle time in a control

application, controlling movement seems to best fulfil the purpose. This type of control requires

short and deterministic cycle times, making it very susceptible to the effects of network cycle time.

Additionally, it provides the demonstrator with a graspable connection to reality.

29

30 Implementation

The second iteration on the base concept led us to an idea still based on movement control

but with a simpler approach: two perforated discs attached to motors, facing each other, would

have their movement controlled independently. One of the discs would have a control loop closed

locally on the field device and the other one would have it closed on the master controller node,

traversing a real-time Ethernet network. With both discs coupled with a single string of spaghetti

pasta, any effects the real-time Ethernet network would introduce on the control system would

make the two discs’ movement desynchronise and, as such, it would manifest through the spaghetti

string breaking. We decided not to pursue this idea further because we expected, from the begin-

ning, that the effects introduced by the communication network would have a small impact on

performance and that, in this case, the spaghetti string would possibly have enough elasticity to

withstand the small expected position slippages between the two discs.

Given the reason for discarding the second concept, we decided the best way to visualise such

small differences would be to compare data points relative to the movement of both the locally

and remote controlled run times. In order to generate such data, virtually any type of physical

movement can be utilised. So, simplifying the second concept iteration into a third one, the idea

was now to control the movement of a single disc. The control itself can still be performed both

locally on the field device or remotely on the master device, but not simultaneously. This way,

one can create a sequence of set-points and pass them to both types of control which, in turn, will

generate data relative to the disc’s movement. One can then compare these data sets by creating

graphs or using any other relevant methods.

4.2 Proposed implementation

Following the proposed architecture, presented in the previous chapter, we will now explain the

actual implementation we performed to achieve our goals. This section briefly presents the overall

idea and proposed system architecture without going into details about specific choices. Those

explanations will be presented in later sections, as we will delve deeper into the implementation

details, including product and technology choices, both in terms of hardware and software.

4.2.1 Master node

The master node of our system will be implemented in a generic desktop PC through the usage of

an industrial programming platform. This will enable us to program the behaviour of the master

node as well as provide the necessary communication libraries to implement a master node for

different RTE networks. We will take advantage of the fact that most industrial programming

platforms allow us to determine the RTE network’s update period. This will enable us to perform

tests using different network cycle times.

Two programs will be developed for the master node:

1. one to act as a simple set-point generator, sending the velocity or position set-points to the

slave device through the RTE network;

4.2 Proposed implementation 31

2. a second one to act as the motion controller, where the same set-points are used internally in

a control algorithm that receives the plant feedback value and sends the plant output value

through the RTE network.

This implementation will allow us to perform the two practical experiments described in sec-

tion 3.3, enabling us to compare performance values acquired in both cases.

4.2.2 Slave node

The proposed slave implementation will be based on an embedded computing platform. The em-

bedded platform will be extended using some specialised boards that will broaden the functionality

of the slave device as a whole. These extension will provide easier access to the GPIO pins, direct

interface with a motor through a specialised DC motor control board and Real-Time Ethernet con-

nection using a dedicated board capable of off-loading the real-time processing of network packets

from the embedded computing platform.

Additionally, in order to create a connection with the real world, we’ll be using a DC motor

paired with an incremental encoder. This will allow data to be collected from a real world source,

giving a more organic feeling to the process of running experiments with this system.

In terms of software, a control application will be developed for the slave device computing

platform in order to provide the following functionality on the slave device:

• Handle the receiving and sending of cyclic data through the RTE network by interfacing

with the driver of the dedicated RTE network connection board. Such data will include

set-point and feedback values;

• Handle the plant feedback signals, converting them into internal variables.;

• Handle the motor output signal by interfacing with the dedicated DC motor control board;

• Acquire and export performance data relating to the control of the DC motor speed and/or

position;

• Provide an internal control algorithm to locally control the motor’s speed and/or position;

Such software will be implemented in modules, and a general overview of how they inter-

connect with each other can be seen in a block diagram format in Figure 4.1. The block names

represent the actual names used for the different modules that were implemented.

The main module will take care of initialising all data structures and sending the terminate

commands when the user wishes to close the control application. Configuration parameters can

be passed as command-line arguments to the main module, which will be parsed and used during

the run-time. This module will serve as the entry point for the control application, where, after

compilation, all modules will be integrated into a single executable.

The control module will contain the function calls that determine the behaviour of the slave

device during normal operation. The run-time behaviour takes into consideration all parameters

32 Implementation

main

control

p_v_calc commDFR0592 pidencoder

libgpiod I2C
Hilscher's CIFX

API

Log

Figure 4.1: Slave device’s software dependency graph

provided when launching the application. It also takes care of moving data around between the

other modules before calling functions that require some external data. For example, the pid

module requires the set-point and plant feedback values, which are retrieved from the p_v_calc

module and comm module, respectively.

The p_v_calc module will be responsible for computing the motor velocity and position,

based on an encoder counter. Such counter is implemented on the encoder module, which will

convert the encoder signals onto a counter value. In order to have access to the encoder signal,

which will be connected to the GPIO header, we used the external library called libgpiod to

gain access to the GPIO pins.

The DFR0592 module is responsible for implementing functions to access and interface the

DC motor control board. All communication is done via I2C, which requires the usage of an

external library. In this particular implementation, we used the default Linux kernel I2C library.

The pid module implements a discrete-time PID controller used for the local control of the

motor’s position or velocity. Additionally, because all relevant data that describes the system

performance is already contained in the PID data structure, we implemented the functionality of

exporting such data on this module.

At last but not least, the comm module will be responsible to make API calls to the RTE in-

terface board driver, called CIFX, in order to configure the RTE network and retrieve/send cyclic

process data. All the necessary steps to initialise, configure and manage the different RTE net-

works will already be implemented in the comm module functions.

4.3 Parts choice

During the development phase of the project, some hardware components needed to be chosen in

order for us to be able to actually develop a prototype system. With components ranging from

a full computing platform to a simple electrical connection board, we will briefly introduce the

4.3 Parts choice 33

necessary hardware as well as provide an explanation about the logic utilized during the decision

period.

4.3.1 Raspberry Pi 4

The Raspberry Pi 4 is a single board computer (SBC) and comes equipped with the Broadcom’s

BCM2711, a quad-core Cortex-A72 64-bit ARM processor clocked at 1.5 GHz [24]. At the time

of writing, versions were available with 2 GB, 4 GB and 8 GB of LPDDR4 SD-RAM 1 clocked at

3200 MHz.

This version of the Raspberry Pi series is the first to be equipped with a true-Gigabit Ethernet

controller connected to the PCIe bus, while earlier versions used a USB attached one, meaning

latency and throughput were not as good and especially less constant.

As our designed slave device is intended to be used in headless mode, meaning no monitor

output and no keyboard nor mouse will be used, we picked the version with 2GB of RAM. As no

graphical interface needs to be created, memory usage will be very reduced and, as such, 2GB are

plenty of memory for our needs.

The Raspberry Pi 4 incorporates a micro-SD card slot to be used as an embedded hard disk,

so we have also included a small 16GB micro-SD card to serve as such. Linux is a very small

operating system and a fresh install of Raspberry Pi OS Lite occupies about 1.4GB, meaning the

16GB of space are more than sufficient for our needs.

During the development phase we have considered the Raspberry Pi 4 to be the most appro-

priate solution for the project’s slave computing platform. Its features and characteristics seemed

to fit the requirements well, so we locked our choice for this equipment.

4.3.2 Motor & encoder

In order to provide our system with the physical connection with the world we aim for, we have

chosen a small 6V brushed DC motor with an embedded 30:1 gearbox [18]. This motor provides

an extended shaft on the back of the motor so that a magnetic encoder kit can be attached to it.

Pololu [25], which is the maker of our chosen motor, separately provides the magnetic quadra-

ture encoder kit, compatible with such motor, with a resolution of 12 pulses per revolution (PPR)

in quadrature mode. A preview picture of the motor + encoder kit can be seen in Figure 4.2. The

encoder provides quadrature signals A and B at the same voltage as its power supply. It is rated to

be powered between 2.7V and 18V, allowing it to used for a wide variety of applications.

Incremental quadrature encoders are very commonly used in the industry, mostly due to their

simplicity and modest prices, when compared with absolute encoders. The encoder provides two

electrical signals (A and B) which change their values according to the motor angular displace-

ment. The two electrical signals are said to be in quadrature because they have a phase shift of 90°

between them, meaning they will never change state simultaneously. While rotating, the A and B

signals will continuously change their state between 0 and 1, as seen in Figure 4.3. The direction

1Low-Power Double Data Rate Synchronous Dynamic Random-Access Memory

34 Implementation

Figure 4.2: Detail of the DC gearmotor and attached magnetic encoder

of rotation can be determined by evaluating the relative phase shift between those signals. If we

take signal A as reference and determine that signal B has a +90° phase shift relative to A while

rotation clockwise, then a counter-clockwise rotation will generate a B signal with a -90° phase

shift relative to A.

Figure 4.3: Working principle of an incremental quadrature encoder (Adapted from [6])

An encoder that is said to have a resolution of 12PPR in quadrature mode means that each

quadrature signal (A and B) will generate 3 pulses per revolution. Therefore, we can catch 6 state

changes on each of those signals, providing us a total of 12 pulses per revolution, between the two

signals. A example of such counting method can be seen in Figure 4.4.

