
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Adaptivity in Single Player Video
Games

João Augusto dos Santos Lima

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: João Jacob

Co-Supervisor: Zafeiris Kokkinogenis

July 23, 2021

Adaptivity in Single Player Video Games

João Augusto dos Santos Lima

Mestrado Integrado em Engenharia Informática e Computação

July 23, 2021

Abstract

Players typically play video games to have fun and enjoy the moments they create during the
gaming session. Each game gives the player a unique gaming experience, differentiating them
from an ever-growing video game market. Additionally, each player has a specific genre of games
that they enjoy. Even in the same game, different players have distinct objectives of what they
seek in the gameplay.

Furthermore, games try to compensate for the discrepancy of skill found between players by
allowing them to choose a level of difficulty. However, this method depends on the player’s ability
to self judge and self assign themself to a difficulty on a game they may never have played before.
Consequently, this assignment may lead to a poor gaming experience, not allowing the player to
enjoy all the creative content available in the game.

This dissertation tries to present a machine learning approach to game adaptivity in order to
maximize the player’s gaming experience. Firstly, to solve this problem, a player simulation needs
to be created to have sufficient data points to train the reinforcement learning adaptivity system.
Then, with the adaptivity system, the adapted game will change its content depending on the
playing user to improve the gaming experience and game flow.

Although the player simulation final results did not achieve the desired results for it to be
incorporated in the adaptivity system, it showed potential for future exploration in this topic. Fur-
thermore, the adaptivity system successfully altered the game elements depending on the user,
which delivered a different experience from the original game. The game adaptivity system can
also be adapted to different games and gaming elements to allow all games to deliver their created
experience.

Keywords: Video Game, Game Adaptivity, Machine Learning, Player Profiling, Player Type,
Adapted Game, Game Flow, Reinforcement Learning
Category: Human-centered computing, Human-computer interaction (HCI), Interaction design,
Computing methodologies, Machine Learning

i

ii

Resumo

Os jogadores normalmente jogam video jogos para se divertirem e aproveitar os momentos que
criam durante a sessão de jogo. Cada jogo oferece ao jogador uma experiência de jogo única,
diferenciando-o de um mercado de video jogos em constante crescimento. Além disso, cada jo-
gador tem um gênero específico de jogos de que gosta. No mesmo jogo, diferentes jogadores têm
objetivos distintos que procuram durante o jogo.

Além disso, os jogos tentam compensar a discrepância de perícia encontrada entre os jo-
gadores, permitindo que eles escolham um nível de dificuldade. No entanto, este método depende
da capacidade do jogador de se auto-avaliar e se auto-atribuir a uma dificuldade num jogo que
talvez nunca tenha jogado antes. Consequentemente, esta atribuição pode levar a uma experiência
de jogo sub-óptima, não permitindo que o jogador desfrute de todo o conteúdo criativo disponível
no jogo.

Esta dissertação tenta apresentar uma abordagem de machine learning para a adaptabilidade do
jogo, com o fim de maximizar a experiência de jogo do jogador. Primeiramente, para resolver este
problema, uma simulação de jogadores precisa ser criada para ter dados suficientes para treinar
o sistema de adaptabilidade de reinforcement learning. Depois, com o sistema de adaptatividade,
o jogo adaptado mudará seu conteúdo dependendo do usuário que está jogando para melhorar a
experiência de jogo e o fluxo do jogo.

Embora os resultados finais da simulação do player não tenham alcançado os resultados dese-
jados para que fosse incorporada com o sistema de adaptatividade, a simulação mostrou potencial
para exploração futura neste tópico. Além disso, o sistema de adaptabilidade alterou com sucesso
os elementos do jogo dependendo do usuário, o que proporcionou uma experiência diferente do
jogo original. O sistema de adaptação do jogo também pode ser adaptado a diferentes jogos e
elementos de jogo para permitir que todos os jogadores obtenham a experiência criada.

Keywords: Video Game, Game Adaptivity, Machine Learning, Player Profiling, Player Type,
Adapted Game, Game Flow, Reinforcement Learning
Category: Human-centered computing, Human-computer interaction (HCI), Interaction design,
Computing methodologies, Machine Learning

iii

iv

Acknowledgements

I would like to thank everyone that had the patience to heard my rambles and talk about the whole
dissertation process, even during these challenging times. A special thanks to my family and
girlfriend, who had the most patience in the world and gave their time to help and support me.
I also have to thank my supervisors for helping me develop and achieve a good project for this
chapter of my studies.

João Lima

v

vi

“The way I see it, every life is a pile of good things and bad things.
The good things don’t always soften the bad things, but vice versa, the bad things don’t always

spoil the good things and make them unimportant.”

11th Doctor by Sydney Newman, C. E. Webber and Donald Wilson

vii

viii

Contents

1 Introduction 1
1.1 Context and Motivation . 2
1.2 Objectives . 3
1.3 Implemented Solution . 3
1.4 Contributions . 4
1.5 Document Structure . 4

2 State of the Art Review 7
2.1 Game adaptivity . 7

2.1.1 Background . 7
2.1.2 Player types . 10
2.1.3 Game elements . 12
2.1.4 Player profiling . 14
2.1.5 Game Flow . 15
2.1.6 Applications . 16
2.1.7 Summary . 17

2.2 Machine learning . 18
2.2.1 Supervised Learning . 21
2.2.2 Unsupervised Learning . 22
2.2.3 Reinforcement Learning . 23
2.2.4 Imitation Learning and Inverse Reinforcement Learning 25
2.2.5 Player simulation . 26
2.2.6 Curriculum Learning . 27
2.2.7 Online Learning . 27
2.2.8 Summary . 28

3 Reinforcement learning based approach for game adaptivity 29
3.1 Preliminary work . 29
3.2 General adaptivity system methodology . 30
3.3 Selected Game . 31
3.4 Game modification . 37

3.4.1 Life System . 37
3.4.2 Time system . 40
3.4.3 Additional modifications . 40
3.4.4 Summary . 41

3.5 Player simulation . 41
3.6 Adaptivity System . 44
3.7 Summary . 47

ix

x CONTENTS

4 Development and workflow of game adaptivity system 49
4.1 Life system . 49
4.2 Time system . 50
4.3 Player simulation . 51
4.4 Adaptivity system . 59

4.4.1 Personality system overview . 60
4.4.2 Adaptivity system overview . 67

4.5 Summary . 73

5 Results and evaluation 75
5.1 Player simulation . 75

5.1.1 Experiments performed . 79
5.1.2 Experiments overall results and analysis 143

5.2 Adaptivity system . 147
5.2.1 Adaptivity agent results . 147
5.2.2 Adaptivity agent overall results and analysis 155
5.2.3 Adapted game results . 155

5.3 Summary . 162

6 Conclusions 169
6.1 Limitations . 170
6.2 Future work . 170

A Personalities 173

B Questionnaire 185

C Player simulation results 191

D Adaptivity agent results 193

E Additional questionnaire results 195

References 201

List of Figures

2.1 Platform game Celeste [44] . 8
2.2 HEXAD scale [67] . 12
2.3 Choice during the game Heavy Rain [54] . 14
2.4 Machine learning areas. Source: Big data and machine learning for Businesses by

Abdul Wahid [73] . 20
2.5 A Taxonomy of RL Algorithms by [1] . 25

3.1 Gameplay image with two stationary saws . 33
3.2 Gameplay image with a stationary spike . 33
3.3 Gameplay image with falling enemies . 34
3.4 Gameplay image with several moving saws . 34
3.5 Gameplay image that requires a jump over a hole of water 35
3.6 Gameplay image in a platform level . 35
3.7 Sections 0-8 and starting section . 38
3.8 Sections 9-15 . 39
3.9 Movement values in Unity inspector . 41
3.10 GAIL suggested network architecture . 43
3.11 Expert demonstration data collection architecture suggestion 44
3.12 Adaptivity system proposed structure . 47

4.1 Examples of the heart display . 50
4.2 Unity inspector section restart position values 50
4.3 Timer values in Unity inspector . 50
4.4 Timer display during gameplay . 51
4.5 Player camera gameplay vision . 53
4.6 Image Synthesis package script . 53
4.7 Final colour segmented image example . 54
4.8 Camera sensor script for agent’s object . 54
4.9 Code for the architecture of the network for GAIL 55
4.10 Demonstration recorder script for player agent’s object 56
4.11 Ray cast script values in Unity editor . 57
4.12 Ray cast vision during gameplay . 58
4.13 New starting section . 59
4.14 Starting section collision blocks . 60
4.15 Unity personality scriptable object example . 61
4.16 Unity personality scriptable object coins minimum and maximum value example 62
4.17 Unity personality scriptable object type of enemy example 63
4.18 Unity personality scriptable concentration values example 64

xi

xii LIST OF FIGURES

4.19 Special section . 69
4.20 Display of the type of round during gameplay 71

5.1 Example of the training .yaml file . 78
5.2 Player simulation experiment 1 results . 81
5.3 Player simulation experiment 2 results . 82
5.4 Player simulation experiment 3 results . 84
5.5 Player simulation experiment 4 results . 86
5.6 Player simulation experiment 5 results . 87
5.7 Player simulation experiment 6 results . 90
5.8 Player simulation experiment 7 results . 91
5.9 Player simulation experiment 8 results . 93
5.10 Player simulation experiment 9 results . 95
5.11 Player simulation experiment 10 results . 97
5.12 Player simulation experiment 11 results . 98
5.13 Player simulation experiment 12 results . 101
5.14 Player simulation experiment 13 results . 103
5.15 Player simulation experiment 14 results . 104
5.16 Player simulation experiment 15 results . 106
5.17 Player simulation experiment 16 results . 108
5.18 Player simulation experiment 17 results . 109
5.19 Player simulation experiment 18 results . 112
5.20 Player simulation experiment 19 results . 115
5.21 Player simulation experiment 20 results . 116
5.22 Player simulation experiment 21 results . 118
5.23 Player simulation experiment 22 results . 120
5.24 Player simulation experiment 23 results . 122
5.25 Player simulation experiment 24 results . 124
5.26 Player simulation experiment 25 results . 127
5.27 Player simulation experiment 26 results . 128
5.28 Player simulation experiment 27 results . 130
5.29 Player simulation experiment 28 results . 133
5.30 Player simulation experiment 29 results . 135
5.31 Player simulation experiment 30 results . 136
5.32 Player simulation experiment 32 results . 138
5.33 Player simulation experiment 33 results . 140
5.34 Player simulation experiment 34 results . 142
5.35 Player simulation experiment 35 results . 144
5.36 Adaptivity agent experiment 1 results . 149
5.37 Adaptivity agent experiment 2 results . 150
5.38 Adaptivity agent experiment 3 results . 152
5.39 Adaptivity agent experiment 4 results . 153
5.40 Adaptivity agent experiment 5 results . 154
5.41 Adapted vs non-adapted section shown . 158
5.42 Adaptivity agent experiment 5 results . 159
5.43 Difference between non-adapted and adapted version for each section 160
5.44 Total time spent in each section . 160
5.45 Jumps in each section . 161
5.46 Average velocity in each section . 161

LIST OF FIGURES xiii

5.47 Difference between non-adapted and adapted version for each game 162
5.48 Captured coins at the end of a game . 162
5.49 Total time spent playing one game . 163
5.50 End score of each game . 163
5.51 Average velocity in each game . 164
5.52 Correctly identify the adaptivity round . 164
5.53 Average GEQ Core module component scores 165
5.54 Adapted vs non-adapted negative affect . 165
5.55 Adapted vs non-adapted positive affect . 166
5.56 Average questionnaire response . 167

B.1 Questionnaire . 186
B.2 Questionnaire . 187
B.3 Questionnaire . 188
B.4 Questionnaire . 189
B.5 Questionnaire . 190

E.1 Adapted vs non-adapted challenge . 195
E.2 Adapted vs non-adapted competence . 196
E.3 Adapted vs non-adapted flow . 196
E.4 Adapted vs non-adapted sensory and imaginative immersion 197
E.5 Adapted vs non-adapted tension/annoyance . 197
E.6 Adapted game questionnaire responses . 198
E.7 Non-adapted game questionnaire responses . 199
E.8 Gender of the questionnaire responses . 199

xiv LIST OF FIGURES

List of Tables

2.1 Comparison of applications of adaptivity . 18
2.2 Player simulation examples . 27

4.1 Section’s coins and chests . 70
4.2 Section’s enemies . 71
4.3 Section’s completions times in seconds . 72
4.4 Section’s completions average speeds in Unity units 73
4.5 Section’s completions jumps . 74

5.1 Player simulation experiment 1 configuration 79
5.2 Player simulation experiment 2 configuration 80
5.3 Player simulation experiment 3 configuration 83
5.4 Player simulation experiment 4 configuration 85
5.5 Player simulation experiment 5 configuration 88
5.6 Player simulation experiment 6 configuration 89
5.7 Player simulation experiment 7 configuration 89
5.8 Player simulation experiment 8 configuration 92
5.9 Player simulation experiment 9 configuration 94
5.10 Player simulation experiment 10 configuration 96
5.11 Player simulation experiment 11 configuration 99
5.12 Player simulation experiment 12 configuration 100
5.13 Player simulation experiment 13 configuration 100
5.14 Player simulation experiment 14 configuration 102
5.15 Player simulation experiment 15 configuration 105
5.16 Player simulation experiment 16 configuration 107
5.17 Player simulation experiment 17 configuration 110
5.18 Player simulation experiment 18 configuration 111
5.19 Player simulation experiment 19 configuration 113
5.20 Player simulation experiment 20 configuration 114
5.21 Player simulation experiment 21 configuration 117
5.22 Player simulation experiment 22 configuration 119
5.23 Player simulation experiment 23 configuration 121
5.24 Player simulation experiment 24 configuration 123
5.25 Player simulation experiment 25 configuration 125
5.26 Player simulation experiment 26 configuration 126
5.27 Player simulation experiment 27 configuration 129
5.28 Player simulation experiment 28 configuration 131
5.29 Player simulation experiment 29 configuration 132

xv

xvi LIST OF TABLES

5.30 Player simulation experiment 30 configuration 134
5.31 Player simulation experiment 32 configuration 137
5.32 Player simulation experiment 33 configuration 139
5.33 Player simulation experiment 34 configuration 141
5.34 Player simulation experiment 35 configuration 143
5.35 Adaptivity agent PPO configuration . 147
5.36 Adaptivity agent SAC configuration . 148

A.1 Personality 1 - Experienced player that wants to collect coins 174
A.2 Personality 2 - Experienced player that just wants to go fast 175
A.3 Personality 3 - Casual player that wants to collect coins 176
A.4 Personality 4 - Casual player that wants to go fast 177
A.5 Personality 5 - Casual player that plays with care 178
A.6 Personality 6 - Casual player that has trouble with moving enemies 179
A.7 Personality 7 - Casual player that has trouble with platforming sections 180
A.8 Personality 8 - Inexperienced user playing the game for the first time 181
A.9 Personality 9 - Inexperienced player that plays the game with care 182
A.10 Personality 10 - Inexperienced hyperactive player 183

Abbreviations

ABWPL Adjusted Bounded Weighted Policy Learner
AI Artificial Intelligence
A3C Asynchronous Advantage Actor-Critic
CNN Convolutional Neural Networks
CT Computational Thinking
DDA Dynamic Difficulty Adjustment
GAIL Generative Adversarial Imitation Learning
GEQ Game Experience Questionnaire
IMPALA Importance Weighted Actor-Learner Architecture
LSTM Long Short-Term Memory
NPC Non-playable character
PPO Proximal Policy Optimization
RL Reinforcement learning
SAC Soft actor-critic
SVM Support Vector Machines

xvii

Chapter 1

Introduction

Video games are one of the many ways that we can get entertainment. Although physical games

provide entertainment, they require much time to set up and a lot more time playing, creating

long playthroughs that most players do not have time for. Digital games are an advantage to

people that prefer a more digital world and faster play. Video games can be played anywhere and

anytime with most of our daily tools, like a personal computer or a personal phone. They deliver a

unique experience by creating environments and aesthetics that can only be achieved on synthetic

ambients. Also, video games provide the user with more options for interaction with the digital

environment, making the world richer.

Entertainment is not all we can achieve by playing video games. Some games have the ob-

jective to teach users using different techniques. These different types divide video games into

categories, educational and entertainment. However, the entertainment branch is an ever-growing

industry of games. According to game statistics [43], the game industry was a 17.68 billion dollars

industry in 2016. By 2021, it is expected that the number of players will come close to 2.8 billion

players. Although the game industry is more focused on entertainment, most games feature both

fun and learning elements.

Furthermore, with vast amounts of players, the market is also filled with different games, each

with unique gameplay aspects. Depending on the gameplay, games can be categorised differently,

for example, strategy, casual, action games and much more depending on the game’s intention.

Even if different games are classified in the same genre, they still can provide different experiences

and features, making them stand out from each other. Each game is distinct because they have

different visual elements, gameplay features and mechanics and many other details that create a

unique gaming experience.

All of these varieties make players prefer a specific game genre, depending on their character

and personality. Users may search for games that offer a more intense experience, with extensive

interactions and constant action. Others prefer gameplay that is more strategic and slower to give

them time to think and elaborate a well-fought plan. However, not everyone has the same skill and

1

2 Introduction

dexterity while playing. Different players have different abilities to play, even if it is a game they

enjoy. Moreover, to allow every player to have a satisfying and rewarding experience, they must

play at a suitable skill level to provide a comfortable experience.

1.1 Context and Motivation

Games should deliver their optimal gameplay experience to any player, ensuring that everyone can

get an optimal game experience. One way of guaranteeing that all players can have an appropriate

challenge is by allowing the choice of game difficulty. Although this approach is not ideal since

each player is self-evaluating, this method is widely used within the gaming industry. Neverthe-

less, games should try to adapt their content to fit the user playstyle and skill level. The adaptivity

can create more extended playtime and recurring playthroughs by the same player. Furthermore, it

can also bring new players to the game by broadening their content to as many players as possible.

In this context, adaptivity should be considered during the development phase and even in already

implemented games. It can help create a more popular game by pleasing a good portion of the

players while also helping with the game’s longevity. Additionally, it can create a more stable

player base with more dedicated players and help the game distinguish itself from the competition

by being more player-focused.

An adaptivity system can make associations between the game content and the player’s per-

sonality to typically maximise the game flow, consequently also solving the correct association

between the game difficulty level and the player skill’s level. For this to work, the system must

first profile the player using machine learning techniques. It will distinguish users across various

skill levels and personal preference on the game objectives and measure different gameplay strate-

gies and patterns applied during gameplay. After this, we can alter different game aspects to fit the

diverse player base. These game aspects can range from game mechanics to the environment the

player can interact with.

Game adaptivity is not exclusive to the objective of maximising the game flow. A game de-

veloper can use game adaptivity to what fits their ultimate goal. An example of a different use for

adaptivity is in serious games. The goal may vary depending on the game’s objective, but some

serious games focused on education aim to maximise the students’ learning. The user’s profiling

is different, in this case, since educational games want to measure how much the player is learning

instead of how much he is having fun. The content to be adapted also differs since the primary

objective is to immerse the user in a learning environment.

Adaptivity in video games is an engaging topic in the ever-growing current industry, where

new techniques and implementations are still being investigated and improved. Its primary focus

is to improve the user’s experience by delivering a self-adaptive product.

1.2 Objectives 3

1.2 Objectives

The following objectives were created to guide the research work and the creation of the proposed

system:

• Research the field of Game Adaptivity, find the most used types of algorithms, and what

type of content can be altered to satisfy the player.

• Research the key elements (player actions and performance metrics) to estimate the player’s

personality.

• Research state of the art machine learning algorithms that can be used to solve game adap-

tivity and player simulation.

• Design a machine learning framework of game adaptivity that can be used in most single

player games.

• Develop the framework using a specific game and evaluate the results delivered by the pro-

totype.

All of these objectives will help guide the research and development phase of this project. In the

first phase, state of the art research should give more context to the topic and the problem. This

phase will help define the architecture and the prototype of the adaptivity system to be developed

and implemented in the second stage. The third phase is relevant to the analysis of the result

delivered by the prototype created and the evaluation of the adaptivity to prove that the system can

help improve the gaming experience. If the results are not satisfying or do not achieve the expected

results, the prototype should go over the three phases and improve the previously designed solution

using different approaches and algorithms.

1.3 Implemented Solution

As a result of the work done during this thesis, a prototype of an adaptivity system was created.

This prototype was developed using an open-source game [11]. The game is an infinite runner,

platform game, where the player can move his character to the left, right and jump. The game’s

main objective is to go as far as possible and collect as many coins as possible without losing all

lives.

The implemented prototype game included some changes to the game to help with the adap-

tivity system and create an overall better experience by giving the player more play options. These

changes include a three life system and a game timer. Moreover, these differences allow the player

to create different tactics and strategies when approaching the obstacles. All the other game ele-

ments remain mainly unchanged, with some exceptions to challenges that were too difficult or too

annoying to overcome.

The game is divided into distinct sections that represent different challenges. These sections

are used in the adaptivity system, where the adaptivity agent selects the next section for the player

4 Introduction

to engage. The objective of the adaptivity is to select the most indicated section depending on the

previously seen gameplay of the same user. The section chosen aims to maximise the players’

gameflow and the players’ prefered objectives (go as far as possible and collect coins) during all

the game sessions.

1.4 Contributions

The dissertation contributes by creating a prototype of an adaptivity system in a game. Although

this system is specific to this game and this genre, it can be modified and used in other games. This

prototype is also accompanied by a state of the art review of game adaptivity and machine learning

methods to implement the adaptivity. The review of game adaptivity includes the elements that can

be changed and how they affect each personality type to improve the game flow and the gaming

experience. Furthermore, there is also a review of the state of the art machine learning methods to

implement adaptivity.

Although many state of the art approaches to game adaptivity focus more on dynamic difficulty

adjustment, this dissertation creates a approach by combining the concept of game flow and state

of the art reinforcement learning algorithms to create an adaptivity system. This approach includes

a prototype of the implementation of adaptivity and suggestions on how to implement and modify

this work to any game. In addition, it also includes recommendations for further investigation and

improvement.

Furthermore, this dissertation also includes some investigation and experimentation regarding

the topic of player simulation for the creation of artificial players to train the adaptivity agent.

Most of the state of the art regarding player simulation is more connected with a machine’s ability

to play the game to an equal or better level than a human to get to the end of the level. On the other

hand, to train the adaptivity system, the player simulation needs to behave as closely as possible

to the players’ movements and actions, which this thesis explores.

Finally, the prototype user test results can give more insight into the usage of adaptivity in a

game while also providing more information and conclusions on what needs to be changed and

iterated in future works and implementations. Additionally, the results of the player simulation

can also be used for further iteration and investigation on the topic.

1.5 Document Structure

In this current chapter (chapter 1), the topic of Game Adaptivity in Single Player Video Games

is introduced. The following five chapters are divided into the state of the art review, proposed

system architecture and planning of the prototype, development of the prototype, evaluation of the

adaptivity system, and the work’s conclusions.

In the chapter state of the art review (chapter 2), game adaptivity, applications, and other rele-

vant topics will be explored, including player types, game elements, player profiling and gameflow.

1.5 Document Structure 5

Furthermore, the topic of machine learning and its application to solving the problem of adaptivity

will also be reviewed, as well as some discussions on player simulation.

In the following chapter (chapter 3), a proposed solution to the problem will be presented.

Additionally, it will include system architecture and requirements for the validation of the imple-

mented solution. It will also contain more detail about the prototype’s implementation and the

steps that need development.

In the fourth chapter (chapter 4), the prototype developed will be described in more detail, in-

cluding the technologies used, the game alterations made, and the adaptivity system implemented.

This chapter will also include a detailed description of the player simulation, the technologies used

and its implementation in the game context.

The next chapter (chapter 5) will present the evaluation system created inside the game and

how the collection of the data was made. Next, the data collected will be presented and analysed,

and conclusions will be made regarding the observations made during the data analysis to evaluate

the capability of the adaptivity system.

The final chapter (chapter 6) will contain some conclusions about this dissertation work and

proposals for future works and implementations to improve the adaptivity system prototype cre-

ated.

6 Introduction

Chapter 2

State of the Art Review

In this chapter, there will be an analysis of the various state of the art topics and preliminary work

relevant to this project’s development to fulfill the objective described in 1.2. Firstly, section 2.1

will explore the definition and purpose of games and game adaptivity. It will then explore the

different player types and scales, what elements can be adapted in a game, how to profile the

player, gameflow and its meaning to the player and game, and some application of adaptivity in

recent works. Furthermore, in section 2.2 the topic of machine learning and its various applications

to game adaptivity will be explored, with a more in-depth analysis of RL for its importance on the

project’s development.

2.1 Game adaptivity

In this section, several topics relating to game adaptivity will be explored. These topics include

the background behind game adaptivity and how it is usually implemented in the industry; the

player’s types, and what scales exist to categorise the different players; the game elements that can

be adapted and changed, and how do they affect the gameplay; player profiling techniques, what

actions to observe and how to measure them; and the game flow, how can it be implemented in

a game and how does it influence the player. Finally, some applications of game adaptivity are

going to be explored.

2.1.1 Background

Video games are a digital way to provide entertainment to the player. The user can interact with

the computer using input devices, changing what they see in the output device. According to [58],

games are mainly composed of skill, strategy, and randomness elements. Games of skill imply that

the player needs to have the ability to overcome the problems. This skill can come from successive

playthroughs in the game, acquiring knowledge of the game’s specific mechanics that give him the

advantage needed to solve the challenging problems. The game skill also depends on the user’s

7

8 State of the Art Review

mental and physical state, for example, the ability to have proper reaction times. An example of

a game that requires skill is Celeste[44] (Figure 2.1). This game is considered a platform game

where the user must navigate the level using platforms to reach the end. The game is mainly a skill

game since every jump and dash is time-based, and it requires a lot of skill and dexterity from the

player. Games that contain strategy elements depend on the ability of the user to make decisions.

These decisions significantly impact a specific event in a game or even in the game outcome.

Although the decisions can be related to skill, the strategy is related to the user’s ability to think

and develop specific and even innovative ideas to solve a problem. Games that include strategy

elements include strategy games, puzzle games and other more specific categories. Strategy games

include games where the user needs to solve several problems to satisfy a game condition to win.

Puzzle games are more inclined to solve only one puzzle; however, they include several levels

to solve, each with increasing difficulty. An example of a strategy game is StarCraft [13], which

is considered a real-time strategy game, where the user needs to manage resources, create an

army and defeat the enemy. Games that include randomness or chance elements are games where

the game’s outcome depends on random factors that the user has no control over. This type of

uncontrollable outcome can impact the player’s enjoyment of the game[65]. [58]

Figure 2.1: Platform game Celeste [44]

In general, games should not be so easy for the user that they may cause boredom, but also they

should not be too challenging to cause stress and overload the player [58]. However, some games

are specially made to be challenging [19], specialising in a type of player that enjoys being able

to complete a more complicated scenario [21], while alienating other players that might find the

difficulty too overwhelming. This difference is mainly caused because each player has different

preferences to what difficulty motivates them more [21]. The main focus of entertainment games

is to provide the player with the sensation of fun[41]. Like frustration and boredom, some metrics

2.1 Game adaptivity 9

can be used to measure an approximated level of the fun the player currently has. Frustration can

be associated with more challenging levels, where the player feels like this is an unfair challenge

to him. Boredom can be associated with lighter levels where the user feels that the task given

does not stimulate his skill over the game. However, both metrics can also be associated with the

opposite level of skill. Frustration can also occur with lower skill levels, where the user feels like

he has to do this task to move forward through the game. On the other hand, boredom can be

associated with more skill demanding levels, where the user feels like the task in hand may be too

time-consuming or implying much work to be completed, even if it represents a more significant

challenge.

One way to tackle different difficulties is to allow the player to change the skill level them-

selves. The option to choose the difficulty can happen at the start of the game or even during

gameplay. One easy way to divide the player’s skill level would be to introduce three levels: be-

ginner, average skill, and expert skill [45]. These levels allow the player to choose what they think

is the most appropriate difficulty to fit their current skill. A player can learn game mechanics more

easily and evolve their skill if placed in their correct play level. However, the learning process

changes the player’s skill, needing a change in the game skill levels [45]. Nevertheless, there only

exist three levels that the user can choose in this case, making it hard to distinguish the differences

between the enumerated skills. Moreover, even if the game offered more options to choose from,

the gameplay would feel disconnected from the user since he would regularly be wasting time

changing his skill level to match his preference instead of playing the game [17]. Also, there is a

possibility of a wrong choice of the level. If the challenge is too high and the task too complicated,

the player would feel frustrated, making him quit the game and choose a more rewarding task. On

the contrary, if the challenge is too easy, the user may not learn, causing boredom [45]. Most of

the information used to design the different levels is limited to market research and pre-production

playtesting, pre-release usability and post-release maintenance. This limitation can sometimes be

caused due to specific demographics, making the design not player distinct.

Game adaptivity is the game’s ability to adapt itself to fit the players, their type and their

individual needs[41]. Dynamic difficulty adjustment, a subsection of game adaptivity, tries to

adapt the game difficulty to fit the player’s performance, creating a balance between the player’s

ability and the challenge proposed by the game[58]. One example of adjusting the difficulty is in

the game of Mario Kart [51]. This game’s AI, usually called Rubber Band AI, makes the game’s

opponent stay close to the user. If the player is too far ahead of everyone, the adversary will gain

increased speed to catch up to the player. On the contrary, if the player falls too far behind, the

opponent will slow down to give the player a chance. Furthermore, there also exists an item system

in the game. If the player is in one of the last positions of the race, the items it will receive are

of higher quality. However, if he is in the first three positions, the player’s items are lower tier.

This example is one type of dynamically adjusting the game difficulty without the player having

to specify any settings. This automatic change allows the player to avoid feeling stressed or bored

when faced with different tasks [52].

For this adaptation to happen, the program needs to know the skill demonstrated by the player.

10 State of the Art Review

This information can come from recorded data before the game happens, in different gameplay

sessions or, if possible, in different games. It will then allow the game to perform adaptivity during

the loading time. If the objective is to change the game during the gameplay, real-time information

about the player and the environment must be recorded [58]. Some examples of elements to be

annotated that can then be used to adapt the difficulty [52]:

• The environment the player is interacting with.

• The difference between the score of the players.

• The last actions that were taken by the user in the game.

• The movement the player is performing in the game if applicable to that game.

• Information about past games the user has played.

However, most of these dynamical difficulty adjustment applications are based on specific heuris-

tics and probabilistic methods that relate the different information obtained with the different dif-

ficulty levels created by the developers [52]. Even in games where NPCs are present, the different

skill levels only change the life and damage values, making them more powerful, but not clev-

erer [60]. NPCs also need to change their behaviour and adapt their skill based on the player’s

behaviour during the gameplay [19].

Dynamic difficulty adjustment mainly focuses on balancing the skill of the player with the dif-

ficulty of the game. Game adaptivity tries to adjust its game elements to fit the player personality

to make the gaming experience unique and personal. In general, games need to become more un-

predictable and player-centric. There needs to be a better capture of the player’s true intentions for

playing that game. These intentions need to be captured by analysing the different characteristics

and emotional states during the gameplay to be then used to ensure the player’s immersion in the

game. [41]. Usually, game adaptivity alters game elements that are not entirely differentiable from

regular gameplay. However, when a player notices the change, through repeated gameplay[19],

they may find the adaptivity an unfair element, affecting their engagement in the game [58], or they

may also find it appropriated, creating a richer experience [19]. There is also a possibility that the

player may abuse the system created by, for example, losing on purpose, indicating a wrong level

of skill [58].

Game adaptivity can have a positive impact on the game industry. According to [6], player-

centric adaptation can increase player loyalty and enjoyment with the game. The adaptivity will

allow the game to have increased longevity and become more commercially reliable.

2.1.2 Player types

A player type can be associated with the behaviour the user demonstrates during gameplay. The

behaviour shown is also what makes each person different. Groupings of players’ type can be

created to describe better personalities observed in games through the player’s psychographic

2.1 Game adaptivity 11

interests and game behaviours [2]. [2] enumerates several user taxonomies that currently exist and

can be used:

• Bartle Taxonomy [8] divides the user into achievers, explorers, socialisers, killers. Achiev-

ers categorise players o like to accomplish goals; explorers include users that like to discover

the environment; socialisers include players that enjoy having interactions with others in the

game; killer represents players who like to disrupt the functioning of the game and like to

go beyond what is expected to do in the game.

• Yee’s MMORPG user motivations [75] is an iteration from the Bartle taxonomy.

• Four Fun Keys [39] mainly focuses on categorising emotions. They can be divided into four

groups: easy fun, hard fun, people fun and serious fun.

• Demographic Game Design model [9] divides the user into conquerer, manager, wanderer

and participant.

• Demographic Game Design model 2 [10] is an extension of the previous work. It divides

the player into four types: logistical, tactical, strategic and diplomatic.

• BrainHex [50] divides the player into seven categories: seeker, survivor, daredevil, master-

mind, conqueror, socialiser and achiever.

• HEXAD [67] divides the user into six types: philanthropists, socialisers, free spirits, achiev-

ers, players and disruptors.

The taxonomies described above serve as a baseline to classify player type in games. One player

does not have to be in a specific group but can be part of multiple simultaneously. [2]

From each player type, associations can be made between them and game elements [2]. These

associations will enable the game to tailor its content to fit each player. The player’s personality

modifies its representation of player types and consequently changes its preference in the differ-

ent game genres [67]. According to [67], the HEXAD scale (Figure 2.2) can have associations

between its categories and specific game elements, which might be relevant for the topic of game

adaptivity. The following list will further describe the different associations [67]:

• The philanthropists are associated with the players that do not mind performing actions that

do not benefit themselves. They relate to the principle of altruism. Game elements like

collection, trading, gifting, knowledge sharing and administrative roles better relate to this

personality type.

• Socialiser players prefer to perform actions that serve as interaction with others to create

social bonds. Elements like guilds, teams, social networks, social comparison, social com-

petition and social discovery benefit this type of player.

