
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Human Operator Tracking System for
Safe Industrial Collaborative Robotics

Eduardo Fonseca

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Pedro Gomes da Costa, PhD

Co-Supervisor: Luís Freitas Rocha, PhD

July 27, 2021

© Eduardo Fonseca, 2021

Abstract

With the advent of the Industry 4.0 paradigm, manufacturing is shifting from mass production to-
wards customisable production lines. While robots excel at reliably executing repeating tasks in a
fast and precise manner, they lack the now desired versatility of humans. Human-robot collabora-
tion (HRC) seeks to address this issue by allowing human operators to work together with robots in
close proximity, leveraging the strengths of both agents to increase adaptability and productivity.

Safety is critical to user acceptance and the success of collaborative robots (cobots) and is thus
a focus of research. Typical approaches provide the cobot with information such as operator pose
estimates or higher-level motion predictions to facilitate adaptive planning of trajectory or action.
Therefore, locating the operator in the shared workspace is a key feature.

This dissertation seeks to kickstart the development of a human operator tracking system that
provides a pose estimate that can be used as input for safety features like speed and separation mon-
itoring. Two state-of-the-art bottom-up methods for human pose estimation in two-dimensional
RGB images, OpenPifPaf and OpenPose, are evaluated using a custom dataset. The results are
then analysed considering real-time capability in the use case of a single operator performing
industrial assembly tasks in a collaborative robotic cell equipped with a robotic arm.

While both methods are acknowledged as viable solutions, based on the resulting evaluation
metrics, OpenPose was selected for its higher recall and 55% higher inference speed, in favour
of OpenPifPaf’s higher precision, which is believed to compromise the method’s robustness to
occlusions and therefore, the operator’s safety. It is also proposed that future work should consider:
training custom models for each method; fusing 2D pose estimates from different views of the
scene into a refined 3D pose estimate that is robust to occlusions; and further investigate the effect
of image input resolution on performance.

i

ii

Resumo

Com o advento do paradigma da Indústria 4.0, a manufatura tem transitado da produção em massa
para linhas de produção customizáveis. Apesar de robôs serem excelentes na execução rápida e
precisa de tarefas repetitivas, não apresentam a versatilidade humana que é agora desejada. A co-
laboração humano-robô (HRC) procura resolver este desafio, permitindo que operadores humanos
trabalhem em grande proximidade com robôs, aproveitando os pontos fortes de ambos os agentes
para aumentar a adaptabilidade e a produtividade.

A segurança é um fator crítico para a aceitação do utilizador e para o sucesso dos robôs co-
laborativos (cobots), sendo, portanto, um foco de investigação. Abordagens típicas fornecem ao
cobot informações como estimativas da localização do operador, ou previsões de mais alto nível
do seu movimento para facilitar o planejamento adaptativo de trajetória ou ação. Sendo assim,
localizar o operador na área de trabalho compartilhada é vital.

Esta dissertação procura iniciar o desenvolvimento de um sistema de monitorização do oper-
ador humano que forneça uma estimativa de posição que possa ser usada para recursos de segu-
rança como monitorização de velocidade e distância. Dois métodos estado-da-arte para estimativa
de posição humana em imagens RGB bidimensionais, OpenPifPaf e OpenPose, são avaliados
usando um conjunto de dados personalizado. Os resultados são então analisados considerando
execução em tempo real, no caso de uso de um único operador executando tarefas de montagem
industrial numa célula robótica colaborativa equipada com um braço robótico.

Embora ambos os métodos sejam reconhecidos como soluções viáveis, com base nas métricas
de avaliação alcançadas, o OpenPose é selecionado pelo seu maior recall e 55% maior velocidade
de inferência, a favor da maior precisão do OpenPifPaf, que se acredita comprometer a robustez
do método para oclusões e, portanto, a segurança do operador. Propõe-se ainda que trabalhos
futuros considerem: o treino de modelos customizados para cada método; a fusão de estimativas
de posição 2D de diferentes perspetivas da cena para obtenção de uma estimativa 3D refinada e
robusta a oclusões; e a investigação adicional do efeito da resolução da imagem de entrada no
desempenho dos métodos avaliados.

iii

iv

Acknowledgements

I would like to gratefully acknowledge my supervisors, Professor Pedro Gomes da Costa and Pro-
fessor Luís Freita Rocha, for choosing me to conduct this work, and for advising and encouraging
me throughout this year.

My sincere gratitude to Carlos Costa for his contribution as the main subject of the images used
throughout this dissertation, as well as to everyone at INESC TEC that supported this research.

My best wishes to all the members of my extended NEEEC family.
My deepest love:
To my QueerBots - Gala Humblot-Renaux, my inspiration to become the best researcher I can

be, and Carolina Gomez Salvatierra, for accompanying me through hardship, even if remotely.
To all my friends that walked this path to graduation alongside me, and to all among them who

made me who I am today.
To my family for their infinite support, and most of all to my parents, João and Susana, for

their wisdom and reassurance.

And, finally, to new beginnings.

Eduardo Fonseca

v

vi

Contents

1 Introduction 1
1.1 Use Case . 1
1.2 Tracking System and Scope . 3
1.3 Outline and Contributions . 3

2 Background and Related Work 5
2.1 Human-Robot Collaboration . 5
2.2 Safety . 6
2.3 Control . 7

3 Human Pose Estimation and Key Concepts 9
3.1 Early Work and the Introduction of Deep Learning 9
3.2 Top-down and Bottom-up State-of-the-art Methods 10
3.3 Pre-selection of Methods to Evaluate . 11
3.4 Evaluation Metrics . 12

3.4.1 Precision, Recall and Accuracy . 12
3.4.2 Probability of Correct Keypoint . 13
3.4.3 Mean Per Joint Position Error . 14
3.4.4 Inference Speed, Frame Rate and Computational Cost 14

4 Methodology 15
4.1 Setup . 15

4.1.1 Collaborative Robotic Workstation . 16
4.1.2 Hardware and Software Architecture . 17

4.2 Dataset Building . 18
4.2.1 Assumptions and Goals . 18
4.2.2 Image Collection . 18
4.2.3 Image Resizing . 20

4.3 Ground Truth Annotation . 21
4.4 Operator Pose Estimation in Datasets . 23

4.4.1 Pre-trained Model Selection . 24
4.5 Evaluation Procedure of Human Pose Estimation Methods 25

4.5.1 Skeleton Extraction and Keypoint Mapping 25
4.5.2 Skeleton Matching - Filtering False Positives 26
4.5.3 Joint Matching and MPJPE Computation 29
4.5.4 Output Results . 31

vii

viii CONTENTS

5 Results and Discussion 33
5.1 Reliability and Accuracy . 33

5.1.1 Skeleton Predictions . 34
5.1.2 Joint Predictions . 36

5.2 Real-time Operation and Inference Speed . 44
5.3 Method Selection . 46

6 Conclusion and Future Work 47

A Implementation Details and Examples of Obtained Files 49
A.1 Ground Truth Annotation - Supervisely and JSON files 49
A.2 Operator Pose Estimation - Run Outputs . 51
A.3 Evaluation Procedure - Outputs . 53

References 59

List of Figures

1.1 Block diagram overview of high-level features related to a human operator track-
ing system for safe collaborative robots. 2

2.1 The collaborative operation modes identified by safety standards 10218-1/2:2011
[1]. 7

3.1 Binary confusion matrix. 12

4.1 KUKA LBR iiwa 14 R820 (left) and UR5 (right) robots and respective technical
specifications, according to Villani et al. [1]. 16

4.2 Example images from ’left’ and ’right’ datasets depicting operator occlusions. . . 19
4.3 Example images from ’left’ and ’right’ datasets depicting motion blur. 20
4.4 Example images from ’left’ and ’right’ datasets depicting varying number of hu-

mans in frame. 20
4.5 Example images from ’left’ and ’right’ datasets depicting foreshortening of oper-

ator’s arms. 21
4.6 Screenshots of Supervisely web interface used for annotation. 22
4.7 Skeleton keypoint configurations for (a) Annotation skeleton, (b) OpenPifPaf COCO,

and (c) OpenPose BODY_25. 22
4.8 Example of rendered frames where OpenPose predicted reasonable estimates for

occluded joints. 23
4.9 Block diagram of the implemented evaluation procedure. 26
4.10 Examples of rendered frames with false positive skeletons. 28
4.11 Example of rendered frame where OpenPifPaf did not fully associate detected

joints as part of the same skeleton. 28
4.12 Visual demonstration of the matching threshold criteria. 29
4.13 Example of rendered frame where OpenPifPaf did not detect the visible operator. 30

5.1 Example of images with rendered skeleton predictions from OpenPose, with num-
ber_people_max flag set to 1. 35

5.2 Example images of false positive (FP) predictions: skeletons of humans in back-
ground, and lower-body joints occluded by workstation table. 40

5.3 Example images of false positive hip joint predictions and accurate predictions of
arm and head joints. 42

5.4 Example images of OpenPifPaf’s higher precision and OpenPose’s seemingly ac-
curate false positive predictions for occluded arm joints. 42

5.5 Example images of OpenPifPaf’s higher precision and OpenPose’s inaccurate false
positive predictions for occluded arm joints. 45

ix

x LIST OF FIGURES

List of Tables

2.1 Features of different human-robot relationships [2]. 6

4.1 Performance metrics of the different OpenPifPaf pre-trained models, according to
OpenPifPaf Guide. 24

4.2 Keypoint label mapping of joints for each skeleton 27

5.1 Evaluation metrics for skeleton predictions. 33
5.2 Evaluation metrics for OpenPifPaf joint predictions. 38
5.3 Evaluation metrics for OpenPose joint predictions. 39
5.4 Evaluation metrics for OpenPifPaf and OpenPose predictions of lower body joints. 41
5.5 Evaluation metrics for OpenPifPaf and OpenPose predictions of arm joints. . . . 43
5.6 Evaluation metrics for OpenPifPaf and OpenPose predictions of head joints. . . . 44
5.7 Average inference speed of OpenPifPaf and OpenPose and average time measure-

ments per image for each run. 45

xi

xii LIST OF TABLES

Abbreviations and Symbols

2D Two-Dimensional
3D Three-Dimensional
AA Average Accuracy
AP Average Precision
AR Average Recall
CNN Convolutional Neural Network
DL Deep Learning
DNN Deep Neural Network
FN False Negative
FP False Positive
FPS Frames Per Second
HRC Human-Robot Collaboration
HRI Human-Robot Interaction
JPE Joint Position Error
JSON JavaScript Object Notation
MPJPE Mean Per Joint Position Error
PCK Probability of Correct Keypoint
RGB-D Red Green Blue-Depth
ROS Robot Operating System
TN True Negative
TP True Positive

xiii

Chapter 1

Introduction

With the advent of the Industry 4.0 paradigm, manufacturing is shifting from mass production

towards customisable production lines. While robots excel at executing repeating tasks in a fast

and precise manner, they lack the versatility that is currently desired and only easily achieved by

humans. Recent research in the field of Human-robot collaboration (HRC) has seeked to address

this issue by allowing human operators to work together with robots in close proximity, leveraging

the strengths of both agents to increase adaptability and productivity [2].

Although humans and robots working together symbiotically is an enticing prospect, technical

constraints have long restricted what can be accomplished. In particular, ensuring the safety of

human operators in a shared workspace is still a limiting factor for collaborative robotics [1].

While safety solutions for collaborative robots - also known as cobots - are reliable and trusted in

laboratories, they suffer from low acceptance among users of manufacturing systems, in large part

due to a lack of standards and solutions for specific industrial applications [2].

In order to ensure applicability to industrial manufacturing settings, cobots must efficiently

adapt to the unpredictability of human behaviour while adhering to strict safety standards. An

often crucial first step to achieve this is to reliably locate the operator in the shared workspace in

order to enable safety features like collision avoidance. In fact, typical methods involve tracking

the operator in some form, often providing the cobot with information such as pose estimates -

or even higher-level motion predictions - to facilitate adaptive planning of trajectory or action [3].

Therefore, a tracking system that provides a three-dimensional estimate of the human operator’s

pose throughout operation is an essential feature for safe industrial cobots.

1.1 Use Case

While safety is a concern for all types of cobots, we will focus on a specific use case: one of INESC

TEC’s research projects, ScalABLE 4.0, which sought to address other challenges brought on by

the Industry 4.0 paradigm shift. Namely, the project’s stated main objective was "the development

1

2 Introduction

Safety Features for Cobot Motion Planning

2D RGB
image

Human Operator Tracking System

Depth
measurements

2D Human Pose
Estimation

Projection of 2D Pose
Estimate to 3D Space

Input RGB-D camera

Output 3D Pose Estimate of Operator Joints

Collision
Avoidance

Operator Action
Recognition

Speed and Distance
Monitoring

Figure 1.1: Block diagram overview of high-level features related to a human operator tracking
system for safe collaborative robots.

and demonstration of an open scalable production system framework (OSPS) that enables opti-

mization and maintenance of production lines ‘on the fly’, through visualization and virtualization

of the line itself" [4].

In particular, the ’PSA’ use case focused on a motor assembly plant and the integration of

robotic solutions into a pilot line, in a less intrusive manner [5]. One of the solutions that was

developed consisted of an augmented reality interface that enabled HRC by teaching operators

how to coordinate tasks with the robotic platform for complex assembly operations [6].

As was previously addressed, safety is crucial in order to establish the operator’s trust in the

cobot. While projection mapping allows the agents to share the workspace and work in close prox-

imity, the lack of active safety measures still pose a threat to collaboration in industrial scenarios.

As such, the proposed work will expand on ScalABLE 4.0 by kickstarting the development of a

human operator tracking system for its collaborative robotic workstation.

1.2 Tracking System and Scope 3

1.2 Tracking System and Scope

Figure 1.1 provides a high-level overview of how a human operator tracking system can be imple-

mented, using RGB-Depth images as input in order to output a 3D pose estimate of the operator’s

joints. In turn, this information can be used to implement safety features for motion planning or

control in collaborative robots like, for example, collision avoidance, operator action recognition,

or speed and distance monitoring.

This dissertation seeks to kickstart the development of a human operator tracking system with

similar architecture to what is depicted in figure 1.1. To accomplish this, the scope of this work is

focused on the selection of a 2D human pose estimation methods that is appropriate to implement

in this system for our use case.

1.3 Outline and Contributions

This document is structured as follows: Chapter 1 contextualises the work in the use case of safety

in industrial collaborative robotics. Chapter 2 provides an overview of background and related

works regarding HRC and Safety, and briefly explores some higher level approaches to cobot

trajectory planning and control which rely on the output of a tracking system. Chapter 3 clarifies

key concepts related to the field of human pose estimation research and introduces the methods

that we considered for implementation in a tracking system, OpenPifPaf and OpenPose. Chapter

4 addresses the methodology of this work, detailing how these human pose estimation methods

were evaluated for use in the ScalABLE 4.0 collaborative robotic workstation. Chapter 5 presents

the results obtained from the evaluation procedure of the previous chapter and discusses them in

the context of our use case. Finally, in Chapter 6, we review the work, draw conclusions, and

propose future work.

4 Introduction

Chapter 2

Background and Related Work

2.1 Human-Robot Collaboration

Human-Robot Collaboration (HRC) is a highly active field of research in robotics, in large part

thanks to the demand of more flexible robotic solutions for industrial manufacturing. Collaborative

robots, otherwise known as a cobots [7], are desirable since they leverage the advantages of both

robot and human agents - respectively, speed and precision in repeating task execution, as well as

flexibility and cognitive ability [2]. In HRC, the human operator works in close proximity with

the robot, in a shared workspace, towards accomplishing the same common goal [1].