The power supply range allows it to be directly connected to the Raspberry Pi GPIO pins,

which only works with 3.3V. Additionally, the DC motor is rated for a 6V-9V supply. As the

4.3 Parts choice 35

Figure 4.4: Detail of the quadrature count mode (Adapted from [6])

DFR0592 board (see subsection 4.3.3) can provide between 7V and 12V on the motor outputs,

depending on the actual power supply used, the entire kit contains components fully compatible

between themselves.

Because the DC motor includes a 30:1 reduction gearbox, the resulting encoder precision is

multiplied by that ratio, giving the output a virtual encoder resolution of 360 PPR. For a proof-

of-concept system, this is enough precision for position control, providing a maximum error of 1

degree. This DC motor has a theoretical maximum velocity on the output shaft of 1100 RPM. This

means that encoder pulses will be generated, while at full speed, at a rate of 396000 pulses per

minute, or 6600 per second. For velocity control, the maximum amount of pulses generated per

second is not too high for the Raspberry Pi, which is perfectly capable of not missing any pulses.

This solution allow us to maintain a low budget for the project and is the main reason we have

not chosen to use a standard servo motor paired with a servo drive, although we have considered

it. These two parts would cost more than 400C, as that was the lowest price we could find on the

national market. Instead, the above mentioned motor and encoder kit summed up to about 30C,

taxes included.

4.3.3 DFRobot’s DFR0592

The DFR0592 board from DFRobot is an all-in-one DC motor control board with integrated

quadrature encoder interface, PWM generation, an H-bridge for direct motor interface and an

integrated micro-controller (an STM32 chip) that takes care of calculating the motor speed in rev-

olutions per minute (RPM). This board is an add-on HAT for the Raspberry Pi that uses the Inter

Integrated Communication (I2C or I2C) protocol to exchange information with the Raspberry Pi.

A preview image of this board can be seen in Figure 4.5.

This control board takes some configuration values from the Raspberry Pi, such as the motor

type (DC or stepper motor), PWM frequency, encoder ratio and others. For the actual motor con-

trol, two values are needed: the direction of rotation (clockwise or counter-clockwise, obviously

the motor terminals need to be assigned correctly) and the PWM duty cycle to be used (which is

equivalent to saying the percentage of maximum power to apply).

36 Implementation

Figure 4.5: DFRobot’s DFR0592 board (adapted from [5])

At first, this board seemed the best fit for the project, but after some preliminary testing, we

found that the velocity calculation algorithm was only updating the feedback value every 100ms,

which is too great of a period to use for movement control. It could be acceptable for simple

velocity control, but it would also limit the remote operation of the slave device by making it to

slow for the desired application.

4.3.4 Hilscher’s netHAT 52-RTE

As explained in the previous chapter, our project involves the development of a custom Ether-

CAT slave device. For this, we need a specialized hardware interface called an EtherCAT Slave

Controller (ESC). As we have chosen to use a Raspberry Pi as our computing platform, we now

require an appropriate ESC HAT board. We will be using the Hilscher’s netHAT 52-RTE [16]

board mostly because FEUP / DEEC had a set of them available for immediate use, so we did not

have the necessity to order any for the development of the project. A preview picture of this board

can be seen in Figure 4.6.

The netHAT 52-RTE board has two Ethernet ports so that most of the supported EtherCAT

network topologies can be implemented without the need for additional network hardware. This

board uses the Serial Peripheral Interface 0 (SPI0) of the Raspberry Pi for communication and

uses a mailbox system to deliver messages to the control program. The ESC chip allows cyclic

synchronisation of 32 bytes of input and 32 bytes of output data. Considering our project will only

require a few bytes for each data type, there is plenty of room to do so.

This board provides an API library for the C language so developers can program the desired

slave device behaviour. The documentation manuals ([26] and [27]) provide useful and insightful

4.4 Hardware integration 37

Figure 4.6: Hilscher’s netHAT 52-RTE board

information on how this ESC board works and how to use it properly. These were the main refer-

ences used during the development of the slave device software, especially during the development

of the helper function that interact with the netHAT API library.

4.3.5 Screw terminal GPIO interface

This piece of hardware was necessary in order to connect the above mentioned motor encoder to

the Raspberry Pi. The previously referred stack boards do not provide any external access to the

Raspberry Pi’s GPIO pins and the Hilscher’s netHAT 52-RTE board forces its placement on the

top of the stack without providing a pass-through connector.

This specific model has been chosen for its simplicity, reduced cost and ease of use, as con-

necting the encoder wires is very easy and it provides a stable electrical connection due to the

usage of screw terminals. Unfortunately this model has been discontinued but any generic GPIO

expansion board should do the job of exporting the electrical connection needed to interface with

the encoder.

4.4 Hardware integration

This section will focus on presenting how the different hardware pieces have been integrated be-

tween themselves and, occasionally, explain difficulties that have been encountered during the

process. The proposed hardware structure of the slave device that was previously presented can

be visualised in Figure 4.7.

38 Implementation

Some GPIO pins of the Raspberry Pi can provide alternative functionality other than a General

Purpose IO pin (GPIO), such as serving as a pin to access an SPI communication channel. The

Raspberry Pi pins 17 and 18 have been chosen to interface with encoder signals because they

do not provide any alternative functionality, they are true GPIO pins. This way, no alternative

functionality that could potentially be useful in future works is occupied by the encoder interface.

We have also used a 7.5V power supply to provide power to the DFR0592, which in turn will

drive the motor. The criteria was to use a value supported by both equipment, and 7.5V fits both

the DFR0592 range (7-12V) and the DC motor range (6-9V)

netHAT 52-RTE

DC Motor

DFR0592

Raspberry Pi GPIO

Encoder

GND

GND

3.3V

3.3V

A

17

B

18

V+

M1+

V-

M1-

I2C

Master

SPI

-

+

7.5V
Power
Supply

UTP

Port 0 Port 1

Figure 4.7: Hardware connection diagram of the proposed slave device

4.4.1 Motor assembly

We began working on the hardware implementation by assembling the motor parts, which require

some soldering. First we soldered the encoder board on the motor terminals, being careful to leave

enough motor shaft length available to be able to attach the encoder’s magnetic disc on it. Then

we proceeded to solder a 6-wire cable to the encoder board terminals, which export all necessary

electrical connections.

The exported connections are the encoder power supply (VCC and GND, assigned to the

blue/white-blue wire pair), the encoder output signals (A and B, assigned to the green/white-green

wire pair) and the motor power signals (M1 and M2, assigned to the orange/white-orange wire

pair) and they can be visualised on Figure 4.8. A generic 8-wire Ethernet UTP cable was used for

the above mentioned electrical connections. These cables are fairly inexpensive and can provide

the necessary power to the DC motor. Finally we attached the magnetic disc on the motor shaft so

the encoder can work as expected.

4.4.2 Motor support

In order to not let the motor lay down on a table, a simple 2-piece support was designed to give it

form and stability. We also included a disc in the design to act as a minimalist load for the motor.

A preview of the designed pieces can be seen on Figure 4.9, Figure 4.10 and Figure 4.11. The

CAD design was developed in Blender [28] and the three drawn pieces were then exported to STL

4.4 Hardware integration 39

Figure 4.8: Motor encoder board connections

format. Finally these three STL files were sent to a 3D printing service to be printed. The final

result of the assembled motor coupled with the support can be seen in Figure 4.12.

Figure 4.9: Support foot preview

4.4.3 Raspberry Pi stack

After having obtained the necessary components, we assembled the slave device by stacking the

different HAT boards onto the Raspberry Pi 4 board. The final result can be seen in Figure 4.13.

Having done it for the first time we considered the boards to have an unstable mechanical coupling,

so we added a series of hexagonal spacers and screws to give the entire stack a bit more rigidity

and robustness.

The full stack is comprised of:

1. a Raspberry Pi 4 board [29] on the bottom, followed by;

40 Implementation

Figure 4.10: Support arc preview

Figure 4.11: Motor disc preview

4.4 Hardware integration 41

Figure 4.12: Fully assembled motor with support

Figure 4.13: Fully assembled Raspberry Pi stack

42 Implementation

2. a generic screw terminal prototype board that exports the GPIO signals to the screw termi-

nals, useful to connect the encoder signals to the GPIO pins (at the time of writting, the

specific board used has been discontinued);

3. the DFR0592 motor interface board;

4. and, on the top of the stack, the Hilscher’s netHAT 52-RTE board, which comes with a

non-passthrough GPIO connector, forcing it to be placed on the top.

By the end of all described integrations, the resulting slave device hardware is a compact stack

of electronic boards and a small motor attached on a support, as shown in Figure 4.14.

Figure 4.14: Overview of the entire slave device hardware

4.5 Software development

As we have explained previously, the slave device we are developing on this project needs some

custom functionality that needs to be programmed. The following sections present and explain the

algorithms and techniques used during development of each software module that compose the

final control program.

The presentation of the several modules will mostly follow the order by which they were

developed in order to better explain the programming logic and challenges we had to overcome

during the process.

4.5 Software development 43

The way the software was designed and implemented from the start allows anyone to create

different versions of each programmed module. So long as the original API is retained, no ad-

ditional modifications are needed on the modules that make such API function calls, meaning a

direct swapping of modules can be performed.