12 State of the Art Review

• Free Spirits is the type of player that values freedom and self-expression. It can be associated

with exploratory tasks, nonlinear gameplay, easter eggs, unlockable content, creation tools

and customisation.

• Achievers are the type of player that likes to complete challenges. Elements like certificates,

learning new skills, quests, levels, progression, and boss battles include what they primarily

seek.

• Players are the type that aims at earning rewards, no matter what the activity is. Elements

prefered by this type are points, rewards, prizes, leaderboards, badges, achievements, virtual

economy and games of chance.

• Disruptors include players that tend to disrupt the system and enjoy testing the limits of

the game. Elements like innovation platforms, voting mechanisms, development tools,

anonymity and anarchic gameplay favour this player type.

These player types are an essential piece in game adaptivity since they allow the developers to

identify and define game elements for the specific personality. Machine learning algorithms can

use these elements to perform adaptivity.

Figure 2.2: HEXAD scale [67]

2.1.3 Game elements

As described in the previous chapter, several game elements can be modified to adapt the game

to fit a specific player type. Several examples of games that adapt their game content to fit the

game behaviour can be found already implemented in the industry. According to [41] some of

these games include Max Payne [59], where the main element being adapted is the players aim

assistance. This game mechanic adaptation allows less skilled players to have a slightly better

2.1 Game adaptivity 13

performance in the game; PES 08 [38] changes the enemy’s AI strategy depending on the player’s

strategy; Left 4 Dead [34] changes the game world generation, the narrative and the events de-

pending on the player’s progress and responses to the task presented; Heavy Rain [54] changes

the narratives depending on the decision performed by the player in the story (Figure 2.3). Ele-

ments of narrative and their adaptation can approximate what the player is searching for in terms

of storytelling [41].

According to [6], several elements of the game can be used in the topic of game adaptivity.

The following list enumerates some elements presented by the author that have the most impact

when implementing an adaptive system:

• Space adaptation. It is referent to how space can adapt to the behaviour of the player. In

a terror game, space evolution can include more scenes or environments the player tries to

avoid.

• Mission, task or quest. The use of objectives can steer a player in a specific direction (in

a narrative sense or by merely orienting the player) and rewarding them by completing the

tasks.

• Character adaptation. This can include enemy AI that tries to adapt to the player strategies

or behaviour, consequently making the world feel more real and alive.

• Mechanics adaptation. Change in game’s aim assistance, the character speed or other spe-

cific games mechanics can help create a more adaptable scenario for the player.

• Narrative. The use of narrative and the influence the player can have on them, creates a

better experience for the user, making him feel more immersed in the world and in control

of the story.

• Music and sound. The correct use of this element is crucial to create a feeling of immersion,

flow and engagement. The different kinds of music, with variations in tone, structures and

rhythm can induce different feelings during gameplay.

• Difficulty scaling. The use of elements that create a balance between players. These can

include randomness, enemy strategies and difficulty, and more pacing to create faster or

slower gameplay.

Although these enumerated items do not include every possible element that can be implemented

in a game, their use, combined with the player’s personality, can create more relevant user ex-

periences. Furthermore, if these elements are adapted to suit the player type, they will be more

immersed in the gameplay, creating a more prominent feeling of enjoyment and game flow.

14 State of the Art Review

Figure 2.3: Choice during the game Heavy Rain [54]

2.1.4 Player profiling

A critical step to perform game adaptivity is to create a model of the player profile. Demographic

information about the user produces some knowledge that can be used to profile the player. How-

ever, this data is insufficient to create a personalised experience and can lead to stereotypes in the

player models [19]. Another way of obtaining player information is by requesting the completion

of a questionnaire. The use of a questionnaire can be seen in the article [19], where the author

uses an immersive experience questionnaire to obtain the total immersion felt by the users while

playing the adapted game. Furthermore, the author also uses the player score to profile the player.

Although the use of questionnaires can provide more insight into the gameplay’s experience, it

also breaks the game’s immersion by interrupting the game [21]. One way to resolve this problem

is by integrating the questions in the narrative of the game. This method can help maintain the

game’s continuity while obtaining information about the player experience [21].

Although questionnaires are commonly used to obtain specific and detailed information about

the player, other techniques can also be applied. They include the modelling techniques of the

player’s actions, tactics, strategies and player profile [6]. Player actions can be directly observed

from his behaviour in the game. Several player actions performed in a short period form player tac-

tics. In the same style, several player strategies performed over multiple games compose the player

strategies The applications of these three aspects are motivated by the player’s profile and person-

ality, making different players have different actions [6]. The primary idea behind modelling a

player profile is to allow the system to know who the player is, their desires and motives, and the

user behaviour in that specific instant [6]. However, these techniques require much more obser-

vations across various scenarios to be useful, making them more expensive and time-consuming

[71]. Also, the game’s systems must be sufficiently complex while the observations have to be

2.1 Game adaptivity 15

retrieved in short intervals during gameplay, and can sometimes be partially completed [6].

One example of using the modelling techniques can be seen in the work [71], where the author

uses the player movement, conversation with NPC of the game and other action like interactions

with objects to create a model of the player. They also used a questionnaire at the end of the

play session. In another work [42], the player model is highly dependent on its gameplay, like his

movement through the level. Although user profiling is usually made by observing its behaviour

during gameplay, other observations may also be considered. In the work [33], the user profile is

also made using the heart rate during gameplay. [41] also comments that body expressions and

facial expressions can give more insight into the current user’s emotions.

In general, player profiling can contribute to the game’s adaptivity as it helps to measure and

create a user profile model [41]. This information can help to personalise the gameplay, improving

the overall user experience and game flow in the game [33].

2.1.5 Game Flow

Flow can be defined as:

“It provided a sense of discovery, a creative feeling of transporting the person into a

new reality. It pushed the person to higher levels of performance, and led to previously

undreamed-of state of consciousness. In short, it transformed the self by making it

more complex.” [18]

Gameflow is the feeling of being concentrated on a demanding and appropriated gaming task while

enjoying it [65]. According to [65], the task must be on the same skill level as the player and have

explicit goals to guide progress while giving feedback for the player’s actions. If these tasks are

correctly implemented, it will give the player a sense of control, creating a sense of immersion.

The game flow experience by the player can lead to a sense of enjoyment while playing.

According to [66], there are eight core elements of game flow: concentration, challenge, player

skills, control, clear goals, feedback, immersion and social interaction.

• Concentration. Games should provide different incentives that the player wants. Games

should also keep the player’s attention on high workload tasks they feel worth completing,

motivating their perceptual, cognitive and memory skills. For example, games with high-

quality graphics, animations, audio, cutscenes, and tasks can improve concentration [65].

• Challenge. Games should provide the player with challenges and tasks on the same level

as the player and evolve with the player’s evolving skills. Furthermore, challenges can be

related to the quality of the enemies and their artificial intelligence during gameplay [65].

• Player Skills. Games should encourage players to learn new skills and evolve their gameplay

by providing adequate learning challenges while rewarding the user’s actions.

16 State of the Art Review

• Control. Players should be able to control their characters, the actions they can freely per-

form, and how they can impact the environment they are playing. They are mainly per-

formed using the game input devices, for example, keyboard or controller. Their simplicity

and ease of use are crucial to creating a good sense of control in the game [65].

• Clear Goals. Goals should be explicitly presented to the player.

• Feedback. Players should receive feedback for the actions they take and the tasks they

complete.

• Immersion. The player should lose the sense of awareness over their external environment,

being entirely dedicated to the game. The sense of immersion can also be facilitated by the

element of narrative in the game. A more compelling story, interaction with the elements

and NPC’s of the game, can better connect the player with the game [65].

• Social Interaction. Games should provide the player with options to socially interact with

other players.

It is worth noting that not all the elements must be created or implemented in a game to give a

sense of enjoyment. Some of these elements may also not apply to every game or are trivial to

implement, but the general use can increase the global game flow experience. The sense of flow

can also be estimated since they can be related to the task the player is completing [65]. The use of

questionnaires can help to measure the sense of flow felt during gameplay. The game experience

questionnaire[32] has three main modules, the first two to measure how the player felt during the

gameplay experience and the last one to understand how the player felt after the session ended. The

first module is critical since it estimates the immersion, flow, competence, positive and negative

affect, tension, and challenge the player felt during the gaming session. Another questionnaire

that also measures flow is the Flow for Presence Questionnaire[57], where the user is asked if he

experienced any described flow type during their task.

2.1.6 Applications

In the article [58], the author acknowledges that game balancing using dynamical difficulty ad-

justment requires a large amount of data to solve this problem. To generate more data, the author

creates agents with different skills and strategies and mixes them to create different games. The

agents utilise RL to preserve the ability to learn from past play and create innovative strategies.

RL is commonly used to create AI of enemy players or agents that can solve and play games.

Some examples include [58] the algorithm created by OpenAI [14], who trained RL agents that

played against each other and were able to win against a professional player of Dota 2 [70], and

AlphaZero[64] who was able to play with excellent accuracy games of chess, shogi and go.

Adaptivity is mainly used in multiplayer games. These include the use of systems like dif-

ficulty adjustment, matchmaking, asymmetric role and skill and aim assistance that can improve

the overall user experience with the games [19]. The main reason behind this is the algorithm’s

2.1 Game adaptivity 17

ability to balance all the player’s different skill levels in the same match and between matches.

This balancing creates a more even match between the players, leading to more significant equity

and potentially fun.

According to [42], the author uses automatic generation of content, specifically game world

generation, to provide a more adaptive approach. With the help of a tool that allows the game

designers to specify what types of elements and content correspond to each user’s personality,

the author can create an adaptive system that automatically generates game worlds that fit each

personality type. It uses variables like ramp usage, obstacle avoidance, floor edge avoidance,

power-up selection, AI defence and AI offence, to measure the player’s skill during gameplay.

In [21], the author refers that sensors can capture more complex emotions that can then be used

to create a player model. However, their use can be conditioned since they can not be affordable

by the average user or are solely too uncomfortable to wear during gameplay sessions. Finally, it

used in-game dialogue to evaluate the player’s emotional state and then used a function mapping

to apply the game adaptivity to each feeling.

Game adaptivity can also be applied to the context of educational games. They provide a tool

to teach and educators to keep their students motivated and engaged while acquiring knowledge

[29]. An educational game’s primary focus is to provide students with a tool to gain education

during a gaming environment, making a difference between entertainment games by not focusing

on the challenge [41]. Fun, interactivity, challenges and immediate rewards can also be fun in

educational games. Instead of focusing on the topic to learn, like in traditional education, the focus

is on the gameplay, making indirect learning activities while maintaining the primary rewards

from entertainment games [53]. One way of calculating the player’s performance, in this case, is

by using past question has a reference for measuring the metric. With this information, one can

associate the metric measured (player’s performance) with potential future questions [53].

A comparison of some state of the art game adaptivity applications can be observed in the

table 2.1.

2.1.7 Summary

As described in this section 2.1, key elements must be analysed to implement a player-centric

game adaptivity correctly. In section 2.1.2 and 2.1.3, several player types were described and

the elements each player prefers. The game elements play an essential role in adaptivity since

they are to be altered, and they affect how the player experiences the game. To measure the player

type, section 2.1.4 explored the use of questionnaires and observation of player behaviour. Section

2.1.5 described the meaning of gameflow and how it can affect the gaming experience. The game

flow describes the primary stimuli that the players search during gameplay, making it essential for

both the game’s development and adaptivity implementation. Although game flow is composed of

many different elements, only a few apply to game adaptivity. In section 2.1.6, some applications

of game adaptivity were analysed.

Game adaptivity is typically implemented as a dynamical difficulty adjustment with simplistic

implementations and observations. Even when adaptivity is implemented in a more complex game,

18 State of the Art Review

Table 2.1: Comparison of applications of adaptivity

Article Type Player pro-
file/ Observa-
tions

Modifications/
Actions

Algorithm Objective/
Reward

Notes

[21] DDA Frustration
and boredom

Platform me-
chanics

Basic Balance
frustra-
tion and
boredom

-

[33] Adaptivity Age and heart
rate

Spawning me-
chanic

Basic Balance ef-
fort

-

[19] DDA Immersion
(immersive
experience
questionnaire)

Game timer Basic Increase
immersion

-

[53] Education Past questions Next ques-
tions and
tips

Basic Education -

[52] DDA Distance be-
tween players,
difference in
health, last
action

Move the
character

RL-PPO Fair oppo-
nent

Simulated
players

[29] Education Mouse situa-
tion, potential
score

Cat move-
ment, tips

Basic CT -

[58] DDA Win/lose ratio Move wall RL-
ABWPL

Balance ra-
tio

Simulated
players

[42] Adaptivity Usage of
game ele-
ments

World genera-
tion

Basic User expe-
rience

-

[45] DDA Level, score
and health

Skill level SVM + K-
means

Correct
skill level

-

their implementation is generally limited to the association between the player type identified

by specific actions and the game elements that need to be altered. This association is usually

implemented manually, leaving room for an exploration of machine learning approaches.

2.2 Machine learning

Machine learning is the use of computational algorithms, enabling a computer to learn from past

experiences and make correct predictions. Any type of digital data can be used to train and test the

algorithm. However, this data must have sufficient quality and size for the adequate functioning

of the predictions. This constraint creates a dependency on the data used, relating the predicament

of teaching with data analysis and statistics. [48]

2.2 Machine learning 19

A large variety of tasks can employ the use of machine learning. As revealed by [48], these

algorithms can be used for text or document classification, natural language processing, speech

processing applications, computer vision applications, computational biology applications and

many other specialised applications like learning to play games. Implementing machine learning

is not limited to these topics and can be adapted to solve any problem correctly.

According to [24], data quality assessment should be considered before building the model

used for machine learning. Although this project does not iterate over the data quality topic, one

must always consider data analysis and try to solve their problems to promote better performance

and consistency over the built system. It is also worth noting that the system’s performance is

an indirect measure of data quality since it is evaluated using a different subset of the data that

does not correspond to the data used to teach the algorithm. On the contrary, data analysis can

significantly impact the model’s performance; for example, the presence of outliers during the

training phase can cause instability in the final model. [24]

Some dimensions of data quality that can be considered during the data analysis include [63]:

• Timeliness is related to the age of the data and if it is appropriated with the task proposed.

• Consistency is related to the data format that must correspond with all the data, wherever it

is stored.

• Accuracy is related to how well the data reflects the real-world values.

• Completeness is related to the data’s ability to represent sufficient complex information to

the task employed.

• Duplication is related to unwanted duplication present in the dataset.

• Consistent Representation is concerned with the format of the data and the preservation of

it.

The dimensions enumerated can serve as a baseline, but are not limited to it. Other data quality

dimensions can also be considered [63]. To meet data quality, the user does not need to meet every

single dimension. However, the knowledge of them can help to improve quality. On the contrary,

quality issues can arise from data entry errors, redundancy duplicates, contradictory values and

inconsistent data [63].

In terms of machine learning tasks, they can be divided into three major groups: Supervised

Learning, Unsupervised Learning and Reinforcement Learning.

Supervised learning is a subset of machine learning where the objective is to build a model

capable of learning to predict an output, where the data used for training is labelled. In other

words, there exists a mapping between the input variables and the output variable. Inside the

supervised learning category, we can have classification and regression tasks. The main difference

refers to the output variable. In classification, the problem is to assign a category or a limited set

of items to the output correctly. In contrast, regression is used when the output represents a real

value. [48]

20 State of the Art Review

Figure 2.4: Machine learning areas. Source: Big data and machine learning for Businesses by
Abdul Wahid [73]

On the other hand, unsupervised learning is used to solve tasks where the main objective is

to find hidden data structures, creating data groups. This type of machine learning uses unlabeled

data to train the algorithms. Unsupervised learning mainly consists of two tasks, clustering and

dimensionality reduction. The clustering task is the partitioning of the data into a homogeneous

subset of items (clusters). These clusters contain items that are similar to each other within a

given filter. Dimensionality reduction consists of transforming a set of data into one that has a

lower-dimensionality representation. [48]

Finally, reinforcement learning can also be considered a subset of machine learning. Using

this learning scenario, the training and testing phases are mixed. The model actively interacts with

the environment by taking actions while receiving a corresponding reward. The objective of the

learner is to maximise the reward function. To achieve this, he must actively be exploring new

actions to take or exploiting the actions already taken with the information obtained from them.

[48]

Although only three machine learning subsets were referred to, others can also be included

for more specific and intricate learning scenarios. Such as semi-supervised learning, transductive

inference, online learning, active learning.

2.2 Machine learning 21

2.2.1 Supervised Learning

Supervised learning’s basic idea is to learn a mapping between the input variables to an output

variable. It will then create a model of this mapping that can classify the unlabelled data. To

create the model, it first needs to learn from annotated training data to understand the relationship

between the input variables and output. The name supervised comes from the fact that the model

only trains with the labelled dataset. The learning of the model only stops until it can make correct

predictions with an adequate performance level.[49]

Several methods of the application of supervised learning exist and are available to solve many

problems. Some of these include: support vector machines, neural nets, logistic regression, naive

bayes, memory-based learning, random forests, decision trees, bagged trees, boosted trees and

boosted stumps. More information about these algorithms and an empirical comparison can be

found at [16]. Although this project’s main focus does not involve an in-depth analysis of the

methods, some basic knowledge about their functionality and their advantages and disadvantages

are essential for potential implementation.

However, can these machine learning methods be used to solve problems in the topic of game

adaptivity? One use of the algorithm SVM can be found in [45] where the author tries to adjust

the game difficulty. This algorithm learns using data from an “offline” phase, where the user

automatically sets his difficulty, and then the information about the game is logged. In an “online”

phase, which corresponds to the unlabelled data where a new user plays the game, the first step

is to determine the player’s type, using a K-means algorithm [26] then the learned model(SVM)

classifies the data, giving the corresponding difficulty level(label).

Support vector machine (SVM) is a supervised learning algorithm that can classify nonlinear

problems. It is based on statistical learning theory that can use different kernel functions to map

the input variables to a high dimensionality feature space. This algorithm can be used to solve

either classification or regression problems. [27]

One of the main limitations of [45], referred to above, is that the output is only a variable

corresponding to the player’s difficulty. Although choosing a difficulty level is lifted from the

developers’ work, there is still a limitation to how complex and detailed the creator can make each

skill level. In one of this thesis initial works [35], the problem of single output was analysed, and

multi-output regression was used to solve this problem.

A problem faced by supervised machine learning algorithms is that the mapping is limited

to giving one unique output variable to several input variables. One approach to try to solve

this problem is the use of multi-target prediction. According to [72] several approaches could be

made regarding multi-target prediction. One can use individual models for each target label or

use a specific model to perform multi-output while considering the relation between the different

variables. Although these approaches may be more intensive in memory usage, they still allow

a possible solution to the problem. It is also worth noting that in [35], multi-target aims to solve

the game adaptivity problem. The labels are related to the game design; more specifically, they

correspond to what the user can interact with, modifying the game’s final game experience.

22 State of the Art Review

As referenced [35], supervised learning algorithms can be used to solve game adaptivity. How-

ever, as the author mentioned, some assumptions were made about the user. One of these assump-

tions is the user’s inability to progress and learn from gameplay, effectively denying the possibility

of evolving and becoming better. Additionally, it also indicates that the predictions made are lim-

ited to the game’s start and end. This problem limits the game’s adaptation by generalising the

gameplay that lasted several seconds (ideally, the adaptation should be made in real-time). These

limitations could be solved using an online learning approach, although they are not explored in

the article. It is also worth noting that the algorithm was trained with data that had satisfaction

above a predefined value.

2.2.2 Unsupervised Learning

Unsupervised learning is related to the algorithm’s ability to find hidden patterns in a dataset where

it may appear to be unstructured noise [22]. In supervised learning, the dataset has a mapping

between input variables and the output variable. The output corresponds to what the algorithm can

find in the real world. In contrast, unsupervised learning receives unlabeled data. This data can

be used to build representations of the input and can be used for decision making and predicting

future inputs [22]

Although this learning scenario can be decomposed into more specific tasks, clustering is the

only one to be considered and reviewed. Clustering is the technique that groups the raw data re-

ceived into clusters. The clusters are created from hidden patterns in the data. Items inside one

cluster are similar to each other and different from other cluster’s items [62]. An example of an

algorithm that creates clusters of data is the k-means algorithm. K-means is a non-deterministic

unsupervised learning algorithm that produces fast and simple numeric clustering results. It iter-

ates over every item, calculating the distance between, commonly using the Euclidean distance,

and then creates new optimal cluster centres [62].

The clustering algorithm can be used with the game’s observations as input and player types

clusters as output. The use of the K-means algorithm is used on the work [45], where the author

uses the clusters created by the algorithm to find what the new player type is. After having the

corresponding type, the difficulty adjustment can be applied. In this case, the author uses an

SVM algorithm to create a correspondence between the player type and the difficulty level to be

adjusted.

The use of unsupervised learning can solve the problem of game adaptivity. However, the

player personality is being generalised to one player type and one game difficulty. This generali-

sation creates a less player-centric experience needing a more complex system that can associate

different game elements with each observed action player while maximising the players game

flow.

2.2 Machine learning 23

2.2.3 Reinforcement Learning

One of the subsets of machine learning is reinforcement learning. Reinforcement learning utilises

machine learning algorithms to create an agent that can learn from a world and act on it to achieve

the desired objective. However, instead of providing information on how to solve the task, the

agent is put in the world, and with enough trial and error, it will learn the goods and bad rewards

for each action in each state [56]. One example of reinforcement learning can be observed when a

user plays for the first time the game Super Mario [46]. In the first session of gameplay, the player

tries the game’s different control and movement options. He will try to move the character, and

as soon as he leaves the initial screen, an enemy will appear, and it will start to stroll towards the

player. If the player does not jump over the enemy, the character will die, and the game will start

over. The player’s interaction with the character and the enemy incentivises forward movement

since the screen does not move to the left side and avoiding enemies by jumping over them. This

gameplay can be seen as reinforcement learning since the player is rewarded with each action that

he takes, such as the screen moving to the right, which signifies a positive reward since the player

is presented with progression and new challenges. Additionally, the player can also lose the game

to an enemy, representing a negative reward since the player is brought back to the start of the

game.

For reinforcement learning to work in a machine learning manner, several elements should be

defined, including the agent, the environment, the states, the actions and the reward [56]. The agent

can be viewed in the example above as the user who plays the game. He is the one who determines

how to play the game and what are the best decisions to take [56]. The environment is where the

agent lives and can interact with [56]. In the example above, it can be seen as the level of the game,

the world where the character plays. The state is an instant in the environment, and each state can

be obtained by acting on the world [56]. Each state represents the complete information about the

environment, and the agent can make observations about the world to receive information [1]. If

the agent can observe the whole state of the environment, the environment is fully observed [1].

On the other hand, the environment is partially observable if the observation only represents a

portion of the world’s information [1]. In each state, the agent can perform an action, which will

lead to an update in the environment and a new state where the agent can then perform another

action [56]. An action space defines what actions the agent can take on the environment [56]. In

the example above, the player has only a finite amount of moves that he can make. These include

moving the character to the right, to the left, jump and run. In this case, the action space is discrete

since all the agent’s actions are discrete [56]. In contrast to this, if the world has infinite possible

actions, the action space is continuous [56]. An example of this is a racing game, where the agent

can decide what speed he wants the car to go at or how much the car needs to rotate in degrees.

Furthermore, based on the action taken on the environment, the agent receives a corresponding

reward [56]. In a real-world scenario, the reward corresponds to a treat a dog receives for perform-

ing a correct action. In machine learning, the reward is represented by a number, and its value

depends on the environment the agent lives in. The agent’s objective is to maximise the sum of the

24 State of the Art Review

rewards, denoted as return, over the environment states starting from the initial state to the final

state, called an episode [56]. In the example above, an episode starts from the initial position until

the player reaches the end of the level, located in the far right, or when the user dies to an enemy

and is forced to start over. An episode can also be called a trajectory and is denoted by all the states

achieved by performing actions at each timestep or state with an associated reward [56]. The agent

decides what action to take in each state based on the current policy [56]. In the first episode, the

agent policy is randomly initialised, and the agent performs random actions on the environment,

receiving a corresponding reward based on the action taken [56]. After several episodes, the agent

will eventually learn the best action to take in a specific state [56]. If the policy decides to perform

a specific action in a state, the policy is deterministic [56]. Furthermore, if the policy instead maps

a probability distribution over the action space, the policy is stochastic [56]. Instead of performing

the same action when the agent is in a specific state, as in the deterministic policy, the stochastic

policy creates a probability of performing each action of the action space [56]. The optimal policy

is the policy that chooses the correct action in each state and, consequently, maximises the agent’s

return (sum of rewards) [56]. To prevent the return from reaching an infinite value, a discount

factor is introduced to decrease the reward for future actions [56]. This factor value defines how

vital the immediate and future rewards are [56].

Reinforcement learning can be divided into model-based and model-free RL (Figure 2.5). A

model-based approach can be implemented if the algorithm can access the environment model

[1]. The agent knows the probability of moving to a new state based on the current state and

action (transition probability) and the reward associated with this transition [56]. On the model-

free approach, the agent does not know the environment model dynamics [56]. There exist two

primary methods in model-free learning: policy optimisation and Q-learning. Policy optimisation

algorithms are typically on-policy; they decide based on one policy while improving the same

policy to obtain the optimal policy [56]. Methods like A2C/A3C[47] and PPO[61] are examples

of policy optimisation algorithms. Policy optimisation algorithms are stable and reliable principled

methods that try to optimise the reward. Q-learning algorithms are mainly performed off-policy;

these algorithms use two policies, one behaviour policy and a target policy [56]. The behaviour

policy decides the actions on the environment while the target policy is improved [56].

Algorithms like DDPG[40] and SAC[25] are algorithms that interpolate between policy op-

timisation and Q-learning. They use parts of both approaches to create more reliable and stable

algorithms. [1]

The application of reinforcement learning in-game adaptivity can be seen in the work [58],

where the author uses an RL game master to control the game and to apply the game adaptation.

However, this work only uses the win ratio of the players to train the model. In another work

[52], the author uses reinforcement learning(PPO algorithm) to train a game adversary to learn the

game and match the player’s skill to provide a fair match. In both of these works, the RL agent’s

reward was to create a state of game balance, or in other words, this is an application of dynamic

difficulty adjustment.

2.2 Machine learning 25

Figure 2.5: A Taxonomy of RL Algorithms by [1]

2.2.4 Imitation Learning and Inverse Reinforcement Learning

Imitation learning is an algorithm that learns how to perform from demonstrated behaviours with-

out receiving the reward [30]. Instead of the agent being put directly into the environment, the

agent collects expert demonstrations and then learns how to perform in a supervised learning man-

ner by minimising the loss function [56]. Imitation learning allows the agents to know how to

perform in each state presented in the world. However, if the expert training demonstrations do

not include a state, the agent will not be able to act since the expert never experienced that state

[56]. One algorithm that can implement imitation learning is Behaviour Cloning [68]. The im-

plementation of this algorithm can also be found at Unity ml-agents [69], where developers can

implement and adapt this algorithm to work with their games. The implementation of this algo-

rithm also includes a method to record expert demonstrations from the players. Furthermore, the

framework ml-agents also includes other algorithms to supplement behavioural cloning to mitigate

its flaws. One of the available algorithms is GAIL (Generative adversarial imitation learning)[28],

which implements inverse reinforcement learning.

The main objective of reinforcement learning is to find the optimal policy in a specific envi-

ronment that maximises the return [56]. For this to work, the environment needs to reward the

agent depending on the current state and the action chosen. However, the reward in an environ-

ment is too troublesome to define, for example, in a pedestrian simulation, the agent might be

rewarded for walking in the walkway and avoiding other people, but he might also needs to watch

for other obstacles to avoid and other problems that might need to have a positive or negative

reward associated to them. Inverse reinforcement learning tries to learn the reward function from

expert demonstrations [56]. After learning the reward function for that environment, the agent can

26 State of the Art Review

then be trained to learn the optimal policy using a reinforcement learning algorithm [56]. One

algorithm that implements inverse reinforcement learning and is also available in the framework

Unity ml-agents[69] is GAIL[28]. This algorithm is based on a supervised machine learning al-

gorithm GAN(Generative adversarial network)[23]. GAN consists of two networks: a generator

and a discriminator[23]. The generator generates new data points based on the distribution of the

input dataset [56]. The discriminator then distinguishes between the actual data points that hold

the ground truth and the generated ones[56]. The algorithm GAIL works similarly, where the gen-

erator generates a new policy based on the distribution of the expert policy, and the discriminator

determines if the policy belongs to the expert or the agent(generated)[56]. These two networks

compete and learn simultaneously to improve their ability to fool/distinguish[56]. Furthermore,

the GAIL algorithm does not require large amounts of expert data to train since it can generate

data from the environment and train with it.

2.2.5 Player simulation

Player simulations are primarily utilised to create agents that can play a game to an equal or

higher level than a human being. Examples of player simulation can be found in the table 2.2.

In the work[4], an agent is trained using an imitation learning algorithm and with observations

of real users playing games. Here the agent can mimic the actual player and even surpass their

performance. The architecture of this article work network uses convolutional neural networks to

process the video of the expert gameplay. Furthermore, this article presents an imitation learning

solution to training agents on games that could not be reasonably played using only simple rein-

forcement learning algorithms. This solution does not require a complex reward function, which

previous attempts had trouble with.

Convolutional neural networks are popularly used machine learning algorithms for computer

vision problems[56]. These neural networks help extract meaningful features from images by

performing convolutional operations [56]. CNN’s are also implemented in Unity ml-agents[69].

In a platforming game like Super Mario[46], using CNN can help describe the current state of

the environment instead of defining every possible walkable space, which may prove to be less

efficient. The use of CNN can be seen in the work [74], where the author uses a simple three-layer

convolutional neural network as input for the algorithm GAIL to translate the character’s current

position in the game Super Mario [46] using the frames from the gameplay.

The use of a long short-term memory (LSTM)[39] block in a deep neural network can help the

algorithm remember old states that happen during that episode and can influence the decision in

the current state [56]. In the work [5], the neural network architecture includes an LSTM block to

help the agent have a sense of object permanence when placed in the environment. The memory

also helps in the final result of the article by allowing the agents to remember where each object

they moved or seen were placed.

2.2 Machine learning 27

Table 2.2: Player simulation examples

Article Algorithm Observations Rewards Actions Notes
[37] Basic associ-

ation between
data and ac-
tion

Information
about the
football player
and the cur-
rent situation
in the game

- What should
be the action
for the player

-

[5] PPO Position of
the agent and
information
about the
world and its
obstacles

Hide and seek
game, compe-
tition for win-
ing

Movement,
grabbing and
locking

Uses CNN
and LSTM

[4] Distributed
A3C RL agent
IMPALA

Youtube
videos of
gameplay

Reward to ori-
ent the agent
in the game

Movement in-
side the game

Uses CNN

[74] PPO and
GAIL

Simulated ex-
pert gameplay
in form of
frames

Expert train-
ing was done
using re-
ward defined
from gym
environment

Movement of
the character

Uses CNN

2.2.6 Curriculum Learning

Curriculum learning works by incrementing the agent’s difficulty as soon as he can complete the

previous difficulty [12]. In the same way, as humans learn in increasingly more complex environ-

ments, the agent will be faced with more difficult challenges to help him learn the basics before

trying to complete the more demanding challenges [12]. It is also worth noting that curriculum

learning can improve training times, but it is not guaranteed to improve the algorithm performance

for that specific problem [12]. This is caused because learning depends on the teacher and its

selections of problems to combat the student’s difficulties [12], which, in the case of machine

learning, means that curriculum learning needs to define the specific problems that the agent will

need to learn incrementally.

2.2.7 Online Learning

Online machine learning is commonly used when the data evolves and changes with time [48].

This approach will allow the model to dynamically adapt to the new occurring patterns in the

time-based data. For example, when a user needs assistance for motor skill and human activity,

online learning can help the system adapt to the user’s real-time behaviour [76]. This problem can

be adjusted to game adaptivity, where the user’s behaviour during the game is recorded, allowing

the algorithm to adapt continuously. Furthermore, it can also be applied for several playthroughs

28 State of the Art Review

or gameplay sessions, where the data between games is continuously recorded and used to train the

algorithm. These approaches can assist the supervised learning algorithm to adapt to the evolution

of the player.

According to [20] an online learning algorithm combines both estimation and optimisation.

Similarly to RL algorithms receiving a reward from their actions, the online learning approach

also gets a reward correspondent to the decision. Its objective is to minimise the regret or to

maximise the cumulative reward. The main difference between online learning and RL is that the

RL algorithm needs to understand the world’s rules from the rewards it receives from performing

actions. In contrast, online learning is used to solve a problem, that is known, using the sequential

data received.

2.2.8 Summary

In section 2.2, machine learning approaches to game adaptivity were explored and explained. Al-

though some limitations were found on some approaches, reinforcement learning still showed the

most potential to solve this thesis’s topic. However, it is typically employed to adapt the game dif-

ficulty to the players, and its usage for improving the game flow and game experience is minimal,

which this dissertation explores. Also, imitation learning and inverse reinforcement learning were

described in section 2.2.4 since they will be used to develop this project. Additionally, in section

2.2.5 player simulation was defined, and additional techniques that can be used in conjunction

with reinforcement learning were described. Finally, online learning is briefly described, although

its application to this project is minimal or non-existent because of its similarity and replaceability

with reinforcement learning.

Chapter 3

Reinforcement learning based approach
for game adaptivity

This chapter focuses on the project description that is going to be developed to fulfill the objectives

described in section 1.2. It will describe what should be implemented and the overall structure.

This chapter combines the state of the art review elements to create a concrete approach to game

adaptivity. Firstly, the preliminary work’s game adaptivity approach will be explained and its

work’s method will be detailed. Then, the selected game will be presented, and the game elements

will be displayed. After this, the proposed modifications to create a more diverse set of strategies

for the players will be discussed. The final two sections will present the proposed player simulation

and the adaptivity system to be implemented.