Wang et al. [2] provide an overview of the current state of HRC in manufacturing, as well as

insight into industrial scenarios and multimodal robot control through high-level commands like

gestures or voice commands. Four different human-robot relationships - Coexistence, Interaction,

Cooperation, and Collaboration - are also characterized in table 2.1 according to five different

perspectives:

1. Workspace: If the human and robot share a workspace, without separation through physical

or virtual fences.

2. Contact: If the human and robot have direct physical contact.

3. Shared working task: If the human and robot share operations when working towards the

same objective.

4. Simultaneous process: If the human and robot work at the same time, wether on the same

or different tasks.

5. Sequential process: If the human and robot do not have overlapping operations and instead

work one after the other in the temporal scale.

These definitions are particularly useful as there is no consensus on how to distinguish these

complex scenarios. In fact, human-robot interaction (HRI) is also considered a different branch

of robotics research and is used as a more general term. A simpler way to distinguish HRC from

5

6 Background and Related Work

Table 2.1: Features of different human-robot relationships [2].

HRI is based on wether the human and robot are working together towards a common goal - while

it is required in collaboration, it is not necessarily so in interaction [1].

2.2 Safety

The issue of safety is critical to the success of collaborative robotics and a main focus of research

[1]. While safety solutions for collaborative robots (cobots) in laboratories are reliable and trusted,

the lack of standards and safety certification for industrial applications results in low acceptance

among users [2]. As such, the alternative of physically separating agents through safety fences has

traditionally been favoured due to its relative simplicity. In this approach, optical or mechanical

barriers are used to detect if the operator breaches the robot’s delineated workspace boundaries,

reducing the speed or entirely stopping the robot’s motion accordingly.

While physical separation ensures safety, it also severely limits collaboration through inter-

action, either with or without direct contact. Therefore, in order to overcome this limitation, the

cobot must efficiently adapt to the unpredictability of human behaviour while adhering to strict

safety standards. In particular, one method to achieve safety in a shared workspace consists of

monitoring the operator for the purposes of collision avoidance [3].

Additionally, market demands have emphasised research on HRC in assembly tasks with

robotic manipulators. Thus, the proposed work will focus on the development of a continuous

operator monitoring system, based on computer vision techniques, for the purpose of adaptive

trajectory planning of cobots in assembly tasks, according to the operator’s pose.

As was discussed in chapter 1, safety solutions for HRC suffer from insufficient standardis-

ation and certification, especially for industrial applications. Thus, research in recent years has

heavily focused on this issue.

Mehta et al. [8, 9] achieves real-time 3D pose estimation from RGB images, using convolu-

tional neural networks (CNNs). However, VNect and XNect are not robust to big occlusions and

are significantly less accurate than other slower methods.

In [3], an extensive survey of methods for safe HRI was conducted, which were then classified

into four major categories: Control, Motion planning, Prediction, and Consideration of Psycho-

logical Factors. The consideration of both physical and psychological safety is also highlighted

2.3 Control 7

as a critical factor for HRI success. Similarly, [10] highlights human trust in robotic collaborators

and reviews different trust modelling methods.

Villani et al. [1] reviewed HRC solutions in industrial settings, regarding safety, user interface

and applications. Both [1] and [11] address the currently available international safety standards

and certification procedures. In particular, both present the four levels of collaborative opera-

tion modes identified in the ISO 10218-1/2:2011 [12, 13] standards, pictured in figure 2.1, and

implementations of safety that apply these principles.

Figure 2.1: The collaborative operation modes identified by safety standards 10218-1/2:2011 [1].

These can be summarised as such:

1. Safety-rated Monitored Stop (SMS) - the robot stops moving if the operator ocupies the

shared workspace.

2. Hand Guiding (HG) - the operator teaches the robot positions by moving it.

3. Speed and Separation Monitoring (SSM) - a vision system monitors the operator and adjusts

robot motion according to the occupied zone.

4. Power and Force Limiting (PFL) - the robot’s motor power and force are constrained to

guarantee operator safety.

2.3 Control

Cheng et al. [14] proposes an integrated HRC framework with plan recognition and trajectory pre-

diction modules to generate safe and efficient robot actions. The authors leverage the hierarchical

8 Background and Related Work

relationships between plans and trajectories in order to predict both the human’s future motion -

for the purpose of collision avoidance and safe trajectory planning - and action sequence. This

plan recognition algorithm is based on Neural Networks and Bayesian interference and shows

promising results, reducing average task completion time in an industrial assembly task experi-

ment. Furthermore, the article provides useful insight into categorization of intelligent cobots:

1. Low-level collision avoidance algorithms that consider humans as simple moving obstacles.

2. Mid-level efficient cooperation through human trajectory prediction and task plan recogni-

tion.

3. High-level full collaboration through mode selection and automatic task assignment.

In [15], an integrated HRI framework is proposed for collaborative assembly in manufacturing

cells. Also, [16, 17, 18] address implementations of some of the concepts from the previous

subsections.

Chapter 3

Human Pose Estimation and Key
Concepts

Enabling safe human-robot collaboration through active safety measures like safety-rated mon-

itored stop or speed and separation monitoring typically requires the knowledge of where the

operator is located in the workspace. Human pose estimation, which can be broadly defined as the

localisation of a person’s body parts or joints, can be used to accomplish this very task. Usually,

this is done either in two-dimensional (2D) images or videos, by estimating pose in pixel coordi-

nates; or in the three-dimensional (3D) space by inferring 3D coordinates from 2D pose or through

fusion of depth information and/or distance measurements.

While 3D pose estimation is desired, it is still a relatively new field of research with few

benchmarks or large datasets available, whereas most state-of-art human pose estimation methods

approach the issue exclusively using 2D RGB images as input. Therefore, since 3D pose can be

obtained from 2D, we focused our research on 2D RGB methods and their respective implemen-

tations.

In this chapter, we give an overview of related work and present key concepts related to the

research field of human pose estimation. In section 3.1 we review early influential works and the

vital role that deep learning plays in the current landscape. Section 3.2 clarifies the differences

between top-down and bottom-up methods and establishes the state-of-the-art. Section 3.3 lists

different implementations of human pose estimation methods that were considered for this work

and justifies the pre-selection of OpenPifPaf and OpenPose as the methods to evaluate for use in

a tracking system for our use case. Finally, section 3.4 introduces several types of metrics that are

used to evaluate the performance of the human pose estimation methods and comments on their

applicability for our purposes.

3.1 Early Work and the Introduction of Deep Learning

The problem of human pose estimation is often difficult to address due to the high variability

of factors that influence it. For example, the human’s activity (what they are doing), physical

9

10 Human Pose Estimation and Key Concepts

attributes (their body type, skin tone), or even the context they are in (if they are in a crowd of

other people, or a dimly lit room) are all variables that may have to be considered, depending on

the desired use case. This has resulted in the development of a variety of methods with different

strengths and weaknesses.

Early work often relied on hand-crafted features like tree models [19], pictorial structures [20,

21] or histograms of oriented gradients (HOG) [22, 23, 24]). However, these methods could not

meet increasing demands of detection speed, accuracy and robustness [23, 25]. In turn, DeepPose

[26] introduced the first application of Deep Neural Networks (DNN) to the human pose estimation

problem, formulating it as a DNN-based regression to joint coordinates, and using a cascade of

Convolutional Neural Networks (CNN) to solve it. This work kickstarted a tidal wave of deep

learning methods, those based on DNN [27], that outperformed non-deep state-of-the-art methods

[28, 19, 20, 22] by wide margins and quickly developed to become the state-of-the-art of the field.

Dang et al. [25] conducted a comprehensive survey on deep learning based human pose esti-

mation methods, presenting useful methodology-based taxonomy. First, they distinguish between

single-person and multi-person pipelines. Single-person pipelines usually work by inferring key-

points of human parts based on a bounding box that is provided in advance. Evidently, this con-

straint is too restrictive for our use case because it essentially requires us to accomplish our goal

of locating the operator in the 2D image in advance, all to simply refine this pose using the de-

tected keypoints. In contrast, multi-person pipelines must achieve the goal of keypoint detection

without a priori knowledge of either number or location of people, thus requiring the detection of

the humans themselves. As such, our analysis focuses on multi-person methods for human pose

estimation.

3.2 Top-down and Bottom-up State-of-the-art Methods

Dang et al. [25] established an important distinction between two different types of approaches

to 2D multi-person pose estimation, top-down and bottom-up. These are related to the order in

which a method identifies people and their respective body part keypoints, also known as joints:

• Top-down approaches first estimate the location of the person or body part regions and

then regress joint estimates. While these methods require a person detector, recent advances

have resulted in outstanding performance. However, these methods struggle with occlusions

and scenarios where person bounding boxes overlap, like crowded scenes.

Examples of top-down methods include: PoseNet [29], RMPE [30], CFN [31], Mask R-

CNN [32], CPN [33] MSRA [34]; as well as 3D pose estimation methods like Mesh R-CNN

[35], V-nect [8],and X-nect [9].

• Bottom-up approaches first identify all keypoints/joints in the image and then associate

them to build a skeleton. Recent methods often perform on par with top-down approaches,

while benefiting from wider applicability due to increased robustness to occlusions.

3.3 Pre-selection of Methods to Evaluate 11

Examples of bottom-up methods include: DeepCut and DeeperCut [36, 37], OpenPose [38,

39], MultiPoseNet [40] and OpenPifPaf [41, 42].

In recent years, Mask R-CNN [32] and OpenPose [39] have been cited as state-of-the-art

methods for 2D multi-person human pose estimation, as well as cornerstones for the top-down

and bottom-up approaches respectively. Kreiss et al. [41, 42] proposed OpenPifPaf, a new method

that extends the notion of fields discussed by Cao et al. [38] and which they claim outperforms

Mask R-CNN and OpenPose, especially in lower resolution images and densely crowded scenes

where humans partially occlude each other.

3.3 Pre-selection of Methods to Evaluate

Having surveyed the field of human pose estimation, we identified different implementations of

some of the methods discussed and considered them as possible candidates to evaluate for use in

a tracking system for our use case:

• Detectron21 [43] is Facebook AI Research’s library of detection and segmentation algo-

rithms and the successor of Detectron2 and maskrcnn-benchmark3, which implements Mask

R-CNN among other methods.

• OpenPose4 [39] - the official implementation of OpenPose with extended detection for

fance, hand and foot keypoints with the pre-trained model BODY_25.

• OpenPifPaf5 [42] - the official implementation of OpenPifPaf, which provides three differ-

ent pre-trained models - resnet50, shufflenetv2k16 and shufflenetv2k30 - using the COCO

training dataset [44], that are further discussed in subsection 4.4.1.

• Intel RealSense Skeleton Tracking SDK6 - a proprietary method integrated into the Intel

RealSense software development kit for their depth cameras that they claim to offer "fast

and highly accurate 2D and 3D human pose estimation with 18 joints" without GPU.

In order to limit the scope of the work, two 2D human pose estimation methods were selected

for evaluation: OpenPifPaf and OpenPose. Both methods rely on bottom-up approaches, sharing

similarities in methodology that might streamline the discussion of results, and report outstanding

performance metrics in widely-used benchmarks, such as MPII [45] or COCO [44]. Furthermore,

OpenPose is considerably more mature and widely adopted by users, but both implementations

facilitate integration by offering thorough documentation and APIs for Python development.

1https://github.com/facebookresearch/detectron2
2https://github.com/facebookresearch/Detectron/
3https://github.com/facebookresearch/maskrcnn-benchmark/
4https://github.com/CMU-Perceptual-Computing-Lab/openpose
5https://github.com/openpifpaf/openpifpaf
6https://www.intelrealsense.com/skeleton-tracking/

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/Detectron/
https://github.com/facebookresearch/maskrcnn-benchmark/
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/openpifpaf/openpifpaf
https://www.intelrealsense.com/skeleton-tracking/

12 Human Pose Estimation and Key Concepts

p̃

ñ

p n

TP

FN TN

FP
Prediction

Ground Truth

p̃ + p = True Positive

p̃ + n = False Positive

ñ + p = False Negative

ñ + n = True Negative

Figure 3.1: Binary confusion matrix.

These methods were selected over the top-down approaches provided by Detectron2 since they

are supposedly more robust to occlusions - a challenge that is particularly relevant to our use case

because the operator is frequently occluded by the equipment of the collaborative workstation.

Moreover, while direct integration with RGB-D cameras is a desirable feature, the Intel RealSense

Skeleton Tracking SDK was excluded in favour of methods that are open-source.

In the future, extending this work to include the evaluation of these other methods would pro-

vide a more thorough perspective and motivate a more informed choice of human pose estimation

method for an operator tracking system.

3.4 Evaluation Metrics

In order to properly evaluate the performance of a human pose estimation method, we must first

choose evaluation metrics that will clearly convey information that is relevant to our use case.

As the choice of performance metric is highly dependant on the problem that is being analysed,

there is no single metric that can address all facets and real-world constraints of pose estimation.

Therefore, this section presents the different performance metrics that were considered for im-

plementation in the evaluation procedure of this work. These can all be broadly categorised as

measures relating to either accuracy or computational speed/cost.

3.4.1 Precision, Recall and Accuracy

Traditionally, the performance of a Deep Learning (DL) model is characterized by how well it

generalises to data that it has not encountered before, that is, whether it can accurately predict

the correct output from new input data. To assess this, most metrics are, in some way, based

on a confusion matrix, which is a matrix that categorises the model’s predictions into correct

or incorrect classes, with dimensions equal to the number of possible ground truth or prediction

outcomes. Figure 3.1 depicts a binary confusion matrix - the simplest, and also most common,

type of confusion matrix, of dimensions 2 by 2, where both the ground truth and prediction can

either be positive or negative.

3.4 Evaluation Metrics 13

As depicted, each prediction can be classified as: a true positive (TP - positive prediction, p̃,

and positive ground truth, p); a false positive (FP - positive prediction, p̃, and negative ground

truth, n); a false negative (FN - negative prediction, ñ, and positive ground truth, p); or a true

negative (TN - negative prediction, ñ, and negative ground truth, n). We can determine the total

numbers of: positive predictions P̃ = T P + FP; negative predictions Ñ = FN + T N; positive

ground truths P = T P+FN; and negative ground truths N = FP+T N.

Using these variables, the following metrics can be defined:

• Precision measures the proportion of positive predictions that were correctly identified:

Prec = T P
P̃ = T P

T P+FP

• Recall, also known as true positive rate, measures the proportion of ground truth positives

that were correctly predicted as positive: Recall = T PR = T P
P = T P

T P+FN . We can also define

other complimentary rates:

– False negative rate: FNR = 1−T PR = FN
P

– True negative rate: T NR = T N
N = T N

T N+FP

– False positive rate: FPR = 1−T NR = FP
N

• Accuracy measures the proportion of correct predictions made over the ground truth total:

Acc = T P+T N
P+N

Powers [46] introduced the concepts of informedness, markedness, correlation and signifi-

cance as a way to address bias related to the use of recall and precision. However, in our use case,

these two metrics may be sufficient to determine which human pose estimation method performs

better at correctly identifying the human operator’s skeletons and joints. In fact, variations of

Average Precision (AP) and Average Recall (AR) are frequently used as performance metrics for

pose estimation methods [32, 41, 39] and benchmarks [45, 44, 47].

3.4.2 Probability of Correct Keypoint

An important step in the quantitative evaluation of human pose estimation was the protocol de-

scribed by Ferrari et al. [48] that relied on the Probability of a Correct Pose (PCP) metric, which

measured the percentage of correctly localized body parts.