The proposed and implemented software architecture can be seen in a block diagram format

in Figure 4.1, shown previously on this chapter.

4.5.1 DFR0592 driver

The first software module we started to develop was the ’driver‘ library that interacts with the DC

motor control board, the DFRobot’s DFR0592. The communication with the DFR0592 is done

via the I2C channel and is based on registers. If we want to read a value on register X, we simply

send the register address we want to read and the board responds with the corresponding value. If,

instead, we wish to write a value, we also send the register address but with the most significant bit

of the transmitted byte set to 1, which indicates a write operation (as opposed to a read operation,

when it is 0), followed by the value we want to be written.

We began by testing the device functionality with a Python [30] script provided by the man-

ufacturer. We used it mostly to get a sense of what parameters and variables were needed to

set the motor speed and get the speed feedback value, but also to get acquainted to how the I2C

communication transactions worked.

It was at this stage that we found out the speed calculation algorithm implemented on the

board was too slow to be used in a control loop because it only updated the feedback value once

every 100ms. This is what lead us to decide and change the encoder connection to the Raspberry

Pi’s GPIO pins and create our own encoder ’driver‘ and speed/position calculation algorithm. This

way we will have more flexibility on the feedback calculation algorithm, being able to run it with

virtually any period.

After making sure our prototype communication algorithm was working correctly in Python,

we began to ’translate‘ it to the C programming language. Naturally some modification had to

be made, especially because C is not an object-oriented language, as opposed to Python which

is. We overcame this by creating a C struct with the same object data that we used in the Python

prototype, paired with helper functions that perform the same operations as the Python’s object

methods. The developed C functions all take, at least, one argument: a pointer to a variable of

type struct dfr_board, which is a pseudo-object representing a DFR0592 board. Listing 4.1

is an excerpt of the header file containing the definition of said struct.

Each DFR0592 board comes pre-configured with the I2C address 0x10 but they can be changed,

meaning several of these boards can be used simultaneously on the same bus. As such, the library

was designed in a way that, in future works, one can communicate with several boards simultane-

ously.

The mentioned approach was used in order to mimic the working principle of an object-

oriented programming language in C. This was mostly useful on the libraries that may need to

44 Implementation

Listing 4.1: Definition of the DFR0592 pseudo-object C struct
/ / / Board d e f i n i t i o n s t r u c t u r e
s t r u c t d f r _ b o a r d {

i n t i 2 c _ f d ; / / /< I2C bus f i l e d e s c r i p t o r
i n t add r ; / / /< Board s l a v e a d d r e s s
i n t p i d ; / / /< Board PID
i n t v i d ; / / /< Board VID

} ;

manage several pseudo-objects of the same type (e.g. the PID algorithm library), but we used the

same principle throughout all code-base, for consistency reasons.

4.5.2 Raspberry Pi’s GPIO encoder driver

After having determined the best approach for speed and position measurement was to connect

the motor encoder to the GPIO of the Raspberry Pi, it prompted us to develop a dedicated driver

to handle the input signals. The designed driver converts the logical values from the quadrature

encoder signals A and B into a step sequence by mapping the A/B pair of values onto a sequence

number, as shown in Table 4.1.

Table 4.1: Encoder step sequence mapping

A B sequence
0 0 0
1 0 1
1 1 2
0 1 3

To gain software access to the GPIO lines on the Raspberry Pi, the Linux C library libgpiod

[31] was used. This library allows two modes of acquiring input values: periodic polling and

event-triggered action. Our implementation uses periodic polling, in which the new update of

values will be triggered by the main control task, following its cyclic period. The event-triggered

action will call a specified function whenever the configured input(s) line changes its value, either

from boolean 0 to 1 or 1 to 0.

The periodic polling approach was easy to prototype and implement but it will have less preci-

sion when working with slow speeds, meaning an implementation based on event-triggered actions

could be implemented as future work, in order to improve both performance and measurement

precision in slow speeds. As we were mostly interested in creating a proof-of-concept system,

we accepted the reduced precision on slower speeds, in exchange for the simplest and smallest

implementation. We made sure the Raspberry Pi was capable of performing this task with a small

enough period to not miss any pulses from the motor, even when it is running at full speed.

After the encoder signals are mapped to the sequence number, a counter variable is updated

after every polling iteration, according to the difference between the current and previous sequence

numbers. If the sequence number increases, the counter is incremented by the same amount, and

4.5 Software development 45

vice versa. When the sequence number wraps around in either direction the counter value is

only changed by 1, meaning when it jumps from 3 to 0, the counter is incremented by 1, and is

decremented when the sequence number jumps from 0 to 3. This counter value will later be used

in the speed and position computation library. Every iteration its value will be compared with the

previous one and, combined with the necessary ratios (the encoder’s Pulses per Revolution (PPR)

and the motor gearbox ratio), the motor’s instantaneous speed and position are estimated for the

current time-step.

Again, for consistency reasons, this software library was designed to mimic the object-oriented

programming style and thus it’s possible to use multiple encoders simultaneously.

4.5.3 Speed and position algorithm

Even though this algorithm was implemented as a separate library from the encoder driver, it

heavily relies on data from said driver. Having it implemented as a separate module means a

different algorithm can be developed and be used as a swap-in replacement for the current one.

The current implementation works as a stand-alone cyclic task that performs the following

actions (see Figure 4.15 for a graphical representation):

1. fetches the above mentioned encoder counter variable from the encoder module;

2. fetches the current internal clock timestamp and calculates the time delta from the last iter-

ation;

3. calls the internal _calc_position() function, that applies the configured encoder scale,

gearbox ratio and transforms the value into degrees;

4. calls the internal _calc_velocity() function, that applies the same scales but also uses

the time delta calculated in step 2 to convert the value to speed, in Revolutions per Minute

(RPM);

5. saves the current timestamp as the previous one, to be used on the next iteration;

Fetch
encoder
counter

Fetch
current

timestamp

Calculate
time delta

Compute new
position

Compute
velocity

Save current
timestamp

Figure 4.15: Overview of the module cyclic steps

Following the same design pattern of the previous modules, a C struct variable is used to store

the pseudo-object data, including the calculated speed and position values. A such, a more com-

plex system that may need to calculate speeds and positions for multiple motors simultaneously

can be implemented with this library, due to the mimicking of an object-oriented implementation.

Even though the data struct is transparent to outside of the library, public functions are pro-

vided to fetch these values. These functions include an interlock variable to control the access to

the memory regions where such values are stored (the pthread mutex implementation is used),

46 Implementation

to make sure the cyclic calculation task is not disrupted by any external fetch operations. This is

a common technique used in multi-threaded software where concurrent running parts of the same

software application need to access the same memory location, but naturally they cannot do it

simultaneously.

4.5.4 PID control algorithm

In order to perform any type of movement control, either it being speed, position, or any other,

some form of control algorithm needs to be used. To this effect, we are going to use the most com-

mon control algorithm in the control universe: the Proportional/Integral/Derivative (PID) con-

troller. Virtually everyone in the controls universe is familiar with the PID controller and its

working principle:

• It receives two inputs: a reference value and a feedback value;

• Computes the error between the two, meaning how far is the current value (the feedback)

from the desired value (the reference);

• The Proportional term will contribute to the output value according to the calculated error;

• The Integral term will contribute to the output value according to the accumulated error over

time;

• The Derivative term will contribute to the output according to the error’s rate of change.

Because we did not want to spend to much time implementing something that already has a lot

of different implementations, we have programmed a simple library with a PID algorithm based

on the one used in the LinuxCNC [32] project. It has not been ported into our project, instead

we implemented our own version of the same algorithm and design, with the exception that we

applied the design pattern of using a C structure for holding the pseudo-object data. In this case,

multiple PID controllers can be implemented simultaneously using the same library. This was an

important characteristic to have as position control requires controllers for both the position and

speed, simultaneously.

During the testing phase the implementation demonstrated a good performance and correct-

ness. As such, we accepted its usage for our proof-of-concept prototype, but admit a better algo-

rithm or implementation might be necessary for a production release.

4.5.5 netHAT 52-RTE handler library

The Hilscher’s netHAT 52-RTE board already includes support for the C programming language,

provided by a library. As such, we did not have the need to develop a driver in the general sense

of controlling the board behaviour. Instead we have created a ‘handler’ library that makes the

proper calls to the driver’s functions and stores the cyclically updated data onto a C struct, the

same concept of storing the pseudo-object data as before. Even though the netHAT boards are not

4.5 Software development 47

designed to allow multiple simultaneous connections, we still used this approach for consistency

reasons.

Limiting the code-base that directly interacts with external drivers or APIs is a common tech-

nique to ease the development process and to allow faster and better error tracing. Having the

netHAT driver functions confined to a restrict set of helper functions allows us to maintain a clean

coding style. In the event of bugs or even API changes to the library, all driver calls are centralised

in a single place, allowing one to correct bugs and make modifications or improvements that in-

fluence the entire software, without having to navigate all code-base looking for references to the

driver’s API.

