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Abstract

This dissertation was developed as part of an effort by AMOB in partnership with INEGI to bring
its machines into the new era of manufacturing, commonly referred to as Industry 4.0. This refers
to machines with the capacity for data collection, analysis and storage, which enable greater pro-
duction capabilities and detailed insights into the production process. As technological advance-
ments make the development of such machines possible, there is a big push towards the adoption
of these solutions in manufacturing, as they result in more efficient, productive, lucrative and
sustainable manufacturing.

The focus of this thesis is on establishing the infrastructure needed to make predictive maintenance
possible in AMOB’s raw draw bending machines through the use of artificial intelligence. To do
this, research into the state of the art of raw draw bending machines, maintenance and artificial
intelligence was conducted. The main concerns regarding failure of AMOB’s machines were
established and root cause analyses of these failures was conducted for a specific problem that
was affecting one of the machines at the time. A framework and architecture for the systems
needed for the implementation of an artificial intelligence based predictive maintenance system
was devised based on the research. Data from the machines was collected and analysed in order
to validate some choices regarding this system and test some hypotheses regarding how the wear
of the machine can manifest itself in this data.
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Resumo

Esta dissertação foi desenvolvida no ambito da intenção da AMOB, em parceria com o INEGI,
de trazer as suas máquinas para a nova era de processos de fabrico, apelidada de Industria 4.0.
Este termo refere-se a máquinas com capacidade para recolha, análise e armazenamento de dados,
o que permite maiores capacidades produtivas e um visão detalhada dos processos produtivos.
À medida que o progresso tecnológico tornam o desenvolvimento de tais maquinas possivel, há
uma grande pressão para a adoção destas tecnologias, pois delas resultam uma maior eficienencia,
produtividade, lucro e sustentabilidade ambientais.

O foco desta tese consiste em establecer a infraestrutura necessária para tornar possivel a
manutenção preditiva das máquinas curvadoras de tubo da AMOB, através do uso de inteligen-
cia artificial. Para tal, pesquisas sobre o estado da arte das máquinas curvadoras, manutenção e
inteligiencia artificial foram feitas. As principais preocupações em termos de falha das máquinas
da AMOB foram establecidas e uma análise da causa raiz foi feita para o caso especifico de uma
máquina que se encontrava com problemas à época. Uma estrutura para os sistemas necessários
para a implementação de uma estratégia de manutenção preditiva baseada em inteligencia artifi-
cial foi creada, com base na pesquisa feita. Dados das máquinas foram recolhidos e analisados,
de forma a validar algumas das escolhas feitas na estruturação do sistema e também para testar
algumas hipóteses formuladas a respeito de como o desgaste da máquina poderia manifestar-se
nestes dados.
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Chapter 1

Introduction

With the advent of new technologies and the rise of the so called “Industry 4.0”, technology has

become more and more ubiquitous in manufacturing processes. These technologies have gathered

interest in recent times, as they have the potential to solve some of the most pressing problems of

our times, such as environmental sustainability and value proposition in a global market.

One area that can benefit from these technologies is maintenance. One of the biggest challenges

when making a machine is planning its maintenance, as the sheer number of variables that influ-

ence the failure of a part or system makes this decision mainly based on previous in-situ experience

rather than a data driven process. Technologies such as big data, artificial intelligence (AI) and the

convergence of information technology (IT) and operational technology (OT) are tools that make

it possible to make this a data driven process and to improve the efficiency of this task, from both

an economical and an environmental standpoint.

1.1 Motivation

This thesis comes as a response to an overall push in the industry towards the use of such tech-

nologies in improving the longevity of their products and their efficiency. An example of the tube

bending industry also moving in this direction is the BLM Group, who is also working in this

field, as evidenced by the 2019 thesis titled “Analysis of process signals from rotary draw bending

operations” (SORIANI, 2018/2019).

In the specific case of AMOB, the company in which this thesis is being developed, predictive

maintenance solutions help keep its products better compete against its competitors’ machines

and also provide its customers more value with their machines.

1



2 Introduction

1.2 The company

AMOB is a Portuguese company based in Vila Nova de Famalicão that specializes in the produc-

tion of tube and pipe bending machines. Since its foundation in 1969, the family company has

grown into one of the biggest players in the metalworking technology field, with operations in all

five continents and in over 30 countries.

Their main plant is adjacent to its headquarters in Vila Nova de Famalicão, spanning 18000m2 and

with over 140 members on its staff.

AMOB is currently, in partnership with INEGI, developing solutions to make their machines con-

nected to the cloud, in order to offer more comprehensive and intelligent solutions to their clients.

This not only allows the client to see real time information about their machines and the produc-

tive process from anywhere, as allows AMOB to provide better support to their customers, both by

collecting data from the machines during their lifetime to develop better maintenance strategies,

provide remote support with greater insights into the problem without having to make an in person

visit and also predict a monitor in real-time future needs of a client.

1.3 Objectives

The main objective of this work is to develop and test the basis of predictive maintenance tools for

one of the axes of AMOB’s e-MOB machines. The point of this is to serve as the foundation for

building predictive maintenance systems into their future machines.

This requires an investigation into the state of the art of both rotary draw bending, maintenance

and artificial intelligence, the main pillars of this thesis. The aim of this is to get a sense of the task

ahead and to familiarize with the processes and tools available in order to make the best choices

when devising the architecture of the system.

Another aim is to understand what are the main concerns in the e-MOB range and find out their

causes. This will define the focus of the system being developed.



Chapter 2

State of the art

Research on maintenance of tube bending machines, especially more advanced types of mainte-

nance such as predictive maintenance, is still in its infancy, not only on raw draw bending machines

but on the use of technology to implement predictive maintenance systems.

Most manufacturers do not openly disclose their research and implementation of these systems,

therefore, in this chapter, most of the findings and research presented is academic, and not existing

solutions.

2.1 Metal Tube Conforming Machines

Metal tube conforming machines are machines whose function is to conform the tubular profiles

into a given complex shape, by plastically deforming them. These conformed tubes are used in

applications ranging from the aeronautical industry to agricultural machinery, with parts obtained

through this process also being used in other transportation industries and architecture (Pacheco

et al., 2019).

2.1.1 Press Bending

Press bending, also known as ram bending, is one of the simplest and cheapest tube bending

methods. It is based on the three-point-bending principle, in which a force applied between two

support points causes the supported beam or tube to bend (Pacheco et al., 2019). This method can

be applied manually, by using a manual press with a tool with the shape and radius of the tube to

conform, or a mechanical press, which uses a hydraulic press to apply force to the conforming tool

3



4 State of the art

(Pacheco et al., 2019). These tools look similar to an arch of a pulley. Different tools are needed

in order to obtain different radii.

2.1.2 Roll Bending

Encyclopedia Britannica defines calendaring, another term used to refer to roll bending, as a: “pro-

cess of smoothing and compressing a material [. . . ] by passing a single continuous sheet through

a number of pairs of [. . . ] rolls." (Britannica, 2007). In respect to tube bending, this process is

slightly different, as it is a tube passing through three pulleys like tools. In these machines, the

tools are arranged in an isosceles triangular formation, with the center pulley only slightly raised

from the alignment of the other to. This disposition makes it impossible for the tube to pass be-

tween the sets of tools straight, therefore bending it. The radius of the arch of the tube is dictated

by the distance between the two lower cylinders. Although this machine can conform different

radii with the same set of tools, different tools are needed for different diameter tubes. This kind

of machine is mostly used to conform large radii.

2.1.3 Compression bending

This process consists of conforming a tube by rotation of a tool, which can be straight or curved,

around a pulley shaped tool that is fixed on the inner side of the curve (Pacheco et al., 2019). A

support is needed in order to sustain one edge of the tube, acting as a point for the reaction force

cause by the movement of the rotating tool to act upon (Pacheco et al., 2019). This forces the tube

to conform to the shape of the inner tool instead of just rotating around it (Pacheco et al., 2019).

The inner tool radius and the angle position of the rotating tool determine the radius and the angle

of the tube curve respectively (Pacheco et al., 2019).

2.1.4 Rotary Draw Bending

Rotary draw bending is a technique that is mainly used for tight curves with relatively small radii

and complex geometries, that require several bends at different angles and in different positions.

It is one of the most commonly used types of tube bending techniques.

Its working principle is very similar to the rotary compression bending machine, the main dif-

ference being that in this process the tool that rotates, clamp die, as the name indicates, restrains

the tube, not allowing slippage. This, along with the pressure die, which controls the amount of

material “fed” to the curve, force the tube to stretch along the bend die, taking its shape in the

process.
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The main advantages of this process compared to compression bending is that it allows for more

control over the process and allows for tighter bends (smaller curve radius) (STAM). Besides

this, the use of complementary tools in this process, such as wiper dies and mandrels, allow for

tighter dimensional tolerances, less defects and a better cosmetic finishing than competing pro-

cesses (STAM).

2.1.4.1 Parts and tools

These machines have five main components that directly bend the tube, which can be seen in figure

2.1, namely (Köseoğlu and Parlak, 2012):

• Bend die;

• Clamp die;

• Pressure die;

• Mandrel;

• Wiper die.

Figure 2.1: Main parts of a rotary draw bending machine responsible for forming the tube (AMOB,
b) adapted

The first three tools mentioned are responsible for bending the tube per se, as the others are respon-

sible for ensuring that the tube bends and conforms properly, by preventing its wrinkling, rupture,
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ovalization and thickness reduction on the outside of the bend of the tube (STAM; Pacheco et al.,

2019).

The remainder of the machine mainly serves three functions: to support the tube, actuate the

mentioned tools and to position the tools and tube for each bend. The systems responsible for these

functions are dependent on the machine’s type, meaning whether it is hydraulically or electrically

actuated.

Bend die

The bend die is one of the most important tools of a raw draw bending machine. It is the tool

around which the tube wraps when it is being bent. Therefore, this is the tool that imposes the

curve radius to the tube. This tool is usually either bolted or fixed using flanges to the machine

and can be stacked on each other.

The dimensions of these dies is dictated by the parameters of the bend, namely: the outside di-

ameter (OD), the center line radius (CLR) and the maximum degree of bend (DOB). As the main

material requirement for this part is toughness, shock resistant steels are commonly used. There

are also several variants of this tool, each with a particular geometry. The main ones are (OMNI-X,

2016):

• Spool — This tool is made of two components: the grip, which holds the tube during the

bending, and the die, the part which gives the tube its shape. These parts are separate and

therefore can be replaced individually. Different grips are available depending on the sur-

face topology wanted for the tube. It is mounted on a tool post that fits through the middle

of the tool. By far the most popular solution as the grip and die can be replaced separately.

An example of a spool can be seen in figure 2.2.

Figure 2.2: Spool bend die from 2 angles
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• One piece — Similar to the spool but the grip is non-removable and cannot be separated

from the rest of the tool.

• Partial platform — Similar to the one piece die but has extra material on one side of the

die in order to support itself on the machine.

• Full platform — Same as partial platform dies but has extra material on both sides.

• Flange — Does not have a hole in the middle and is not mounted on a tool post, instead it

is fixed to the machine through bolts and nuts. Used in small machines that cannot accom-

modate a tool post.

Clamp die

The clamp die is the tool responsible for applying the pressure that holds the tube between itself

and the seizure part of the bend die during bending(OMNI-X, 2016). It has the same finish and

length of the clamping part of the clamp die, usually a grip (OMNI-X, 2016). Its objective is to

prevent any slippage from happening (OMNI-X, 2016).

Pressure die

The pressure die is a tool that accompanies the tube, sitting parallel to it, making sure that pressure

between the tool and the bend die is constant throughout the bending process (OMNI-X, 2016).

Mandrel

The mandrel is a very important tool when tube bending, as it is the main tool responsible for

the prevention of defects and imperfections such as crinkling and ovalization. This is achieved by

providing the tube with a solid support that counteracts the forces that lead to these defects. It is

of the utmost importance that the mandrel is properly fitted into the tube, as large gaps leave room

for deformation.

The type of mandrel used is dependent on how demanding the bend is and the likelihood of defects.

There are several types of mandrels, such as (OMNI-X, 2016):

• Simple plug — A straight cylindrical rod with a slightly smaller diameter than the inner

diameter of the tube. Used for large radii bends. One can be seen in figure 2.3.
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Figure 2.3: Simple plug mandrel

• Simple formed plug — A straight cylindrical rod with a slight curvature towards the end in

the shape of the bend. Provides more support to the outer wall of the tube during bending.

• Standard mandrel — Cylindrical metal rod with a series of balls at the end attached to

each other with a similar radius to the rest of the mandrel, as shown in figure 2.4. These

balls act as rotulas and allow the end of the mandrel to bend and, therefore, for the mandrel

to penetrate deeper into the tube, allowing it to support the tube for longer. The balls are

connected to each other and to the rest of the mandrel via links, a small plug with a spherical

ending that fits into a socket with a similar shape on the other ball or the rest of the mandrel.

It is the most common type of mandrel as it is able to support most bends.

Figure 2.4: Standard mandrel
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• Close pitch, thin-walled mandrel — This is an iteration of the standard mandrel for, as the

name suggests, small radii bends and thin wall tubes. In this mandrel the rotulas are closer

together.

The mandrels also vary in material, with aluminium-bronze and hard-chrome plated steel being

the most used materials. This is mostly due to the very good cost-performance relationship of

these materials for this specific application.

Wiper die

The wiper die has a similar function to the mandrel, complementing it by also helping minimize

crinkling on the tube’s inner side during bending. Because of this overlap of functions, it is not

always used, being mostly used for tubes with thin walls and tight bends with small radii. These

are usually made of the same material as the mandrel. In figure 2.5 a wiper die made by AMOB

can be seen.

Figure 2.5: Wiper die from two different angles

2.2 Maintenance

In the European Standard EN 13306:2017 maintenance is defined as “[. . . ] the combination of

all technical, administrative and managerial actions during the life cycle of an item intended to

retain it in, or restore it to, a state in which it can perform the required function”. In simpler terms,

the aim of maintenance is to maintain the good functioning of a given machine and to prevent it
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from breaking down. This makes maintenance an important part of any company, as it can affect

parameters such as productivity, quality and costs.

Maintenance affects these parameters in two ways, as lack of maintenance leads to machine fail-

ure, which in turn means stopping the production line until the problem is fixed or the machine

replaced, which normally is not a quick process and carries heavy costs, but also over cautious

maintenance can lead to inefficiencies, as maintenance procedures take time away from working

time, as it is common for the machine having to be out of use during these procedures, but also

because parts will be replaced when they can still endure more time in service.

Maintenance can be divided into two big groups: active maintenance, where the machine is proac-

tively maintained in order to avoid failure, and reactive maintenance, where no effort is made to

prevent failure and the machine is only serviced after failure (Sullivan et al., 2010). In this disser-

tation the focus will be on the first kind of maintenance, which is subdivided into preventive and

predictive maintenance.

2.2.1 Preventive

Preventive maintenance is one of the more conventional types of maintenance, which is based

on scheduled inspections and repairs triggered by reaching a predetermined value of a parameter,

such as time in service or mileage. The guidelines and timing for these routine inspections and

repairs is often based on empirical data gathered from previous tests executed by the manufacturer.

This type of maintenance can be summarized by the workflow diagram on figure 2.6.

Figure 2.6: Workflow diagram for preventive maintenance based on time
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Therefore, this kind of maintenance is planned assuming a given set of use conditions, commonly

referred to as normal wear. If the conditions of actual use are different from the ones considered

when planning for machine maintenance, the plan made may no longer be appropriate. In order

to assure that the machine is getting enough maintenance even if the conditions of use vary within

a reasonable margin, it is common practice to anticipate maintenance procedures in comparison

to the results obtained in testing. This results in a lower failure rate of the machines in actual use

but inserts more inefficiency and waste through the machine’s lifetime, as parts which still had

useful life ahead of them might be discarded and replaced sooner than needed, by turn increasing

maintenance costs during the machine’s lifetime.

Another problem that arises from this process not considering the actual use of the machine being

serviced is that the system is unable to respond to unpredicted events that may affect the machine’s

good functioning. This may lead to machine failure between scheduled maintenances, which can

be very costly.

Despite its many shortcomings, preventive maintenance is still widely used as it does not require

additional equipment in each machine to monitor its functioning and is relatively easy to imple-

ment, especially in simple machines. This makes it a very low entry cost solution.

This makes this solution optimal for low-cost short lifetime machines, in which the cost of imple-

menting other solutions highly impacts the price of the machine and the wasted potential of the

replaced and repaired parts does not constitute a significant cost in the overall cost of the machine

over its lifetime.

2.2.2 Condition-based

Similarly to predictive maintenance, condition-based maintenance is based on real-time data col-

lected by the machine’s sensors. It is usually a precursor method to predictive maintenance as it is

simpler and faster to implement, while having a lower cost .

Condition-based maintenance relies on real-time data to monitor the machine’s function, emitting

a warning when a parameter reaches a previously calculated threshold. The main difference to

predictive maintenance is that instead of giving an estimation of how much use can we expect

from the part or machine before failure, it only warns when failure is impending. This means that

in this method there is no need to keep a record of the machine’s data, which means a simpler

system. It also bypasses the process of creating a model of the machine’s lifetime, which requires

large amounts of data and, in machines whose expected life is very extended, take a lot of time

to collect. Therefore, this method is quicker to implement, which is why it can be thought of as

a precursor to predictive maintenance, as it can be implemented while data is being gathered to

model the machine’s lifetime.
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Figure 2.7: Workflow chart of condition-based maintenance

2.2.3 Predictive

Predictive maintenance (PdM) uses a different approach into the maintenance problem, where

through data, gathered by sensors and the machine itself, a model is established for the useful life

of the machine. The model obtained allows for the prediction of the remaining useful lifetime

of the machine, which in turn allows maintenance procedures to be done only when the part is

approaching end-of-life. This leads to significant savings, with the parts only being replaced

exactly when needed.