3.1 Preliminary work

In the preliminary work of this thesis [35], multi-target and reinforcement learning was explored

to solve the problem of game adaptivity. The game breakout[3] was recreated to be used during

the training of the algorithm. It is a simple game, where the player moves a horizontal paddle to

block the ball from exiting the play zone through the bottom. The ball can hit the sides and the

top of the play-area to bounce. The ball is also used to destroy the group of horizontal bars that

are presented to the player.

Since this project’s development was short, real players could not be asked to play the game

to train the algorithm, so a simulation of the players needed to be done. Six personalities were

simulated to represent real players: newbie, gifted newbie, experienced, competitive, fast learner

and risky. The main difference between these personalities are their actions per minute, reaction

time, paddle safety distance (how much will the player let the ball get to the edge of the paddle) and

the movement heuristic. These elements are related to the game’s input and impact the gameplay,

differentiating the different player types.

This project was done using Unity[69], Unity ml-agents, and Stable Baselines3[55]. The

game was recreated in Unity, and the implementation of reinforcement learning, more specifically,

29

30 Reinforcement learning based approach for game adaptivity

implementation of proximal policy optimisation algorithm (PPO) [61], was done using Stable

Baselines3. Unity ml-agents was used to create the machine learning agent and create a connection

between the unity environment and the python environment.

For the algorithm’s training, one episode was composed of ten games played by one personal-

ity (the personalities were used alternately between episodes). At the start of a game, the content

and mechanics were modified, and when the game finished, the observations were made, and the

reward was calculated. The action space was composed of the game content and mechanics, in-

cluding the brick height, paddle speed, ball speed, paddle length and ball size. The reward or

satisfaction was calculated using four questions of the game experience questionnaire[32]: con-

tent, skillfulness, occupied and difficulty. The importance of each of these questions depended on

the player’s personality. The observation space is composed of:

• The gameplay duration.

• How much the paddle travelled.

• The amount of ball hits with the paddle.

• The number of ball bounces.

• The number of bricks not destroyed.

• The amount of wins and loses.

• The type of player.

• The player’s actions per minute.

• The player’s reaction time.

• The player’s paddle safety.

• The four interrogations of the questionnaire.

This project suggests that the problem of game adaptivity could be solved using reinforcement

learning. However, the work showed some limitations and future work that could be explored.

For example, the game itself is simplistic, making the player’s actions during gameplay limited.

Additionally, the paddle’s movement and the game’s statistics make the player’s profiling very

limited. This problem could be explored better in a relatively more complex game. Furthermore,

the use of handcrafted simulated players somewhat limited the variety of different player types.

Also, the algorithm suffered from an insufficient amount of data, needing a longer training time.

3.2 General adaptivity system methodology

This dissertation focuses on creating an adaptivity system that can be used in almost every game.

However, a lot of the systems that are going to be developed are specific to one game. Therefore,

to create this adapted game, several steps and definitions need to be created.

3.3 Selected Game 31

Firstly, a game needs to be selected since the adaptivity system is very much dependent on the

game’s elements. Each game is unique, and as such, the implementation of the adaptivity system

is also different.

After the selection of the game, a player simulation system can be developed. An adaptivity

system could use this player simulation if it is not possible to gather enough data to train the

adaptivity agent. If the game has access to a lot of real player data, the adaptivity agent can

train with this data. In this dissertation, since the player’s data would not be enough, the player

simulation system needed to be created. This system collects gameplay demonstrations from real

users and then uses an imitation learning algorithm (for example, GAIL and/or behavioral cloning)

to train different agents for each user’s demonstration. The states, demonstrations and actions are

all dependent on the game selected.

If the player simulation does not prove to be an ideal representation of the user, a more straight-

forward system can be created to represent the potential players of the game, for example, a system

to represent the different personalities that would play the game and generate the results and re-

ward at each state.

Then, the player simulation can be used to generate games for the adaptivity agent to train

with. However, the adaptivity agent will need to receive a reward for the actions performed.

These rewards should represent the gaming experience and game flow that the user would feel

at that state of the game. The rewards should be calculated using a few questions relating to

the game elements and their experience at each state. Additionally, other algorithms like inverse

reinforcement learning can be explored to represent the reward function further.

The observations of the adaptivity agent should consist of metrics and values of the playing

user, which represents their strategy and decisions performed in the current or the past gameplay

sessions. After observing the environment’s current state, the agent should decide how the game

element should be modified. These game elements that compose the action space depend on the

game selected and should be picked based on their potential to modify the gaming experience

(some of these elements are described in section 2.1.3). The agent should be trained with a state

of the art reinforcement learning algorithm, for example, PPO, SAC or other relevant algorithms.

After the creation of the adaptivity system, the adapted game should be tested with real users.

The users should play the adapted and non-adapted game and then respond to a questionnaire,

which will serve to confirm that the adaptivity system impacted the gaming experience and game

flow. Additionally, other game metrics, which depend on the selected game, can also be collected

to observe the adapted game’s impact on the play session.

3.3 Selected Game

The first step to implement adaptivity is to select a game that can be modified to implement an

adaptivity system. As mentioned in the section 3.1, the game selected for the preliminary work

was Breakout[3], a relatively simple game. In this dissertation, a more complex game will be

chosen to explore the different types of observations, rewards, and actions to implement. However,

32 Reinforcement learning based approach for game adaptivity

developing a game from the ground up will not leave enough time to implement a well thought

out game, and for this reason, an open-source game will be selected. The game Red Runner was

selected from a list of games available in GitHub 1, for being an infinite runner platform game

with simple expandable mechanics and its easy to read and modify code.

As mentioned, the game is a platformer game similar to Super Mario[46], where the game will

present the player with some jump challenges and enemy avoidance. Additionally, the game is

also an infinite runner, meaning that another objective of the game is to go as far as possible to

the right to achieve a new max record. The max records are persistent through multiple gameplay

sessions to compare its performance to previous attempts.

A critical feature of any platform game is the movement of the character. The game Red

Runner offers a well-defined movement set. The player can move the character to the right, and

the left with the “A” and “D” key, respectively, or the arrows keys. The character starts with

a walking speed and then accelerates in a given direction to a max running speed. To reach max

speed, the player has to keep holding the button down for several seconds, which the game explores

with some challenges. To overcome some obstacles that would kill the user, the player can jump

over them using the “W” key of the up arrow key. Although, the jump not only serves to avoid

these enemies but also to jump and climb to higher places. During a jump, the character’s speed

is maintained over the whole duration, and the player can also change direction without losing

most of that speed. If a player hits a wall, the character will stop and will need to accelerate again.

Additionally, if the player hits a ledge, the runner will lose a substantial amount of momentum,

but he will not fall over the edge most of the time. Finally, the runner can also perform a roll

movement, which will allow him to gain a small amount of speed. This gain is more significant

than if he had run over the same distance.

Since the game is an infinite runner, the game has a procedural generator system that creates

an infinite running space for the player. For this, the game is composed of sixteen different and

distinguishable sections. Each section represents a different challenge, with some parts consisting

of platforming and others with more complex levels with hidden coins. Furthermore, each section

can be correlated with different types of gaming personalities, each providing a particular level

of enjoyment to what a player is looking for. The sections are composed of several elements and

mechanics that affect the player gameplay, which include:

• Coins and chest. The coins can be seen in the starting section 3.7a and can be collected

if the player passes through them. If the coins are collected, they will be added to a global

coin count for the game. The coins are persistent throughout the playthroughs of the game

and are never reset to a value of zero. On the other hand, a chest contains several coins

inside and can be opened by walking near them. They can be found on three levels and are

mostly hidden from player sight. They provide around three to five coins that will jump

from the chest when open and can be collected by the player in the same way regular coins

are collected.

1https://github.com/topics/unity3d-games

https://github.com/topics/unity3d-games

3.3 Selected Game 33

• Stationary objects. Several stationary objects are present in the game, including saws

and spikes. These represent a deadly challenge to the player and are overcome mainly

by jumping over them or avoiding walking near them. Furthermore, these objects do not

represent an immediate danger to the player but require some attention and some strategy to

approach them. They can be seen in figures 3.2 and 3.1.

Figure 3.1: Gameplay image with two stationary saws

Figure 3.2: Gameplay image with a stationary spike

• Moving objects. The moving objects in the game are enemies to the player and are repre-

sented by moving saws and moving blocks with spikes around them. The moving blocks can

34 Reinforcement learning based approach for game adaptivity

travel vertically and horizontally, while the moving saws generally have a visible path to let

the player know where they will move to. Both these enemies represent an immediate dan-

ger to the player if he is directly in their path. These challenges can usually be bypassed by

waiting or jumping over them. The figures 3.3 and 3.4 show examples of moving enemies.

Figure 3.3: Gameplay image with falling enemies

Figure 3.4: Gameplay image with several moving saws

• Water. Water is used to create a platforming challenge since the player loses if he touches

it (Figure 3.5). In figure 3.6, water can be seen below the player, while platforms are located

above to create several consecutive jumps in a platforming section.

3.3 Selected Game 35

Figure 3.5: Gameplay image that requires a jump over a hole of water

Figure 3.6: Gameplay image in a platform level

All these elements compose the game’s main elements that the player must adapt their strategy to

complete each section. The following list will explore each section with more detail:

• Starting Section3.7a. The starting section is the first section the player is presented with

when starting a new game run. It contains two coins: the first coin is located just to the

player’s right to incentivise right movement. Here, the player will experiment with the

game’s movement options until they can collect that coin and move forward. It is also worth

noting that the screen cannot move to the left on the starting stage, but the player can fall off

the screen and lose the game, which should be fixed in the modification of the game. The

36 Reinforcement learning based approach for game adaptivity

second coin is located right above a water pit, ensuring that the player needs to use the jump

movement to overcome this obstacle. Although the design of this section teaches the use of

most of the movement options, the player can lose the game prematurely to the water pit,

giving him no progress.

• Sections 0 (Figure 3.7b) and 2 (Figure 3.7d). Both these sections represent a similar

challenge of platforming. They do not require speed for completion, and they always give

coins because the player cannot avoid them.

• Section 1 (Figure 3.7c) . In this section, the player can go over the top or the bottom. At the

bottom, the player faces a moving vertical enemy that prevents him from taking the coins

straight away. The player can also backtrack in this level to collect all the coins.

• Section 3 (Figure 3.7e) . This section is the most accessible section of the game, only

requiring the player to move right and jump to collect a coin. It does not have any form of

enemies, so the player cannot lose the game.

• Sections 4 (Figure 3.7f),6 (Figure 3.7h),11 (Figure 3.8c) . These sections are similar,

requiring a mix of skill at dodging enemies and platforming sections. Section 6 and 11

include moving enemies, requiring more skill at dodging since the enemy are part of the

path to complete the section. In section 11, the moving enemies are located in a platforming

section, dividing the player’s attention to not fall in the pit and watching for the fast-moving

saws. In section 6, a chest is located in one of the player’s paths, not hidden from the player

viewport at any point in this section. The player can also backtrack in these three sections,

collecting all the hidden or hard to catch coins.

• Sections 5 (Figure 3.7g),8 (Figure 3.7j),9 (Figure 3.8a),10 (Figure 3.8b) . These four

levels are primarily platforming levels, varying in difficulty level. Section 5 and 8 are clas-

sic platforming levels, having water and several small platforms requiring multiple precise

jumps. Section 9 is a fast platform level requiring the player to have enough speed to clear

the jumps. This level also includes a long jump at the end that requires some backtracking

that may also lead to a chest with coins. Section 10 is probably the hardest level in the game,

including several moving enemies and platforming challenges. Although the enemies have

a defined path, they can change the direction unpredictably, making this section harder than

other sections.

• Sections 7 (Figure 3.7i),12 (Figure 3.8d),13 (Figure 3.8e) . These sections do not include

much platforming and only require avoiding enemies and going as fast as possible. Section

12 has a challenging part where the player requires two jumps going at full speed to avoid

a static saw. Section 13 also includes a fast-moving saw that chases the player until the end

of the section, not allowing the player to stop at any time to think at the cost of losing the

game.

3.4 Game modification 37

• Sections 14 (Figure 3.8f),15 (Figure 3.8g) . Both these sections are more relaxed and

represent a distinct challenge to the player. In section 14, there is a horizontal moving block

enemy which the player must wait to get behind him. Also, in this section, there is a chest

located at the top of the section, requiring optional backtracking of the player until he climbs

to the very top. In section 15, the player is presented with four vertical moving blocks that

the player can wait for them to go back up or just run past them. In addition, one of these

enemies is out of the screen, but the design of the cave indicates the space where he will be

moving.

All of these sections are randomly selected to be presented next to the player except for the

starting section that is always presented to the player at the beginning of the game. Additionally,

these sections connect at the same height, so any two sections can connect perfectly.

If the player touches an enemy at any point in time, he will lose the game and is forced to start

the game over. Moreover, the coins do not signify anything besides their value being displayed

during gameplay. The game itself also includes a save system that stores the information about the

max score and coins the player has over the various game sessions. This save system can also be

easily expanded to save any other value the developer wants.

Finally, this platform game is made using the game engine unity3d [69]. Unity is a well

documented and easy to use cross-platform game engine where almost anything can be done. The

engine also gives the options for developers to include additional packages to improve or include

something more specific for the product they are creating. One of these packages includes the

ml-agents packages, allowing developers to quickly implement machine learning approaches for

the game’s AI or other purposes. This package was already used in the preliminary work 3.1 and

will also be used in this dissertation.

3.4 Game modification

The first step to develop the proposed solution is to make some modification to the open-source

game. Although most of the game is already developed and could be shipped as a complete game,

some problems arise for implementing machine learning. Furthermore, some design decisions

relating to the game sections and the movement should need a bit of work to tune or change

altogether.

3.4.1 Life System

The first modification to be made in the game was for it to include a life system. Initially, when

the user touches an enemy obstacle, he will lose the game and is forced to start the level over.

A three life system will be implemented to allow the player to have more than one possibility to

overcome that section and reach new scores. Each of the three lives can be lost in the same way

the player can lose the game by touching the water or the obstacles. However, when the player

loses a life, he will be put again at the start of the section instead of at the start of the game and

38 Reinforcement learning based approach for game adaptivity

(a) Starting section
(b) Section 0

(c) Section 1
(d) Section 2

(e) Section 3
(f) Section 4

(g) Section 5 (h) Section 6

(i) Section 7

(j) Section 8

Figure 3.7: Sections 0-8 and starting section

retain the current score. Additionally, if the player loses all three lives, he will lose the game and

will be forced to start from the beginning. These lives cannot be restored in any way and are lost

3.4 Game modification 39

(a) Section 9

(b) Section 10

(c) Section 11

(d) Section 12

(e) Section 13

(f) Section 14 (g) Section 15

Figure 3.8: Sections 9-15

permanently during that run.

This system should be visible at all times to the player during the gameplay in order for him to

have a different strategy when presented with different amounts of lives. Although it may not be

guaranteed that the player will have a different strategy when in low lives, some results should be

visible. For example, careless gameplay for when the player does not care about their lives and just

wants to go as fast as possible with risky decisions; Or more conservative gameplay, in which the

player takes more time to make decisions and is more careful of each step it takes when faced with

a low amount of lives. This life system can also be seen in other games like in recent Super Mario

games [46], where there is a checkpoint-based system with a life system. The player can collect

40 Reinforcement learning based approach for game adaptivity

the checkpoints to indicate where the character will respawn when it dies while also removing one

life from the life system. Similarly, the life system modification will allow the player to collect

checkpoints by reaching the end of the sections.

3.4.2 Time system

Initially, the game’s coins do not have a defined purpose for the game other than collecting them

and being displayed on the screen during gameplay. Additionally, if the player does not move

or has prudent behaviour not to lose, the game does not end. This situation is not ideal in game

design because the player is not pursuing the game objectives. The player should be actively trying

to move to the right, and to guarantee that the user has an additional motivation for this, a time

system should be implemented.

The time system should be an in-game clock that starts to tick down from the start of the game

until the very end. After each run, the clock should reset and start over with the same duration.

The total time should be about three to five minutes to allow the player to overcome at least five

different sections. Additionally, the coins should also be incorporated with the time system to give

them more purpose to their existence. Each coin should give the player, when collected, around

one extra second to the time remaining. This timer should also be visible to the player at any time

during the gameplay. If the timer reaches the end, the player will lose the game and be forced to

restart the game.

This time system aims to give more agency to the coins and pressure the player to reach the

furthest right in the fastest time possible. At the start of the run, the player will not have the urge to

go fast since he has time to complete the challenges he faces. However, as time reaches its end, the

player should feel more pressure, making more risky decisions. On the other hand, if the player

already has some experience in the game, he will know that to achieve a new record, he will have

to go as fast as possible from the start of the game and collect as many coins as possible.

Finally, the system also contributes to distinguishing different strategies implemented by the

player during the gameplay. This modification can help the adaptivity system distinguish and

adapt the game to better fit each player’s strategy.

3.4.3 Additional modifications

Other problems are also present in the game that should be tweaked or changed altogether. These

include changes to the movement system of the game and also the level design of the sections.

These modifications will improve the player’s gaming experience while also trying to simplify

some parts that could be troublesome during the implementation of the machine learning algo-

rithms.

Firstly, the roll movement of the player should be removed to create a more simplistic and

more intuitive movement system overall. During the first playthrough of the game, it was not

evident what the purpose of the roll movement was, and only after looking at the code the meaning

of this movement became apparent. This character revolution should be removed to eliminate

3.5 Player simulation 41

this ambiguity from the player’s gameplay, and the overall movement of the character should be

reworked to be faster and more fluid. Initially, the character movement feels very sluggish, and

the player takes a long time to reach the max velocity needed to overcome some challenges. The

movement values of the character can be easily changed in the unity inspector (Figure 3.9), and

the code can also be changed to create a responsive movement system. Additionally, this change

should also help machine learning by removing one more movement option.

Figure 3.9: Movement values in Unity inspector

Secondly, some sections have challenges that require a significant amount of skill, and even

when played correctly, can cause the player to lose, causing frustration. Section 13 (Figure 3.8e)

includes a moving saw that chases the player until the end of the same level. This saw moves

extremely fast, and if the player did not start the section with enough speed, he would not be able

to survive. For this reason, the movement speed of the moving saw should be reduced to allow the

player to have an easier time finishing this section.

3.4.4 Summary

These proposed modifications work to improve the gaming experience and solve some problems

that the game had. Additionally, they will also help the machine learning algorithms by creating

more distinct ways to play the game. Section 3.4.1 explores a new system to give players more op-

portunities to overcome challenges they have not completed. Furthermore, section 3.4.2 proposes

a system to create finite playthrough and give more meaning to players’ time and decisions during

gameplay. Finally, section 3.4.3 presents additional modifications to the game that will improve

some already implemented game system’s.

3.5 Player simulation

After the game modifications, the next phase is to create a player simulation system similar to

the preliminary work. As seen in the preliminary work (sections 3.1), the adaptivity requires

a considerable amount of training data to have a good algorithm performance. Even with the

simulated players and the time constraint to complete the preliminary work, the algorithm did

not train for enough games and needed more episodes to converge to a good result. In the same

context, this dissertation will choose to implement a player simulation since real users would not

yield a sufficient amount of data.

42 Reinforcement learning based approach for game adaptivity

Instead of creating hardcoded artificial agents, as in the preliminary work, this dissertation will

explore the topic of player simulation to copy as closely as possible real players. For this purpose,

the algorithm GAIL[28](section 2.2.4) will be used to train the simulated players since it allows

for the training of reinforcement learning agents to play games. This algorithm allows the use of

recorded expert demonstration of the state and action performed to train the agent more rapidly

and imitate the recorded user. Since each user plays the game differently, even with comparable

personalities, each player will have a distinct simulated agent associated with it. Essentially, each

user will create expert observations from their gameplay, and with these observations, one agent

will be trained to copy this user as closely as possible. Then with each trained agent, more games

could be played, and the adaptivity system would have enough data train.

Similarly to the preliminary work, the unity ml-agents package should be used to create a link

between the game and a python environment. This package will collect all the data related to the

games observations and rewards and will transmit this information via a socket connection to the

python ml-agents package API. From here, and like in the preliminary work, the python framework

Stable Baselines2 will be used to create the machine learning agent and the gym environment.

The observation and the action the player can take should be defined for good documentation

and utilisation of the GAIL algorithm. In terms of observations, they should be composed of

gameplay frames, captured and saved as soon as possible. The frame’s capture should only contain

the essential data, for example, the floor, walls, enemies, coins and chests, to remove cluttering

with useless information like the background. Additionally, to provide more precise information

about the scene elements, the image should be colour-segmented by the game elements. This

segmentation is essential since the game is very colourful, and the same game component can be

represented by a different colour, which could confuse the algorithm. Furthermore, to provide

more information about the current state of the game, additional observations can be made, for

example:

• The current amount of coins collected and the total the player has.

• The current state of the life system and the time system.

• The state of the game’s score.

• The position of the player in the section and its velocity.

In terms of the action the agent can choose, these include: doing nothing, moving to the right,

moving to the left and jumping, while also being possible to jump to the right and jump to the left.

These five movement options are all the actions the agent can decide to use at every frame, and

they can be considered discrete actions and labelled from 0 to 5.

For the architecture of the GAIL algorithm, the generator network should be composed of

several convolutional layers to process the information from the game’s frames, followed by a

flatten layer where the other inputs are also padded. Then the rest of the architecture should

2https://stable-baselines.readthedocs.io/

https://stable-baselines.readthedocs.io/

3.5 Player simulation 43

follow a standard network design for machine learning. The figure 3.10 shows the idea behind

the network architecture. The discriminator should have a similar layout, with the addition of the

action chosen by the generator, and the output is if the policy is the ground truth or is the generated

one.

Figure 3.10: GAIL suggested network architecture

After the definition of the Gail algorithm, the performance and efficiency should be tested and

evaluated on a small scale to prove its usefulness in creating simulated player’s clones. Then, there

will be a need to collect expert demonstrations for real players. For this purpose, the following

architecture represented in figure 3.11 should be developed to collect all the player data. This data

collection model includes a data recording made in python using the python ml-agents package to

retrieve the observations and actions the user is making during gameplay. After the gameplay is

finished, the data is sent to a centralised server, simple file storage or something more complex to

collect the information related to that user. Afterwards, several new agents will be trained using

the GAIL algorithm for each of the user data.

44 Reinforcement learning based approach for game adaptivity

Figure 3.11: Expert demonstration data collection architecture suggestion

3.6 Adaptivity System

Before the adaptivity system can be implemented, several problems must be solved, and other

definitions and approaches must be defined. The first problem that arises is the reward function

for the episodes of the adaptivity algorithm.

Since the adaptivity system is supposed to be trained using reinforcement learning, the obser-

vations of the environment will be generated using the simulated players proposed in the previous

section (section 3.5). However, these agents only decide what action should be performed at each

state and do not give an associated reward for that action. An inverse reinforcement learning al-

gorithm should be applied to help to create a reward function for the algorithm. Since an inverse

reinforcement learning algorithm also needs to receive expert demonstrations, these observation-

actions states can be generated using the simulated agents or using the user’s expert demonstra-

tions. Since the user data should have a relatively small size, an algorithm similar to GAIL (ideally

AIRL) should be used. On the other hand, if using the simulated agents to generate the data, a

simpler algorithm of inverse reinforcement learning can be used. However, the algorithm’s reward

is associated with the observation of that state and the correlated action that the agent decided.

This reward does not fully represent the user’s gaming experience but instead gives a clue of it and

can be used in the final reward function.

The reward for the adaptivity system should represent the overall gaming experience the user

is feeling during gameplay. Using only the reward generated by the inverse reinforcement learning

algorithm is not enough to characterise the gaming experience, and so the real user should give

additional feedback on what he thinks improves his experience and what strategies and elements

he enjoys the most. For this purpose, a small questionnaire can be introduced during the recording

3.6 Adaptivity System 45

of the expert demonstration. This questionnaire can appear at the end of each section or at the

end of that run. If at the end of each section, the game flow of the player would be disrupted and

potentially lead to a bad gaming experience. Therefore, the questionnaire should be present at the

end of each run.

This questionnaire should consist of interrogations relating to:

• The various enemies in the game. There should be several questions relating to each type of

obstacle: statics, moving and water.

• Relating to what strategies the player prefers to implement. These can include some generic

tactics, for example, collecting all coins from a section, going as fast as possible, playing

carefully.

• What is their opinion on the different challenges presented by the sections. For example,

some sections offer a more platform challenge while others focus more on moving enemies

and dodging obstacles.

• What is the prefered objective, collecting coins, having a new score, facing a good challenge

or a mix of everything.

The answers to this questionnaire can then be used to create a reward function in conjunction with

the reward of the inverse reinforcement learning algorithm. When the simulated agent is playing

the game, and a game element appears to the agent, and he interacts with it, a reward can be

associated with it depending on the answers to the questionnaire. For example, if the user prefers

to collect all coins in the sections. When the simulated agent collects coins from the section, a

reward can be associated with it, and even if he collects all the coins in that section, an additional

reward can be given. All of these elements will create the reward function to be used in the

adaptivity reinforcement learning algorithm.

Furthermore, the reinforcement learning algorithm for the adaptivity system also needs obser-

vations and actions defined to work correctly. For this, each observation should be collected at the

end of the section and then an action should be decided by the algorithm. When the game ends,

the episode should also end, and then a new one should start with the start of a new run. After

each episode, the simulated agent should swap to a different user to keep the variety of players,

thus allowing each agent to have a chance at playing the game and training with the algorithm.

In terms of observation for the adaptivity system, they should be composed of past and present

information:

• The total amount of coins and the coins collected in this game.

• The total amount of chests opened and the currently open in this game.

• The current game time spent in that game.

• The current amount of lifes the player has.

46 Reinforcement learning based approach for game adaptivity

• The total amount of lifes the player lost and the amount the user lost in this game. Also, the

player’s total amount of lives lost to each type of enemy, moving, stationary and water, and

the amount for this current game.

• The player’s best score and the current game score.

• The number of times the player backtracked in the game.

• The number of jumps the player made that game.

• The average velocity of the player in that game and over multiple games.

As referenced in the section 2.1.3, the adaptivity system can alter several game elements to im-

prove the overall gaming experience. Although, these elements need to be adapted for the game

in question. In this case, the elements that can be altered are:

• The movement values of the character, to create a different character control experience.

• Alter the number of coins and chests in each section.

• Change the structure of the section.

• Choose the next section the payer will play.

• Change the speed of the moving enemies.

• Alter the number of static enemies in each section.

• Alter the number of lives the player starts with.

• Alter the total amount of time the player starts with.

• Alter how much each coin gives to the timer.

• Alter how many coins each chest gives.

Although all of these options are valid for creating the adaptivity system, for the purpose of this

dissertation, the action the algorithm will have available is the choice of the next section. All the

other options have their complexity that should be explored, and for simplicity, this decision was

made. The action the algorithm is allowed to make is the next section the player will face from

the sixteen sections already created (the starting section cannot be selected). Therefore, the action

space is discrete, and the actions can be numbered from 0 to 15.

The framework to be used for this adaptivity system should be similar to the preliminary work.

For the algorithm, PPO should be used for its stability, which is implemented in the framework

Stable Baselines. As in the player simulation (section 3.5), the python ml-agents package should

be used to retrieve the observations from the environment. The network architecture can follow

a simple multilayer perceptron network since there is no need to handle images in this case. The

3.7 Summary 47

Figure 3.12: Adaptivity system proposed structure

adaptivity system proposed structure can be seen in figure 3.12, which briefly summarises this

section.

After the training of the adaptivity agent, the game can then include the adaptivity system and

be tested with real users to test its effectiveness at improving the gaming experience and creating

the adaptive game.

3.7 Summary

In this chapter, the proposed solution was presented, and its implementation was discussed in

detail. The first step of the solution is to select the actual game to be implemented. For this

purpose, the section 3.3 discussed the game selected and what main elements compose the game.

Then, in section 3.4, several modifications were presented to solve some problems that the original

game had while also proposing new systems to improve the diversity of strategies. The following

section 3.5 discusses the player simulation system to create that will help the adaptivity system

since it requires a large amount of data. The final section (section 3.6) presents the proposed

adaptivity system, the main focus of this dissertation, and the general structure to be followed.

48 Reinforcement learning based approach for game adaptivity

Chapter 4

Development and workflow of game
adaptivity system

In this chapter, the developed work will be presented, and the decisions and changes made will

be explained to fulfill the objectives described in section 1.2. The final adaptivity system created

was incorporated in the game, and the adapted game automatically chooses the next section to be

presented to the player.

Section 4.1 will explain how the life system developed work and how it looks during gameplay.

The following section (section 4.2) will present the time system implement in the game and how

it interacts with the game. In the next section, section 4.3, the player simulation system will be

explained, and the principal problems and changes will be justified. Then several solutions and

attempts at resolving the problems found will be explored. Finally, the last section (section 4.4)

will present a simple solution to solve the problem from the previous section, which will also

be used in the adaptivity system. Then, the adaptivity system will be explained, detailing all the

essential features implemented to create an adapted game version.

4.1 Life system

The development of the life system followed the structure of the proposed solution presented (sec-

tion 3.4.1). A variable was introduced in the Red Character script to maintain the current amount

of lives. This variable is decremented when the user loses to an enemy. A visual representation

was then created to inform the player about his current amount of lives. This representation can

be seen in figures 4.1a and 4.1b and is illustrated by three hearts representing an individual life. If

the heart is filled with red, then the player has one life, and, consequently, with three filled hearts,

the player has three lives.

Additionally, after the player loses one of his life, he is respawned at the start of the section.

Since all sections have a similar start and can be connected between them, the player is placed

at a default x 2 position and y 4 position. These default values (figure 4.2) can also be changed

49

50 Development and workflow of game adaptivity system

(a) Representation of having three hearts (b) Representation of having one heart

Figure 4.1: Examples of the heart display

if a new section is created. For example, the starting section needs to put the player in a higher

position than usual if the player loses, so the values must be x 8 and y 10.

Figure 4.2: Unity inspector section restart position values

4.2 Time system

The development of the time system also follows the proposed design in section [proposed time

system]. A timer variable was created in the Game Manager script that at each update step of the

engine subtracts the delta time(the time passed since the last frame). If this time is less or equal to

zero, it will trigger the end of the game. Additionally, if the player collects a coin during gameplay,

the variable time will add a value. The starting value of the timer and the amount of time each

coin adds can be modified in the Unity Inspector under the object Game Manager. These values

can be seen in figure 4.3 and default to 300 and 1, respectively.

Figure 4.3: Timer values in Unity inspector

4.3 Player simulation 51

Furthermore, the timer is also visible to the player during gameplay and can be seen at the top

right of the screen. The figure 4.4 also shows how it looks in the game. The design of the timer

follows a similar design to the other game elements already created in the game.

Figure 4.4: Timer display during gameplay

4.3 Player simulation

The first iteration of the player simulation tried to follow the proposed solution for the system

(section 3.5) as closely as possible. Therefore, after installing the ml-agents package in the Unity

editor, a player watcher script was created in a new game object, “Player AI”. In this script, the

class extends the Agent class1 from the ml-agents package and must implement the following

methods:

• Initialize. This method is called one time when the agent is first enabled.

• CollectObservations. This method collects the observation of the agent for a step.

• OnActionReceived. This method specifies the action (discrete or continuous) the agent

should have in that state.

• Heuristic. This method allows for a creation of a custom action the agent can take.

• OnEpisodeBegin. This method is called at the start of every episode.

For the player agent class to collect observations, they must first be recorded in variables. There-

fore, in the GameManager script, several variables are created to hold the values of the observa-

tions. Then, these variables can be used to collect the environment’s information and compose the

agent’s observations. The following list describes the simulated agent observations, which follows

the proposed observations approximately:

• The player’s total amount of coins collected over the games and the current amount of coins

collected in this game.

• The current amount of lives the player has in this game.

1https://docs.unity3d.com/Packages/com.unity.ml-agents@2.1/api/Unity.MLAgents.Agent.html

https://docs.unity3d.com/Packages/com.unity.ml-agents@2.1/api/Unity.MLAgents.Agent.html

52 Development and workflow of game adaptivity system

• The current game score and the best score the player has.

• The current game time.

• The current section identifier and the X position of the character in that section.

• The current character’s velocity in the X-axis.

Additionally, the simulated player also needs to collect the game’s image. For this collection

to work inside Unity, a new camera was created that follows the character the same way as the

standard camera. However, this new camera has a black background and filters all the unnecessary

game elements, for example, the particle system and the environment aesthetics. Since the original

game does not assign each game element to a Unity layer, every section of the game was modified

to assign each element to a specific layer. The following list describes the layers created:

• Ground. The ground layer includes all the blocks preventing the player from passing through

them and not killing the character. These include the ground, the walls and the ceiling.

• Character. This layer represents the player’s character. Additionally, the layer Fake Player

represents a fake player that will be explained below.

• Reward. This layer includes all the coins in the level and also the chests.

• Enemies. This layer includes all the stationary and moving enemies of each section.

• Water. This layer represents the water present in the sections.

• Path. This layer represents the paths the moving enemies can take.

• Trees. This layer represents the trees, which are aesthetic elements in the sections.

After the creation of these tags, the camera can filter the game elements by their specific layer.

The layers selected include the water, ground, fake player, the rewards, the enemies and the path.

A fake player was created to simplify the original character since the red runner has animations for

running, jumping, and standing. This fake player has the exact position coordinates of the original

character at every frame and is not visible in the standard game. The figure 4.5 demonstrates the

vision of the camera in the game.

Following the proposed solution, the image then needs to be segmented by colour, by game

element. This segmentation was implemented using a helper package2, which uses shaders to

segment the image by layer. To use this helper package, the script Image Synthesis needs to be

included in the camera inspector (figure 4.6). The resulting final image can be seen in figure 4.7.

Each layer is assigned a specific colour automatically by the helper package. This segmented

image is then collected by a camera sensor script(from the ml-agent package, figure 4.8) and

automatically forward to the agent’s observation. Additionally, the camera sensor also scales the

image and converts it to a grayscale version.

