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Abstract

Within the food industry and high-volume production, it is important to ensure that the mar-
keted products comply with specified quality standards and requirements, given that small quality
breaches can easily tarnish the brand image.

This dissertation comprises an industrial optimization project developed in a flour and veg-
etable oil manufacturing company. In line with the emerging Industry 4.0 technologies, the project
entails a plan for strategic growth and operational optimization, based on the concept of digital
transformation.

In the industry of flour and vegetable oils, the concentration of commercial solvent present
in the final product is considered a fundamental quality feature subjected to strict legislation and
tabulated standards. Fluctuations in this measure pose a serious issue that can result in the infliction
of penalties for non-compliance with the law, or profit loss due to wasted product. One of the
main challenges faced by the business under study is to achieve stable and consistent solvent
concentrations in the final product, that meet the legislated safety and quality specifications.

The main goal of this project is to empower the real-time monitoring and control of the solvent
concentration of the product in circulation. This will be achieved with the support of predictive
models that assist the definition of the required actions to reduce the exceeded solvent and its
variability. A standardized and iterative Data Mining approach will be leveraged for this purpose,
supporting the generation of knowledge concerning the different variables and how they influence
the production process. This study focuses on the desolventization equipment that contains multi-
ple sensors that capture data required for the development of the analytical models. Furthermore,
the equipment is suited to expand and boost the development of other models in the future in a fast
and scalable way.

Mindful of the possibilities for future applications, the projected predictive models not only
estimate the hexane concentration of the product in circulation in real-time, but also indicate the
optimal thresholds for each operational parameter, according to the required range of solvent con-
centration. This empowers the prospect of future operationalization by automating alerts, bearing
recommended actions to be performed throughout the process. As such, an architecture based
on SAP technologies was designed to implement the developed solutions. The predictive models
were thus implemented in one of the proposed technological solutions, resulting in the creation
of four central dashboards that provide critical information required to successfully monitor and
calibrate the process in real-time.

In the end, the results corroborated the effectiveness of implementing predictive models to op-
timize the solvent extraction process, leading to an improvement in the quality and safety indexes
and an enhancement on the information management, supportive of data-driven decision making.
The implementation of the proposed architecture leverages Industry 4.0 technologies and artificial
intelligence to improve process efficiency and centralized management, ultimately boosting the
capabilities of the different process stakeholders.

i



ii



Resumo

No âmbito da indústria alimentar e produção de elevado volume, é importante garantir que os
produtos comercializados cumpram os padrões e requisitos de qualidade especificados, uma vez
que, pequenas violações na qualidade, podem facilmente prejudicar a imagem de marca.

A presente dissertação engloba um projeto de otimização industrial desenvolvido numa em-
presa de produção de farinha e óleo vegetal. Enquadrando as tecnologias emergentes da Indústria
4.0, o projeto prevê um plano de crescimento estratégico e otimização operacional, baseado no
conceito de transformação digital.

Na indústria de farinha e óleo vegetal, considera-se a concentração de solvente comercial pre-
sente no produto final um parâmetro fundamental, com impacto severo na qualidade do produto,
estando esta sujeita a uma legislação rígida, com padrões tabelados. As oscilações desta medida
de concentração refletem implicações consideráveis, pelo facto de poderem acarretar à prática de
sanções relativas ao incumprimento das normas, ou a uma perda de lucro proveniente do desperdí-
cio de produto. Um dos maiores desafios enfrentados pela empresa estudada é o de cumprir as
especificações legisladas, relativamente às normas de segurança e qualidade, atingindo ao mesmo
tempo, níveis estáveis e consistentes de concentração de solvente no produto final.

O principal objetivo deste projeto é possibilitar a monitorização em tempo real da concentração
de solvente no produto em circulação. Deste modo, o desenvolvimento de modelos preditivos
servirão de suporte na definição das ações necessárias para a redução da variabilidade e excedente
de solvente. Uma abordagem padronizada e iterativa de Data Mining servirá como base e fonte de
conhecimento relativamente à influência das diferentes variáveis no processo de produção. Este
estudo centra-se no equipamento de dessolventização, onde estão instalados vários sensores que
captam os dados necessários para o desenvolvimento dos modelos analíticos. Trata-se também de
um equipamento capaz de alavancar outros modelos no futuro de forma rápida e escalável.

Atendendo às possibilidades de aplicações futuras, os modelos preditivos projetados não só es-
timam a concentração de solvente do produto em circulação em tempo real, mas também indicam
os limites ótimos para cada parâmetro operacional, de acordo com o intervalo de concentração
de solvente que se pretende alcançar. Deste modo, os modelos viabilizam uma operacionalização
futura, através da automatização de alertas e de recomendações de ações de ajuste do processo.
Assim, desenhou-se uma arquitetura baseada em tecnologias SAP para suportar a implementação
das soluções desenvolvidas. Em consequência, os modelos preditivos foram embebidos numa das
soluções tecnológicas propostas, resultando na geração de quatro painéis centrais que fornecem
informação crítica que viabiliza a monitorização e afinação do processo em tempo real.

Em suma, os resultados corroboraram a eficácia da implementação de modelos preditivos na
otimização do processo de extração de solvente, revertendo para uma melhoria nos índices de
qualidade e segurança, assim como na gestão da informação que apoia a tomada de decisão. Deste
modo, a arquitetura proposta incorpora as capacidades da inteligência artificial com outras tecnolo-
gias provenientes da Indústria 4.0, que contribuem para a uma evolução da eficiência do processo,
exponenciando as capacidades cognitivas dos seus diferentes intervenientes.
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Chapter 1

Introduction

The present study comprises a curricular dissertation project conducted in a business environment,

proposing to enhance shop floor operations for a company in the agrofood sector.

This first chapter aims to introduce the project’s framework and its context in the world of

technological advances, followed by the business and sector overview, as well as the projected

goals, methodology and structure inherent to the study.

1.1 Project Framework and Motivation

Technological breakthroughs have revolutionized the average person’s social, personal, and work-

life, as the incorporation of emerging technologies continues to grow exponentially. While tech-

nology shapes the competitive landscape, companies are compelled to create disruptive businesses

and consistently deliver exceptional experiences to earn and maintain loyal customers. Those

who refuse to adopt lean, optimized, and connected technologies essentially refuse to focus on

efficiency and business agility, which will eventually result in their demise (Burke, 2020).

The urgency to adapt and respond to dramatic adversity is unquestionable, having been stressed

with the Covid-19 outbreak. The arrival of a worldwide pandemic forced many organizations to

accelerate and enhance their path towards a digital transformation, augmenting their response to

consumers’ fluctuating demands (Fui-Hoon Nah and Siau, 2020). In a post-Covid world, peo-

ple’s expectations are bound to change dramatically, as they become used to seamless, quick and

efficient deliveries, brought by the new digital models (Uzzaman, 2020). Effectively leveraging

trending technologies and building IT-centered business models has thus become a key priority

for many leaders (Nofal, 2019). However, the integration of the emerging trends requires a full-on

transformation of the business mindset; organizations must be prepared to successfully exploit

these technologies for their own benefit. As such, managers are expected to merge their corporate

and technology strategies, seeking organizational agility, scalability, and stability (Deloitte, 2021).

There are several technological trends entailing the scope of this dissertation that empower or-

ganizations to meet consumers’ increasingly high standards. To begin with, cybersecurity plays an

1



2 Introduction

imperative role in data-driven organizations, as companies become increasingly reliant on technol-

ogy. Currently perceived as the "new oil," data has become one of the most crucial and valuable

resources worldwide, and the impacts of a security incident are thus greater than ever (Nofal,

2019). On top of that, artificial intelligence (AI) and industrial automation technologies are ex-

pected to flourish in the upcoming years. Specialists are thus expecting Machine Learning Op-

erations (MLOps) to automate the development of machine learning (ML) models. The goal is

to empower the automation of manual, inefficient workflow and streamline all the steps of model

construction, shifting the focus of AI teams away from model building and towards operational-

izing (Deloitte, 2021). Organizations will be prone to automate anything that can possibly be

automated, using AI, ML, and robotic process automation (Burke, 2020). This concept is referred

to as hyper-automation; it enhances employee productivity by automating time-consuming tasks

and increasing operations’ flexibility and scalability. Finally, organizations are likely to change

the way they capture, store and process information. Managing organized, clean data for human

consumption will no longer be their sole focus, as cloud data warehouses are being leveraged to

store extensive volumes of unstructured data and feed AI and ML tools (Deloitte, 2021). These

technologies are trending exponentially due to their ability to collect large amounts of data from

multiple sources, allowing users to search, analyze and mine the data in real-time (Kerner, 2019).

The present curricular dissertation project, deployed in a business environment, reviews the

operational enhancement of a company in the agrofood industry, whose main activity is the pro-

duction of flour and vegetable oils. Food quality and safety regulations represent a crucial aspect

of the agrofood industry, as this particular segment is susceptible to significant governmental laws

and interventions. The manufacture of flour and vegetable oils requires rigorous monitoring of

multiple variables, processes and products, as a means to guarantee the legislated quality speci-

fications. Hence, the use of advanced analytics can be leveraged to monitor, control and predict

several parameters, such as the commercial solvent concentration of the final product, which is

this project’s main focus. In fact, due to the processing and calculation capabilities inherent to

AI and advanced analytics, human capacity can be extended beyond its natural cognition. Both

worlds must coexist and complement one another, as business knowledge is a fundamental tool

required to interpret the end results and turn raw information into valuable insights.

In response to the exponential rise of Industry 4.0 technologies, a selection of ML techniques

will be explored in this dissertation, aiming to increase the quality indicators of the company sub-

ject to study. The client is highly affected by the instability of the solvent extraction process, and

the excess of commercial solvent in the extracted flours was identified as a critical, costly problem.

A mishandling of this issue can translate into heavy expenses and harmful loss of competitiveness,

hence the urgent need to tackle the subject.

1.2 Company Overview

This project was carried out in Deloitte Touche Tohmatsu Limited (DTTL), commonly known as

Deloitte. The firm is a multinational, global leader that provides services in audit, tax, consulting,
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and financial advisory, covering a wide range of industries. Currently one of the Big Four ac-

counting organizations, Deloitte is the largest professional services network in the world in terms

of revenue and number of professionals (Statista, 2021).

Technology and creativity establish the foundation for Deloitte’s consulting services, as they

focus on improving their clients’ connection with the business, providing an integrated, adap-

tive, end-to-end journey through the process of business transformation. The present dissertation

project integrates the Enterprise Applications team in the Business Intelligence segment, one of the

firm’s many consulting areas. Enterprise Applications can impact multiple aspects of an organiza-

tion, enabling businesses to tackle their most complex challenges by building an information-based

management culture (Deloitte, 2020).

This project was conducted for a client recognized as a great industrial player in the agrofood

sector, operating in the oilseed business segment. Their focus lies mainly on the production of

flour and vegetable oils.

1.3 Agrofood Sector in Portugal

Over the past few years, the agrofood industry has faced a significant evolution, preserving an

important role in the European and Portuguese economy. As a large supporter of national exporta-

tion, the industry continues to grow in exports, as shown in Figure A.1 in Appendix A. According

to INE (2020), the total exports of goods in Portugal dropped 11,5% in 2020, from January to

October, yet for the same period, exports in the agrofood sector demonstrated a steady increase of

6,2%.

The Portuguese agrofood sector is classified among the industries that contribute the most

towards national economy, being the second-largest employer in the country and responsible for

a turnover of approximately 17 billions (do Campo, 2020). Marked by elevated, increasing levels

of competitiveness, the Portuguese agrofood industry is one of the most developed sectors in the

country and is now facing exponential growth (SISAB, 2017). Successfully adapting products to

consumers’ tastes, seeking healthier production processes and introducing innovative features has

laid down the industry’s path for substantial growth whilst continuously increasing the competitive

edge (ENEI, 2014).

Faced with a growing demand for high quality and safe, sustainable products, the agrofood

industry continuously strives to keep up with manufacturing regulations, namely the rules on la-

belling, hygiene and additives. Not only that, but in light of the current pandemic situation, the

countless consequences remain unpredictable, as the complexity of upcoming challenges will in-

evitably escalate. Hence, the need to promote national commitment around this sector is stressed,

and the priority should be to invest in research, development and innovation, leveraging external

growth to stimulate the industry (do Campo, 2020).
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1.4 Objectives

The current dissertation project will contribute towards the implementation of a machine learning

model in a business environment, focusing on two main goals:

1. The development of two predictive models, where the first provides a real-time prediction

of the final product’s quality, and the second depicts the optimum operating parameters to

ensure the legislated quality and safety standards are met.

2. The project implementation in SAP Analytics Cloud, a technological solution that embeds

the developed analytical models. This aims to increase the overall efficiency and effective-

ness of daily tasks carried out across the organization’s different hierarchy levels, ranging

from top management down to shop floor operators.

The model development will be employed using the programming language Python. Its im-

plementation will enable the real-time monitoring of the solvent concentration, leading to an im-

provement of the final product’s quality and safety indicators.

1.5 Approaching Methodology

This dissertation followed an approach commonly used by data mining experts, called the Cross

Industry Standard Process for Data Mining (CRISP-DM). It is designed to address data mining

problems in industrial projects, empowering the search for patterns, trends and correlations in a

dataset.

This method divides the data mining process into six stages, as shown in Figure 1.1. It is

important to note that these phases are not strictly sequential, and agile iterations between each

stage are generally required. The output of each phase indicates which tasks or phase should

follow; hence the arrows signal the most frequent dependencies between steps. The outer circle

symbolizes the cyclical nature of data mining itself since the process is not over once the solution

is deployed. The insights gained during the process and after applying the solution can trigger

new, often more-focused business questions. As a result, future data mining processes will benefit

from the experience of previous projects.

All six phases of the CRISP-DM model were performed in this project and are described as

follows:

1. Business understanding: The initial phase involves analyzing the current project’s ob-

jectives and how they relate to the requirements and goals from a business perspective.

This knowledge is required to translate it into a data mining problem, which is designed to

achieve those objectives.

2. Data understanding: This stage begins with the collection of data, followed by a thorough

analysis that enhances familiarity with the dataset. This enables the identification of quality

issues, unveiling first insights and forming small subsets to shape preliminary hypotheses.
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Figure 1.1: Phases of the CRISP-DM Reference Model (Kerber et al., 2000)

3. Data Preparation: All the steps required to transform the raw data and construct the final

dataset are addressed in this stage. Data preparations tasks are carried out multiple times

and include selecting tables, records, and attributes, as well as transforming and cleaning

the data to ensure its compatibility with the modelling tool.