The workflow diagram of this type of maintenance is in every way similar to the one of the

condition-based maintenance, with the exception of how the processing and analysis of data are

done. In predictive maintenance, this monitoring of the condition based on data is done through

software, which establishes the thresholds of normal function, as in condition-based maintenance

this is done prior by a human. With the use of tools such as machine learning (ML), a feedback

loop in the data collection and establishment of the baselines can be created, as the data collected

during the machine’s operation can be added to the pool of data used to train and assess the model.
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Figure 2.8: Workflow diagram for predictive maintenance

The drawbacks of this kind of maintenance are its high initial costs, since the machine has to be

equipped with the necessary sensors, and also the fact that not every machine is able to be adapted

to this kind of maintenance. This can be because of computerization of the machine, for example

hydraulic machines that use analog controls, or inability to isolate and understand the parameters

that can serve as indicators of failure. It can also happen that the cost of adapting the machine to

a digital environment, although possible, reveals to costly to justify it.

Overall, some estimates put the savings of adopting this kind of maintenance compared with reac-

tive maintenance in the 25% to 30% range (Sullivan et al., 2010). When compared with the 12%

to 18% savings the authors estimate for preventive maintenance (Sullivan et al., 2010), we can see

that this process almost doubles the savings of just implementing a standard maintenance strategy.

2.2.4 Prescriptive

This is an emerging type of maintenance which builds on predictive maintenance by automatically

adjusting parameters and tacking actions to prolong the machine’s remaining useful life (RUL)

and minimize machine downtime due to maintenance tasks.

This involves giving the machine the ability to perform some maintenance tasks, bypassing the

human operator. However, the point of this kind of maintenance is not to replace entirely the

human operator, but instead to collaborate and complement its work.
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An illustrative example of this type of maintenance being used in a machine that is able to self-

regulate the amount of lubrication used based on the wear of the part in question, but still needing

to be replaced by an operator when it reaches the end of its useful life.

This process is only now starting to be implemented as a high level of automation, computer power

and connectivity is needed for this sort of solutions, which was only made possible with the rise

of technologies such as internet of things (IoT), ML and 5G, which has latencies low enough to

allow the processing of the amounts of data involved in this process possible.

2.3 Creation of a predictive maintenance system

In other to implement a predictive maintenance system, it is necessary to conceive models for the

machine lifetime and failure.

The first step in establishing this model is to understand how the failure occurs and what variables

might play a role and indicate it. To do this it is necessary to understand how the machine works. If

the machine is already in use, a starting point is to query the operators about the failure and to study

the current maintenance strategy guiding parameters. This may help in formulating hypotheses

about how to tackle the problem and in selecting, or excluding, variables to retrieve data about.

Once established the variables to study, it is necessary to start collecting the data. In order for this

to be possible, sensors may need to be selected and installed. The selection and installation of

these sensors must consider: the space and part where the sensor will be mounted, its range and

accuracy, the price and availability.

At the data collection stage, how this data is acquired has to be defined. This includes defining the

sampling rate, the measurement duration, the scale and the bandwidth. It is important at this stage

to choose a convenient storage format, in order to later facilitate its analysis.

For PdM algorithms, historical data from throughout the lifetime of the part is needed. In fact, for

a more accurate model data from multiple identical parts is desirable. Since in an industrial setting

parts are usually dimensioned for a lifetime of 20000 hours, this process takes a long time. In

fact, it is the most time consuming part of creating a PdM system and may take years. One benefit

of the use ML models is that they can be optimized by each new reading, possibly reducing the

amount of data needed to deploy the system and therefore the time needed. However, complete

data from at least one lifetime of one part is still needed as a basis.

Next, how the data will be analyzed must be decided. This means choosing what the inputs of

the algorithm will be. One option is to analyze the signal as a whole. Because this means very

large amounts of data compression is needed. Compression algorithms can be divided into two,
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depending on whether or not all of the data can be later retrieved: lossless and lossy compres-

sion algorithms. Another alternative is to only analyze key features of the signal that are related

to failure. Signal features are numbers that help characterize the signal, such as the average or

variance. If a feature is related to the wear or good functioning of a machine is called a condition

indicator. Depending on the type of analysis, for example whether it is a time domain analysis

or frequency domain analysis, different signal features will be good condition indicators. These

condition indicators can be extracted locally in real time, foregoing the need to store the signal

itself. This means a very low amount of data needs to be stored. In order for a correct choice of

condition indicators the ML algorithm that will be used to create the model must be chosen.

Finally, tests should be made in order to validate the model obtained. There are two key metrics in

evaluating a model that should be established: the confusion matrix and the accuracy score. This

allows the assessment of how good the model is at predicting the state of the part or machine.

The steps involved in the creation of a PdM system are summarized in the diagram of figure 2.9.

Figure 2.9: Workflow diagram of the creation of a PdM system

2.4 Data pre-processing

2.4.1 Compression

The objective of compression is to make a file smaller without incurring on information loss

(Wayner, 2009). This is done by identifying redundancies and irrelevancies in data and reduc-

ing them (Note, 2011). Lossless compression is based on redundancy minimization while lossy

compression is on irrelevancy minimization (Note, 2011).

Frequency type transforms are a method of pre-processing time dependent data input to a com-

puter, allowing for the computation of signal spectrums (Lensu, 1998).

There are several different types of frequency type transforms, depending on the base sinusoid

function used to form the data recorded (Lensu, 1998). The most common transforms and their
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properties are shown in figure 2.10.

Figure 2.10: Frequency type transforms and their properties (Lensu, 1998)

Some of the most used transforms for data processing are DCT and discrete wavelet transform

(DWT). Because image capture is one of the most used tools both in science and in day-to-day

life, and the need for more and better images, most studies done in this field were done using

images, which are a 2-D or 3-D signals, meaning a 2-D or 3-D array is needed to store the signals,

in contrast to the end use of this paper, sensor data compression, which is a 1-D signal, where the

quantity recorded is stored as a 1-D signal dependent only on time (Lensu, 1998). Nonetheless,

the conclusions obtained for two and three-dimensional signals can be ported to 1-D signals.

DCT is often considered the best compression technique, as its performance is nearly identical to

the Karhunen–Loève transform (KLT), which is regarded as the benchmark transform for noise

reduction as it has a very good rate-distortion (RD) performance (Chen and Zeng, 2012), while

being faster and more efficient.
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DWT is considered an alternative to DCT that offers better data quality (Bansal and Dubey, 2013).

It decomposes the signal into two by filtering out frequencies, a low frequency signal obtained

using a low pass filter and a high frequency signal using a high pass filter (Katharotiya, Patel

and Mahesh 2011). The high frequency is regarded as the detailed part of the signal and the low

frequency as the approximation (Katharotiya et al., 2011).

In the paper titled “Comparative Analysis between DCT & DWT Techniques of Image Compres-

sion” (Katharotiya et al., 2011) the authors concluded a significantly higher compression ratio is

obtained through DWT (Cr = 1.9 to 2.3) then with DCT (Cr=1.6) with no significant information

loss, albeit DCT being more time efficient than DWT.

2.4.2 Signal Features

Some types of algorithms, such as support vector machine (SVM) algorithms, do not use the curve

of the data itself as input, only needing key features of its distribution in order to characterize the

data. Therefore, there is only need to extract and store these features from the signals and not the

entire dataset. Some of these features are: arithmetic mean, 50th percentile, trimmed mean, in-

terquartile range, mean absolute deviation, range, variance, standard deviation, root mean square,

kurtosis, skewness, crest factor, impulse factor and margin factor (Lee et al., 2019). From these,

the ones that present changes with the wear of the tool or the machine should be kept and used

as input on the chosen algorithm (Lee et al., 2019). For oscillatory signals, features are grouped

depending on the analysis being made, with features specific for time domain, frequency domain

and frequency time domain. Using the methodology described in the paper titled “Multi-fault Di-

agnosis of Rotating Machinery by Using Feature Ranking Methods and SVM-based Classifiers"

(Sánchez et al., 2017), and analysing 64 time domain features and 24 frequency domain features,

with a total of 88 time-frequency domain features, but using KNN instead of SVM and FFPN as

classification algorithms, René-Vinicio Sanchez and his colleagues reached the rankings displayed

in table 2.1 using the ReliefF algorithm to rank the features. This algorithm builds on the Relief

algorithm, which is used for binary classification, and evaluates how good a feature is at classify-

ing neighboring instances. In the table 2.1 the evolution of the kNN algorithm with the increase

of features used, surpassing 90% accuracy with the top 6 ranked features.
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Table 2.1: Ranking of time domain features of an accelerometer signal and accuracy after KNN
using a ReliefF ranking algorithm (Sánchez)

Ranking Feature KNN (%)
1 Average 11.15
2 Skewness 18.99
3 Slope sign change 52.27
4 Zero crossing 79.44
5 Histogram upper limit 89.10
6 Margin index 90.01
7 Kurtosis 91.41
8 Latitude factor 91.66
9 Slack factor 90.00
10 Mean deviation ratio 91.82

2.5 Modeling techniques

One way of creating a model of a machine’s lifetime would be to run consecutive tests from new

until failure and use the data collected to train a ML algorithm. This approach is very reliable and

simple.

However, as mentioned before, due to the long lifetime of some components, this approach may

not be viable. An alternative is to train a ML model with data from the machine in normal working

conditions, in order for it to be able to detect abnormal functioning of the machine.

One approach to this is called anomaly or novelty detection. A baseline of the parameters be-

ing monitored is established and an ML algorithm that once trained and implemented is able to

monitor data from the machine for spikes and dips that fall out of the normal function range and

make a maintenance warning. By using ML, the algorithm keeps learning from the monitoring

data, becoming more accurate over time. This approach is more suitable for monitoring unex-

pected changes in a machine and not progressive wear and tear. This approach models the normal

functioning of a machine or component instead of its wear and tear.

An approach more suitable for monitoring wear and tear is by establishing wear conditions for

the tool in question and using AI to process data from the machine and assign a wear state to the

machine (e.g. normal functioning, approaching end of life, imminent failure).

Both wear and tear prediction and anomaly detection can be used to create a robust PdM system,

since they tackle different facets of the maintenance problem, complementing each other.
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2.5.1 ML techniques

Machine learning algorithms are sets of instructions that models a problem and solves it without

direct instructions. It is a branch of AI that focuses on finding patterns in data in order to predict

outcomes. This makes ML a powerful tool to tackle complex problems with ever-changing data

that are otherwise too complex to model.

Machine learning can be classified in 3 ways: supervised learning, where the datasets that train

the algorithm are already labeled; unsupervised learning, here the algorithm is trained with un-

categorised data, with it having to find patterns and clusters; and reinforced learning, where the

algorithm “learns” by analyzing the outcome of the decisions it made, operating in a feedback

loop, not requiring previous training (Azure, 2021).

Some ML algorithms are: anomaly or novelty detection algorithms, where the goal is to identify

points that fall out of the “normal” range; regression algorithms, which use previous data to ex-

trapolate the value of future data; time series algorithms, which predict the evolution of the data,

identifying trends and other cyclical patterns; clustering algorithms, which segregate data into

groups based on similarities; and classification algorithms, which classify data into predefined

groups (Azure, 2021).

This chapter is a concise presentation of some of the most commonly used ML algorithms.

2.5.1.1 Linear regression

One of the most common types of regression and ML in general, linear regression aims to establish

a straight line that best characterizes the progression of the data. It works on two dimensional

datasets. It qualifies as a progression type of ML algorithm, as it has a numerical target variable.

This means the objective of this type of algorithm is to allow for extrapolation and interpolation of

the data, allowing us to find the target variable value for values of the independent variable which

are not it the training dataset.

Other regressions exist for when the data fits a curve (e.g. parabola) different then a straight line.

All these regressions function similarly to the linear regression, just with a different formula for

the appropriate curve and different parameters to set.

Most regression algorithms resort to the mean square error (MSE) as a cost function. A cost

function is a function that assesses the performance of a ML algorithm by measuring the error of

the ML model, meaning the discrepancy between the prediction and reality.



20 State of the art

2.5.1.2 Decision tree

This is a classification algorithm, meaning the objective is to sort the target variable(s) into cate-

gories. They allow the computer to "understand" based on characteristics of an object what that

object is (i.e. what category it belongs to).

Decision trees divide the data into two or more subsets using if-then functions. They owe their

name to their visual representation, which branches out the further down gone. Each leaf repre-

sents a class and each branch a set of conditions, usually written as logical operators.

These are one of the most common types of ML algorithms due to their simplicity and their

immediacy of comprehension.

This algorithm is also the basis of more advanced and complex algorithms such as the random

forest, which creates several trees at random and congregates the results of each one in order to

reach a final result.

Gradient boosting algorithms are also usually associated with decision trees, as it combines differ-

ent models in order to improve the performance of the algorithm. The most common use is to join

weak models, meaning models that are only marginally better then pure chance, such as decision

trees, in a process called ensembling.

2.5.1.3 K-nearest neighbor

Like the decision-tree, this is also a classification algorithm. It is also a non-parametric algorithm,

meaning it is not based on probability distribution families, which makes it more flexible to classify

data whose distribution does not resemble any know probability distribution family. Finally, it is

a non-linear algorithm, meaning it can make non-linear relationships and therefore does not use

hyperplanes (see section 2.5.1.4) to divide the data into categories. It can work both as a supervised

and an unsupervised algorithm.

This algorithm models data by considering the data close to the point being analyzed and classify-

ing it, either by the most common occurrence in it vicinity or, alternatively, by assigning different

weights to each data point based on its distance to the point in analysis. This is based on the as-

sumption that similar objects tend to exist in a similar space. Its name comes from k being a user

imputed variable that sets the number of data points nearest to the test point the algorithm makes

to find the boundaries of each class. The most frequent class in those k points will be the class of

that test point.
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2.5.1.4 Support vector machine

These are models based on algorithms that classify data into classes based on datasets from which

it learns. In this algorithm, data is interpreted as a n dimension vector, and its goal is to separate

this data into n−1 spaces, called hyperplanes.

This algorithm is used in supervised learning, where the dataset used to train the algorithm are

already labeled, although it can also be used in unsupervised learning where the algorithm tries to

establish classes of data with similar characteristics within the class and different characteristics

from other classes.

Although similar to kNN, SVM is more limited in what patterns it can find in the data, with the

advantage being it is less computationally demanding.

2.6 Model validation

In order to implement a model, it is necessary to know how well it describes real life. This is

called model validation.

There are several tools to compare the model with the actual data and to assess the model’s accu-

racy. These tools help in the comparison of models in order to choose the one that more closely

predicts future data.

2.6.1 Accuracy score

This is a percentage that results from supervised algorithms testing its model against the whole

dataset. This value is not particularly useful to evaluate the model in what pertains to the real

world, but it is mostly used by the algorithms themselves internally to improve their models. This

is so as many ML algorithms work by creating a random model based on part of the dataset, seeing

how well it fits the whole dataset, getting this score and repeating. If the score of the current model

is greater than the previous one, that model is kept. This is done until the accuracy value over a

number of models stabilizes. It is not uncommon for simple models (e.g. two classes) to have an

accuracy score of 100%, meaning the model perfectly classifies the whole dataset, which does not

mean in real life the model is 100% accurate.
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2.6.2 Confusion Matrix

A confusion matrix is a visual representation of the accuracy of the model against a given set of

data. It allows for quickly checking the number of times an algorithm correctly labels a data point

and the number of times it labels in incorrectly in each of the other classes. This makes it easier to

see how well the model fits that data, compare it to others and identify weaknesses in the model,

such as confusion of some classes (mislabeling).

In figure 2.11 a confusion matrix model for two classes, positive and negative, is presented. The

green and red cells should be filled with the number of times the event within them happens.

Figure 2.11: Confusion Matrix

2.7 Machine monitoring

In this chapter relevant topics about which parameters are usually monitored for machine failure

and wear are monitored, as well as common methods employed to do so. The focus will be on

parameters and methods of monitoring that can be deployed in the machine and part that will be

discussed in the case study section of this thesis.

2.7.1 Wear and failure indicator parameters

Even though failure can have innumerous causes, wear is usually due to grinding between mov-

ing parts in common. This can be mostly avoided by correct lubrication, which reduces friction

between parts and therefore reduces wear. This is why the main focus of many maintenance strate-

gies is in maintaining adequate lubrication.
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By understanding the mechanisms of wear and tear of mechanical parts, possible indicators of this

phenomenon can be hypothesized, namely by understanding the byproducts of grinding due to

poor lubrication or excessive wear.

Wear, for the most part, can be defined as damage caused by use, which mostly consists of erosion

of contact surfaces between parts, which lead to higher tolerances between them and altered sur-

face characteristics, such as roughness. Both of these factors can manifest themselves during use

as noise and abnormal vibration.

2.7.1.1 Torque

As gaps between parts widen, debris from the wear parts accumulates and roughness gets more

uneven, the motors powering the moving parts will have to output more power to compensate

for these impediments to the movement. This is also true when lubrication is insufficient, to

account for the increase in friction, and when there is failure due to other unexpected causes, as

the motor will always try to overcome impediments to its functioning. The way motors do this is

by increasing their torque output, outputting more force to try to keep its commanded functioning

parameters (achieve a certain position or speed).

Therefore, monitoring motor torque is a good way of monitoring machine wear and failure, as

both of these will manifest themselves as an increase of torque. This is an especially simple way

of monitoring these conditions in machines equipped with servomotors, as this information is

readily available. In fact, this allows even for the establishment of limits to this value and real

time analysis of its progression, which in turn allows the motor to automatically stop when in a

dangerous situation, preventing further damage to the machine.

2.7.1.2 Vibration

Vibration can be defined as an alternating oscillatory movement around a reference position. Due

to the movement of different parts of a machine, and, more importantly, to the movement of

rotating parts, vibrations are produced.

Vibration is a very good indicator of how well a machine is functioning as the degradation of

components in a machine lead the motors and other actuators to try and compensate the losses,

which involve tweaking parameters such as velocity, frequency, torque and force. A different set of

forces actuation on the machine will produce a different vibration from normal functioning. One of

the motives that makes vibration such a good parameter to monitor a machine’s or part’s condition

is how quickly it responds to equipment aging and degradation(Jung et al.). In fact, standard ISO
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10816-8:2014 establishes normal vibration measurements for rotating and non-rotating parts, as

can be seen in figure 2.12.