Yang et al. [49] addressed limitations of PCP by introducing the Probability of Correct Key-

point (PCK), a threshold metric that defines a candidate keypoint to be correct if it falls within

α ·max(h,w) pixels of the ground truth keypoint. Since h and w are, respectively, the height and

width of the bounding box and α is an arbitrarily selected value between 0 and 1, the use of

this metric explicitly requires that the people in test images are annotated with a tightly cropped

bounding box. Several variations of PCK have been proposed but we highlight PCKh, introduced

by Andriluka et al. [45] with the "MPII Human Pose" benchmark, which modifies the matching

threshold to be equal to 50% of the head segment length.

14 Human Pose Estimation and Key Concepts

Similarly to recall and precision, PCK and its variants are, ultimately, measures of whether

keypoints are being correctly predicted or not. However, PCK differentiates itself by providing a

useful quantitative definition of what a true or false prediction is, in a way that is mostly robust to

challenges like foreshortening. Nonetheless, it is still a fairly limited solution since it relies on an

arbitrarily defined scalar factor (α), as well as the additional requirement of annotated bounding

boxes. Thus, because it scales with the size of the human bounding box, it is particularly useful if

testing with a large dataset and high variance of sizes of humans in frame.

3.4.3 Mean Per Joint Position Error

In 3D human pose estimation, another metric that is commonly used to determine a method’s ac-

curacy is Mean Per Joint Position Error (MPJPE). This metric is typically defined as the average

of the physical distance between a predicted joint and its ground truth counterpart. For our pur-

poses of evaluating human pose estimation in 2D images, this metric can be defined as the average

euclidean distance in pixels between the predicted and ground truth joints.

MPJPE has the distinct advantage of clearly defining a quantitative measure of estimation

accuracy that can be easily implemented with standardized input. Another interesting metric that

is similarly based on distance is Object Keypoint Similarity (OKS) [50], which was introduced in

the COCO 2017 Keypoint Detection Task [51]. While worthy of mention for the relevance of the

annual COCO challenges, OKS was considered unnecessarily complex for our purposes.

3.4.4 Inference Speed, Frame Rate and Computational Cost

While the accuracy of a prediction is extremely important, our use case relies on real-time opera-

tion, thus requiring the human pose estimation method to output its predictions quick enough for

use in other tasks, such as cobot motion planning for safety purposes. The meaning of real-time

operation is context-dependant and discussed later in section 5.2. Regardless, achieving it requires

a compromise between accuracy and speed.

Therefore, a standard metric for evaluating human pose estimation methods in tracking appli-

cations is inference speed, which is defined as the average inference time per image - the time it

takes to output all pose estimates for an image. Additionally, we can measure how many image

frames a method can analyse per second by computing the frame rate, measured in frames per

second (FPS), based on inference speed.

Furthermore, while inference speed already addresses the most typical measure of computa-

tional cost, computation time, recording the usage of computing resources, such as GPU memory,

during execution can be a useful complimentary metric.

Chapter 4

Methodology

This chapter details how the selected human pose estimation methods, OpenPifPaf [41, 42] and

OpenPose [38, 39] were evaluated for use in a tracking system for the ScalABLE 4.0 collaborative

robotic workstation, clarifying, among others, the methodology of this work. Section 4.1 estab-

lishes the conditions and constraints of the setup in question that justify several decisions made

throughout development. Section 4.2 summarises our assumptions and goals resulting from the

previous section and describes the steps taken to build custom datasets for evaluation. Section 4.3

relates how the images in each custom dataset were annotated to provide a ground truth to which

to compare the predictions of OpenPifPaf and OpenPose. Section 4.4 details how we obtained

each method’s pose predictions for all images in the custom datasets. Finally, section 4.5 clarifies

the evaluation procedure that processes these predictions into results that can be analysed. Addi-

tionally, appendix A provides some implementation details regarding the Python scripts that were

created for this work1, as well as examples of the files that are obtained and mentioned throughout

this chapter.

4.1 Setup

As in real industrial use cases, the development of safety features is constrained by several limita-

tions, both in terms of the technologies used and the scenario in question. While different methods

may be applied to several settings, the one which will optimize our system’s success in our spe-

cific use case must be determined. Therefore, we must clearly establish what limitations this work

was developed under, as well as which conditions led to each of the decisions that were made

throughout development.

1These scripts are publicly available at https://github.com/eduardocaldasfonseca/
cobot-monitor/

15

https://github.com/eduardocaldasfonseca/cobot-monitor/
https://github.com/eduardocaldasfonseca/cobot-monitor/

16 Methodology

4.1.1 Collaborative Robotic Workstation

The ScalABLE 4.0 collaborative robotic workstation is located in INESC TEC’s iiLab. It is typ-

ically mounted with a KUKA LBR iiwa 14 R820 robot2, a robotic arm model that benefits from

several user safety features. These can be categorized in the Hand Guiding and Power and Force

Limiting collaborative operative modes that were previously discussed in section 2.2. In fact,

KUKA claims that these render obsolete many of the safety precautions that are traditionally as-

sociated with industrial robots, such as safety fences.

Alternatively, when the KUKA robot is unavailable, the Universal Robots UR53 collaborative

robotic arm may replace it instead. The two models are depicted in figure 4.1, alongside some

technical specifications according to Villani et al. [1] that may prove useful.

Figure 4.1: KUKA LBR iiwa 14 R820 (left) and UR5 (right) robots and respective technical
specifications, according to Villani et al. [1].

Additionally, an Intel RealSense D435 RGB-Depth Camera4 was provided as one of the sen-

sors to be installed in the workstation. This is a stereo depth camera that outputs RGB video at a

frame rate of 30 Frames Per Second (FPS) and a frame resolution of 1920 × 1080 pixels, as well as
2https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa
3https://www.universal-robots.com/products/ur5-robot/
4https://www.intelrealsense.com/depth-camera-d435/

https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa
https://www.universal-robots.com/products/ur5-robot/
https://www.intelrealsense.com/depth-camera-d435/

4.1 Setup 17

depth frames at up to 90 FPS and 1280 × 720 pixels, using active IR. These technical specifications

in particular are useful benchmarks for input image resolution and inference speed requirements.

Regarding software, the ScalABLE 4.0 collaborative station is currently using the Melodic

distribution5 of the Robotic Operating System (ROS) 1 software framework - an open-source

robotics middleware of widespread use in both academic and industrial settings - in the Ubuntu

18.04 LTS (Bionic Beaver) release6 of the Linux OS family, as well as the INESC TEC ROS-

based software framework for industrial robot control. It is expected that these will eventually

be upgraded into their most recent long-term support releases - respectively, ROS 1 Noetic7 and

Ubuntu 20.048.

4.1.2 Hardware and Software Architecture

While iiLab was available, the work was developed using another computer outside the laboratory,

in part due to restrictions related to the COVID-19 pandemic. This computer is equipped with the

following:

• Hardware:

– CPU - Intel Core i5-6600K @ 3.50GHz

– GPU - NVIDIA GeForce GTX 1060 (with 6070MiB)

• Software:

– Ubuntu 18.04.05

– Python 3.6.9

– OpenCV 4.5.1

– OpenPifPaf 0.12.10

– OpenPose 1.3

– CUDA version 11.3 (for NVIDIA GPU)

When necessary, we prioritised matching the collaborative robotic workstation’s setup and the

requirements of the human pose estimation methods in question. For example, the Ubuntu distri-

bution matches that of the workstation, and the CUDA GPU drivers were installed with regards to

the OpenPose requirements.

It is worth noting that the OpenPose documentation9 highly recommends the use of cuDNN,

the NVIDIA CUDA Deep Neural Network library10 that is used to accelerate GPU performance.

While it is believed that this would greatly impact the results obtained regarding the inference

speed of OpenPose, technical difficulties in its installation prevented us from using it.

5http://wiki.ros.org/melodic
6https://releases.ubuntu.com/bionic/
7http://wiki.ros.org/noetic
8https://releases.ubuntu.com/20.04/
9Installation section of the OpenPose Doc can be found here

10https://developer.nvidia.com/cudnn

http://wiki.ros.org/melodic
https://releases.ubuntu.com/bionic/
http://wiki.ros.org/noetic
https://releases.ubuntu.com/20.04/
https://developer.nvidia.com/cudnn

18 Methodology

Having established the technologies that are used and some of the restrictions that were faced,

we must now clarify how the evaluation datasets were built.

4.2 Dataset Building

Based on our setup and what was discussed in chapter 3, we can now narrow down the extent

of our analysis, which will allow us to, among others, build a custom dataset that is useful for

evaluation. The following subsection 4.2.1 summarises our assumptions and goals.

4.2.1 Assumptions and Goals

• Sensor type and data fusion - Since an RGB-Depth camera was provided, only single-view

methods for human pose estimation in 2D RGB images are considered. As was previously

discussed in chapter 3, while it is not in scope, the fusion of depth information to obtain 3D

joint coordinates in the future - or even further fusion with other type of sensor data, such

as laser scan point cloud - is considered.

• Point of view - Initially, only one camera is available to be mounted. However, mounting

multiple cameras in order to obtain and fuse several perspectives of the scene is desirable.

• Robustness to occlusions - The system must be robust to, at least, partial occlusion since,

during operation, the robotic arm may obstruct the camera’s view of the human operator.

• Number of operators - Assuming a single operator is working with the cobot, multiple

person detection is not required. However, robustness to multiple people in frame is still

desirable since, typically, many human workers are present in industrial workspaces, even

if only in the background.

• Real-time operation - The system must run online, in real-time, to be useful for safety

features in industrial applications.

4.2.2 Image Collection

In order to evaluate a human pose estimation method for use in a tracking system for our col-

laborative workstation, a dataset must be built that is applicable to this use case or, even better,

that accurately represents a wide array of real-life scenarios relating to it. Moreover, it must also

take into account rarer occurrences, namely occlusions, motion blur, foreshortening of limbs, and

varying number of humans in frame.

For this purpose, we had originally intended to use the RealSense D435 camera to record a

custom dataset of RGB-D frames, including several different people that would simulate the same

assembly task in collaboration with the robotic arm of the workstation. However, not only was the

KUKA robotic arm unavailable and UR5 not mounted - which would prevent us from recording an

accurate workflow and the most common type of occlusions - time and sanitary lockdown-related

restrictions would severely limit the variety of data that could be gathered, as well as introduce

factors, like the use of face masks, that might impact the results obtained.

4.2 Dataset Building 19

Therefore, we instead opted to build the custom dataset from footage that had been recorded

previously to create a demonstration video11 of one of the features of the collaborative robotic

workstation. The unedited footage captures one of INESC TEC’s researchers performing assembly

and then disassembly operations of a motor engine, in collaboration with the KUKA robotic arm -

our desired use case. Even though evaluation with a dataset consisting entirely of the same operator

restricts the generalisation of our results, as it does not account for factors such as varying body

types and skin tones, this solution also provides unique opportunities regarding point of view.

Namely, the scene was filmed from two different angles: in one, the camera is positioned to the

operator’s left, above eye level and angled down, capturing the workspace and both agents; while

in the other, the camera is to the right of the operator but at approximately eye level and closer

to parallel to the ground. Each of these videos has a duration of around 27 minutes, comprising

a total of 55 minutes of footage. These were converted from video into two different subsets of

RGB images in the JPG file format, and named according to the position of the camera relative to

the operator’s point of view - creating the ’left’ and ’right’ datasets respectively.

(a) Operator occlusion in ’left’ dataset. (b) Operator occlusion in ’right’ dataset.

Figure 4.2: Example images from ’left’ and ’right’ datasets depicting operator occlusions.

One frame was selected for every 20 second of footage12, compiling a total of 167 frames:

84 for the ’left’ dataset; and 83 for the ’right’ one. These include several occurrences of operator

occlusion, motion blur, and varying number of humans in frame, as well as cases of foreshortening

where, due to the relative angle of the operator’s limbs to the camera, the perception of their depth

is limited and they appear shorter - examples of these challenging scenarios from each dataset are

depicted, respectively, in figures 4.2, 4.3, 4.4, and 4.5.

However, the fact that the recording was not specifically set up for the purposes of image

collection presents additional challenges: not only was the exact location of the cameras not de-

termined, a different model of camera was used that does not provide depth information. Con-

sequently, we are unable to accurately assess a ground truth pose in a real world frame and are

limited to evaluating the human pose estimation methods based on pixel distance errors in the

image frame. As such, instead of determining the human operator’s pose in the 3D workspace,

11Demonstration video ’H2020 ScalABLE4.0 - Spatial augmented reality interface for human-robot collaboration’
can be found here.

12Using a Video to JPG Converter software that can be found here.

20 Methodology

(a) Motion blur in ’left’ dataset. (b) Motion blur in ’right’ dataset.

Figure 4.3: Example images from ’left’ and ’right’ datasets depicting motion blur.

(a) Several humans in frame in ’left’ dataset. (b) Several humans in frame in ’right’ dataset.

(c) No humans in frame in ’left’ dataset. (d) No humans in frame in ’right’ dataset.

Figure 4.4: Example images from ’left’ and ’right’ datasets depicting varying number of humans
in frame.

evaluation is based on the accuracy of the pixel position estimate of the human operator’s joints

that are provided by the two 2D human pose estimation methods.

4.2.3 Image Resizing

Since input size greatly impacts the inference speed of the pose estimation methods in question,

the resolution of the images in the datasets must be so that the real-time operation goal is met

without compromising the accuracy of the estimate. Therefore, the images extracted from the

original video files, which were filmed in a resolution of 3840 x 2160 pixels, were conservatively

4.3 Ground Truth Annotation 21

(a) Foreshortening in ’left’ dataset. (b) Foreshortening in ’right’ dataset.

Figure 4.5: Example images from ’left’ and ’right’ datasets depicting foreshortening of operator’s
arms.

downscaled by a factor of 3, using the OpenCV library13 for computer vision in the Python script

’resize_dataset.py’14.

The reduced resolution of 1280 × 720 pixels keeps the original aspect ratio of 16 x 9 but

matches the resolution of the depth output of the D435 camera, allowing simple mapping of depth

measurements to image frame. The resized images were compiled into new datasets, ’left-small’

and ’right-small’15. These datasets will be used by default so, from here on, the designations ’left’

dataset or ’right’ dataset refer to these new ’small’ datasets unless otherwise stated. The effect of

image input size is further discussed in section 5.2.

4.3 Ground Truth Annotation

Once the ’left-small’ and ’right-small’ datasets were built, they had to be annotated to provide

a ground truth, i.e., a reference to which the human pose estimates can be compared to for the

purposes of evaluation. Using the Supervisely web interface16, the operator’s pose was annotated

with a skeleton object - a set of keypoints representing joints, configured according to the template

in figure 4.6a - for all images in both datasets.

This annotation skeleton consists of 18 joint keypoints that are shared in the skeleton config-

urations for the outputs of OpenPifPaf and OpenPose, with the notable exceptions of an absent

’Chest’ keypoint in OpenPifPaf and several additional OpenPose keypoints that are ignored - one

that is located between the left and right ’Hip’ keypoints, and 6 additional foot keypoints specific

to the ’BODY_25’ model. Figure 4.7 shows the different skeleton keypoint configurations.

It is worth noting that, in all cases where one of the operator’s joint is occluded, we opted to

omit that particular joint keypoint from the annotation, even if its location could be reasonably

approximated. This decision was made because, while an estimate of the joint’s pixel location

in the two-dimensional image might be correct, the object that is occluding it would prevent a

13https://opencv.org/
14Link to ’resize_dataset.py’ script in GitHub repository
15The suffix ’-small’ was added to the dataset names to refer to the resizing.
16https://app.supervise.ly/

https://opencv.org/
https://app.supervise.ly/

22 Methodology

(a) Skeleton keypoint template. (b) Example of an annotated image.