4. Modelling: In this phase, several modelling techniques are selected, applied and then opti-

mised by calibrating their parameters to ideal values. As there are multiple techniques that

can be applied to the same data mining problem, revisiting the preparation phase is often

necessary, since some techniques have specific requirements on the format of the data.

5. Evaluation: At this point, a model has been built and appears to bear high quality, from

a data analysis perspective. However, before proceeding to the final implementation of the

model, a thorough evaluation must be carried out. This requires a review of all the steps in

its creation and confirming the model achieves the business objectives.

6. Deployment: Finally, the knowledge and insights generated by the model are presented to

the end-user in a comprehensive and useful manner. The project’s solutions are integrated

on the shop floor and the client is trained to understand how the model and the obtained

results can be used appropriately (Kerber et al., 2000).

1.6 Dissertation Structure

This dissertation is divided into six chapters, starting with the current section that aims to describe

the project framework and its goals whilst introducing a brief overview about the company where

the project was developed, as well as the client and respective industry.



6 Introduction

Chapter 2 exposes a literature review concerning the topics addressed throughout the disserta-

tion, providing the theoretical background that supported the project’s development.

Subsequently, Chapter 3 aims to provide an understanding of the business at hand, the oil

extraction process, and the equipment used, establishing the alignment with the business goals.

A detailed characterization of the provided data is then presented in Chapter 4, disclosing all

the steps required to prepare the data, followed by the ML model development and evaluation.

The deployment phase is then described in Chapter 5, exposing the functional architecture of

the employed solution, as well as the implementation techniques and resulting dashboards.

Finally, Chapter 6 provides a reflection of the dissertation’s main findings, as well as an expo-

sure of possible future work.



Chapter 2

State of the Art

The following chapter illustrates the imminent evolution of technology, characterizing where it

currently stands and where it’s potentially headed. The resulting key challenges are described

accordingly, followed by a number of relevant use cases for manufacturing processes. In short,

the conducted research provided the theoretical foundation required for the development of this

project, revealing the importance of Industry 4.0 technologies and their impact on organizational

competitiveness.

2.1 Industry 4.0

The need to adapt and respond to change has become an urgent theme for organizations seeking to

thrive in today’s economy. A statement adapted from Darwin’s Origin of Species argues "it is not

the strongest of the species that survives, nor the most intelligent. It is the one that is most adapt-

able to change" (North and Varvakis, 2016). This emphasizes the fact that organizations must

be flexible and responsive to change in order to survive, as they become faced with an uprise of

disruptive technologies, along with the undeniable versatility of consumers’ demands (Williams

and Olajide, 2020). Technology is a powerful source of competitive advantage, forcing manu-

facturers to strategically plan their technological investments (Sniderman et al., 2016). Creating

new, connected experiences for customers, partners, and workforce, enhances an organization’s

response to the changing market conditions, laying down the groundwork to earn and maintain

loyal customers (SAP, 2020).

The term "Industry 4.0", also addressed as smart manufacturing, refers to a 4th Industrial Rev-

olution, marked by the advanced digitization within organizations (Nicoletti, 2020). The concept

is radically reshaping the competitive landscape, having been first introduced in 2010 in Germany,

who thus became the most competitive manufacturing country and a global leader in equipment

manufacture (Karmakar et al., 2019).

In the course of history, the world faced three major technological shifts that instigated radi-

cal change, starting with the 1st Industrial Revolution in the 18th century. This era illustrates one

of the greatest turning points in human history, where steam-powered technologies enabled the

7
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development of mechanical production facilities and the massive expansion of several industries

(Mohajan, 2019). The 2nd Industrial Revolution followed, starting in the mid-19th century, where

the introduction of electricity lead the way for ground-breaking inventions, enabling mass produc-

tion (Mohajan, 2020). Finally, the 1960s marked the beginning of the 3rd Industrial Revolution,

introducing electronic automation. The development of computers and internet connectivity pro-

vided the means to not only automate production further, but also to access vital information that

considerably improved business management and decision-making capabilities (Rifkin, 2011).

Industrial processes have significantly evolved over time and are now exposed to a digi-

tal transformation (Cotteleer and Sniderman, 2017). Industry 4.0 denotes a paradigm shift to a

physical-to-digital-to-physical (PDP) connection, as demonstrated in Figure 2.1. The up and com-

ing advanced manufacturing techniques go beyond a simple one-way connection to smart tech-

nologies. At the moment, many organizations are already capturing physical information from an

object (i.e. product dimensions) to create a digital record (Mussomeli et al., 2016). However, it

is the leap from digital back to physical that essentially characterizes the concept of Industry 4.0

(Cotteleer and Sniderman, 2017). Through the use of advanced analytics and machine learning,

information obtained from a physical object can be processed by several machines, combining

real-time data from multiple sources to generate meaningful discoveries. The transformation back

to the physical world occurs through algorithms and automation, translating valuable insights from

the analyzed data into effective actions that will change the physical environment (Sniderman

et al., 2016).

Figure 2.1: The Physical-to-Digital-to-Physical Loop, adapted from Mussomeli et al. (2016)

Even though the basis of Industry 4.0 lies in manufacturing, its implications reach far beyond

production processes. Businesses no longer function in a traditional manner; they are compelled to

change the way they grasp and manipulate information, not only to achieve operational excellence,

but also to continuously improve the customer experience (Cotteleer and Sniderman, 2017). The

emerging smart and connected technologies will substantially influence the way products are de-

signed, developed and delivered, as the gathered data enables a deeper understanding of consumer
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preferences (Kusiak and Salustri, 2007). This allows companies to efficiently target a specific au-

dience, using customized marketing and selling strategies to change the way consumers interact

with their product or service (Cotteleer and Sniderman, 2017)

In the age of Industry 4.0, the physical object is no longer the sole driver of customer ex-

perience. Companies can use the fundamentals of the PDP loop to create an interconnected and

autonomous digital enterprise, improving consumers’ levels of engagement and thereby result-

ing in increasingly profitable products and services (Cotteleer and Sniderman, 2017). Ultimately,

these technologies will revolutionize the rules of production, operations and workforce.

2.1.1 Internet of Things

The Internet of Things (IoT) refers to a network of smart devices, linked together through wireless

connectivity, communicating and exchanging data between them (Magomadov, 2020). IoT com-

mercial applications are used to automate and enhance consumers’ daily lives, ranging from heart

monitors, to autonomous cars, smart-watches and other numerous technological trends. However,

while IoT was originally focused on the commercial sector, its undeniable potential lead to an ex-

pansion into the enterprise level, resulting in the introduction of the Industrial Internet of Things

(IIoT), one of the most prominent elements of Industry 4.0 (Serror et al., 2020).

The IIoT is characterized by Karmakar et al. (2019) as a series of interconnected machines,

that through the use of sensors, controllers and other networked devices, provide visibility and

insight into a company’s operations. It allows businesses to boost productivity, reduce unplanned

downtime, deliver high quality and reduce overheads, thus increasing returns on investment (Kar-

makar et al., 2019). Machine sensors are able to cross-reference their present configuration and

environment settings with pre-configured optimal data and thresholds to self-predict, self-compare

and become self-aware (Gilchrist, 2016). This way, machines gain the ability to produce self-

diagnosis, enabling predictive maintenance to reduce manufacturing disruptions.

Unlike the previous industrial revolutions, triggered by the arrival of a particular technology,

Industry 4.0 results from a combination of multiple technologies that together lead to innovative

breakthroughs (Parente et al., 2020), such as cyber-physical systems (CPS), IoT, blockchain and

cloud computing. In fact, the IoT is the foundation of all Industry 4.0 technologies, being re-

sponsible for the connectivity and communication of real-time data between machines (Xu et al.,

2018).

2.1.2 The Shift to Digital Supply Chains

According to Mussomeli et al. (2016), the natural growth of Industry 4.0 is causing the transforma-

tion of traditional, linear supply chains into dynamic and digital networks, as shown in Figure 2.2.

A digital supply chain, also known as a digital supply network (DSN), is described as a flexible,

interconnected matrix that enables the flow of data and goods in a nonlinear manner, establish-

ing strong communication between different stages and players of the supply chain (Mussomeli

et al., 2016). As the DSN integrates distinct views of the supply network, manufacturers increase
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their responsiveness to sudden, radical changes of consumer demands, as they’re able to perform

last-minute engineering changes, manage inventory digitally and execute data-driven fulfilment

decisions (Walsh et al., 2018). As a result, digital supply networks generate important business

development opportunities, enabling the reduction of operating costs, improving product qual-

ity and increasing visibility and sales effectiveness, which ultimately boosts profitability, while

creating strategic advantage (Ozdogru, 2020).

Figure 2.2: Digital Supply Chain Transformation (Mussomeli et al., 2016)

Unlike DSNs, the traditional supply chains, as demonstrated in Figure 2.2, are composed of

discrete, sequential operations, starting with the product design and ending in customer support.

This linear, ordered approach deprives the company of its chance to effectively react to unforeseen

or unexpected events (Choudhury et al., 2021). They are unable to re-route a driver if need be,

adapt to sudden weather changes that affect demand forecast, or retrieve accurate inventory data to

avoid excessive stock. As such, the shift from a traditional supply chain to an interconnected, open

network of supply operations could be the key to overthrow competition in the future (Walsh et al.,

2018). Many organizations are already changing their focus away from linear, discrete functions,

as they understand the eminent potential of DSNs (Mussomeli et al., 2016). Manufacturers who

refuse to evolve and adapt accordingly risk becoming victims of technology disruptions, losing

market share and growth opportunities, to those who manage to shift to a responsive, proactive

digital supply network (Mahmood, 2019).

2.1.3 Challenges of Digital Transformation

The concept of digital transformation refers to the use of technology to improve overall perfor-

mance, representing the thrust that reshapes every aspect of modern enterprises (Gilchrist, 2016).

Many opportunities arise from smart manufacturing, such as increased productivity, enhanced

competitiveness, higher revenue flow and optimized production processes. However, multiple

challenges have yet to be addressed to allow Industry 4.0 to thrive to its potential (Xu et al., 2018),

including the following issues:



2.1 Industry 4.0 11

• Information security - According to the Ponemon Institute (2018), the biggest challenge

in a digitization process is to successfully secure and protect data. Organizations rushing to

achieve digital transformation are significantly increasing the risk of a data breach, cyber-

attacks and threats to high-value assets. For this reason, cybersecurity must become the

primary concern of any organization’s transformation plan, focusing on the preservation of

confidentiality, integrity and availability of information (Nofal, 2019).

• Technological infrastructure limitations - Many manufacturing companies lack the ap-

propriate IT infrastructure to support a digital transformation, presenting gaps of interop-

erability. In other words, the existing software or computer systems might lack the ability

to exchange and make use of information (Gilchrist, 2016). This forces organizations to

either reshape their current installations, or invest in brand new infrastructure, implicating

substantial costs regardless of the company’s size (Sniderman et al., 2016).

• Data ownership and control - With an increasing number of stakeholders connected to the

value chain, it becomes unclear who owns or controls the exchanged data (Asbroeck et al.,

2019). From suppliers and vendors, all the way to the retailers and customers, the interest in

the shared data is substantially increasing, as it is considered a strategic asset and a powerful

source of value and innovation (ATKearney, 2018). As a result, managers should carefully

oversee the contractual agreements of data ownership between the various actors.

• Shortage of big data skills - The lack of analytics and data science talent remains a strong

barrier for enterprises in the 21st century (Nwokeji et al., 2019). While the number of quali-

fied engineers with big data skills is gradually increasing, it remains insufficient to meet the

growing demand of organizations worldwide (Mussomeli et al., 2016). To overcome this

shortage of analytical talent, organizations should support and invest in employees’ train-

ing, aiming towards a digitally sophisticated workforce (Nwokeji et al., 2019).

• Resistance to change - Increased resilience to digital change can be observed from top-

level management down to shop floor operators. Successful companies are usually the most

susceptible to such resistance, as they distrust the need for change when the business runs

smoothly. It is thus important for leaders to consider the human side of a digital transforma-

tion and focus on tackling these barriers, overcoming traditional mindsets, and implement-

ing small, gradual changes (Scholkmann, 2021).

2.1.4 The Driving Force of Digital Transformation

Organizations are compelled to integrate new technologies in their DSN, such as IoT, AI and ML,

to successfully establish a turbulent competitive edge (Ozdogru, 2020). In fact, machine learning

has revealed itself to be a prominent research field of AI, expected to drive and discharge growth

in the industry, using computer algorithms to uncover patterns in data and accurately predict future

events (Anand et al., 2020). New and insightful knowledge generated from ML is revolutionizing
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supply chain management, as it enhances operational efficiency by improving demand forecast

accuracy, decreasing freight costs and reducing inventory expenditure (Columbus, 2018).

Integrated with the Internet of Things, ML allows a machine to learn by itself due to the rise

of big data (Anand et al., 2020), which refers to the huge volumes of structured and unstructured

information that organizations currently process and analyze (Nofal, 2019). The increasing avail-

ability of data both in size and quality has enabled enterprises to incorporate machine learning and

data mining techniques, empowering the extraction of rules from the large quantities of data to

support effective decision-making (Dogan and Birant, 2021).

The major approaches of machine learning models can be categorized into supervised learning

and unsupervised learning (Anand et al., 2020). Supervised learning deals with labelled data, using

regression and classification techniques, where regression is used to predict continuous or ordered

values, such as the price of a car, and classification predicts discrete, categorical, or pre-defined

values (i.e. small, medium, large) (Dogan and Birant, 2021). On the other hand, unsupervised

learning is used to identify regularities and dependencies in unlabelled data, typically using clus-

tering techniques to aggregate objects based on their similarities (Dogan and Birant, 2021). There

are numerous techniques and methods to apply ML models to business problems; for instance,

clustering can be used to detect product errors (Zidek et al., 2016), quantitative evaluation (Onel

et al., 2019) and equipment condition diagnosis (Rostami et al., 2016).

As computer power, sensor technology and available data increase by the minute, machine

learning applications in the manufacturing industry are expected to grow at a fast rate (Columbus,

2020). As such, real-time data mining will play a vital role in the future, as organizations are now

able to process, store and analyze increasingly high dimensional data like never before (Mussomeli

et al., 2016), and applications based on them will substantially enhance manufacturing (Dogan and

Birant, 2021).