The comm library we have implemented takes care of all interactions with the netHAT 52-

RTE driver and maintains a local copy of the cyclically synchronised data, the previously referred

32 bytes of inputs and 32 bytes of outputs. Functions are provided to automatically perform the

following actions:

1. Initialise the SPI communication with the board and setup board and communication pa-

rameters;

2. Wait for the communication to be established (blocking function call) or, alternatively, check

if the connection is active or not (non-blocking function call);

3. Synchronise the input data with the network (update the local copy with the network data);

4. Fetch input data, either a single bit, a byte or a word (two bytes), from the local copy;

5. Set output data, either a single bit, a byte or a word (two bytes), on the local copy;

6. Synchronise the output data with the network (send the modified local data copy to the

network);

7. Stop the SPI communication and ‘shutdown’ the board.

Initialize SPI Setup
parameters

Wait/Check for
communication

Sync+Fetch
input data

no

Set+Sync
output data

Shutdown
board

yes
Terminate?

Figure 4.16: Overview of the ‘comm’ module cyclic steps

The actual behaviour of the slave device will naturally be determined by the main control loop

but this library was to designed to start the execution on step 1, then loop steps 2 through 6 during

normal execution, and terminate with step 7, as shown graphically in Figure 4.16.

48 Implementation

4.5.6 Main control task

Following the already implemented design pattern, the main control task will also use a C struct

to store its pseudo-object variables. The current implementation is only prepared to run a sin-

gle instance, although running multiple could be achieved, if that is something that makes sense

for a particular experiment. Nonetheless, care must be taken creating multiple instances as no

verification mechanisms have been implemented for simplicity reasons.

This task will not implement any new features to the control application itself. Instead, its

purpose is to maintain a periodic loop and trigger the actions that need to be performed at each

time-step iteration, meaning this is where the top-level logic of the slave device is implemented.

All actions are achieved via function calls to the libraries presented earlier and all information that

needs to be transferred between modules is done via this control task.

As this control application is being developed in the year 2021, where even inexpensive com-

puting platforms include multi-core processors (such as the Raspberry Pi), its has been designed

from the start with multi-threading in mind. Multi-threading is a simpler approach to simultaneous

processing by giving the same process (application) multiple execution threads that may perform

computations simultaneously. Compared to multi-processing, where several different processes

(applications) work together to achieve some goal, data sharing is much simpler because threads

within the same process share the same memory address-space (the system memory allocated ex-

clusively for the process) [33]. While allowing all threads to access all available data within the

process is faster than having to transmit said data to other processes, explicit synchronisation of

memory access is required to ensure that multiple threads do not try to access the same memory

region simultaneously, which will very likely corrupt such data. This has been implemented via

the usage of mutual exclusion (mutex) pseudo-objects. In particular, we used the mutex imple-

mentation from the Linux pthreads library, which we also used to create and manage the several

execution threads of the control application.

The final top-level logic implemented in this module is the following:

1. Lock the comm module configuration (via the comm_bus_conf ig_ lock () function);

2. Acquire the current timestamp;

3. Order the comm module to update the inputs via the comm_upda te_ inpu t s () function;

4. Check if the EtherCAT communication is active, if not then jump to step 10;

5. Read the enable bit from the inputs, if it is false then jump to step 10;

6. Copy the reference and feedback values to the PID pseudo-object;

7. Perform the PID computations;

8. Set the motor speed to the value of the PID output;

4.5 Software development 49

9. Set the first two output words of the comm module to the values of the feedback speed and

position, respectively;

10. Store the current timestamp as the previous one, so that in the next iteration the ‘previous

timestamp’ already has the correct value;

11. Order the comm module to update the outputs;

12. Sleep until the period time has been elapsed;

Lock `comm´
configuration

Acquire current
timestamp Update inputs

yes

no

Move values
around

Order PID
computations

Set motor
speed

Set output
values

Store
timestamp Update outputs

Comm OK &
Enabled? 1

1

2

2

Figure 4.17: Overview of the control steps

This logic is implemented so that the code starts at step 1 and then loops steps 2 through 12,

taking into account the conditions on steps 4 and 5. This logic can also be visualised in Figure 4.17.

The PID computations are only performed if running in local control mode, otherwise the motor

speed is fetched from the RTE network, through the comm module.

4.5.7 Initialisation code and debug output

At last but not least, before the main control task begins executing, all data structures and li-

braries need to be initialised. For simplicity of implementation, dynamic parameters will be passed

through a fixed format command-line argument list when launching the control application. A list

and a format representation of the parameters to be passed can be visualised by launching the

main executable without any arguments. Listing 4.2 shows the help text shown when running the

application without any arguments. Listing 4.3 shows how to run the slave device control applica-

tion passing configuration values with the same order they are presented in the Usage part of the

previously referred help output.

Contrary to what was initially planned, a module that would take care of exporting the per-

formance data relating to the control application was not implemented. Instead, in order to also

minimise the amount of concurrent threads within the application, the exporting of debug data was

implemented within the pid module. During development we realised that during each time-step

all relevant data for exportation was already stored on the PID pseudo-object, so it made sense

to include the exporting functions on the same module. The main module was planned to have

the responsibility of initialising data and auxiliary threads and then terminating them, during the

shutdown procedure, but during normal execution, no processing would be done in this thread. As

such, we ended up taking advantage of this unused thread and let the exporting of the debug data

be performed on it.

50 Implementation

Listing 4.2: Output showing the help information
Usage :

. / main p _g a i n i _ g a i n d_g a i n deadband p e r i o d command p _ v _ p e r i o d
e n c o d e r _ p p r g b o x _ r a t i o e n c _ p e r i o d l o g _ p e r i o d p id_fo rm c t r l d _ v a r
remote_mode [f i l e n a m e]

Arguments :
p_ ga in : P r o p o r t i o n a l g a i n
i _ g a i n : I n t e g r a l g a i n
d_ ga in : D e r i v a t i v e g a i n
deadband : Deadband v a l u e
p e r i o d : C o n t r o l p e r i o d
command : Command v a l u e
p _ v _ p e r i o d : P e r i o d t o c a l c u l a t e pos and v e l (us)
e n c o d e r _ p p r : Motor e n c o d e r PPR
g b o x _ r a t i o : Motor gea rbox r a t i o
e n c _ p e r i o d : Encoder I /O p a r s e p e r i o d (us)
l o g _ p e r i o d : Logging p e r i o d (us)
p id_ fo rm : PID form t o use : 0 f o r p o s i t i o n , 1 f o r v e l o c i t y
c t r l d _ v a r : C o n t r o l l e d v a r i a b l e : 0 f o r p o s i t i o n , 1 f o r v e l o c i t y
remote_mode : Enab le remote c o n t r o l mode (l o c a l c o n t r o l l e r b y p a s s e d)
f i l e n a m e : F i l e name t o o u t p u t debug i n t o [O p t i o n a l]

A l l done . Goodbye !

Listing 4.3: Example configuration values passed as arguments
. / main 0 .270 1 .086 0 .000 0 . 0 10000 0 10000 12 3 0 . 0 120 10000 0 1 0 $1

4.6 Summary 51

The data exportation itself is a simple algorithm, called periodically from the main thread,

that appends the current PID pseudo-object data to a file with the Comma-Separated Values (CSV)

format. This file format is very simple and is based on the concept that different values on the same

line are separated by commas and that they maintain the same relative horizontal position across

all lines of the entire file [34]. Listing 4.4 shows a small excerpt of one output CSV file generated

on one of the practical experiments described in a following chapter (all lines have been truncated

because they are too long for the page width).

Listing 4.4: Excerpt from an experimental data CSV output file
(. . .)