Figure 2.12: Standard ISO 10816-8:2014 (Yasir et al., 2019)

In order to use vibration as an indicator of failure, sensors able to measure it are needed. This

has only recently been made viable, as sensor became smaller and easier to implement, with-

out compromising the machine’s normal functioning, due to advancements of technology. One of

these technologies are MEMS accelerometers, which stands for MicroElectroMechanical Systems,

which are small inertial accelerometers that are able to detect changes to acceleration with high

precision and at a very low cost. Compared to the previously available alternative, piezoelectric

accelerometers, MEMS are much smaller, consume less power and are cheaper, making this the

technology of choice for this kind of application(Jung et al.). Its small size allows it to be installed

in tight spaces and without disturbing the machine’s functioning, its low power consumption al-

lows it to run out of the power source of an IoT device, and its low price makes the implementation

of systems depending on it more affordable and the replacement in case of malfunction less costly

(Jung et al.). Bellow, we can see a chart 2.13 comparing typical characteristics of a MEMS sensor

and a piezoelectrical one.
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Figure 2.13: Typical characteristics of a piezoelectrical sensor and a MEMS sensor (Jung et al.)

There are also different ways to analyze vibration data: time-domain analysis and frequency-

domain analysis.

Time-domain analysis is the plotting of the signal intensity or corresponding acceleration coming

from the sensor against time, which translates to a waveform being graphed, showing how the

signal evolved through time. On figure 2.14 a) a time-domain graph can be seen.

On the other hand, frequency-domain analysis shows how much of each frequency is present in

the vibration being monitored. In other to do this one of the transforms addressed on a previous

chapter is used. The result of this analysis is what is called a spectrum of vibration. Frequency-

domain analysis allows the isolation of certain frequencies associated with the phenomena or part

being studied, which is helpful, for example, for monitoring different components of a machine

using just one sensor. An example of this type of graph can be seen in figure 2.14 b).

Both of these analyses complement each other and give different perspectives on the vibration

being monitored.

Figure 2.14: a) Time-domain graph b) Frequency-domain graph
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Chapter 3

Case Study

In this chapter, the e-MOB machines of AMOB are the basis of this case study, whose aim is to

determine the causes and how failure occurs.

The main causes of failure will be showcased along with the current maintenance strategy for the

parts affected. From there, the focus will be on a severe undiagnosed problem that is happening

at the time. Root cause analysis of this case will be conducted. Suggestions on how to avoid this

problem and conclusions will be drawn.

This case will serve as the starting point for devising and testing a PdM system architecture, as it

is the case where most data is available, as AMOB lacks any historical data about their machines

from a PdM point of view.

3.1 The machines

AMOB intends on deploying this system on their e-MOB series machines. These are the flagship

rotary draw bending (RDB) machines of AMOB. They are fully electric CNC machines.

This series has a tube diameter range from 6 mm to 225 mm and is able to make bends with radii

as tight as the diameter of the tube.

Some of the series features include: tool multi-staking, for easy production of tubes with different

radii bends and complex geometries; booster cart, to help achieve a better finishing and tighter

bends; up to 8 times more energy efficient when compared to the previous flagships (Pacheco

et al., 2019); high precision and a better human-machine interface (HMI), in big part due to the

included proprietary AMOB 3D bending software.

27
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e-MOB machines have 9 independently operated axis, all electrically powered, controlled by ser-

vomotors, as seen in the figure 3.1.

Figure 3.1: e-MOB’s axis designation (AMOB, a)

Each of these axes correspond to the following movements:

• Axis X—Tube displacement carriage;

• Axis Y—Tube bending arm;

• Axis Z—Tube rotation plane;

• Axis H—Vertical shift for changing average radius;

• Axis W—Horizontal head shift for changing average radius;

• Axis M—Mandrel extraction;

• Axis C— Tube clamping;

• Axis P—Pressure die;

• Axis E— Horizontal pressure die follower.
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3.2 Current maintenance strategy of e-MOB machines

The current maintenance strategy is entirely based on a mix of reactive and preventive maintenance

strategies. This strategy consists of 8 main procedures, namely (AMOB, a)

• Lubricants list, capacities and corresponding information

• Lubricate ball recirculation systems

• Check the ball screws’ automatic lubricating units

• Inspection of toothed belts and tensional procedure

• Check the position and fastening of limit switches

• Lubricate the positioner rack

• Restore the mandrel lubrication system

• Replace the lubricant of the bending axis gearbox.

In terms of any information or work done towards the implementation of predictive maintenance

strategies it is nonexistent, with no historical data of any kind available. Very little information

about service requests and previous failure of their machines. Since AMOB sells to clients all over

the world, much of the maintenance and support is outsourced to third parties by the AMOB local

or regional office. There is no standardization of communication between AMOB and these third

party service providers. Occasionally reports are made by AMOB’s regional or local offices and

send to the headquarters but not for each occurrence. Most communication is informal (e.g. mes-

saging apps) and not kept by AMOB. Root cause analysis is rarely done, with the most common

practice being replacing the faulty part for a new one.

3.3 Failure pain points

From the available records of repair requests from customers and talks with the engineers in

AMOB’s client service department, the most common types of failure of its e-MOB machines

were identified. It was concluded that the most common types of failure were:

• Wear of linear guides

• Wear of ball screws
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• Mechanical damage of linear guides due to improper use

• Mechanical damage of linear guides due to the operator not identifying obstacles in the

machine’s path.

The failures mentioned in the two last points occur when the machine is operated in manual mode,

where each task is inputted by the operator one at the time. Because, in this mode, the e-MOB

machines have yet very few safeguards against collisions with themselves, collisions happen fairly

frequently as described in the last point. One example of this is when the carriage unit (X axis)

advances without returning the clamp die to its initial position after bending (Y axis to 0), causing

the tube to collide with the clamp die, which causes forces that actuate on the X axis guides.

Another issue is when operations are not imputed in a feasible order, for example, changing the

tool without first ordering the clamp die to open. This puts excessive loads onto the guides, which

causes damage. This is the kind of scenario that fall under the third point.

AMOB’s engineering team knows this and is already working on implementing more software-

based solutions to this problem. As they are not the result of degradation or wear of the parts

but miss use they have no relevancy from the point of view of this thesis. It is also important

to mention that while the damage to the guides is the one that impacts machine functioning and

therefore mentioned above, these failures also cause damage to other parts, but mostly cosmetic

damage that does not impact the machine functioning, as can be seen in figure 3.2.

Figure 3.2: Carriage damage due to manual collision in 9611 e-MOB axis
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This means that the main pain points in terms of wear are the linear guides and ball screws.

Therefore, when choosing which components to monitor for failure, these would the ones to start

with, since they are the ones who would benefit the client the most in terms of lowering downtime

due to failure. Therefore, the PdM system that is presented in this thesis will focus on one of these

parts.

3.3.1 Linear guides

Linear guides consist of two main components: a rail and a block that slides along it. Their purpose

is to both guide the movement of whatever is mounted on the cart and to ease the motion of that

same part, by reducing the resistance to the movement due to friction.

3.3.2 Ball Screws

Ball screws are mechanical linear actuators that translate rotational motion, for example of a motor,

into linear motion. These work by pushing a chain of balls inside the ball nut that track the outside

of a helical screw inside the actuator per se, which causes the ball nut to move up or down,

depending on which direction the motor is working. An alternative to this sort of working is

the screw itself is powered by the motor, spinning, while the ball nut has that degree of freedom

locked, being unable to spin. This forces the balls to track up or down the screw, pushing the ball

nut up or down with it. In this case, AMOB uses this second solution, where the screw spins, and

the balls track a closed circuit inside the ball nut, called a ball recirculating screw.

These mechanisms allow for a very efficient conversion of power from a motor into linear move-

ment,with high precision and control. Its main disadvantages are its comparatively big size, as

the actuator has to have space for the tracks for the balls, and that, although able to support heavy

loads, it can be back-driven, meaning the actuator can force the balls to move. This is specially

concerning when the motor driving it needs power to maintain a certain position, as a power outage

can mean that the supported load will be dropped.

AMOB also uses HIWIN ball screws for their e-MOB machines.
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Figure 3.3: Ball screw of the H axis of one of AMOB’s machines

The servomotors AMOB uses to power these screws are almost exclusively OMRON 1S series

with built-in EtherCAT® communications. These servomotors can be connected to a PC running

Sysmac Studio via EtherCAT®, which allows for access to the working parameters set for the

servomotor and data gathered by the servomotor itself, such as torque and velocity. This data

can come in two ways: Process Data Objects (PDO), which relay real time data every time the

servomotor is sampled, such as position; and Service Data Objects (SDO), which is a channel to

relay sporadic information, such as error codes. This data is used by AMOB’s own software to

control the production process and can be exported for analysis if requested, in the form of data

traces.

3.4 e-MOB 42 9611 with vertical axis problems

As mentioned before, it is important to understand what leads to failure before devising mainte-

nance strategies. Also, a specific current case allows for the collection of data, although limited to

what can be retrieved remotely with the capabilities the machine currently has, as it is overseas.

Therefore, this thesis will focus on the parts affected by this problem on this machine, as a basis to

test the systems here devised. The idea being that those can be applied to the rest of the machine

in the future with small adjustments.
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In this section a machine already in use at a client that was having problems will serve as the basis

of this case study.

3.4.1 Machine’s history

During the 12 months of this machine’s operation, the first breakdown happened after four months

of use. After that the ball screw failed three more times, being replaced each time with a similar

one. The data extracted from it helps define what are normal function parameter values and what

are failure indicating values, despite the fact that the failure was not due to wear and tear because

it failed much earlier than expected.

This machine had completed 224944 parts and 901992 bends at the time of the second service

intervention, with the main car going a total distance of 524.16 km. Mechanically, this machine is

an e-MOB 52 incorporated with an automated cell that works 24 hours a day, 7 days a week.

Figure 3.4 shows the machine in question at the client’s facilities, which was taken by the service

team that revised the equipment during diagnostics.

Figure 3.4: e-MOB 42 9611 at the client
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This specific model is not capable to perform bends in the opposite direction, since the head of the

machine can not rotates on itself, like the AMOB 2Bend machines.

This particular machine was equipped with just one tool, the OD 25x1,5 CLR 2D, where OD

stands for the outer diameter and CLR for center line radius.

3.4.2 Problem

The customer contacted AMOB as they noticed increasing noise when the H axis was triggered

and a sudden "hiccup" when passing a certain point in that axis. The spindle of the ball screw also

looked very worn out.

AMOB observed a very abrasive atmosphere at the plant when they replaced the entire ball screw.

As mentioned before, up to June 2021 this ball screw had already been replaced 3 times, with an

average life for each ball screw of around two months. This last time, for the failure in July, AMOB

is planing on replacing the ball screw for a different ball screw, namely a Bosch Rexroth FEM-E-C

40x10Ex6-6 with T9 tolerance ball screw. This ball screw has a dynamic load rating of 86500 N

(arround 8826.5 kg f ) and a static load rating of 132200 N. This screw was chosen as there was

no room within the machine for a higher diameter screw and, even though it is significantly more

expensive than the original ball screw, it has almost double the dynamic load rating.

3.4.3 Approach

In order to do the root cause analysis of this problem, a thorough characterization of the parts

involved in this axis movement will be done. All possible causes will be listed and their plausibility

evaluated based on the analysis of one of the replaced ball screws, data from the machine and

project data. In the end, all causes that contributed to this problem will be listed.

3.4.4 H Axis

The head of the machine, which includes all the components responsible for bending the tube per

se, is mounted on a carriage capable of horizontal (W axis) and vertical (H axis) movement. This

is needed in order to bend the tube with different tools for different radii, therefore allowing for

quick and easy alternation of the bending tools.

While some configurations of this machine include a gas spring to aid in this movement, the

machine experiencing this problem does not include one. The same ball screw is used in both the
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machine with the gas spring and without. The inclusion of the gas spring is to save energy, being

offered as an option to the client.

This machine also does not include a mechanical brake in this axis, therefore needing the servo-

motor to work continuously to sustain the machine’s head in any given position.

In this axis, high rigidity ball type linear guides from HIWIN’s HG series, namely the HIWIN

HGW35HCZA, are used, as can be seen in figure 3.5. This series main feature is being able

to withstand high loads and having a high rigidity in all directions. It is also a self-aligning

model, which minimizes installation errors. This configuration in particular (HGW35HCZA) is

a combination flange (drilled and tap holes) type standard block with top or bottom mounting,

medium preload, for super heavy loads with normal particle ingress protection (HIWIN, 1998b).

Figure 3.5: Linear guide in one of AMOB’s machines

In respect to maintenance the manufacturer recommends checking the grease every 100 km or

every 3 to 6 months (HIWIN, 1998b). As for the nominal life of the guide, the manufacturer

indicates the following equation for its calculation:

L = (
fh× ft ×C

fw×P
)

10
3 ×100 [km] (3.1)
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This gives us a conservative estimate of the lifetime of the guide, as in the manufacturer’s tests this

value was exceeded without incurring in damage, such as fatigue flaking, when this value was sur-

passed. The manufacturer provides a nominal life calculator on their website, which was the tool

used by AMOB when dimensioning this part. Considering the maximum value of velocity reached

65 mm/s, since the average maximum velocity reached on the 100 mm to 145 mm movement of

the H axis is around 60 mm/s, and awarding this value a slight safety margin, an accelerating time

of 0.45 seconds, calculated by dividing the number of indexes when the velocity goes from 0 to

60 m/s and dividing it by the number of samples collected per second, averaging several of these

values, with a stroke of 45 mm and a frequency of 2 times a minute, value considering also the

data trace conditions and values.

Using these values, a nominal life of 15513.56 km or 1436440.5 hours was calculated, with a static

safety factor of 9.84.

This axis is controlled by a brushless servomotor, namely OMRON’s R88M-1M2K020C-BS2

with 9,55 Nm of rated toque, with an angular reducer attached, Dynabox’s 45 i=5,2 J<5 H1, which

transmits the motion to the carriage by means of a ball-recirculating screw, a type of ball-screw,

which allows for rotational motion to be converted into linear with very little friction (AMOB, a).

This particular machine uses a HIWIN R40-10K4-FSCDIN ball screw to transfer movement to

this axis. This assembly can be seen in figure 3.6, with the ball-recirculating screw marked as 1.

Figure 3.6: Bending head carriage with H axis ball-recirculating screw marked as 1 (AMOB, a)



3.4 e-MOB 42 9611 with vertical axis problems 37

This screw is held by two bearings at the lower edge, acting as a fixed joint, with the exception of

the rotation of the screw. The upper edge is free. In figure 3.7 the drawing of the assembly of the

ball screw in this machine can be seen.

Figure 3.7: Engineering drawing of the assembly of the ball screw in the H axis of e-MOB 52

The current maintenance plan for this system is for each of the 4 linear guides of the vertical

movement of the machine’s head, which can be seen in the picture below, to be lubricated every

170 work hours or once a week with grease Kernite NGLI 2 (AMOB, a).

Figure 3.8: Places to lubricate when doing H axis maintenance (AMOB, a)

The ball screws automatic lubricating unit should be checked at the same frequency as the linear

guides, with the amount of grease dispensed being adjusted based on the visual inspection of the

ball screw (AMOB, a).

The automatic lubricating unit used by AMOB is Oberrecht’s simalube® automatic lubricator.

These long-term stepless automatic lubricators consist of a cylinder that is filled with grease or oil

with a gas generator, a dry cell that produces hydrogen, that pushes a piston, which in turn pushes

oil or grease out, at a set rate. This rate can be manually adjusted using an allen key to rotate the

rate indicator at the top of the cylinder, as can be seen in the figure 3.9.
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Figure 3.9: Lubrication unit from one of AMOB’s machines from two perspectives

This setting is dependent on the amount of grease needed daily, resistance from grease lines,

ambient pressure and the viscosity of the grease used.

3.4.5 Ball screw analysis

When one of the replaced ball screws came in from the client it was inspected for clues into what

the problem might be.

The ball screw was not broken or noticeably bent out of shape and no balls appeared to be miss-

ing.The gaskets on the nut seemed to be undamaged.

Visually, there was more than enough lubricant on the ball screw, even though this lubricant was

very dirty, as it had a sparkly dark grey tone to it, instead of its normal cream color. There were

also significant signs of wear on the tracks, with some of them being almost entirely removed, as

can be seen in figure 3.10.
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Figure 3.10: Replaced ball screw with severe wear signs

When manually moving the ball screw nut up and down increased difficulty in moving the nut

with a downwards force applied was noticed. More noise and trepidation could also be detected.

When an upwards force was applied none of these signs were observed.

3.4.6 Failure causes

There were identified four main areas where mistakes may result in this problem arising:

• Faulty Parts

• Lubrication

• Project

• Assembly

These were then broken further down into what specific actions may have contributed to or caused

the problem. Those actions are codified in the Ishikawa diagram as shown in figure 3.11.
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Figure 3.11: Ishikawa diagram with the possible causes of the ball screw failure

3.4.6.1 Lubrication

As mentioned before incorrect lubrication leads to higher wear of moving parts. In the case of this

ball screw, there are three things that may have been done incorrectly in terms of lubrication that

could explain the failure: not enough lubrication, not the right lubricant and contamination of the

lubricant.

As for the lack of lubrication, that can be excluded by virtue of the visual analysis of the screw,

where there could even be observed excess lubrication, which would not lead to this problem.

As for the lubricant itself, not only is this the lubricant used in all of the ball screws of AMOB

machine’s as it has the recommended viscosity by the manufacturer for the use. Another possibility

was the lubricant interacting with the material of the gaskets leading to their degradation and

abrasive particles getting in. Again, visually, the gaskets show no sign of damage.

As for the particles that contaminated the lubricant that were seen in the visual inspection leading

to increased wear, it is unlikely that it has any significant impact. Firstly, because the screw nut

is equipped with a NBR finger wiper, which removes courser material thanks to its hard plastic

fingers, and finer particles have almost no impact due the lubricant grease. Also, if abrasive

particles present on the factory atmosphere were the culprit, all the other axis in the machine

would show similar problems or at least increased wear which has not happened.
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Therefore, the problem is unrelated with lubrication. This also means AMOB’s hypothesis for the

cause of the problem is wrong.