2https://bitbucket.org/Unity-Technologies/ml-imagesynthesis/src/master/

https://bitbucket.org/Unity-Technologies/ml-imagesynthesis/src/master/

4.3 Player simulation 53

Figure 4.5: Player camera gameplay vision

Figure 4.6: Image Synthesis package script

The method OnActionReceived was developed to receive one discrete action from six avail-

able options: 0 - do nothing; 1 - move to the left; 2 - move to the right; 3 - jump; 4 - move to the

left and jump; 5 - move to the right and jump. The movement inputs of the player were initially

received by the script Red Character. However, for a correct recording of the real player’s input

actions, the information is received by the method Heuristic in the simulated player script. Fur-

thermore, the original movement system used a cross-platform input method, which caused the

character to respond about two frames later. This problem made some precise jumps frustrating

since the character would not jump in time. Therefore, the movement input system was modified,

and the character movement was automatically translated to a corresponding discrete action. Con-

sequently, this new movement system includes the possibility for the player to perform multiple

jumps in a row without releasing the jump button and the ability to change direction in the air

without losing speed. Moreover, the movement values were also tweaked to allow the character to

accelerate faster.

The next step of the development is the creation of the model and the training environment.

54 Development and workflow of game adaptivity system

Figure 4.7: Final colour segmented image example

Figure 4.8: Camera sensor script for agent’s object

Following what is defined in the proposed solution (section 3.5), the python ml-agent package

was used in conjunction with the Stable Baselines package. However, several problems appeared

relating to the use of the Stable Baselines package:

• The Unity observations, rewards and actions need to be inside a gym environment3 class.

This class controls the game’s episodes and can sometimes conflict with the Unity environ-

ment giving undesirable results.

• The algorithm requires a custom network to be defined since the observations are composed

of values and images. Furthermore, the GAIL algorithm implementation by the package

does not handle images properly.

• The algorithm requires a specific file structure for the expert observations, which is not

documented. The recording of these observations also needed to be created by hand since

the package did not include an implemented method.

3https://gym.openai.com/docs/

https://gym.openai.com/docs/

4.3 Player simulation 55

To solve these problems, the Stable Baselines source code needed to be changed or adapted. How-

ever, the source code is vast and complex to comprehend, which made it an impossible option for

the duration of this dissertation.

Other options were explored, including other open-source implementations of the GAIL al-

gorithm. For example, an adaptation to the repository4 was created. However, when modifying

the network to handle images and observation and output discrete actions, the algorithm showed

performance problems and errors that were troublesome to identify. Other problems were also

solved using the open-source code, such as recording the expert demonstrations and the definition

of neural network architecture. The definition of the neural network can be seen in figure 4.9. This

neural network is based on the work presented in the section 2.2.5.

Figure 4.9: Code for the architecture of the network for GAIL

The best option was using the Unity ml-agents toolkit5 (and not using only the python API),

which is integrated with the unity package. This toolkit allows the use of machine learning al-

gorithms with much ease and without knowing the implementation of the algorithms and is also

constantly being updated to enhance the algorithms and their usage by developers. Furthermore,

the problems found in the other approach made are not present in this implementation since this

4https://github.com/ku2482/gail-airl-ppo.pytorch
5https://github.com/Unity-Technologies/ml-agents

https://github.com/ku2482/gail-airl-ppo.pytorch
https://github.com/Unity-Technologies/ml-agents

56 Development and workflow of game adaptivity system

toolkit is integrated with the Unity engine and is primarily focused on creating artificial gaming

intelligence. The already developed class simulated player can also be easily used with this toolkit.

This toolkit allows the usage and training of several machine learning algorithms, including

PPO and SAC. In addition, the toolkit also includes several other helpers algorithms and tools to

assist in the training of the agents, including:

• Generative adversarial imitation learning algorithm (GAIL)[28].

• Behavioural cloning[68]. This algorithm can be used to help the agent mimic the actions of

the expert demonstrations.

• Curiosity reward[36] can be used when the rewards on the environment are infrequent.

• Random Network Distillation[15] can be used when the rewards of the environment are rare.

• Recurrent Neural Networks (using LSTM) to allow the agent to remember past information.

• Self-play[7] allows the agent to learn how to play against versions of itself.

• Curriculum learning. This tool allows the agent to train in a progressively more challenging

environment.

For the usage of the imitation learning algorithms, the recording of the expert demonstration was

made by including a simple script (Demonstrations Recorder) from the ml-agents package in the

agent’s object, shown in figure 4.10.

Figure 4.10: Demonstration recorder script for player agent’s object

The simulated player agent training was done iteratively using several different configurations

and setups available in the ml-agents toolkit. The experiments and results can be found in chapter

5 with a detailed explanation. Furthermore, several changes and modifications were made for

assisting and experimenting with the agent’s training. These modifications are detailed in the

following list:

• Ray perception sensor. This sensor is included in the ml-agents Unity package, and only

the script needs to be incorporated in the agent’s object. This sensor casts a ray cast line from

the character and collides with the game elements. Consequently, the game elements need

to be classified with a tag for them to be distinguished by the sensor. Additionally, the script

also allows the developer to specify which layers the lines should collide with, the total

number of lines to ray cast, the angle between them, their length and the size of the collision

4.3 Player simulation 57

sphere of the ray cast. These values can be seen in figure 4.11, and in figure 4.12, an example

can be seen of the lines being ray cast during gameplay. Furthermore, this sensor output is

automatically included and adapted to be used in the simulated player’s observations. This

sensor purpose is to help the imitation learning algorithm better understand each state of the

environment, such as elements that can be out of the screen but the player has knowledge of

them or for situations where the game’s frame does not give enough information to describe

the current state of the environment.

Figure 4.11: Ray cast script values in Unity editor

• Extrinsic reward. The purpose of this reward function is to guide the training of the agent.

These rewards include:

– A positive reward for moving forward depending on the amount of X position travelled

since the last frame. Equation 4.1 represents this positive reward.

reward +=
(newX position− currentscore)

discount f actor
(4.1)

– A positive reward for completing a section.

– A positive reward for collecting a coin.

– A positive reward for opening a chest.

– A negative reward for a life lost.

– A negative reward for standing still for a specific duration.

These rewards are used in particular experiences, and their values are also modified accord-

ingly.

58 Development and workflow of game adaptivity system

Figure 4.12: Ray cast vision during gameplay

• Simpler game version. This modification was included since the agent spent too much time

standing still and not progressing, making the training episodes excessively long. Therefore,

this game version made the timer have a total of 75 seconds instead of 5 minutes. Addition-

ally, the player only has one life, so the game ends immediately instead of the character

being put at the start of the section.

• Curriculum learning. For the use of this tool, the game needed to be divided into several

different difficulties. In the first iteration, the several sections were combined into four

different difficulties:

– Difficulty 1. Includes sections 0,1,2,3 and 15.

– Difficulty 2. Includes sections 4,5,7,8 and 9.

– Difficulty 3. Includes sections 10,12 and 13.

– Difficulty 4. Includes sections 6,11 and 14.

These difficulties were created based on a personal game design vision after playing the

game numerous times, and the training followed the first difficulty to the last, only changing

the challenge if the agent was able to receive a particular reward for several episodes. In

the next iteration, each section had a difficulty associated, creating an ordered list from

4.4 Adaptivity system 59

the easiest to the hardest. The following list was created based on a personal game design

vision: sections 3, 0, 2, 1, 15, 4, 5, 8, 9, 7, 13, 10, 12, 14, 11, 6.

• Sections modifications. Several sections were modified to create more straightforward

gameplay and also to facilitate the training of the agent. Some of these modifications are

also part of the proposed modifications from section 3.6.

– The starting section was simplified, and the water was removed because, during the

training, the agent lost a majority of times at this section. The figure 4.13 shows how

the new starting section looked. Additionally, several collision blocks were added at

the left of the original and the new starting section since the agent also lost lives and

time going backwards. The figure 4.14 displays these blocks, which are not visible to

the player or the agent.

– The section 13 moving saw movement speed was significantly reduced since this sec-

tion was tough to complete even when playing perfectly.

Figure 4.13: New starting section

After all the train sessions and experiments, the simulated player’s agent did not prove to be a

correct representation of the user’s expert demonstrations. Since this agent could not be used to

train the adaptivity system, a new approach was used, explained in the next section.

4.4 Adaptivity system

Since the player simulation did not yield the expected result, a more simplistic solution needed to

be developed. Instead of focusing on developing a simulated player that can play several sections

of the game, a simulated personality system was created to produce the results at the end of each

section. Essentially, the adaptivity system will need to collect observations at the end of each

60 Development and workflow of game adaptivity system

Figure 4.14: Starting section collision blocks

section, so this personality system will generate gameplay values as if that personality played that

section.

4.4.1 Personality system overview

The first step in creating the personality system is to build a template personality that can be repli-

cated and modified easily. This template was created using Unity Scriptable Objects, allowing the

creation of objects with a template format and values that can be quickly changed. The following

values, also shown in figure 4.15, compose the structure of each personality object and are used

for the observations and rewards of the adaptivity system :

• Tolerance for repeating sections. This value indicates how many sections should appear

before a section can be shown again. For example, if the first section is 14 and the person-

ality has a tolerance for three levels, the player needs to see three sections different from

section 14. After the three sections, the player can tolerate seeing section 14 again.

• New levels importance. This value is associated with the value above and signifies how

negatively the repeated section impacts the player.

• Coins importance. This value indicates how important it is to collect coins for the person-

ality.

• Coins section. This variable is composed of sixteen options, one for each section, and each

contains a minimum and maximum value of coins the personality can collect in that section,

shown in figure 4.16.

4.4 Adaptivity system 61

Figure 4.15: Unity personality scriptable object example

• Chest importance. This value indicates how important it is to open chests for the person-

ality.

• Chest section. This variable is composed of sixteen options, one for each section, and each

contains a minimum and maximum value of chests the personality can open in that section.

• Life importance. This value indicates how important it is to maintain lives. Essentially, if

the personality has three lives, this importance is given by a factor of three, which is used in

the reward calculation.

• Life lost importance. This value indicates how much penalty is associated with losing a

life. It is used to add a negative reward to the reward function.

• Life lost section. This variable is composed of sixteen options, one for each section, and

each contains a minimum and maximum values of potential lives the personality can lose in

that section.

62 Development and workflow of game adaptivity system

Figure 4.16: Unity personality scriptable object coins minimum and maximum value example

• Life lost type section. This variable is composed of sixteen options, one for each section,

and each contains three values, one for stationary enemies, one for moving enemies and

one for water enemies. These values can be seen in figure 4.17, and they can be any posi-

tive number. This variable represents how probable it is for the personality to lose a life to

that enemy type. For example, in section 10, the values can be 3 for water, 1 for station-

ary enemies and 6 for moving enemies, and then a random number is select from 1 to 10

(3+1+6=10) and is associated with the corresponding enemy (if the number is [1,3] then he

will lose a life to water, if [4,4] then to a static enemy and if [5,10] to a moving enemy).

• Time section. This variable is composed of sixteen options, one for each section, and

each contains minimum and maximum floating points values for the possible velocity the

personality can achieve in that section.

• Speed importance. This value indicates how important it is to go at the desired average

speed for the personality. This value is used for the reward calculation.

• Speed preference. This value indicates what the prefered average speed is for that person-

ality. This value is used for the reward calculation.

• Speed section. This variable is composed of sixteen options, one for each section, and

each contains minimum and maximum floating points values for the possible speed the

personality can perform in that section.

4.4 Adaptivity system 63

Figure 4.17: Unity personality scriptable object type of enemy example

• Jumps section. This variable is composed of sixteen options, one for each section, and each

contains a minimum and maximum values of potential jumps the personality can perform in

that section.

• Backtrack probability. This variable is composed of sixteen options, one for each section,

and each contains a percentage change for that personality to perform a backtrack move in

the section. In this game, a backtrack is considered when the player goes back 10 Unity

units, a sufficient amount of space to be considered a player’s decision to move backwards.

• New score importance. This value indicates how important it is to achieve a new score for

the personality.

• Concentration. This variable is based on the game flow concept of concentration (section

2.1.5), and its meaning was adapted for the context of this game and the use in the person-

ality system. This variable signifies the number of things to do in the section relating to

the personality’s objectives. It is composed of sixteen options, one for each section, and

each contains a value from zero to ten representing how much concentration that section

contributes to the personality, shown in figure 4.18.

• Concentration level prefered. This value indicates what the preferred level of concentra-

tion for the personality is. Essentially, this value indicates at what level the concentration

must fluctuate between, which is explained better in the reward calculation explanation.

64 Development and workflow of game adaptivity system

Figure 4.18: Unity personality scriptable concentration values example

• Concentration importance. This value indicates how important it is to come close to the

prefered concentration level.

• Skill. This variable is based on the game flow concept of skill(section 2.1.5), and its meaning

was adapted for the context of this game and the use in the personality system. This variable

signifies the difficulty associated with that section. It is composed of sixteen options, one

for each section, and each contains a value from zero to ten representing how much skill

that section requires, although all personalities can complete that section.

• Skill level prefered. This value indicates what the preferred level of skill for the personality

is. Essentially, this value indicates at what level the skill must fluctuate between, which is

explained better in the reward calculation explanation.

• Skill importance. This value indicates how important it is to come close to the prefered

skill level.

• Challenge. This variable is based on the game flow concept of challenge(section 2.1.5), and

its meaning was adapted for the context of this game and the use in the personality system.

This variable signifies the challenges associated with the personality’s objectives for each

section. It is composed of sixteen options, one for each section, and each contains a value

from zero to ten representing how much challenge that section contributes to the personality.

• Challenge level prefered. This value indicates what the preferred level of challenge for

the personality is. Essentially, this value indicates at what level the challenge must fluctuate

between, which is explained better in the reward calculation explanation.

• Challenge importance. This value indicates how important it is to come close to the pref-

ered challenge level.

4.4 Adaptivity system 65

The immersion was also considered but was not included in the personality system since it was too

hard to define and distinguish between personalities. These values are used for both the adaptivity

system observations and reward function. The reward for the adaptivity system is calculated in the

following way:

• The previously completed sections are analysed, and if the current section was seen repeated

in the last Tolerance for repeating sections number of sections, then a negative reward is

given out according to the equation 4.2.

sectionReward −= newLevelsImportance[personality] (4.2)

• A random number of coins is generated between the minimum and maximum value for that

personality and section. Then a positive reward is given according to equation 4.3

sectionReward += coinsImportance[personality]∗ randomCoinsSection. (4.3)

• A random number of chests is generated between the minimum and maximum value for that

personality and section. Then a positive reward is given according to equation 4.4.

sectionReward += chestImportance[personality]∗ randomChestsSection (4.4)

• A random number of lives lost is generated between the minimum and maximum value for

that personality and section. Then a negative reward is given according to the equation 4.5.

Additionally, for each life lost, an enemy is associated with that life lost and recorded for

later use in the adaptivity system observations.

sectionReward −= listLostImportance[personality]∗ randomLiveLostSection(4.5)

• If the game ends because the player does not have any more lives or the time has ended, a

positive reward is given if the player achieves a new max score according to equation 4.6.

sectionReward += newScoreImportance[personality] (4.6)

• A positive reward is given for having lives according to equation 4.7.

sectionReward += currentLives∗ li f eImportance[personality] (4.7)

• A reward is given according to the average speed in that game and between games until

that section. If the average velocity is less than the speed preference, a negative reward is

given according to equation 4.9. If the average velocity is higher than the speed preference,

a positive reward is given according to equation 4.10. The same rewards are given for the

66 Development and workflow of game adaptivity system

average speed between multiple games, both represented by equations 4.12 and 4.13. These

rewards are divided by two since the both values represent similar values and are both used

for the reward function.

a =
averageVelocityGame

speedPre f erence[personality]
(4.8)

sectionReward −=
(1−a)∗ speedImportance[personality]

2
(4.9)

sectionReward +=
a∗ speedImportance[personality]

2
(4.10)

b =
averageVelocity[personality]

speedPre f erence[personality]
(4.11)

sectionReward −=
(1−b)∗ speedImportance[personality]

2
(4.12)

sectionReward +=
b∗ speedImportance[personality]

2
(4.13)

• A positive reward is given according to how close the concentration level is to the prefered

level. Firstly, an average of the concentration is calculated from the last Tolerance for re-

peating levels number of levels, with the concentration variable values for each personality

for the specific sections. Then the reward is calculated according to equation 4.16.

di f f erence = concenLevelPre f erred[personality]−averageConcen (4.14)

absoluteValue = Math.abs(di f f erence)+1 (4.15)

sectionReward +=
1

absoluteValue
∗ concenImportance[personality] (4.16)

• A positive reward is given according to how close the skill level is to the prefered level.

Firstly, an average of the skill is calculated from the last Tolerance for repeating levels

number of levels, with the skill variable values for each personality for the specific sections.

Then the reward is calculated according to equation 4.19.

di f f erence = skillLevel pre f erred[personality]−averageSkill (4.17)

absoluteValue = Math.abs(di f f erence)+1 (4.18)

sectionReward +=
1

absoluteValue
∗ skillImportance[personality] (4.19)

• A positive reward is given according to how close the challenge level is to the prefered level.

Firstly, an average of the challenge is calculated from the last Tolerance for repeating levels

number of levels, with the challenge variable values for each personality for the specific

sections. Then the reward is calculated according to equation 4.22.

di f f erence = chalLevelPre f erred[personality]−averageChal (4.20)

absoluteValue = Math.abs(di f f erence)+1 (4.21)

4.4 Adaptivity system 67

sectionReward +=
1

absoluteValue
∗ challengeImportance[personality] (4.22)

sectionreward =
width

max−width
∗ sectionreward (4.23)

Furthermore, the final section reward is also scaled to the size of each section, shown in equation

4.23 (max-width is associated with the width of the biggest section of the game). This reward

function is used in the adaptivity reinforcement learning algorithm to indicate how appropriate the

section selected was.

4.4.2 Adaptivity system overview

The adaptivity system will use the reward defined in the previous section 4.4.1 but will also need

to collect observations and perform actions. In terms of observations, the following list described

the observations retrieves at the end of each section and used to train the algorithm:

• The max score achieved by that personality. The score is calculated using the width of each

section completed, which is expressed in Unity units. Additionally, the starting section is

added automatically to the score at the start of each episode.

• The current score.

• The current amount of lives.

• The number of lives lost to water over the personality’s multiple games.

• The number of lives lost to moving enemies over the personality’s multiple games.

• The number of lives lost to stationary enemies over the personality’s multiple games.

• The number of lives lost over the multiple games of the personality.

• The number of lives lost in this game.

• The number of lives lost to water in this game.

• The number of lives lost to stationary enemies in this game.

• The number of lives lost to moving enemies in this game.

• The total number of coins collected over the multiple games for that personality.

• The total number of chests collected over the multiple games for that personality.

• The total number of coins collected in this game.

• The total number of chests collected in this game.

68 Development and workflow of game adaptivity system

• The average velocity in this game.

• The average velocity over the multiple games for that personality.

• The variance of the velocity in this game.

• The standard deviation of the velocity in this game.

• The variance of the velocity over the multiple games for that personality.

• The standard deviation of the velocity over the multiple games for that personality.

• The total number of jumps performed in this game. According to the Jump section variable

minimum and maximum values, the jumps are recorded and are added according to equation

4.25. The jumps are added this way since the player will have to retry the level if he loses a

life.

rounded = Math.roundToInt(randomJumpsSection∗ li f eLost ∗0.8)] (4.24)

jumps += randomJumpsSection+ rounded (4.25)

• The total number of backtracks performed in this game. The backtracks are recorded and

added according to the variable values. Additionally, if the player lost a life, the backtrack

would be added again for that section.

• The total amount of time passed since the start of the game. The time is recorded and added

according to the variable minimum and maximum values. Additionally, since the starting

section is not recorded, its time can be considered two seconds, and if the player has lost a

life, the time is also added an additional time but by a factor of 0.6.

• The section just completed.

The adaptivity system has sixteen possible discrete actions, each corresponding to a section. The

purpose of the adaptivity system is to select the next most appropriate section to be presented to the

player. However, since this decision is only taken at the end of each section, the following section

would not be present, and the player would be faced with nothing until the section spawned. To

solve this problem, a special section was added to fill in this gap, shown in figure 4.19.

According to a personal game designer view, a total of ten personalities were created, rep-

resenting the potential player base of this game. These ten personalities are described in the

following list:

• An experienced player that wants to collect coins. This personality represents a player who

has played platforming games several times and likes to go fast and wants to collect all the

coins and chests in the section.

4.4 Adaptivity system 69

Figure 4.19: Special section

• An experienced player that just wants to go fast. This personality represents a player who

has played platforming games several times and wants to go as fast as possible, risking

everything for a new score.

• A casual player that wants to collect coins. This personality represents a player who has

played platforming games a few times and wants to collect all the coins that he can find.

• A casual player that wants to go fast. This personality represents a player who has played

platforming games a few times and wants to go as fast as possible as his skill can accomplish.

• A casual player that plays with care. This personality represents a player who has played

platforming games a few times and plays each section with care not to lose his lives. Ad-

ditionally, this player gives importance to his life and does not pay too much attention to

speed.

• A casual player that has trouble with moving enemies. This personality represents a player

who has played platforming games a few times but still has trouble completing sections with

moving enemies. He does not like being presented with these challenges but does not mind

having to complete them from time to time.

• A casual player that has trouble with platforming sections. This personality represents a

player who has played platforming games a few times but has trouble completing sections

where the main focus is on the ability to platform.

• An inexperienced user playing the game for the first time. This personality represents a

player who is playing platforming games for the first time. He does not have many demands

for what to find other than an appropriate challenge.

• An inexperienced player that plays the game with care. This personality represents a new

player that likes to take things with time and plan their strategy.

• An inexperienced hyperactive player. This personality represents a new player that jumps a

lot and plays each section without much care.

70 Development and workflow of game adaptivity system

Table 4.1: Section’s coins and chests

Section Normal Coins Backtrack coins Chests possible coins
0 1 0 0
1 2 1 0
2 4 0 0
3 1 0 0
4 4 2 0
5 3 0 0
6 6 2 3-5 x1
7 5 0 0
8 9 0 0
9 8 chest 4-6 x1
10 5 0 0
11 6 3 0
12 4 0 0
13 5 0 0
14 0 chest 4-6 x1
15 0 0 0

Each of these personality values can be found in the appendix A. The coins, chests, and lives lost

values are based on the game elements present in each section and then adapted to each personality.

The elements present in each section can be found in the tables 4.1 and 4.2. Additionally, the time,

speed, and jumps values are based on personal gameplay values collected while simulating fast,

average, and slow sections completions. These values can be found in tables 4.3, 4.4 and 4.5.

The adaptivity reinforcement learning algorithm follows a similar training structure described

in section 3.6. In this case, the created personality will be randomly selected to play each game.

The algorithm collects the observations and rewards at the end of each section and then decides

the next section to be presented to the player. At the end of each game/episode, the following per-

sonality to play the game has a 20% probability of resetting his historical values and be considered

a new player for this game.

Instead of using the python API for ml-agents, this adaptivity system uses the same ml-agents

toolkit as the section 4.3. The adaptivity system was created using this toolkit, and several training

and experimentation sessions were performed to improve the final adaptivity agent, using both

PPO and SAC algorithms. These sessions will be explained in the following chapter. After the

training of the adaptivity agent, the game was slightly modified to support an adaptivity system.

Additionally, the game changes between an adapted and non adapted version of the game at the

start of each run. The first version is randomly selected for each player and is maintained each

time the player closes and starts the game again. The first version is identified by the letter “A”,

and the second version by the letter “B “, both displayed on the screen during gameplay, shown in

figure 4.20.

Finally, to test the performance of the adaptivity system with real players, a questionnaire must

be responded to at the end of each run/round. This questionnaire uses the core questions from the

4.4 Adaptivity system 71

Table 4.2: Section’s enemies

Section Moving enemies Static enemies Water
0 0 1 0
1 1 0 0
2 0 4 0
3 0 0 0
4 0 3 1
5 0 7 1
6 1 1 1
7 0 7 0
8 0 8 1
9 0 2 1
10 6 0 1
11 5 0 1
12 3 2 1
13 1 0 1
14 1 0 1
15 4 0 0

Figure 4.20: Display of the type of round during gameplay

Game Experience Questionnaire [31]. The questions must be responded to both round “A” and

round “B”. The complete questionnaire can also be found in the appendix B. Additionally, the

game also records metrics that can help find a difference between the adapted and non-adapted

versions. These metrics are written to a CSV file that the user must upload to the questionnaire.

The metrics are recorded by section and game completed and are described in the following list:

• The section passed.

72 Development and workflow of game adaptivity system

Table 4.3: Section’s completions times in seconds

Section Fast Normal Fast while backtracking coins Slow
0 2 3.5 - 5
1 7 9 16 12
2 6 8 - 12
3 4.6 5 - 7
4 13 17 28 20
5 13.5 17 - 20
6 29 36 40 or 60 40
7 21.5 22.5 - 25
8 38.5 40 - 46
9 38.5 42 47 48
10 24 28 - 32
11 41.5 49 62 55
12 27 30 - 34
13 33 35 - 38
14 18.5 23.5 35 27
15 12 20 - 25

• If it was the adapted or non adapted version of the game.

• The round letter.

• The total amount of coins the player has at that moment.

• The total number of collected coins until that section or during that game.

• The total number of opened chests until that section or during that game.

• The total amount of time passed until that section or during that game.

• The total amount of time gained by collecting coins until that section or during that game.

• The total number of lives lost until that section or during that game.

• The total number of lives lost to water until that section or during that game.

• The total number of lives lost to stationary enemies until that section or during that game.

• The total number of lives lost to moving enemies until that section or during that game.

• The best score at that moment.

• The score until that section or of that game.

• The number of backtracks performed until that section or during that game.

• The number of jumps performed until that section or during that game.

4.5 Summary 73

Table 4.4: Section’s completions average speeds in Unity units

Section Fast Normal Fast while backtracking coins Slow
0 8.5 4.4 - 4
1 8.8 7 4.5 4
2 5.8 4.5 - 4
3 8.5 8 - 7.5
4 8.7 6.5 3.8 6
5 7.9 6.8 - 6
6 6.4 5.5 4.7 or 3 4.5
7 8.9 8.5 - 7.5
8 7.3 6.7 - 5.5
9 8 7.4 6.5 6.5
10 7.3 6 - 5
11 6.3 5.2 4.2 4.2
12 8.4 8 - 6.5
13 8.9 8.7 - 8
14 8.2 6.7 4.2 6
15 8.9 4.4 - 3.8

• The average velocity until that section or during that game.

• The velocity variance until that section or during that game.

4.5 Summary

In this chapter, several implemented systems were explained and detail. Firstly, in section 4.1,

the life system developed was explained, and its looks during gameplay were presented. Then, in

section 4.2, the time system implemented in the game was described.

In section 4.3, the player simulation system was firstly implemented according to the proposed

solution. However, because of several problems, the implementation changed to use the Unity ml-

agents toolkit. This toolkit allowed for a more straightforward implementation of the simulated

agents. Despite its usefulness and some results showing promising results, the final result could

not be used since the agent did not replicate the user actions at an expected level. Finally, in section

4.4, a more simplistic solution to the player simulation was presented and developed. Using this

personality system, the adaptivity system could now be trained, and the final adaptivity agent was

included in the game for users to test its effectiveness. All the development features and details

were presented and discussed for the adaptivity system and the personality system.

74 Development and workflow of game adaptivity system

Table 4.5: Section’s completions jumps

Section Fast Normal Fast while backtracking coins Slow
0 1 2 - 3
1 1 4 4 5
2 4 5 - 6
3 1 1 - 2
4 6 5 9 7
5 7 8 - 9
6 12 12 14 or 22 12
7 5 5 - 6
8 18 20 - 23
9 13 13 13 16
10 10 12 - 14
11 17 20 25 25
12 8 8 - 12
13 4 4 - 5
14 5 6 14 8
15 0 0 - 1

Chapter 5

Results and evaluation

In this chapter, the results obtained from the developed system explained in chapter 4 will be

displayed, and an analysis will be made to fulfill the objectives described in section 1.2. In section

5.1, the several experiments performed for the player simulation will be detailed, and at the end,

an overall analysis of the data will be made. Then, the results from the training of the adaptivity

agent will be shown in section 5.2.1. Furthermore, an analysis of the results will also be made

in section 5.2.2. Finally, in section 5.2.3, the adapted game created with the adaptivity agent was

tested with real users, and the results obtained will be summarized, and their data analysed.

5.1 Player simulation

The first implementation of the player simulation described in section 4.3 did not yield any results

since it could not be fully implemented. Therefore, the only results obtained during the develop-

ment of the player simulation are related to the implementation with the Unity ml-agents toolkit.

This toolkit allows the developers to define the algorithm in a .yaml file, which will then be

used to create and train the algorithm. The toolkit file allows for the following configurations to

be defined, which are further explained in the documentation of the toolkit 1:

• trainer_type. This setting allows defining what the main reinforcement learning algorithm

to use is. In the case of this dissertation, the main algorithms used are PPO and SAC.

• max_steps.

• hyperparameters->learning_rate.

• hyperparameters->batch_size. This setting represents the number of experiences in each

iteration of gradient descent.

• hyperparameters->buffer_size. This setting represents the number of experiences that need

to be collected before updating the policy model.

1https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Training-Configuration-File.md

75

https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Training-Configuration-File.md

76 Results and evaluation

• hyperparameters->learning_rate_schedule.

• hyperparameters->PPO->beta. This setting represents the strength of the entropy regular-

ization. This value should be increased if the entropy drops too quickly.

• hyperparameters->PPO->epsilon.

• hyperparameters->PPO->lambd.

• hyperparameters->PPO->num_epoch.

• hyperparameters->SAC->buffer_init_steps.

• hyperparameters->SAC->init_entcoef.

• hyperparameters->SAC->save_replay_buffer.

• hyperparameters->SAC->tau.

• hyperparameters->SAC->steps_per_update.

• hyperparameters->SAC->reward_signal_num_update.

• network_settings->hidden_units. This setting represents the number of hidden units in the

hidden layers of the neural networks.

• network_settings->num_layers. This setting represents the number of hidden layers in the

neural network.

• network_settings->normalize. This setting defines if the input values should be normalized.

• network_settings->vis_encode_type.

• network_settings->memory->memory_size. This setting represents the amount of memory

the agent must keep.

• network_settings->memory->sequence_length. This setting represents how long the se-

quence of experiences should be while training.

• extrinsic->strengh. This setting represents the factor to which multiply the reward.

• extrinsic->gamma.

• GAIL->strength. This setting represents the factor to which multiply the reward.

• GAIL->gamma.

• GAIL->demo_path.

• GAIL->network_settings.

5.1 Player simulation 77

• GAIL->learning_rate.

• GAIL->use_actions. Defines if the discriminator should discriminate based on the per-

formed actions or just the observations.

• GAIL->use_vail. A variational bottleneck within the GAIL discriminator, which forces the

discriminator to learn a more general representation.

• behavior_cloning->demo_path.

• behavior_cloning->steps.

• behavior_cloning->strength. This setting represents the factor to which multiply the reward.

• behavior_cloning->samples_per_update.

Although the settings listed do not include every configuration available to change, these are the

ones defined in the training file (as shown in the figure 5.1), and the default values are used for the

settings not defined. Additionally, not all the configuration values will change in the experiments,

and the ones who change are generally between the recommended range described by the ml-

agents toolkit.

The ml-agents toolkit also allows the use of Tensorboard to display the statics during the

training sessions, which is further detailed in the toolkit’s documentation 2 and the following list:

• Environment/Cumulative reward - Represents the mean cumulative episode reward that

should increase during training.

• Environment/Episode Length - Represents the mean length of each episode.

• Policy/Entropy - Represents how arbitrary the decisions of the agent are. This value should

slowly decrease during training.

• Policy/GAIL Policy Estimate - Represents the discriminator’s estimate for the generated

policy.

• Policy/GAIL Expert Estimate - Represents the discriminator’s estimate for the expert demon-

strations.

• Losses/Policy Loss - Represents the mean magnitude of the policy loss function and should

decrease during training.

• Losses/Pretraining Loss - Represents the mean magnitude of the behavioral cloning loss.

• Losses/GAIL Loss - Represents the mean magnitude of the GAIL discriminator loss.

In addition, this tool displays statistics relating to the environment, like the cumulative reward, the

losses and the policy. Finally, each experiment is evaluated using the Tensorboard statistics graphs

and its performance while playing the game.
2https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Using-Tensorboard.md

https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Using-Tensorboard.md

78 Results and evaluation

Figure 5.1: Example of the training .yaml file

5.1 Player simulation 79

Table 5.1: Player simulation experiment 1 configuration

Settings Description
PPO hyperparameters batch_size=2024, buffer_size=20240, learning_rate = 0.0003,

beta = 0.005, epsilon = 0.2, lambd = 0.95, num_epoch = 3,
learning_rate_schedule = linear

Network settings normalize = true, hidden_units = 512, num_layers = 3,
vis_encode_type = simple

Memory None
Reward extrinsic None
GAIL gamma = 0.99, strength = 1.0, learning_rate = 0.0003,

use_actions = true, use_vail = true
GAIL network settings normalize = true, hidden_units = 128,num_layers = 2,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 0.5, samples_per_update = 0, num_epoch

= None, batch_size = None
Demonstrations One-hour recording composed of 16 episodes and 195280 steps
Observations Scalar observation + image with colours + ray perception sensor
Training settings Number of environments = 1, timescale for game = default

5.1.1 Experiments performed

The following sections will describe each experiment performed during the development of this

dissertation. In addition, each section will present a table with the configuration used for that

experiment and explain what changes were made and the results obtained using the Tensorboard

graphs (all graphs are in the number of steps performed). Each experiment was performed se-

quentially with a slight change made to test its performance in relation to the other experiments.

Furthermore, the results were primarily analysed on how well the agent was able to complete each

section since the graphs from the algorithms were sometimes not a correct indication of how well

that agent performed.