N, Timestamp , Command , Feedback , d e l t a _ t , e r r o r , (. . .)
(. . .)
1 5 5 , 1 . 6 0 8 0 0 1 , 0 . 0 0 0 0 0 0 , 0 . 0 0 0 0 0 0 , 0 . 0 1 1 7 1 1 , 0 . 0 0 0 0 0 0 , (. . .)
1 5 6 , 1 . 6 1 8 3 4 8 , 0 . 0 0 0 0 0 0 , 0 . 0 0 0 0 0 0 , 0 . 0 1 1 6 6 4 , 0 . 0 0 0 0 0 0 , (. . .)
1 5 7 , 1 . 6 2 8 6 9 5 , 0 . 0 0 0 0 0 0 , 0 . 0 0 0 0 0 0 , 0 . 0 1 1 7 0 2 , 0 . 0 0 0 0 0 0 , (. . .)
1 5 8 , 1 . 6 3 9 0 4 2 , 6 0 0 . 0 0 0 0 0 0 , 0 . 0 0 0 0 0 0 , 0 . 0 1 1 6 7 1 , 6 0 0 . 0 0 0 0 0 0 , (. . .)
1 5 9 , 1 . 6 4 9 4 0 3 , 6 0 0 . 0 0 0 0 0 0 , 4 9 . 8 6 8 9 4 4 , 0 . 0 1 1 6 6 2 , 5 5 0 . 1 3 1 0 5 6 , (. . .)
1 6 0 , 1 . 6 5 9 7 6 7 , 6 0 0 . 0 0 0 0 0 0 , 1 8 2 . 8 4 7 7 2 6 , 0 . 0 1 1 6 4 7 , 4 1 7 . 1 5 2 2 7 4 , (. . .)
1 6 1 , 1 . 6 7 0 1 3 1 , 6 0 0 . 0 0 0 0 0 0 , 2 9 9 . 1 9 9 8 8 0 , 0 . 0 1 1 6 7 1 , 3 0 0 . 8 0 0 1 2 0 , (. . .)
1 6 2 , 1 . 6 8 0 5 3 4 , 6 0 0 . 0 0 0 0 0 0 , 4 9 8 . 6 7 6 5 6 2 , 0 . 0 1 1 6 6 7 , 1 0 1 . 3 2 3 4 3 8 , (. . .)
1 6 3 , 1 . 6 9 0 9 6 5 , 6 0 0 . 0 0 0 0 0 0 , 5 6 5 . 1 5 8 4 2 8 , 0 . 0 1 1 5 1 5 , 3 4 . 8 4 1 5 7 2 , (. . .)
1 6 4 , 1 . 7 0 1 3 9 5 , 6 0 0 . 0 0 0 0 0 0 , 5 6 5 . 1 5 8 4 2 8 , 0 . 0 1 1 5 1 5 , 3 4 . 8 4 1 5 7 2 , (. . .)
1 6 5 , 1 . 7 1 1 8 2 0 , 6 0 0 . 0 0 0 0 0 0 , 5 9 8 . 4 0 1 9 0 8 , 0 . 0 1 1 5 3 6 , 1 . 5 9 8 0 9 2 , (. . .)
1 6 6 , 1 . 7 2 2 2 4 3 , 6 0 0 . 0 0 0 0 0 0 , 6 4 8 . 2 7 3 5 1 8 , 0 . 0 1 1 5 1 7 , − 4 8 . 2 7 3 5 1 8 , (. . .)
1 6 7 , 1 . 7 3 2 7 2 6 , 6 0 0 . 0 0 0 0 0 0 , 6 6 4 . 9 0 5 7 9 7 , 0 . 0 1 1 5 1 3 , − 6 4 . 9 0 5 7 9 7 , (. . .)
1 6 8 , 1 . 7 4 3 1 4 8 , 6 0 0 . 0 0 0 0 0 0 , 6 4 8 . 2 6 6 3 4 1 , 0 . 0 1 1 5 1 5 , − 4 8 . 2 6 6 3 4 1 , (. . .)
1 6 9 , 1 . 7 5 3 5 6 8 , 6 0 0 . 0 0 0 0 0 0 , 6 3 1 . 6 5 2 3 1 7 , 0 . 0 1 1 5 1 6 , − 3 1 . 6 5 2 3 1 7 , (. . .)
1 7 0 , 1 . 7 6 3 9 8 6 , 6 0 0 . 0 0 0 0 0 0 , 6 3 1 . 6 3 8 2 6 9 , 0 . 0 1 1 5 1 6 , − 3 1 . 6 3 8 2 6 9 , (. . .)
1 7 1 , 1 . 7 7 4 4 1 6 , 6 0 0 . 0 0 0 0 0 0 , 6 3 1 . 6 3 7 1 3 5 , 0 . 0 1 1 5 2 2 , − 3 1 . 6 3 7 1 3 5 , (. . .)
(. . .)

4.6 Summary

This chapter focused almost exclusively on technical details of how the final solution was imple-

mented. Starting with the presentation of the overall concept, going through the choice of hard-

ware components, their assembly and then moving towards the complex and extensive software

required to give the desired slave device all planned functionality.

During the development of this project, simplify became the daily word of choice because,

most of the time, less is much more. It’s one thing to design simple systems, but it’s a much harder

thing to simplify complex systems and be able to boil them down to their bare-bones.

52 Implementation

Chapter 5

Proposal evaluation

In this chapter we will present a practical experiment we conducted and the resulting data. This

will serve as a foundation for the evaluation of the designed system, by allowing us to verify which

goals have been met and to which extent the project can be considered successful.

After having done so, we will also explain the limitations and design choices that were known

to limit the outcome, up to a certain degree. These limitations were mainly due to design choices

and all of them were pondered from the beginning. Certain features or components were only left

out or replaced by simpler versions after making sure they would only reduce user friendliness

or not include some advanced functionality to the system, not part of the scope of the original

proposition. As the result of this project is intended to be a proof of concept, additional features

and user friendliness was only an optional objective.

5.1 Practical experiment

In order to validate our system we have developed a practical experiment based on one of the

conceptual experiments described in Chapter 3.

The base idea of the experiment is to control the speed of the motor using both the local

control on the slave device, as shown in Figure 5.1, and the remote control concept, as shown

in Figure 5.2, where the RTE network is intercalated on the control loop, using a few different

configuration values for the network cycle time.

RTE
network

Slave DeviceMaster Device

SP SP
Control

-

Feedback

Motor
e

Encoder

Predefined Speed curve

Figure 5.1: Graph illustrating the local control mode

53

54 Proposal evaluation

RTE
network

RTE
network

Master Device Slave Device

SP SP
Control

-

Feedback

Motor
e

Encoder

Predefined Speed curve

Figure 5.2: Graph illustrating the remote control mode

For the local control mode only the set-point values of the speed curve will be transmitted

over the RTE network so the expected behaviour is for the network cycle time to barely affect the

performance of the speed control loop. The expected result is for the actual speed of the motor

to follow the expected curve with, at most, a small increment to the response time of the process,

with the same order of magnitude of the chosen network cycle time.

On the other hand, the remote control mode will have the master node of the RTE network

performing the necessary computations and the slave node device will act as a simple networked

I/O interface for the system. This way, the control loop will traverse the slave device and the RTE

network before being closed on the master device. This mode of operation is expected to have

a significant impact on the performance of the control loop because the network cycle time will

influence the communication delay in both directions. Not only the plant feedback value will be

delayed on its way from the slave device to the master device but also the output value will be

delayed on the opposite direction. This delay is expected to heavily impact the performance of the

speed control loop and we expect to obtain either a system with much slower dynamics or, under

an extreme condition of network cycle time, a system that might not be controllable.

For this experiment we have defined a speed curve comprised of six different stages. Each

stage will set the speed to a single final value, making the set-point preview curve have five step

transitions. The graph shown in Figure 5.3 has been generated to help visualise the curve.

This curves evolves as follows:

1. two seconds of null speed;

2. five seconds of 600RPM;

3. five seconds of 900RPM;

4. five seconds of 300RPM;

5. one second of 900RPM;

6. two seconds of null speed;

We expect this speed curve to provide us with enough variability in both the time and controlled

variable domains in order to properly evaluate the system performance in all test cases.

5.1 Practical experiment 55

800

600

400

200

0

ω
(R

P
M
)

20

1000

151050

time (s)

Figure 5.3: Preview of the defined speed curve

Because we intend to implement motion control, we will use a fixed control cycle time of

10ms. This period will be configured on both the master and slave devices so that value updates

occur with the same cadence as the processing. We will perform three tests with each control

mode using three different network cycle periods: 5ms, 10ms and 20ms, which are half, full and

double of the control period, respectively. This effectively means we will present six test cases and

compare the performance between local/remote control mode pairs for each network cycle period.

As the system dynamics are expected to change between different test cases, before running

each test case the PID controllers will be tuned using the Ziegler-Nichols method [35]. This

defines a procedure to follow in order to determine the controller gains based on the proportional

gain that introduces instability (KU) and the frequency/period of oscillation of the system during

such instability (TU). The PID controllers will be tuned with PI configuration, which are the most

commonly used for controlling speed. As such, equations 5.1, 5.2 and 5.3 show the calculations

performed to obtain the tuning values for each test case, presented in Table 5.1.

KP = 0.45 ·KU (5.1)

tI = TU
1.2

KI = 60 · tI
⇒ KI = 60 · TU

1.2
(5.2)

KD = 0 (5.3)

56 Proposal evaluation

Table 5.1: PID tuning values

KP KI KD KU TU (ms)
local-5ms 0.270 1.020 0.000 0.600 20.4

remote-5ms 0.090 0.224 0.000 0.200 50.0
local-10ms 0.270 1.020 0.000 0.600 20.4

remote-10ms 0.081 0.238 0.000 0.180 58.8
local-20ms 0.270 1.086 0.000 0.600 21.7

remote-20ms 0.063 0.349 0.000 0.140 111.0

5.1.1 Master node implementation

In the particular case of this experiment, the master node device is implemented on a generic

desktop PC. It has been programmed using the CODESYS platform and is running on top of

Windows 10™.

The master node device is a home-built desktop computer comprised of an AMD Ryzen™ 5

1600 CPU [36], an MSI X470 Gaming Plus [37] motherboard with 2x8 GB dual-channel Kingston

HyperX Fury DDR4 RAM (16 GB total) [38] running at 2400 MHz, a 500 GB Samsung 970 Evo

Plus NVMe® M.2 SSD [39] hard drive, a Gigabyte GeForce® GTX 1650 Super™ OC 4G [40]

graphics card (NVIDIA) and it is powered by an Aerocool KCAS 500W PSU [41].

The CODESYS platform was used to create a single program on the master node that sends the

speed set-points of the predefined speed curve over the RTE network to the slave device, receives

the plant feedback values from the RTE network, performs the necessary computations for the

control loop and sends the the computed plant output value to the slave node, also through the RTE

network. Because the slave device software ignores the output value arriving on the RTE network

interface when it is configured for local control, the same software can be used on the master node

for both experiences with local and remote control modes. Furthermore, this approach makes sure

all data to be exported is present on the slave device in both operation modes.