3.4.6.2 Faulty parts

This is the easiest option to discard. If the problem was by chance having one ball screw that left

the factory defective, replacing it should have resolved the problem. The other possibility would

be that it was a wider problem that the manufacturer had all of their ball screws for this series

were somehow defective. If this was the case the manufacturer would quickly realize it and issue

a recall, which did not happened.

Therefore, it is certain that a defective ball screw did not cause this failure.

3.4.6.3 Project

In terms of project mistakes that may lead to the failure of the ball screw it is limited to the choice

and dimensioning of said ball screw. With that said, dimensioning any part is a big challenge,

where there is a lot of margin for mistakes.

Its highly likely that there was poor dimensioning as the flattening on the replaced ball screw that

was analyzed are associated with excessive load. Since the load in this axis is not variable, the ball

screw must be undersized.

It is therefore important to know how AMOB dimensioned this ball screw in the first place, in

order to understand where mistakes and misassumptions might have happened.

To choose the screw AMOB used a sizing tool provided by HIWIN in their deutsch website (Hi-

win, 2021, https://www.hiwin.de/en/service/auslegungstool). Considering that

the machine’s head plus tools weighs 1070 kg, AMOB decided in this tool to leave a safety margin

and consider 1500 kg. The spindle was set to rolled and the nut type to flange. The spindle length

to 300 mm, the free length to 280 mm, and the maximum stroke to 240 mm. The service life was

set to 125 km. All the other parameters were left at standard values. This indicated them the screw

to use, R40-10K4-FSDIN.

Even though this gave them what screw to use, it did not indicate its service life, only that is greater

than 125 km. So, in order to know this value AMOB used the life calculation tool that HIWIN

provides on their taiwanese website (Hiwin, 2016, https://www.hiwin.tw/support/bs_

lifecalculate.aspx). However, the ball screw chosen is not available in this tool, so AMOB

used the 38-10K4-FSCDIN. Although this ball screw is dimensionally identical to the one the

40-10K4-FSCDIN, its dynamic load rating is of 5660 kg f . Compared to the dynamic load rating

https://www.hiwin.de/en/service/auslegungstool
https://www.hiwin.tw/support/bs_lifecalculate.aspx
https://www.hiwin.tw/support/bs_lifecalculate.aspx
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of the 40-10K4-FSCDIN of 4550 kg f , the dynamic load of ball screw chosen for the service

life calculation is almost 25% higher. When calculating the service life for the ball screw that

was actually installed, based on the formulas available in the HIWIN catalog and keeping all

the parameters (loads, cycle, configuration) the same as the ones used by AMOB, which can be

consulted in appendix D, the service life obtained was of approximately 160km. This value is

significantly lower than the 295 km calculated by AMOB (see appendix D).

However, this alone does not explain fully the failure, as even when considering the correct service

life, the ball screw should last at least a year before failing. This considering that over the course

of 18 days the distance traveled in this axis at the client was recorded and was 5330 meters, which

averages at about 300 meters per day.

3.4.6.4 Assembly

The main factors in the assembly process that can result in accelerated wear and failure of the

ball screw are the center of the screw being misaligned with the center of the nut, causing a radial

force on the screw that may lead to seizure and the mentioned wear, and the alignment of the

screw, meaning its parallelism towards the plane of movement of the head (the plane of the H and

W axis, i.e. vertical and horizontal movement) and its perpendicular plane that also contains the

H axis. These planes are represented on figure 3.12 in blue and red respectively.

Figure 3.12: Machine with the parallelism planes colored
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Alignment procedures

The current method used to assure both of these conditions is done when mounting the machine’s

head in its body. A overhead crane holds the panel that will support the machine’s head. While

the guide blocks of said panel are already mounted on the guide rails in the machine’s body,

therefore imposing the trajectory of the movement, the assembly operator lowers the plate until

the nut snaps into the nut carrying part on the machine’s head panel. If when this happens there is

noticeable movement of the screw the assembly operator tweaks the screws that hold the support

of the spindle of the ball screw. This process is repeated until there is no movement of the spindle

or the operator deems that movement small enough. This procedure can be seen in figures 3.13

and 3.14.Doing this for any one position should assure the centricity of the nut and the part on the

machine´s head panel.

As for the parallelism of the spindle with the guide’s imposed trajectory, a similar procedure must

be conducted on a second point along the ball screw. To increase the accuracy of these procedures,

these points must be as far away from each other as possible, as for the same misalignment,

the movement of the spindle will be greater with increasing distance. Therefore, it is common

practice to conduct the first procedure (assures centricity) with the ball screw nut the bottommost

position of the spindle and the second procedure (assures alignment) at the upmost position. This

second procedure works by assuring the centricity in two different positions on the same axis,

which means the distance between the guides and the spindle is the same at two different points,

therefore assuring their parallelism. Any misalignment with the plane perpendicular to this one

(red plane in figure 3.12) would also produce movement of the screw in this second procedure,

being the parallelism of the screw towards this plane also assured in this procedure.

Figure 3.13: Machine during the alignment procedures
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Figure 3.14: Ball screw during alignment procedure, before and after the panel is lowered

There are two big flaws with this procedure. First of all, when tweaking the position of the screw

for the second procedure there is no guarantee that the centricity of the first procedure is not

lost. This will lead to the screw still not being parallel to the guides and the red plane despite

the procedures. Sometimes the procedure is repeated in an intermediary position if the operator

thinks it is necessary, but this does nothing to avoid this issue. Secondly, because the length of

the screw is not very long (around 300 mm) and the validation is dependent on the sensibility and

experience of the person assembling the machine, there is no guarantee that all screws that pass

these procedures are within the tolerances defined by the manufacturer.

Screw tolerances

For the model of screw used by AMOB there are two available tolerance classes available. These

classes are defined by the maximum admissible path deviation over a 300 mm length. For this ball

screw they are: T5, which corresponds to 0.023 mm, and T7, which corresponds to 0.052 mm.

AMOB in every substitution used the T7 tolerance ball screw.
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Checking misalignment

In an operation conducted with the service office, the machine’s head was disassembled from the

ball screw, to a configuration similar to the one shown in figure 3.13.

A dial gauge was fixed to the metal plate where the machine’s head was assembled with its tip

against the ball screw nut. The screw nut was manually rotated so it would travel up 200 mm.

The metal plate was risen the same distance using the overhead crane. The results were validated

by zeroing the dial gauge with the nut at the same position and lowering the plate just enough so

some of the nut enters the nut carrying piece. The dial gauge with the tip at the bottom of the nut’s

body should indicate the adjustment of the screw so it is centered with this piece. This adjustment

is equal in value to the misalignment of the ball screw. This second procedure can also give the

misalignment in any plane other than the plane of the guide rails (blue plane in the figure 3.12).

For the case study machine the misalignment in that plane (over 200 mm) was 0.210 mm. This

is clearly in excess of the tolerances of the ball screw. On the perpendicular plane (red plane in

figure 3.12) it was just 0.008 mm, a insignificant amount well within the tolerances that can be

disregarded given the scale of the misalignment in the other plane.

In fact, this misalignment is so severe that the fault for the problems of this ball screw can be

mainly attributed to it.

3.4.7 Conclusions

As seem before, it can be concluded that bad dimensioning and misallignment of the ball screw

were the causes of its repeated failure.

How each of this problems contributed to the ball screw failure can be seen by analyzing this graph

made by ball screw manufacturer.



46 Case Study

Figure 3.15: Service life factor as a function of misalignment, adapted (HIWIN, 1998a)

A misalignment of 0.21 mm over a 200 mm path is the equivalent of a 10.5x10−4 radians, which

is a misalignment so severe that falls out of this graph. Still, it can be assumed that the service life

factor is lower than 0.1. Considering that the correctly calculated life is about 160 km and not 295

km as previously thought, the service life of this ball screw is lower than 16 km. Given that based

on the measured average of 300 m per day traveled in this axis, and that the machine operates

every day, including holidays and weekends, it would travel about 9 km a month. This means the

ball screw should fail around the two month mark, which is exactly what was happening in reality.

While the choice for a ball screw with a larger dynamic load rating and inclination tolerances

(Bosch Rexroth FEM-E-C 40x10Ex6-6 with T9 tolerance) for the next repair addresses to a great

extent the problem, until the ball screw is properly realigned the service life of this ball screw will

always be significantly lower than what is indicated by the manufacturer and what is expected by

the client. Based on these findings AMOB also realigned the ball screw when they changed it for

this Bosch ball screw.



Chapter 4

Architecture of the PdM system

In this chapter the architecture of the predictive maintenance system will be outlined, from the

sensorization and data acquisition to data storage. Different options will be presented and the

reasoning behind the choices made explained.

4.1 Introduction

In broad terms, a PdM system can be broken down into three parts: sensorization and other data

gathering equipment, data processing and data storage.

Between these parts, there needs to be communication. That requires data formats to be chosen

and standardized across the system and communication protocols to be chosen.

For these systems, there are two main types of implementation: local or on the cloud. A local

system runs in the machine itself or in devices installed for that purpose parallel to the machine,

and data is stored locally. While they may be accessed remotely, these systems are designed

to provide information to the user on site. This is similar to the solution currently available in

AMOB’s machines, which consists of TeamViewer 11 license that is installed in every e-MOB

machine. This is a remote desktop software that allows for remote control of the computer that

controls the machine. This solution has several drawbacks such as: the data is only available while

the machine is turned on and online, due to the lack of storage of the controlling computers data

can only be obtained at request and not continuously, the data that can be obtained is limited to

the outputs of AMOB 3D bending software and the user interface can’t be optimized for the user

and platform that is being used. This means this solution is currently only available for AMOB to

help troubleshoot any problems a customer might be experiencing.
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What is intended with this project with INEGI is to implement a cloud based solution, which means

data storage and possibly part of data processing is done in servers connected to the internet. This

opens up possibilities such as continuous data gathering, which makes PdM possible, and tailor

made customer solutions, which allows AMOB to offer its clients machine’s metrics and analysis

anywhere as a service.

The objectives of this project are:

• Create a PdM structure

• Monitor the process

• Process optimization

This thesis focuses on the first of these goals.

4.2 Data gathering and sensorization

In this section it will be analyzed what data can be retrieved from the machine as it is. For relevant

data that can not be obtained this way, sensorization systems will be designed.

4.2.1 Available data

From the machine’s software several operational variables can be obtained from the servomotors.

The most relevant of these variables are: command position, actual position, command velocity,

actual velocity and torque. These are available for every axis as all axis are controlled by servo-

motors. The servomotor communicates them as process data objects (PDO), which is a protocol

for real time data, which the the servomotor controller software, which is integrated in AMOB’s

3D bending software, can turn into an float variable. These variables can be written and exported

either as comma separated value file (.csv) or as Structured Query Language (SQL) data.

Apart from this data, by implementing counter blocks in AMOB’s 3D bending software functional

block diagram (FBD) that controls the servomotors, the number of hours of use, the distance

traveled in a given axis and the number of cycles done can also be obtained. The date and time

elapsed since the last maintenance procedure can also be obtained given that a second counter

block for time is present that is reset every time the machine is serviced.
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4.2.2 Sensorization

Besides the available torque data, as mentioned in section 2.7.1.2, vibration data is also useful for

PdM of rotating parts. For that, a sensor capable of recording vibration signals is needed. The

most commonly used type of sensor for this application is accelerometers. These sensors offer

comparable performance to acoustic emission sensors while being less susceptible to noise from

the surroundings. Withing accelerometers, as explained in chapter 2.7.1.2, MEMS sensors are

much more advantageous for this kind of applications than piezoelectric sensors.

Because, as will be discussed later in this chapter, the backbone of the PdM system will be a Rasp-

berry Pi 4, the solution considered was on which was compatible with this device. In a 2017 paper

titled “Development of vibration spectrum analyzer using the Raspberry Pi microcomputer and

3-axis digital MEMS accelerometer ADXL345” (Iwaniec et al.), the authors study the feasibility

of using a ADXL345 sensor in conjunction with a raspberry pi in vibration analysis, with positive

results, as the rig is able to do real time accurate analysis of the signal in both domains.

4.2.2.1 Sensor characteristics

In terms of characteristics, the ADXL345 is an ultralow power device, consuming only 23 µA in

measuring mode at VS = 2.5V ; high resolution, 13-bit full resolution at±16 g (10-bit fixed resolu-

tion) and a rated sensitivity of 3,9 mg/LSB across the measurement range ; thin and light MEMS

sensor that connects via I2C or SPI (3 or 4 wires) (Devices, 2013). This sensor is also AQEC

standard certified, meaning it can be used in defense and aerospace applications, and has extended

industrial temperature range from -55 C to +105 C (Devices, 2013). Its output is formatted as 16-

bit twos complements and has a FIFO buffer to minimize host processor activity, in this case the

load on the Raspberry Pi’s processor (Devices, 2013). It measures just 3 mm x 5 mm x 1 mm and

can be configured for 4 different measuring ranges: ±2 g (3,9 mg/LSB),±4 g (7,8 mg/LSB),±8 g

(15,6 mg/LSB) and ±16 g (31,2 mg/LSB) (Devices, 2013; Iwaniec et al.). Based on the paper en-

titled “Failure Diagnosis System for a Ball-Screw by Using Vibration Signals” (Lee et al., 2015),

it can be presumed that, based on the range of frequencies establish in this paper for ball screw

vibration and also their relationship to its speed, that this sensor capabilities in terms of range of

frequencies detected are well beyond the necessary for this application, since the maximum speed

of the ball screw is 9,6 rotations per second or 576 RPM.

All things considered, the ADLX345 sensor was chosen for the collection of vibration data of the

H axis ball screw. Suppliers were researched, as the sensor used in this process was purchased

ElectroFun, a local technology shop, for 5,85C plus VAT (7,20C including VAT). However, if the

intention were to outfit all axis of the machine with this sensor or multiple machines this supplier

offers progressive quantity discounts.
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4.2.2.2 Sensor set-up

As mentioned before there are two different ways of connecting this sensor to the raspberry pi. I2C

is the simpler of the two to code for, which can be done without using any pre-existing libraries.

It also only needs 2 wires to communicate, making the wiring process very simple. However, the

ADXL345 is limited to 2 addresses, which is what identifies each I2C device in communications,

therefore limiting it to a maximum of 2 of these sensors per Raspberry Pi. Another disadvantage

of this standard is its bus speed of 100 kbit/s, which can be altered in the raspberry and in the

sensor to the 400 kbit/s fast mode. Because when connected via I2C the sensor does not use its

FIFO chip, for sampling frequencies over 200 Hz (for fast mode) and 50 Hz (for standard mode)

the signal becomes unusable due to digital noise. The second sensor was used as a dummy to

reduce the interference from noise and vibration by other components. In figure 4.1 a diagram on

how the sensors were connected can be seen. The main sensor was mounted on the nut carrying

part and the dummy close by on the machine body. Both sensors were screwed using the holes that

come drilled into them and the bottom part had to be isolated using tape, as short circuiting certain

circuits with the machine’s body was a hard to diagnose problem that occurred during testing. To

connect the sensor the pins were soldered onto the sensor and custom made cable with 8 female to

female jumper wires, with the needed with approximately 1.5 meters was made (in order to allow

for both SPI and I2C connections).

Figure 4.1: Wiring diagram of the ADXL345 sensors connected via I2C
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Figure 4.2: Main sensor mounted on the nut carrying part of the H axis

As an alternative, the 4 wire SPI connection was also tested. This allows the verification whether

there are frequencies above that 200 Hz threshold that are of importance, by utilizing the full 1600

Hz capacity of this sensor. This is more complex to code for, therefore the code for this connection

used as a basis an open source library posted on GitHub (nagimov, 2020). Because this library is

made for just one sensor only the main sensor was connected via SPI. The position of the sensor

is the same as via I2C. The connection to the raspberry itself is also more complicated as can be

seen in wiring diagram of figure 4.3.

Figure 4.3: Wiring diagram of the ADXL345 sensor connected via 4 wires SPI (nagimov, 2020)



52 Architecture of the PdM system

4.2.2.3 Sensor code

For coding the language chosen was python. This language was used because it is a language

commonly used for raspberry pi applications since its operating system (OS) has a python Inte-

grated Development Environment (IDE) built in (Thonny). It also has a lot of open source libraries

available, which facilitate the development of new software.

For the sensor connected via I2C smbus, which stands for System Management Bus and manages

data between the sensor and the raspberry, time and datetime libraries were used. The first step

was creating variables with all the hexadecimal codes to set the sensor parameters (i.e. scale,

bandwidth and addresses. Right after functions for setting each parameter where created. These

will bridge convert the user input into the correct hexadecimal code to send to the sensor. This

are useful for the code that was used to test the sensors implementation and gather the data shown

in the next chapter but for the PdM they would be set to a fixed value. The same applies to the

next section of the code, the user inputs. This allows the user to set the sensor parameters when

running the code by typing the value at the prompts at the command bar. Next the hexadecimal

codes corresponding to the inputs are sent to the sensor. There is a verification and confirmation

that these values were set correctly.

Having implemented the code and installed the sensor in the machine the data acquisition itself

can start. This was programmed using a loop that probes the sensor for data on each of its axis

(x, y and z; hexadecimal codes 0x32 to 0x37) every time the time between the last the loop ran

and current time is bigger than the period set when setting the sampling frequency. This loop runs

while the time is inferior to the loop end time, which consists of the time when sampling started

plus the duration of the run. The data from the sensor, along with a timestamp each time a sample

is taken are stored in a list. The values on this list are the outputs of the sensor. Those values are

then converted into acceleration values in g’s.

The data from each of the sensors is then stored on separate .csv files.

This code was based on what the publication Cassel Barbosa et al. (2020) and is in full in appendix

A.