2.2 Data Mining and Statistical Analysis

The ability to generate knowledge and effectively process information is undeniably recognized

as a strategic asset. Data mining has thus become one of the most promising fields of machine

learning, supporting data-driven decision making through the extraction of insights and pattern

recognition. In recent years, data mining has been leveraged in complex manufacturing processes,

augmenting quality diagnosis and quality improvement, thus becoming an emergent topic in the

field of quality engineering (He et al., 2009).

It should be noted that statistical methods are the cornerstone of data mining and analytics,

supporting the entire decision making process and analysis of results and insights brought forth by

data mining techniques (Chen et al., 2018). In fact, the first step of the CRISP-DM methodology,

disclosed in section 1.5, encompasses the task of exploring the data, which requires the use of

statistical analysis to gather and summarize multiple data characteristics and highlight the most

influential data (Ribeiro et al., 2017). Statistical methods are also required in the data preparation
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phase to clean and construct the datasets, as well as in the evaluation phase, to analyze the project’s

results.

2.2.1 Statistical Indicators

An important and common topic in statistics is the analysis of variability, a crucial aspect in any

manufacturing process that strongly impacts performance and expenditure. Variation is highly

tied to production quality, as high variability leads to unreliable and unexpected outcomes, re-

sulting in poor quality (Aba and Hayden, 2013). As such, most manufacturers aim to generate

products or services with little to no variation, in order to maximize production quality and en-

hance customer satisfaction. Having said that, it is important to understand that there are two

different types of variation affecting product quality: random and assignable variations. Random

variations are caused by the natural characteristics of a manufacturing process and cannot be elim-

inated completely (He et al., 2009). On the other hand, assignable variations often result from

a faulty manufacturing setup and can be traced back to the operator, the materials, machinery or

the environment (Aba and Hayden, 2013). As such, assignable variations are predictable and can

therefore be removed once they’re identified; hence manufacturers should focus on their detection

and subsequent elimination.

Gorunescu (2011) argues that without statistics, data mining would not exist, as classic statis-

tical techniques enable the identification of relations between variables when there is insufficient

information about them. Descriptive statistics, such as the mean, median and standard deviation,

provide insights on the average values of each variable, central values and data dispersion, respec-

tively. Paired with correlation analysis and visual representations such as histograms and boxplots,

these statistical methods enable data scientists to understand how each variable operates, how the

data is distributed and in what way the variables are related to each other. These techniques pro-

vide insights into the quality of the data, depicting the existence of missing values or outliers that

negatively bias results. For instance, boxplots illustrate how the values in the data are spread out,

explicitly identifying the existence of outliers. Histograms, on the other hand, allow analysts to

get a sense of the variability of the statistical data. Moreover, a correlation matrix discloses how

the variables are related to each other, where the correlation coefficient represents the relationship

between two variables, which can be positive or negative.

2.2.2 Data Mining and Feature Selection

Statistics can also be used to depict how the sample data impacts the target variable. High di-

mensional data usually contains noise and irrelevant features, leading to the deterioration of the

machine learning model’s prediction capability and overall performance (D’Souza et al., 2020).

Therefore, data scientists must be able to identify the most relevant features to predict the target

variable to pose as inputs in the ML model. This not only enables the decrease of computational

costs, but also leads to an improvement in the prediction accuracy (Haq et al., 2019).
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According to Kuhn and Johnson (2019), one of the techniques used by data scientists to deter-

mine the best set of features that enables the construction of a reliable machine learning model is

the stepwise regression algorithm, which can be a forward or backward selection. This approach

relies on classic statistical metrics, such as the p-value or the R2, to define which features should

enter or leave the regression model. The coefficient of determination, the R2, indicates the per-

centage of the response variable’s variation explained by the model. Therefore, the higher the R2,

the better the model fits the data. A high p-value, on the other hand, indicates that the predictor

variable does not impact the target variable and should not be included in the model. In a forward

regression, there are no features in the selected set to begin with. The importance of each variable

is tested and ranked by their individual ability to explain the variation of the target variable. If

the resulting p-value is below the determined threshold, usually under 0.05, or the model’s R2 in-

creases with the variable’s inclusion, then the feature is considered relevant and is included in the

model. In a backward regression, the model starts off with all the features included in the set, and

if their removal increases the model’s R2 or their p-value exceeds the determined threshold, they

are removed from the model.

Likewise, decision trees also rely on statistics to learn how to best split the dataset into smaller

subsets to predict the target value. The "leaf" or node of the tree represents the condition or test,

while the "branches" or edges represent the possible outcomes. The splitting process ends when no

further gain can be made, or a preset rule is met, e.g. reaching the maximum depth of the tree. In

a random forest algorithm, many individual trees are constructed to build the model. In this case,

feature importance is calculated as the decrease in node impurity weighted by the probability of

reaching that node. In regression models, the node impurity is obtained by calculating the variance

reduction, using the Mean Square Error or the Mean Absolute Error, as shown in Table 2.1. For

classification, the Gini impurity or the entropy are calculated to capture the node impurity. The

node probability is calculated by dividing the number of samples that reach the node by the total

number of samples. High values represent the most important features, enabling data scientists to

understand which variables were more relevant to build the model (Ronaghan, 2018).

Table 2.1: Node impurity formulas

Impurity Task Formula Description

Gini impurity Classification
C

∑
i=1

fi(1− fi) fiis the frequency of label i at a node and C is the
number of unique labels

Entropy Classification
C

∑
i=1

filog( fi) fiis the frequency of label i at a node and C is the
number of unique labels

Variance / Mean
Square Error (MSE)

Regression
1
N

N

∑
i=1

(yi−µ)2 yi is the label for instance, N is the number of in-

stances, and µ is the mean given by
1
N

N

∑
i=1

yi

Variance / Mean
Absolute Error (MAE)

Regression
1
N

N

∑
i=1
|yi−µ| yi is the label for instance, N is the number of in-

stances, and µ is the mean given by
1
N

N

∑
i=1

yi
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In short, the role of statistical methods in the construction of machine learning models is unde-

niable. On top of supporting the data understanding, preparation and evaluation phases, statistics

can point the user towards the most important variables in a model, providing relevant insights for

manufacturers.

2.3 Smart Manufacturing Use Cases

There is a potential to improve industrial operations through a number of identified data-driven

smart manufacturing use cases, as they cover multiple industrial fields, such as transportation,

manufacturing, healthcare, energy production, among many others (Vijayaraghavan and Leevin-

son, 2019). According to Tao et al. (2018), the most promising applications of Industry 4.0 for

manufacturing processes are the following:

1. Smart Design: Manufacturers can no longer expect an increase in sales solely based on cost

reduction and improved quality; their focus should be on products that fulfil individual pref-

erences, hence the need for smart design (Wang et al., 2017). Involving users in the front end

of the design process enables the co-creation of value, which is essential to achieve mass

individualization and create long-term relationships (Pessoa and Becker, 2020). Robots,

smartphones, and advanced image recognition can be used to collect powerful user data,

such as consumers’ behaviour, user-product interactions and consumer preferences, en-

abling the translation of the customer’s voice into unique, desirable product features (Tao

et al., 2018). Another example is the use of 3D printing in rapid prototyping, which enables

faster user-feedback, as well as higher production flexibility (Pessoa and Becker, 2020).

2. Material tracking and distribution: Efficient material distribution requires the right material

to be delivered to the right equipment at the right time (Tao et al., 2018). Technologies such

as automated storage systems are being used to reduce the time of component searching

and transportation by analyzing which parts are used more frequently to store them closer

to the production line (Zin and Vogel-Heuser, 2019). It is also important to track materials

and their condition to guarantee quality specifications (Tao et al., 2018). RFID-enabled

positioning systems in AGVs use identification tags to track the real-time material condition,

such as location, quality or status, enabling efficient material deliveries (Lu et al., 2017).

3. Performance monitoring: For operators to be able to quickly react to machine failures and

performance issues, the manufacturing process, along with the whole equipment line and

material environment, must be constantly monitored (Zin and Vogel-Heuser, 2019). Due

to the predictive capabilities of big data analytics, alerts and recommendations can guide

operators into time-efficient adjustments (Tao et al., 2018). Production disruptions on the

shop floor, such as order tardiness, are usually caused by irregularities, namely equipment

failure or lack of material. AI algorithms can be used to minimize these disruptions, as

they capture patterns in time series from the collected information, ranging from material

consumption data, energy consumption data, vibrations, to rotation rates (Tao et al., 2018).
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4. Quality Control: The criteria used to accept or reject a product can range from its owns

dimensions to the machine’s pressure or temperature requirements (Ogorodnyk et al., 2021).

This data concerning product quality and other parameters regarding geometry, location,

tolerance and the machine, can be collected using different sensors, RFIDs and machine

vision applications (Li et al., 2015). As a result, quality control can be deployed using big

data analytics for early detection of quality defects and to perform quick diagnoses of their

root causes (Tao et al., 2018).

5. Smart planning and scheduling: Before the product manufacture takes place, it is essential

to plan and schedule the production process, taking into account the availability of resources

and materials, as well as the production capacity of the manufacturing facility (Tao et al.,

2018). Several issues that affect scheduling, such as volatile market demand trends, or

workforce shortage, can be analyzed by big data applications and translated into effective

decisions (Parente et al., 2020). Furthermore, cloud manufacturing can also be employed,

for instance, to adjust to new product portfolios by increasing the flexibility of responsive-

ness to the changing customer demands (Erol and Sihn, 2017).

6. Predictive maintenance: Data analytics and machine learning algorithms can be used to

provide a forecast of when equipment maintenance will be necessary, resulting in reduced

unplanned downtime (Balamurugan et al., 2019). Predictive analysis combines the equip-

ment’s historical records with real-time data to analyze the tendency for deterioration, the

remaining lifetime of components and the root cause of certain faults (Tao et al., 2018). As a

result, manufacturers can employ precautionary maintenance to prolong equipment lifetime

and reduce maintenance costs (Zhang et al., 2015).

The advances in Industry 4.0 technologies have profoundly impacted manufacturing processes,

yielding numerous opportunities for business managers. Big data is empowering organizations to

adopt data-driven strategies that enable agile responses to the ever-changing market conditions, as

well as the creation of new, connected experiences for customers, partners, and the workforce. The

IIoT paradigm is considered as one of the main trends affecting businesses today and in the future,

as industries thrive on modernising systems and equipment to deal with disruptive technologies

and keep up with the market volatility (Vijayaraghavan and Leevinson, 2019).

The present dissertation embeds the emerging Industry 4.0 and AI technologies in a business

environment to optimize and enhance a particular manufacturing process in the oilseed segment.

Powered by IIoT, multiple sensors are leveraged to exchange data and feed machine learning al-

gorithms, where a selection of data mining techniques are applied to enhance asset performance

monitoring and quality control. The projected solution enables the business under study to grad-

ually shift from the traditional supply chain to a responsive, digital supply network, capitalizing

on the predictive capabilities brought forth by AI technologies and statistical analysis to react to

equipment and workforce breaches efficiently. The goal is to increase the final product’s safety

and quality indicators, provided the technical challenges and hurdles of a digital transformation

are overthrown.



Chapter 3

Business Understanding

This chapter presents the scope of this dissertation and the business at hand, starting with a descrip-

tion of the oil extraction process. The focal point is the desolventizing process and its operational

variables, as a significant part of the total solvent loss in the extraction occurs in this phase. An

analysis of the current state of business affairs follows, with a subsequent proposition for future

operations. Finally, the study’s business goals are exposed accordingly.

3.1 Oilseed Processing

Oilseed processing aims to obtain high-quality oil while minimizing undesirable elements to

achieve high extraction outputs and produce meals that respect international quality and safety

regulations. Solvent extraction is the most effective technique used to recover oil from oilseeds.

It involves bringing oilseeds in contact with a liquid solvent to obtain the dissolution of oil. The

reason behind this method’s popularity results from the high proportions of recovered oil, leav-

ing behind only 0.5% to 0.7% residual oil in the raw material. The most widely used solvent for

commodity vegetable oil extraction is hexane, currently used by the client at hand.

The solvent extraction technique is illustrated in Figure A.2 in Appendix A. It begins with

the preparation of the raw material, required to guarantee that every oil-bearing cell is brought

in contact with the solvent. The seeds are crushed in a corrugated roller mill, heated and then

flaked between a pair of rolling mills to increase their surface area. The prepared material then

enters the extractor, where a bed of solids is formed, shifting the soybean cake (solids and oil)

and the miscella (hexane and oil) in opposite directions, resulting in a continuous counter-current

extraction. This system enables the extraction of highly concentrated miscella for the upcoming

distillation. The product that results from the oil extraction is called marc, which is a mixture of

solids and hexane. The residual solvent is then removed in a desolventizer-toaster (DT) in three

different sections for pre-desolventizing, desolventizing and toasting. Subsequently, the miscella

is treated in a distillation operation, removing the hexane to form crude oil. This enables the

recovery of hexane which is then reused in the extraction process.
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The client is currently facing an operational issue, where, after desolventizing the extracted

material in the desolventizer-toaster and dryer-cooler (DT/DC), the remaining solvent in meals

is often above the legislated limits and exposes a high variability. As a result, a strong impact

on industrial safety can be expected, as well as environmental contamination, product quality

deterioration and escalated expenditure. A detailed analysis regarding the instability of the solvent

extraction process in the DT/DC is therefore carried out in this dissertation.

3.2 DT/DC Equipment

The desolventizing, toasting, drying, and cooling procedures can be completed in a thermody-

namic system, referred to as a DT/DC, which is shown in Figure A.3 in Appendix A. The equip-

ment is structured as a single vessel, with multiple trays, where the desolventizer-toaster (DT)

trays are in the top half, and the dryer-cooler (DC) trays are in the bottom half. The thermody-

namic equilibrium between the liquid and vapor phases is achieved as the flour progresses through

the different trays of the equipment, with the solvent being almost completely evaporated and most

of the steam condensed.

The DT is a vertical, cylindrical vessel whose trays are heated using steam, hot water and

oil. Its main purpose relies on separating hexane from the soybean oil meal, recovering as much

solvent as possible, and producing high-quality meals with low energy consumption. There are

two types of DT trays, the pre-desolventizing and desolventizing trays, designed with an upper

and lower plate, as well as structural members in between, prepared to hold pressurized steam.