The CODESYS platform includes support to create a Software PLC (SoftPLC) that runs on

the desktop PC. The program is then downloaded to it, as if it was a traditional PLC. The master

device software was implemented in four Program Organisation Unit (POU) implemented in three

different IEC 61131-3 programming languages:

• Structured Text (ST) was used in two POUs that perform data type manipulations;

• Sequential Function Chart (SFC) was used to program a simple state machine;

• Lastly, Function Block Diagram (FBD) was used to map different variables into and out of

a PID computation block.

The EtherCAT cyclic process data is statically defined as bytes. As a result, two POUs were

programmed in order to convert bytes into word (2-byte integer numbers) or real (floating point

numbers) variables, as necessary. One such POU will aggregate the input data, arriving from

the slave device as bytes, into global variables and the second POU will split the output global

5.1 Practical experiment 57

variables into bytes. All relevant variables were created in a Global Variables List (GVL) and the

corresponding bytes of the EtherCAT master device are mapped onto these global variables.

The SFC POU implements a simple state machine that controls the time behaviour of the

control program and provides a good place where to make the set-point value updates according

to the predefined speed curve. In this case, we followed a minimalist approach to the master

device software by hard-coding the timings and set-point values onto the control application. An

overview of the SFC structure can be seen in Figure 5.4.

Figure 5.4: SFC state machine overview

At last but not least, the FBD POU maps the required variables onto a PID processing block,

to be used during the remote control mode. The overview of this block can be seen in Figure 5.5.

5.1.2 Slave node configuration

The slave device requires some configuration parameters to work as expected. Most importantly,

all configurable periods (except for the enc_period) will be set to the same value as the control

58 Proposal evaluation

Figure 5.5: Overview of the FBD POU

period of the master device, 10ms. This is to ensure the local and remote control test cases are

executed in comparable terms.

The enc_period (encoder input polling period) will be left with the default value of 120µs,

to ensure every encoder pulse can be caught even while the motor is running at maximum speed

(a motor at 1100RPM with a 360PPR encoder generates one pulse every 151µs, experimentally

we determined a cycle of 120µs to be able to correctly capture every encoder pulse).

The remaining parameters will be set to: the controlled variable is set to velocity, the PID form

is set to position (ignored internally), the PID gains are tuned on each local control test case (when

the remote mode is selected these values are ignored) and the remote mode is selected according

to each test case. As a reminder to what was already explained in previous chapters, the slave

device parameters are passed to the control application through command-line arguments (refer to

subsection 4.5.7).

5.2 Experimental data

The following data was obtained by experimentally running the specified test case and collecting

the necessary data. Data processing and graphic generation has been performed using Matlab [42].

All presented graphs include the set-point values curve as well as the feedback values curve.

After the following subsections, a table is shown that presents the following measured charac-

teristics of the step-response of the controlled variable for the corresponding test case: rise-time,

settling-time, overshoot, peak value and peak time.

Because our speed calculation algorithm provides values with reduced precision, the computed

speed value continuously jumps between step values due to the nature of the algorithm (see sub-

section 4.5.3). This is the reason why the feedback curve shown in the following figures oscillates

slightly while the set-point value remains constant. As such, we had to adjust the setting-time

margin from the default 2% to 5%.

5.2 Experimental data 59

Figure 5.6: Set-point and feedback value curves for local control with 5ms network cycle time

Figure 5.7: Set-point and feedback value curves for remote control with 5ms network cycle time

60 Proposal evaluation

Figure 5.8: Set-point and feedback value curves for local control with 10ms network cycle time

Figure 5.9: Set-point and feedback value curves for remote control with 10ms network cycle time

5.2 Experimental data 61

Figure 5.10: Set-point and feedback value curves for local control with 20ms network cycle time

Figure 5.11: Set-point and feedback value curves for remote control with 20ms network cycle time

62 Proposal evaluation

5.2.1 Data analysis

Table 5.2 presents the evaluation of the step response data performed for the first set-point tran-

sition of the predefined velocity curve for each test case. Especially comparing the data for the

test cases when the network cycle time is larger that the control period (20ms > 10ms) the system

presents a much less stiff response during remote operation than during local control.

Comparing the values acquired for each test case, we can quickly perceive that the remote

control mode tests have a slight deterioration of the step response when compared to the local

control mode.

This is evidence that, in fact, network cycle time truly influences distributed control systems.

Especially when looking at industrial systems requiring motion control, periods for such cases are

even shorter than the ones tested here. Motion control systems require cycle times not larger that

1ms, with jitter values not exceeding 1µs [12]. When working with such small cycle times, any

variation on the control loop cycle times can cause it to become unstable and, in more extreme

cases, render the whole system uncontrollable.

Table 5.2: Step-response evaluation of each test case

Test Case rise-time (s) settling-time (s) overshoot (%) peak (RPM) peak time (s)
local-5ms 0.0366 1.8327 11.1124 664.9058 1.7327

remote-5ms 0.0597 1.9769 30.555 781.2768 1.7626
local-10ms 0.0544 5.1091 0.0301 615.2382 4.4606

remote-10ms 0.0434 5.1745 24.3232 764.6893 1.4324
local-20ms 0.0472 4.7729 5.5528 631.6609 4.7700

remote-20ms 0.6024 5.1745 0.0902 615.5647 4.1693

5.3 Limitations

In this section we will present the main limitation of the developed system, mainly in the soft-

ware components. Most of these limitations exist due to development choices and not due to any

particular impediment from realising them.

5.3.1 Hardware

For the most part, the hardware components were chosen in a way they would not pose a big

obstacle to the development of more advanced demonstration concepts. Regardless, the designed

and 3D-printed motor support was mostly meant to allow the motor to function properly without

the user having to hold on to it.

This was one of the limitations that rose from developing the project from a home environment,

where the development of the 3D model had to be done in an open-loop situation, without any

feedback or preliminary testing before sending the complete design for production. Ultimately

5.3 Limitations 63

this meant one of the 3D printed pieces was defective but, luckily, the problem was lessened with

some hot glue, as seen in Figure 5.12.

Figure 5.12: 3D printed support, fixed with hot glue

5.3.2 netHAT 52-RTE driver

Although the other RTE networks supported by the netHAT 52-RTE board should work out-of-the-

box with the developed handler, they have not been tested. Therefore, the current implementation

for said handler could be limited to only working with the EtherCAT protocol, which is the only

one properly tested.

First of all, EtherCAT includes a remote synchronisation feature that allows the master device

to send a sync command which will make all slaves update the outputs at the same time. This

feature is supported by the Hilscher’s netHAT driver but it has not been included on the developed

handler library. We did not dedicate time to add support for this feature as the designed sys-

tem would not use it. Furthermore, we acknowledge that more advanced demonstration concepts

would definitely benefit from utilising such feature, especially the ones that would use multiple

slave devices simultaneously. Regardless, the documentation on the netHAT CIFX API states that

‘Fieldbus synchronization must be supported by the used fieldbus protocol stack.’ [26], meaning

such feature will only work if the underlying RTE protocol supports it.

One more characteristic that may pose a limitation, mostly on larger and more complex demon-

stration concepts, is the fixed-size cyclic Input/Output (I/O) data. As mentioned previously, the

netHAT 52-RTE board provides 32 bytes for each input and output cyclic data types. Although this

amount of data is more than sufficient for our proof-of-concept system, it might not be adequate

64 Proposal evaluation

for more advanced case scenarios, such as multi-axis control, systems with large amounts of I/O

signals or large data transfers.

5.3.3 Encoder interface

By the end of the development phase of this project, the encoder interface used and the driver

implemented were very targeted for the specific model we used. The electrical connection only

supports single-ended signals up to 3.3V and does not support differential signals [43], due to it

being directly connected with the Raspberry Pi’s GPIO pins. This limitation can be overcome by

utilising external signal processing circuitry to convert the encoder signals to the supported range.

Furthermore, as the encoder used on our project did not include an Index output (one short

pulse every revolution), we did not add support for it on the developed driver. Effectively, no

mechanism for ‘homing’ the absolute position of the motor was implemented, because it was also

out of the scope of this project requirements.

5.3.4 Speed calculation

The current implementation of the speed calculation uses an algorithm based on a fixed time pe-

riod. It takes into account how many encoder pulses have been acquired over the time period, using

the encoder counter, and calculates the speed based on the elapsed time since the last processing

cycle. This had the advantage of being simple to implement, but for applications that require pre-

cise measurements, it is not the best option. At low speeds, this algorithm has poor precision,

including a gap between measuring a speed of 0 and whichever speed corresponds to exactly one

encoder pulse per iteration of the calculation algorithm.

One possible improvement is to design and implement an algorithm based on a dynamic pe-

riod that uses an interrupt-driven logic. Every time a new encoder pulse is detected, an interrupt

is generated which triggers the speed calculation. This algorithm is based on measuring how

much time is elapsed between consecutive encoder pulses and provides far better precision at low

speeds, as well as possibly reduced CPU usage. It would still be necessary to determine a timeout

period of when to consider a null speed, but that would still be way more flexible than the current

implementation, which indirectly controls said timeout through the desired cycle period. It has

been determined that the libgpiod library in use is capable of calling a function whenever an

input changes its state (callback method), so implementing this other algorithm should be doable

without the need to introduce new libraries.

When it comes to user friendliness, the main launcher of the application could have been a

bit more polished. This was mostly due to the limited time period for development, but all the

necessary features were still achieved.