As for the SPI connection a entirely different script was needed. As mentioned in the section

4.2.2.2 this code was based on nagimov’s (nagimov, 2020) code. After downloading the library

and importing it there is only need to set the length of the run, the sample rate and the name of

the output .csv file. The f’ at the beginning of calling function allows the code to substitute the

variables within braces to be called and not just read as is, as can be seen bellow.
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os.system(f'sudo adxl345spi -t {length_s} -f {sample_rate_Hz} -s {name}.csv')

The full SPI code can be seen in full in appendix B.

4.3 Data Processing

For the data obtained by both types of connection the processing is very similar. For this pro-

cessing, three libraries are crucial: numpy, matplotlib and pandas. These are all part of SciPy, "a

Python-based ecosystem of open-source software for mathematics, science, and engineering", as

it cites in its official website (Scipy, 2021).

Numpy consists of a package for mathematical and scientific computing. One of it main advan-

tages is the possibility of working with arrays instead of lists, which are more efficient when

working with the data. In fact, one of the most attractive features of this library is its efficiency.

This library is free to use.

The matlibplot library is a python library that allows data to be plotted, in a similar fashion to the

plotting tools used in Matlab, a commonly used software for data analysis in scientific research.

Not only this library allows for the data to be presented in many different ways right within a

python script, it is also free.

Pandas is another free and open source library that is used for data manipulation and source data

analysis. It is important in importing and exporting data, as it has functions that easily convert

data from one format to another.

As for the data processing itself, time domain, frequency domain and time-frequency domain

graphs were instantly plotted after the data is acquired, as integrated in the data acquisition scripts.

Each type of graph is plotted in a separate figure, which can be saved as .png files. This allows for

a quick and easy way to visualize the data, for quick troubleshooting of any problems.

For the time domain graph the signal is simply plotted against the timestamps of each point.

As for the frequency domain graph, the data has to be transformed first. For that, the fast Fourier

transform (FFT) is used. This is an algorithm that calculates the discrete Fourier transform (DFT).

This transform converts a signal from its original domain, whether it is space or time, into the

frequency domain. It decomposes the signal into its frequencies, allowing for a quick visual

perception of the influence of each frequency in the signal. The FFT does this rapidly, being very

popular in science and engineering uses.

In python, the implementation of the FFT is done through the FFT function in numpy:
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(numpy.fft.fft(a[, n, axis, norm])

This function computes a one dimensional discrete Fourier transform. It takes as inputs an array

consisting of the signal, a, and, optionally, the length of the axis of the output,n , meaning the

frequencies up to which the DFT is calculated, the axis of the input array where the signal is

stored,axis , and the norm, which basically serves to scale the output.

This numpy function defines the DFT as:

Ak =
n−1

∑
m=0

am exp{−2πi
mk
n
} k = 0, ...,n−1 (4.1)

As for the time-frequency domain, there is no need to further transform the data, as this is just

the frequency data, that resulted from the FFT, plotted through time. Since this difference is only

in the way the data is plotted, the specgram function of matplotlib is used instead of the regular

plot function. A spectrogram is a graphic representation of the frequency spectrum of a signal

throughout time, it usually uses color and brightness to represent the spectrum of frequencies.

matplotlib.pyplot.specgram(x, NFFT=None, Fs=None, cmap=None)

The specgram function above has four main arguments: the array containing the result of the FFT

of the signal, x, the number of samples of that dataset, NFFT , which is the sampling frequency

times the duration of the sampling run, the sampling frequency, Fs, and the colormap, cmap,

which is usually set to Spectral and sets the color gamut used to represent the frequencies.

Apart from plotting these graphs, the condition indicators mentioned in table 2.1 are calculated.

To do this, a function was coded in python. That function can be consulted in appendix C. The

code to calculate each indicator was based on the formulas in the table below:
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Table 4.1: Condition indicators formulas

Condition Indicator Formula

Average F1 =
1
N ∑

N
i=1 xi

Skewness F2 =
1
N ∑

N
i=1(xi−F1)

2

Slope sign change F3 = ∑
N
i=2 f [(xi− xi−1)+(xi− xi+1)]

Zero crossing F4 = ∑
N
i=1 step[sign(−xi ∗ xi+1)]

Histogram upper limit F5 = max(x)+ 1
2

max(x)−min(x)
N−1

Margin index F6 = ( max(xi)
1
N ∑

N
i=1
√

xi
)2

Kurtosis F7 =
N ∑

N
i=1(xi−F1)

4

[∑N
i=1(xi−F1)2]2

Latitude factor F8 =
max(|xi|)

1
N (∑N

i=1

√
|xi|)2

Slack factor F9 =
max(xi)

1
N (∑N

i=1 x2
i

Mean deviation ratio F10 =
F1
F2

where:

f =

{
1 if x≥ threshold

0 if x < threshold
T hreshold = 0.2 (4.2)

step =


1 if x > 0

0 if x = 0

−1 if x < 0

(4.3)

sign =


1 if x > 0

0.5 if x = 0

0 if x < 0

(4.4)
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Data Processing Overview

After processing, the data from the accelerometer is available as: the raw list data from the sensor,

a .csv file with that data, time domain, frequency domain and time-frequency domain graphs and

the condition indicators.

Figure 4.4: Data flow chart for the accelerometer

As for the torque data from the machine’s servomotor, since this data is of a different nature, the

data is not suitable for any treatment other than plotting it against time, position and velocity. In

terms of storage for later constructing the PdM model, it only makes sense to keep the raw data,

as these graphs can be easily obtained later and are only relevant in comparison similar to graphs

from different points in the machine’s life and not on their own. Because this raw data through the

machine’s life adds up to very large amounts of data, and given the limited nature of storage, as the

more storage needed the more expensive the storage solution becomes, compression algorithms

such as the ones presented in section 2.4.1 may be needed.
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4.4 Data Storage

As above mentioned, there are two types of storage solutions: local and on the cloud. Because of

the limitations of local storage, a cloud solution was chosen.

Within cloud solutions there is also an option between it being handled by AMOB itself or a

contracted third party. A first party system would require AMOB to have and maintain its own

servers, with all the upfront and maintenance costs it involves and the development of all customer

faced solutions and data analysis tools to be done from scratch. Given the small dimension of

AMOB and the lack of economies of scale, this solution is not feasible. By contracting these

services to a third party not only are the IT infrastructure problems solved as most of these storage

services come bundled with advanced data processing tools and development solutions which

result in easier and faster development of their IT products.

INEGI searched the market for solutions and in conjunction with AMOB settled for the Microsoft

Azure, which is Microsoft’s cloud computing and data storage service for businesses. Azure is a

very encompassing solution that offers software as a service (SaaS), meaning software applications

that are contracted as a subscription service, platform as a service (PaaS), which allows code made

by the client, in this case INEGI and AMOB, to be ran at Microsoft computers, and infrastructure

as a service (IaaS), which provides high level tools that facilitate the development of software,

such as APIs.

There are three of these bundled solutions that made Azure a particularly interesting solution for

this application: Azure IoT Hub, Azure Stream Analytics, Power BI.

The IoT Hub allows for communication of the Raspberry Pi with the rest of Azure cloud services

and for over-the-air upgrades to the code running on the Raspberry Pi.

Stream Analytics allows access to real time analytics calculated on the cloud, by using ML and

other technologies. These analytics help the end clients make better decisions and optimizing their

production processes. It allows the selection of which metrics to import by creating simple SQL

queries.

Power BI allows for easy visualization of all of this data. It acts as a hub for monitoring the

machine and process with simple dashboards and interactive reports. This is the basis of the

interface the end client will interact with.

In the figure 4.5 there is a scheme of flow of data between an IoT edge device, such as a Raspberry

Pi, the other IoT devices and sensors and the cloud.
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Figure 4.5: Flow of data diagram between IoT Edge device and Microsoft Azure cloud services
(an emma et al., 2020)

The Azure Cloud services are priced, among other things, by the amount of storage available.

Microsoft subdivides the storage into three access levels: hot, cold and archive. Hot storage is

meant for data that is accessed frequently and that is meant to be kept for a very short period of

time. This is mainly used to keep data relevant to real time operations and can act as a place to hold

data while it is waiting to be processed and transferred to cold storage. Cold storage is meant for

data that are more scarcely accessed and that is stored for longer periods of time, at least 30 days.

This is useful for holding large data sets for future analysis, such as the data for PdM modeling.

Last but not least, archive is very similar to cold storage in terms of uses but for data that is going

to be kept for at least 180 days and does not need to be accessed at command. The reason is that

there is a one day latency to access the data, as while it is in archive it is not online, having to be

fetched.

The less sporadic the accessed to stored data the cheaper it is. Therefore, archive data is the

cheapest and hot data the most expensive. The contracted storage capacity has not been decided

yet.

For this application, cold storage is the most relevant. As a .csv file with data from one axis weighs

3.3 Mb per minute of trial at a sampling rate of 300 Hz for servomotor data (sampling rate mostly

used by AMOB when collecting data traces from their machines), and considering one minute of

data collected per day daily for 2 years, 2.4 Gb of storage would be needed for the servo data of

just one axis. As for the vibration data, at a sampling rate of 3200 Hz, a 15 second trial occupies

1.7 Mb. Considering again 15 seconds of this data stored a day for 2 years approximately 1.2 Gb

would be needed for one axis. This means that around 3.6 Gb of cold storage are needed for each

axis that is meant to be modeled. As for record keeping once the system is deployed, this would

mean a 1.8 Gb per axis per year would be needed, as archive storage, if no compression is done to
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the data.

4.5 Communication and data standards

AMOB’s machines already use OPC UA, an open source GPL 2.0 license machine to machine

industrial communications protocol, to communicate between the computer running the HMI and

the servomotors.

Data from the machine would be stored in an SQL database. That database could be then directly

accessed by the Raspberry Pi. However, this direct access presents security vulnerabilities to the

machine. A solution is a python script running on the machine to access the machine’s database

and communicate securely with the Raspberry Pi, acting as a buffer. This would allow the com-

munications to be encrypted by the script, and therefore secure. A graphic representation of this

process can be seen in figure 4.6.

Figure 4.6: Machine-Raspberry Pi communication diagram

This communication between the machine and the Raspberry Pi would also be done using OPC

UA, by using the OPC UA library on a python script or via file sharing using the File Transfer Pro-

tocol (FTC). The Raspberry Pi would need to be connected to the internet in order to communicate

with the cloud, which can be done either wirelessly or using Ethernet. These communications are

handled by the Azure IoT Edge.

4.6 System Overview

During the data gathering phase, estimated around two years, data is gathered daily using the

system presented in this chapter and synthesized in the figure 4.7.
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Figure 4.7: End-to-end data flow diagram of system

One set of data will be gathered every day, i.e. one minute of data traces from the servomotor and

15 seconds of vibration data, which is enough to capture the vibrations for the whole movement

for speeds as low as 10% of the nominal motor speed. The vibration data must be gathered while

the axis is in movement, which can easily be achieved through code. The positions during that

time must also be kept, although they may be done at a much lower frequency than in the data

traces. This allows for when preparing the data to train the ML model only to include the relevant

parts (i.e. when the ball screw is being actuated). These are then uploaded to the cloud. This

registers allow for the parameterization of the aging and degradation of the ball screw through-out

time by the ML algorithms.

Once the historical data is gathered and used to train an ML algorithm, such as the ones presented

in section 2.5.1, the resulting model is implemented as a python script on the Raspberry Pi. That

script will have live data from the axis, both in terms of torque and vibration, as inputs and will

output a estimated remaining useful life and a general condition state. These variables are then

stored as hot data in the cloud for a short period of time. These stats can then be checked using a

Power BI based application by the final customer. Some of this data can be archived so that the

model can be assessed and, if needed, updated over time.



Chapter 5

Preliminary testing

The system presented in the previous chapter had as a basis the assumptions that torque and vi-

bration could be used as indicators of degradation and failure. In this chapter, those assumptions,

as well as a prototype of the acquisition system previously presented will be tested. The results of

these tests will be presented and discussed.

The chapter will be divided into 2 main parts: vibration analysis and torque analysis.

5.1 Vibration

5.1.1 Objectives

The objectives with this section of the thesis are:

• To validate sensor choice, placement, and overall proof of concept;

• To collect, filter and analyze time-domain and frequency domain data;

• To identify relevant frequencies of the system for future monitoring;

• Establish a baseline of vibrations for a well assembled machine;

• To test the hypothesis proposed of the influence of misalignment on vibrations.
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5.1.2 Theory

The hypothesis tested in this section is that when assembling the machine, the ball screw is not

correctly aligned, which causes notable changes in the vibration of the screw throughout its course.

This misalignment would cause radial strain between the screw and the nut, that will be referred

to as force P.

Because the screw is fixed on one end and free on the other, and is elastic, which is translated as

the Young modulus of the material of the screw, there can be deformation of the screw, which is

represented by θ as shown in the picture below.

Figure 5.1: Representation of angular deformation

This bending is inversely proportional to the stiffness (k) and proportional to the distance to

the fixed end (l) to the power of three, as shown by the equations of stiffness for a fixed-free

beam(equations 5.1 and 5.2) presented bellow.

θ =
P× l3

3EI
(5.1)

k =
P
θ
=

3EI
l3 (5.2)

I =
πD4

64
(5.3)
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Therefore, the closer the ball nut is to the fixed end, the smaller l is, even for the same P force

caused by the misalignment, the smaller is the ability of the beam to accommodate this force by

deforming (σ ). This is aggravated by the fact that for a beam with constant section, as the screw

is being considered, the moment of inertia (I) for a circular section beam is proportional to the

diameter to the power of 4, as shown in equation 5.3. Considering that the diameter of the screw

of the ball screw in this case is exceptionally large for the application (40 mm), the stiffness (k)

of the screw is very high, aggravating the problem of not being able to deform closer to the fixed

edge absorbing any forces due to misalignment.

Because the struggle between the force pushing the ball nut down due to the screw rotating and

radial forces caused by the misalignment, that are less and less be absorbed by the screw, pressure

and friction between the screw, balls and ball nut increases. This increasing struggle will, accord-

ing to the hypothesis in this section, provoke increased vibrations as the ball nut approaches the

lower part of the screw, and the added pressure and friction will accelerate the degradation and

failure of these parts. This would cause faster wear of the screw and, as seen before, is a cause of

concern in terms of maintenance of these machines.

5.1.3 Approach

In a machine in every way equal to the one that presented in section 3.4, that was present at AMOB,

two ADXL345 sensors were installed and connected to a Raspberry Pi running the adequate code.

Using the same procedure as in chapter 3, the misalignment was measured at 0.10 mm per 200 mm

of course, or 0.15 mm per 300 mm. While this is less than half the misalignment on the ball screw

previously presented it is still well above the T7 tolerance, at almost double its value.

Preliminary trials using both SPI and I2C at different sampling rates and scales were ran to test

both protocols and see which one was more appropriate.

Using SPI at 3200 Hz sampling rate 23 trials were ran with different velocities and positions to

test the influence of these parameters in the results.

In terms of positions the trials ran between the two most extreme positions, 35 mm and 274 mm,

and also stopping in the middle, at the 155 mm position. This allows the comparison between the

vibrations on the upper part of the ball screw and the lower part.

In terms of velocity, the trials were done at: 150%, 105%, 75%, 30% and 15% of the nominal

velocity of the motor (i.e. 2000 rpm, equivalent of 64 mm/s ball screw nut velocity). On automatic

mode, the way these machines operate most of the time, the velocity defaults to 150% of the

servomotor velocity, or 96 mm/s linear velocity of the nut. The objective of these trials is to see

the influence of the velocity on the vibrations and whether certain velocities make more evident
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features of interest of the signal.

On the table 5.1 shown bellow, the parameters for each trial are listed.

Table 5.1: Positions and velocities of vibration trials

Trial 1 2 3 4 5 6 7 8 9 10
Initial Position [mm] 35 35 274 35 274 35 274 35 274 35
Final Position [mm] 35 274 35 274 35 274 35 274 35 274
Velocity
[% of nominal velocity] 0 150 150 105 105 75 75 30 30 15

Nut Velocity [mm/s] 0 96 96 67,2 67,2 48 48 19,2 19,2 9,6
Trial 11 12 13 14 15 16 17 18 19 20
Initial Position [mm] 274 35 155 274 155 35 155 274 155 35
Final Position [mm] 35 155 274 155 35 155 274 155 35 155
Velocity
[% of nominal velocity] 15 150 150 150 150 75 75 75 75 15

Nut Velocity [mm/s] 9,6 96 96 96 96 48 48 48 48 9,6
Trial 21 22 23
Initial Position [mm] 155 274 155
Final Position [mm] 274 155 35
Velocity
[% of nominal velocity] 15 15 15

Nut Velocity [mm/s] 9,6 9,6 9,6
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5.1.4 Results and discussion

Concerning the data from I2C connected sensor, as suspected, the data for sampling rates over 400

Hz appear as the one in the figure bellow.

Figure 5.2: Examples of time-domain data from the ADXL345 connected via I2C for a sampling
rate over 400 Hz

As can be seen in figure 5.2, the data for the x and y axis alternates between the extremes of the

plot, in this case 1 g and -1 g, as the range was set for 2 g in this particular trial. Several trials

changing the range and sampling rate resulted in similar results for rates over 400 Hz. This occurs

because the Raspberry probes the sensor for data faster than the speed of the connection which

generates the overpowering noise that can be seen in the signal.