The process in the DT/DC initiates when the material arrives from the extractor and enters

at the top into the 1st to 3rd floors of the DT. These are the pre-desolventizing trays, where the

material is heated through indirect steam. The sole purpose of these trays is to provide conductive

heat transfer through their upper surface to the material filled with solvent, which is supported

above. The material is mixed above each tray and transferred downward from tray to tray, through

agitating propellers, anchored to a central rotating shaft.

The desolventizing task then takes place in the five central trays, the 4th to 8th floors. At this

point, in addition to the indirect heating, these trays provide direct heating that results from direct

steam passing through the bed of solids. Sluice valves are used to maintain the flow of material

between the trays, allowing solids to pass through according to their level. These trays have a

dual purpose, first to provide consistent direct steam into the meal layer, and second, to provide

conductive heat transfer through its upper surface to the wet material supported above. After being

desolventized and toasted, the soybean meal should exit the DT with a hexane residual lower than

500 ppm, temperature between 105 and 115°C, and humidity content around 20%.

Subsequently, the material enters the DC, that much like the DT, has upper and lower plates;

however, in this case, the structural members in between are designed to distribute low-pressure air

vertically into the meal layer supported above. There are also two types of DC trays: steam drying

trays and air cooling trays, and these are located in the 9th to 11th, and 12th floor, respectively.
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The three drying trays are designed to evenly introduce hot air into the meal. They are also

drilled in order to allow the passage of air through the bed. In this case, the material is also

transferred between floors through sluice valves. Finally, in the last tray, the 12th floor, a blower

injects cold air into the chamber, in order to cool the meal before it leaves the DT/DC for storage.

3.3 Operational Parameters

Determining the optimum DT/DC configuration for oilseed processing is a rather complex task that

relies on multiple factors. The most influential parameters in the different floors of the equipment

are the following:

• Steam/floor temperature;

• Direct steam flow;

• Level (height) of solid material;

• Discharge speed of the valves;

• Driving force of the blowers;

• Steam/floor pressure.

It is important to control the steam temperature to enhance the equipment’s efficiency. Since

hexane presents a low boiling point, around 67-70°C, most modern DTs are operated with tem-

peratures ranging from 70 to 75°C, in order to maintain the low solvent loss, while assuring a

safety margin. If the temperature is below this minimum threshold, the overall efficiency can be

tarnished, as the amount of evaporated hexane will be reduced, resulting in wasted solvent and

possibly a waste of the final product. As a result, it is important to maintain the steam temperature

as low as possible, minimizing the total energy consumption, while preserving a reasonable level

of evaporated solvent.

Regarding the addition of direct steam, its purpose is to regulate and secure a constant temper-

ature at the top of the DT, while controlling the temperature gradient along the desolventization

trays. It is important to maintain a sufficiently high direct steam flow rate per unit area, in order

to guarantee an adequate amount of desolventized meal in the DT, as the residual hexane in the

solids decreases with increasing vapor density.

Furthermore, the level control of the solid material is also a crucial factor to consider, espe-

cially in factories that process different seeds with different daily flows. This can cause inefficien-

cies in the desolventizer, due to the seed’s distinct properties, resulting in the need to adjust the

solid levels in the trays. The discharge speed of the sluice valves is thus regulated for this purpose.

The amount of hexane present in the flour exiting the desolventizer is a good indicator of whether

the process suffered any concerning issues.

Finally, the centrifugal blowers are used to pressurize the air inside the DC and drive cool air

through the solid material. As the cool air enters the trays, it flows upward through the meal, and
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its speed must be regulated to create a partially fluid meal. As such, it is important to control and

maintain the appropriate driving force of the blowers to ensure the right pressure and temperature

in all the floors of the equipment.

The DT/DC is a thermodynamic system in equilibrium, meaning that parameters such as the

temperature, flour levels, steam and pressure all interact and influence the final product’s solvent

concentration. As such, these variables must be carefully monitored and controlled on each floor.

An essential factor to consider is the definition of the process’s setpoints, as these represent the

desired or target value of the flour levels, temperature, steam and pressure in the equipment. Set-

points are directly handled and manually defined by the operator, who sets them according to his

acquired knowledge and the process’s state of the art.

3.4 Quality Management

Having understood the technical aspects, it is important to proceed to an analysis of the ongoing

operations occurring on the shop floor. Evaluating the current state of the business’ processes

provides an insight into the scope and origin of their affairs, driving valuable opportunities for

improvement and quality management. An as-is analysis concerning the company’s solvent ex-

traction technique was therefore conducted, followed by a to-be analysis, exposing the proposed

strategy for the future.

3.4.1 Current State Analysis

The main problem presently faced by the client is the inconsistency and high variability of the

hexane concentration present in the flour leaving the DT/DC equipment. Considering that a con-

centration of 500 ppm or under is required to meet the legislated limits, it is important that the

client is able to rigorously control this output.

Currently, the production process begins with an assessment and planning of the monthly

needs, as shown in step 1 in Figure 3.1. This analysis is performed by the production director,

who subsequently releases the respective production orders. In step 2, the supervisor receives and

plans the orders on a daily basis and releases them to the operator, who then executes the given

tasks in step 3. The process monitoring is then carried out in the 4th step, by both the operator and

the supervisor, who are able to monitor the operational parameters in the SCADA control system.

Finally, the supervisor confirms the production order was successfully executed and whether the

DT/DC is operating accordingly, before the whole process restarts.

Concurrently, once a week, the production director requests a laboratory analysis of the flour’s

hexane concentration, as shown in step 1.1. Then in step 1.2, the operator collects a product

sample and delivers it to the laboratory, where numerous analyses for the entire factory are carried

out (step 1.3). Since this particular analysis is not a priority, the results are obtained only eight

hours later, causing a serious delay. This holdup forecloses the opportunity to act on root causes in

real-time; when a problem in the equipment is diagnosed, the required adjustments will be made

with a significant delay. Moreover, further analysis must be carried out to pinpoint the effects of
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Figure 3.1: As-Is Process

such adjustments, which will also be delayed. When the supervisor receives the deferred results,

he analyzes them and releases adjustment orders (step 1.4) that will also be overdue.

Every holdup and delay not only leads to increased expenditure but also results in a substantial

waste of the final product. Faced with a volume-driven business model, the wasted batches of

flour represent a considerable loss for the company. Furthermore, the solvent extraction process

represents over 50% of the factory’s energetic expenses and the optimization of the operations

involved could result in a significant cost reduction for the future.

3.4.2 Future State Proposal

The proposed future process aims to increase the agility and efficiency of the whole operation.

The projected solution discloses the use of a cloud data visualization tool, SAP Analytics Cloud

(SAC), that enables business users to create interactive dashboards, supporting the last mile of the

decision-making process, with its augmented analytics capabilities, powered by AI and ML. Fur-

thermore, the solution integrates the developed predictive models, providing the different hierar-

chical levels in the business with an opportunity to monitor and control the operational parameters

in real-time, and perform the necessary adjustments in due course.

The 1st step of the proposed journey is identical to the one referred earlier in the as-is analysis.

In the 2nd step, however, the supervisor is able to monitor the process parameters with the support

of the dashboards that embed the results from the analytical models. This way, the supervisor is

able to depict the optimal operational parameters, analyze the current problems in the process, and

create adjustment orders to address them. The operator then executes the respective tasks in step

3, as mentioned earlier. Subsequently, in step 4, the process monitoring is performed with the

support of the designed dashboards, not the SCADA system. Finally, in the 5th step, the supervisor

uses the proposed dashboards to validate the production order and confirm whether the equipment

is operating smoothly. Regarding the parallel laboratory analysis steps, the only modification

required is in step 1.4, where besides analyzing the results and releasing process corrections, the

supervisor must upload the results onto the technological solution for future assessment.



22 Business Understanding

Consequently, the proposed transformation allows the client to monitor the hexane concentra-

tion in real-time, as opposed to the current situation, where results are obtained with a significant

delay. The ability to act in real-time and adjust the necessary parameters in due course grants the

client the fundamental agility required to increase their quality standards.

3.5 Business Goals

The present dissertation project aims to improve the outlined process by enhancing specific actions

undertaken in the client’s current operations. Regarding the objectives mentioned in section 1.4,

the business goals were divided into three distinct levels and are outlined below:

1. Obtain a real time estimation of the flour’s ultimate quality:

• Develop a machine learning model to provide a real-time prediction of the final prod-

uct’s quality based on the input variables;

• Depict the variables that provoke the most impact and provide the best explanation for

the concentration of solvent (hexane) in the product, as it leaves the equipment.

2. Optimize the definition of input parameters:

• Define the optimal values of each input variable to depict their ideal setpoints, ac-

cording to the specified hexane concentration that agrees with the quality and safety

indicators (500 ppm);

• Segment the data into different groups based on distinct ranges of hexane concentra-

tion, depicting the maximum and minimum value of each input parameter for each

range of values. This provides an opportunity to monitor the process with better in-

sights on the parameters that should be adjusted.

3. Enhance process calibration and supervision in real-time:

• Leverage a technological solution, SAP Analytics Cloud, to implement the developed

predictive models and display the information in visual, interactive dashboards;

• Monitor and control each operational parameter, analyzing their trends and variability

over time, comparing them to the defined setpoints;

• Visualize the optimum thresholds defined for each parameter and compare them to

their current values in real-time;

• Access information regarding past laboratory analyses and their timestamps, aiding

the management of future requests.

This analysis concludes the first phase of the CRISP-DM methodology, exposing a thorough

understanding of the business, the terminology used and the listed objectives.



Chapter 4

Model Development

This chapter describes the data provided by the client, followed by a thorough analysis of its

quality and rising insights. Then, all the steps performed in the data preparation phase are exposed,

including the data aggregation, outlier treatment, dataset construction, and correlation analysis.

Subsequently, several data mining techniques are selected and tested on the different datasets.

Finally, an assessment concerning the models’ end results is carried out, as well as an evaluation

of their ability to meet the outlined goals.

4.1 Data Understanding

To begin with, it is important to understand the provided data and its alignment with the business

problem. The information disclosed by the client derived from sensors installed throughout the

extraction process, as well as manual recordings of the flour’s hexane concentration, analyzed in

a laboratory. The date and time of each variable are also stored and disclosed accordingly.

4.1.1 Data Presentation

There are over one hundred sensors in the factory’s oil extraction process that record data every

5 seconds, displaying the information in a supervisory control and data acquisition system called

SCADA. A schematic representation of the client’s SCADA is exposed in Figure A.4 in Appendix

A. The most interesting variables were selected, alongside the client, resulting in 42 operational

parameters to be analyzed.

The sensors under study and the applied abbreviations are the following:

• Speed controller (SC);

• Level indicator transmitter (LIT);

• Temperature transmitter (TT);

• Pressure transmitter (PT);

23
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• Intensity transmitter (IT).

The objects monitored by these sensors and their respective abbreviations are the following:

• Blowers (fan);

• Sluice valves (valv);

• Flour (prod);

• Flour leaving the equipment (prodOut);

• Vapor leaving the equipment (gasOut));

• Floor of the DT/DC (floor);

• Lubrication pump (pump);

• Main engine (motor).

A systematic nomenclature was defined for all the variables, whose structure was defined as fol-

lows: "Type.Of.Sensor_Monitored.Object_Floor.Number". The monitored floors of the DT/DC

equipment are the 1st floor and all those between the 4th and 12th floor. These operating parameters

are summarized in Table 4.1, disclosing which variables are directly controlled by the operator,

the floors that each sensor monitors, the measurement unit, and a short description regarding each

variable.

Table 4.1: Summary of the DT/DC operating parameters

Variable Directly
Controlled? Floor (X) Unit Description Total

SC_fan_X Yes X ε (9;10;11) Hz Driving force of the blowers 3
SC_valv_X Yes X ε (4;5;6;7;8;12) Hz Sluice valves speed controller 6
LIT_prod_X Yes X ε (4;5;6;7;8;12) ◦gr Flour level 6
TT_gasOut_X No X ε (1) ◦C Output vapor temperature 1
PT_gasOut_X No X ε (1) mmH2O Output vapor pressure 1
TT_prod_X No X ε (1;4;5;6;7;8;9,

10, 11, 12)

◦C Flour temperature 10

TT_floor_X No X ε (9;10;11) ◦C Floor temperature 3
PT_floor_X No X ε (4;5;6;7;8;9, 10,

11, 12)
mmH2O Floor pressure 9

TT_prodOut_X No X ε (12) ◦C Output flour temperature 1
TT_pump No ◦C Pump temperature 1
IT_motor No A Main engine current intensity 1

The client also provided data regarding a selected number of setpoints. This enables the anal-

ysis of the equipment’s responsiveness to the benchmarks and target values defined for each oper-

ational parameter. Table 4.2 summarizes the available setpoints, which follow a similar nomencla-

ture structure as the homologous variable: "SP_Type.Of.Sensor_Monitored.Object _Floor.Number".

Lastly, laboratory analyses are performed to obtain information regarding the hexane concen-

tration present in the flour. The resulting data is summarized in Table 4.3, which includes records



4.1 Data Understanding 25

Table 4.2: Summary of the setpoint variables

Variable Floor (X) Unit Description Total

SP_TT_gasOut_X X ε (1) mmH2O Setpoint of the vapor temperature
leaving the DT/DC

1

SP_LIT_prod_X X ε (5;6;7;8) ◦gr Setpoint of the flour level 4
SP_TT_floor_X X ε (9;10;11) ◦C Sepoint of the floor temperature 3

regarding the hexane concentration, as well as the seed’s origin and type of flour. The informa-

tion resulting from these analyses aims to provide the client control over the equipment’s output,

enabling the quality control of the final product. However, the product samples are usually col-

lected by the operator only once a week, and the reports are obtained eight hours later. As such,

the results arrive with a significant delay, preventing a reliable and real-time fine-tuning of the

process.

Table 4.3: Summary of the laboratory measurements

Variable Unit Description
Hexane concentration ppm Extracted flour hexane concentration
Origin USA or Brasil Where the soy seeds come from
Type 44 or 47,5 Type of flour in process

In short, the data provided by the client includes information regarding 42 operational param-

eters, 8 setpoints and manual laboratory measurements that depict the solvent concentration of the

final product, providing insights on its quality.

4.1.2 Exploratory Data Analysis

In this phase, primary research is performed on the data, aiming to discover patterns, signs of

anomalies, and data quality issues. Summary statistics and graphical representations were carried

out to help build familiarity with the data, providing early insights that prepare the ground for the

data preparation phase.