5.1.1.1 Player simulation experiment 1

This experiment was the first performed and served to test the usage of the GAIL algorithm using

the ml-agents toolkit. Unfortunately, the game modifications relating to the sections and the move-

ment system were not yet implemented, meaning there was input lag and the starting section still

had the water pit. The table 5.1 shows the configuration used for this experiment. Furthermore,

the parameters used for this experiment are based on examples described in the ml-agents toolkit

documentation.

Results:

• The agent trained for about 2M steps.

• The final trained agent could not reliably complete the start of the game, losing at the water

pit.

80 Results and evaluation

Table 5.2: Player simulation experiment 2 configuration

Settings Description
PPO hyperparameters batch_size=2024, buffer_size=20240, learning_rate = 0.0003,

beta = 0.005, epsilon = 0.2, lambd = 0.95, num_epoch = 3,
learning_rate_schedule = linear

Network settings normalize = true, hidden_units = 512, num_layers = 3,
vis_encode_type = simple

Memory None
Reward extrinsic None
GAIL gamma = 0.99, strength = 1.0, learning_rate = 0.0003,

use_actions = true, use_vail = true
GAIL network settings normalize = true, hidden_units = 128,num_layers = 2,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 0.5, samples_per_update = 0, num_epoch

= None, batch_size = None
Demonstrations Recording of four games, which corresponds to about 25

minutes of gameplay
Observations Scalar observation + image with colours + ray perception sensor
Training settings Number of environments = 8, timescale for game = 20

• The algorithm results (figure 5.2) showed that the episode length is rising over time. How-

ever, the policy loss and GAIL loss are inconsistent, jumping the values rapidly.

5.1.1.2 Player simulation experiment 2

In this experiment, the agent uses a new set of actions. The agent can decide to perform two

actions:

• If he wants to jump or not as a discrete action.

• If he should move to the left or the right or not move, given as a continuous value from

[-1,1].

The table 5.2 shows the configuration used for this experiment.

Results:

• The agent trained for about 1.6M steps.

• The final trained agent could not move around the levels or even pass the starting sections.

• The algorithm results (figure 5.3) showed that the policy loss is very inconsistent over the

training section.

5.1 Player simulation 81

Figure 5.2: Player simulation experiment 1 results

(a) Mean length of each episode over the training
steps

(b) Mean magnitude of the behavioral cloning
loss over the training steps

(c) Mean magnitude of the policy loss function
over the training steps

(d) Mean magnitude of the GAIL discriminator
loss over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy
generated, over the training steps

82 Results and evaluation

Figure 5.3: Player simulation experiment 2 results

(a) Mean length of each episode over the training
steps

(b) Mean magnitude of the behavioral cloning loss
over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

(d) Mean magnitude of the GAIL discriminator loss
over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

5.1 Player simulation 83

Table 5.3: Player simulation experiment 3 configuration

Settings Description
PPO hyperparameters batch_size=2024, buffer_size=20240, learning_rate = 0.0003,

beta = 0.005, epsilon = 0.2, lambd = 0.95, num_epoch = 3,
learning_rate_schedule = linear

Network settings normalize = true, hidden_units = 512, num_layers = 3,
vis_encode_type = simple

Memory None
Reward extrinsic None
GAIL gamma = 0.99, strength = 1.0, learning_rate = 0.0003,

use_actions = false, use_vail = true
GAIL network settings normalize = true, hidden_units = 128,num_layers = 2,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 0.5, samples_per_update = 20240,

num_epoch = None, batch_size = None
Demonstrations Recording of two games, which corresponds to about 15

minutes of gameplay
Observations Scalar observation + image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 1

5.1.1.3 Player simulation experiment 3

In this experiment, the agent’s actions were reverted to the original actions (1 discrete action, with

move and jump options). Furthermore, the images used are grayscale instead of coloured. The

table 5.3 shows the configuration used for this experiment.

Results:

• The agent trained for about 2.4M steps.

• The final trained agent could not pass the starting section consistently and would sometimes

stop moving in this section.

• The algorithm results (figure 5.4) showed that the policy loss is very inconsistent over the

training section.

5.1.1.4 Player simulation experiment 4

In this experiment, the LSTM was introduced to allow the agent to remember and decide depend-

ing on the previous actions. Furthermore, other settings were also changed. The table 5.4 shows

the configuration used for this experiment.

Results:

• The agent trained for about 8M steps.

• The final trained agent did not make any movement with the character.

84 Results and evaluation

Figure 5.4: Player simulation experiment 3 results

(a) Mean length of each episode over the training
steps

(b) Mean magnitude of the behavioral cloning loss
over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

(d) Mean magnitude of the GAIL discriminator loss
over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

5.1 Player simulation 85

Table 5.4: Player simulation experiment 4 configuration

Settings Description
PPO hyperparameters batch_size=2024, buffer_size=20240, learning_rate = 0.0003,

beta = 0.005, epsilon = 0.2, lambd = 0.95, num_epoch = 3,
learning_rate_schedule = linear

Network settings normalize = false, hidden_units = 512, num_layers = 3,
vis_encode_type = simple

Memory sequence_length = 128, memory_size = 512
Reward extrinsic None
GAIL gamma = 0.99, strength = 1.0, learning_rate = 0.0003,

use_actions = true, use_vail = true
GAIL network settings normalize = false, hidden_units = 128,num_layers = 2,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 0.5, samples_per_update = 20240,

num_epoch = None, batch_size = None
Demonstrations Recording of six games, which corresponds to about 30 min-

utes of gameplay
Observations Scalar observation + image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 1

• The algorithm results (figure 5.5) showed that the policy loss is somewhat constant and did

not decrease.

5.1.1.5 Player simulation experiment 5

In this experiment, the LSTM that was previously introduced was removed. Furthermore, the

scalar observations were removed, having only the image and the ray perception sensor. The

observations were also stacked, meaning that the observations are composed of two images and

ray perceptions. However, the stacking of observations leads to much higher memory usage.

Finally, the network size was also reduced. The table 5.5 shows the configuration used for this

experiment.

Results:

• The agent trained for about 1.5M steps.

• The final trained agent can pass the starting section but not consistently. Furthermore, the

agent has trouble jumping in other sections, stopping when faced with a wall.

• The algorithm results (figure 5.6) showed that the policy loss is inconsistent during the

training. Additionally, the entropy is also rising during the training.

5.1.1.6 Player simulation experiment 6

In this experiment, the LSTM was reintroduced to the agent’s network to test its effectiveness with

the new observations. Furthermore, the behaviour cloning was also given more strength, giving

86 Results and evaluation

Figure 5.5: Player simulation experiment 4 results

(a) Mean length of each episode over the training
steps

(b) Mean magnitude of the behavioral cloning loss
over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

(d) Mean magnitude of the GAIL discriminator loss
over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

5.1 Player simulation 87

Figure 5.6: Player simulation experiment 5 results

(a) Mean length of each episode over the training
steps (b) Policy entropy over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

(d) Mean magnitude of the GAIL discriminator loss
over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

88 Results and evaluation

Table 5.5: Player simulation experiment 5 configuration

Settings Description
PPO hyperparameters batch_size=64, buffer_size=1280, learning_rate = 0.0003, beta

= 0.005, epsilon = 0.2, lambd = 0.95, num_epoch = 3, learn-
ing_rate_schedule = linear

Network settings normalize = false, hidden_units = 256, num_layers = 2,
vis_encode_type = simple

Memory None
Reward extrinsic None
GAIL gamma = 0.99, strength = 1.0, learning_rate = 0.0003,

use_actions = false, use_vail = true
GAIL network settings normalize = false, hidden_units = 64, num_layers = 1,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 0.5, samples_per_update = 1280,

num_epoch = None, batch_size = None
Demonstrations Recording of six games, which corresponds to about 30 minutes

of gameplay
Observations Image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 1

this algorithm more importance in training. Finally, some other settings were also tweaked to test

their effectiveness. The table 5.6 shows the configuration used for this experiment.

Results:

• The agent trained for about 1M steps.

• The final trained agent can pass the starting section more consistently. However, the agent

has some trouble jumping over stairs, often remaining still at the start of them. Additionally,

the agent also seems confused about the coins while sometimes avoiding them.

• The algorithm results (figure 5.7) showed that the policy loss is inconsistent, which may be

caused by the small training session.

5.1.1.7 Player simulation experiment 7

In this experiment, the LSTM has a smaller size, and the overall training lasted longer. The table

5.7 shows the configuration used for this experiment.

Results:

• The agent trained for about 7M steps.

• The final trained agent seems less stable than the previous experiment, having a more erratic

movement.

• The algorithm results (figure 5.8) showed that the policy loss is very inconsistent during the

training session. Furthermore, the GAIL expert and policy estimates are near perfect.

5.1 Player simulation 89

Table 5.6: Player simulation experiment 6 configuration

Settings Description
PPO hyperparameters batch_size=128, buffer_size=1024, learning_rate = 0.0003,

beta = 0.01, epsilon = 0.2, lambd = 0.95, num_epoch = 3, learn-
ing_rate_schedule = linear

Network settings normalize = false, hidden_units = 128, num_layers = 2,
vis_encode_type = simple

Memory sequence_length = 128, memory_size = 512
Reward extrinsic None
GAIL gamma = 0.99, strength = 1.0, learning_rate = 0.0003,

use_actions = false, use_vail = false
GAIL network settings normalize = false, hidden_units = 64, num_layers = 1,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 0.8, samples_per_update = 1024,

num_epoch = None, batch_size = None
Demonstrations Recording of six games, which corresponds to about 30 minutes

of gameplay
Observations Image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 1

Table 5.7: Player simulation experiment 7 configuration

Settings Description
PPO hyperparameters batch_size=128, buffer_size=1024, learning_rate = 0.0003, beta

= 0.01, epsilon = 0.2, lambd = 0.95, num_epoch = 3, learn-
ing_rate_schedule = linear

Network settings normalize = false, hidden_units = 128, num_layers = 2,
vis_encode_type = simple

Memory sequence_length = 16, memory_size = 64
Reward extrinsic None
GAIL gamma = 0.99, strength = 1.0, learning_rate = 0.0003,

use_actions = false, use_vail = false
GAIL network settings normalize = false, hidden_units = 64, num_layers = 1,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 0.8, samples_per_update = 1024,

num_epoch = None, batch_size = None
Demonstrations Recording of six games, which corresponds to about 30 minutes

of gameplay
Observations Image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 1

90 Results and evaluation

Figure 5.7: Player simulation experiment 6 results

(a) Mean length of each episode over the training
steps (b) Policy entropy over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

(d) Mean magnitude of the GAIL discriminator loss
over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

5.1 Player simulation 91

Figure 5.8: Player simulation experiment 7 results

(a) Mean length of each episode over the training
steps (b) Policy entropy over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

(d) Mean magnitude of the GAIL discriminator loss
over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

92 Results and evaluation

Table 5.8: Player simulation experiment 8 configuration

Settings Description
PPO hyperparameters batch_size=128, buffer_size=1024, learning_rate = 0.0003, beta

= 0.01, epsilon = 0.2, lambd = 0.95, num_epoch = 3, learn-
ing_rate_schedule = linear

Network settings normalize = false, hidden_units = 128, num_layers = 2,
vis_encode_type = simple

Memory sequence_length = 64, memory_size = 256
Reward extrinsic gamma = 0.99, strength = 0.2
Reward details if velocity < 1 = reward - 0.0001 per frame, coins = 0.01,

moving forward = dx/10000, lose = -1
GAIL gamma = 0.99, strength = 0.8, learning_rate = 0.0003,

use_actions = false, use_vail = false
GAIL network settings normalize = false, hidden_units = 64, num_layers = 1,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 0.8, samples_per_update = 1024,

num_epoch = None, batch_size = None
Demonstrations Recording of eight games, which corresponds to about 45

minutes of gameplay
Observations Image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 1

5.1.1.8 Player simulation experiment 8

In this experiment, the LSTM is in the middle between the size of the two previous experiments.

Furthermore, to help orient the agent to move forward and not stopping so much in the stairs, an

extrinsic reward is now given to the agent. Finally, the observation stacking was also removed

since the memory usage was too high. The table 5.8 shows the configuration used for this experi-

ment.

Results:

• The agent trained for about 1M steps.

• The final trained agent is a better version than the previous two agents. However, it still

shows some problems relating to the jumps of stairs.

• The algorithm results (figure 5.9) showed that the policy loss seems to be declining over

time. Furthermore, the GAIL policy estimate is declining, the expert estimate is perfect, and

the Policy entropy over the training steps is rising. Other conclusions are not reliable since

the training session is small.

5.1 Player simulation 93

Figure 5.9: Player simulation experiment 8 results

(a) Mean cumulative episode reward over the train-
ing steps (b) Policy entropy over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

(d) Mean magnitude of the GAIL discriminator loss
over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

94 Results and evaluation

Table 5.9: Player simulation experiment 9 configuration

Settings Description
PPO hyperparameters batch_size=128, buffer_size=1024, learning_rate = 0.0003, beta

= 0.01, epsilon = 0.2, lambd = 0.95, num_epoch = 3, learn-
ing_rate_schedule = linear

Network settings normalize = false, hidden_units = 128, num_layers = 2,
vis_encode_type = simple

Memory sequence_length = 64, memory_size = 256
Reward extrinsic gamma = 0.99, strength = 0.5
Reward details if velocity < 1 = reward - 0.001 per frame, coins = 0.1, moving

forward = dx/5000, lose = -10
GAIL gamma = 0.99, strength = 0.5, learning_rate = 0.0003,

use_actions = false, use_vail = false
GAIL network settings normalize = false, hidden_units = 64, num_layers = 1,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 0.8, samples_per_update = 1024,

num_epoch = None, batch_size = None
Demonstrations Recording of eight games, which corresponds to about 45 min-

utes of gameplay
Observations Image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 1

5.1.1.9 Player simulation experiment 9

In this experiment, the extrinsic reward given to the agent was given more importance, and the

GAIL algorithm lost some weight. Furthermore, the reward values were also tweaked. The table

5.9 shows the configuration used for this experiment.

Results:

• The agent trained for about 1.5M steps.

• The final trained agent shows the same problems as the previous one, but his movement is

more secure and bold this time.

• The algorithm results (figure 5.10) showed that the cumulative reward is declining over

time. However, this training session was cut too soon since the policy loss was declining,

and other values were also declining.

5.1.1.10 Player simulation experiment 10

In this experiment, the curiosity reward was introduced to the agent, with the primary purpose of

testing its effectiveness. The table 5.10 shows the configuration used for this experiment.

Results:

• The agent trained for about 8.5M steps.

5.1 Player simulation 95

Figure 5.10: Player simulation experiment 9 results

(a) Mean cumulative episode reward over the train-
ing steps (b) Policy entropy over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

(d) Mean magnitude of the GAIL discriminator loss
over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

96 Results and evaluation

Table 5.10: Player simulation experiment 10 configuration

Settings Description
PPO hyperparameters batch_size=128, buffer_size=1024, learning_rate = 0.0003, beta

= 0.01, epsilon = 0.2, lambd = 0.95, num_epoch = 3, learn-
ing_rate_schedule = linear

Network settings normalize = false, hidden_units = 128, num_layers = 2,
vis_encode_type = simple

Memory sequence_length = 64, memory_size = 256
Reward extrinsic gamma = 0.99, strength = 0.4
Reward details if velocity < 1 = reward - 0.001 per frame, coins = 0.1, moving

forward = dx/5000, lose = -10
Curiosity reward gamma = 0.99, strength = 0.1, hidden_units = 64,

num_layers = 1, learning_rate = 0.0003
GAIL gamma = 0.99, strength = 0.8, learning_rate = 0.0003,

use_actions = false, use_vail = false
GAIL network settings normalize = false, hidden_units = 64, num_layers = 1,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 0.8, samples_per_update = 1024,

num_epoch = None, batch_size = None
Demonstrations Recording of eight games, which corresponds to about 45 min-

utes of gameplay
Observations Image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 1

• The final trained agent has some trouble making some jumps in the game.

• The algorithm results (figure 5.11) showed that the cumulative reward is converging to zero.

Furthermore, the curiosity loss is not declining and is also unstable.

• The curiosity reward does not seem to have a positive effect on the agent.

5.1.1.11 Player simulation experiment 11

In this experiment, the curiosity reward introduced in the previous experiment was removed since

it did not substantially impact the final agent. Furthermore, some other values were changed to

test their effectiveness. The table 5.11 shows the configuration used for this experiment.

Results:

• The agent trained for about 3M steps.

• The final trained agent can reliably complete some sections, but other sections seem to have

more trouble completing, for example, the stair jumping problem.

• The algorithm results (figure 5.12) showed that the policy loss is decreasing. However, the

entropy is not decreasing over the training session.

5.1 Player simulation 97

Figure 5.11: Player simulation experiment 10 results

(a) Mean cumulative episode reward over the train-
ing steps

(b) Mean magnitude of the policy loss function over
the training steps

(c) Mean magnitude of the GAIL discriminator loss
over the training steps

(d) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

98 Results and evaluation

Figure 5.12: Player simulation experiment 11 results

(a) Mean cumulative episode reward over the train-
ing steps (b) Policy entropy over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

(d) Mean magnitude of the GAIL discriminator loss
over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

5.1 Player simulation 99

Table 5.11: Player simulation experiment 11 configuration

Settings Description
PPO hyperparameters batch_size=128, buffer_size=1024, learning_rate = 0.0003, beta

= 0.01, epsilon = 0.2, lambd = 0.95, num_epoch = 3, learn-
ing_rate_schedule = linear

Network settings normalize = false, hidden_units = 128, num_layers = 2,
vis_encode_type = simple

Memory sequence_length = 64, memory_size = 256
Reward extrinsic gamma = 0.99, strength = 0.35
Reward details if velocity < 1 = reward - 0.001 per frame, coins = 0.1, moving

forward = dx/5000, lose = -10
GAIL gamma = 0.99, strength = 0.65, learning_rate = 0.0003,

use_actions = false, use_vail = true
GAIL network settings normalize = false, hidden_units = 64, num_layers = 1,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 0.8, samples_per_update = 1024,

num_epoch = None, batch_size = None
Demonstrations Recording of eight games, which corresponds to about 45 min-

utes of gameplay
Observations Image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 1

5.1.1.12 Player simulation experiment 12

In this experiment, a simpler game was implemented as described in the section 4.3. The game

now lasts 1 minute and 15 seconds, and the agent only has one life. The simpler game will help

reduce situations where the agent spent too much time standing still at the stairs obstacle, which

sometimes would last until the end of the episode. The table 5.12 shows the configuration used for

this experiment.

Results:

• The agent trained for about 3.5M steps.

• The final trained agent shows the same problems as the previous experiment.

• The algorithm results (figure 5.13) showed that the policy loss is decreasing, as well as the

entropy. Furthermore, the cumulative reward seems to be increasing.

5.1.1.13 Player simulation experiment 13

In this experiment, the extrinsic reward was removed to test the agent performance using only

GAIL and behavioral cloning. The table 5.13 shows the configuration used for this experiment.

Results:

• The agent trained for about 7M steps.

100 Results and evaluation

Table 5.12: Player simulation experiment 12 configuration

Settings Description
PPO hyperparameters batch_size=128, buffer_size=1024, learning_rate = 0.0003, beta

= 0.01, epsilon = 0.2, lambd = 0.95, num_epoch = 3, learn-
ing_rate_schedule = linear

Network settings normalize = false, hidden_units = 128, num_layers = 2,
vis_encode_type = simple

Memory sequence_length = 64, memory_size = 256
Reward extrinsic gamma = 0.99, strength = 0.35
Reward details if velocity < 1 = reward - 0.001 per frame, coins = 0.1, moving

forward = dx/5000, lose = -10
GAIL gamma = 0.99, strength = 0.65, learning_rate = 0.0003,

use_actions = false, use_vail = true
GAIL network settings normalize = false, hidden_units = 64, num_layers = 1,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 0.8, samples_per_update = 1024,

num_epoch = None, batch_size = None
Demonstrations Recording of eight games, which corresponds to about 45 min-

utes of gameplay
Observations Image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 1
Simpler game 1 minute and 15 seconds, 1 life

Table 5.13: Player simulation experiment 13 configuration

Settings Description
PPO hyperparameters batch_size=128, buffer_size=1024, learning_rate = 0.0003, beta

= 0.01, epsilon = 0.2, lambd = 0.95, num_epoch = 3, learn-
ing_rate_schedule = linear

Network settings normalize = false, hidden_units = 128, num_layers = 2,
vis_encode_type = simple

Memory sequence_length = 64, memory_size = 256
Reward extrinsic None
Reward details None
GAIL gamma = 0.99, strength = 1, learning_rate = 0.0003,

use_actions = false, use_vail = false
GAIL network settings normalize = false, hidden_units = 64, num_layers = 1,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 0.8, samples_per_update = 1024,

num_epoch = None, batch_size = None
Demonstrations Recording of eight games, which corresponds to about 45 min-

utes of gameplay
Observations Image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 1
Simpler game 1 minute and 15 seconds, 1 life

5.1 Player simulation 101

Figure 5.13: Player simulation experiment 12 results

(a) Mean cumulative episode reward over the train-
ing steps (b) Policy entropy over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

(d) Mean magnitude of the GAIL discriminator loss
over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

102 Results and evaluation

Table 5.14: Player simulation experiment 14 configuration

Settings Description
PPO hyperparameters batch_size=128, buffer_size=1024, learning_rate = 0.0003, beta

= 0.01, epsilon = 0.2, lambd = 0.95, num_epoch = 3, learn-
ing_rate_schedule = linear

Network settings normalize = false, hidden_units = 128, num_layers = 2,
vis_encode_type = simple

Memory sequence_length = 64, memory_size = 256
Reward extrinsic gamma = 0.99, strength = 0.35
Reward details coins = 0.1, moving forward = dx/5000, lose = -10
GAIL gamma = 0.99, strength = 0.65, learning_rate = 0.0003,

use_actions = false, use_vail = false
GAIL network settings normalize = false, hidden_units = 64, num_layers = 1,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 0.8, samples_per_update = 1024,

num_epoch = None, batch_size = None
Demonstrations Recording of nine games, which corresponds to about 1

hour of gameplay
Observations Image grayscale
Training settings Number of environments = 8, timescale for game = 1
Simpler game 1 minute and 15 seconds, 1 life

• The final trained agent shows the problems of jumping stairs.

• The algorithm results (figure 5.14) showed that the policy loss is decreasing. Furthermore,

episode length seems to be unstable during the training session.

5.1.1.14 Player simulation experiment 14

In this experiment, the ray perception sensor was removed, leading to the observation being com-

posed of only images. Furthermore, the expert demonstration recordings are more extended, and

the reward values were changed. The table 5.14 shows the configuration used for this experiment.

Results:

• The agent trained for about 1.5M steps.

• The final trained agent tries very hard not to lose the game, often not moving forward to not

risk its life.

• The algorithm results (figure 5.15) showed that the entropy is increasing, and the policy has

an uncertain value. Furthermore, the GAIL policy estimate has a low value meaning that

the discriminator has difficulty distinguishing the expert demonstrations from the generated

policy.

5.1 Player simulation 103

Figure 5.14: Player simulation experiment 13 results

(a) Mean length of each episode over the training
steps (b) Policy entropy over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

(d) Mean magnitude of the GAIL discriminator loss
over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

104 Results and evaluation

Figure 5.15: Player simulation experiment 14 results

(a) Mean cumulative episode reward over the train-
ing steps (b) Policy entropy over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

(d) Mean magnitude of the GAIL discriminator loss
over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

5.1 Player simulation 105

Table 5.15: Player simulation experiment 15 configuration

Settings Description
PPO hyperparameters batch_size=128, buffer_size=1024, learning_rate = 0.0003, beta

= 0.01, epsilon = 0.2, lambd = 0.95, num_epoch = 3, learn-
ing_rate_schedule = linear

Network settings normalize = false, hidden_units = 128, num_layers = 2,
vis_encode_type = simple

Memory sequence_length = 64, memory_size = 256
Reward extrinsic gamma = 0.99, strength = 0.35
Reward details coins = 0.1, moving forward = dx/5000, lose = -1
GAIL gamma = 0.99, strength = 0.65, learning_rate = 0.0003,

use_actions = false, use_vail = false
GAIL network settings normalize = false, hidden_units = 64, num_layers = 1,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 0.8, samples_per_update = 1024,

num_epoch = None, batch_size = None
Demonstrations Recording of nine games, which corresponds to about 1 hour of

gameplay
Observations Image grayscale
Training settings Number of environments = 8, timescale for game = 1
Simpler game 1 minute and 15 seconds, 1 life

5.1.1.15 Player simulation experiment 15

In the last experiment, the agent gave too much importance to his life and, consequently, did not

move forward. In this experiment, the reward value will be modified to give less importance to

losing a life. The table 5.15 shows the configuration used for this experiment.

Results:

• The agent trained for about 4M steps.

• The final trained agent seems to perform worse than the previous experiment.

• The algorithm results (figure 5.16) showed that the policy increased over time, and the

entropy did not decrease.

5.1.1.16 Player simulation experiment 16

In this experiment, the agent will give significant importance to the extrinsic reward. The GAIL

and behavioral cloning algorithm will have a low strength but will still help with the training. The

table 5.16 shows the configuration used for this experiment.

Results:

• The agent trained for about 2M steps.

106 Results and evaluation

Figure 5.16: Player simulation experiment 15 results

(a) Mean cumulative episode reward over the train-
ing steps (b) Policy entropy over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

(d) Mean magnitude of the GAIL discriminator loss
over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

5.1 Player simulation 107

Table 5.16: Player simulation experiment 16 configuration

Settings Description
PPO hyperparameters batch_size=128, buffer_size=1024, learning_rate = 0.0003, beta

= 0.01, epsilon = 0.2, lambd = 0.95, num_epoch = 3, learn-
ing_rate_schedule = linear

Network settings normalize = false, hidden_units = 128, num_layers = 2,
vis_encode_type = simple

Memory sequence_length = 64, memory_size = 256
Reward extrinsic gamma = 0.99, strength = 1.0
Reward details coins = 0.1, moving forward = dx/5000, lose = -1
GAIL gamma = 0.99, strength = 0.05, learning_rate = 0.0003,

use_actions = false, use_vail = false
GAIL network settings normalize = false, hidden_units = 64, num_layers = 1,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 0.1, samples_per_update = 1024,

num_epoch = None, batch_size = None
Demonstrations Recording of eight games, which corresponds to about 45

minutes of gameplay
Observations Image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 1
Simpler game 1 minute and 15 seconds, 1 life

• The final trained agent has trouble completing the starting section. The previous experi-

ments deal with this better since the imitation learning algorithms have more importance,

facilitating and reducing the amount of learning needed to understand how to play the game.

• The algorithm results (figure 5.17) showed that the cumulative reward is converging to 0.

Furthermore, the policy loss seems to be unstable.

5.1.1.17 Player simulation experiment 17

In this experiment, the extrinsic reward was still given the majority of the importance. Further-

more, the rewards given by the game were modified to test their performance. The table 5.17

shows the configuration used for this experiment.

Results:

• The agent trained for about 13M steps.

• The final trained agent can pass some sections more consistently while having trouble with

other sections.

• The algorithm results (figure 5.18) showed that the cumulative reward is unstable during the

training session, and the policy loss is increasing.

108 Results and evaluation

Figure 5.17: Player simulation experiment 16 results

(a) Mean cumulative episode reward over the train-
ing steps (b) Policy entropy over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

(d) Mean magnitude of the GAIL discriminator loss
over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

5.1 Player simulation 109

Figure 5.18: Player simulation experiment 17 results

(a) Mean cumulative episode reward over the train-
ing steps (b) Policy entropy over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

(d) Mean magnitude of the GAIL discriminator loss
over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

110 Results and evaluation

Table 5.17: Player simulation experiment 17 configuration

Settings Description
PPO hyperparameters batch_size=128, buffer_size=1024, learning_rate = 0.0003, beta

= 0.01, epsilon = 0.2, lambd = 0.95, num_epoch = 3, learn-
ing_rate_schedule = linear

Network settings normalize = false, hidden_units = 128, num_layers = 2,
vis_encode_type = simple

Memory sequence_length = 64, memory_size = 256
Reward extrinsic gamma = 0.99, strength = 1.0
Reward details coins = 0.1, moving forward = dx/5000
GAIL gamma = 0.99, strength = 0.05, learning_rate = 0.0003,

use_actions = false, use_vail = true
GAIL network settings normalize = false, hidden_units = 64, num_layers = 1,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 0.1, samples_per_update = 1024,

num_epoch = None, batch_size = None
Demonstrations Recording of eight games, which corresponds to about 45 min-

utes of gameplay
Observations Image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 1
Simpler game 1 minute and 15 seconds, 1 life

5.1.1.18 Player simulation experiment 18

In this experiment, curriculum learning was introduced to the training session. The sections were

divided into four difficulties as described in the section 4.3. The table 5.18 shows the configuration

used for this experiment.

Results:

• The agent trained for about 6M steps.

• The final trained agent could not complete the first difficulty of the game since he still has

trouble jumping over the stairs.

• The algorithm results (figure 5.19) showed that the policy seems unstable, while the entropy

is not decreasing.

5.1.1.19 Player simulation experiment 19

In this experiment, the game’s reward was changed, including a penalty for standing still and

losing a life. The table 5.19 shows the configuration used for this experiment.

Results:

• The agent trained for about 13M steps.

5.1 Player simulation 111

Table 5.18: Player simulation experiment 18 configuration

Settings Description
PPO hyperparameters batch_size=128, buffer_size=1024, learning_rate = 0.0003, beta

= 0.01, epsilon = 0.2, lambd = 0.95, num_epoch = 3, learn-
ing_rate_schedule = linear

Network settings normalize = false, hidden_units = 128, num_layers = 2,
vis_encode_type = simple

Memory sequence_length = 64, memory_size = 256
Reward extrinsic gamma = 0.99, strength = 0.35
Reward details coins = 0.1, moving forward = dx/5000, completing section =

1
GAIL gamma = 0.99, strength = 0.65, learning_rate = 0.0003,

use_actions = false, use_vail = false
GAIL network settings normalize = false, hidden_units = 64, num_layers = 1,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 0.8, samples_per_update = 1024,

num_epoch = None, batch_size = None
Demonstrations Recording of eight games, which corresponds to about 45 min-

utes of gameplay
Observations Image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 1
Simpler game 1 minute and 15 seconds, 1 life
Curriculum learning 4 difficulties with minimum 3 reward

112 Results and evaluation

Figure 5.19: Player simulation experiment 18 results

(a) Mean cumulative episode reward over the train-
ing steps (b) Policy entropy over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

(d) Mean magnitude of the GAIL discriminator loss
over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

5.1 Player simulation 113

Table 5.19: Player simulation experiment 19 configuration

Settings Description
PPO hyperparameters batch_size=128, buffer_size=1024, learning_rate = 0.0003, beta

= 0.01, epsilon = 0.2, lambd = 0.95, num_epoch = 3, learn-
ing_rate_schedule = linear

Network settings normalize = false, hidden_units = 128, num_layers = 2,
vis_encode_type = simple

Memory sequence_length = 64, memory_size = 256
Reward extrinsic gamma = 0.99, strength = 0.65
Reward details coins = 0.1, moving forward = dx/5000, completing section = 1,

lose = -1, standing still >7 seconds = -1 per frame
GAIL gamma = 0.99, strength = 0.65, learning_rate = 0.0003,

use_actions = false, use_vail = true
GAIL network settings normalize = false, hidden_units = 64, num_layers = 1,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 0.8, samples_per_update = 1024,

num_epoch = None, batch_size = None
Demonstrations Recording of eight games, which corresponds to about 45 min-

utes of gameplay
Observations Image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 1
Simpler game 1 minute and 15 seconds, 1 life
Curriculum learning 4 difficulties with minimum 3 reward

114 Results and evaluation

Table 5.20: Player simulation experiment 20 configuration

Settings Description
PPO hyperparameters batch_size=128, buffer_size=1024, learning_rate = 0.0003, beta

= 0.01, epsilon = 0.2, lambd = 0.95, num_epoch = 3, learn-
ing_rate_schedule = linear

Network settings normalize = false, hidden_units = 256, num_layers = 3,
vis_encode_type = simple

Memory sequence_length = 64, memory_size = 256
Reward extrinsic gamma = 0.99, strength = 0.65
Reward details coins = 0.1, moving forward = dx/5000, completing section = 1,

lose = -1, standing still >7 seconds = -1 per frame
GAIL gamma = 0.99, strength = 0.65, learning_rate = 0.0003,

use_actions = false, use_vail = false
GAIL network settings normalize = false, hidden_units = 128, num_layers = 2,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 0.8, samples_per_update = 1024,

num_epoch = None, batch_size = None
Demonstrations Recording of eight games, which corresponds to about 45 min-

utes of gameplay
Observations Image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 1
Simpler game 1 minute and 15 seconds, 1 life
Curriculum learning Each section with a minimum 3 reward

• The final trained agent would sometimes stop at the start of the game, not making any

movement. Furthermore, the agent has trouble jumping over the stairs.

• The algorithm results (figure 5.20) showed that the entropy decreases, and the policy loss is

somewhat constant.

5.1.1.20 Player simulation experiment 20

In this experiment, each section was given its difficulty for curriculum learning. Furthermore, the

network sizes were increased. The table 5.20 shows the configuration used for this experiment.

Results:

• The agent trained for about 2M steps.

• The final trained agent could not pass the starting section and, consequently, did not change

the difficulty.

• The algorithm results (figure 5.21) showed that the entropy increases, and the policy loss is

somewhat constant during the training session.