Figure 4.6: Screenshots of Supervisely web interface used for annotation.

depth camera from correctly determining that point’s depth, resulting in an incorrect estimate

of the real-world joint position. Figure 4.8 demonstrates one such case where OpenPose made

reasonable pose estimates for joints that are occluded by the workstation’s projector and the motor

that is being assembled. Both of these objects are much closer to the camera than the operator.

(a) Annotation skeleton. (b) OpenPifPaf COCO. (c) OpenPose BODY_25.

Figure 4.7: Skeleton keypoint configurations for (a) Annotation skeleton, (b) OpenPifPaf COCO,
and (c) OpenPose BODY_25.

Additionally, the joint keypoints related to the operator’s hips were particularly challenging

to annotate due to both the clothing that was worn, the operator’s orientation in relation to the

camera, and the fact that the workstation’s table is at approximately the same height as his hips,

frequently occluding them.

4.4 Operator Pose Estimation in Datasets 23

Figure 4.8: Example of rendered frames where OpenPose predicted reasonable estimates for oc-
cluded joints.

After concluding the annotation of both datasets, exporting from Supervisely results in, among

others, two important types of JSON files: a ’meta.json’; and individual files for each annotated

image, that are named after them (for example, ’left-small1.jpg.json’) and contain the annotated

skeleton object with every joint keypoint’s pixel location. However, in these individual files, the

joint keypoints are not directly referred to by the labels presented in figure 4.6a. Instead, Super-

visely generates a code for each and the ’meta.json’ file associates this code with the joint’s label.

This will be relevant later in section 4.5.1 where we will map the different joint labels of the skele-

tons that Supervisely, OpenPifPaf and OpenPose use. Examples for both types of files mentioned

and implementation details are given in appendix A.

4.4 Operator Pose Estimation in Datasets

In order to obtain the operator pose estimates of OpenPifPaf and OpenPose for our ’left-small’ and

’right-small’ datasets, two Python scripts were created - ’run_openpifpaf.py’17 and ’run_openpose.py’18.

These allow the user to customise useful attributes as well as measure the inference time for each

image, using the timeit19 Python library to measure execution time.

To facilitate the implementation of the evaluation procedure of section 4.5, these scripts output

a standardized set of files using the nomenclature of ’method_runX_’ - where method is either

’pifpaf’ or ’openpose’ and X is an assigned number to represent that run, i.e., one execution of the

script - followed by:

17The ’run_openpifpaf.py’ script in the GitHub repository can be found here
18The ’run_openpose.py’ script in the GitHub repository can be found here
19https://docs.python.org/3/library/timeit.html

https://docs.python.org/3/library/timeit.html

24 Methodology

• ’meta.json’ - a JSON file that contains useful information about the run, such as the version

of the pose estimation method, which model was used, among others. This file also contains

both the individual and total inference time measurements that are later used to determine

inference speed and frame rate.

• ’keypoints.json’ - a JSON file for each image in the dataset used containing the method’s

predictions for each joint.

• ’rendered.jpg’ - if the image_creation variable is enabled, a JPG file for each image will

be created where the original image is overlayed with the predicted skeleton keypoints.

Whenever possible, this feature was disabled so that the rendering of these images would

not influence the time measurements.

Examples for each of these types of JSON output files can be found in appendix A, as well as

additional explanations regarding some of the features implemented in the scripts.

4.4.1 Pre-trained Model Selection

Both OpenPifPaf and OpenPose provide different pre-trained models for pose estimation. There-

fore, we conducted some preliminary tests to determine which models should be evaluated.

AP refers to ’Average Precision’, with superscripts M and L referring to scale - respectively, ’medium’ and ’large’
humans. The t values refer to inference time averages.

Table 4.1: Performance metrics of the different OpenPifPaf pre-trained models, according to
OpenPifPaf Guide.

In the case of OpenPifPaf, their online documentation, OpenPifPaf Guide20, reports the per-

formance metrics of their pre-trained models on the COCO validation set [44] - resnet50, shuf-

flenetv2k16, and shufflenetv2k30 - which are depicted in table 4.1. From our preliminary tests,

shufflenetv2k16 was found to be the fastest among these options and was thus selected.

In turn, OpenPose Doc21 reports three models: BODY_25, COCO, and MPI. The authors

report that BODY_25 is both more accurate and faster than the remaining models. Additionally, our

20https://openpifpaf.github.io/intro.html
21https://github.com/CMU-Perceptual-Computing-Lab/openpose/tree/master/doc

https://openpifpaf.github.io/intro.html
https://github.com/CMU-Perceptual-Computing-Lab/openpose/tree/master/doc

4.5 Evaluation Procedure of Human Pose Estimation Methods 25

preliminary attempts to run OpenPose using the COCO and MPI resulted in ’Out of memory’ error

reports. Therefore, almost by default, BODY_25 was selected as the model used for evaluation of

OpenPose.

While this option was considered to be out of scope for this work, it is worth noting that both

methods provide ways to train custom models. This prospect should be considered for future

work because, while training a custom model could result in overfitting and, thus, a potential loss

of applicability to different use cases, it could also result in big improvements to performance.

4.5 Evaluation Procedure of Human Pose Estimation Methods

Having obtained both a ground truth annotation and operator pose estimates from both OpenPifPaf

and OpenPose, the output files obtained from each must now be processed in order to obtain the

evaluation metrics from 3.4 that we decided to consider - Average Precision (AP), Average Recall

(AR), Average Accuracy (AA), Mean Per Joint Position Error (MPJPE).

Figure 4.9 provides an overview of the evaluation procedure that was implemented in the

Python script ’eval.py’22. In the following subsections, it will be generally explained how this

procedure is executed.

4.5.1 Skeleton Extraction and Keypoint Mapping

Initially, each image’s corresponding annotation JSON file is used to extract the annotated skele-

ton, using the ’meta’ file to translate the Supervisely code of each keypoint into the annotation

skeleton joint label. In parallel, the ’keypoints’ JSON files containing the predictions of either

OpenPifPaf or OpenPose are used to extract all the skeletons that were detected by these methods.

Both OpenPifPaf and OpenPose output each skeleton’s joint keypoints as an array of values

in the format of (x0, y0, c0, x1, y1, c1, ...), where x0 and y0 are the pixel coordinates and c0 is

the confidence score of joint 0, while (x1, y1, c1) is the triplet corresponding to joint 1, so and so

forth for all joints in their respective skeleton configuration. As such, the order of joints in these

arrays are different, thus, the index number does not necessarily correspond to the annotation joint

labels. For example, the ’Left ear’ keypoint is annotated with the label 17, but it is the joint with

index 3 in OpenPifPaf and index 18 in OpenPose.

In order to properly compare the predictions obtained from OpenPifPaf and OpenPose, it is

necessary to correctly associate each predicted joint to its annotated counterpart. Therefore, the

annotation skeleton of figure 4.7 was designated as the standardised skeleton to which we map

every joint keypoint. Table 4.2 is used to map joint designation23 to the annotation/standardised

keypoint labels and to the OpenPifPaf and OpenPose indexes.

22The ’eval.py’ script in the GitHub repository can be found here
23The ’Left’ or ’Right’ sides in the joint designation are defined from the point of view of the human facing towards

us. Which is why, in the keypoint template of the annotation skeleton, the ’Right Shoulder’ joint, labelled 2, is on our
left.

26 Methodology

Extract annotated
skeletons

Extract predicted
skeletons

GT Annotation Joint PredictionsGT Meta

Input JSON Files

Joint
Matching

Map keypoints to
joint labels

Map joints to
standard skeleton

TP joints

Skeleton
Matching

Determine if joint
is TP, FP or FN

Compute JPE

Matching (TP)
skeletons

if MPJPE <
match threshold

Compute skeleton
MPJPE

True

Count TP, FP, FN
and TN skeletons

False

FP skeletons

Output evaluation JSON Files

Save information
of skeleton matches

Figure 4.9: Block diagram of the implemented evaluation procedure.

4.5.2 Skeleton Matching - Filtering False Positives

Having extracted both the annotated and predicted skeletons, as well as established how their joint

keypoints are associated, we must now identify which of the predicted skeletons are actually pose

4.5 Evaluation Procedure of Human Pose Estimation Methods 27

Table 4.2: Keypoint label mapping of joints for each skeleton

Joint Designation Annotation OpenPifPaf OpenPose
Nose 0 0 0
Chest 1 / 1
Right Shoulder 2 6 2
Right Elbow 3 8 3
Right Wrist 4 10 4
Left Shoulder 5 5 5
Left Elbow 6 7 6
Left Wrist 7 9 7
Right Hip 8 12 9
Right Knee 9 14 10
Right Ankle 10 16 11
Left Hip 11 11 12
Left Knee 12 13 13
Left Ankle 13 15 14
Right Eye 14 2 15
Left Eye 15 1 16
Right Ear 16 4 17
Left Ear 17 3 18

The ’/’ symbol indicates that the ’Chest’ point is not present in the OpenPifPaf skeleton.

estimates for the operator. This process is designated as skeleton matching and, in our evaluation

procedure, is designed to filter out False Positive (FP) skeletons, as in skeletons that the pose

estimation method detected but are not an estimate of the operator pose. Figure 4.10 shows one

image from each dataset and each method with examples of FP skeletons - in them, other humans

that are not the operator, the robotic arm, one of the operator’s tool, and even a backpack in the

background are all detected as humans present in the image.

It is known that, for each annotated image, the operator is either in frame and their pose is

annotated as a singular skeleton, or the operator is not in frame and no skeletons are annotated.

The number of annotated skeletons and the number of annotated joints are both saved, respectively

as ’annotated_skeleton_total’ (either 0 or 1) and ’annotated_joint_total’ (between 0 and 18) to be

part of the final output. These values are used later in comparison to the number of detected

skeletons and joints to determine the number of FP skeletons and joints.

In order to distinguish between True Positive (TP) and FP skeletons, we decided to rely on

the MPJPE value of all predicted skeletons in each image. Initially, the skeleton with the lowest

MPJPE would be designated as the matching skeleton. However, this approach proved to be overly

simplistic since it is possible that there is more than one predicted skeleton that correctly detects

the operator. This is due to the fact that OpenPifPaf and OpenPose rely on bottom-up approaches

to human pose estimation - where joints are first detected separately and then associated to build a

skeleton. Figure 4.11 demonstrates this, as OpenPifPaf detected several joints that can be attributed

to the operator but, probably due to heavy occlusion, could not fully associate them as part of the

same skeleton.

28 Methodology

(a) Left, OpenPifPaf - detected other humans in
background.

(b) Right, OpenPifPaf - operator is not in frame
but poster is detected.

(c) Left, OpenPose - human, robotic arm and
backpack detected.

(d) Right, OpenPose - tool and poster are incor-
rectly detected.

Figure 4.10: Examples of rendered frames with false positive skeletons.

Figure 4.11: Example of rendered frame where OpenPifPaf did not fully associate detected joints
as part of the same skeleton.

Since more than one predicted skeleton can be a match, our solution instead defines a matching

skeleton as one with a MPJPE below a designated threshold. Ideally, this threshold value would

be based on criteria similar to that of the PCK metric - either a fraction of one of the bounding box

dimensions of the annotated skeleton, or a percentage of the length of a segment that connects two

4.5 Evaluation Procedure of Human Pose Estimation Methods 29

keypoints. However, as the original annotation did not include a bounding box and the size of the

operator is fairly consistent between the whole datasets, we opted to arbitrarily define a value and

then individually verify all images for incorrect matches. For visual reference, figure 5.1 depicts

one of the images in the ’left’ dataset overlayed with its annotated skeleton, and the same image

with circles with radius approximately equal to 25 pixels centered around each of the operator’s

annotated joints, in order to demonstrate that, with a matching threshold of 25 pixels, to match a

predicted skeleton, its average joint must be within those boundaries.

(a) Image with overlaid annotation skeleton. In
order to match a predicted skeleton, the average
pixel distance error must be below an arbitrary
threshold.

(b) The same image with added circles of 25 pix-
els radius centered around each joint, represent-
ing a possible matching threshold for distance
error.

Figure 4.12: Visual demonstration of the matching threshold criteria.

Throughout skeleton matching, the total number of predicted skeletons is saved as the variable

’pifpaf_skeleton_total’ or ’openpose_skeleton_total’ (depending on the method in question), along

with the number of matching skeletons as ’matching_skeleton_total’, to be part of the final output.

These values are especially useful to determine False Negative (FN) skeletons, the cases in which

there is an annotated skeleton but the operator is not detected by the pose estimation method, such

as the one presented in figure 4.13.

4.5.3 Joint Matching and MPJPE Computation

As was discussed in the previous section, our skeleton matching implementation relies on comput-

ing its MPJPE value, the mean value of the Joint Position Error (JPE) for all joints in that skeleton.

To do this, we must first match each predicted joint to its equivalent annotated joint, the process

we designate as joint matching. Similarly to skeleton matching, this procedure is designed to han-

dle cases where joints are falsely detected, FP joints, or where joints are not detected despite its

equivalents having been annotated, a FN joint.

To execute the joint matching procedure, we iterate through the predicted joints of each pre-

diction skeleton in an image: first, we check if the corresponding annotated joint exists using

the keypoint label mapping represented in table 4.2. If it does not, we register it as a FP joint.

Otherwise, we compute this joint’s position error by calculating the euclidean distance between

the predicted pixel location and the annotated pixel location. After iterating through all predicted

30 Methodology

Figure 4.13: Example of rendered frame where OpenPifPaf did not detect the visible operator.

joints, we check the annotated skeleton of the image in question and register all the annotated

joints that do not have a predicted counterpart as a FN joint.

Throughout joint matching, information about each joint is temporarily saved. This consists

of a pair of values: the first one is either the JPE or a string indicating that joint to be a FP or a

FN24; while the second is the confidence score that the pose estimation method attributed to that

joint prediction. Moreover, four additional values are saved for each skeleton: the total number

of predicted joints as ’joint_counter_total’; the MPJPE value as ’mpjpe’; the total number of FP

joints as ’fp_joint_total’; and the total number of FN joints as ’fn_joint_total’. Finally, during the

skeleton matching phase, if a particular skeleton is a match, this temporary set of variables is saved

in its entirety in the array of ’matching_skeletons’, to be part of the final output.

Additionally, once all skeletons have been either matched or discarded, four more variables

are saved for the final output: the total number of predicted joints in the all matching skeletons

of the image as ’joint_image_total’; the MPJPE average of all matching skeletons in the image as

’mpjpe_image_average’; as well as the total number of FP and FN joints in all matching skeletons

as ’fp_joint_image_total’ and ’fn_joint_image_total’ respectively.

Once the predictions of a specific method have been evaluated for each individual image in one

of the datasets, four final variables are saved: the average number of predicted, FP and FN joints

per image of the dataset as ’joint_total_average_per_image’, ’fp_joint_total_average_per_image’

and ’fn_joint_total_average_per_image’ respectively; as well as the average MPJPE per image as

’mpjpe_average_per_image’.

24In the cases were the joint should be ignored, this string can also be ’invalid’. For example, when the ’Chest’
keypoint is annotated (labelled as 1), it should not be counted as a FN for OpenPifPaf as it does not have an equivalent.

4.5 Evaluation Procedure of Human Pose Estimation Methods 31

4.5.4 Output Results

Throughout the evaluation procedure, several variables were saved to be used either to determine

evaluation metrics or as supporting information to facilitate the discussion of the results obtained.

The ’eval.py’ script - that implements the evaluation procedure detailed in this section - outputs

four different JSON files of results, one for each combination of dataset and method. An excerpt

of the ’results_left_openpifpaf.json’ output file that demonstrates the output format for all the

variables previously mentioned can be found in appendix A.

These variables are then processed to compile the results that are discussed next, in chapter 5.