To begin with, a basic statistical analysis was performed on each variable, calculating their

mean, standard deviation, and minimum and maximum values over an hour. Table 4.4 shows the

statistical summary of a selection of variables. These results demonstrate that most operational

parameters present a variation of approximately zero over the course of one hour. The standard

deviation of variables SC_fan_9, TT_prod_5, and PT_floor_8 is in fact zero, meaning that their

values remain constant in an hour. This outcome is expected due to the thermodynamic equilibrium

present in the DT/DC equipment. As such, an opportunity arises to improve the quality of the data

and reduce its dimensionality through an hourly aggregation. However, this must first be analyzed

with the client to confirm that this variation is residual.

Due to further insights from Table 4.4, a decision was made, alongside the client, to remove

the variable measuring the flour’s temperature on the 4th floor (TT_prod_4). This resulted from the

fact that this parameter presents a variation between 62 and 63◦C, which the client confirmed was
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Table 4.4: Statistical summary of a selected number of variables

SC_fan_9 SC_valv_12 LIT_prod_6 TT_prod_5 TT_prod_4 TT_floor_11 PT_floor_8
Mean 37 18,35 44,27 105 62,89 24,05 53
Std 0 2,63 2,77 0 0,31 0,23 0
Min 37 13 38 105 62 24 53
Max 37 24 52 105 63 25 53

a misleading observation, since the actual temperature of the floor should be the same as on floors

5, 6, and 7. The cause of this misreading is the location of the sensor; positioned at the top of the

floor and faced with a usually low level of flour, the sensor is rarely submerged in the product.

Therefore, the recorded temperature is inaccurate and could negatively bias future analysis, hence

the decision to exclude it.

Subsequently, visual analyses were performed on each variable through histograms and box-

plots. This study aimed to grasp a better understanding of the distribution of each variable, while

depicting the existence of outliers. The graphical representations of a selection of variables are

demonstrated in Figure 4.1. The constructed boxplots indicate that all the operating parameters

detain a high number of outliers, yet their removal or replacement must be clarified with the client,

as they could derive from machine breakdowns, maintenance interventions, among other known

reasons. In fact, further analysis revealed that the majority of the variables present a high number

of zeros, which could be explained by a production shutdown or sensor failures, in which case

they could be treated as outliers. In addition, Figure 4.1 demonstrates that the exposed variables

present an approximately normal distribution, as did the other variables that are not represented.
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Figure 4.1: Histograms and boxplots for PT_gasOut_1 and PT_floor_5
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A time-series analysis was then conducted for each variable in order to examine their perfor-

mance over time. Two diagrams are exposed in Figure 4.2, illustrating only the month of March

for better visualization. These graphs corroborate the fact that the operational parameters detain

a high number of zeros and that these occur simultaneously. It should be noted that this analysis

was carried out for all the available months and variables.
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Figure 4.2: Time-series analysis of SC_fan_10 and PT_floor_12

A similar analysis was conducted for each setpoint and the corresponding operational parame-

ter. Figure 4.3 shows how the temperature on the 9th floor of the equipment responds to the setpoint

defined by the operator. The graph illustrates how the actual values fail to reach the established

target, resulting from the fact the implemented setpoints are calculated on theoretical, state of the

art values that the operators define based on their acquired knowledge of the process. As a result,

this analysis reveals the need to define the optimum setpoints that the equipment is in fact able to

achieve.
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Figure 4.3: Time-series analysis of TT_floor_9 and corresponding setpoint
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Furthermore, it is important to understand the correlation between all the operational param-

eters to enable the dimensionality reduction of the data. This is achieved by removing variables

that are highly correlated with each, since they add no value to the analysis. The constructed

correlation matrix is represented in Figure B.1 in Appendix B, where it appears that all the vari-

ables are strongly correlated. However, this analysis is misleading due to the high number of

outliers present in all the parameters. These must be removed, before a new correlation analysis is

performed subsequently.

Finally, with regards to the laboratory measurements, it is important to note that the number

of available records is small, as the client only provided 66 observations, whereas the operational

parameters detain 4.589.632 records. As a result, an opportunity to improve the quality of the data

in the future has been identified. The laboratory missing values can be estimated before merging

these records with the operational parameters to ensure an enriched dataset.

The insights resulting from this exploratory data analysis can be summarized as follows:

• There is no significant variation in the DT/DC operational parameters over the course of one

hour, in procedural terms;

• All the operating parameters detain a high number of outliers;

• There is a very short number of laboratory measurements when compared to operational

records.

4.2 Data Preparation

In a predictive modelling project, raw data must be pre-processed before being used to fit and

evaluate a machine learning model. The data preparation phase enables the transformation of raw

data into a suitable structure by correcting errors and statistical noise, identifying the most relevant

input variables, and creating compact data projections.

4.2.1 Data Aggregation

Through the statistical analysis exposed earlier in section 4.1.2 and the information provided by

the client, it is possible to conclude that the operating parameters of the DT/DC equipment show no

significant variation over an hour. As a result, and due to the strong inertia inherent to the process,

the hourly aggregation of the data was considered an adequate approach that averts disturbing the

results, while reducing the data dimensionality.

When performing the data aggregation, it is important to select the best metric for the case

at hand. The mean, median, and mode of each hour were considered for this purpose. However,

it should be noted that due to the parameters’ high number of outliers identified earlier, both the

mean and mode would misrepresent the results, since these metrics are highly sensitive to outliers.

On the other hand, the median takes into account all the values from the period of an hour and

selects the central value, leading to higher accuracy.
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The data was thus aggregated using the median, resulting in a dataset with 18.169 records,

which accounts for a dimensionality reduction of 99,6%. This enables the optimization of the

analysis in terms of CPU processing, while improving the proportion of available laboratory values

and operating parameters records.

4.2.2 Outlier Treatment

Within the scope of data mining, outlier detection seeks to uncover patterns that diverge from the

expected behaviour, accounted by individual records, distant from the remaining observations. It

is important to understand the reason behind their occurrence in the business context, in order to

guarantee they are dealt with properly.

As such, and after rigorous examination, the client confirmed that the observed zeros, exposed

in section 4.1.2, took place during a production break at the factory. These observations are thereby

considered as outliers, and their removal is thus required to prevent a negative bias of the results.

4.2.3 Dataset Construction

After removing the outliers, the operational records and the laboratory measurements were merged

together, resulting in the construction of three datasets. The first dataset contains the original

66 available laboratory records and the respective operational parameters. This means that the

operational data is missing 4.589.566 data points, which accounts for 99,9% of missing values.

Therefore, and considering that the client confirmed that the hexane concentration presents close

to no signs of variation during the course of one hour, a second dataset was constructed, where the

laboratory records were duplicated for the previous and succeeding hour of each measurement.

Furthermore, a third dataset was developed, using the KNN algorithm to depict the missing

values of the hexane concentration. This method relies on the other variables present in the dataset

to replace the missing records, classifying data points based on their similarity.

An analysis was carried out to assess the optimum value of k for the KNN algorithm. Table 4.5

shows the mean and standard deviation of the hexane concentration for each value of k, where the

last column displays the statistics of the actual laboratory measurements. The study demonstrates

that the mean values are quite similar in each approach, whereas the standard deviation shows a

wider variation. Usually, the lowest standard deviation would be preferable, since it represents

a narrower spread of values. However, in this context, the chosen value was k=3, since this ap-

proach grants the mean and standard deviation closest to actual data provided by the laboratory

measurements.

Table 4.5: Comparison between the different k parameters for the KNN method

k=3 k=5 k=7 k=9 Actual Laboratory Data
Mean 768,75 778,85 769,08 791,20 785,34

Standard Deviation 172,98 144,13 166,40 109,44 276,705

In the end, the constructed datasets were the following:
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1. Dataset A - The original laboratory measurements (66 observations);

2. Dataset B - The laboratory measurements duplicated for the Nth +1 and Nth -1 observations

(198 observations);

3. Dataset C - An estimation of the missing laboratory values using the KNN algorithm (5.788

observations).

4.2.4 Correlation Analysis

A correlation matrix was then constructed for each dataset mentioned above. This analysis is no

longer biased by outliers since the data has been cleaned accordingly.

The resulting correlation matrices for datasets A, B and C, are represented in Appendix B

in Figures B.2, B.3, B.4, respectively. Table B.3 in Appendix B summarizes which variables

presented a high correlation, and as a result, which ones were removed. Variables with a high

correlation, over 0.85, were removed, provided they’re not affected by direct human control. For

instance, in dataset A, variables SC_fan_10 and SC_fan_11 are 92% correlated, yet neither were

removed since the operator has direct control over them, and removing them can compromise the

model’s scalability. Ultimately, five variables were removed from datasets A and B, and eleven

were removed from dataset C, resulting in 37 input variables for models using datasets A and B,

and 31 for dataset C.

4.3 Modelling

The modelling phase of the CRISP-DM approach involves building and assessing various models

based on several data mining algorithms. There are four main tasks involved in this stage, starting

with the selection of the modelling techniques, followed by the partitioning of the data into training

and test subsets, the model construction, and finally, its assessment.

4.3.1 Selection of the Modelling Technique

Considering the nature of the project, the matter is categorized as a supervised machine learning

problem, since it aims to predict a target variable, Y, from 42 known operational parameters. Pro-

vided the goal was to simply estimate whether the final hexane concentration was within or outside

the legislated limits, the matter could be treated as a classification problem. However, regarding

the goals outlined in section 3.5, this dissertation proposes to encounter knowledge on the hexane

concentration in real-time. The client requires this information to efficiently control and monitor

the process on a daily basis. As a result, the matter at hand was considered a regression problem,

and the data mining techniques selected to construct the predictive model were the following:

• Stepwise Regression;

• Random Forest;
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• Multiple Linear Regression;

• Sliding Window.

The stepwise regression algorithm was selected due to its ability to manage a large number

of potential predictor variables. It performs a model fine-tuning by choosing the best predictor

variables from the available options. The random forest was considered since it is also highly

efficient when dealing with a great number of features in the data, and when handling linear and

non-linear relationships. This algorithm aggregates the output of multiple regression trees and is

therefore expected to generate more accurate results than a simple regression tree. The multiple

linear regression technique was selected to assess whether the dependent variable, the hexane

concentration, can be estimated from the set of independent operational variables.

Finally, the sliding window technique was chosen to support the prediction of the target vari-

able based on historical data of the independent variables. In this case, a time-series dataset is

constructed, containing information of the operational parameters from the past X hours, where X

is the window size, that will be optimized to obtain the smallest possible error. For this purpose,

the datasets demonstrated in section 4.2.3 are not suitable, as they lack the historical data in be-

tween the available laboratory measurements. As such, the sliding window technique generates a

new dataset that includes the actual values of the laboratory measurements and contains X-1 ad-

ditional columns for each variable, comprising the data from the past hours. Figure 4.4 illustrates

an example where the size of the window, X, is equal to 4 hours. The random forest and multiple

linear regression are then applied to this dataset.

Figure 4.4: Sliding Window dataset example

4.3.2 Test Design

A machine learning model aims to predict a target variable based on previously unseen data.

Hence, the dataset must be split into training and test sets, before the model is built, ensuring that

the model can be evaluated in an unbiased manner, using data it has never seen before.

The training dataset is the sample of data used to train and fit the algorithm. The model sees

part of the data and learns from it, to perform its task at a high level of accuracy. The test set, on

the other hand, is held back from the training dataset and is used to assess the model’s accuracy

against its target.
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There are two main issues to be considered when splitting the data into the different subsets.

Firstly, the training data must be large enough to allow the machine learning model to make pre-

dictions; it usually takes up at least 70 to 85% of the whole data. Secondly, in order to obtain more

accurate results, the data must be partitioned in a balanced manner, meaning that the distribution

of the target variable is approximately the same in each subset. In this case, a new attribute was

generated for the hexane concentration, classifying each observation into one of 5 groups, based

on their value:

• Group 1: ≤ 500ppm

• Group 2: ]500ppm,700ppm]

• Group 3: ]700ppm,900ppm]

• Group 4: ]900ppm,1100ppm]

• Group 5: > 1100ppm

The datasets were thus split randomly, in a balanced manner, taking into account the group

each observation belongs to, with 75% of data being used for training and 25% for testing.

However, this approach is unsuitable for the sliding window since the technique involves a

time-series dataset that must be kept in order and cannot be split randomly. As such, a time-based

cross-validation splitting method was applied for the sliding window to provide a statistically

robust model evaluation. This method begins with a small data training subset, followed by the

calculation of the respective prediction and accuracy. The test subset is then included as part of

the next training subset, and the next data points are forecasted. The training subset increases

until all the data has been tested. The forecasting accuracy is then calculated as the average of the

validation metrics calculated in each test set.

4.3.3 Model Construction

Using the four data mining techniques identified above, the different algorithms were computed to

predict the target variable - the hexane concentration.

To begin with, the stepwise regression technique with a forward selection was employed, start-

ing with an empty model. The variables that provided the greatest statistically significant improve-

ment of the model fit were then added one by one, until no further improvement occurred. The

criteria used to determine which variable should be added was the lowest p-value. The operational

parameters that proved to be statistically significant for this model, for each of the three datasets,

are presented in Table B.1 in Appendix B, along with the corresponding p-values. The variable

IT_motor proved to be one of the most statistically significant in all three datasets, presenting a

p-value of 0,00.

The backward selection technique was then computed accordingly. The model began with

all the candidate variables, followed by a test on the elimination of each variable. Those whose

loss provided the most statistically significant improvement of the model fit were removed, and the
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process was repeated until no further variables could be removed, without a statistically significant

deterioration of the model fit. The independent variables that proved to be statistically significant

with the backward selection, for each dataset, are presented in Table B.2 in Appendix B, along with

the corresponding p-values. It should be noted that before running the model for both stepwise

regression techniques, the variables earlier removed in the correlation analysis were re-inserted,

since the algorithm itself already excludes the variables that add no value to the model.

Subsequently, the random forest algorithm was constructed. This technique builds multiple

decision trees and merges them together to obtain higher accuracy and robust predictions. There

are two main steps involved in building a decision tree. First, the variables are divided into a set of

distinct and non-overlapping regions. Then, a prediction is computed for each observation in each

region, which is usually the mean value in the training set in that particular region. The predictions

obtained from the random forest are the average of the predictions produced by the trees in the

forest.