When analyzing the frequency domain graphs for sampling frequencies over 400 Hz it also be-

comes apparent that, as expected, regardless of the sampling rate the graph stops at 200 Hz, as can

be seen in the picture below.
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Figure 5.3: Examples of frequency-domain data from the ADXL345 connected via I2C for a
sampling rate over 400 Hz

Because of the amount of noise that rendered the signal useless and the cut off frequency for the

frequency domain graphs SPI was used for the trials testing the hypothesis and gathering the data

to be analyzed,

In the tables below are the results of the 10 most relevant condition indicators calculated based

on the vibration data of the trials presented on tables 5.2, 5.3 and 5.4 for each of the 3 axis of the

sensor.
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Table 5.2: Condition indicators for the vibration trials in respect to the X axis of the sensor

Index
A

verage
Skew

ness
Slope

Sign
C

hange
Z

ero
C

rossing
H

istogram
U

pperL
im

it
M

argin
Index

K
urtosis

L
atitude
Factor

C
learence
Factor

A
vg.Standard

D
eviation

R
atio

1
1.83E

-02
0.332

712
9407

0.250
1.73

0.373
6.94

60.00
0.296

2
1.90E

-02
0.160

1856
9367

0.555
6.63

1.044
11.95

81.93
0.237

3
1.86E

-02
0.078

2063
9400

0.359
2.65

0.889
7.38

49.36
0.223

4
1.90E

-02
0.184

1529
11238

0.328
2.52

0.434
7.69

60.05
0.266

5
1.82E

-02
0.246

1655
11415

0.344
2.79

0.556
8.12

62.26
0.252

6
1.87E

-02
0.206

1525
15087

0.352
3.12

0.422
8.87

73.70
0.282

7
1.77E

-02
0.150

2265
15232

0.336
2.64

0.521
7.85

61.57
0.246

8
1.87E

-02
0.284

2008
26525

0.312
2.72

0.455
8.69

75.09
0.302

9
1.88E

-02
0.303

2061
26394

0.352
3.41

0.480
9.69

83.07
0.301

10
1.76E

-02
0.323

3786
52593

0.312
2.78

0.529
8.88

76.91
0.287

11
1.88E

-02
0.248

4598
53291

0.305
2.49

0.391
8.19

70.77
0.299

12
1.79E

-02
0.093

1130
5747

0.352
2.69

0.976
7.64

53.18
0.225

13
1.77E

-02
0.221

995
5803

0.437
4.29

0.862
9.82

70.79
0.231

14
1.82E

-02
0.087

1052
5683

0.320
2.23

0.680
6.95

49.08
0.231

15
1.88E

-02
0.056

1128
5819

0.414
3.73

0.983
9.00

61.40
0.235

16
1.81E

-02
0.311

907
9502

0.367
3.57

0.532
9.71

80.86
0.279

17
1.86E

-02
0.222

997
9532

0.305
2.38

0.513
7.81

64.49
0.281

18
1.86E

-02
0.095

1318
9439

0.297
2.09

0.394
7.05

56.37
0.266

19
1.86E

-02
0.227

1284
9616

0.305
2.28

0.498
7.48

59.49
0.269

20
1.90E

-02
0.259

2473
28437

0.336
3.07

0.456
9.12

79.18
0.304

21
1.90E

-02
0.281

2355
28506

0.305
2.52

0.474
8.26

70.88
0.303

22
1.89E

-02
0.289

2146
28449

0.297
2.42

0.470
8.17

69.56
0.303

23
1.86E

-02
0.261

2507
28727

0.297
2.40

0.431
8.09

70.07
0.299
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Table 5.3: Condition indicators for the vibration trials in respect to the Y axis of the sensor

Index
A

verage
Skew

ness
Slope

Sign
C

hange
Z

ero
C

rossing
H

istogram
U

pperL
im

it
M

argin
Index

K
urtosis

L
atitude
Factor

C
learence
Factor

A
vg.Standard

D
eviation

R
atio

1
-4.10E

-03
0.252

660
9770

0.266
2.00

0.407
7.51

69.59
-0.066

2
-4.88E

-03
0.172

1408
9689

0.367
3.20

0.524
8.71

69.68
-0.067

3
-5.01E

-03
0.128

1501
9789

0.367
3.07

0.592
8.37

63.70
-0.066

4
-5.22E

-03
0.193

1224
12027

0.281
2.07

0.464
7.36

62.52
-0.078

5
-5.36E

-03
0.217

1258
11476

0.289
2.06

0.461
7.12

59.72
-0.077

6
-5.07E

-03
0.222

1416
15875

0.258
1.79

0.414
6.94

61.27
-0.078

7
-5.54E

-03
0.249

1393
15501

0.297
2.34

0.445
7.90

69.40
-0.085

8
-4.62E

-03
0.248

2035
28007

0.328
3.10

0.542
9.45

86.36
-0.075

9
-4.81E

-03
0.265

1921
27497

0.258
1.89

0.483
7.31

66.52
-0.077

10
-5.83E

-03
0.267

3641
54153

0.352
3.53

0.535
10.05

92.54
-0.095

11
-4.74E

-03
0.222

4372
56244

0.281
2.24

0.476
7.96

73.08
-0.077

12
-4.55E

-03
0.171

811
5916

0.352
2.97

0.686
8.45

67.49
-0.063

13
-5.51E

-03
0.087

810
5922

0.312
2.42

0.635
7.73

62.53
-0.078

14
-4.79E

-03
0.168

834
5868

0.305
2.20

0.733
7.23

55.64
-0.065

15
-3.88E

-03
0.125

905
6073

0.320
2.44

0.762
7.62

59.28
-0.053

16
-5.63E

-03
0.241

659
9691

0.250
1.74

0.322
6.97

64.47
-0.091

17
-3.93E

-03
0.165

821
10022

0.305
2.58

0.479
8.47

76.30
-0.062

18
-4.45E

-03
0.191

1072
10186

0.266
1.94

0.570
7.29

63.40
-0.069

19
-4.95E

-03
0.209

897
9923

0.281
2.14

0.495
7.62

66.40
-0.076

20
-4.80E

-03
0.190

2302
30313

0.266
2.03

0.533
7.64

69.25
-0.078

21
-4.45E

-03
0.226

2445
30180

0.297
2.46

0.560
8.29

74.34
-0.071

22
-4.84E

-03
0.244

2160
29604

0.297
2.49

0.446
8.38

76.15
-0.078

23
-4.25E

-03
0.249

2478
30419

0.273
2.12

0.533
7.77

70.63
-0.069
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Table 5.4: Condition indicators for the vibration trials in respect to the Z axis of the sensor

Index
A

verage
Skew

ness
Slope

Sign
C

hange
Z

ero
C

rossing
H

istogram
U

pperL
im

it
M

argin
Index

K
urtosis

L
atitude
Factor

C
learence
Factor

A
vg.Standard

D
eviation

R
atio

1
1.154

0.296
2447

6192
1.531

2.036
0.282

1.330
1.143

12.226
2

1.155
0.191

2472
6320

1.578
2.161

0.350
1.370

1.175
11.509

3
1.154

0.180
2562

6374
1.625

2.294
0.313

1.411
1.212

11.369
4

1.154
0.205

2983
7777

1.562
2.119

0.256
1.356

1.165
11.871

5
1.151

0.229
2992

7347
1.531

2.040
0.310

1.332
1.147

11.888
6

1.153
0.133

3893
10400

1.539
2.057

0.966
1.337

1.149
12.105

7
1.151

0.278
4167

9818
1.555

2.104
0.217

1.353
1.165

12.061
8

1.153
0.242

6506
17461

1.648
2.360

0.245
1.432

1.232
12.512

9
1.153

0.280
6381

17317
1.594

2.207
0.296

1.385
1.191

12.413
10

1.151
0.295

12985
33020

1.586
2.189

0.574
1.380

1.189
12.463

11
1.152

0.178
13955

36327
1.547

2.080
0.223

1.344
1.157

12.454
12

1.151
0.127

1619
3893

1.570
2.146

0.405
1.367

1.176
11.501

13
1.153

0.121
1552

3864
1.672

2.430
0.328

1.454
1.249

11.476
14

1.150
0.159

1426
3734

1.555
2.105

0.294
1.354

1.166
11.770

15
1.152

0.119
1653

3987
1.562

2.123
0.168

1.359
1.169

11.800
16

1.151
0.348

2362
5980

1.523
2.021

0.357
1.326

1.143
12.242

17
1.152

0.163
2535

6367
1.516

1.998
0.343

1.318
1.134

12.130
18

1.151
0.130

2656
6479

1.539
2.062

0.325
1.340

1.154
12.214

19
1.152

0.241
2342

6276
1.547

2.081
0.246

1.345
1.158

12.186
20

1.153
0.108

7616
19749

1.547
2.078

0.614
1.344

1.156
12.376

21
1.152

0.194
7232

19281
1.531

2.039
0.306

1.332
1.147

12.374
22

1.151
0.168

7111
18831

1.656
2.387

0.760
1.441

1.241
12.232

23
1.152

0.158
7562

19592
1.594

2.208
0.253

1.385
1.192

12.459
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The first thing that stands out in this data is that across all axis the average value for the signal stays

roughly the same. For the x and y axis this value is around 0 g, which is what is expected. For the

z axis is around 1.15 g, which is slightly above the conventional value of 1 g, but is consistently

close to the value of the control trial (index 1, no movement). The 0,15 g difference to what is

expected may be due to the elevation of the factory or bad factory calibration of the sensor but

does not bear any impact in the analysis done.

When analyzing the data considering attending to the velocity, it can be seen that across all axis

the slope sign change, zero crossing and the average-standard deviation ratio lower in value with

the increase in velocity. As for just the x and y axis, the skewness also tends to decrease with the

increase in velocity. In the z axis no clear relationship is observed. Still regarding the x and y axis,

the upper histogram limit, the margin factor and the kurtosis appear to increase with the velocity.

There are some trials that do not follow this norm but this may be statistical outliers and not the

trend. Ideally each trial would have been repeated at least three times in order to dilute the impact

of these outliers, however, since the only time the machine was available was between it being

finished and shipped to the client, there was not enough time.

When comparing the data from each section of the screw, there is no parameter, that across all

three velocities that trials were conducted in sections, showed a consistent change. Despite the

hypothesis, vibrations do not appear to be significant and consistently higher in the lower section

of the ball screw across velocities. There does not seem to be any pattern across different condition

indicators either. This seems to indicate that the results are due to normal variance.

5.1.5 Conclusions

The first conclusion is that the system must not use I2C for connecting the ADXL345 sensor to

the Raspberry Pi due to all its limitations.

As for the results obtained through SPI, all fall within the order of magnitude expected for this

application, and are consistent within the normal variability, which can be interpreted as a prelim-

inary validation of this protocol for this system. Therefore, when implementing the system this

must be the communication protocol used to connect the sensor to the Raspberry Pi.

Overall, the condition indicators vary, withing the expectable limits, for trials with the same speed.

However, this does not translate to a trend when correlated with the section of the ball screw was

traveled. This points to none of the condition indicators being a good and reliable indicator of

misalignment.

Due to the small number of trials, all the conclusions here presented should be confirmed with

different machines and repetition of each trial in order to exclude outliers. It would also be impor-
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tant to gather data from machines with different misalignments, in order to compare and see if any

indicator of it emerges with the aggravation of the misalignment.

5.2 Torque

5.2.1 Theory and objectives

As mentioned before, changes in torque of the servomotors powering mechanical systems are

considered to be indicative of failure. The hypothesis is that because wear of the parts manifests

itself as a higher roughness of the surfaces with relative movement, and higher roughness leads to

more friction between them, a higher torque will be needed to surpass the added friction for the

same movement.

Since the information regarding torque and other parameters is available through datatraces, the

main objective of this section of the thesis is to analyze this data for changes related to malfunction.

There is also the aim to:

• Establish baselines of normal torque and the torque in cases of failure

• Establish the impact of misalignment of the ball screw in the torque exerted by the servo-

motors

These two last objectives are relevant not only in establishing PdM solutions in the long term but in

the development of solutions that allow for correction of problems that impact the longevity of the

machine before leaving the factory, augmenting therefore quality control and diminishing the need

for assistance. More complete condition based maintenance solutions can also be implemented

in the short term based on this data, bridging the transition from the current solutions to PdM

solutions when these are developed.

5.2.2 Approach

To do this, the torque for a control and for the malfunctioning machine’s were plotted against

position and velocity. If any notable differences in these plots are detected, metrics that quantify

these differences.

Firstly, from the e-MOB42 9611, datatraces were collected 3 days after the third replacement of

the ball screw (i.e. 10th of March 2021) and before it’s failure, in the 22nd of April 2021. About a

month later this ball screw was replaced, at the 25th of May 2021.
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Since the machine was at use by the client during this time, the data traces were from the work

cycles of the parts it was manufacturing at the moment. This datatraces were collected on days the

same part was being produced, to facilitate comparison.

Data traces were also collected from an identical e-MOB 42 machine at AMOB, before going to its

client. The machine is the same as the one from the vibration trials, with a 0.10 mm misalignment

over a 200 mm path, less than half the misalignment of e-MOB 42 9611.

The data traces from the e-MOB 9611 allow for conclusions on the impact of wear over time.

The reasoning being that since the misalignment provoked accelerated wear that the same changes

in torque would be observed in normal wear, just more gradually and over a more prolonged

window of time. This would mean that the time needed to model the wear of the machine could

be shortened from around two years to around 2 months.

The data from the machine at AMOB’s factory allows the assessment of how much of these dif-

ferences is truly due to wear and how much is due to the misalignment. This also allows the

quantification of the impact of misalignments on torque.

5.2.3 Results and discussion

The results presented consist of two graphs, torque-position graphs and torque speed graphs. Be-

cause of the way the variable position is defined, as the distance from the top of the machine’s

body to the top of the machine’s head, these graphs are not of immediate comprehension. In the

picture below is an example of both these graphs, with key areas marked with different colors.
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Figure 5.4: Examples of torque-position (on the left) and torque speed graphs (on the right) with
key areas marked

The first thing that should be noticed is that in the torque position graphs the plot must be inter-

preted in an anti-clockwise direction. Each movement starts with an acceleration, marked green

in figure 5.4, followed by an intermediary stage where it reached the speed set for that movement,

and a final deceleration stage, marked red. In order to maintain its position, due to the lack of a

mechanical brake, a certain torque is needed, around that 40% torque mark. Upward movements,

such as the one marked in yellow, will fall above this line, while downward movements will fall

below it, as marked in orange.

As for the torque speed graph, the movements fall within 2 quadrants of this graph, the 2 nd and

4 th quadrants, considering that line around 40% torque de quadrant division instead of the x axis.

The 2 nd quadrant, marked yellow, is where the upward movements of the head are plotted, while

the 4 th, marked in orange, is where the downward movements are plotted. Decelerations are

located closer to the quadrant division (the 40% torque line), while accelerations are closer to the

extremes of the graph. In this graph too, decelerations are marked red and accelerations marked

green. The best way to interpret these torque-speed graphs is to read each quadrant independently

in an anti-clockwise direction.

In figure 5.5 these graphs can be seen for the data from e-MOB 42 9611 after the replacement of

the ball screw and before failure.
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Figure 5.5: Torque-position (on the left) and torque speed graphs (on the right) for e-MOB 42
9611

Regarding the torque-position graph, no notable differences can be observed, with the notable

exception of the downward movement from 55 mm to 141 mm. This difference consists of in-

creased torque in the constant speed section and erratic behavior in the deceleration section. The

increase in the constant speed area is not consistent across every time this movement was executed

in this data trace. Therefore, each cycle of movements must be analyzed individually to try and

understand what may be causing this behavior.

The torque velocity graph shows similar behavior, where two standout lines representing two

downward movements clearly stand out on the failing ball screw. In these two movements, instead

of the around 90 mm/s speed reach in all other movements, only around 25 mm/s and 40 mm/s

speeds are reached. The erratic behavior in the deceleration phase of this movement is also notable

here, with one of the movements showing noticeable dips around 40 mm/s and 60 mm/s.

In figure 5.6 these graphs can be seen for the data from e-MOB 42 9611 after the replacement

of the screw is compared with data from the e-MOB 42 available at AMOB facilities with a less

severe misalignment.



5.2 Torque 75

Figure 5.6: Torque-position (on the left) and torque speed graphs (on the right) for e-MOB 42
9611 (blue) and the e-MOB 42 available at AMOB (orange)

In these graphs differences between the torque in the two machines are very apparent, with higher

and more tempestuous torques in the machine at the client than the one at AMOB.

In fact, these differences are most apparent in the decelerations for downward movements (green),

the accelerations in upward movements (yellow), the constant speed section of the downward

movement between 55 mm and 141 mm (orange) and the deceleration in the upward movement

between 141mm and 98mm (blue). These areas are marked in the figure 5.7 bellow with the

mentioned colors and the average torque and the torque range for each of these movements are

presented in the table 5.5.
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Table 5.5: Metrics of torque for parts movements where the malfunctioning machine diverges
from the control machine at AMOB

Initial
Position
[mm]

Final
Position
[mm]

Average
Malfunctioning
Machine Torque
[% of servomotor
rated torque]

Average New
Machine at AMOB
Torque
[% of servomotor
rated torque]

Malfunctioning
Machine Torque
Range
[% of servomotor
rated torque]

Machine at AMOB
Torque Range
[% of servomotor
rated torque]

96 82 86.49 83.92 17.6 7.7
140 124 86.68 83.42 29.1 8.1
183 165 86.85 83.13 19.3 11.3
116 102 59.83 55.68 36.1 19.3
128 140 33.28 28.31 14.0 7.4
173 183 33.11 28.12 8.2 6.5
80 120 14.28 9.42 6.1 4.6

Figure 5.7: Torque-position for e-MOB 42 9611 (blue line) and the e-MOB 42 available at AMOB
(orange line) with areas of interest colored

The data presented in the table above shows that for regions where the plots of the two machines

are significantly different the average torque is between 2.5 to 5 percentage points of the rated

torque of the servomotor higher for the malfunctioning machine. This means the machine requires

more torque to lift the same load. Based on this data, this difference decreases with the increase in

servomotor torque, which consequently means the upward movements show smaller differences

of average torque than downwards movements. As a matter of fact, the average difference for
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upwards movements is of 3.425 percentage points of servomotor rated torque while for downward

movements is 4.94.

Concerning the range of torque, the values vary widely. Because these values are numerically

small, the ratio of the range for the malfunctioning machine over the range of the machine at

AMOB is a better metric to assess this data. The range for the malfunctioning machine is between

1.26 and 3.59 times higher than the machine at AMOB. Here, even though the average range

for upwards movements is still higher than for downward movements, there is overlap in the

two, which does not point to any significant correlation between torque range and direction of

movement. There is also no indication of a clear correlation between range and the the position

of the screw (i.e. whether range is higher or lower depending on if the nut is towards the top or

bottom of the screw).