32 Methodology

Chapter 5

Results and Discussion

In this chapter we present and discuss the results obtained from the evaluation procedure of Open-

PifPaf and OpenPose, highlighting important conclusions with bolded headers. Section 5.1 anal-

yses the metrics obtained regarding the reliability and accuracy of the pose estimates. Section 5.2

presents inference speed results and reflects on which method would be more suitable for real-

time operation in the real use case. Finally, section 5.3 argues which of the human pose estimation

methods should be selected for further development of a human operator tracking system.

5.1 Reliability and Accuracy

As discussed previously, in order to develop a tracking system that relies on the output of one of

the evaluated human pose estimation methods, the method that is ultimately chosen must be able

to reliably identify the human operator in-frame, as well as accurately estimate their joint’s pixel-

position, all to determine where the operator is located in the workspace. Addressing this question

requires analysing the output that is obtained from each method from two different perspectives:

on a higher-level, if the operator is consistently detected and marked with a skeleton prediction;

and, on a lower-level, if the individual joint predictions that make up the skeleton are correct. The

following subsections address these issues individually.

Table 5.1: Evaluation metrics for skeleton predictions.

Method Dataset TP FP FN TN P N P̃ Ñ AP AR AA
left 82 73 0 2 82 75 155 2 0.529 1.0 0.535

right 77 9 3 1 80 10 86 4 0.895 0.963 0.867OpenPifPaf
left + right 159 82 3 3 162 85 241 6 0.660 0.981 0.656

left 82 61 0 2 82 63 143 2 0.573 1.0 0.579
right 77 17 3 1 80 18 94 4 0.819 0.963 0.796OpenPose

left + right 159 78 3 3 162 81 237 6 0.671 0.981 0.667

33

34 Results and Discussion

5.1.1 Skeleton Predictions

Regarding each method’s skeleton predictions, table 5.1 reports the evaluation metrics that were

obtained from the skeleton matching phase of the evaluation procedure (see subsection 4.5.2).

Using the terminology discussed in section 3.4 to analyse the skeleton predictions results, each

metric is specifically defined as the following:

• TP is the number of true positive skeletons - a predicted skeleton that was matched to the

operator’s annotated skeleton1;

• FP is the number of false positive skeletons - predicted skeletons that do not represent the

operator/were not matched to the annotated skeleton;

• FN is the number of false negative skeletons - an annotated skeleton that has no matching

skeletons;

• TN is the number of true negative skeletons - when there are both no annotated nor predicted

skeletons;

• P and N are, respectively, the number of cases with a positive or negative ground truth

annotation of operator skeleton;

• P̃ and Ñ are, respectively, the number of cases with a positive or negative prediction of

operator skeleton;

• AP is the average precision per image in the corresponding dataset (Precision = T P
T P+FP),

the percentage of the total predicted skeletons that were correct predictions of the operator.

• AR is the average recall per image in the corresponding dataset (Recall = T P
T P+FN), the

percentage of the annotated skeletons that were correctly predicted by the method;

• AA is the average accuracy per image in the corresponding dataset (Acc = T P+T N
P+N), the

percentage of times that the method accurately predicted if the operator is present.

Both methods perform similarly in skeleton prediction - The metrics presented in table

5.1 indicate extremely similar performance, or even identical in the case of recall, from both

methods in the task of skeleton prediction. Regarding precision and accuracy, while OpenPose

slightly outperforms OpenPifPaf overall when considering both datasets, it overperforms in the

’left’ dataset, but underperforms in the ’right’ dataset.

The operator is reliably identified in-frame - Both methods reported perfect recall (AP = 1)

for our ’left’ dataset and near-perfect (AP = 0.963) for our ’right’ dataset, meaning the operator

is detected nearly every time he is in frame (159 out of a total of 162 frames). We analysed the

images that reported FN skeletons2 and concluded that they all suffered from heavy occlusion of

the operator. Similarly to the example of figure 4.13, the operator is almost entirely occluded by

the tool he is holding, the workstation’s projector, the motor that is being assembled, and/or the

robotic arm.
1We individually verified that, in all cases where there is more than one matching skeleton, they all correspond to

the operator and do not overlap joint predictions. Therefore, we associated all matching skeletons, and considered them
as a single TP skeleton.

2Images that report FN skeletons: 39, 56 and 82 for OpenPifPaf; and 39, 55 and 82 for OpenPose

5.1 Reliability and Accuracy 35

(a) Failure - while smaller, the other person was
selected over the operator.

(b) Success - while occluded, the operator is still
selected over the person in the background

Figure 5.1: Example of images with rendered skeleton predictions from OpenPose, with num-
ber_people_max flag set to 1.

These results were expected since the ’right’ dataset was built with the knowledge that the cam-

era had not been positioned favourably for human pose estimation, resulting in frequent occlusions

from several elements in the scene. Considering this factor, the results for skeleton prediction are,

in isolation, impressive. While FN cases were indeed rare, repositioning the camera to a better

view of the operator is a simple solution that could further mitigate this issue. Alternatively, the

pose estimation methods could be trained with custom models to be more robust to these sce-

narios. However, because these occlusions are extremely challenging, this would likely result in

overfitting. This issue of FN and these possible solutions are discussed again later, in the next

subsection regarding joints.

Both methods report low precision due to abundance of FP - As demonstrated previously

in figure 4.10, a major issue that both methods face in skeleton detection is the abundance of FP

skeletons, which is reflected in lower precision (AP) scores. This is, in part, due to the incorrect

detection of objects - for example, the operator’s tools, the poster behind the operator, a backpack

in the background, or even the robotic arm itself, among others - as humans, but, also, because of

how we defined skeleton detection exclusively as the detection of the operator - and, thus, counting

all other humans detected as FP skeletons.

In fact, both OpenPifPaf and OpenPose are methods for multi-person pose estimation and are,

therefore, accomplishing their intended goals. Nonetheless, while detecting all humans in frame

can be a useful feature (as the safety of everyone is important), it may also be a hindrance as,

even if only actual humans were detected, it would requires us to filter out these other humans

to identify the operator. We performed a similar procedure in the skeleton matching phase of the

evaluation (see subsection 4.5.2). However, we relied on the average MPJPE, a measurement that

is impossible to obtain in real operation, as, evidently, there is no ground truth annotation to which

to compare the prediction.

We attempted some simple solutions to easily achieve the same effect of filtering FP skele-

tons: first by attempting to match skeletons based on the confidence score that OpenPifPaf and

OpenPose attribute to each; and then by using an integrated feature of OpenPose, a flag that limits

36 Results and Discussion

the maximum number of people detected in an image, based on person area over the image, body

part score, and joint score. Both attempts proved unsuccessful mostly because neither measure

could be easily correlated to a controllable aspect of the scene, like pixel-size of skeleton, or the

orientation of the human relative to the camera, as exemplified in figure 5.1. Still, these may prove

as interesting possibilities to investigate further in the future.

Additional challenges that were not present in these datasets, like people crossing behind the

operator or additional people at the workstation or at a similar distance from the camera, could

further complicate the identification of the operator from the detected skeletons. Ideally, these

variables could be controlled by, for example, covering the background behind the workstation,

but, because this would hamper the adaptability of our system (one of the core motivations behind

this work, especially in the context of flexible manufacturing and Industry 4.0), the development of

a more complex subsystem for operator identification may be necessary in the future. A possible

solution involves the introduction of time as a variable to allow for tracking between frames.

In fact, new work by the original creators of the OpenPifPaf method, Kreiss et al., introduces

temporal association [42].

In summation, even though both the ’left’ and ’right’ datasets are populated with a variety of

challenging scenarios, both methods were able to reliably recognize when the operator is in frame.

Even so, we inquire if this may be due to over-sensitivity towards possible humans in frame, as

both methods were created with the purpose of multi-person pose estimation and suffer from lower

precision/higher numbers of FP detections than desired. This is a concern namely because there

is no inherent way for either of the pose estimation methods to distinguish between the human

operator, other humans that might be present in-frame, or even objects that might be incorrectly

detected. Therefore, we propose that future work investigates solutions like training these methods

with customised models to be more fitted for the specific use case in question, or a skeleton FP

filtering method to reliably identify which of the predicted skeletons corresponds to the operator.

5.1.2 Joint Predictions

Having considered the reliability of skeleton detection, we now present the evaluation metrics

regarding the joint predictions of OpenPifPaf and OpenPose, respectively in tables 5.2 and 5.3.

These results are subdivided according to type of joint to facilitate in-depth analysis. In the context

of joint prediction, each metric is defined as the following:

• TP is the number of true positive joints - a joint that was both annotated and predicted by

the method in question;

• FP is the number of false positive joints - a joint that was predicted but not annotated;

• FN is the number of false negative joints - a joint that was annotated but not predicted by

the method in question;

• TN is the number of true negative joints - a joint that was neither annotated nor predicted by

the method in question;

5.1 Reliability and Accuracy 37

• P and N are the number of operator joints that were annotated, or not, from the 18 joints of

our ground truth skeleton configuration;

• P̃ and Ñ are the number of operator joints that were predicted, or not, from the 18 joints of

our ground truth skeleton configuration;

• AP is the average precision per image in the corresponding dataset (Precision = T P
T P+FP),

the percentage of the total predicted skeletons that were correct predictions of the operator.

• AR is the average recall per image in the corresponding dataset (Recall = T P
T P+FN), the

percentage of the annotated skeletons that were correctly predicted by the method;

• AA is the average accuracy per image in the corresponding dataset (Acc = T P+T N
P+N), the

percentage of times that the method accurately predicted if the operator is present;

• MPJPE is the mean per joint position error, a measurement in pixels of the average distance

between the annotated joint location and its predicted counterpart.

Previously, the sums of TP, FP, FN and TN; or P, N, P̃ and Ñ skeletons could not be determined

in advance because it was not possible to know how many skeletons can potentially be predicted.

However, the sum of the joint equivalents of these metrics is known since, for every image where

the operator is present, there are always, at most, 18 different joints that could have been either

annotated or predicted3 - therefore, for a single image: T P+FP+FN +T N = P+N = P̃+ Ñ =

18. In the same way, because both an annotated skeleton and a matching skeleton must be found

in order to classify joints, we know that the sum T P+FP+FN + T N = P+N = P̃+ Ñ for a

single type of joint will always be equal to the number of skeleton TP, in the set of images that

are considered. For example, the total number of ’Nose’ joints is equal to 82 in the ’left’ dataset,

and 77 in the ’right’ dataset - the number of images in each dataset where the operator was both

annotated and predicted.

To compliment the following observations, figures 5.2, 5.3, 5.4 and 5.5 exemplify some of the

conclusions reached and provide visual reference for some scenarios.

Lower body joints are heavily occluded - Table 5.4 compiles the joint metrics of both Open-

PifPaf and OpenPose predictions for the operator’s lower body joints, the right and left hips, knees

and ankles - joints 9 to 13. These show that the operator’s leg joints, knees and ankles - 9, 10, 12

and 13 - are almost always occluded by the workstation, and that this is correctly predicted by the

methods.

Additionally, regarding the hip joints: the left hip joint (11) was almost always annotated in

the ’left’ dataset (P = 81) and correctly detected by both methods with high recall and precision.

However, this joint suffered from very low precision in the ’right’ dataset because it is often oc-

cluded - and therefore not annotated (N = 64) - but falsely predicted, especially by OpenPose,

which reported FP = 61 and AP = 0.176.

In turn, the right hip joint (8) was detected with perfect recall by both methods in the ’left’

dataset, as well as high precision and accuracy. In the ’right’ dataset though, there are often more

challenging heavy occlusions where the right hip joint is one of few joints that are not occluded.

3For OpenPifPaf, only 17 joints because of the non-existent ’Chest’ keypoint.

38 Results and Discussion

Table 5.2: Evaluation metrics for OpenPifPaf joint predictions.

Joint Label Dataset TP FP FN TN P N P̃ Ñ AP AR AA MPJPE
L 78 0 1 3 79 3 78 4 1 0.987 0.988 5.66

Nose 0
R 51 15 0 11 51 26 66 11 0.773 1 0.805 5.63
L / / / / 80 2 / / / / / /

Chest 1
R / / / / 36 41 / / / / / /
L 75 5 0 2 75 7 80 2 0.938 1 0.939 10.72Right

Shoulder
2

R 24 34 1 18 25 52 58 19 0.414 0.96 0.545 18.75
L 67 5 6 4 73 9 72 10 0.931 0.918 0.866 8.25Right

Elbow
3

R 51 6 14 6 65 12 57 20 0.895 0.785 0.74 11.07
L 62 4 6 10 68 14 66 16 0.939 0.912 0.878 4.94Right

Wrist
4

R 29 16 5 27 34 43 45 32 0.644 0.853 0.727 8.32
L 73 9 0 0 73 9 82 0 0.89 1 0.89 17.14Left

Shoulder
5

R 44 9 0 24 44 33 53 24 0.83 1 0.883 14.33
L 65 16 0 1 65 17 81 1 0.802 1 0.805 9.59Left

Elbow
6

R 35 12 6 24 41 36 47 30 0.745 0.854 0.766 9.15
L 78 1 1 2 79 3 79 3 0.987 0.987 0.976 14Left

Wrist
7

R 26 7 7 37 33 44 33 44 0.788 0.788 0.818 7.34
L 70 6 0 6 70 12 76 6 0.921 1 0.927 22.81Right

Hip
8

R 16 13 24 24 40 37 29 48 0.552 0.4 0.519 32.8
L 0 0 1 81 1 81 0 82 / 0 0.988 /Right

Knee
9

R 0 0 0 77 0 77 0 77 / / 1 /
L 0 0 3 79 3 79 0 82 / 0 0.963 /Right

Ankle
10

R 0 0 1 76 1 76 0 77 / 0 0.987 /
L 73 1 8 0 81 1 74 8 0.986 0.901 0.89 29.14Left

Hip
11

R 10 13 3 51 13 64 23 54 0.435 0.769 0.792 32.38
L 0 0 1 81 1 81 0 82 / 0 0.988 /Left

Knee
12

R 0 0 0 77 0 77 0 77 / / 1 /
L 0 0 1 81 1 81 0 82 / 0 0.988 /Left

Ankle
13

R 0 0 1 76 1 76 0 77 / 0 0.987 /
L 58 16 0 8 58 24 74 8 0.784 1 0.805 4.38Right

Eye
14

R 65 1 5 6 70 7 66 11 0.985 0.929 0.922 2.82
L 78 0 1 3 79 3 78 4 1 0.987 0.988 5.05Left

Eye
15

R 53 12 1 11 54 23 65 12 0.815 0.981 0.831 2.74
L 4 0 3 75 7 75 4 78 1 0.571 0.963 8.33Right

Ear
16

R 57 0 12 8 69 8 57 20 1 0.826 0.844 10.13
L 77 0 5 0 82 0 77 5 1 0.939 0.939 8.41Left

Ear
17

R 17 0 8 52 25 52 17 60 1 0.68 0.896 4.9
left 858 63 37 436 895 499 921 473 0.932 0.959 0.928 11.42

right 478 138 88 605 566 743 616 693 0.776 0.845 0.827 12.34Total
L+R 1336 201 125 1041 1461 1242 1537 1166 0.869 0.914 0.879 11.88

L and R represent the ’left’ and ’right’ datasets. The ’/’ symbol indicates that metric is not applicable. MPJPE is
measured in pixels.

This is reflected in the much lower values of each metric of both methods for the right hip joint in

this dataset. Similarly to the left hip joint, OpenPose reports higher numbers of FP right hip joints

than OpenPifPaf in either dataset.