For simplicity reasons we only implemented a single way of providing the control applica-

tion the necessary parameters: command-line arguments. We had planned on implementing some

form of configuration file which would hold the necessary parameter values, but we ended up

not implementing it. Instead, a wrapper-launcher can be written which stores the command-line

5.4 Summary 65

argument values. For example a bash script can automatically launch the application with prede-

termined values. A single text file called run.sh containing the command shown in Listing 5.1

has achieved the goal of storing predefined parameter values, so we did not pursue any further

options. Using this method, instead of directly invoking the control application executable, one

can simple execute the run.sh script to run the application with those predefined values.

Listing 5.1: Contents of the wrapper script to launch application with predefined parameters
. / main 0 .270 1 .086 0 .000 0 . 0 10000 0 10000 12 3 0 . 0 120 10000 0 1 0 $1

5.4 Summary

This chapter has presented the experiment ran and the resulting data that was obtained from it.

An analysis has also been done on the acquired data in order to conclude that the developed

system works as expected. All test cases have been fully described and the conditions under which

the experiment was ran have also been presented. This way, further experiments can compare

results with data presented in this document, considering all the differences in hardware and setup

conditions.

Furthermore, we have also described the limitations we are aware of after running said exper-

iment. They all resulted from design choices and can obviously be changed/reimplemented for

further study on their effects and/or improve the system as a whole.

66 Proposal evaluation

Chapter 6

Conclusions

6.1 Experimental results

The experimental results presented in the previous chapter provide solid foundation on which to

base our conclusions.

As expected, the experimental data proves that the system developed on this project is capable

of producing results with significant performance differences when network cycle times change in

control applications.

The acquired data also suggests that concepts exploring more advanced topics can base them-

selves on the hereby proposed concept in order to expand the possible exploration area. Interesting

results could possibly be obtained by testing synchronisation capabilities with a multi-slave sys-

tem.

6.2 Goals met

After analysing the experimental data gathered in the previous chapter and retrospectively looking

back at the original objectives of this project, we can only conclude that all main objectives have

successfully been achieved with the terminus of the project.

Some advanced functionality we had planned at the beginning ended up not being imple-

mented, especially improvements addressing mostly user friendliness and ease of use on the soft-

ware front. But, as explained in a previous chapter, a proof-of-concept system is not a final prod-

uct. All the essential features and desirable characteristics have been implemented, per the project

requirements.

The experimental results confirm the validity of the system proposed in this document and

provide a good indication that future works based on the presented concept are likely to produce

positive results. Eventually, more advanced designs could be able to port the concept to other

scientific domains other than automation engineering.

67

68 Conclusions

After taking a step back and taking a perspective look towards the project as a whole, the

difficulties that we overcame, the results we gathered and the goals we had established in the be-

ginning, one conclusion I have definitely reached is that the initial concept ideas would have been

to complex for the task at hand. The results obtained in such cases would have been influenced

by many uncontrollable factors and would probably not reflect as much the concept we set out

to explore: the network cycle time influence in control applications using Real-Time Ethernet

networks.

Although simple, the developed system and concept have been able to produce results with

minimum external influence. As said before, most times implementing and designing less can

mean much more, and the results are proof of that. A barebones Distributed Control System has

allowed us to explore the influence of the network cycle time on control systems.

As explained in the introduction sections, we aim at providing a solid foundation on which

more advanced concepts and systems ban be built upon. We have followed and fulfilled all re-

quirements that have been presented alongside the concept and we can only hope that such re-

quirements have been correctly evaluated, because now only time will tell if the proposed system

is solid, robust and flexible enough to be built upon.

6.3 Future work

The developed system includes some limitations that could be enhanced in future works. Some

have already been presented on previous chapters, but we will also include them in this section.

One of the first improvements that can be implemented is a better algorithm for computing

the speed and position of the motor on the slave device. A revised approach based on callback

mechanisms and timestamping could greatly increase the precision on such measurements. The

GPIO interface library in use (libgpiod) includes functions to register callbacks when input

signals change. The documentation on such functions is very limited and a deeper exploration of

the concept is required.

As summarized previously, the developed system in intended to serve a proof-of-concept pur-

pose. As such, the developed software focused solely on the necessary technical functionality.

User interaction has not been considered when implementing the software, so future works could

work on a more pleasant user experience when using this system.

More accurate results can also be obtained by making sure the Linux kernel in use supports

running real-time applications. As we have explained previously, we are using a stripped down

version of the Raspberry Pi OS in order to minimise software bloating. Nonetheless, some patches

exist for the Linux kernel that make it more suitable for real-time applications. At the time of

writing, works are still being carried out to include one such patch onto the kernel itself: the

Preempt-RT patches. Unfortunately the Raspberry Pi OS does not provide a kernel version with

such patches (unlike Debian, its parent). As such, future works could obtain more deterministic

software periods using a kernel with real-time capabilities and, consequently, improve the data

accuracy.

References

[1] EtherCAT Technology Group. Ethercat - the ethernet fieldbus. Online, available at https:
//www.ethercat.org/en/technology.html. Accessed 04-February-2021.

[2] EtherCAT Technology Group. Safety over ethercat (fsoe). Online, available at https:
//www.ethercat.org/en/safety.html. Accessed 11-June-2021.

[3] Electrical Technology. What is distributed control system (dcs)? Online. Accessed
10-September-2021. URL: https://www.electricaltechnology.org/2016/08/
distributed-control-system-dcs.html.

[4] Jens Sorensen, Dara O’Sullivan, and Christian Aaen. Synchronization of multiaxis motion
control over real-time networks. Analog Dialogue, 53(2), February 2019.

[5] DFROBOT. Dc motor driver hat for raspberry pi wiki. Online. Accessed 05-February-2021.
URL: https://wiki.dfrobot.com/DC_Motor_Driver_HAT_SKU_DFR0592.

[6] Dynapar. Quadrature encoder overview. Online. Accessed 16-September-2021. URL:
https://www.dynapar.com/technology/encoder_basics/quadrature_
encoder/.

[7] John Sonnenberg. Serial communications rs232, rs485, rs422. Technical brief, Raveon
Technologies Corp, 2018.

[8] Ieee standard for ethernet. IEEE Std 802.3-2018 (Revision of IEEE Std 802.3-2015), pages
1–5600, 2018. doi:10.1109/IEEESTD.2018.8457469.

[9] ODVA. Ethernet/ip - cip on ethernet technology. Technology Overview Series: EtherNet/IP,
2016.

[10] Nelly Ayllon. What is profinet? – profinet explained, February 2021. Online, accessed
02-June-2021. URL: https://us.profinet.com/profinet-explained/.

[11] Paula Doyle. Introduction to real-time ethernet i. the Extension, 5(3), 2004. Retrieved
8-June-2021. URL: https://www.ccontrols.com/pdf/Extv5n3.pdf.

[12] Max Felser. Real-time ethernet for automation applications. Industrial Communication Tech-
nology Handbook, Second Edition, 06 2009. doi:10.1201/9781439807620.ch21.

[13] Beckhoff Automation. Beckhoff - new automation technology. Online, accessed 09-June-
2021. URL: https://www.beckhoff.com.

[14] Paula Doyle. Introduction to real-time ethernet ii. the Extension, 5(4), 2004. Retrieved
8-June-2021. URL: https://www.ccontrols.com/pdf/Extv5n4.pdf.

69

https://www.ethercat.org/en/technology.html
https://www.ethercat.org/en/technology.html
https://www.ethercat.org/en/safety.html
https://www.ethercat.org/en/safety.html
https://www.electricaltechnology.org/2016/08/distributed-control-system-dcs.html
https://www.electricaltechnology.org/2016/08/distributed-control-system-dcs.html
https://wiki.dfrobot.com/DC_Motor_Driver_HAT_SKU_DFR0592
https://www.dynapar.com/technology/encoder_basics/quadrature_encoder/
https://www.dynapar.com/technology/encoder_basics/quadrature_encoder/
http://dx.doi.org/10.1109/IEEESTD.2018.8457469
https://us.profinet.com/profinet-explained/
https://www.ccontrols.com/pdf/Extv5n3.pdf
http://dx.doi.org/10.1201/9781439807620.ch21
https://www.beckhoff.com
https://www.ccontrols.com/pdf/Extv5n4.pdf

70 REFERENCES

[15] Galit Mendelson. All you need to know about power over ethernet (poe) and the ieee 802.3af
standard. 2004.

[16] Hilscher Gesellschaft für Systemautomation mbH. netx communication module in hat for-
mat - nethat. Online. Accessed 05-February-2021. URL: https://www.netiot.com/
interface/nethat.

[17] Raspberry Pi (Trading) Ltd. Hat requirements - add-on boards and hats. Online, available at
https://www.github.com/raspberrypi/hats#hat-requirements. Accessed
08-February-2021.

[18] Pololu Corporation. 6v high-power carbon brush (hpcb) micro metal gearmotors. On-
line. Accessed 05-February-2021. URL: https://www.pololu.com/category/174/
6v-high-power-carbon-brush-hpcb-micro-metal-gearmotors.

[19] Pololu Corporation. Magnetic encoder pair kit for micro metal gearmotors. Online. Accessed
05-February-2021. URL: https://www.pololu.com/product/3081.