Even though when analyzing for in which part of the movement (acceleration, constant speed or

deceleration) this data seems to indicate significantly higher ranges, averaging 2.53 times higher

for the malfunctioning machine, for acceleration, since no acceleration area of downward move-

ments is represented in this data, as it is not significantly different than the control (i. e. machine

at AMOB), this apparent correlation is due to the selection of the sections of the graph that were

analyzed. This does not have the same impact on the remaining correlations as there was at least

one sample from each category of the parameter (e.g. there was data from almost all positions

represented in the data in table 5.5).

5.2.4 Conclusions

In the two experiments conducted in this section, there are two main takeaways: there is no signif-

icant changes in torque for the machine with the severe misalignment at the client before and after

the ball screw being replaced and that that machine has significantly different torque patterns than

a more well aligned machine.

Therefore, it can be concluded that misalignment trumps any effects of wear and aging of the

parts when it comes to torque. This means that alignment is an important factor to consider when

making the PdM system. The proposed solution is to take advantage of the architecture devised

for the PdM system in this thesis and, based on the data from the data presented in this section

and from additional data, create a system that would serve to validate the alignment based on

torque. For example, using the data from the control machine as a baseline and the data from the

machine with the misalignment to establish thresholds. Before leaving the AMOB facilities for

the client the machine would run a cycle similar to the ones from these experiments, if its torque

values are over the threshold the machine would need to be realigned. This is faster and easier than

checking the alignment as presented in section 3.4.6.4 for every machine. This would allow for

the mitigation of the influence of alignment on the models for PdM, increasing their reliability and
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decreasing their complexity. An additional advantage is that machines correctly aligned require

less maintenance procedures.

An interesting experiment to validate the conclusions drawn in this section would be to continue

to record data traces of the machine that was used as control in the second experiment over time

once at the customer. The changes between the data from different points in time would allow the

modeling of the wear of the machine in terms of torque. If not, then this level of misalignment is

still excessive in terms of implementing PdM based on torque.



Chapter 6

Conclusion

6.1 Conclusion

Developing predictive maintenance systems is a onerous and time-consuming endeavor. However,

productivity gains and cost savings are a big payoff.

In the context of AMOB, a traditional family own company, the implementation of these kinds of

solutions present a big departure from the currently implemented strategies.

The fact that this thesis was developed in an industrial setting also presented its whole set of

challenges. This is due to the objectives of a company, maximizing production and reducing costs,

such as stock, are not always aligned with academic and research goals, dependent on constant

settings and comparable and controllable conditions. An example of this was the window of time

for implementation and testing of the solutions on an actual machine, which is defined by the time

between finishing its assembly and shipping it to the client. Because the machines available for

testing were meant to go to clients, it also meant any destructive or damaging tests were off the

table, since the machine needed to be kept in mint condition. Another hurdle was the lack of

track records for the machines, which meant that, instead of devising maintenance algorithms and

testing them, this thesis had to focus more on creating that underlining infrastructure for that data

to be collected.

Despite these difficulties, the architecture for a system of predictive maintenance was outlined,

based on the most common problems in the e-MOB machines. This meant finding appropriate

metrics to detect this problems and ways to measure them (sensors). A solution to process this data,

the Raspberry Pi, and to store it, the Azure cloud, were also established, having in mind AMOB’s

needs and the solutions they were already implementing. How the communication between all

these parts of the system, as well as standards for data keeping such as file types were chosen.
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The programming responsible for the gathering and treatment of the data from the sensor was also

done and successfully tested. Based on these tests the SPI protocol was chosen for communication

between the Raspberry Pi and the machine. The tests done also failed to confirm the proposed hy-

potheses that ball screw misalignment manifested as vibration. More testing, under a more diverse

set of conditions (different degrees of misalignment) is needed to evaluate if this system can also

be used to detect misalignments or not, and if so, what is the threshold for these misalignments to

be detected by it.

As for the torque data from the tests, the main takeaway is that the effects of misalignment on it

overshadow those of wear. This means that any conclusions on the effects of wear on torque cannot

be established since both machines used in testing suffered, to different degrees, of misalignment.

Overall, there was success in the main objective of this thesis, which was to study how predictive

maintenance could be applied to draw bending machines and devise a solution to implement it in

AMOB’s machines. However, this was only done to the extent of planing. This means the project

is left in the developing and testing phase, with some of that developing and testing being also

done in this thesis, namely of the sensors.

6.2 Future Work

The next steps in this project are to collect data on several machines over the lifetime of the parts

and testing different ML algorithms, such as the ones presented in this thesis, using this data

to establish which to implement in this system. The extensive work of professor René Vinivio

Sánchez in this field can be used as a basis for this work.

Another path that should be pursued is to expand the system presented in this thesis to the other

axis, namely those whose load varies depending on the tube being used and study how the different

materials, diameters and geometries being produced affect the longevity of those axis. This means

solving challenges such as how to deal with the movement of this axis varying widely depending

on the part being manufactured by the client.

It is also proposed that tests are done with varying lubrication and that lubrication solutions that

can be electronically controlled are studied, with the objective of creating a lubrication solution

based on prescriptive maintenance.
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Appendix A

1 import smbus as smbus

2 #import smbus

3 from datetime import datetime, timedelta

4 import time

5 from numpy import*

6 bus = smbus.SMBus(1) # Defines Bus as object of class Smbus

7 address = 0x53 # Accelerometer hexadecimal address

8 address_interference_accel=0x1D # Address of the accelerometer

mounted on the machine's body to subtract interferences from the

signal from the ball screw

↪→

↪→

9 # PARAMETERS AND RECORDS IN HEXADECIMAL ADXL345

10 ACCEL_2G = 0x00 #RANGE

11 ACCEL_4G = 0x01

12 ACCEL_8G = 0x02

13 ACCEL_16G = 0x03

14 SCALE_MULTIPLIER_2G = 4/1024 # MULTIPLICATORS FOR G

15 SCALE_MULTIPLIER_4G = 8/1024

16 SCALE_MULTIPLIER_8G = 16/1024

17 SCALE_MULTIPLIER_16G = 32/1024

18 BW_RATE_1600HZ = 0x0F

19 BW_RATE_800HZ = 0x0E

20 BW_RATE_400HZ = 0x0D

21 BW_RATE_200HZ = 0x0C

22 BW_RATE_100HZ = 0x0B

23 BW_RATE_50HZ = 0x0A

24 BW_RATE_25HZ = 0x09

25 BW_RATE_12_5HZ = 0x08

26 BW_RATE_6_25HZ = 0x07

27 BW_RATE_3_13HZ = 0x06
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28 BW_RATE_1_56HZ = 0x05

29 BW_RATE_0_78HZ = 0x04

30 BW_RATE_0_39HZ = 0x03

31 BW_RATE_0_20HZ = 0x02

32 BW_RATE_0_10HZ = 0x01

33 BW_RATE_0_05HZ = 0x00

34 SCALE_REGISTER = 0x31 #RANGE CONTROL

35 BW_REGISTER = 0x2C # CONTROL BANDWIDTH

36 MODE_REGISTER = 0x2D # CONTROL THE MEASUREMENT MODE

37 MEASURE_MODE = 0x08 # MEASURE MODE

38 # Functions

39 def convert_LSBandMSB(raw_val): # CONVERTS DATA TO 10 BITS

40 convert_val = (raw_val [1] & 0x03) * 256 + raw_val [0]

41 if convert_val > 511:

42 convert_val -= 1024

43 return convert_val

44 def option_scale(SCALE):

45 if scale == int(2):

46 return [ACCEL_2G,SCALE_MULTIPLIER_2G]

47 elif scale == int(4):

48 return [ACCEL_4G,SCALE_MULTIPLIER_4G]

49 elif scale == int(8):

50 return [ACCEL_8G,SCALE_MULTIPLIER_8G]

51 elif scale == int(16):

52 return [ACCEL_16G,SCALE_MULTIPLIER_16G]

53 def option_banda(banda):

54 if banda == float(0.05):

55 return BW_RATE_0_05HZ

56 elif banda == float(0.10):

57 return BW_RATE_0_10HZ

58 elif banda == float(0.20):

59 return BW_RATE_0_20HZ

60 elif banda == float(0.39):

61 return BW_RATE_0_39HZ

62 elif banda == float(0.78):

63 return BW_RATE_0_78HZ

64 elif banda == float(1.56):

65 return BW_RATE_1_56HZ

66 elif banda == float(3.13):

67 return BW_RATE_3_13HZ
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68 elif banda == float(6.25):

69 return BW_RATE_6_25HZ

70 elif banda == float(12.5):

71 return BW_RATE_12_5HZ

72 elif banda == float(25):

73 return BW_RATE_25HZ

74 elif banda == float(50):

75 return BW_RATE_50HZ

76 elif banda == float(100):

77 return BW_RATE_100HZ

78 elif banda == float(200):

79 return BW_RATE_200HZ

80 elif banda == float(400):

81 return BW_RATE_400HZ

82 elif banda == float(800):

83 return BW_RATE_800HZ

84 elif banda == float(1600):

85 return BW_RATE_1600HZ

86 # USER INPUTS

87 RANGE_XG=int()

88 scale = int(input("Scale [2,4,8,16]:"))

89 RANGE_XG = option_scale(scale)

90 BANDW_XHZ=float()

91 banda = float(input("Bandwidth [0.05, 0.1, 0.2, 0.39, 0.78, 1.56,

3.13, 6.25, 12.5, 25, 50, 100, 200, 400, 800, 1600]:"))↪→

92 BANDW_XHZ = option_banda(banda)

93 freqInput = input("Measuring frequency[Hz]:")

94 #ene=input(''2^(?):'') #nsample

95 #nsamp=2int(ene) #nsample

96 minutes = input("Measurement Duration[m]:")

97 seconds = input("Measurement Duration[s]:")

98 duration = timedelta(0,int(seconds),0,0,int(minutes))

99 time.sleep(1)

100 run = input("Test number:")

101 # MEASUREMENT CONFIGURATION

102 bus.write_byte_data(address, MODE_REGISTER, MEASURE_MODE)

103 alem=bus.read_byte_data(address, MODE_REGISTER)

104 if alem == MEASURE_MODE:

105 print("CORRECTLY CONFIGURED MODE")

106 time.sleep(0.2)
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107 bus.write_byte_data(address, BW_REGISTER, BANDW_XHZ)

108 allm=bus.read_byte_data(address, BW_REGISTER)

109 if allm == BANDW_XHZ:

110 print("BANDWIDTH CORRECTLY CONFIGURED")

111 time.sleep(0.2)

112 bus.write_byte_data(address, SCALE_REGISTER, RANGE_XG[0])

113 alum=bus.read_byte_data(address, SCALE_REGISTER)

114 if alum == RANGE_XG[0]:

115 print("SCALE CORRECTLY CONFIGURED")

116 print(str(RANGE_XG[1]))

117 time.sleep(1)

118

119

120 bus.write_byte_data(address_interference_accel, MODE_REGISTER,

MEASURE_MODE)↪→

121 alem=bus.read_byte_data(address_interference_accel, MODE_REGISTER)

122 if alem == MEASURE_MODE:

123 print("CORRECTLY CONFIGURED MODE FOR SECOND SENSOR")

124 time.sleep(0.2)

125 bus.write_byte_data(address_interference_accel, BW_REGISTER,

BANDW_XHZ)↪→

126 allm=bus.read_byte_data(address_interference_accel, BW_REGISTER)

127 if allm == BANDW_XHZ:

128 print("BANDWIDTH CORRECTLY CONFIGURED FOR SECOND SENSOR")

129 time.sleep(0.2)

130 bus.write_byte_data(address_interference_accel, SCALE_REGISTER,

RANGE_XG[0])↪→

131 alum=bus.read_byte_data(address_interference_accel, SCALE_REGISTER)

132 if alum == RANGE_XG[0]:

133 print("SCALE CORRECTLY CONFIGURED FOR SECOND SENSOR")

134 print(str(RANGE_XG[1]))

135 time.sleep(1)

136

137

138 # TRANSFORM THE STRING FREQUENCY INPUT TO DATETIME

139 milsec = float(1000.0/float(freqInput))

140 if milsec==1000:

141 period=timedelta(0,1)

142 elif milsec%1==0:

143 period=timedelta(0,0,0,int(milsec))
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144 else:

145 period=timedelta(0,0,(milsec-int(milsec))*1000, int(milsec))

146 # CREATING LIST WHERE DATA WILL BE RECORDED WITH APPEND

147 tempo=[]

148 accdata=[]

149 second_accdata=[]

150 t=0

151 time.sleep(1)

152 # start control

153 while True:

154 init = input("Start Data Acquisition (y/n):")

155 if init == "y":

156 break

157 else:

158 pass

159 # LOOP DATA ACQUISITION

160 print("Start of Data Acquisition")

161 previousMillis = datetime.now()

162 start = datetime.now()

163 endloop=datetime.now()+duration

164 while datetime.now().time() <endloop.time():

165 currentMillis = datetime.now()

166 if (currentMillis - previousMillis >= period):

167 previousMillis = datetime.now()

168 accdata.append([[bus.read_byte_data(address,

0x32),bus.read_byte_data(address,

0x33)],[bus.read_byte_data(address,0x34),bus.read_byte_data(address,

0x35)],[bus.read_byte_data(address,0x36),bus.read_byte_data(address,0x37)]])

↪→

↪→

↪→

169

second_accdata.append([[bus.read_byte_data(address_interference_accel,

0x32),bus.read_byte_data(address_interference_accel,

0x33)],[bus.read_byte_data(address_interference_accel,0x34),bus.read_byte_data(address_interference_accel,

0x35)],[bus.read_byte_data(address_interference_accel,0x36),bus.read_byte_data(address_interference_accel,0x37)]])

↪→

↪→

↪→

↪→

170 #accdata.append([[bus.read byte data(address, 0x36),bus.read byte

data(address, 0x37)]])↪→

171 tempo.append(datetime.now())

172 end=datetime.now()

173 acqt = end-start

174 print('| End of Data Acquisition |')

175 # CONVERSION OF INPUTS IN LSB AND MSB FOR GRAVITY
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176 for i in range(len(tempo)):

177 for j in range(0,3):

178 accdata[i][j] = convert_LSBandMSB(accdata[i][j]) *

RANGE_XG[1]↪→

179 second_accdata[i][j] =

convert_LSBandMSB(second_accdata[i][j]) * RANGE_XG[1]↪→

180 # FILE OPENING

181 ttime=[]

182 opentime = datetime.now()

183 nome = 'ADXL_Main_Data_Unfiltered_run_'+ str(run)

184 saida = open(nome+".csv","w")

185 for i in range(len(tempo)):

186 saida.write(str(i+1)+",")

187 # MEASUREMENT NUMBER

188 saida.write(str(tempo[i].time())+",") # TIME

189 saida.write(str((tempo[i]-tempo[0]).total_seconds())+",")

190 # Time from start to measurement

191 saida.write(str(accdata[i][0])+",")

192 # Accelerometer X

193 saida.write(str(accdata[i][1])+",")

194 # Accelerometer y

195 saida.write(str(accdata[i][2])+",")

196 # Accelerometer z

197 saida.write(str(acqt)+"\n")

198 ttime.append((tempo[i]-tempo[0]).total_seconds())

199 saida.close()

200

201 #WRITING DATA BY THE SECOND ACCELEROMETER ON A SEPARATE FILE

202 opentime = datetime.now()

203 nome_no_noise = 'ADXL_Dummy_Data'+str(run)

204 saida_no_noise = open(nome_no_noise+".csv","w")

205 for i in range(len(tempo)):

206 saida_no_noise.write(str(i+1)+",")

207 # MEASUREMENT NUMBER

208 saida_no_noise.write(str(tempo[i].time())+",") # TIME

209

saida_no_noise.write(str((tempo[i]-tempo[0]).total_seconds())+",")↪→

210 # Time from start to measurement

211 saida_no_noise.write(str(second_accdata[i][0])+",")

212 # Accelerometer X
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213 saida_no_noise.write(str(second_accdata[i][1])+",")

214 # Accelerometer y

215 saida_no_noise.write(str(second_accdata[i][2])+",")

216 # Accelerometer z

217 saida_no_noise.write(str(acqt)+"\n")

218 ttime.append((tempo[i]-tempo[0]).total_seconds())

219 saida.close()

220

221

222

223 ''' Important definitions '''

224 acc=transpose(accdata)

225 acc_dummy=transpose(second_accdata)

226 sigZ=acc[2]

227 sigZ_dummy=acc_dummy[2]

228 sigY=acc[1]

229 sigY_dummy=acc_dummy[1]

230 sigX=acc[0]

231 sigX_dummy=acc_dummy[0]

232 time_step=acqt.total_seconds()/len(sig)

233 Fs=1/time_step

234 ''' Starting to calculate FFT '''

235 from scipy import fftpack

236 sample_freqZ = fftpack.fftfreq(sigZ.size, d=time_step)

237 sample_freqY = fftpack.fftfreq(sigY.size, d=time_step)

238 sample_freqX = fftpack.fftfreq(sigX.size, d=time_step)

239 # generates sampling frequencies

240 sig_fft_Z = fftpack.fft(sigZ) # calculates the fast Fourier

transform for main sensor signal for the Z axis↪→

241 sig_dummy_fft_Z = fftpack.fft(sigZ_dummy) # calculates the fast

Fourier transform for dummy sensor signal for the Z axis↪→

242 sig_fft_Y = fftpack.fft(sigY) # calculates the fast Fourier

transform for main sensor signal for the Y axis↪→

243 sig_dummy_fft_Y = fftpack.fft(sigY_dummy) # calculates the fast

Fourier transform for dummy sensor signal for the Y axis↪→

244 sig_fft_X = fftpack.fft(sigX) # calculates the fast Fourier

transform for main sensor signal for the X axis↪→

245 sig_dummy_fft_X = fftpack.fft(sigX_dummy) # calculates the fast

Fourier transform for dummy sensor signal for the X axis↪→

246
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247 pidxs = where(sample_freq> 0) # Only the positive part of the

spectrum will be used↪→

248 freqsZ = sample_freqZ[pidxs]