Furthermore, the MPJPE value for the hip joints of either method, which range from 22.81 to

49.45 pixels, are significantly higher than every other type of joint that is located from the waist up,

which, with the exception of the ’Chest’ keypoint, range from 2.74 to 18.75 pixels for OpenPifPaf

and from 4.06 to 23.32 pixels for OpenPose. As was discussed in 4.3, this may be partly due to

the challenges faced in the annotation of these joints, mainly the operator’s clothing, orientation

5.1 Reliability and Accuracy 39

Table 5.3: Evaluation metrics for OpenPose joint predictions.

Joint Label Dataset TP FP FN TN P N P̃ Ñ AP AR AA MPJPE
L 79 3 0 0 79 3 82 0 0.963 1 0.963 7.2

Nose 0
R 50 26 0 1 50 27 76 1 0.658 1 0.662 7.29
L 80 2 0 0 80 2 82 0 0.976 1 0.976 30.92

Chest 1
R 36 40 0 1 36 41 76 1 0.474 1 0.481 35.04
L 75 7 0 0 75 7 82 0 0.915 1 0.915 12.23Right

Shoulder
2

R 26 51 0 0 26 51 77 0 0.338 1 0.338 23.32
L 73 7 0 2 73 9 80 2 0.913 1 0.915 8.55Right

Elbow
3

R 61 12 4 0 65 12 73 4 0.836 0.938 0.792 17.87
L 68 9 0 5 68 14 77 5 0.883 1 0.89 7.03Right

Wrist
4

R 32 33 1 11 33 44 65 12 0.492 0.97 0.558 9.39
L 73 9 0 0 73 9 82 0 0.89 1 0.89 18.78Left

Shoulder
5

R 44 32 0 1 44 33 76 1 0.579 1 0.584 16.45
L 65 17 0 0 65 17 82 0 0.793 1 0.793 10.48Left

Elbow
6

R 41 28 1 7 42 35 69 8 0.594 0.976 0.623 8.85
L 79 3 0 0 79 3 82 0 0.963 1 0.963 14.39Left

Wrist
7

R 32 26 0 19 32 45 58 19 0.552 1 0.662 16.52
L 70 12 0 0 70 12 82 0 0.854 1 0.854 28.42Right

Hip
8

R 36 37 4 0 40 37 73 4 0.493 0.9 0.468 44.54
L 0 0 1 81 1 81 0 82 / 0 0.988 /Right

Knee
9

R 0 1 0 76 0 77 1 76 0 / 0.987 /
L 0 0 3 79 3 79 0 82 / 0 0.963 /Right

Ankle
10

R 0 1 1 75 1 76 1 76 0 0 0.974 /
L 81 1 0 0 81 1 82 0 0.988 1 0.988 32.99Left

Hip
11

R 13 61 0 3 13 64 74 3 0.176 1 0.208 49.45
L 0 2 1 79 1 81 2 80 0 0 0.963 /Left

Knee
12

R 0 0 0 77 0 77 0 77 / / 1 /
L 0 0 1 81 1 81 0 82 / 0 0.988 /Left

Ankle
13

R 0 0 1 76 1 76 0 77 / 0 0.987 /
L 58 21 0 3 58 24 79 3 0.734 1 0.744 5.33Right

Eye
14

R 69 7 0 1 69 8 76 1 0.908 1 0.909 4.06
L 79 3 0 0 79 3 82 0 0.963 1 0.963 6.45Left

Eye
15

R 53 23 0 1 53 24 76 1 0.697 1 0.701 7.55
L 5 7 2 68 7 75 12 70 0.417 0.714 0.89 5.55Right

Ear
16

R 68 8 0 1 68 9 76 1 0.895 1 0.896 10.95
L 82 0 0 0 82 0 82 0 1 1 1 11.11Left

Ear
17

R 25 13 0 39 25 52 38 39 0.658 1 0.831 16.14
left 967 103 8 398 975 501 1070 406 0.904 0.992 0.925 12.96

right 586 399 12 389 598 788 985 401 0.595 0.98 0.703 17.88Total
L+R 1553 502 20 787 1573 1289 2055 807 0.756 0.987 0.818 15.42

L and R represent the ’left’ and ’right’ datasets. The ’/’ symbol indicates that metric is not applicable. MPJPE is
measured in pixels.

in relation to the camera, as well as occlusion from the workstation’s table.

Arm joints are more accurately predicted by OpenPifPaf - In the use case in question,

the arms are the operator’s body parts that more often occupy the shared workspace and more

rapidly change position over time. Therefore, these joints, and especially the wrist joints which

are typically those that move closest to the robotic arm (see figure 5.3), require high accuracy to

enable 3D pose estimation in the future. Table 5.5 reports the evaluation metrics of OpenPifPaf

and OpenPose’s predictions for the operator’s arm joints, the right and left shoulders, elbows and

wrists - joints 2 to 7. While both methods perform favourably for both datasets, OpenPifPaf

40 Results and Discussion

(a) Original image of ’left’ dataset. (b) Image with overlayed annotation skeleton.

(c) Rendered image of OpenPifPaf predictions. (d) Rendered image of OpenPose predictions.

Figure 5.2: Example images of false positive (FP) predictions: skeletons of humans in background,
and lower-body joints occluded by workstation table.

outperforms OpenPose across the board, reporting equal or higher precision, recall and accuracy,

as well as lower MPJPE for all shoulder, elbow and wrist joints.

Regarding MPJPE specifically, both methods report the lowest position error for the left wrist

joints in comparison to the remaining arm joints, possibly because it is often closer to camera

and less occluded. We suggest that, in the future, further analysis is done on the relation between

MPJPE and the remaining metrics to determine if one might compromise the other - for example,

if higher recall results in higher position error.

Both methods typically report more FP than FN arm joints - Low accuracy is typically a

result of FP rather than FN. This once again indicates that both methods might be oversensitive,

predicting occluded joints more often than not detecting one that was annotated.

Head joints are generally accurately predicted by both methods - Table 5.6 compiles the

joint metrics of both OpenPifPaf and OpenPose predictions for the operator’s head joints, the

nose, right and left eyes and ears - joints 0, and 3 to 6. Once again, both methods report favourable

performance in head joint pose estimation, with OpenPifPaf slightly outperforming OpenPose in

total AP, AA, and MPJPE; and underperforming in AR.

Moreover, with the exception of the right ear joint (5), which is often not visible to the camera

in the ’left’ dataset due to the operator’s orientation (P = 7), the head joints, and especially the

nose joint, report the lowest MPJPE of all joints which would, in theory, result in more accurate

3D pose estimates.

5.1 Reliability and Accuracy 41

Table 5.4: Evaluation metrics for OpenPifPaf and OpenPose predictions of lower body joints.

Joint Label Method Dataset TP FP FN TN P N P̃ Ñ AP AR AA MPJPE
L 70 6 0 6 70 12 76 6 0.921 1 0.927 22.81

OpenPifPaf
R 16 13 24 24 40 37 29 48 0.552 0.4 0.519 32.8
L 70 12 0 0 70 12 82 0 0.854 1 0.854 28.42

Right
Hip

8
OpenPose

R 36 37 4 0 40 37 73 4 0.493 0.9 0.468 44.54
L 0 0 1 81 1 81 0 82 / 0 0.988 /

OpenPifPaf
R 0 0 0 77 0 77 0 77 / / 1 /
L 0 0 1 81 1 81 0 82 / 0 0.988 /

Right
Knee

9
OpenPose

R 0 1 0 76 0 77 1 76 0 / 0.987 /
L 0 0 3 79 3 79 0 82 / 0 0.963 /

OpenPifPaf
R 0 0 1 76 1 76 0 77 / 0 0.987 /
L 0 0 3 79 3 79 0 82 / 0 0.963 /

Right
Ankle

10
OpenPose

R 0 1 1 75 1 76 1 76 0 0 0.974 /
L 73 1 8 0 81 1 74 8 0.986 0.901 0.89 29.14

OpenPifPaf
R 10 13 3 51 13 64 23 54 0.435 0.769 0.792 32.38
L 81 1 0 0 81 1 82 0 0.988 1 0.988 32.99

Left
Hip

11
OpenPose

R 13 61 0 3 13 64 74 3 0.176 1 0.208 49.45
L 0 0 1 81 1 81 0 82 / 0 0.988 /

OpenPifPaf
R 0 0 0 77 0 77 0 77 / / 1 /
L 0 2 1 79 1 81 2 80 0 0 0.963 /

Left
Knee

12
OpenPose

R 0 0 0 77 0 77 0 77 / / 1 /
L 0 0 1 81 1 81 0 82 / 0 0.988 /

OpenPifPaf
R 0 0 1 76 1 76 0 77 / 0 0.987 /
L 0 0 1 81 1 81 0 82 / 0 0.988 /

Left
Ankle

13
OpenPose

R 0 0 1 76 1 76 0 77 / 0 0.987 /
left 143 7 14 328 157 335 150 342 0.953 0.911 0.957 25.975

right 26 26 29 381 55 407 52 410 0.5 0.473 0.881 32.59OpenPifPaf
L + R 169 33 43 709 212 742 202 752 0.837 0.797 0.92 29.2825

left 151 15 6 320 157 335 166 326 0.91 0.962 0.957 30.705
right 49 100 6 307 55 407 149 313 0.329 0.891 0.771 46.995

Lower
Body
Total OpenPose

L + R 200 115 12 627 212 742 315 639 0.635 0.943 0.867 38.85

L and R represent the ’left’ and ’right’ datasets. The ’/’ symbol indicates that metric is not applicable. MPJPE is
measured in pixels.

Overall, OpenPose reports more FP and OpenPifPaf more FN - Across all joints, Open-

Pose tends to report lower values of precision than OpenPifPaf due to an abundance of FP joints

(FPOpenPose = 502 > FPOpenPi f Pa f = 201), which are typically joints that have been occluded.

Inversely, while OpenPifPaf reports lower MPJPE and FP, it also reports many more FN joints

(FNOpenPi f Pa f = 125 > FPOpenPose = 20), those that are in fact, not occluded but were still not de-

tected. This seems to suggest that OpenPifPaf predicts joints more conservatively than OpenPose

and with lower position error (MPJPEOpenPi f Pa f = 11.88 < MPJPEOpenPose = 15.42), a factor that

may be useful depending on context and application.

Considering the assumption made during ground truth annotation (see section 4.3), predicting

FP joints may be considered detrimental to accurate 3D pose estimation since depth measurements

of occluded joints would be incorrect. However, in the context of our use case, not detecting a

joint may seriously jeopardize the operator’s safety and is, thus, much less desirable. Therefore,

similarly to the previous analysis of skeleton FP, it might be necessary to develop a method to filter

out FP joints in favour of preventing occurrences of FN.

For example, a possible solution could rely on the fusion of depth information from two or

42 Results and Discussion

(a) Original image of ’left’ dataset. (b) Image with overlayed annotation skeleton.

(c) Rendered image of OpenPifPaf predictions. (d) Rendered image of OpenPose predictions.

Figure 5.3: Example images of false positive hip joint predictions and accurate predictions of arm
and head joints.

(a) Original image of ’left’ dataset. (b) Image with overlayed annotation skeleton.

(c) Rendered image of OpenPifPaf predictions. (d) Rendered image of OpenPose predictions.

Figure 5.4: Example images of OpenPifPaf’s higher precision and OpenPose’s seemingly accurate
false positive predictions for occluded arm joints.

5.1 Reliability and Accuracy 43

Table 5.5: Evaluation metrics for OpenPifPaf and OpenPose predictions of arm joints.

Joint Label Method Dataset TP FP FN TN P N P̃ Ñ AP AR AA MPJPE
L 75 5 0 2 75 7 80 2 0.938 1 0.939 10.72

PifPaf
R 24 34 1 18 25 52 58 19 0.414 0.96 0.545 18.75
L 75 7 0 0 75 7 82 0 0.915 1 0.915 12.23

Right
Shoulder

2
Pose

R 26 51 0 0 26 51 77 0 0.338 1 0.338 23.32
L 67 5 6 4 73 9 72 10 0.931 0.918 0.866 8.25

PifPaf
R 51 6 14 6 65 12 57 20 0.895 0.785 0.74 11.07
L 73 7 0 2 73 9 80 2 0.913 1 0.915 8.55

Right
Elbow

3
Pose

R 61 12 4 0 65 12 73 4 0.836 0.938 0.792 17.87
L 62 4 6 10 68 14 66 16 0.939 0.912 0.878 4.94

PifPaf
R 29 16 5 27 34 43 45 32 0.644 0.853 0.727 8.32
L 68 9 0 5 68 14 77 5 0.883 1 0.89 7.03

Right
Wrist

4
Pose

R 32 33 1 11 33 44 65 12 0.492 0.97 0.558 9.39
L 73 9 0 0 73 9 82 0 0.89 1 0.89 17.14

PifPaf
R 44 9 0 24 44 33 53 24 0.83 1 0.883 14.33
L 73 9 0 0 73 9 82 0 0.89 1 0.89 18.78

Left
Shoulder

5
Pose

R 44 32 0 1 44 33 76 1 0.579 1 0.584 16.45
L 65 16 0 1 65 17 81 1 0.802 1 0.805 9.59

PifPaf
R 35 12 6 24 41 36 47 30 0.745 0.854 0.766 9.15
L 65 17 0 0 65 17 82 0 0.793 1 0.793 10.48

Left
Elbow

6
Pose

R 41 28 1 7 42 35 69 8 0.594 0.976 0.623 8.85
L 78 1 1 2 79 3 79 3 0.987 0.987 0.976 14

PifPaf
R 26 7 7 37 33 44 33 44 0.788 0.788 0.818 7.34
L 79 3 0 0 79 3 82 0 0.963 1 0.963 14.39

Left
Wrist

7
Pose

R 32 26 0 19 32 45 58 19 0.552 1 0.662 16.52
left 420 40 13 19 433 59 460 32 0.913 0.97 0.892 10.773

right 209 84 33 136 242 220 293 169 0.713 0.864 0.747 11.49PifPaf
L + R 629 124 46 155 675 279 753 201 0.835 0.932 0.822 11.13

left 433 52 0 7 433 59 485 7 0.893 1 0.894 11.91
right 236 182 6 38 242 220 418 44 0.565 0.975 0.593 15.4

Arm
Joints
Total Pose

L + R 669 234 6 45 675 279 903 51 0.741 0.991 0.748 13.66

PifPaf and Pose are abbreviations for OpenPifPaf and OpenPose. L and R represent the ’left’ and ’right’ datasets.
MPJPE is measured in pixels.

more different cameras, reducing vulnerability to occlusions at the cost of increasing computa-

tional cost by requiring us to run the selected 2D human pose estimation on more frames at a time.

Additionally, favouring FP joints would only be viable if the pose estimates for occluded joints

still reported reasonable position error, a requirement that is particularly difficult to verify using

our methodology because ground truth annotation would require us to estimate occluded joints,

introducing more uncertainty. Figures 5.4 and 5.5 provide examples that indicate that OpenPose

is not always reliable to provide useful FP predictions through heavy occlusion.

In short, OpenPifPaf slightly outperforms OpenPose in the task of joint prediction but at the

cost of a higher number of FN, which are undesirable for operator tracking systems designed for

safety. Therefore, a case could be made for the selection of either method, depending on what

factors can be compromised on and further research should be conducted into this matter.

44 Results and Discussion

Table 5.6: Evaluation metrics for OpenPifPaf and OpenPose predictions of head joints.