5.1 Player simulation 115

Figure 5.20: Player simulation experiment 19 results

(a) Mean cumulative episode reward over the train-
ing steps (b) Policy entropy over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

(d) Mean magnitude of the GAIL discriminator loss
over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

116 Results and evaluation

Figure 5.21: Player simulation experiment 20 results

(a) Mean cumulative episode reward over the train-
ing steps (b) Policy entropy over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

(d) Mean magnitude of the GAIL discriminator loss
over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

5.1 Player simulation 117

Table 5.21: Player simulation experiment 21 configuration

Settings Description
PPO hyperparameters batch_size=128, buffer_size=1024, learning_rate = 0.0003,

beta = 0.005, epsilon = 0.2, lambd = 0.95, num_epoch = 3,
learning_rate_schedule = linear

Network settings normalize = false, hidden_units = 256, num_layers = 3,
vis_encode_type = simple

Memory sequence_length = 64, memory_size = 256
Reward extrinsic gamma = 0.99, strength = 0.65
Reward details coins = 0.1, moving forward = dx/250, completing section =

0.3, standing still >7 seconds = -.0.05 per frame
GAIL gamma = 0.99, strength = 0.65, learning_rate = 0.0003,

use_actions = false, use_vail = false
GAIL network settings normalize = false, hidden_units = 128, num_layers = 2,

vis_encode_type = simple, memory = none
Behavioral cloning None
Demonstrations Recording of eight games, which corresponds to about 45 min-

utes of gameplay
Observations Image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 1
Simpler game 1 minute and 15 seconds, 1 life
Curriculum learning Each section with a minimum 2 reward

5.1.1.21 Player simulation experiment 21

In this experiment, the rewards were changed, and the minimum reward for passing each difficulty

was lowered. Furthermore, behavioral cloning was also removed to test the agent performance

without it. The table 5.21 shows the configuration used for this experiment.

Results:

• The agent trained for about 7.5M steps.

• The final trained agent was always jumping and could not complete the starting section.

• The algorithm results (figure 5.22) show that the policy increased and remained constant

over the remaining duration. Furthermore, the entropy is unstable during the training ses-

sion.

5.1.1.22 Player simulation experiment 22

In this experiment, the reward for losing a life was reintroduced. However, the extrinsic reward

importance was significantly lowered. The table 5.22 shows the configuration used for this exper-

iment.

Results:

• The agent trained for about 1.5M steps.

118 Results and evaluation

Figure 5.22: Player simulation experiment 21 results

(a) Mean cumulative episode reward over the train-
ing steps (b) Policy entropy over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

(d) Mean magnitude of the GAIL discriminator loss
over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

5.1 Player simulation 119

Table 5.22: Player simulation experiment 22 configuration

Settings Description
PPO hyperparameters batch_size=128, buffer_size=1024, learning_rate = 0.0003, beta

= 0.005, epsilon = 0.2, lambd = 0.95, num_epoch = 3, learn-
ing_rate_schedule = linear

Network settings normalize = false, hidden_units = 256, num_layers = 3,
vis_encode_type = simple

Memory sequence_length = 64, memory_size = 256
Reward extrinsic gamma = 0.99, strength = 0.05
Reward details coins = 0.1, moving forward = dx/250, completing section =

0.3, standing still >7 seconds = -.0.05 per frame, lose = -1
GAIL gamma = 0.99, strength = 0.95, learning_rate = 0.0003,

use_actions = false, use_vail = true
GAIL network settings normalize = false, hidden_units = 128, num_layers = 2,

vis_encode_type = simple, memory = none
Behavioral cloning None
Demonstrations Recording of eight games, which corresponds to about 45 min-

utes of gameplay
Observations Image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 1
Simpler game 1 minute and 15 seconds, 1 life
Curriculum learning Each section with a minimum 2 reward

• The final trained agent could not complete the starting section, moving backwards at the

start of the game.

• The algorithm results (figure 5.23) show that the policy increased, and the entropy decreased

over the training session.

5.1.1.23 Player simulation experiment 23

In this experiment, behavioral cloning was reintroduced, and the extrinsic reward was removed.

The table 5.23 shows the configuration used for this experiment.

Results:

• The agent trained for about 1.5M steps.

• The final trained agent knows reasonably well how to complete the starting section and the

first difficulty. However, the following section difficulty, which requires a jump, could not

be completed.

• The algorithm results (figure 5.24) show that the policy loss and the entropy decrease over

the training session.

120 Results and evaluation

Figure 5.23: Player simulation experiment 22 results

(a) Mean cumulative episode reward over the train-
ing steps (b) Policy entropy over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

(d) Mean magnitude of the GAIL discriminator loss
over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

5.1 Player simulation 121

Table 5.23: Player simulation experiment 23 configuration

Settings Description
PPO hyperparameters batch_size=128, buffer_size=1024, learning_rate = 0.0003, beta

= 0.005, epsilon = 0.2, lambd = 0.95, num_epoch = 3, learn-
ing_rate_schedule = linear

Network settings normalize = false, hidden_units = 256, num_layers = 3,
vis_encode_type = simple

Memory sequence_length = 64, memory_size = 256
Reward extrinsic None
Reward details coins = 0.1, moving forward = dx/250, completing section =

0.3, standing still >7 seconds = -.0.05 per frame, lose = -1
GAIL gamma = 0.99, strength = 1.0, learning_rate = 0.0003,

use_actions = false, use_vail = false
GAIL network settings normalize = false, hidden_units = 128, num_layers = 2,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 0.8, samples_per_update = 1024,

num_epoch = None, batch_size = None
Demonstrations Recording of eight games, which corresponds to about 45 min-

utes of gameplay
Observations Image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 1
Simpler game 1 minute and 15 seconds, 1 life
Curriculum learning Each section with a minimum 2 reward

122 Results and evaluation

Figure 5.24: Player simulation experiment 23 results

(a) Mean cumulative episode reward over the train-
ing steps (b) Policy entropy over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

(d) Mean magnitude of the GAIL discriminator loss
over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

5.1 Player simulation 123

Table 5.24: Player simulation experiment 24 configuration

Settings Description
PPO hyperparameters batch_size=128, buffer_size=1024, learning_rate = 0.0003, beta

= 0.005, epsilon = 0.2, lambd = 0.95, num_epoch = 3, learn-
ing_rate_schedule = linear

Network settings normalize = false, hidden_units = 256, num_layers = 3,
vis_encode_type = simple

Memory sequence_length = 64, memory_size = 256
Reward extrinsic gamma = 0.99, strength = 1.0
Reward details coins = 0.1, moving forward = dx/250, completing section =

0.3, standing still >7 seconds = -.0.05 per frame, lose = -1
GAIL gamma = 0.99, strength = 0, learning_rate = 0.0003,

use_actions = false, use_vail = false
GAIL network settings normalize = false, hidden_units = 128, num_layers = 2,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 0, samples_per_update = 1024,

num_epoch = None, batch_size = None
Demonstrations Recording of eight games, which corresponds to about 45 min-

utes of gameplay
Observations Image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 1
Simpler game 1 minute and 15 seconds, 1 life
Curriculum learning Each section with a minimum 2 reward

5.1.1.24 Player simulation experiment 24

In this experiment, the extrinsic reward was given all the importance, and the other algorithms do

not affect the training. The table 5.24 shows the configuration used for this experiment.

Results:

• The agent trained for about 7.5M steps.

• The final trained agent can not complete the starting section.

• The algorithm results (figure 5.25) show that the policy loss increases and remains constant

for the rest of the training session. Furthermore, the entropy also seems to be unstable.

5.1.1.25 Player simulation experiment 25

In this experiment, the movement system was remade as described in section 4.3. Furthermore,

the starting section was replaced with the more simplistic version. Finally, the curriculum learning

was also removed to test the performance of the new movement system. The table 5.25 shows the

configuration used for this experiment.

Results:

• The agent trained for about 2.3M steps.

124 Results and evaluation

Figure 5.25: Player simulation experiment 24 results

(a) Mean cumulative episode reward over the train-
ing steps (b) Policy entropy over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

5.1 Player simulation 125

Table 5.25: Player simulation experiment 25 configuration

Settings Description
PPO hyperparameters batch_size=128, buffer_size=1024, learning_rate = 0.0003, beta

= 0.005, epsilon = 0.2, lambd = 0.95, num_epoch = 3, learn-
ing_rate_schedule = linear

Network settings normalize = false, hidden_units = 256, num_layers = 3,
vis_encode_type = simple

Memory sequence_length = 64, memory_size = 256
Reward extrinsic gamma = 0.99, strength = 0.35
Reward details coins = 0.1, moving forward = dx/250, completing section =

0.3, standing still >7 seconds = -.0.05 per frame, lose = -1
GAIL gamma = 0.99, strength = 0.65, learning_rate = 0.0003,

use_actions = false, use_vail = false
GAIL network settings normalize = false, hidden_units = 64, num_layers = 1,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 0.8, samples_per_update = 1024,

num_epoch = None, batch_size = None
Demonstrations Recording of ten games, which corresponds to about 45 min-

utes of gameplay
Observations Image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 1
Simpler game 1 minute and 15 seconds, 1 life
Curriculum learning None

126 Results and evaluation

Table 5.26: Player simulation experiment 26 configuration

Settings Description
PPO hyperparameters batch_size=128, buffer_size=1024, learning_rate = 0.0003, beta

= 0.005, epsilon = 0.2, lambd = 0.95, num_epoch = 3, learn-
ing_rate_schedule = linear

Network settings normalize = false, hidden_units = 256, num_layers = 3,
vis_encode_type = simple

Memory sequence_length = 64, memory_size = 256
Reward extrinsic gamma = 0.99, strength = 0.15
Reward details coins = 0.1, moving forward = dx/250, completing section =

0.3, standing still >7 seconds = -.0.05 per frame, lose = -1
GAIL gamma = 0.99, strength = 0.85, learning_rate = 0.0003,

use_actions = false, use_vail = true
GAIL network settings normalize = false, hidden_units = 64, num_layers = 1,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 0.9, samples_per_update = 1024,

num_epoch = None, batch_size = None
Demonstrations Recording of ten games, which corresponds to about 45 minutes

of gameplay
Observations Image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 1
Simpler game 1 minute and 15 seconds, 1 life
Curriculum learning None

• The final trained agent sometimes does not jump over the stairs and some water pits but has

overall good results.

• The algorithm results (figure 5.26) show that the cumulative reward falls over the training

session. Furthermore, the policy loss increases and the entropy decreases during the training.

5.1.1.26 Player simulation experiment 26

In this experiment, GAIL and behavioral cloning were given more importance than the extrinsic

reward. The table 5.26 shows the configuration used for this experiment.

Results:

• The agent trained for about 9M steps.

• The final trained agent has the same problems as the previous experiment but has worse

results at completing the sections.

• The algorithm results (figure 5.27) show that the cumulative reward decreases over the train-

ing session. Furthermore, the policy loss remains constant, and the entropy decreases during

the training.

5.1 Player simulation 127

Figure 5.26: Player simulation experiment 25 results

(a) Mean cumulative episode reward over the train-
ing steps (b) Policy entropy over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

(d) Mean magnitude of the GAIL discriminator loss
over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

128 Results and evaluation

Figure 5.27: Player simulation experiment 26 results

(a) Mean cumulative episode reward over the train-
ing steps (b) Policy entropy over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

(d) Mean magnitude of the GAIL discriminator loss
over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

5.1 Player simulation 129

Table 5.27: Player simulation experiment 27 configuration

Settings Description
PPO hyperparameters batch_size=128, buffer_size=1024, learning_rate = 0.0003, beta

= 0.005, epsilon = 0.2, lambd = 0.95, num_epoch = 3, learn-
ing_rate_schedule = linear

Network settings normalize = false, hidden_units = 256, num_layers = 3,
vis_encode_type = simple

Memory sequence_length = 64, memory_size = 256
Reward extrinsic gamma = 0.99, strength = 0.9
Reward details coins = 0.1, moving forward = dx/250, completing section =

0.3, standing still >7 seconds = -.0.05 per frame, lose = -1
GAIL gamma = 0.99, strength = 0.1, learning_rate = 0.0003,

use_actions = false, use_vail = false
GAIL network settings normalize = false, hidden_units = 64, num_layers = 1,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 0.1, samples_per_update = 1024,

num_epoch = None, batch_size = None
Demonstrations Recording of ten games, which corresponds to about 45 minutes

of gameplay
Observations Image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 1
Simpler game 1 minute and 15 seconds, 1 life
Curriculum learning Each section with a minimum 2 reward

5.1.1.27 Player simulation experiment 27

In this experiment, curriculum learning was reintroduced with the same settings as the last usage.

Furthermore, the extrinsic reward now holds the most value for the algorithm. The table 5.27

shows the configuration used for this experiment.

Results:

• The agent trained for about 1.5M steps.

• The final trained agent completed the first difficulty of the curriculum learning. However, in

the next difficulty, the problem of going up the stairs is evidenced.

• The algorithm results (figure 5.28) show that the cumulative reward falls over the training

session. Furthermore, the policy loss increases and the entropy decreases during the training.

5.1.1.28 Player simulation experiment 28

In this experiment, curriculum learning was removed, the strength of each reward was changed,

and the training session was much longer. The table 5.28 shows the configuration used for this

experiment.

Results:

130 Results and evaluation

Figure 5.28: Player simulation experiment 27 results

(a) Mean cumulative episode reward over the train-
ing steps (b) Policy entropy over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

(d) Mean magnitude of the GAIL discriminator loss
over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

5.1 Player simulation 131

Table 5.28: Player simulation experiment 28 configuration

Settings Description
PPO hyperparameters batch_size=128, buffer_size=1024, learning_rate = 0.0003, beta

= 0.005, epsilon = 0.2, lambd = 0.95, num_epoch = 3, learn-
ing_rate_schedule = linear

Network settings normalize = false, hidden_units = 256, num_layers = 3,
vis_encode_type = simple

Memory sequence_length = 64, memory_size = 256
Reward extrinsic gamma = 0.99, strength = 1
Reward details coins = 0.1, moving forward = dx/250, completing section =

0.3, standing still >7 seconds = -.0.05 per frame, lose = -1
GAIL gamma = 0.99, strength = 0.1, learning_rate = 0.0003,

use_actions = false, use_vail = false
GAIL network settings normalize = false, hidden_units = 64, num_layers = 1,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 0.5, samples_per_update = 1024,

num_epoch = None, batch_size = None
Demonstrations Recording of ten games, which corresponds to about 45 minutes

of gameplay
Observations Image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 20
Simpler game 1 minute and 15 seconds, 1 life
Curriculum learning None

132 Results and evaluation

Table 5.29: Player simulation experiment 29 configuration

Settings Description
Sac hyperparameters batch_size=128, buffer_size=500000, learning_rate

= 0.0003, learning_rate_schedule = constant,
buffer_init_steps = 10000, tau = 0.005, steps_per_update
= 10.0, save_replay_buffer = false, init_entcoef = 0.05,
reward_signal_steps_per_update = 10.0

Network settings normalize = false, hidden_units = 256, num_layers = 3,
vis_encode_type = simple

Memory sequence_length = 64, memory_size = 256
Reward extrinsic gamma = 0.99, strength = 2
Reward details coins = 0.1, moving forward = dx/250, completing section =

0.3, standing still >7 seconds = -.0.05 per frame, lose = -1
GAIL gamma = 0.99, strength = 0.1, learning_rate = 0.0003,

use_actions = true, use_vail = false
GAIL network settings normalize = false, hidden_units = 128, num_layers = 2,

vis_encode_type = simple, memory = none
Behavioral cloning None
Demonstrations Recording of ten games, which corresponds to about 45 minutes

of gameplay
Observations Image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 20
Simpler game 1 minute and 15 seconds, 1 life
Curriculum learning Each section with a minimum 2 reward

• The agent trained for about 12M steps.

• The final trained agent shows the same problems of not being able to perform jumps over

stairs.

• The algorithm results (figure 5.29) show that the policy loss is unstable, and the entropy de-

creases over the training session. Additionally, the GAIL loss is somewhat constant during

the training.

5.1.1.29 Player simulation experiment 29

In this experiment, the algorithm SAC was used to test its effectiveness for player simulation. The

table 5.29 shows the configuration used for this experiment.

Results:

• The agent trained for about 2M steps.

• The final trained agent was able to complete the first difficulty but was stuck on the second

one. However, the overall training session consumed a significant amount of pc memory,

which hindered the training.

5.1 Player simulation 133

Figure 5.29: Player simulation experiment 28 results

(a) Mean cumulative episode reward over the train-
ing steps (b) Policy entropy over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

(d) Mean magnitude of the GAIL discriminator loss
over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

134 Results and evaluation

Table 5.30: Player simulation experiment 30 configuration

Settings Description
PPO hyperparameters batch_size=128, buffer_size=1024, learning_rate = 0.0003, beta

= 0.005, epsilon = 0.2, lambd = 0.95, num_epoch = 3, learn-
ing_rate_schedule = linear

Network settings normalize = false, hidden_units = 256, num_layers = 3,
vis_encode_type = simple

Memory sequence_length = 64, memory_size = 256
Reward extrinsic gamma = 0.99, strength = 0.5
Reward details coins = 0.1, moving forward = dx/250, completing section =

0.3, standing still >7 seconds = -.0.05 per frame, lose = -1
GAIL gamma = 0.99, strength = 1.0, learning_rate = 0.0003,

use_actions = true, use_vail = false
GAIL network settings normalize = false, hidden_units = 64, num_layers = 1,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 1.0, samples_per_update = 1024,

num_epoch = None, batch_size = None
Demonstrations Recording of ten games, which corresponds to about 45 minutes

of gameplay
Observations Image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 20
Simpler game 1 minute and 15 seconds, 1 life
Curriculum learning Each section with a minimum 2 reward

• The algorithm results (figure 5.30) show that the policy loss increases, and the entropy is

unstable during the training session.

5.1.1.30 Player simulation experiment 30

In this experiment, the PPO algorithm was used in conjunction with curriculum learning and the

use_actions of GAIL. The table 5.30 shows the configuration used for this experiment.

Results:

• The agent trained for about 10M steps.

• The final trained agent was able to complete the first difficulty but could not pass the second

difficulty.

• The algorithm results (figure 5.31) show that the policy loss and the entropy are unstable.

5.1.1.31 Player simulation experiment 31

This experiment tried to use a different system to compensate for the problems found when using

the SAC algorithm. However, the agent could not be trained since the system was not enough to

train the algorithm.

5.1 Player simulation 135

Figure 5.30: Player simulation experiment 29 results

(a) Mean cumulative episode reward over the train-
ing steps (b) Policy entropy over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

(d) Mean magnitude of the GAIL discriminator loss
over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

136 Results and evaluation

Figure 5.31: Player simulation experiment 30 results

(a) Mean cumulative episode reward over the train-
ing steps (b) Policy entropy over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

(d) Mean magnitude of the GAIL discriminator loss
over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

5.1 Player simulation 137

Table 5.31: Player simulation experiment 32 configuration

Settings Description
PPO hyperparameters batch_size=128, buffer_size=1024, learning_rate = 0.0003, beta

= 0.005, epsilon = 0.2, lambd = 0.95, num_epoch = 3, learn-
ing_rate_schedule = linear

Network settings normalize = false, hidden_units = 512, num_layers = 3,
vis_encode_type = simple

Memory sequence_length = 64, memory_size = 256
Reward extrinsic gamma = 0.99, strength = 1.0
Reward details coins = 0.1, moving forward = dx/250, completing section =

0.3, standing still >7 seconds = -.0.05 per frame, lose = -1
GAIL gamma = 0.99, strength = 0, learning_rate = 0.0003,

use_actions = true, use_vail = false
GAIL network settings normalize = false, hidden_units = 64, num_layers = 1,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 1.0, samples_per_update = 1024,

num_epoch = None, batch_size = None
Demonstrations Recording of ten games, which corresponds to about 45 minutes

of gameplay
Observations Image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 20
Simpler game 1 minute and 15 seconds, 1 life
Curriculum learning Each section with a minimum 2 reward

5.1.1.32 Player simulation experiment 32

In this experiment, the PPO algorithm was used in conjunction with curriculum learning and the

use_actions of GAIL. The table 5.30 shows the configuration used for this experiment.

Results:

• The agent trained for about 2M steps.

• The final trained agent was not able to complete the first difficulty.

• The algorithm results (figure 5.32) show that the policy loss was constant, and the entropy

was decreasing during the training session

5.1.1.33 Player simulation experiment 33

In this experiment, the algorithm SAC was used without the GAIL or behavioural cloning algo-

rithms. This experiment allows using the SAC algorithm without memory restrictions. The table

5.32 shows the configuration used for this experiment.

Results:

• The agent trained for about 7M steps.

138 Results and evaluation

Figure 5.32: Player simulation experiment 32 results

(a) Mean cumulative episode reward over the train-
ing steps (b) Policy entropy over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

5.1 Player simulation 139

Table 5.32: Player simulation experiment 33 configuration

Settings Description
Sac hyperparameters batch_size=128, buffer_size=500000, learning_rate = 0.0003,

learning_rate_schedule = constant, buffer_init_steps = 10000,
tau = 0.005, steps_per_update = 10.0, save_replay_buffer =
false, init_entcoef = 0.05, reward_signal_steps_per_update =
10.0

Network settings normalize = false, hidden_units = 512, num_layers = 3,
vis_encode_type = simple

Memory sequence_length = 64, memory_size = 256
Reward extrinsic gamma = 0.99, strength = 1
Reward details coins = 0.1, moving forward = dx/250, completing section =

0.3, standing still >7 seconds = -.0.05 per frame, lose = -1
GAIL None
GAIL network settings None
Behavioral cloning None
Demonstrations Recording of ten games, which corresponds to about 45 minutes

of gameplay
Observations Image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 20
Simpler game 1 minute and 15 seconds, 1 life
Curriculum learning Each section with a minimum 2 reward

• The final trained agent was not able to complete the second difficulty of the curriculum

learning.

• The algorithm results (figure 5.33) show that the policy loss increases, and the entropy is

unstable during the training session.

5.1.1.34 Player simulation experiment 34

In this experiment, the PPO network was further increased in size, as well as the GAIL network.

The table 5.33 shows the configuration used for this experiment.

Results:

• The agent trained for about 4.5M steps.

• The final trained agent could not complete the second difficulty since the problem of jump-

ing stairs is still present.

• The algorithm results (figure 5.34) show that the reward decreased and remained constant

for the rest of the training. Furthermore, the policy loss and entropy increased, and the

pretraining loss remained relatively constant.

140 Results and evaluation

Figure 5.33: Player simulation experiment 33 results

(a) Mean cumulative episode reward over the train-
ing steps (b) Policy entropy over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

5.1 Player simulation 141

Table 5.33: Player simulation experiment 34 configuration

Settings Description
PPO hyperparameters batch_size=128, buffer_size=1024, learning_rate = 0.0003, beta

= 0.005, epsilon = 0.2, lambd = 0.95, num_epoch = 3, learn-
ing_rate_schedule = linear

Network settings normalize = false, hidden_units = 2048, num_layers = 12,
vis_encode_type = simple

Memory sequence_length = 64, memory_size = 256
Reward extrinsic gamma = 0.99, strength = 0.25
Reward details coins = 0.1, moving forward = dx/250, completing section =

0.3, standing still >7 seconds = -.0.05 per frame, lose = -1
GAIL gamma = 0.99, strength = 0.75, learning_rate = 0.0003,

use_actions = false, use_vail = false
GAIL network settings normalize = false, hidden_units = 1024, num_layers = 6,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 0.8, samples_per_update = 1024,

num_epoch = None, batch_size = None
Demonstrations Recording of ten games, which corresponds to about 45 minutes

of gameplay
Observations Image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 20
Simpler game 1 minute and 15 seconds, 1 life
Curriculum learning Each section with a minimum 2 reward

142 Results and evaluation

Figure 5.34: Player simulation experiment 34 results

(a) Mean cumulative episode reward over the train-
ing steps (b) Policy entropy over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

(d) Mean magnitude of the GAIL discriminator loss
over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

5.1 Player simulation 143

Table 5.34: Player simulation experiment 35 configuration

Settings Description
PPO hyperparameters batch_size=128, buffer_size=128000, learning_rate = 0.0003,

beta = 0.005, epsilon = 0.2, lambd = 0.95, num_epoch = 3,
learning_rate_schedule = linear

Network settings normalize = false, hidden_units = 2048, num_layers = 12,
vis_encode_type = simple

Memory sequence_length = 64, memory_size = 256
Reward extrinsic gamma = 0.99, strength = 0.25
Reward details coins = 0.1, moving forward = dx/250, completing section =

0.3, standing still >7 seconds = -.0.05 per frame, lose = -1
GAIL gamma = 0.99, strength = 0.75, learning_rate = 0.0003,

use_actions = false, use_vail = false
GAIL network settings normalize = false, hidden_units = 1024, num_layers = 6,

vis_encode_type = simple, memory = none
Behavioral cloning steps = 0, strength = 0.8, samples_per_update = 1024,

num_epoch = None, batch_size = None
Demonstrations Recording of ten games, which corresponds to about 45 minutes

of gameplay
Observations Image grayscale + ray perception sensor
Training settings Number of environments = 8, timescale for game = 20
Simpler game 1 minute and 15 seconds, 1 life
Curriculum learning Each section with a minimum 2 reward

5.1.1.35 Player simulation experiment 35

In this experiment, the PPO buffer_size was increased. The table 5.34 shows the configuration

used for this experiment.

Results:

• The agent trained for about 7M steps.

• The final trained agent could not complete the second difficulty since the problem of jump-

ing stairs is still present.

• The algorithm results (figure 5.35) show that the reward decreased and remained constant

for the rest of the training. Furthermore, the policy loss and entropy increased.

5.1.2 Experiments overall results and analysis

Although the overall objective of the player simulation was not achieved, some experiments

showed some potential to accomplish the desired results. The following list describes the overall

results and analysis for the experiments performed:

• The use of several environments during training improves the overall amount of steps done

and improves the training time. Furthermore, the timescale value also improves the training

144 Results and evaluation

Figure 5.35: Player simulation experiment 35 results

(a) Mean cumulative episode reward over the train-
ing steps (b) Policy entropy over the training steps

(c) Mean magnitude of the policy loss function over
the training steps

(d) Mean magnitude of the GAIL discriminator loss
over the training steps

(e) GAIL discriminator’s estimate for the expert
demonstrations, over the training steps

(f) GAIL discriminator’s estimate for the policy gen-
erated, over the training steps

5.1 Player simulation 145

times, but if the value is too large, the game can skip frames, making the character take an

extended movement that the algorithm was not anticipating, affecting the final result.

• The setting use_actions seems to give a better result when set to false. This setting allows

GAIL to discriminate based on the action taken. However, sometimes the same state can

have different actions depending on the past information and to simplify the problem faced,

not discriminating based on actions is the better approach.

• The behavioral cloning samples_per_update value was changed based on the ml-agents

toolkit recommendation for it to be the same value as buffer_size.

• The use of recordings from one hour to thirty minutes does not significantly affect the final

result. The expert demonstration should at least complete each section two times and even

go through several different situations and states in that section. However, the recordings

were made using random faced sections, which can affect the final expert demonstration and

in this case, using an extended recording is better since it is more probable for the user to

complete all sections.

• The use of memory in the agent network affects the agent’s decision-making, especially

in section 15. In this section, the agent would usually lose, making actions different from

the recorded expert demonstrations. With the memory, the agent follows the demonstration

strategy of waiting and then moving forward. Thus, the use of memory helps the agent

replicate some of the user’s strategies. Furthermore, a large memory seems to impair the

agent’s performance, while a small memory does not allow the agent to remember enough

information to complete some part of the sections.

• In terms of observations, the use of scalar observations confused the decision making of

the agents. This problem happens because the expert observations do not hold enough data

points for every situation in the game, such as when the user has different amounts of lives

or coins or time remaining. The use of images and the ray perception sensor gave overall

better results. Furthermore, using only images in the experiments was slightly better, giving

better agent’s performance. However, this dissertation did not explore the use of images,

which should be investigated in future work.

• All the settings values used for PPO and SAC algorithms were changed based on the rec-

ommendations of the ml-agents toolkit documentation.

• The network size for the PPO and GAIL algorithm should only be bigger if the game is more

complex, requiring a more detailed understanding of the observations gathered. The size of

256 for hidden_units and 3 for num_layers for the PPO algorithm, and 128 hidden_units

and 2 num_layers for the GAIL algorithm gave the best result for the agent. Small-sized

networks can also be seen in player simulation works (section 2.2.5) and other reinforcement

learning problems.

146 Results and evaluation

• The use of the setting use_vail does not seem to affect the agent’s performance, and its

usage in this problem was not evident by the results. However, the use of vail increases the

training time, as referenced by the toolkit’s documentation.

• The use of an extrinsic reward helps to orientate the agent when presented with a situation

that the expert demonstration had a low amount of examples or even none. However, creat-

ing this reward function was not a trivial task, as every change made to the final agent had a

different performance.

• The curiosity reward gave an overall worse result than when the agent was not using it. This

reward is more suited to situations where the objective is to create a ground-up agent, and

the environment rewards are very sparse. Furthermore, this reward will allow the agent to

visit states where he has not been before, which in the case of this game, can help create an

agent that knows how to backtracks to find rewards.

• The strength value given to each reward affects the final result. The objective of this player

simulation was to create an agent that can replicate the expert demonstrations. Therefore,

the GAIL and behavioral cloning algorithm should be given the majority of importance, and

the extrinsic reward should have a supporting role in the training to assist with states where

there are not many examples.

• The use of behavioral cloning has a significant impact on the agent’s final results. This

algorithm helps the agent replicate the user’s actions in certain states. It also helps during

the training since it rapidly starts up the agent to perform the correct actions, reducing the

overall training time. Additionally, the ml-agents toolkit also allows this algorithm to be

trained for several steps and then suspend it for the remainder of the training. In this work,

this algorithm was always used to help train the agent to replicate the user’s actions in each

section and state.

• The use of curriculum learning in the experiments did not prove beneficial since the agent

did not train over all the sections, being stuck on one difficulty for most of the training ses-

sion. However, curriculum learning helped to identify the primary problems that the agent

had with each section. To further improve the usage of this method, for each difficulty, the

agent should have a corresponding expert demonstration instead of receiving demonstrations

for all sections at the same time.

• In the experiments with the best results, the agents could complete some sections almost

perfectly, while they had more trouble in other sections. These problems included jumping

over the stairs, the input lag caused by the movement system and the lack of demonstrations

for some specific states and situations, which affected the final agents’ performance and can

be resolved in future work.

• The use of a simple game and the extrinsic reward restricted the ability of the agent to

copy the user’s strategy since these methods create a general approach to playing the game.

5.2 Adaptivity system 147

Table 5.35: Adaptivity agent PPO configuration

Settings Description
PPO hyperparameters batch_size=256, buffer_size=102400, learning_rate = 0.0003,

beta = 0.005, epsilon = 0.2, lambd = 0.95, num_epoch = 3,
learning_rate_schedule = linear

Network settings normalize = false, hidden_units = 512, num_layers = 4,
vis_encode_type = simple

Memory sequence_length = 10, memory_size = 32
Reward extrinsic gamma = 0.99, strength = 1

However, these methods helped with the training of the agent. In future work, the creation

of more distinct agents to perform different strategies, as demonstrated by the user, should

be explored.

All the experiment results are essential for future exploration of this topic. The results can serve

as a starting position to explore, improve and overcome the challenges faced when creating these

player simulation agents.

In a future iteration, the results should also include other statistics about the performance of

each agent during training and during a testing phase. These can include, for example, the number

of times the agent completed each section and its movement metrics. This information should

allow for a complete comprehension of the agent’s performance and allow the creation of a better

final agent.

5.2 Adaptivity system

The adaptivity system results consist of two parts: the adaptivity agent and adapted game user

results. The adaptivity agent was also trained using the Unity ml-agents toolkit, and the results

obtained are similar to those described in section 5.1. The user results are based on the user re-

sponse from the questionnaire and the csv files collected from the gaming sessions. The following

two sections will describe the results and analyze them.

5.2.1 Adaptivity agent results

The following subsections will present the results of the training session of the adaptivity agent.

The agent was trained using the PPO and SAC algorithms available in the ml-agents toolkit. The

results from these algorithms are displayed using the Tensorboard graphs, and each experiment

was done sequentially with slight changes made to each one. Furthermore, the PPO and SAC

algorithms configurations did not suffer significant changes over the multiple experiments. The

following table 5.35 describes the configuration used for PPO, and the table 5.36 describes the

configuration for SAC.

148 Results and evaluation

Table 5.36: Adaptivity agent SAC configuration

Settings Description
Sac hyperparameters batch_size=256, buffer_size=1000000, learning_rate = 0.0003,

learning_rate_schedule = constant, buffer_init_steps = 0, tau
= 0.005, steps_per_update = 10.0, save_replay_buffer = false,
init_entcoef = 0.05, reward_signal_steps_per_update = 10.0

Network settings normalize = false, hidden_units = 512, num_layers = 4,
vis_encode_type = simple

Memory sequence_length = 10, memory_size = 32
Reward extrinsic gamma = 0.99, strength = 1
Training settings Number of environments = 8, timescale for game = 20

5.2.1.1 Adaptivity agent experiment 1

This experiment is the baseline algorithm used for the adaptivity agent and was improved in the

following experiments. From the figure 5.36, the following results can be observed:

• The agent trained for about 25M steps.

• The cumulative reward started to converge to a value.

• The policy loss declined and then remained relatively constant.

• The entropy also declined and remained relatively constant.

• The agent selects the easiest section the majority of the time. This is majorly due to the

punishment for repeating sections not being high enough.

5.2.1.2 Adaptivity agent experiment 2

In this experiment, the SAC algorithm was tested for the adaptivity agent. From the figure 5.37,

the following results can be observed:

• The agent trained for about 11M steps.

• The cumulative reward and episode length was slightly unstable.

• The policy loss and the entropy also had unstable values.

Overall the use of SAC seems to give more inconsistent results than using the PPO algorithm.

However, the SAC algorithm can still be explored and modified in future work to give better

results.