Next, the multiple linear regression model was computed. The algorithm calculates the mini-

mum distance between each variable and an ideal hyper-plane, enabling the use of several explana-

tory variables to predict the outcome of a response variable, in this case, the hexane concentration.

For this particular technique, the highly correlated dependent variables, exposed in Table B.3, that

were not removed, were now excluded from the analysis to avoid over-fitting, since one of the

assumptions of this technique is that the independent variables are not highly correlated with each

other.

Finally, the sliding window technique was applied. A new correlation analysis was deployed

since a new dataset is required for this technique. Similarly to dataset B, the new dataset contains

198 laboratory observations, yet it also includes the operational parameters’ values for the missing

hexane concentration observations. This enables the construction of a sliding window. The result-

ing correlated variables are presented in Table B.4 in Appendix B, where a total of 8 variables were

removed. Furthermore, different sized windows were tested to calculate the resulting prediction

accuracy, enabling the determination of the best-sized window. The results showed that a window

of 6 hours leads to the smallest error. As such, the resulting model contained information of the

past 6 hours of each operational parameter and 198 laboratory observations to compute its predic-

tion. The random forest and multiple linear regression techniques were then applied to forecast

the target variable.

4.3.4 Model Assessment

It is important to assess the model according to the data mining success criteria and the test design

defined earlier. Since the current analysis is based on a regression problem, the four metrics used

to evaluate the machine learning models were the following:

• Root mean square error (RMSE): represents the sample standard deviation of the differ-

ences between predicted values and observed values (called residuals). It estimates how

wide the residuals are dispersed;
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• Mean absolute error (MAE): represents the average of the absolute difference between the

predicted values and observed value;

• Mean absolute percentage error (MAPE) : represents the average of the absolute per-

centage errors of the prediction. This metric presents a very intuitive interpretation of the

prediction accuracy;

• Coefficient of determination (R2): measures how much variation in an outcome can be

explained by the variation in the independent variables.

The results obtained using these metrics are represented in Table 4.6. It should be noted that

some techniques result in a negative R2, meaning that the computed model represents a weaker fit

than a hyper-plane depicting the mean value. The R2 is calculated as described in Equation 4.1,

where RSS represents the Residual Square of Errors, computing the difference between the pre-

dicted and actual values, and TSS represents the Total Sum of Squares, calculating the difference

between the actual values and the overall mean. As such, when the RSS is greater than the TSS,

the R2 is negative, indicating that the predicted values represent a poorer approximation than the

overall mean.

R2 = 1− RSS
T SS

(4.1)

As shown in Table 4.6, the technique presenting the best performance is the random forest,

with the highest R 2 and the lowest prediction error for datasets B and C. The results from dataset

B reveal that 84% of the data fits the random forest model, and the predictions are obtained with

an error of 14,82%.

Table 4.6: Validation metrics applied to each model for each dataset

Dataset Technique
Metric

R2 RMSE MAE MAPE

A

SW B 0,77 134,66 99,05 20,53%
SW F 0,59 178,48 124,47 25,99%

RF 0,04 238,24 191,08 28,38%
MLR -13,44 923,44 694,97 94,10%

B

SW B 0,56 180,22 136,98 21,26%
SW F 0,62 168,22 124,10 20,19%

RF 0,84 120,06 97,22 14,82%
MLR 0,62 186,02 142,87 22,12%

C

SW B 0,41 133,52 101,17 13,74%
SW F 0,42 132,11 99,62 13,51%

RF 0,77 81,98 49,72 6,56%
MLR 0,40 134,85 102,21 13,85%

Sliding
Window

RF -0,77 237,85 185,25 23,76%
MLR -7,39 531,68 383,92 52,83%
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On the other hand, the predictions calculated with dataset C present a much smaller error, of

6,56%. This dataset contains over 95% more hexane concentration observations than datasets A

and B, since the KNN algorithm was employed to estimate the missing values. However, these

missing values were predicted based on a very small number of neighbours; hence the results are

likely to be distorted. Furthermore, the analytical model computed its predictions based on these

previously estimated data points. As such, the real values of the hexane concentration are not used

to train and fit the model as it is for datasets A and B. For this reason, the errors for dataset C were

found misleading and were not considered for the deployment phase.

In addition, the results for the stepwise regression proved to be lower than the random forest in

dataset A. However, in dataset B, due to the rise in data observations, the random forest presents

a vibrant improvement, with a 14% decrease of the prediction error and an increase of 80% for

the R2, whereas the stepwise regression presents a much smaller improvement. This hypothesis is

reinforced with the multiple linear regression, where the error decreases from 94% to 22% from

dataset A to B, and the R2 improves from a negative value to 62%. The model’s high prediction

error and negative R2 in dataset A is fairly expected since the algorithm uses only 66 observations

to compute the minimum distance between each of the 37 independent variables and a hyper-

plane. The fact remains that, despite the misleading results from dataset C, the higher the number

of observations, the lower the model’s prediction errors.

Finally, with regards to the sliding window technique, the R2 is negative for both the ran-

dom forest and the multiple linear regression, meaning that this technique is not suitable for the

available data. This outcome is also fairly reasonable, since there are 204 variables (6 hours x 34

variables) being used to predict the target variable, from only 198 past observations. The errors are

smaller than those from dataset A, since there are more laboratory observations, but they are still

significantly higher than dataset B. The high dimensionality of the dataset might be causing the

overfitting of the model, which explains the higher prediction errors. However, there is a potential

for the sliding window to become effective in the future, provided a great deal more observations

are provided.

In short, there are two main conclusions that arise from this assessment. The first one is that the

random forest is the best fit for this analysis, with dataset B providing the most accurate results.

Secondly, the prediction errors show a clear sign of improvement as the number of laboratory

observations increases. This proves that machine learning models perform better when more data

is available to learn from.

4.3.5 Feature Importance

As mentioned in the literature review in section 2.2.2, there are many ways to determine the most

important features in a model. One of the techniques is the stepwise regression that typically

uses a p-value of 0,05 as a threshold to determine whether or not each variable has an impact on

the hexane concentration. However, this particular feature ranking fails to take into account the

possible interactions between the variables. Since there are 42 operational parameters in a ther-

modynamic system in equilibrium, it is important to consider their interactions. Therefore, as the
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random forest proved to be the best fit for the model, the feature importance was calculated based

on the method described in section 2.2.2 for this particular data mining technique, calculating the

decrease in node impurity weighted by the probability of reaching that node.

The feature importance was thus calculated, and the results for the top 15 variables are dis-

played in a bar chart in Figure 4.5, where the highest scores represent the features that contributed

the most towards the construction of the predictive model. It comes as no surprise that the vari-

able that impacts the hexane concentration the most is the IT_motor, as it represents the current

intensity of the main engine.
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Figure 4.5: Bar chart representing feature importance in the random forest

Furthermore, it should be noted that the five most important features that resulted from this

analysis, IT_motor, SC_valv_6, LIT_prod_4, SC_valv_8, and PT_gasOut_1, also presented a p-

value under 0,05 in the stepwise regression model calculated earlier. Even though this approach

fails to consider the interactions between the variables, the fact remains that these variables are

considered the most relevant in both methods. However, it should be noted that there are no

variables that present a very strong impact on the hexane concentration on their own. This outcome

is explained by the thermodynamic equilibrium present in the DT/DC, which implies that all the

variables interact and influence each other, as well as the solvent concentration present in the flour.

4.3.6 Operational Model

A second model was developed, aiming to define the optimal values of the input variables that

guarantee the required hexane concentration. Using the group division defined in section 4.3.2,

the maximum and minimum values of each group were established and are summarized in Table

4.7. The complete table is displayed in Table B.5 in Appendix B.

This model enables the operational supervisor to become aware of the optimal values of each

parameter that lead to a hexane concentration under 500 ppm, as well as the values that lead to

the other concentration ranges. The following conclusions were drawn for each variable from the

analysis of Table 4.7:
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Table 4.7: Minimum and maximum values of selected variables in each group

Variables ≤ 500≤ 500≤ 500 ]500,700]]500,700]]500,700] ]700,900]]700,900]]700,900] ]900,1100]]900,1100]]900,1100] > 1100> 1100> 1100
Min Max Min Max Min Max Min Max Min Max

SC_fan_9 36 38 32 38 34 38 35 38 25 28
SC_fan_10 36 38 32 38 30 38 35 38 25 28
SC_valv_5 15 25 15 50 15 50 18 32 0 50
SC_valv_6 16 18 16 20 16 40 16 23 0 28
LIT_prod_4 37 48 37 52 3 49 37 52 2 51
LIT_prod_5 36 48 35 63 2 54 36 53 3 67

TT_gasOut_1 73 75 73 78 73 99 73 76 73 100
IT_motor 352 374 330 393 268 392 311 374 186 357

TT_prod_9 49 63 45 69 45 61 45 65 44 75

• SC_fan_9 and SC_fan_10: a high hexane concentration is expected when the driving force

of these blowers is below 36 Hz;

• SC_valv_5: a high hexane concentration is expected when the speed of the sluice valves is

over 25 Hz;

• SC_valv_6: a high hexane concentration is expected when the speed of the sluice valves is

over 18 Hz;

• LIT_prod_4 and LIT_prod_5: a high hexane concentration is expected when the level of the

flour surpasses 48 ◦gr ;

• TT_gasOut_1: a high hexane concentration is expected if the temperature of the gas that is

leaving the equipment exceeds 75 ◦C;

• TT_motor: a high hexane concentration is expected when the main engine’s current intensity

goes below 352 A or surpasses 374 A;

• TT_prod_9: a high hexane concentration is expected if the temperature of the flour goes

below 49 ◦C.

These findings enable the definition of the optimum setpoints for each parameter, as well as

the determination of alerts and actions, that aligned with the operation and the defined thresholds,

will support the production team in the process control and supervision.

4.4 Evaluation

The previous assessment steps analyzed the resulting model’s accuracy and precision. This phase

now aims to evaluate the degree to which the designed model meets the defined business goals.

In fact, the total output of a data mining project is composed not only by the generated models,

but also by the findings it triggers, namely all the important discoveries that meet the business

objectives and lead to new questions, lines of approach, and potential side effects.
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The first analytical model developed was based on the random forest algorithm, providing a

real-time estimation of the final product’s quality, with a prediction error of approximately 14%.

In line with the projected business goals, the presented solution enables the operation supervisor

to monitor the whole production process, with the support of real-time information concerning the

extracted flours’ hexane concentration, enabling the quality control of the end product. In fact, the

developed model provides the client with entirely new information, since their current knowledge

on the hexane concentration derives from weekly laboratory analyses, with results presented with

an 8-hour delay.

Furthermore, this study proved that the underlining performance of machine learning models

improves substantially with the amount of available data. As such, provided the client is able to

collect more information, there is a potential to significantly diminish the current error of 14%,

where the ultimate goal is to achieve a prediction error of approximately 0% for more accurate re-

sults. It should be noted that the resulting evidence is crucial to advert the client to the importance

of performing consistent laboratory analyses, as one of the challenges inherent to digital transfor-

mations is the unequivocal resistance to change. Such resilience can be expected as manufacturers

are conscientious of the risks inherent to digital transformations and are therefore reluctant to

change the ongoing traditional methods that they trust and are familiar with. It is thus important

to gather enough information that corroborates the fact that more data is required to increase the

model’s accuracy to enhance the real-time process supervision and product’s quality control. The

results from Table 4.6 prove this as the datasets with more observations are the ones with lower

prediction errors.

Moreover, the second model enabled the definition of the optimum values for each operational

parameter. This enables the supervisor to monitor each variable and understand whether their

current values surpass the established limits. Furthermore, this operational model supports the

definition of the optimum values for each setpoint that the operators should employ, rather than

relying on the theoretical values based on the process’s state of the art. As such, an opportunity

arises to perform a fine-tuning of the process, since the supervisor is able to send adjustment orders

to the operators based on the thresholds defined for the desired hexane concentration value.

In conclusion, the first two business goals outlined in section 3.5 were successfully accom-

plished. Together, the two analytical models provide an opportunity to calibrate the process in

real-time. This approach naturally creates added value as the business currently struggles to ob-

tain the legislated quality indicators of the produced flour. With the support of the developed

models, along with its implementation in a technological solution, the production team will be

able to monitor and control each parameter in due course, increasing the quality and safety indi-

cators of the final product to the legislated values. The third business goal, regarding the referred

implementation, will be accomplished in Chapter 5.
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Technology Meets Deployment

The deployment phase is the final stage in the CRISP-DM methodology. This chapter aims to

expose the proposed deployment strategy, establishing how the developed models shall be imple-

mented within the organization’s systems and the benefits that arise from it.

5.1 Functional Architecture

A functional architecture discloses a high-level, simplified view of how the different systems and

functions in a business operate and interact. The architecture for this project was designed based

on the acquired knowledge of the client’s landscape and is displayed in Figure 5.1. It includes

two technological solutions, SAP Digital Manufacturing Cloud (DMC) and SAP Analytics Cloud

(SAC). Powered by AI, these solutions augment human capabilities, allowing the development

and implementation of analytical models to be paired with the automation of work orders, alert

notifications, and readjustment orders.

Data Lake

OTHER DATA  SOURCESS/4HANA

Order 
Execution 

Automation

Transformation 
of raw data into 

insights

Reporting Predictive 
Analytics

Asset Condition 
Monitoring

Automatic
Defect
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MES

SAP & NON SAP SYSTEMS

SAP DIGITAL 
MANUFACTURING CLOUD 

(DMC)

SAP ANALYTICS CLOUD 
(SAC)

Figure 5.1: Functional Architecture
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SAP systems such as S/4 HANA (an Enterprise Resource Planner (ERP)), or non-SAP systems

such as Manufacturing Execution Systems (MES), and other data sources, can be used to feed a

data lake, which is a repository of data stored in its natural/raw format. The DMC solution can

retrieve the necessary data from the data lake and transform the information into valuable insights,

leveraging on AI and ML capabilities, while enabling the automation of order executions and

defect detection. SAC interacts with the DMC, reporting the respective data in visual dashboards,

allowing the automation of shop floor operations. The solution also retrieves information from

the data lake and other sources, leveraging its predictive analysis capabilities to analyze data and

perform asset condition monitoring.

Due to the time constraints associated with the nature of this curricular dissertation, the imple-

mentation using SAC was considered the focus of this project.