Joint Label Method Dataset TP FP FN TN P N P̃ Ñ AP AR AA MPJPE
L 78 0 1 3 79 3 78 4 1 0.987 0.988 5.66

PifPaf
R 51 15 0 11 51 26 66 11 0.773 1 0.805 5.63
L 79 3 0 0 79 3 82 0 0.963 1 0.963 7.2

Nose 0
Pose

R 50 26 0 1 50 27 76 1 0.658 1 0.662 7.29
L 58 16 0 8 58 24 74 8 0.784 1 0.805 4.38

PifPaf
R 65 1 5 6 70 7 66 11 0.985 0.929 0.922 2.82
L 58 21 0 3 58 24 79 3 0.734 1 0.744 5.33

Right
Eye

3
Pose

R 69 7 0 1 69 8 76 1 0.908 1 0.909 4.06
L 78 0 1 3 79 3 78 4 1 0.987 0.988 5.05

PifPaf
R 53 12 1 11 54 23 65 12 0.815 0.981 0.831 2.74
L 79 3 0 0 79 3 82 0 0.963 1 0.963 6.45

Left
Eye

4
Pose

R 53 23 0 1 53 24 76 1 0.697 1 0.701 7.55
L 4 0 3 75 7 75 4 78 1 0.571 0.963 8.33

PifPaf
R 57 0 12 8 69 8 57 20 1 0.826 0.844 10.13
L 5 7 2 68 7 75 12 70 0.417 0.714 0.89 5.55

Right
Ear

5
Pose

R 68 8 0 1 68 9 76 1 0.895 1 0.896 10.95
L 77 0 5 0 82 0 77 5 1 0.939 0.939 8.41

PifPaf
R 17 0 8 52 25 52 17 60 1 0.68 0.896 4.9
L 82 0 0 0 82 0 82 0 1 1 1 11.11

Left
Ear

6
Pose

R 25 13 0 39 25 52 38 39 0.658 1 0.831 16.14
left 295 16 10 89 305 105 311 99 0.949 0.967 0.937 6.366

right 243 28 26 88 269 116 271 114 0.897 0.903 0.86 5.244PifPaf
L + R 538 44 36 177 574 221 582 213 0.924 0.937 0.899 5.805

left 303 34 2 71 305 105 337 73 0.899 0.993 0.912 7.128
right 265 77 0 43 265 120 342 43 0.775 1 0.8 9.198

Head
Joints
Total Pose

L + R 568 111 2 114 570 225 679 116 0.837 0.996 0.858 8.163

PifPaf and Pose are abbreviations for OpenPifPaf and OpenPose. L and R represent the ’left’ and ’right’ datasets.
MPJPE is measured in pixels.

5.2 Real-time Operation and Inference Speed

Besides the reliability and accuracy of their predictions, another requirement for the implemen-

tation of either of the human pose estimation methods in an operator tracking system is that it

operates in real-time. Depending on the context, this can have different meanings: in computer

vision, real-time operation is typically defined as matching the frame rate of the camera output

which, in this case, would mean the 30 FPS (frames per second) of the Intel RealSense D435 cam-

era’s RGB output. However, for the purpose of tracking the operator, this may be an unnecessarily

high FPS requirement. In fact, both the minimum requirement for inference speed and the actual

performance of the pose estimation module will be entirely dependent of the other modules of

the tracking system that rely on its output. Therefore, to determine which method would be more

suitable for real-time operation, we simply consider which one is faster.

OpenPose reports faster inference speed for 1280 x 720 resolution - To this end, the infer-

ence time of each method for every image in both datasets was measured, as described in section

4.4. Each combination of pose estimation method and dataset was executed 5 times each, in the

same controlled setup, to ensure we had not measured an outlier. Table 5.7 reports both the average

inference time of each image in each of the 5 runs, as well as the corresponding average frame rate

in frames-per-second (FPS). OpenPose reports considerably faster inference speed than OpenPif-

5.2 Real-time Operation and Inference Speed 45

(a) Original image of ’left’ dataset. (b) Image with overlayed annotation skeleton.

(c) Rendered image of OpenPifPaf predictions. (d) Rendered image of OpenPose predictions.

Figure 5.5: Example images of OpenPifPaf’s higher precision and OpenPose’s inaccurate false
positive predictions for occluded arm joints.

Paf (7.567FPS > 4.857 - an increase of over 55%), even though we did not use the cuDNN library

that OpenPose Doc highly recommends. However, the authors of OpenPifPaf claim in [41] that

they outperform OpenPose in smaller resolutions.

Since the average frame rate we obtained is relatively low, we inquire if the image resolution

could be further reduced without compromising estimation accuracy. Additionally, the inference

speed of the two methods might not vary in the same proportion with image resolution. Therefore,

we suggest that the effect of image input size should be further investigated to determine, for

example, the relationship between inference speed and input scale factor, as well as its effect

on the evaluation metrics reported previously. In the meantime however, our results regarding

inference speed favour the selection of OpenPose as the human pose estimation method that should

be integrated into a tracking system for our use case.

Table 5.7: Average inference speed of OpenPifPaf and OpenPose and average time measurements
per image for each run.

Inference time p/image (ms)Method Dataset FPS
1 2 3 4 5

left 4.848 2069 2058.4 2068.7 2056.7 2060
OpenPifPaf

right 4.865 2051.2 2055.4 2052.8 2049.3 2068.5
left 7.549 1349.5 1320.4 1316.5 1318.4 1318.8

OpenPose
right 7.584 1313.2 1315.9 1321.7 1317.9 1324.3

46 Results and Discussion

5.3 Method Selection

While OpenPifPaf slightly outperformed OpenPose in joint prediction accuracy, both methods

were reliable in skeleton prediction, and OpenPose outperformed OpenPifPaf in inference speed

by 55%. This faster speed is critically important considering that real-time operation is a crucial

factor to the success of a tracking system and that the remaining modules that will be developed

will further increase execution time. Additionally, we believe that the solutions proposed for

FP filtering, like better positioning of cameras and fusion of information from more than one

perspective, are preferable to risking FN detections that compromise the operator’s safety.

Therefore, based on the results presented throughout this chapter, we would select OpenPose
as the human pose estimation method to use in the development of a human operator tracking

system for safe industrial collaborative robotics. However, we acknowledge both methods as vi-

able options and propose that future work should train custom models for each method to increase

performance (if possible to accomplish without overfitting), attempt to fuse 2D pose estimates

from different views of the scene into a refined 3D pose estimate that is robust to occlusions, as

well as further investigate the effect of image input resolution on the performance of both metrics

(especially OpenPifPaf’s speed) and the relationship between the accuracy metrics of AP, AR, and

MPJPE.

Chapter 6

Conclusion and Future Work

The introduction of the Industry 4.0 paradigm is shifting manufacturing from mass production to-

wards customisable production lines. In response to this change in market demands, collaborative

robots that work simultaneously with human operators are sought after for the increase flexibility

they provide. However, the safety of the operator remains a crucial concern with no standardised

solutions.

In this dissertation, we analysed the development of a human operator tracking system for safe

Human-Robot Collaboration, in the context of industrial assembly tasks with robotic manipulators.

For this, we investigated 2D methods for multi-person human pose estimation that would provide

the pixel location of the operator’s joints in the workspace in order to facilitate tracking. In turn, a

refined pose estimate in the 3D space will enable the development of safety features in the vein of

collision avoidance and motion planning.

Two methods were considered, OpenPifPaf and OpenPose, which are state-of-the-art bottom-

up approaches that rely on deep neural networks to predict joint estimates in 2D RGB images and

then associate them into a skeleton configuration. We presented procedures for the evaluation of

these selected human pose estimation methods in custom built datasets.

Evaluation metrics regarding the reliability of person detection, the accuracy of joint predic-

tions, and inference speed in the context of real-time operation were presented and discussed. We

concluded that both OpenPifPaf and OpenPose are viable options for human pose estimation, de-

pending on whether accuracy or speed are more valued in the use case in question. However, for

the purposes of safe industrial collaborative robotics, we selected OpenPose for its higher recall

and 55% higher inference speed, in favour of OpenPifPaf’s higher precision, which we believe

compromises its robustness to occlusions and therefore, the operator’s safety.

Additionally, we propose that future work should consider: training custom models to increase

performance for each method, if possible to accomplish without overfitting; attempt to fuse 2D

pose estimates from different views of the scene into a refined 3D pose estimate that is robust to

occlusions; as well as further investigate the effect of image input resolution on the performance

of both metrics, with emphasis on OpenPifPaf’s speed, and the relationship between the accu-

racy metrics of AP, AR, and MPJPE to determine if achieving better performance in one might

47

48 Conclusion and Future Work

compromise performance in the others.

Appendix A

Implementation Details and Examples
of Obtained Files

This appendix provides some implementation details regarding the Python scripts that were created

for this work - which are publicly available at https://github.com/eduardocaldasfonseca/

cobot-monitor/ - as well as examples or excerpts of the files that are obtained throughout the

methodology described in chapter 4.

A.1 Ground Truth Annotation - Supervisely and JSON files

Section 4.3 describes that, after annotation in the Supervisely web interface, the exported datasets

include two important types of JSON files: ’meta.json’; and individual files for each annotated

image (for example, ’left-small1.jpg.json’). JSON is a standardised data format for lightweight and

human-readable information exchange. The Python programming language has built-in support

for JSON encoding and decoding, in the form of the ’json’ package1, which leverages dictionaries

(one of Python’s data structures). These concepts were crucial for the development of this work,

thus, we rely on the terminology of JSON and Python dictionaries throughout this appendix.

meta.json

{

"classes": [

{

"title": "Skeleton",

"shape": "graph",

"color": "#EE2727",

"geometry_config": {

...

"nodes": {

"9b852c05-5e47-420a-9a46-86440bf0782c": {

1See https://docs.python.org/3/library/json.html

49

https://github.com/eduardocaldasfonseca/cobot-monitor/
https://github.com/eduardocaldasfonseca/cobot-monitor/
https://docs.python.org/3/library/json.html

50 Implementation Details and Examples of Obtained Files

"label": "1",

"loc": [

135,

126

]

},

"b8737dd3-b95b-45be-8b6f-0133e238eb5b": {

"label": "2",

...

Above is an excerpt of a ’meta.json’ file. This file uses the "classes" array to describe all the

classes that were created for annotation in Supervisely. For our purposes, a single class, named

’Skeleton’, was defined as the set of keypoints depicted in figure 4.7a. As can be seen in the

excerpt, Supervisely refers to each ’Skeleton’ keypoint as a node and attributes it a custom code,

also indicating the joint label we defined.

left-small1.jpg.json

{

"description": "",

"tags": [],

"size": {

"height": 720,

"width": 1280

},

"objects": [

{

"id": 731157765,

...

"classTitle": "Skeleton",

"nodes": {

"9b852c05-5e47-420a-9a46-86440bf0782c": {

"loc": [

1010,

261

]

},

"b8737dd3-b95b-45be-8b6f-0133e238eb5b": {

"loc": [

943.9473684210527,

239.24060150375936

]

},

...

This excerpt of file ’left-small1.jpg.json’ exemplifies the information contained in the indi-

vidual files obtained from Supervisely for each annotated image. The "objects" array contains

the annotated "Skeleton" object and its respective nodes, the keypoints that represent the human

operator’s joints.

A.2 Operator Pose Estimation - Run Outputs 51

In our evaluation procedure, we use this file to extract the annotated skeleton of each image,

if there is one, as well as the pixel location of each annotated keypoint. To identify which of the

operator’s joints each Supervisely node is referring to, the ’meta.json’ file is used to map each of

the Supervisely nodes of the annotated skeletons to the joint labels that we defined in table 4.2.

For example, the node referred by the code "9b852c05-5e47-420a-9a46-86440bf0782c", present

in this example, corresponds to the human joint label of "1", which is the ’Chest’ keypoint.

A.2 Operator Pose Estimation - Run Outputs

As described in section 4.4, two Python scripts, ’run_openpifpaf.py’ and ’run_openpose.py’, were

created to standardise the outputs of the two tested human pose estimation methods, OpenPifPaf

and OpenPose, using their respective Python APIs. These scripts can be used to obtain human pose

estimates for all images in a dataset, while registering the inference time of each, to later obtain

a measure of inference speed. Furthermore, the scripts allow the user to customise each ’run’ (an

execution of the script) by easily setting some attributes related to the features provided by each

method. For example, which pre-trained model should be used, if images with rendered skeleton

predictions should be created, or even additional flags like the ones provided by OpenPose - such

as ’number_people_max’, which limits the maximum number of people detected, as discussed in

subsection 5.1.1. In this section, we provide examples of the JSON outputs from the first run of

OpenPose estimation (openpose_run1), which estimated keypoints for all images in the left dataset

with rendered image creation enabled. Besides these files, if the ’image_creation’ flag is enabled,

rendered images with an overlay of the skeleton predictions are created - some examples are used

throughout chapters 4 and 5.

openpose_run1_meta.json

{

"Run Number": 1,

"OpenPose version": "check individual json files",

"Model": "BODY_25",

"Dataset": "left-small",

"With image creation?": true,

"Controlled setup?": false,

"Number people max flag": -1,

"Net resolution flag": "-1x368",

"Times": {

"/left-small1.jpg": "0.5361075660039205",

...

"/left-small84.jpg": "0.14358337000157917"

},

"Total time": "13.57802638800058"

}

52 Implementation Details and Examples of Obtained Files

Each run has a ’meta.json’ file that contains useful information about the run, such as: its

assigned number; the version of the pose estimation method; which pre-trained model and which

dataset were used; if image creation was enabled and if the run was done in a controlled setup

(both for the purposes of ensuring accurate inference time measurements); as well as flags for

the method’s custom features. This file also contains both the individual and total inference time

measurements that are later used to determine inference speed and frame rate.

left-small1.jpg_keypoints.json

{

"version": 1.3,

"people": [

{

"person_id": [

-1

],

"pose_keypoints_2d": [

966.331,

227.818,

0.877919,

1034.91,

259.153,

0.797156,

...

0,

0,

0

],

"face_keypoints_2d": [],

...

"hand_right_keypoints_3d": []

}

]

}

Above is an excerpt of the JSON file obtained from run 1 that contains OpenPose’s joint

location predictions for the ’left-small1.jpg’ image (the first image of the left dataset), in sets of 3

values (x, y, c), as described in subsection 4.5.1.

To obtain the joint estimates of each method in an easily interpretable format, we used each

method’s API to output a ’keypoints.json’ file. OpenPose does this directly when it is provided

with an output path using the "write_json" flag. In contrast, OpenPifPaf provides an ’annotations’

object by default that is typically used for image creation with its annotation painter. However, if

its ’json_data’ flag is enabled, this will instead be JSON data that we can output to a ’[image-file-

name]_pifpaf_run[number]_keypoints.json’ file. It is important to note that, if this is done, these

predictions cannot be used for the annotation painter and no rendered images can be created.

A.3 Evaluation Procedure - Outputs 53

For the sake of comparison, below is an excerpt of the ’keypoints’ file of an OpenPifPaf run

for the same image - left-small1.jpg_pifpaf_run1_keypoints.json. The same sets of values for each

keypoint are present in the same format, but there are additional indicators for bounding boxes

and overall confidence scores for each detected skeleton, which could be useful for expanding the

evaluation procedure of section 4.5.