249 freqsY = sample_freqY[pidxs]

250 freqsX = sample_freqX[pidxs]

251 powerZ = abs(sig_fft_Z)[pidxs]

252 powerY = abs(sig_fft_Y)[pidxs]

253 powerX = abs(sig_fft_X)[pidxs]

254 print ("| Fininish FFT")

255 ''' Find the frequency according to the peak '''

256 N_freq=int(input('======== Enter number of frequencies to find:'))

257 xcoords=zeros((N_freq))

258 DT=int(len(freqs)/N_freq)

259 for i in range(N_freq):

260 fr=freqs[(i)*DT: DT*(i+1)]

261 xcoords[i]=fr[argmax(power[(i)*DT: DT*(i+1)])]

262 ''' Name to be identified '''

263 dataname=nome+".csv"

264 figname = 'ADXL_Time_Domanain_Run'+str(run)+'.png'

265 freqname='ADXL_Frequency_Domain_Run '+str(run)+'.png'

266 timefreqname='ADXL_Time_Frequency_Domain_Run '+str(run)+'.png'

267 ''' Gráfico '''

268 import matplotlib.pyplot as plt

269 plt.figure(1,figsize=[12,9])

270 plt.style.use('classic')

271 plt.subplot(3, 1, 1)

272 plt.plot(ttime,sig_fft_X,color='#2f4875',linewidth=0.8)

273 plt.xlabel('Time [s]]')

274 plt.ylabel('Acceleration [g]')

275 plt.title('X Axis')

276 plt.subplot(3, 1, 2)

277 plt.plot(ttime,sig_fft_Y,color='#2f4875',linewidth=0.8)

278 plt.xlabel('Time [s]]')

279 plt.ylabel('Acceleration [g]')

280 plt.title('Y Axis')

281 plt.subplot(3, 1, 3)

282 plt.plot(ttime,sig_fft_Z,color='#2f4875',linewidth=0.8)

283 plt.xlabel('Time [s]]')

284 plt.ylabel('Acceleration [g]')

285 plt.title('Z Axis')
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286 plt.legend()

287 plt.grid(True)

288 plt.savefig(figname)

289 plt.show(block=False)

290 plt.pause(5)

291

292 plt.figure(2,,figsize=[12,9])

293 plt.subplot(3, 1, 1)

294 plt.plot(freqsX, powerX,color='#2f4875',linewidth=0.8)

295 plt.xlabel('Frequency [HZ]')

296 plt.ylabel('Power [dB]')

297 plt.title('X Axis')

298 for xc in xcoords:

299

plt.axvline(x=xc,linestyle='--',linewidth=1,color='#FF4040',label=str(round(xc,4))+'Hz')↪→

300 plt.subplot(3, 1, 2)

301 plt.plot(freqsY, powerY,color='#2f4875',linewidth=0.8)

302 plt.xlabel('Frequency [HZ]')

303 plt.ylabel('Power [dB]')

304 plt.title('Y Axis')

305 for xc in xcoords:

306

plt.axvline(x=xc,linestyle='--',linewidth=1,color='#FF4040',label=str(round(xc,4))+'Hz')↪→

307 plt.subplot(3, 1, 3)

308 plt.plot(freqsZ, powerZ,color='#2f4875',linewidth=0.8)

309 plt.xlabel('Frequency [HZ]')

310 plt.ylabel('Power [dB]')

311 plt.title('Z Axis')

312 for xc in xcoords:

313

plt.axvline(x=xc,linestyle='--',linewidth=1,color='#FF4040',label=str(round(xc,4))+'Hz')↪→

314 plt.legend()

315 plt.grid(True)

316 plt.savefig(freqname)

317 plt.show(block=False)

318 plt.pause(5)

319

320

321 plt.figure(3,figsize=[12,9])

322 plt.style.use('classic')
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323 plt.subplot(3,1,1)

324 powerSpectrum,frequenciesFound,time,imageAxis=plt.specgram(sigX,Fs=Fs,noverlap=255,cmap='Spectral')

325 plt.xlabel('Time [s]')

326 plt.ylabel('Frequency [Hz]')

327 plt.title('X Axis')

328 plt.subplot(3,1,2)

329 powerSpectrum,frequenciesFound,time,imageAxis=plt.specgram(sigY,Fs=Fs,noverlap=255,cmap='Spectral')

330 plt.xlabel('Time [s]')

331 plt.ylabel('Frequency [Hz]')

332 plt.title('Y Axis')

333 plt.subplot(3,1,3)

334 powerSpectrum,frequenciesFound,time,imageAxis=plt.specgram(sigZ,Fs=Fs,noverlap=255,cmap='Spectral')

335 plt.xlabel('Time [s]')

336 plt.ylabel('Frequency [Hz]')

337 plt.title('Z Axis')

338 plt.savefig(timefreqname)

339 plt.show(block=False)

340 plt.pause(5)

341 print ("| Figure Saved |")

342 print ("| Completely Finish |")
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1 import os

2 import numpy as np

3 from matplotlib import mlab

4 import matplotlib.pyplot as plt

5 sample_rate_Hz = 3200

6 length_s = input('Duração?')

7 length_s = int(length_s)

8 ensaio = input('Ensaio?')

9 while True:

10 init = input("Start Data Acquisition (y/n):")

11 if init == "y":

12 break

13 else:

14 pass

15 print("Start of Data Acquisition")

16 os.system(f'sudo adxl345spi -t {length_s} -f {sample_rate_Hz} -s

spi_ens_{ensaio}.csv')↪→

17 print("Ended Data Acquisition")

18 print("Writing Acquired Data")

19 acc_data = np.genfromtxt(f'spi_ens_{ensaio}.csv', delimiter=',',

names=True)↪→

20 acc_x, freq_x, _ = mlab.specgram(acc_data['x'], Fs=sample_rate_Hz,

NFFT=sample_rate_Hz * length_s)↪→

21 acc_y, freq_y, _ = mlab.specgram(acc_data['y'], Fs=sample_rate_Hz,

NFFT=sample_rate_Hz * length_s)↪→

22 acc_z, freq_z, _ = mlab.specgram(acc_data['z'], Fs=sample_rate_Hz,

NFFT=sample_rate_Hz * length_s)↪→

23

24 plt.figure(1,figsize=[12,6])

95
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25 plt.style.use('classic')

26 plt.subplot(3, 1, 1)

27 plt.plot(acc_data['time'],acc_data['x'],linewidth=0.5)

28 plt.xlabel('Time [s]]')

29 plt.ylabel('Acceleration [g]')

30 plt.title('X Axis')

31 plt.subplot(3, 1, 2)

32 plt.plot(acc_data['time'],acc_data['y'], linewidth=0.5)

33 plt.xlabel('Time [s]]')

34 plt.ylabel('Acceleration [g]')

35 plt.title('Y Axis')

36 plt.subplot(3, 1, 3)

37 plt.plot(acc_data['time'],acc_data['z'],linewidth=0.5)

38 plt.xlabel('Time [s]]')

39 plt.ylabel('Acceleration [g]')

40 plt.title('Z Axis')

41 plt.legend()

42 plt.grid(True)

43 plt.savefig(f'Time_domain_spi_ens_{ensaio}.png')

44 plt.show(block=False)

45 plt.pause(5)

46 plt.close

47

48 plt.figure(2,figsize=[12,6])

49 plt.style.use('classic')

50 plt.subplot(3, 1, 1)

51 plt.plot(freq_x[10:], acc_x[10:], linewidth=0.5)

52 plt.xlabel('Frequency [Hz]')

53 plt.ylabel('Power [dB]')

54 plt.title('X Axis')

55 plt.xlim((0,1600))

56 plt.subplot(3, 1, 2)

57 plt.plot(freq_y[10:], acc_y[10:], linewidth=0.5)

58 plt.xlabel('Frequency [Hz]')

59 plt.ylabel('Power [dB]')

60 plt.title('Y Axis')

61 plt.xlim((0,1600))

62 plt.subplot(3, 1, 3)

63 plt.plot(freq_z[10:], acc_z[10:], linewidth=0.5)

64 plt.xlabel('Frequency [Hz]')
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65 plt.ylabel('Power [dB]')

66 plt.title('Z Axis')

67 plt.xlim((0,1600))

68 plt.legend()

69 plt.grid(True)

70 plt.savefig(f'Frequency_domain_spi_ens_{ensaio}.png')

71 plt.show(block=False)

72 plt.pause(5)

73 plt.close

74

75

76 plt.figure(3,figsize=[12,6])

77 plt.style.use('classic')

78 plt.subplot(3,1,1)

79 plt.specgram(acc_x[10:],NFFT=length_s*3200,

Fs=3200,noverlap=255,cmap='Spectral')↪→

80 plt.xlabel('Time [s]')

81 plt.ylabel('Frequency [Hz]')

82 plt.title('X Axis')

83 plt.subplot(3,1,2)

84 plt.specgram(acc_y[10:],NFFT=length_s*3200,

Fs=3200,noverlap=255,cmap='Spectral')↪→

85 plt.xlabel('Time [s]')

86 plt.ylabel('Frequency [Hz]')

87 plt.title('Y Axis')

88 plt.subplot(3,1,3)

89 plt.specgram(acc_z[10:],NFFT=length_s*3200,

Fs=3200,noverlap=255,cmap='Spectral')↪→

90 plt.xlabel('Time [s]')

91 plt.ylabel('Frequency [Hz]')

92 plt.title('Z Axis')

93 plt.savefig(f'Time_Frequency_domain_spi_ens_{ensaio}.png')

94 plt.show(block=False)

95 plt.pause(5)

96 plt.close
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Appendix C

1 import numpy as np

2 import pandas as pd

3 import matplotlib.pyplot as plt

4 from scipy.stats import kurtosis

5 from scipy.stats import skew

6

7 ens1 = pd.read_csv("spi_ens_1.csv", sep=',')

8

9 avgx=np.mean(ens1[' x'], axis=0)

10 print('The average x acceleration is:',avgx)

11

12 avgy=np.mean(ens1[' y'], axis=0)

13 print('The average y acceleration is:',avgy)

14

15 avgz=np.mean(ens1[' z'], axis=0)

16 print('The average z acceleration is:',avgz)

17

18 skx=skew(ens1[' x'], axis=0)

19 print('The skewness of x axis is:', skx)

20

21 sky=skew(ens1[' y'], axis=0)

22 print('The skewness of y axis is:', sky)

23

24 skz=skew(ens1[' z'], axis=0)

25 print('The skewness of z axis is:', skz)

26

27 ens1array=ens1.to_numpy()

28 aux1=0;

29 sscx=0;

99
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30 for i in range(2,(len(ens1)-1)):

31

aux1=(ens1array[i][1]-ens1array[i-1][1])*(ens1array[i][1]-ens1array[i+1][1]);↪→

32 if aux1>=0.02:

33 sscx=sscx+1

34 print('The slope sign change for a threshold of 0.02 for axis x is:

', sscx)↪→

35

36 aux1=0;

37 sscy=0;

38 for i in range(2,(len(ens1)-1)):

39

aux1=(ens1array[i][2]-ens1array[i-1][2])*(ens1array[i][2]-ens1array[i+1][2]);↪→

40 if aux1>=0.02:

41 sscy=sscy+1

42 print('The slope sign change for a threshold of 0.02 for axis y is:

',sscy)↪→

43

44 aux1=0;

45 sscz=0;

46 for i in range(2,(len(ens1)-1)):

47

aux1=(ens1array[i][3]-ens1array[i-1][3])*(ens1array[i][3]-ens1array[i+1][3]);↪→

48 if aux1>=0.02:

49 sscz=sscz+1

50 print('The slope sign change for a threshold of 0.02 for axis z is:

',sscz)↪→

51

52 aux1=0;

53 aux2=0;

54 aux3=0;

55 zcx=0;

56 for i in range(1, len(ens1)-1):

57 aux1=-ens1array[i][1]*ens1array[i+1][1]

58 if aux1<0:

59 aux2=0;

60 elif aux1==0:

61 aux2=0.5;

62 elif aux1>0:

63 aux2=1;
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64 if aux2>0:

65 aux3=1

66 elif aux2==0:

67 aux3=0;

68 else:

69 aux3=-1;

70 zcx=zcx+aux3;

71 print('The zero crossing value for the x axis is: ', zcx)

72

73 aux1=0;

74 aux2=0;

75 aux3=0;

76 zcy=0;

77 for i in range(1, len(ens1)-1):

78 aux1=-ens1array[i][2]*ens1array[i+1][2]

79 if aux1<0:

80 aux2=0;

81 elif aux1==0:

82 aux2=0.5;

83 elif aux1>0:

84 aux2=1;

85 if aux2>0:

86 aux3=1

87 elif aux2==0:

88 aux3=0;

89 else:

90 aux3=-1;

91 zcy=zcy+aux3;

92 print('The zero crossing value for the y axis is: ', zcy)

93

94 aux1=0;

95 aux2=0;

96 aux3=0;

97 zcz=0;

98 for i in range(1, len(ens1)-1):

99 aux1=-(ens1array[i][3]-1.2)*(ens1array[i+1][3]-1.2)

100 if aux1<0:

101 aux2=0;

102 elif aux1==0:

103 aux2=0.5;
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104 elif aux1>0:

105 aux2=1;

106 if aux2>0:

107 aux3=1

108 elif aux2==0:

109 aux3=0;

110 else:

111 aux3=-1;

112 zcz=zcz+aux3;

113 print('The zero crossing value (ajusted to ofset the acceleration

reading of gravity by the sensor) for the z axis is: ', zcz)↪→

114

115 max=np.amax(ens1array, axis=0)

116 min=np.amin(ens1array, axis=0)

117 hulx=max[1]-0.5*((max[1]-min[1])/(len(ens1)-1))

118 print('The histogram upper limit for the x axis is: ', hulx)

119

120 huly=max[2]-0.5*((max[2]-min[2])/(len(ens1)-1))

121 print('The histogram upper limit for the y axis is: ', huly)

122

123 hulz=max[3]-0.5*((max[3]-min[3])/(len(ens1)-1))

124 print('The histogram upper limit for the z axis is: ', hulz)

125

126 aux1=0;

127 for i in range(1,len(ens1)):

128 aux1=aux1+(abs(ens1array[i][1]))**0.5

129 aux1=aux1/len(ens1)

130 mfx=(max[1]/(aux1))**2

131 print('The margin factor for the x axis is: ', mfx)

132

133 aux1=0;

134 for i in range(1,len(ens1)):

135 aux1=aux1+(abs(ens1array[i][2]))**0.5

136 aux1=aux1/len(ens1)

137 mfy=(max[2]/(aux1))**2

138 print('The margin factor for the y axis is: ', mfy)

139

140 aux1=0;

141 for i in range(1,len(ens1)):

142 aux1=aux1+(abs(ens1array[i][3]))**0.5
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143 aux1=aux1/len(ens1)

144 mfz=(max[3]/(aux1))**2

145 print('The margin factor for the z axis is: ', mfz)

146

147

148 kurt=kurtosis(ens1array, axis=0)

149 kurtx=kurt[1]

150 print('The kurtosis for the x axis is: ', kurtx)

151 kurty=kurt[2]

152 print('The kurtosis for the y axis is: ', kurty)

153 kurtz=kurt[3]

154 print('The kurtosis for the z axis is: ', kurtz)

155

156 aux1=0;

157 for i in range(1,len(ens1)):

158 aux1=aux1+(abs(ens1array[i][1]))**0.5

159 aux1=aux1/len(ens1)

160 lfx=max[1]/(aux1**2)

161 print('The latitude factor for the x axis is: ', lfx)

162

163 aux1=0;

164 for i in range(1,len(ens1)):

165 aux1=aux1+(abs(ens1array[i][2]))**0.5

166 aux1=aux1/len(ens1)

167 lfy=max[2]/(aux1**2)

168 print('The latitude factor for the y axis is: ', lfy)

169

170 aux1=0;

171 for i in range(1,len(ens1)):

172 aux1=aux1+(abs(ens1array[i][3]))**0.5

173 aux1=aux1/len(ens1)

174 lfz=max[3]/(aux1**2)

175 print('The latitude factor for the z axis is: ', lfz)

176

177 aux1=0;

178 for i in range(1,len(ens1)):

179 aux1=aux1+(ens1array[i][1])*(ens1array[i][1])

180 clx=(max[1])/((1/len(ens1)*aux1))

181 print('The clearence factor for the x axis is: ', clx)

182
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183 aux1=0;

184 for i in range(1,len(ens1)):

185 aux1=aux1+(ens1array[i][2])*(ens1array[i][2])

186 cly=(max[2])/((1/len(ens1)*aux1))

187 print('The clearence factor for the y axis is: ', cly)

188

189 aux1=0;

190 for i in range(1,len(ens1)):

191 aux1=aux1+(ens1array[i][3])*(ens1array[i][3])

192 clz=(max[3])/((1/len(ens1)*aux1))

193 print('The clearence factor for the z axis is: ', clz)

194

195 standard_dev=np.std(ens1array, axis=0)

196 AvgStdRatioX=avgx/standard_dev[1]

197 print('The average-standard deviation ratio for the x axis is: ',

AvgStdRatioX)↪→

198 AvgStdRatioY=avgy/standard_dev[2]

199 print('The average-standard deviation ratio for the y axis is: ',

AvgStdRatioY)↪→

200 AvgStdRatioZ=avgz/standard_dev[3]

201 print('The average-standard deviation ratio for the z axis is: ',

AvgStdRatioZ)↪→

202

203 print(f"{avgx},{skx},{sscx},{zcx},{hulx},{mfx},{kurtx},{lfx},{clx},{AvgStdRatioX}")

204 print(f"{avgy},{sky},{sscy},{zcy},{huly},{mfy},{kurty},{lfy},{cly},{AvgStdRatioY}")

205 print(f"{avgz},{skz},{sscz},{zcz},{hulz},{mfz},{kurtz},{lfz},{clz},{AvgStdRatioZ}")
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