SAC combines predictive analytics, business intelligence, and planning capabilities into a

cloud-based data visualization tool. Its primary function is the creation of data reports, whose

information originates from various sources, including real-time data captured from business ac-

tivities and direct database/ERP readings, as well as data imports, namely regular excel spread-

sheets.

For this dissertation project, the machine learning models were developed in an external envi-

ronment, the results were exported onto an excel spreadsheet and then uploaded in SAC. However,

in future deployment, the models will be embedded in the solution, automatically retrieving the

required information from the database.

Furthermore, SAC exposes and highlights essential information through charts, tables, and

other graphical components. As a result, the solution enhances asset condition monitoring, en-

abling the detection of anomalies and fluctuations that affect asset health and performance. It also

ensures proactive, timely maintenance that prevents breaks and outages, while providing real-time

visibility into asset health via automatic alerts and notifications.

5.2 Reporting

Taking into account the current as-is situation described in section 3.4.1, and in order to provide

the different stakeholders with the predictive capabilities brought forth by machine learning, a

set of dashboards were designed to address the roles and responsibilities of each of the following

intervening personas in the process:

• Production Director- responsible for assessing the monthly production needs, as well as

releasing requests for the laboratory analyses;

• Production Supervisor - answers to the production director and ensures the production or-

ders are successfully carried out;

• Operator - answers to the director and supervisor, operating the machinery, defining/ moni-

toring the operating parameters, and collecting/ delivering flour samples to the laboratory.
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A dashboard is a tool used to support information management and business intelligence, aiming

to provide knowledge and understanding to all users, concerning the most critical analytics in the

business, department, or specific process. The developed dashboards and the goals each one seeks

to achieve are identified as follows:

1. Primary Dashboard: provides high-level, simplified information that enlightens the pro-

duction director on the key points currently affecting the process;

2. Laboratory Analyses Dashboard: allows the production director and supervisor to access

information regarding the past analyses on the flour’s hexane concentration;

3. Operational Parameters’ Dashboard: displays information regarding the current values of

each operational parameter and their optimum values, enabling the operator and supervisor

to monitor and control each parameter, while performing the necessary adjustments;

4. Parameters Evolution Dashboard: enables the operator and supervisor to visualize each

parameter’s evolution in time and its behaviour compared to its optimum boundaries.

Each dashboard was carefully designed, bearing in mind the respective users and the referred

goals. As such, the most important key performance indicators (KPIs) were selected, along with

the graphs that provide the best visual understanding of the displayed information. The devised

dashboards allow each user to perform a quick scan and retrieve the most relevant information

concerning the oilseed process, eliminating the need to sort through spreadsheets, emails, and the

SCADA system.

5.2.1 Primary Dashboard

The primary dashboard, represented in Figure 5.2, exposes three KPIs, affected by date and time

filters, that are present in all four dashboards. The first KPI, " Samples within the legislated limits

Figure 5.2: Primary Dashboard
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(model)," calculates the number of samples that are below 500 ppm each day and displays the

information as a percentage. This value is based on the predictions obtained from the model for

each day individually. The following KPI, "Current predicted hexane concentration", shows the

model’s forecasted value of hexane concentration for the selected date and time. Finally, the last

KPI shows the date and time of the last analyses carried out in the laboratory. The filter below

allows the user to select the number of past months this information should include. In other

words, if the user selects two months, all the dates from the analyses in the last two months are

displayed.

Below the KPIs, a bar chart displays information on the predicted hexane concentration in the

past hours. The green bars represent acceptable values, and the red depict concentrations over 500

ppm. The user can hover the mouse over the bars to visualize the actual values. He can also chose

the desired number of past hours to be seen, using the filter displayed on the left. On the right side,

the table shows the variables currently outside the calculated optimum boundaries, their current

value, and the percentage by which they surpass the limits.

This dashboard informs the production director on whether the current production batch is

foreseen to be within the legislated limits, which parameters currently require the most attention,

and the resulting proportion of acceptable batches each day. As a result, the dashboard supports

the assessment of production needs, illustrating how the past plan impacts the flour’s quality.

5.2.2 Laboratory Analyses Dashboard

The laboratory analyses dashboard is used by both the production director and supervisor and is

represented in Figure 5.3. It contains information regarding the past analyses on the flour’s hexane

concentration.

LABORATORY ANALYSES DASHBOARD

Figure 5.3: Laboratory Analysis Dashboard

This dashboard includes the same three KPIs as the previous one, as well as three new graphs.

The first one exposes a time-series representation of all the analyses carried out in the laboratory.
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On the bottom left corner, the pie chart shows how these samples are distributed in the different

concentration groups mentioned in section 4.3.2. On the right side, the bar chart shows the number

of laboratory samples existing in each group. Finally, the date filter screens the information of

these graphs to the desired number of past months.

The production director and supervisor benefit from the displayed information as it provides

knowledge on how the actual hexane concentration is evolving through time. The time-series

graph illustrates whether the hexane concentration increases or decreases at different times, re-

vealing long periods where no analyses were carried out. In addition, the pie and bar chart display

whether the number/percentage of samples in high concentration groups has been decreasing or

increasing in the past months. Moreover, the director is able to plan the need for the subsequent

laboratory analyses based on the date of the previous ones.

5.2.3 Operational Parameters Dashboard

The third dashboard, represented in Figure 5.4, displays real-time information on the 42 opera-

tional parameters. In addition to the first pair of KPIs present in the previous dashboards, a new

KPI is displayed on the top-right corner, indicating the number of parameters that are currently

within the calculated limits for the selected date and time.

Figure 5.4: Operational Parameters Dashboard

The table below displays the maximum and minimum boundaries calculated for each variable,

ordered by floor. This organization enables the operator or supervisor to monitor each floor se-

quentially, where the filter on the left side enables them to select the preferred floor. On the right

side, the doughnut chart shows the top 5 variables most frequently outside the limits, enlightening

the users to which variables require the most attention.

The current values of each parameter are displayed below, again organized by floor. When a

parameter is within the calculated limits, it appears in green; otherwise, it appears in red.
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In short, this dashboard enables the operator and supervisor to monitor and control the opera-

tional parameters. The new KPI immediately informs them whether there are any variables outside

the optimum boundaries. They can then quickly pinpoint them as the red values, compare them to

the optimum thresholds in the table, and adjust them in the equipment accordingly.

5.2.4 Parameters’ Evolution Dashboard

Finally, the fourth dashboard is represented in Figure 5.5, illustrating temporal diagrams of each

variable’s evolution. It also includes the same three KPIs as the previous dashboard. Despite

Figure 5.5: Parameters’ Evolution Dashboard

what is seen in Figure 5.5, as the user scrolls down, all the parameters are duly represented. The

variables are grouped by the type of object they monitor and a filter on the right side allows the

user to select the desired floor. These graphs not only reveal each parameter’s variation in time, but

also present their optimal maximum and minimum boundaries, as well as the setpoint’s variation.

This enables the operator and supervisor to gain quick, visual insights on the patterns of behaviour

of each variable and compare them to their ideal thresholds and target values..

These four dashboards are the resulting reports that arise from the developed machine learning

models. They provide the different process stakeholders easy access to critical information that

allows them to make faster and better decisions on how to manage shop floor operations, increas-

ing efficiency and productivity. Furthermore, the SAC implementation brings the business’ data

onto the cloud, allowing users to keep track of the vital data anytime, anywhere. As such, it is

clear that the use of artificial intelligence enhances the ability to monitor multiple KPIs in central

dashboards, enabling the process fine-tuning in real-time. Ultimately, this wide-ranging branch

of computer science leads to an inevitable expansion of human capacity, providing mankind a

chance to extend the reach of human cognition and capability. The two worlds are thus compelled

to merge and work together, as a means to improve one another mutually.
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Conclusion and Future Work

There are two main topics at the core of this curricular dissertation. To begin with, the agrofood

industry is exposed to rigorous external enforcement regarding quality control procedures. On top

of that, the high degree of dependence on human activity to control the production process incites a

high variability in solvent extraction operations. Faced with an unstable desolventization process,

the company under study recognized that the exceeded hexane concentration in the extracted flours

causes a significant impact on the final product’s quality and safety indicators.

The developed project proposes an intervention and optimization of the desolventization pro-

cess, aiming to reduce the hexane concentration of the extracted flours and enable the process

control and calibration in real-time. The primary objective was to comply with the legislated

quality and safety standards.

During the project’s development, thorough analyses and clarifications regarding the process

and the results occurred in work sessions, in the presence of the company’s production team. The

purpose of these events was to incorporate the know-how and expertise of the production team

specialized in the solvent extraction process, in order to ensure the definition of suitable goals and

proposed solutions regarding the organization’s strategy. The participation of the production team

played a major role in understanding the business and clarifying important issues and assumptions

that arose during the course of the project.

6.1 Main Conclusions

The first phase of the project involved understanding the oilseed business, as well as the desol-

ventization process, the equipment used, and the relevant variables. As such, the process was

acknowledged as a thermodynamic system, where the temperature, flour levels, steam, and pres-

sure are all in equilibrium, meaning that all the variables interact with each other and together play

an important role in the final hexane concentration.

Next, the operational and laboratory data was thoroughly analyzed, adverting to the existence

of data quality issues. To begin with, the performed statistical analysis uncovered the need to treat

and prepare the data for the preparation phase, due to the high number of outliers that resulted
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from production breaks at the factory. Regarding the laboratory measurements, the method used

to collect this data proved to be inefficient, as these observations result from manual sample collec-

tions and subsequent laboratory analyses, whose results arrive with a significant delay, obstructing

the real-time process tuning. Furthermore, these analyses take place between wide time periods,

whereas the operational data is automatically recorded every 5 seconds. As a result, the number

of laboratory observations is quite small when compared to the operational data. Furthermore, the

statistical analysis proved the lack of significant variation in the DT/DC operational parameters in

the course of one hour, which in agreement with the client, lead to the decision of aggregating the

data in an hourly interval, based on the median values of each period.

After the data aggregation and outlier treatment, three datasets were constructed, where one

contained only original laboratory values, and the other two estimated the missing data points.

One of the estimates took into account the assumption, confirmed by the client, that there are no

signs of variation in the hexane concentration in the course of one hour. Therefore, the hexane

concentration one hour before and after each observation was assumed to remain the same, result-

ing in a dataset with thrice as many observations as the original one. On the other hand, the other

dataset was computed using the KNN algorithm, relying on the values of the closest neighbours

to predict the missing values. However, given the small nature of the original data, the end results

proved to be misleading, since the training data for the future models used previously predicted

data points, rather than original observations. Nevertheless, the KNN dataset still succeeded in

demonstrating that the increasing training data lead to decreasing prediction errors.

Once the models were constructed and evaluated, the random forest proved to be the best tech-

nique for this project, with the highest prediction accuracy. Meanwhile, the results from all the

techniques for the different datasets proved that the model errors decreased with increasing data,

meaning that more data is required for the model to yield perfect results, i.e., an error approxi-

mately equal to 0%.

After discussing the final model’s results with the client, it was found that, although not per-

fect, the model’s performance was excellent given the current variability of the desolventization

process. The analytical models were able not only to provide a real-time prediction of the hex-

ane concentration with a low prediction error, but also determine the optimum thresholds for each

operational parameter, providing entirely new and valuable information for the client.

Furthermore, regarding feature importance, it became clear that, even though it is possible to

determine the features that contributed the most towards the construction of the model, there are

no variables that strongly impact the hexane concentration on their own. This results from the fact

that the DT/DC is a thermodynamic system in equilibrium, where all the variables interact and

influence one another.

The final stage of the project addressed the implementation of the analytical models in inter-

active dashboards for the different personas engaging in the process. A functional architecture

was designed to embed the developed models in a technological solution and generate hands-on

interfaces that enable the production director, supervisor, and operator, to interact with the re-

sults obtained from the models. The displayed KPIs and graphs enable the user to evaluate the
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process’s condition and depict whether it is operating as expected, or if certain adjustments are

required. Information regarding the current vs. optimal state of operational parameters, past labo-

ratory analyses results, and real-time hexane concentration predictions provide a ground-breaking

opportunity for the client to monitor and control the parameters, while performing the process

fine-tuning in real time, which they were unable to do before.

In the end, the project succeeded in meeting the quality and safety standards, while radically

reshaping the way the production team analyzes, evaluates, and interacts with the process. The

developed analytical models enabled the optimization of the desolventizing process and shop floor

operations, by increasing the efficiency and effectiveness of parameter monitoring and control,

derivative of the real-time hexane concentration predictions. The integration of the proposed so-

lution yields benefits that would otherwise not be possible, such as the anticipation of production

issues and real-time process calibration.

The core of this solution is built on the combination of multiple emerging Industry 4.0 tech-

nologies, whose results revealed an undeniable impact on the organization, revolutionizing the

entire process culture and work routine. A significant change is expected in the way workers,

processes, and machines interact to generate efficiency and attract new sources of innovation, to

support informed decision making, and increase productivity and agility in problem-solving. Fur-

thermore, it should be noted the solution is scalable to other processes within the business and

other company plants, empowering the business’ sustainable growth and ability to adapt to incom-

ing adversities.

6.2 Future Work

While analyzing this project’s main findings, several opportunities arise for further process op-

timization and possible future work. One of the shortcomings identified in the course of this

dissertation was the reduced amount of available data to feed the machine learning model. As

such, it is important that the client is able to perform laboratory analyses on the hexane concentra-

tion more frequently in the future. This way, more data can be used to train the model, leading to

lower and lower prediction errors, where the aim is to achieve an error of approximately 0% for

more accurate results. This continuous record will allow the development of increasingly reliable

forecast models that estimate the trend of each variable in real-time, according to the historical

records.

Furthermore, this project enabled the definition of optimal values for the model’s input vari-

ables, according to the hexane concentration set in the legislated quality and safety standards. As

such, the optimization of these values could potentially increase energy efficiency. Given that the

desolventization process is responsible for over half of the whole plant’s energy expenditure, there

is a great opportunity to significantly reduce overall costs. Therefore, a thorough study should be

carried out in the future in order to perceive which variables directly impact energy expenditure

and how these can be optimized.



48 Conclusion and Future Work

Meanwhile, the developed models, in conjunction with the designed dashboards, will empower

the definition of actions that enable the process optimization and refinement of shop floor opera-

tions. These will be based on the optimum thresholds defined for each parameter according to the

different ranges of hexane concentration. Once the predictive models are implemented and opti-

mized, a new analytical model can be developed to learn the recommendations and automatically

inform the operators on the actions to be taken.