5.2 Adaptivity system 149

Figure 5.36: Adaptivity agent experiment 1 results

(a) Mean cumulative episode reward over the train-
ing steps

(b) Mean length of each episode over the training
steps

(c) Mean magnitude of the policy loss function over
the training steps (d) Policy entropy over the training steps

150 Results and evaluation

Figure 5.37: Adaptivity agent experiment 2 results

(a) Mean cumulative episode reward over the train-
ing steps

(b) Mean length of each episode over the training
steps

(c) Mean magnitude of the policy loss function over
the training steps (d) Policy entropy over the training steps

5.2 Adaptivity system 151

5.2.1.3 Adaptivity agent experiment 3

In this experiment, the reward for repeating sections was increased to prevent the agent from

selecting too many repeated sections, as seen in previous experiments. From the figure 5.38, the

following results can be observed:

• The agent trained for about 13M steps.

• The cumulative reward started to converge to a value.

• The policy loss declined during the training.

• The entropy also declined during the training.

• The agent still sometimes shows repeated sections to the player.

5.2.1.4 Adaptivity agent experiment 4

In this experiment, to try to solve the repeated section’s problem, the LSTM was increased. The

sequence length was increased to 64 and the memory size to 128. From the figure 5.39, the

following results can be observed:

• The agent trained for about 1.8M steps.

• The cumulative reward and the episode length declined during the training.

• The policy loss increased, and the entropy decreased during the training.

This experiment was not successful, and a smaller LSTM should be used, and the memory size

should be similar to the size of the section tolerance of the personalities.

5.2.1.5 Adaptivity agent experiment 5

In this experiment, the reward was change to multiply the number of jumps and backtrack by the

lives lost. This new reward should reflect better real players. From the figure 5.40, the following

results can be observed:

• The agent trained for about 21M steps.

• The cumulative reward and the episode length started to converge to a value.

• The policy loss slightly declined, and then its value fluctuated around 1.82.

• The entropy declined over the training session.

• The agent has a good performance and selects sections depending on the personality playing.

152 Results and evaluation

Figure 5.38: Adaptivity agent experiment 3 results

(a) Mean cumulative episode reward over the train-
ing steps

(b) Mean length of each episode over the training
steps

(c) Mean magnitude of the policy loss function over
the training steps (d) Policy entropy over the training steps

5.2 Adaptivity system 153

Figure 5.39: Adaptivity agent experiment 4 results

(a) Mean cumulative episode reward over the train-
ing steps

(b) Mean length of each episode over the training
steps

(c) Mean magnitude of the policy loss function over
the training steps (d) Policy entropy over the training steps

154 Results and evaluation

Figure 5.40: Adaptivity agent experiment 5 results

(a) Mean cumulative episode reward over the train-
ing steps

(b) Mean length of each episode over the training
steps

(c) Mean magnitude of the policy loss function over
the training steps (d) Policy entropy over the training steps

5.2 Adaptivity system 155

5.2.2 Adaptivity agent overall results and analysis

The final agent used for the adapted game shows that he can choose the sections depending on

the observations collected by the user playing the game. The following list summarises the results

observed and their respective analysis:

• Modifying the reward values for each personality changes the overall result of the adaptivity

agent. Therefore, for creating a successful agent, the reward function needs to represent each

personality and their objectives almost perfectly, which is not a trivial task. For example, in

the first experiments, the agent would only show section 3 since no personality would lose

lives and go their prefered speed. In the following experiments, the rewards were modified,

and the punishment for repeating sections was also increased to solve this problem.

• Although the final agent shows that he selects the sections based on the personality play-

ing, the agent can still be improved since the policy loss did not regularly decrease during

training (it stayed around 1.82). To improve the algorithm, the hyperparameters can be

tweaked, and the network architecture can also be modified and tested to enhance the adap-

tivity agent’s performance.

• The final agent still shows repeated sections sometimes to the players. Additionally, the

agent also shows the same sections to the same players at the start of each game, creating a

repeated experience between games.

5.2.3 Adapted game results

After developing the adaptivity agent, the adaptivity system was incorporated into the game and

tested with real users. After the user played the round of the game, they responded to a ques-

tionnaire consisting of questions from the Game Experience Questionnaire (GEQ) [31] and other

relevant questions (the complete questionnaire is present in the appendix B). The questions used

from the GEQ are from the core module and are the following:

• 1 - I felt content

• 2 - I felt skilful

• 3 - I was interested in the game’s story

• 4 - I thought it was fun

• 5 - I was fully occupied with the game

• 6 - I felt happy

• 7 - It gave me a bad mood

• 8 - I thought about other things

156 Results and evaluation

• 9 - I found it tiresome

• 10 - I felt competent

• 11 - I thought it was hard

• 12 - It was aesthetically pleasing

• 13 - I forgot everything around me

• 14 - I felt good

• 15 - I was good at it

• 16 - I felt bored

• 17 - I felt successful

• 18 - I felt imaginative

• 19 - I felt that I could explore things

• 20 - I enjoyed it

• 21 - I was fast at reaching the game’s targets

• 22 - I felt annoyed

• 23 - I felt pressured

• 24 - I felt irritable

• 25 - I lost track of time

• 26 - I felt challenged

• 27 - I found it impressive

• 28 - I was deeply concentrated in the game

• 29 - I felt frustrated

• 30 - It felt like a rich experience

• 31 - I lost connection with the outside world

• 32 - I felt time pressure

• 33 - I had to put a lot of effort into it

5.2 Adaptivity system 157

Each of these questions can be answered on a scale from 1 to 5 (in the GEQ, they are from 0 to 4,

but it is the same as using 1 to 5), from “not at all” to “extremely”. Furthermore, these questions

can be associated with a category (from the GEQ) and scored by the average response of each

question in that division. The categories include:

• Competence, with questions 2, 10, 15, 17 and 21.

• Sensory and Imaginative Immersion with question 3, 12, 18, 19, 27, 30.

• Flow with questions 5, 13, 25, 28 and 31.

• Tension/Annoyance with questions 22, 24 and 29.

• Challenge with questions 11, 23, 26, 32 and 33.

• Negative affect with questions 7, 8, 9 and 16.

• Positive affect with question 1, 4, 6, 14 and 20.

Additionally, the questionnaire also requires the user to submit their csv files containing gameplay

information.

In total, 16 players answered the questionnaire and played 22 adapted games and 21 non-

adapted games. Thus, there were 174 adapted and 107 non-adapted sections completed by the

users. From the gameplay session information and the questionnaire, the following results and

analysis were made from the comparison of the adapted versus non-adapted version of the game:

• The player completes more sections on the adapted game from the total sections played.

• From figure 5.41, the only sections shown in the adapted game to the players are 1, 2, 4, 6,

11 and 12. These sections shown are dependent on the reward function, and the personality

values created. Also, the sections are shown depending on the user playing the game, and if

more players with a large variety of strategies played the game, all sections would probably

be shown at least one time (the adaptivity agent shows all sections at least one time with the

personalities playing).

• In the adapted game, the players made fewer backtracks (figures 5.42a and 5.42b). This

can mean that the players do fewer backtracks than expected, or the sections played do

not require going back (from the figure 5.41, sections 9 and 14 are the most feasible of a

backtrack to happen).

• From figure 5.43, the players spent less time playing each section (figure 5.44), which is

also caused by the sections selected by the agent being faster to complete. Also, the players

perform fewer jumps (figure 5.45). Additionally, the players’ average velocity increased

(figure 5.46), caused by the more accessible selection of sections from the agent.

158 Results and evaluation

Figure 5.41: Adapted vs non-adapted section shown

• In general (figure 5.43), the players lose fewer lives in the game. Additionally, the players

collected about the same amount of coins. This is caused because not all sections contain

hidden or optional coins to collect, and most coins are required to complete the section.

• From figure 5.47, at the end of each game, the players collect more coins (figure 5.48), spend

slightly more time playing the game (figure 5.49), have a better end score (figure 5.50) and

have constant higher average speeds (figure 5.51). This is also caused because the difficulty

of gameplay is lower in the adapted game.

• From figure 5.52, 62,5% of players realised what round the adaptivity was implemented.

• From the responses to the questionnaire, each answer component yielded almost the same

results (figure 5.53), except for the negative affect (figure 5.54), which gave the players

a slightly more negative experience, and the positive affect (figure 5.55), which gave the

players a slightly less positive experience. These categories are associated with the gaming

experience and affected by the game difficulty, which was lower and caused some boredom.

• Although the categories did not yield the most desirable result, the player felt that the game

was more effortless in the specific question results (figure 5.56). However, the user also

responded that the adapted game was more interesting and provided a richer experience.

Additionally, from observing the section shown to the player, one player had section 9 repeated

three times consecutively in the first game. For instance, section 9 is usually shown first by the

agent to new players until he understands more about the user’s strategy.

5.2 Adaptivity system 159

Figure 5.42: Adaptivity agent experiment 5 results

(a) Adapted version number of backtracks

(b) Non-adapted version number of backtracks

160 Results and evaluation

Figure 5.43: Difference between non-adapted and adapted version for each section

Figure 5.44: Total time spent in each section

Finally, some users also wrote an additional note. These notes included that the game was too

easy and sometimes caused boredom. However, it was also stated that the game offered a more

exciting experience than the standard gameplay. Furthermore, one user wrote that the game could

use a leaderboard and more animations to open chests related to competitive and visual feedback

5.2 Adaptivity system 161

Figure 5.45: Jumps in each section

Figure 5.46: Average velocity in each section

but are related to the game design.

162 Results and evaluation

Figure 5.47: Difference between non-adapted and adapted version for each game

Figure 5.48: Captured coins at the end of a game

5.3 Summary

In this chapter, several results obtained from all the systems created were presented. Firstly, the

player simulation experiments were presented in section 5.1. Although the overall system could

not be used in the final adapted game, the experiments performed showed that this type of player

simulation has much potential, and with some more experiments and tweaks to the agent and the

5.3 Summary 163

Figure 5.49: Total time spent playing one game

Figure 5.50: End score of each game

algorithms, the system can be improved. Then, in section 5.2.1, the adaptivity agent training results

were displayed, and their analysis was discussed. Additionally, it also includes some proposed

changes to the algorithm and the personality rewards, which could improve to create a more robust

164 Results and evaluation

Figure 5.51: Average velocity in each game

Figure 5.52: Correctly identify the adaptivity round

adaptivity agent. Finally, the results from users playing the adapted and non-adapted game were

discussed and analysed in section 5.2.3. The overall adapted game created a more accessible and

unique experience. However, the users also found it more boring, which means that the reward

from each personality should be tweaked to more accurately describe the real users.

5.3 Summary 165

Figure 5.53: Average GEQ Core module component scores

Figure 5.54: Adapted vs non-adapted negative affect

166 Results and evaluation

Figure 5.55: Adapted vs non-adapted positive affect

5.3 Summary 167

Figure 5.56: Average questionnaire response

168 Results and evaluation

Chapter 6

Conclusions

The initial idea for the adaptivity system included only the adaptivity agent training. However, a

reinforcement learning algorithm needs to be trained with a large number of steps. In this case,

real users would play the game, and the adaptivity system would train over it. This situation would

only be possible if there were many users for the experiment and were available to test and give

their feedback at the end of each section about their gaming experience. This circumstance would

not be ideal for providing a realistic gaming experience since the user would have to suspend the

gameplay to respond to questions. Additionally, in the context of this dissertation, there would not

be a sufficient number of users to play the game to train the algorithm. This dissertation opted to

implement a player simulation to generate enough data to train the adaptivity agent to solve this

problem.

Although the player simulation did not reveal a success at replicating the users’ behaviours, it

still got good results worth exploring in future iterations. From the training of the player simula-

tion agent with demonstrations (from myself), the agent could complete several sections and even

replicate some demonstrated movements. On the other hand, on some sections, the agent would

have trouble completing them. This was caused because: some sections were more extensive than

others, and the agent would lose before he could get to the end of the section; the agent sometimes

did not perform a jump over the stairs; the observations may be too complex; and the possible lack

of complete demonstrations for each section. The GAIL and the behavioral cloning algorithms can

complete this task if more testing and modifications are made to improve the simulated agent. Ad-

ditionally, other results should also be collected to better understand the algorithm’s performance,

for example, which sections were complete, their amount, and movement statistics.

To advance with the implementation of the adaptivity system, the game and section results still

need to be generated. For this, the personality system was implemented to represent the possible

player that would play the game. Each personality was created based on my personal experience of

the game and my perception of difficulty. The creation of the personalities was made this way since

there was not enough time to collect enough user information to create clusters of personalities

using unsupervised reinforcement learning. It is usual for game developers to create a difficulty

level by their own perception of the game and then iterate to improve the gaming experience. In

169

170 Conclusions

the same way, after collecting user data on the adapted game, the problem with the personality

system became apparent, and improvements to each personality could be made to represent the

real users better.

The adaptivity agent was successfully created to alter the game sections to maximize the re-

ward of each personality. Although, it could also be improved since the results showed that sec-

tions are still shown repeatedly. Additionally, the agent also seems to repeat the initial section for

the same players if they show the same strategy. This would not be ideal for an optimal gaming ex-

perience and could be improved in future iterations. Also, the adaptivity agent focuses on several

sections more than others, which can mean that the rewards need to be changed, or those sections

had design problems that can be improved. This means that the agent can also be used to assist

with the level design of the game.

From the user responses and their gameplay data, the adaptivity agent impacted the gaming

experience. However, it did not improve the overall gaming experience because it became too easy

and more boring. From the specific questions of the questionnaire, the users also reported that the

game had a different feeling and provided a more interesting experience. Although the overall

adapted game did not yield the expected improvement in the gaming experience, it could adapt

its content and provide the user with a different experience, confirming that gaming adaptivity

impacts the gaming experience. Furthermore, the adapted game can also be used for different

objectives by modifying the reward function of the adaptivity algorithm.

6.1 Limitations

The time available for completing this dissertation limited and simplified some systems that could

be further explored, for example, the player simulation system. Additionally, the number of users

who responded to the questionnaire limited some of the analysis made about the adaptivity agent.

Finally, the lack of experience with reinforcement learning algorithms limited its usage for this

specific problem. Furthermore, the analysis of the results and the iteration of experiences is also

constrained by the lack of advanced knowledge of these algorithms.

6.2 Future work

The several implemented system can still be investigated and modified to improve their perfor-

mance. For the player simulation, the following list defines the proposed future modification that

can be implemented:

• Using only images for the observations was not tested thoroughly and could have better per-

formance. Furthermore, to remove more clutter in the image, the coins, water and enemies

animations should also be removed.

• The problem of the jumps over pits and stairs should be further investigated since it is the

main obstacle for creating the player simulation.

6.2 Future work 171

• The Unity ml-agents toolkit provides complete customization for the reinforcement learning

algorithms, which were not fully explored in this dissertation and can improve the simulation

performance.

For the adaptivity agents and personality system, the following list describes the suggested im-

provement and changes that can be made:

• Each personality can be created using clustering techniques on real players’ gameplay data

to represent better the users who will play the game. If the already created personalities

are explored, their rewards should be changed to provide each personality with a correct

challenge for their skill.

• For the observations of the adaptivity agent, past information about the time spent and the

number of backtracks was not used in the agent’s training and should be explored in future

work.

• The sections already created can also be changed to all be the same size. Additionally, other

section can also be created to represent different challenges and objectives for the players.

• Instead of deciding the next section presented, the agent can procedurally create the level

for the player, presenting them with different amounts of coins, enemies, and jumps. Addi-

tionally, other game elements can be modified to provide a different gaming experience, as

described in section [art game elements].

These suggestions can be explored in future iterations to create a better version of the adaptivity

system.

172 Conclusions

Appendix A

Personalities

173

174 Personalities

Table A.1: Personality 1 - Experienced player that wants to collect coins

Setting Value
Tolerance for repeating sections 3
New level importance 30
Coins importance 0.75
Coins section 0-1->1, 1-3->3, 2-4->4, 3-1->1, 4-6->6, 5-3->3, 6-11->13,

7-5->5, 8-9->9, 9-12->14, 10-5->5, 11-9->9, 12-4->4, 13-
5->5, 14-4->6, 15-0->0

Chest importance 0.75
Chest section 0-0->0, 1-0->0, 2-0->0, 3-0->0, 4-0->0, 5-0->0, 6-1->1, 7-

0->0, 8-0->0, 9-1->1, 10-0->0, 11-0->0, 12-0->0, 13-0->0,
14-1->1, 15-0->0

Life importance 0.5
Life lost importance 3
Life lost section 0-0->0, 1-0->0, 2-0->0, 3-0->0, 4-0->0, 5-0->0, 6-0->0, 7-

0->0, 8-0->0, 9-0->0, 10-0->1, 11-0->1, 12-0->1, 13-0->0,
14-0->0, 15-0->0

Life lost type section 0-w->0;s->1;m->0, 1-w->0;s->0;m->1, 2-w->0;s->1;m-
>0, 3-w->0;s->0;m->0, 4-w->1;s->1;m->0, 5-w->1;s-
>1;m->0, 6-w->1;s->0;m->1, 7-w->0;s->1;m->0, 8-w-
>1;s->1;m->0, 9-w->1;s->1;m->0, 10-w->0;s->0;m->1,
11-w->0;s->0;m->1, 12-w->0;s->1;m->0, 13-w->1;s-
>0;m->1, 14-w->1;s->0;m->1, 15-w->0;s->0;m->1

Time section 0-2->2.3, 1-16->16.2, 2-6->6.2, 3-4.6->4.8, 4-28->28.5,
5-13.5->13.7, 6-60->60.5, 7-21.5->21.7, 8-38.5->38.7, 9-
47->47.5, 10-24->24.2, 11-62->62.5, 12-27->27.2, 13-33-
>33.2, 14-35->35.5, 15-12->12.2

Speed importance 1
Speed preference 9
Speed section 0-8.2->8.5, 1-4.2->4.5, 2-5.5->5.8, 3-8.2->8.5, 4-3.5->3.8,

5-7.6->7.9, 6-2.7->3, 7-8.6->8.9, 8-7->7.3, 9-6.2->6.5,
10-7->7.3, 11-3.9->4.2, 12-8.1->8.4, 13-8.6->8.9, 14-3.9-
>4.2, 15-8.6->8.9

Jumps section 0-1->1, 1-4->5, 2-4->4, 3-1->1, 4-9->10, 5-7->7, 6-22-
>23, 7-5->5, 8-18->19, 9-13->14, 10-10->11, 11-25->26,
12-8->9, 13-4->4, 14-14->15, 15-0->0

Backtrack probability 0-0%, 1-100%, 2-0%, 3-0%, 4-100%, 5-0%, 6-100%, 7-
0%, 8-0%, 9-100%, 10-0%, 11-100%, 12-5%, 13-0%, 14-
100%, 15-0%

New score importance 2
Concentration level preferred 8.5
Concentration importance 7
Concentration 0-2, 1-1, 2-4, 3-0, 4-7, 5-4, 6-7, 7-1, 8-10, 9-5, 10-6, 11-9,

12-1, 13-0, 14-7, 15-0
Skill level preferred 8.5
Skill importance 6
Skill 0-1, 1-1, 2-3, 3-0, 4-3, 5-4, 6-7, 7-2, 8-10, 9-6, 10-10, 11-

10, 12-2, 13-1, 14-4, 15-5
Challenge level preferred 7.5
Challenge importance 10
Challenge 0-1, 1-0, 2-2, 3-0, 4-7, 5-1, 6-5, 7-0, 8-4, 9-3, 10-9, 11-9,

12-6, 13-0, 14-3, 15-0

Personalities 175

Table A.2: Personality 2 - Experienced player that just wants to go fast

Setting Value
Tolerance for repeating sections 4
New level importance 30
Coins importance 0.1
Coins section 0-1->1, 1-2->2, 2-4->4, 3-1->1, 4-2->2, 5-3->3, 6-9->11,

7-5->5, 8-9->9, 9-8->8, 10-5->5, 11-5->6, 12-4->4, 13-5-
>5, 14-0->0, 15-0->0

Chest importance 0.1
Chest section 0-0->0, 1-0->0, 2-0->0, 3-0->0, 4-0->0, 5-0->0, 6-1->1, 7-

0->0, 8-0->0, 9-1->1, 10-0->0, 11-0->0, 12-0->0, 13-0->0,
14-1->1, 15-0->0

Life importance 0.5
Life lost importance 5
Life lost section 0-0->0, 1-0->0, 2-0->0, 3-0->0, 4-0->0, 5-0->0, 6-0->0, 7-

0->0, 8-0->0, 9-0->0, 10-0->1, 11-0->1, 12-0->1, 13-0->0,
14-0->0, 15-0->0

Life lost type section 0-w->0;s->1;m->0, 1-w->0;s->0;m->1, 2-w->0;s->1;m-
>0, 3-w->0;s->0;m->0, 4-w->1;s->1;m->0, 5-w->1;s-
>1;m->0, 6-w->1;s->0;m->1, 7-w->0;s->1;m->0, 8-w-
>1;s->1;m->0, 9-w->1;s->1;m->0, 10-w->0;s->0;m->1,
11-w->0;s->0;m->1, 12-w->0;s->1;m->0, 13-w->1;s-
>0;m->1, 14-w->1;s->0;m->1, 15-w->0;s->0;m->1

Time section 0-2->2.3, 1-7->7.2, 2-6->6.2, 3-4.6->4.8, 4-13->13.3, 5-
13.5->13.7, 6-29->29.5, 7-21.5->21.7, 8-38.5->38.7, 9-
38.5->39, 10-24->24.2, 11-41.5->42, 12-27->27.2, 13-33-
>33.2, 14-18.5->18.8, 15-12->12.2

Speed importance 5
Speed preference 8
Speed section 0-8.2->8.5, 1-8.5->8.8, 2-5.5->5.8, 3-8.2->8.5, 4-8.4->8.7,

5-7.6->7.9, 6-6.1->6.4, 7-8.6->8.9, 8-7->7.3, 9-7.7->8, 10-
7->7.3, 11-6->6.3, 12-8.1->8.4, 13-8.6->8.9, 14-7.9->8.2,
15-8.6->8.9

Jumps section 0-1->1, 1-1->1, 2-4->4, 3-1->1, 4-5->7, 5-7->8, 6-12->14,
7-5->6, 8-18->19, 9-13->14, 10-10->11, 11-17->18, 12-8-
>9, 13-4->4, 14-14->15, 15-0->0

Backtrack probability 0-0%, 1-0%, 2-0%, 3-0%, 4-0%, 5-0%, 6-0%, 7-0%, 8-0%,
9-0%, 10-0%, 11-0%, 12-1%, 13-0%, 14-0%, 15-0%

New score importance 10
Concentration level preferred 1
Concentration importance 7
Concentration 0-3, 1-1, 2-5, 3-0, 4-2, 5-5, 6-8, 7-0, 8-9, 9-3, 10-8, 11-10,

12-2, 13-0, 14-5, 15-0
Skill level preferred 8.5
Skill importance 6
Skill 0-1, 1-1, 2-3, 3-0, 4-3, 5-4, 6-7, 7-2, 8-10, 9-6, 10-10, 11-

10, 12-2, 13-1, 14-4, 15-5
Challenge level preferred 8.5
Challenge importance 5
Challenge 0-1, 1-0, 2-3, 3-0, 4-2, 5-2, 6-8, 7-0, 8-10, 9-4, 10-10, 11-9,

12-4, 13-0, 14-1, 15-0

176 Personalities

Table A.3: Personality 3 - Casual player that wants to collect coins

Setting Value
Tolerance for repeating sections 3
New level importance 24
Coins importance 0.75
Coins section 0-1->1, 1-3->3, 2-4->4, 3-1->1, 4-4->5, 5-3->3, 6-9->13,

7-5->5, 8-9->9, 9-8->14, 10-5->5, 11-6->8, 12-4->4, 13-5-
>5, 14-0->0, 15-0->0

Chest importance 0.75
Chest section 0-0->0, 1-0->0, 2-0->0, 3-0->0, 4-0->0, 5-0->0, 6-1->1, 7-

0->0, 8-0->0, 9-1->1, 10-0->0, 11-0->0, 12-0->0, 13-0->0,
14-0->0, 15-0->0

Life importance 0.5
Life lost importance 3
Life lost section 0-0->0, 1-0->0, 2-0->0, 3-0->0, 4-0->0, 5-0->1, 6-0->1, 7-

0->0, 8-0->1, 9-0->0, 10-0->2, 11-0->2, 12-0->2, 13-0->0,
14-0->0, 15-0->0

Life lost type section 0-w->0;s->1;m->0, 1-w->0;s->0;m->1, 2-w->0;s->1;m-
>0, 3-w->0;s->0;m->0, 4-w->1;s->0;m->0, 5-w->1;s-
>0;m->0, 6-w->1;s->0;m->3, 7-w->0;s->1;m->0, 8-w-
>1;s->0;m->0, 9-w->1;s->0;m->0, 10-w->1;s->0;m->3,
11-w->1;s->0;m->10, 12-w->1;s->3;m->3, 13-w->0;s-
>0;m->1, 14-w->0;s->0;m->1, 15-w->0;s->0;m->1

Time section 0-3.5->4.5, 1-17->19, 2-8->9, 3-5->6, 4-29->32, 5-17-
>19, 6-50->60, 7-22.5->24, 8-40->42, 9-49->52, 10-28-
>31, 11-64->68, 12-30->33, 13-35->37, 14-37->40, 15-
20->23

Speed importance 1
Speed preference 6.5
Speed section 0-4.3->4.8, 1-4.1->4.4, 2-4.2->4.5, 3-7.7->8, 4-3.4->3.7,

5-6.5->6.8, 6-3.6->4.7, 7-8->8.5, 8-6.3->6.7, 9-5.9->6.4,
10-5.5->6, 11-3.8->4.1, 12-7.6->8, 13-8.4->8.7, 14-3.8-
>4.1, 15-4.1->4.4

Jumps section 0-1->2, 1-4->5, 2-5->6, 3-1->2, 4-6->8, 5-8->9, 6-16->22,
7-5->6, 8-20->22, 9-13->15, 10-12->14, 11-25->27, 12-8-
>11, 13-4->5, 14-14->16, 15-0->0

Backtrack probability 0-0%, 1-100%, 2-0%, 3-0%, 4-10%, 5-0%, 6-40%, 7-0%,
8-0%, 9-100%, 10-0%, 11-100%, 12-60%, 13-0%, 14-
60%, 15-0%

New score importance 2
Concentration level preferred 6
Concentration importance 7
Concentration 0-2, 1-1, 2-4, 3-0, 4-7, 5-4, 6-7, 7-1, 8-10, 9-5, 10-6, 11-7,

12-1, 13-0, 14-7, 15-0
Skill level preferred 6.5
Skill importance 5
Skill 0-1, 1-1, 2-3, 3-0, 4-3, 5-4, 6-7, 7-2, 8-10, 9-6, 10-10, 11-

10, 12-2, 13-1, 14-4, 15-5
Challenge level preferred 5
Challenge importance 7
Challenge 0-2, 1-3, 2-4, 3-0, 4-5, 5-4, 6-8, 7-2, 8-10, 9-8, 10-10, 11-

10, 12-6, 13-0, 14-0, 15-0

Personalities 177

Table A.4: Personality 4 - Casual player that wants to go fast

Setting Value
Tolerance for repeating sections 4
New level importance 26
Coins importance 0.1
Coins section 0-1->1, 1-2->2, 2-4->4, 3-1->1, 4-2->4, 5-3->3, 6-8->10,

7-5->5, 8-9->9, 9-8->8, 10-5->5, 11-6->6, 12-4->4, 13-5-
>5, 14-0->0, 15-0->0

Chest importance 0.1
Chest section 0-0->0, 1-0->0, 2-0->0, 3-0->0, 4-0->0, 5-0->0, 6-1->1, 7-

0->0, 8-0->0, 9-0->0, 10-0->0, 11-0->0, 12-0->0, 13-0->0,
14-0->0, 15-0->0

Life importance 0.5
Life lost importance 5
Life lost section 0-0->0, 1-0->0, 2-0->0, 3-0->0, 4-0->0, 5-0->1, 6-0->1, 7-

0->0, 8-0->1, 9-0->0, 10-0->2, 11-0->2, 12-0->2, 13-0->0,
14-0->0, 15-0->0

Life lost type section 0-w->0;s->1;m->0, 1-w->0;s->0;m->1, 2-w->0;s->1;m-
>0, 3-w->0;s->0;m->0, 4-w->1;s->0;m->0, 5-w->1;s-
>0;m->0, 6-w->1;s->0;m->3, 7-w->0;s->1;m->0, 8-w-
>1;s->0;m->0, 9-w->1;s->0;m->0, 10-w->1;s->0;m->3,
11-w->1;s->0;m->10, 12-w->1;s->3;m->3, 13-w->0;s-
>0;m->1, 14-w->0;s->0;m->1, 15-w->0;s->0;m->1

Time section 0-3.5->4.5, 1-9->10, 2-8->9, 3-5->6, 4-17->18, 5-17->18,
6-36->38, 7-22.5->23.5, 8-40->41, 9-42->43, 10-28->29,
11-49->50, 12-30->31, 13-35->36, 14-23.5->24.5, 15-20-
>21

Speed importance 4
Speed preference 6.8
Speed section 0-4->4.4, 1-6.6->7, 2-4.1->4.5, 3-7.6->8, 4-6.1->6.5, 5-

6.4->6.8, 6-5.1->5.5, 7-8.1->8.5, 8-6.3->6.7, 9-7->7.4, 10-
5.6->6, 11-4.8->5.2, 12-7.6->8, 13-8.3->8.7, 14-6.3->6.7,
15-8.3->8.7

Jumps section 0-2->3, 1-4->5, 2-5->6, 3-1->2, 4-5->6, 5-8->9, 6-12->14,
7-5->6, 8-20->22, 9-13->15, 10-12->13, 11-20->22, 12-8-
>11, 13-4->5, 14-6->7, 15-0->0

Backtrack probability 0-0%, 1-0%, 2-0%, 3-0%, 4-0%, 5-0%, 6-0%, 7-0%, 8-0%,
9-0%, 10-0%, 11-0%, 12-5%, 13-0%, 14-0%, 15-0%

New score importance 10
Concentration level preferred 3
Concentration importance 7
Concentration 0-3, 1-1, 2-4, 3-0, 4-2, 5-6, 6-9, 7-0, 8-10, 9-5, 10-10, 11-

10, 12-3, 13-0, 14-5, 15-7
Skill level preferred 6.5
Skill importance 5
Skill 0-1, 1-1, 2-3, 3-0, 4-3, 5-4, 6-7, 7-2, 8-10, 9-6, 10-10, 11-

10, 12-2, 13-1, 14-4, 15-5
Challenge level preferred 6
Challenge importance 5
Challenge 0-3, 1-1, 2-5, 3-0, 4-2, 5-3, 6-8, 7-1, 8-10, 9-8, 10-10, 11-

10, 12-3, 13-0, 14-0, 15-4

178 Personalities

Table A.5: Personality 5 - Casual player that plays with care

Setting Value
Tolerance for repeating sections 5
New level importance 26
Coins importance 0.1
Coins section 0-1->1, 1-2->2, 2-4->4, 3-1->1, 4-2->4, 5-3->3, 6-9->10,

7-5->5, 8-9->9, 9-8->14, 10-5->5, 11-6->7, 12-4->4, 13-5-
>5, 14-0->0, 15-0->0

Chest importance 0.1
Chest section 0-0->0, 1-0->0, 2-0->0, 3-0->0, 4-0->0, 5-0->0, 6-1->1, 7-

0->0, 8-0->0, 9-1->1, 10-0->0, 11-0->0, 12-0->0, 13-0->0,
14-0->0, 15-0->0

Life importance 1
Life lost importance 10
Life lost section 0-0->0, 1-0->0, 2-0->0, 3-0->0, 4-0->0, 5-0->0, 6-0->0, 7-

0->0, 8-0->2, 9-0->1, 10-0->2, 11-0->1, 12-1->3, 13-0->0,
14-0->0, 15-0->0

Life lost type section 0-w->0;s->1;m->0, 1-w->0;s->0;m->1, 2-w->0;s->1;m-
>0, 3-w->0;s->0;m->0, 4-w->1;s->0;m->0, 5-w->1;s-
>0;m->0, 6-w->1;s->0;m->1, 7-w->0;s->1;m->0, 8-w-
>5;s->1;m->0, 9-w->1;s->0;m->0, 10-w->1;s->0;m->6,
11-w->1;s->0;m->4, 12-w->1;s->4;m->1, 13-w->6;s-
>0;m->1, 14-w->0;s->0;m->1, 15-w->0;s->0;m->1

Time section 0-3.5->4.5, 1-17->19, 2-8->9, 3-5->6, 4-29->32, 5-17-
>19, 6-50->60, 7-22.5->24, 8-40->42, 9-49->52, 10-28-
>31, 11-64->68, 12-30->33, 13-35->37, 14-37->40, 15-
20->23

Speed importance 2
Speed preference 5.5
Speed section 0-4->4.4, 1-4->5.5, 2-4->4.5, 3-7.5->7.7, 4-6->6.4, 5-6-

>6.5, 6-4.5->5.2, 7-7.5->8.2, 8-5.5->6.2, 9-6.5->7.2, 10-
5->5.7, 11-4.2->5, 12-6.5->7.5, 13-8->8.5, 14-6->6.5, 15-
3.3->4.4

Jumps section 0-2->3, 1-4->4, 2-5->6, 3-1->1, 4-6->7, 5-8->9, 6-12->14,
7-5->6, 8-20->23, 9-13->15, 10-12->16, 11-20->25, 12-
10->12, 13-4->5, 14-6->7, 15-0->0

Backtrack probability 0-0%, 1-0%, 2-0%, 3-0%, 4-0%, 5-0%, 6-5%, 7-0%, 8-0%,
9-100%, 10-0%, 11-0%, 12-75%, 13-0%, 14-0%, 15-0%

New score importance 1
Concentration level preferred 9
Concentration importance 7
Concentration 0-5, 1-3, 2-6, 3-0, 4-6, 5-6, 6-9, 7-2, 8-10, 9-2, 10-10, 11-

10, 12-1, 13-3, 14-3, 15-8
Skill level preferred 6.5
Skill importance 5
Skill 0-1, 1-1, 2-3, 3-0, 4-3, 5-4, 6-7, 7-2, 8-10, 9-6, 10-10, 11-