[20] Raspberry Pi Foundation. Raspberry pi os. Online, available at https://www.
raspberrypi.org/software/. Accessed 05-February-2021.

[21] Software in the Public Interest. Debian. Online. Accessed 10-September-2021. URL:
https://www.debian.org/.

[22] Microsoft. Get windows 10. Online, 2021. Accessed 10-September-2021. URL: https:
//www.microsoft.com/en-us/windows/get-windows-10.

[23] CODESYS GmbH. Codesys development system v3. Online, available at https://
store.codesys.com/en/codesys.html. Accessed 05-February-2021.

[24] Raspberry Pi Foundation. Raspberry pi 4 tech specs. Online, available at https://www.
raspberrypi.org/products/raspberry-pi-4-model-b/specifications/.
Accessed 04-February-2021.

[25] Pololu Corporation. Pololu - robotics & electronics. Online, available at https://www.
pololu.com/. Accessed 05-February-2021.

[26] Hilscher Gesellschaft für Systemautomation mbH. Cifx api. Programming reference guide
(revision 9), Hilscher Gesellschaft für Systemautomation mbH, 5 2020. Accessed 1-March-
2021. URL: https://kb.hilscher.com/pages/viewpage.action?pageId=
119492420.

[27] Hilscher Gesellschaft für Systemautomation mbH. Ethercat slave. Protocol api (revision 11
- v4.8.0), Hilscher Gesellschaft für Systemautomation mbH, 5 2019. Accessed 1-March-
2021. URL: https://kb.hilscher.com/pages/viewpage.action?pageId=
106634930.

[28] Blender Foundation. Blender. Online, available at https://www.blender.org. Ac-
cessed 09-February-2021.

[29] Raspberry Pi Foundation. Raspberry pi 4. Online, available at https://
www.raspberrypi.org/products/raspberry-pi-4-model-b/. Accessed 04-
February-2021.

https://www.netiot.com/interface/nethat
https://www.netiot.com/interface/nethat
https://www.github.com/raspberrypi/hats#hat-requirements
https://www.pololu.com/category/174/6v-high-power-carbon-brush-hpcb-micro-metal-gearmotors
https://www.pololu.com/category/174/6v-high-power-carbon-brush-hpcb-micro-metal-gearmotors
https://www.pololu.com/product/3081
https://www.raspberrypi.org/software/
https://www.raspberrypi.org/software/
https://www.debian.org/
https://www.microsoft.com/en-us/windows/get-windows-10
https://www.microsoft.com/en-us/windows/get-windows-10
https://store.codesys.com/en/codesys.html
https://store.codesys.com/en/codesys.html
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/
https://www.pololu.com/
https://www.pololu.com/
https://kb.hilscher.com/pages/viewpage.action?pageId=119492420
https://kb.hilscher.com/pages/viewpage.action?pageId=119492420
https://kb.hilscher.com/pages/viewpage.action?pageId=106634930
https://kb.hilscher.com/pages/viewpage.action?pageId=106634930
https://www.blender.org
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/

REFERENCES 71

[30] Python Software Foundation. Python. Online, available at https://www.python.org/.
Accessed 2-March-2021.

[31] Bartosz Golaszewski. libgpiod. Online, available at https://git.kernel.org/pub/
scm/libs/libgpiod/libgpiod.git/about/. Accessed 1-March-2021.

[32] the LinuxCNC developers. Linuxcnc. Online, available at https://www.linuxcnc.
org/. Accessed 2-March-2021.

[33] Diference Between.com. Difference between multiprocessing and multithreading. On-
line. Accessed 16-February-2021. URL: https://www.differencebetween.com/
difference-between-multiprocessing-and-vs-multithreading/.

[34] The Internet Society. Common format and mime type for comma-separated values (csv)
files. Online, October 2005. Accessed 15-March-2021. URL: https://datatracker.
ietf.org/doc/html/rfc4180.

[35] Tomas B. Co. Ziegler-nichols method. Online, 2004. Accessed 20-May-2021. URL:
https://pages.mtu.edu/~tbco/cm416/zn.html.

[36] Advanced Micro Devices. Amd ryzen™ 5 1600 processor. Online. Accessed 16-September-
2021. URL: https://www.amd.com/en/products/cpu/amd-ryzen-5-1600.

[37] Micro-Star INT’L CO. X470 gaming plus. Online. Accessed 16-September-2021. URL:
https://www.msi.com/Motherboard/X470-GAMING-PLUS.

[38] Kingston Technology Europe Co LLP. Hyperx fury ddr4. Online. Accessed 16-September-
2021. URL: https://www.kingston.com/en/gaming/hyperx-fury-ddr4.

[39] SAMSUNG. 970 evo plus nvme® m.2 ssd 500gb. Online.
Accessed 16-September-2021. URL: https://www.samsung.
com/us/computing/memory-storage/solid-state-drives/
ssd-970-evo-plus-nvme-m-2-500gb-mz-v7s500b-am/.

[40] GIGA-BYTE Technology Co. Geforce® gtx 1650 super™ oc 4g. Online. Ac-
cessed 16-September-2021. URL: https://www.gigabyte.com/Graphics-Card/
GV-N165SOC-4GD.

[41] Aerocool Advanced Technologies Corp. Kcas 500w. Online. Accessed 16-September-2021.
URL: https://aerocool.io/product/kcas-500w/.

[42] The MathWorks Inc. Matlab. Online. Accessed 13-September-2021. URL: https://www.
mathworks.com/products/matlab.html.

[43] Douglas Brooks. Differential signals - rules to live by. Printed Circuit Design,
2001. Accessed 10-September-2021. URL: https://www.ultracad.com/articles/
differentialrules.pdf.

https://www.python.org/
https://git.kernel.org/pub/scm/libs/libgpiod/libgpiod.git/about/
https://git.kernel.org/pub/scm/libs/libgpiod/libgpiod.git/about/
https://www.linuxcnc.org/
https://www.linuxcnc.org/
https://www.differencebetween.com/difference-between-multiprocessing-and-vs-multithreading/
https://www.differencebetween.com/difference-between-multiprocessing-and-vs-multithreading/
https://datatracker.ietf.org/doc/html/rfc4180
https://datatracker.ietf.org/doc/html/rfc4180
https://pages.mtu.edu/~tbco/cm416/zn.html
https://www.amd.com/en/products/cpu/amd-ryzen-5-1600
https://www.msi.com/Motherboard/X470-GAMING-PLUS
https://www.kingston.com/en/gaming/hyperx-fury-ddr4
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/ssd-970-evo-plus-nvme-m-2-500gb-mz-v7s500b-am/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/ssd-970-evo-plus-nvme-m-2-500gb-mz-v7s500b-am/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/ssd-970-evo-plus-nvme-m-2-500gb-mz-v7s500b-am/
https://www.gigabyte.com/Graphics-Card/GV-N165SOC-4GD
https://www.gigabyte.com/Graphics-Card/GV-N165SOC-4GD
https://aerocool.io/product/kcas-500w/
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.ultracad.com/articles/differentialrules.pdf
https://www.ultracad.com/articles/differentialrules.pdf

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	Abbreviations and Symbols
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Document structure

	2 State of the art
	2.1 Real-time applications
	2.2 Real-time Ethernet networks
	2.3 EtherCAT
	2.3.1 Working principle
	2.3.2 The protocol
	2.3.3 Topology
	2.3.4 Distributed clocks
	2.3.5 EtherCAT P
	2.3.6 Error detection and diagnostics
	2.3.7 High availability and redundancy
	2.3.8 Safety over EtherCAT
	2.3.9 Communication profiles
	2.3.10 Interfaces

	2.4 Summary

	3 System architecture
	3.1 Requirements analysis
	3.1.1 Simplicity
	3.1.2 Low-cost
	3.1.3 Modularity
	3.1.4 DCS based architecture

	3.2 Proposed architecture
	3.2.1 Hardware
	3.2.2 Software

	3.3 Conceptual experiments
	3.4 Summary

	4 Implementation
	4.1 Concept development
	4.2 Proposed implementation
	4.2.1 Master node
	4.2.2 Slave node

	4.3 Parts choice
	4.3.1 Raspberry Pi 4
	4.3.2 Motor & encoder
	4.3.3 DFRobot's DFR0592
	4.3.4 Hilscher's netHAT 52-RTE
	4.3.5 Screw terminal GPIO interface

	4.4 Hardware integration
	4.4.1 Motor assembly
	4.4.2 Motor support
	4.4.3 Raspberry Pi stack

	4.5 Software development
	4.5.1 DFR0592 driver
	4.5.2 Raspberry Pi's GPIO encoder driver
	4.5.3 Speed and position algorithm
	4.5.4 PID control algorithm
	4.5.5 netHAT 52-RTE handler library
	4.5.6 Main control task
	4.5.7 Initialisation code and debug output

	4.6 Summary

	5 Proposal evaluation
	5.1 Practical experiment
	5.1.1 Master node implementation
	5.1.2 Slave node configuration

	5.2 Experimental data
	5.2.1 Data analysis

	5.3 Limitations
	5.3.1 Hardware
	5.3.2 netHAT 52-RTE driver
	5.3.3 Encoder interface
	5.3.4 Speed calculation

	5.4 Summary

	6 Conclusions
	6.1 Experimental results
	6.2 Goals met
	6.3 Future work

	References