In order to further optimize the automation of the procedural tasks, the functional architecture

previously displayed in Figure 5.1 should be implemented. This project focused solely on the

implementation of the analytical models in the SAC solution due to the timeframe inherent to the

nature of the curricular dissertation. However, the DMC solution, paired with the data lake and

SAC, presents a great potential to optimize and automate the shop floor operations further.

The DMC is a tool that nurtures global visibility regarding the entire company’s activities;

it is designed to establish the link between production and business operations in supply chain

management, increasing visibility between top floor management activities and shop floor equip-

ment. The solution enables the collection and analysis of data from the production process directly

from the factory floor. The data lake is a centralized repository that extracts all the data from the

SCADA system and consolidates the information all in one place, generating a single source of

truth (SSOT). This concept refers to the management of data in one singular place, ensuring ev-

eryone in the organization bases their business decisions on the same data. In parallel, the data

lake enables the model procedures to be carried out and then feeds the results to the DMC and

SAC solutions.

The DMC operates in two distinct areas, Manufacturing Execution and Manufacturing In-

sights, which support near real-time decision making. The DMC Execution has the ability to

organize and control the factory floor, implementing real-time analytical solutions that provide

better performance of production operations across distinct levels of the company hierarchy. It

enables the use of intuitive interfaces for operators, such as 3D instruction manuals, maintenance

documents, and alerts that suggest actions to be taken in the process. It also allows the automation

of data collection and definition of process parameters based on analytical models. Moreover, the

DMC Execution is flexible to short-term changes, as it schedules and issues production orders,

considering labor restrictions, resources, and maintenance plans. It also provides a shop floor de-

signer to model and implement production processes and automate sequences on the shop floor,

based on top management business rules and defined parameters.

The DMC Insights, on the other hand, provides greater visibility into the performance of the

production process in real-time and digital format, supporting informed decision-making based

on data from the various operating systems. It provides a perception of the performance and pro-

ductivity across the various company levels (different regions, factories, resources) and empowers

informed decisions combining data from shop floor systems with execution systems, as well as

information from other sources (e.g., ERP). Its custom design of interactive dashboards allows

operators to analyze the process in real-time through relevant indicators such as equipment status,

production evolution, and alarms. Furthermore, the DMC Insights enables the analysis of the root
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causes and failure modes of the process, allowing the user to trace upcoming problems across

the various levels of the organization, and providing the opportunity to predict quality defects in

almost real-time with the support of analytical models.

A projected user journey that entails the use of SAC and DMC is presented in Figure 6.1,

where the distinct icons indicate which solutions support each step. The journey begins with the

definition of the operational parameters. With the support of analytical models, the user is able

to analyze the optimum parameters and automate the operationalization. For this purpose, the

operator has access to textual and 3D work instructions that provide visual information at specific

points in the manufacturing process, providing assistance with the necessary tools.

Process
Monitoring

Alert Automation

Operational 
Parameter 
Definition

Action 
Execution

Work Order
Validation

DMC SAC

Figure 6.1: User Journey

Next, the process monitoring is performed with the support of alerts disputed by the solution

via business rules. The person in charge has the opportunity to analyze the current issues inherent

to the process and create work or process orders to address them, where instruction manuals and

maintenance documents are available to guide the handling of the equipment.

Subsequently, a set of alerts can be automated based on thresholds and business rules, notifying

the user of the recommended set of actions to be performed. The notified users can be selected by

the operator or supervisor based on their responsibility to take action.

The supervisor then analyzes and releases these actions to the operators, if deemed necessary.

Once the actions have been released by the person in charge, the operator receives the work orders

and executes them, confirming the order completion in the end.

Finally, the work order validation is performed with the support of the reporting layer that em-

beds the analytical models. The information displayed on these dashboards ranges from high-level,

top management reports, down to the operating/equipment status. Furthermore, the production di-

rector has access to the results in the different company plants and can therefore gain real-time

visibility and monitor the performance of the production process from a regional level through
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geographic mapping. This enables him to compare the performance between plants within and

across different regions.

In the end, the projected goals were successfully achieved, as the approach proved to ade-

quately optimize the solvent extraction process and improve the final product’s quality indexes.

Given the underlying potential scalability of the tool, the future replication of the solution is ex-

pected, as the remaining industrial processes can also be digitally transformed.

Nevertheless, there are numerous challenges imposed by digital transformations in a com-

pany. An open-minded and unique awareness is required to enable the shift from the conventional,

old-school procedures towards connected and intelligent machines, processes, and overall environ-

ment. Some resistance to change can be expected as this new culture revolutionizes the traditional

working routines that date back many years. However, the deployment of these intelligent systems

testifies to the potential of artificial intelligence in augmenting and extending human cognition

and abilities, as it provides information to the operators that could not have been achieved other-

wise. As such, the sole focus on the optimization of specific shop floor operations was crucial to

advert the client towards the potential of Industry 4.0 technologies and the possibility of imple-

menting gradual changes, before escalating and expanding to the remaining industrial processes

and manufacturing plants.
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Figure A.1: Agrofood Industry Exports Evolution 2010-2020. Source: FIPA (2020)
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Figure A.2: Oilseed Processing, adapted from: Kemper (2020)
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Figure A.3: DT/DC Schematic Representation. Source: Kemper (2020)
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Figure A.4: Client’s DT/DC Supervisory System, SCADA
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Model Development Documentation

Figure B.1: Correlation Matrix Before Outlier Treatment
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Figure B.2: Correlation Matrix of Dataset A
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Figure B.3: Correlation Matrix of Dataset B
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Figure B.4: Correlation Matrix of Dataset C
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Table B.1: Variables selected by the stepwise regression forward Algorithm

Dataset Included Variable P-Value

Dataset A

IT_motor 0,000
PT_floor_8 0,000
LIT_prod_4 0,001
SC_valv_6 0,002
TT_floor_10 0,002
TT_gasOut_1 0,008
SC_valv_12 0,023

Dataset B

IT_motor 0,000
SC_valv_7 0,000
PT_floor_12 0,002
PT_floor_7 0,002
TT_prod_5 0,003
TT_pump 0,003
PT_gasOut_1 0,004
LIT_prod_4 0,006
TT_prod_7 0,008
PT_floor_5 0,013
LIT_prod_6 0,014
SC_fan_9 0,017
TT_prod_6 0,019
PT_floor_11 0,024
TT_prod_1 0,043
SC_valv_8 0,046

Dataset C

IT_motor 0,000
SC_valv_12 0,000
PT_floor_6 0,000
TT_prodOut_12 0,000
PT_floor_8 0,000
TT_pump 0,000
TT_floor_11 0,000
TT_prod_11 0,000
TT_prod_10 0,000
TT_prod_6 0,000
PT_floor_7 0,000
TT_floor_9 0,000
PT_floor_10 0,000
SC_valv_6 0,000
TT_gasOut_1 0,000
PT_gasOut_1 0,000
PT_floor_4 0,000
TT_floor_10 0,001
PT_floor_5 0,007
SC_valv_7 0,012
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Table B.2: Variables selected by the stepwise regression backward Algorithm

Dataset Included Variable P-Value

Dataset A

LIT_prod_4 0,000
SC_valv_12 0,000
IT_motor 0,002
SC_valv_6 0,002
TT_floor_10 0,002
SC_fan_10 0,004
TT_prod_8 0,004
SC_fan_11 0,006
TT_gasOut_1 0,006
TT_prod_5 0,049

Dataset B

SC_fan_10 0,000
SC_fan_11 0,000
TT_prod_8 0,000
TT_prod_10 0,000
SC_valv_12 0,000
LIT_prod_4 0,000
TT_gasOut_1 0,000
IT_motor 0,000
PT_floor_8 0,001
TT_floor_10 0,002
TT_floor_9 0,008
TT_prod_5 0,011
TT_prod_7 0,010
PT_floor_10 0,028
SC_valv_7 0,038

Dataset C

IT_motor 0,000
SC_valv_6 0,000
SC_valv_8 0,042
SC_valv_12 0,000
LIT_prod_4 0,011
LIT_prod_5 0,065
TT_prodOut_12 0,000
TT_prod_11 0,000
TT_prod_10 0,000
TT_prod_5 0,000
TT_prod_6 0,000
TT_prod_7 0,000
TT_floor_9 0,000
TT_gasOut_1 0,000
PT_floor_6 0,000
TT_floor_10 0,000
TT_floor_11 0,000
PT_floor_7 0,000
PT_floor_8 0,000
PT_floor_10 0,000
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Table B.3: Summary of correlated variables in each dataset

Dataset Correlated Variables Correlation Removed Variable

Dataset A

SC_fan_11, PT_floor_11 0,99 PT_floor_11
PT_gasOut_1, PT_floor_4 0,95 PT_floor_4
TT_prodOut_12, TT_prod_12 0,93 TT_prod_12
SC_fan_11, SC_fan_10 0,92 None
PT_floor_5, PT_floor_7 0,91 PT_floor_7
SC_fan_10, PT_floor_11 0,90 PT_floor_11

Dataset B

SC_fan_11, PT_floor_11 0,99 PT_floor_11
PT_gasOut_1, PT_floor_4 0,96 PT_floor_4
TT_prodOut_12 , TT_prod_12 0,92 TT_prod_12
SC_fan_11, SC_fan_10 0,92 None
SC_fan_10, PT_floor_11 0,91 PT_floor_11
TT_prodOut_12, TT_prod_11 0,89 TT_prod_11
LIT_prod_5, LIT_prod_4 0,85 None

Dataset C

SC_fan_11, PT_floor_11 0,98 PT_floor_11
PT_gasOut_1, PT_floor_4 0,98 PT_floor_4
SC_fan_11, SC_fan_10 0,96 None
TT_prod_8, TT_prod_5 0,95 TT_prod_8
SC_fan_10, PT_floor_11 0,94 PT_floor_11
SC_fan_10, PT_floor_10 0,92 PT_floor_10
TT_prod_7, TT_prod_5 0,90 TT_prod_7
PT_floor_11, PT_floor_10 0,88 PT_floor_10
SC_fan_11, PT_floor_10 0,88 PT_floor_10
TT_prod_6, TT_prod_5 0,89 TT_prod_5
TT_prod_8, TT_prod_7 0,89 Both have been removed
TT_gasOut_1, TT_prod_1 0,87 TT_prod_1
PT_floor_7, PT_floor_5 0,87 PT_floor_5

Table B.4: Summary of correlated variables in the sliding window Dataset

Dataset Correlated Variables Correlation Removed Variable

Sliding
Window

SC_valv_4, SC_valv_5 0,94 None
SC_valv_4, SC_valv_6 0,90 None
SC_valv_12, SC_valv_5 0,91 None
SC_valv_12, SC_valv_7 0,90 None
PT_floor_10, SC_fan_10 0,95 PT_floor_10
PT_floor_11, SC_fan_11 0,92 PT_floor_11
PT_floor_4, PT_gasOut_1 1 PT_floor_4
PT_floor_5, PT_floor_7 0,96 PT_floor_5
PT_floor_6, PT_floor_7 0,99 PT_floor_6
TT_prod_11, TT_prodOut_12 0,92 TT_prod_11
TT_prod_12, TT_prodOut_12 0,99 TT_prod_12
TT_floor_11, TT_prodOut_12 0,93 TT_floor_11
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Table B.5: Minimum and maximum values for each variable in each group

Variables < 500 [500, 700[ [700, 900[ [900, 1100[ > 1100
Min Max Min Max Min Max Min Max Min Max

SC_fan_9 36 38 32 38 34 38 35 38 25 28
SC_fan_10 36 38 32 38 30 38 35 38 25 28
SC_fan_11 34 38 32 38 30 38 35 38 25 28
SC_valv_4 16 25 16 28 15 40 20 28 0 50
SC_valv_5 15 25 15 50 15 50 18 32 0 50
SC_valv_6 16 18 16 20 16 40 16 23 0 28
SC_valv_7 0 4 0 4 0 4 0 5 -8 6
SC_valv_8 11 15 11 15 11 15 11 15 0 19

SC_valv_12 7 15 6 18 8 17 14 18 -2 21
LIT_prod_4 37 48 37 52 3 49 37 52 2 51
LIT_prod_5 36 48 35 63 2 54 36 53 3 67
LIT_prod_6 36 53 34 54 22 59 38 54 1 44
LIT_prod_7 26 64 25 58 27 59 35 59 -1 55
LIT_prod_8 29 57 24 57 25 57 31 56 0 53
LIT_prod_12 19 41 15 38 20 40 21 38 9 40
TT_gasOut_1 73 75 73 78 73 99 73 76 73 100
PT_gasOut_1 -92 -18 -72 -17 -70 -12 -59 -31 -68 -22

IT_motor 352 374 330 393 268 392 311 374 186 357
TT_prod_1 74 80 73 80 72 99 73 81 75 100
TT_prod_4 63 101 62 104 62 103 63 104 62 104
TT_prod_5 105 107 105 106 105 106 105 106 105 111
TT_prod_6 104 107 102 107 102 107 103 107 102 116
TT_prod_7 106 107 106 107 105 107 105 108 105 113
TT_prod_8 106 107 106 107 106 107 105 108 102 109
TT_prod_9 49 63 45 69 45 61 45 65 44 75

TT_prod_10 39 55 45 57 47 55 45 59 41 57
TT_prod_11 38 55 35 59 38 55 35 57 33 55
TT_prod_12 27 44 28 52 29 47 27 40 24 44
TT_floor_9 99 129 93 129 103 129 94 123 60 127

TT_floor_10 25 127 31 126 81 127 29 127 25 126
TT_floor_11 20 109 21 110 21 109 21 109 21 105
PT_floor_4 -87 -11 -74 -10 -72 -13 -62 -26 -70 -15
PT_floor_5 19 110 -6 133 -34 122 11 138 -18 163
PT_floor_6 -167 600 -526 1292 -526 765 82 385 -20 398
PT_floor_7 380 662 302 832 130 752 295 295 36 798
PT_floor_8 53 53 53 53 53 53 53 53 -4 53
PT_floor_9 -14 13 -19 11 -12 11 -6 22 -31 10

PT_floor_10 307 368 3 370 243 374 309 371 162 372
PT_floor_11 380 353 259 357 230 356 302 357 146 360
PT_floor_12 339 444 213 450 256 446 347 432 222 432

TT_prodOut_12 26 40 26 45 28 41 28 40 23 41
TT_pump 55 65 56 65 57 62 56 61 41 58
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