10, 12-2, 13-1, 14-4, 15-5
Challenge level preferred 7
Challenge importance 7
Challenge 0-3, 1-1, 2-5, 3-0, 4-2, 5-5, 6-8, 7-1, 8-10, 9-10, 10-10,

11-10, 12-6, 13-2, 14-1, 15-7

Personalities 179

Table A.6: Personality 6 - Casual player that has trouble with moving enemies

Setting Value
Tolerance for repeating sections 3
New level importance 26
Coins importance 0.2
Coins section 0-1->1, 1-2->2, 2-4->4, 3-1->1, 4-2->4, 5-3->3, 6-9->10,

7-5->5, 8-9->9, 9-8->14, 10-5->5, 11-6->7, 12-4->4, 13-5-
>5, 14-0->0, 15-0->0

Chest importance 0.2
Chest section 0-0->0, 1-0->0, 2-0->0, 3-0->0, 4-0->0, 5-0->0, 6-1->1, 7-

0->0, 8-0->0, 9-1->1, 10-0->0, 11-0->0, 12-0->0, 13-0->0,
14-0->0, 15-0->0

Life importance 0.75
Life lost importance 6
Life lost section 0-0->0, 1-0->0, 2-0->0, 3-0->0, 4-0->0, 5-0->0, 6-0->2, 7-

0->0, 8-0->0, 9-0->0, 10-2->3, 11-1->3, 12-0->2, 13-0->0,
14-0->2, 15-2->3

Life lost type section 0-w->0;s->1;m->0, 1-w->0;s->0;m->1, 2-w->0;s->1;m-
>0, 3-w->0;s->0;m->0, 4-w->1;s->0;m->0, 5-w->1;s-
>0;m->0, 6-w->1;s->0;m->8, 7-w->0;s->1;m->0, 8-w-
>10;s->1;m->0, 9-w->1;s->0;m->0, 10-w->1;s->0;m->15,
11-w->1;s->0;m->15, 12-w->1;s->4;m->1, 13-w->1;s-
>0;m->0, 14-w->0;s->0;m->1, 15-w->0;s->0;m->1

Time section 0-3.5->4.5, 1-9->10, 2-8->9, 3-5->6, 4-17->18, 5-17->18,
6-39->43, 7-22.5->23.5, 8-40->41, 9-42->53, 10-32->36,
11-55->60, 12-34->36, 13-35->36, 14-27->29, 15-25->30

Speed importance 1
Speed preference 6.3
Speed section 0-4->4.4, 1-6.6->7, 2-4.1->4.5, 3-7.6->8, 4-6.1->6.5, 5-

6.4->6.8, 6-4.2->5, 7-8.1->8.5, 8-6.3->6.7, 9-7->7.4, 10-4-
>4.5, 11-4->4.5, 12-7->7.5, 13-8.3->8.7, 14-5.5->5.9, 15-
3.5->4.1

Jumps section 0-2->3, 1-4->5, 2-5->6, 3-1->2, 4-5->6, 5-8->9, 6-14->17,
7-5->6, 8-20->22, 9-13->15, 10-14->18, 11-22->25, 12-
10->13, 13-4->5, 14-7->8, 15-0->1

Backtrack probability 0-0%, 1-0%, 2-0%, 3-0%, 4-0%, 5-0%, 6-0%, 7-0%, 8-0%,
9-100%, 10-0%, 11-0%, 12-30%, 13-0%, 14-0%, 15-0%

New score importance 3
Concentration level preferred 2
Concentration importance 7
Concentration 0-0, 1-4, 2-2, 3-0, 4-3, 5-4, 6-8, 7-0, 8-4, 9-4, 10-10, 11-10,

12-7, 13-5, 14-6, 15-10
Skill level preferred 6.5
Skill importance 5
Skill 0-1, 1-1, 2-3, 3-0, 4-3, 5-4, 6-7, 7-2, 8-10, 9-6, 10-10, 11-

10, 12-2, 13-1, 14-4, 15-5
Challenge level preferred 3
Challenge importance 7
Challenge 0-1, 1-6, 2-1, 3-0, 4-2, 5-2, 6-9, 7-0, 8-5, 9-5, 10-10, 11-10,

12-7, 13-1, 14-8, 15-9

180 Personalities

Table A.7: Personality 7 - Casual player that has trouble with platforming sections

Setting Value
Tolerance for repeating sections 3
New level importance 26
Coins importance 0.2
Coins section 0-1->1, 1-2->2, 2-4->4, 3-1->1, 4-2->4, 5-3->3, 6-9->10,

7-5->5, 8-9->9, 9-8->14, 10-5->5, 11-6->7, 12-4->4, 13-5-
>5, 14-0->0, 15-0->0

Chest importance 0.2
Chest section 0-0->0, 1-0->0, 2-0->0, 3-0->0, 4-0->0, 5-0->0, 6-1->1, 7-

0->0, 8-0->0, 9-1->1, 10-0->0, 11-0->0, 12-0->0, 13-0->0,
14-0->0, 15-0->0

Life importance 0.75
Life lost importance 6
Life lost section 0-0->0, 1-0->0, 2-1->1, 3-0->0, 4-0->1, 5-1->1, 6-1->2, 7-

0->0, 8-2->3, 9-0->1, 10-3->3, 11-2->3, 12-0->0, 13-0->0,
14-0->0, 15-0->0

Life lost type section 0-w->0;s->1;m->0, 1-w->0;s->0;m->1, 2-w->0;s->1;m-
>0, 3-w->0;s->0;m->0, 4-w->10;s->1;m->0, 5-w->1;s-
>0;m->0, 6-w->3;s->0;m->1, 7-w->0;s->1;m->0, 8-w-
>1;s->0;m->0, 9-w->1;s->0;m->0, 10-w->3;s->0;m->1,
11-w->5;s->0;m->1, 12-w->1;s->0;m->1, 13-w->1;s-
>0;m->4, 14-w->0;s->0;m->1, 15-w->0;s->0;m->1

Time section 0-3.8->4.5, 1-9->10, 2-9->11, 3-5->5.5, 4-18.5->19.5, 5-
18.5->20, 6-38->40, 7-22.5->23.5, 8-45->47, 9-45->46,
10-32->35, 11-52->54, 12-30->31, 13-35->36, 14-23.5-
>24.5, 15-20->21

Speed importance 1
Speed preference 6.3
Speed section 0-4->4.2, 1-6.5->7, 2-3.8->4.2, 3-7.8->8, 4-5.8->6.1, 5-6-

>6.5, 6-4.9->5.1, 7-8.3->8.5, 8-5.6->6.1, 9-6.6->7, 10-4.8-
>5.2, 11-4.2->4.5, 12-7.6->8, 13-8.4->8.7, 14-6.4->6.7,
15-4.2->4.4

Jumps section 0-2->3, 1-4->4, 2-6->7, 3-1->1, 4-6->7, 5-9->10, 6-13-
>15, 7-6->7, 8-23->26, 9-15->17, 10-14->18, 11-23->26,
12-8->9, 13-4->5, 14-6->7, 15-0->0

Backtrack probability 0-0%, 1-0%, 2-0%, 3-0%, 4-0%, 5-0%, 6-0%, 7-0%, 8-0%,
9-100%, 10-0%, 11-0%, 12-80%, 13-0%, 14-0%, 15-0%

New score importance 3
Concentration level preferred 2
Concentration importance 7
Concentration 0-5, 1-1, 2-6, 3-0, 4-5, 5-5, 6-6, 7-4, 8-10, 9-10, 10-10,

11-8, 12-2, 13-0, 14-2, 15-0
Skill level preferred 6.5
Skill importance 5
Skill 0-1, 1-1, 2-3, 3-0, 4-3, 5-4, 6-7, 7-2, 8-10, 9-6, 10-10, 11-

10, 12-2, 13-1, 14-4, 15-5
Challenge level preferred 4
Challenge importance 7
Challenge 0-4, 1-1, 2-5, 3-0, 4-4, 5-5, 6-7, 7-0, 8-10, 9-10, 10-10,

11-10, 12-1, 13-1, 14-0, 15-0

Personalities 181

Table A.8: Personality 8 - Inexperienced user playing the game for the first time

Setting Value
Tolerance for repeating sections 6
New level importance 32
Coins importance 0.2
Coins section 0-1->1, 1-2->2, 2-4->4, 3-1->1, 4-2->4, 5-3->3, 6-9->10,

7-5->5, 8-9->9, 9-8->14, 10-5->5, 11-6->7, 12-4->4, 13-5-
>5, 14-0->0, 15-0->0

Chest importance 0.2
Chest section 0-0->0, 1-0->0, 2-0->0, 3-0->0, 4-0->0, 5-0->0, 6-0->1, 7-

0->0, 8-0->0, 9-0->1, 10-0->0, 11-0->0, 12-0->0, 13-0->0,
14-0->1, 15-0->0

Life importance 0.5
Life lost importance 1
Life lost section 0-0->1, 1-0->0, 2-0->2, 3-0->0, 4-0->2, 5-1->2, 6-1->2, 7-

0->1, 8-2->3, 9-1->2, 10-3->3, 11-2->3, 12-2->3, 13-0->1,
14-1->1, 15-1->2

Life lost type section 0-w->0;s->1;m->0, 1-w->0;s->0;m->1, 2-w->0;s->1;m-
>0, 3-w->0;s->0;m->0, 4-w->4;s->1;m->0, 5-w->6;s-
>1;m->0, 6-w->1;s->0;m->1, 7-w->0;s->1;m->0, 8-w-
>8;s->1;m->0, 9-w->10;s->1;m->0, 10-w->1;s->0;m->4,
11-w->1;s->0;m->3, 12-w->1;s->4;m->2, 13-w->5;s-
>0;m->0, 14-w->1;s->0;m->4, 15-w->0;s->0;m->1

Time section 0-5.3->5.7, 1-13->15, 2-13->14, 3-8->10, 4-22->24, 5-21-
>23, 6-43->45, 7-27->29, 8-48->50, 9-50->52, 10-35->37,
11-58->60, 12-36->38, 13-41->44, 14-30->32, 15-27->29

Speed importance 1
Speed preference 4.5
Speed section 0-3.6->3.8, 1-3.6->3.8, 2-3.6->3.8, 3-7.1->7.3, 4-5.5->5.8,

5-5.6->5.8, 6-4->4.3, 7-7->7.3, 8-5->5.3, 9-6->6.3, 10-4.5-
>4.8, 11-3.7->4, 12-6->6.3, 13-7.5->7.8, 14-5.4->5.8, 15-
3.3->3.6

Jumps section 0-3->4, 1-5->6, 2-6->7, 3-2->2, 4-8->9, 5-10->11, 6-13-
>15, 7-7->8, 8-25->27, 9-17->19, 10-15->17, 11-27->29,
12-13->14, 13-6->7, 14-9->10, 15-1->2

Backtrack probability 0-5%, 1-40%, 2-5%, 3-8%, 4-15%, 5-15%, 6-40%, 7-10%,
8-25%, 9-100%, 10-50%, 11-75%, 12-90%, 13-5%, 14-
15%, 15-7%

New score importance 2
Concentration level preferred 8
Concentration importance 7
Concentration 0-5, 1-2, 2-6, 3-0, 4-6, 5-6, 6-10, 7-2, 8-10, 9-2, 10-10,

11-10, 12-1, 13-3, 14-5, 15-10
Skill level preferred 3.5
Skill importance 4
Skill 0-1, 1-1, 2-3, 3-0, 4-3, 5-4, 6-7, 7-2, 8-10, 9-6, 10-10, 11-

10, 12-2, 13-1, 14-4, 15-5
Challenge level preferred 5
Challenge importance 7
Challenge 0-3, 1-1, 2-5, 3-0, 4-4, 5-5, 6-8, 7-1, 8-10, 9-10, 10-10,

11-10, 12-9, 13-1, 14-1, 15-6

182 Personalities

Table A.9: Personality 9 - Inexperienced player that plays the game with care

Setting Value
Tolerance for repeating sections 3
New level importance 24
Coins importance 0.2
Coins section 0-1->1, 1-2->2, 2-4->4, 3-1->1, 4-2->4, 5-3->3, 6-9->10,

7-5->5, 8-9->9, 9-8->14, 10-5->5, 11-6->7, 12-4->4, 13-5-
>5, 14-0->0, 15-0->0

Chest importance 0.2
Chest section 0-0->0, 1-0->0, 2-0->0, 3-0->0, 4-0->0, 5-0->0, 6-0->1, 7-

0->0, 8-0->0, 9-0->1, 10-0->0, 11-0->0, 12-0->0, 13-0->0,
14-0->1, 15-0->0

Life importance 0.5
Life lost importance 1
Life lost section 0-0->1, 1-0->0, 2-0->2, 3-0->0, 4-0->2, 5-1->2, 6-1->3, 7-

0->1, 8-2->3, 9-1->2, 10-3->3, 11-2->3, 12-2->3, 13-0->1,
14-1->1, 15-1->3

Life lost type section 0-w->0;s->1;m->0, 1-w->0;s->0;m->1, 2-w->0;s->1;m-
>0, 3-w->0;s->0;m->0, 4-w->4;s->1;m->0, 5-w->6;s-
>1;m->0, 6-w->1;s->0;m->3, 7-w->0;s->1;m->0, 8-w-
>8;s->1;m->0, 9-w->10;s->1;m->0, 10-w->1;s->0;m->4,
11-w->1;s->0;m->3, 12-w->1;s->4;m->2, 13-w->5;s-
>0;m->0, 14-w->1;s->0;m->4, 15-w->0;s->0;m->1

Time section 0-4.5->5.3, 1-11.5->13.5, 2-10.5->11.5, 3-6.5->8.5, 4-
19.5->21.5, 5-19.5->21.5, 6-39.5->41.5, 7-24.5->26.5, 8-
45.5->47.5, 9-47.5->49.5, 10-31.5->33.5, 11-54.5->56.5,
12-33.5->35.5, 13-37.5->39.5, 14-26.5->28.5, 15-24.5-
>26.5

Speed importance 2
Speed preference 5
Speed section 0-3.5->3.8, 1-3.5->3.8, 2-3.5->3.8, 3-7->7.3, 4-5.5->5.8,

5-5.5->5.8, 6-4->4.3, 7-7->7.3, 8-5->5.3, 9-6->6.3, 10-4.5-
>4.8, 11-3.7->4, 12-6->6.3, 13-7.5->7.8, 14-5.6->5.8, 15-
3.3->3.6

Jumps section 0-4->6, 1-6->8, 2-7->9, 3-3->5, 4-8->11, 5-10->13, 6-13-
>17, 7-7->10, 8-24->28, 9-17->21, 10-15->19, 11-26->30,
12-13->16, 13-6->9, 14-9->12, 15-1->5

Backtrack probability 0-5%, 1-40%, 2-5%, 3-20%, 4-17%, 5-17%, 6-40%, 7-
15%, 8-30%, 9-100%, 10-50%, 11-70%, 12-95%, 13-5%,
14-20%, 15-7%

New score importance 2
Concentration level preferred 2
Concentration importance 7
Concentration 0-4, 1-0, 2-8, 3-0, 4-1, 5-5, 6-8, 7-2, 8-10, 9-5, 10-10, 11-

10, 12-7, 13-1, 14-3, 15-6
Skill level preferred 3.5
Skill importance 4
Skill 0-1, 1-1, 2-3, 3-0, 4-3, 5-4, 6-7, 7-2, 8-10, 9-6, 10-10, 11-

10, 12-2, 13-1, 14-4, 15-5
Challenge level preferred 3
Challenge importance 7
Challenge 0-2, 1-3, 2-6, 3-0, 4-3, 5-5, 6-9, 7-1, 8-10, 9-8, 10-8, 11-8,

12-6, 13-1, 14-0, 15-7

Personalities 183

Table A.10: Personality 10 - Inexperienced hyperactive player

Setting Value
Tolerance for repeating sections 4
New level importance 28
Coins importance 0.2
Coins section 0-1->1, 1-2->2, 2-4->4, 3-1->1, 4-2->4, 5-3->3, 6-9->10,

7-5->5, 8-9->9, 9-8->14, 10-5->5, 11-6->7, 12-4->4, 13-5-
>5, 14-0->0, 15-0->0

Chest importance 0.2
Chest section 0-0->0, 1-0->0, 2-0->0, 3-0->0, 4-0->0, 5-0->0, 6-0->1, 7-

0->0, 8-0->0, 9-0->1, 10-0->0, 11-0->0, 12-0->0, 13-0->0,
14-0->1, 15-0->0

Life importance 0.5
Life lost importance 1
Life lost section 0-0->1, 1-0->0, 2-0->2, 3-0->0, 4-0->2, 5-1->2, 6-1->2, 7-

0->1, 8-2->3, 9-1->2, 10-3->3, 11-2->3, 12-2->3, 13-0->1,
14-1->1, 15-1->2

Life lost type section 0-w->0;s->1;m->0, 1-w->0;s->0;m->1, 2-w->0;s->1;m-
>0, 3-w->0;s->0;m->0, 4-w->4;s->1;m->0, 5-w->6;s-
>1;m->0, 6-w->1;s->0;m->1, 7-w->0;s->1;m->0, 8-w-
>8;s->1;m->0, 9-w->10;s->1;m->0, 10-w->1;s->0;m->4,
11-w->1;s->0;m->3, 12-w->1;s->4;m->2, 13-w->5;s-
>0;m->0, 14-w->1;s->0;m->4, 15-w->0;s->0;m->1

Time section 0-5->5.5, 1-12->14, 2-11->12, 3-7->9, 4-20->22, 5-20-
>22, 6-40->42, 7-25->27, 8-46->48, 9-48->50, 10-32->34,
11-55->57, 12-34->36, 13-38->40, 14-27->29, 15-25->27

Speed importance 1
Speed preference 4.5
Speed section 0-3.7->4, 1-3.7->4, 2-3.7->4, 3-7.2->7.5, 4-5.7->6, 5-5.7-

>6, 6-4.2->4.5, 7-7.2->7.5, 8-5.2->5.5, 9-6.2->6.5, 10-4.7-
>5, 11-3.9->4.2, 12-6.2->6.5, 13-7.7->8, 14-5.7->6, 15-
3.5->3.8

Jumps section 0-3->3, 1-5->5, 2-6->6, 3-2->2, 4-7->8, 5-9->10, 6-12-
>14, 7-6->7, 8-23->25, 9-16->18, 10-14->16, 11-25->27,
12-12->13, 13-5->6, 14-8->9, 15-0->2

Backtrack probability 0-0%, 1-30%, 2-0%, 3-2%, 4-10%, 5-10%, 6-30%, 7-5%,
8-20%, 9-100%, 10-40%, 11-60%, 12-80%, 13-0%, 14-
10%, 15-1%

New score importance 2
Concentration level preferred 2
Concentration importance 7
Concentration 0-2, 1-1, 2-4, 3-0, 4-3, 5-4, 6-7, 7-2, 8-10, 9-8, 10-10, 11-

10, 12-8, 13-3, 14-3, 15-6
Skill level preferred 3.2
Skill importance 4
Skill 0-1, 1-1, 2-3, 3-0, 4-3, 5-4, 6-7, 7-2, 8-10, 9-6, 10-10, 11-

10, 12-2, 13-1, 14-4, 15-5
Challenge level preferred 4.5
Challenge importance 4
Challenge 0-3, 1-2, 2-5, 3-0, 4-4, 5-4, 6-8, 7-4, 8-10, 9-8, 10-10, 11-

10, 12-7, 13-2, 14-2, 15-5

184 Personalities

Appendix B

Questionnaire

The round B questions are the same as round A questions.

185

186 Questionnaire

Figure B.1: Questionnaire

Questionnaire 187

Figure B.2: Questionnaire

188 Questionnaire

Figure B.3: Questionnaire

Questionnaire 189

Figure B.4: Questionnaire

190 Questionnaire

Figure B.5: Questionnaire

Appendix C

Player simulation results

The full results can be found at repository folder

191

https://github.com/tripor/RedRunner/tree/master/Results/Player%20simulation

192 Player simulation results

Appendix D

Adaptivity agent results

The full results can be found at repository folder

193

https://github.com/tripor/RedRunner/tree/master/Results/Adaptivity%20agent

194 Adaptivity agent results

Appendix E

Additional questionnaire results

Figure E.1: Adapted vs non-adapted challenge

195

196 Additional questionnaire results

Figure E.2: Adapted vs non-adapted competence

Figure E.3: Adapted vs non-adapted flow

Additional questionnaire results 197

Figure E.4: Adapted vs non-adapted sensory and imaginative immersion

Figure E.5: Adapted vs non-adapted tension/annoyance

198 Additional questionnaire results

Figure E.6: Adapted game questionnaire responses

Additional questionnaire results 199

Figure E.7: Non-adapted game questionnaire responses

Figure E.8: Gender of the questionnaire responses

200 Additional questionnaire results

References

[1] Joshua Achiam. Spinning Up in Deep Reinforcement Learning, 2018.

[2] Ryan Macdonell Andrias and Mohd Shahrizal Sunar. User/player type in gamification. Inter-
national Journal of Advanced Trends in Computer Science and Engineering, 8(1.6 Special
Issue):89–94, 2019.

[3] Atari. Breakout, 1976.

[4] Yusuf Aytar, Tobias Pfaff, David Budden, Tom Le Paine, Ziyu Wang, and Nando De Freitas.
Playing hard exploration games by watching YouTube. Advances in Neural Information
Processing Systems, 2018-Decem:2930–2941, 2018.

[5] Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew,
and Igor Mordatch. Emergent Tool Use From Multi-Agent Autocurricula. sep 2019.

[6] Sander Bakkes, Chek Tien Tan, and Yusuf Pisan. Personalised gaming: A motivation and
overview of literature. In ACM International Conference Proceeding Series, 2012.

[7] Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch. Emergent
Complexity via Multi-Agent Competition. oct 2017.

[8] Richard Bartle. Hearts, Clubs, Diamonds, Spades: Players Who Suit Muds. Journal of MUD
Research, 1(1):19, 1996.

[9] Chris Bateman and Richard Boon. 21st century game design (Game Development Series).
Charles River Media, Inc., USA, 2006.

[10] Chris Bateman, Rebecca Lowenhaupt, and Lennart E. Nacke. Player typology in theory and
practice. In Proceedings of DiGRA 2011 Conference: Think Design Play, 2011.

[11] Bayat Games. Red Runner, 2017.

[12] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learn-
ing. In Proceedings of the 26th International Conference On Machine Learning, ICML 2009,
pages 41–48, 2009.

[13] Blizzard Entertainment. StarCraft, 1998.

[14] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. OpenAI Gym. jun 2016.

[15] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by Random
Network Distillation. oct 2018.

201

202 REFERENCES

[16] Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of supervised learn-
ing algorithms. In ACM International Conference Proceeding Series, volume 148, pages
161–168, 2006.

[17] Jenova Chen. Flow in games (and everything else), 2007.

[18] Mihaly Csikszentmihalyi and Mihaly Csikzentmihaly. Flow: The psychology of optimal
experience, volume 1990. Harper Row New York, 1990.

[19] Alena Denisova and Paul Cairns. Adaptation in digital games: The effect of challenge ad-
justment on player performance and experience. In CHI PLAY 2015 - Proceedings of the
2015 Annual Symposium on Computer-Human Interaction in Play, pages 97–102, 2015.

[20] M. Faure, P. Gaillard, B. Gaujal, and V. Perchet. Online learning and game theory. A quick
overview with recent results and applications. ESAIM: Proceedings and Surveys, 51, oct
2015.

[21] Julian Frommel, Fabian Fischbach, Katja Rogers, and Michael Weber. Emotion-based Dy-
namic Difficulty Adjustment Using Parameterized Difficulty and Self-Reports of Emotion.
In CHI PLAY 2018 - Proceedings of the 2018 Annual Symposium on Computer-Human In-
teraction in Play, pages 173–185, 2018.

[22] Zoubin Ghahramani. Unsupervised learning. In Summer School on Machine Learning, pages
72–112. Springer, 2003.

[23] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks. jun 2014.

[24] Venkat Gudivada, Amy Apon, and Junhua Ding. Data quality considerations for big data and
machine learning: Going beyond data cleaning and transformations. International Journal
on Advances in Software, 10(1):1–20, 2017.

[25] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-
Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. jan 2018.

[26] John A Hartigan and Manchek A Wong. A K-means clustering algorithm. Journal of the
Royal Statistical Society: Series C (Applied Statistics), 28(1):100–108, 1979.

[27] Marti A Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard Scholkopf. Support
vector machines. IEEE Intelligent Systems and their applications, 13(4):18–28, 1998.

[28] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in
Neural Information Processing Systems, pages 4572–4580, jun 2016.

[29] Danial Hooshyar, Liina Malva, Yeongwook Yang, Margus Pedaste, Minhong Wang, and
Heuiseok Lim. An adaptive educational computer game: Effects on students’ knowledge
and learning attitude in computational thinking. Computers in Human Behavior, 114, 2021.

[30] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learn-
ing: A survey of learning methods. ACM Computing Surveys (CSUR), 50(2):1–35, 2017.

[31] W A IJsselsteijn, Y A W de Kort, and K Poels. The Game Experience Questionnaire. Tech-
nische Universiteit Eindhoven, 2013.

REFERENCES 203

[32] Wijnand A IJsselsteijn, Yvonne A W de Kort, and Karolien Poels. The game experience
questionnaire. Eindhoven: Technische Universiteit Eindhoven, 46(1), 2013.

[33] João Jacob, Ana Lopes, Rui Nóbrega, Rui Rodrigues, and António Coelho. Towards player
adaptivity in mobile exergames. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 10714
LNCS, pages 278–292. Springer International Publishing, Cham, Switzerland, 2018.

[34] Lars Jensvold. Left 4 Dead, 2011.

[35] Mariana Neto João Álvaro Ferreira, João Augusto Lima, João Carlos Maduro. Exploring
Multi-Output Regression and Reinforcement Learning for Game Adaptivity. 2021.

[36] Arthur Juliani. Solving sparse-reward tasks with Curiosity, 2018.

[37] V. Khaustov and M. Mozgovoy. Learning Believable Player Movement Patterns from Human
Data in a Soccer Game. 2020 22nd International Conference on Advanced Communication
Technology (ICACT), 2020.

[38] Konami. Pro Evolution Soccer 2008, 2007.

[39] N. Lazzaro. Why We Play Games: Four Keys to More Emotion Without Story. Game
Developer Conference (GDC), pages 1–8, 2004.

[40] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yu-
val Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. sep 2015.

[41] Ricardo Lopes and Rafael Bidarra. Adaptivity challenges in games and simulations: A
survey. IEEE Transactions on Computational Intelligence and AI in Games, 3(2):85–99,
2011.

[42] Ricardo Lopes, Elmar Eisemann, and Rafael Bidarra. Authoring adaptive game world gen-
eration. IEEE Transactions on Games, 10(1):42–55, 2018.

[43] Darina Lynkova. Video Game Statistics [Click the “Start” Button], 2020.

[44] Matt Makes Games. Celeste, 2018.

[45] Olana Missura and Thomas Gärtner. Player modeling for intelligent difficulty adjustment.
In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), volume 5808 LNAI, pages 197–211, 2009.

[46] Shigeru Miyamoto and Nintendo. Super Mario Bros., 1985.

[47] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lill-
icrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous Methods for Deep
Reinforcement Learning. feb 2016.

[48] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learn-
ing. MIT press, 2018.

[49] Mikhail Moshkov and Beata Zielosko. Supervised Learning. In Machine learning techniques
for multimedia, pages 113–126. Springer, 2011.

204 REFERENCES

[50] Lennart E Nacke, Chris Bateman, and Regan L Mandryk. BrainHex: preliminary results
from a neurobiological gamer typology survey. In International conference on entertainment
computing, pages 288–293. Springer, 2011.

[51] Nintendo EAD. Mario Kart Wii, 2008.

[52] Ashey Noblega, Aline Paes, and Esteban Clua. Towards adaptive deep reinforcement game
balancing. In ICAART 2019 - Proceedings of the 11th International Conference on Agents
and Artificial Intelligence, volume 2, pages 693–700, 2019.

[53] Spyros Papadimitriou and Maria Virvou. Adaptivity in scenarios in an educational adven-
ture game. In 2017 8th International Conference on Information, Intelligence, Systems and
Applications, IISA 2017, volume 2018-Janua, pages 1–6. IEEE, Piscataway, NJ, USA, 2018.

[54] Quantic Dream. Heavy Rain, 2010.

[55] Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kan-
ervisto, and Noah Dormann. Stable Baselines3. https://github.com/DLR-RM/
stable-baselines3, 2019.

[56] Sudharsan Ravichadiran. Deep Reinforcement Learning with Python. Packt, 2 edition, 2020.

[57] Claudia Redaelli and Giuseppe Riva. Flow for Presence Questionnaire. In Digital Factory
for Human-oriented Production Systems, pages 3–22. Springer, 2011.

[58] Simão Reis, Luís Paulo Reis, and Nuno Lau. Game Adaptation by Using Reinforcement
Learning Over Meta Games. Group Decision and Negotiation, 2020.

[59] Rockstar Studios. Max Payne 3, 2012.

[60] Louis Schmidt, Taichi Watanabe, and Koji Mikami. Adjusting the game difficulty by chang-
ing AI behaviors with Reinforcement Learning. In Proceedings - NICOGRAPH International
2020, NicoInt 2020, page 94, 2020.

[61] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv, jul 2017.

[62] Na Shi, Xumin Liu, and Yong Guan. Research on k-means clustering algorithm: An im-
proved k-means clustering algorithm. In 3rd International Symposium on Intelligent Infor-
mation Technology and Security Informatics, IITSI 2010, pages 63–67. Ieee, 2010.

[63] Fatimah Sidi, Payam Hassany Shariat Panahy, Lilly Suriani Affendey, Marzanah A. Jabar,
Hamidah Ibrahim, and Aida Mustapha. Data quality: A survey of data quality dimensions.
In Proceedings - 2012 International Conference on Information Retrieval and Knowledge
Management, CAMP’12, pages 300–304. IEEE, 2012.

[64] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy
Lillicrap, Karen Simonyan, and Demis Hassabis. Mastering chess and shogi by self-play
with a general reinforcement learning algorithm, dec 2017.

[65] Penelope Sweetser, Daniel Johnson, Peta Wyeth, Aiman Anwar, Yan Meng, and Anne Oz-
dowska. GameFlow in different game genres and platforms. Computers in Entertainment,
15(3), 2017.

https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3

REFERENCES 205

[66] Penelope Sweetser and Peta Wyeth. GameFlow: a model for evaluating player enjoyment in
games. Computers in Entertainment (CIE), 3(3):3–3, 2005.

[67] Gustavo F. Tondello, Rina R. Wehbe, Lisa Diamond, Marc Busch, Andrzej Marczewski,
and Lennart E. Nacke. The gamification user types Hexad scale. In CHI PLAY 2016 -
Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play, pages
229–243, 2016.

[68] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral Cloning from Observation. may
2018.

[69] Unity Technologies. Unity, 2005.

[70] Valve Corporation. Dota 2, 2013.

[71] Giel Van Lankveld, Pieter Spronck, Jaap Van Den Herik, and Arnoud Arntz. Games as
personality profiling tools. In 2011 IEEE Conference on Computational Intelligence and
Games, CIG 2011, pages 197–202, 2011.

[72] Willem Waegeman, Krzysztof Dembczyński, and Eyke Hüllermeier. Multi-target predic-
tion: a unifying view on problems and methods. Data Mining and Knowledge Discovery,
33(2):293–324, 2019.

[73] Abdul Wahid. Big data and machine learning for Businesses, 2017.

[74] Wanxiang Li, Chu-Hsuan Hsueh, and K. Ikeda. Imitating Agents in A Complex Environment
by Generative Adversarial Imitation Learning. 2020 IEEE Conference on Games (CoG),
2020.

[75] Nick Yee. The demographics, motivations, and derived experiences of users of massively
multi-user online graphical environments. Presence: Teleoperators and Virtual Environ-
ments, 15(3):309–329, 2006.

[76] Taizo Yoshikawa, Viktor Losing, and Emel Demircan. Machine learning for human move-
ment understanding. Advanced Robotics, 34(13):828–844, 2020.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and Motivation
	1.2 Objectives
	1.3 Implemented Solution
	1.4 Contributions
	1.5 Document Structure

	2 State of the Art Review
	2.1 Game adaptivity
	2.1.1 Background
	2.1.2 Player types
	2.1.3 Game elements
	2.1.4 Player profiling
	2.1.5 Game Flow
	2.1.6 Applications
	2.1.7 Summary

	2.2 Machine learning
	2.2.1 Supervised Learning
	2.2.2 Unsupervised Learning
	2.2.3 Reinforcement Learning
	2.2.4 Imitation Learning and Inverse Reinforcement Learning
	2.2.5 Player simulation
	2.2.6 Curriculum Learning
	2.2.7 Online Learning
	2.2.8 Summary

	3 Reinforcement learning based approach for game adaptivity
	3.1 Preliminary work
	3.2 General adaptivity system methodology
	3.3 Selected Game
	3.4 Game modification
	3.4.1 Life System
	3.4.2 Time system
	3.4.3 Additional modifications
	3.4.4 Summary

	3.5 Player simulation
	3.6 Adaptivity System
	3.7 Summary

	4 Development and workflow of game adaptivity system
	4.1 Life system
	4.2 Time system
	4.3 Player simulation
	4.4 Adaptivity system
	4.4.1 Personality system overview
	4.4.2 Adaptivity system overview

	4.5 Summary

	5 Results and evaluation
	5.1 Player simulation
	5.1.1 Experiments performed
	5.1.2 Experiments overall results and analysis

	5.2 Adaptivity system
	5.2.1 Adaptivity agent results
	5.2.2 Adaptivity agent overall results and analysis
	5.2.3 Adapted game results

	5.3 Summary

	6 Conclusions
	6.1 Limitations
	6.2 Future work

	A Personalities
	B Questionnaire
	C Player simulation results
	D Adaptivity agent results
	E Additional questionnaire results
	References