A.3 Evaluation Procedure - Outputs

Since the evaluation procedure implemented in the ’eval.py’ script is considerably extensive, sev-

eral JSON files are outputted throughout to provide additional information and facilitate debug-

ging. Most of the programming of this script involves processing Python dictionaries to extract

information. Therefore, observing the intermediary/auxiliary dictionaries that are created can help

to explain how the evaluation metrics are determined.

annotation_joint_dict.json

{

"9b852c05-5e47-420a-9a46-86440bf0782c": "1",

"b8737dd3-b95b-45be-8b6f-0133e238eb5b": "2",

"8f1581c5-e158-4231-b399-e1fd05eed204": "3",

"33c72455-9676-4c0c-ac55-8af1a2e5de1a": "4",

"feef618f-6e72-4210-a49f-89bfca0b3af7": "5",

"1dad6ff5-d7ea-44a2-bbd3-5934f16fbd43": "6",

"4e1f1888-956e-421b-86c3-1d45cac3d9bc": "7",

"d950f8af-a92b-4f28-a3d8-561add85fe73": "8",

"c7cda86b-e36e-498b-91e1-8dbdb2b74dd8": "9",

"8e77aa80-ff9a-4226-a0a8-5dd0836403aa": "10",

"58d71231-c7db-4683-a62d-c5b87f2c550c": "11",

"e65eb824-7d0f-4344-a35e-8fb8f9683409": "12",

"46304555-805a-43bc-aaf5-ee87ad37da04": "13",

"14c2d82c-5ccd-45d9-be81-5851ec216b2d": "14",

"52fe0b68-0700-4bbb-a737-764deac8f816": "15",

"bb9f521a-501b-43b8-9c5c-75d90c63b9c7": "16",

"c0aba91a-5d7b-4d08-bf18-bd6968a1bf28": "17",

"55479fb3-644e-4fc6-84d8-4bcb26d39790": "0"

}

This dictionary is created from the Supervisely ’meta.json’ and is used to map the Supervisely

codes to their respective joint labels, as discussed previously.

left_annot_dict.json

{

"left-small1": {

"1": [

1010,

261

],

"2": [

943.95,

54 Implementation Details and Examples of Obtained Files

239.24

],

"3": [

906.61,

333.3

],

"4": [

891,

414

],

"5": [

1113.88,

257.56

],

"6": [

1162.56,

430.84

],

"7": [

1012,

467

],

"8": [

904.88,

466.9

],

"11": [

1044,

517

],

"14": [

958,

208

],

"15": [

992.37,

213.82

],

"17": [

1050.5,

205.83

],

"0": [

972.5,

230.91

]

},

...

"left-small84": {

"1": [

1105,

290

],

...

},

"Total images": 84,

"Empty images": 2

}

Two dictionaries are created from the steps of annotated skeleton extraction and keypoint

mapping, one for the left dataset (whose excerpt is seen above) and another for the right dataset.

These files contain the pixel location of each annotated operator joint in all images of that dataset.

Additionally, they provide two counters: one for the amount of images in that dataset, and another

for the amount of ’empty’ images - those that have no annotated skeletons. Since these annotations

are considered as our ground truth, if there is no annotated skeleton, the operator is not present in

that image, which is useful for determining false positives and false negatives.

left_openpose_dict.json

{

"left-small1": {

"1": [

1010,

261

],

"2": [

943.95,

239.24

],

"3": [

906.61,

333.3

],

A.3 Evaluation Procedure - Outputs 55

"4": [

891,

414

],

"5": [

1113.88,

257.56

],

"6": [

1162.56,

430.84

],

"7": [

1012,

467

],

"8": [

904.88,

466.9

],

"11": [

1044,

517

],

"14": [

958,

208

],

"15": [

992.37,

213.82

],

"17": [

1050.5,

205.83

],

"0": [

972.5,

230.91

]

},

...

"left-small84": {

"1": [

1105,

290

],

...

},

"Total images": 84,

"Empty images": 2

}

Similarly to how the annotated skeletons were extracted and saved in their own annotation

dictionary, each method’s predictions are extracted from the ’keypoints.json’ files of the previous

section, and saved into a corresponding dictionary for each dataset - for a total of four. Besides

counting the number of total and empty images, we also register the number of ’extra’ images -

those that have more than one predicted skeleton and, therefore, have at least one false positive

skeleton that does not match with the operator’s annotated skeleton.

results_left_openpose.json

{

"left-small1": {

"annotated_skeleton_total": 1,

"annotated_joint_total": 13,

"openpose_skeleton_total": 1,

"matching_skeleton_total": 1,

"matching_skeletons": {

"1": {

"0": [

7.585,

0.877919

],

"1": [

24.083,

0.797156

],

"2": [

2.702,

0.787948

],

"3": [

4.405,

56 Implementation Details and Examples of Obtained Files

0.830124

],

"4": [

12.649,

0.831493

],

"5": [

28.683,

0.56679

],

"6": [

0.582,

0.750388

],

"7": [

5.831,

0.752779

],

"8": [

36.53,

0.479506

],

"11": [

29.206,

0.447732

],

"14": [

4.472,

0.839959

],

"15": [

7.591,

0.86033

],

"17": [

9.843,

0.733433

],

"joint_counter_total": 13,

"mpjpe": 13.3971,

"fp_joint_total": 0,

"fn_joint_total": 0

}

},

"joint_image_total": 13,

"mpjpe_image_average": 13.397,

"fp_joint_image_total": 0,

"fn_joint_image_total": 0

},

...

"left-small84": {

"annotated_skeleton_total": 1,

"annotated_joint_total": 11,

"openpose_skeleton_total": 4,

"matching_skeleton_total": 1,

"matching_skeletons": {

"1": {

"0": [

7.471,

0.887916

],

...

"joint_counter_total": 14,

"mpjpe": 9.3214,

"fp_joint_total": 3,

"fn_joint_total": 0

}

},

"joint_image_total": 14,

"mpjpe_image_average": 9.321,

"fp_joint_image_total": 3,

"fn_joint_image_total": 3

},

"joint_total_average_per_image": 12.738,

"mpjpe_average_per_image": 13.389,

"fp_joint_total_average_per_image": 1.226,

"fn_joint_total_average_per_image": 0.095

}

Finally, four ’results’ files are obtained from the skeleton matching step, one for each method

and dataset combination. These present all the relevant information regarding the comparison

of the annotation and the predictions for each image, which was used to compile the evaluation

metrics presented in chapter 5. These are self-explanatory, with the exception of the ’match-

ing_skeletons’ array, which contains all the predicted skeletons that were matched to the operator,

including each of its predicted joints, as well as both its joint position error and the confidence

score that the human pose estimation method attributed to it.

A.3 Evaluation Procedure - Outputs 57

Additionally, we present an excerpt of the ’results_left_openpifpaf’ file below where OpenPif-

Paf predicted more than one skeleton in that image and two of them were matched to the operator.

"left-small12": {

"annotated_skeleton_total": 1,

"annotated_joint_total": 11,

"pifpaf_skeleton_total": 3,

"matching_skeleton_total": 2,

"matching_skeletons": {

"2": {

"5": [

18.064,

0.71

],

"2": [

10.006,

0.81

],

"6": [

"fp",

0.43

],

"3": [

7.455,

0.95

],

"7": [

3.7,

0.51

],

"4": [

6.001,

0.89

],

"11": [

59.55,

0.4

],

"8": [

40.773,

0.6

],

"1": [

"invalid",

0

],

"15": [

"fn",

0

],

"17": [

"fn",

0

],

"0": [

"fn",

0

],

"joint_counter_total": 8,

"mpjpe": 18.1936,

"fp_joint_total": 1,

"fn_joint_total": 3

},

"3": {

"0": [

5.404,

0.89

],

"15": [

1.668,

0.83

],

"14": [

"fp",

0.61

],

"1": [

"invalid",

0

],

"2": [

"fn",

0

],

"3": [

"fn",

0

],

"4": [

"fn",

0

],

"5": [

"fn",

0

58 Implementation Details and Examples of Obtained Files

],

"7": [

"fn",

0

],

"8": [

"fn",

0

],

"11": [

"fn",

0

],

"17": [

"fn",

0

],

"joint_counter_total": 3,

"mpjpe": 2.3573,

"fp_joint_total": 1,

"fn_joint_total": 8

}

},

"joint_image_total": 11,

"mpjpe_image_average": 10.275,

"fp_joint_image_total": 2,

"fn_joint_image_total": 2

}

References

[1] Valeria Villani, Fabio Pini, Francesco Leali, and Cristian Secchi. Survey on
human–robot collaboration in industrial settings: Safety, intuitive interfaces and
applications. Mechatronics, 55:248–266, November 2018. URL: https://
www.sciencedirect.com/science/article/pii/S0957415818300321, doi:
10.1016/j.mechatronics.2018.02.009.

[2] Lihui Wang, Sichao Liu, Hongyi Liu, and X.V. Wang. Overview of Human-Robot Collab-
oration in Manufacturing. In 5th International Conference on the Industry 4.0 Model for
Advanced Manufacturing (AMP 2020), 1-4 June 2020, pages 15–58. Springer International
Publishing, 2020. doi:10.1007/978-3-030-46212-3_2.

[3] A survey of methods for safe human-robot interaction. Foundations and Trends® in
Robotics, 5, 2017. URL: http://dx.doi.org/10.1561/2300000052, doi:10.
1561/2300000052.

[4] ScalABLE 4.0 – Development and demonstration of an (OSPS). URL: https://www.
scalable40.eu/.

[5] PSA UseCase – ScalABLE 4.0. URL: https://www.scalable40.eu/index.php/
psa-usecase/.

[6] INESC-TEC Robotics. H2020 ScalABLE4.0 - Spatial augmented reality interface for
human-robot collaboration, April 2020. URL: https://www.youtube.com/watch?
v=kf4gimDdebE&ab_channel=INESC-TECRobotics.

[7] J.E. Colgate, W. Wannasuphoprasit, and M.A. Peshkin. Cobots: robots for collaboration
with human operators. In Proceedings of the ASME Dynamic Systems and Control Division,
17-22 Nov. 1996, Proceedings of the ASME Dynamic Systems and Control Division, New
York, NY, USA, 1996. ASME.

[8] Dushyant Mehta, Srinath Sridhar, Oleksandr Sotnychenko, Helge Rhodin, Mohammad
Shafiei, Hans-Peter Seidel, Weipeng Xu, Dan Casas, and Christian Theobalt. Vnect: Real-
time 3d human pose estimation with a single rgb camera. 36(4), 2017. URL: https:
//doi.org/10.1145/3072959.3073596, doi:10.1145/3072959.3073596.

[9] Dushyant Mehta, Oleksandr Sotnychenko, Franziska Mueller, Weipeng Xu, Mohamed El-
gharib, Pascal Fua, Hans-Peter Seidel, Helge Rhodin, Gerard Pons-Moll, and Christian
Theobalt. Xnect: Real-time multi-person 3d motion capture with a single rgb cam-
era. 39(4), 2020. URL: https://doi.org/10.1145/3386569.3392410, doi:
10.1145/3386569.3392410.

59

https://www.sciencedirect.com/science/article/pii/S0957415818300321
https://www.sciencedirect.com/science/article/pii/S0957415818300321
http://dx.doi.org/10.1016/j.mechatronics.2018.02.009
http://dx.doi.org/10.1016/j.mechatronics.2018.02.009
http://dx.doi.org/10.1007/978-3-030-46212-3_2
http://dx.doi.org/10.1561/2300000052
http://dx.doi.org/10.1561/2300000052
http://dx.doi.org/10.1561/2300000052
https://www.scalable40.eu/
https://www.scalable40.eu/
https://www.scalable40.eu/index.php/psa-usecase/
https://www.scalable40.eu/index.php/psa-usecase/
https://www.youtube.com/watch?v=kf4gimDdebE&ab_channel=INESC-TECRobotics
https://www.youtube.com/watch?v=kf4gimDdebE&ab_channel=INESC-TECRobotics
https://doi.org/10.1145/3072959.3073596
https://doi.org/10.1145/3072959.3073596
http://dx.doi.org/10.1145/3072959.3073596
https://doi.org/10.1145/3386569.3392410
http://dx.doi.org/10.1145/3386569.3392410
http://dx.doi.org/10.1145/3386569.3392410

60 REFERENCES

[10] Z.R. Khavas, S.R. Ahmadzadeh, and P. Robinette. Modeling Trust in Human-Robot In-
teraction: A Survey. In Social Robotics. 12th International Conference, ICSR 2020, 14-
18 Nov. 2020, pages 529–41, Cham, Switzerland, 2020. Springer International Publishing.
doi:10.1007/978-3-030-62056-1_44.

[11] C. Faria, A. Colim, J. Cunha, J. Oliveira, N. Costa, P. Carneiro, S. Monteiro, E. Bicho, L.A.
Rocha, and P. Arezes. Safety Requirements for the Design of Collaborative Robotic Work-
stations in Europe - A Review. In Advances in Safety Management and Human Performance.
AHFE 2020, pages 225–32, Cham, Switzerland, 2020. Springer International Publishing.
doi:10.1007/978-3-030-50946-0_31.

[12] 14:00-17:00. ISO 10218-1:2011. URL: https://www.iso.org/cms/render/live/
en/sites/isoorg/contents/data/standard/05/13/51330.html.

[13] 14:00-17:00. ISO 10218-2:2011. URL: https://www.iso.org/cms/render/live/
en/sites/isoorg/contents/data/standard/04/15/41571.html.

[14] Yujiao Cheng, Liting Sun, Changliu Liu, and M. Tomizuka. Towards Efficient Human-Robot
Collaboration With Robust Plan Recognition and Trajectory Prediction. IEEE Robotics and
Automation Letters, 5(2), April 2020. doi:10.1109/LRA.2020.2972874.

[15] B. Sadrfaridpour and Yue Wang. Collaborative assembly in hybrid manufacturing cells:
an integrated framework for human-robot interaction. IEEE Transactions on Automation
Science and Engineering, 15(3):1178–92, July 2018. Place: USA Publisher: IEEE.

[16] C. Byner, B. Matthias, and Hao Ding. Dynamic speed and separation monitoring for collab-
orative robot applications - Concepts and performance. Robotics and Computer-Integrated
Manufacturing, 58, August 2019. doi:10.1016/j.rcim.2018.11.002.

[17] H. Nascimento, M. Mujica, and M. Benoussaad. Collision Avoidance Interaction Between
Human and a Hidden Robot Based on Kinect and Robot Data Fusion. IEEE Robotics and
Automation Letters, 6(1):88–94, January 2021. Place: USA Publisher: IEEE. doi:10.
1109/LRA.2020.3032104.

[18] F. Flacco, T. Kröger, A. De Luca, and O. Khatib. A depth space approach to human-robot
collision avoidance. In 2012 IEEE International Conference on Robotics and Automation,
May 2012. ISSN: 1050-4729. doi:10.1109/ICRA.2012.6225245.

[19] Fang Wang and Yi Li. Beyond physical connections: Tree models in human pose estimation.
In 2013 IEEE Conference on Computer Vision and Pattern Recognition, pages 596–603,
2013. doi:10.1109/CVPR.2013.83.

[20] Matthias Dantone, Juergen Gall, Christian Leistner, and Luc Van Gool. Human pose estima-
tion using body parts dependent joint regressors. In 2013 IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 3041–3048, 2013. doi:10.1109/CVPR.2013.391.

[21] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Pictorial Structures for Object Recogni-
tion. International Journal of Computer Vision, 61(1):55–79, January 2005. URL: https:
//doi.org/10.1023/B:VISI.0000042934.15159.49, doi:10.1023/B:VISI.
0000042934.15159.49.

[22] Yi Yang and Deva Ramanan. Articulated human detection with flexible mixtures of parts.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(12):2878–2890, 2013.
doi:10.1109/TPAMI.2012.261.

http://dx.doi.org/10.1007/978-3-030-62056-1_44
http://dx.doi.org/10.1007/978-3-030-50946-0_31
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/13/51330.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/13/51330.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/04/15/41571.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/04/15/41571.html
http://dx.doi.org/10.1109/LRA.2020.2972874
http://dx.doi.org/10.1016/j.rcim.2018.11.002
http://dx.doi.org/10.1109/LRA.2020.3032104
http://dx.doi.org/10.1109/LRA.2020.3032104
http://dx.doi.org/10.1109/ICRA.2012.6225245
http://dx.doi.org/10.1109/CVPR.2013.83
http://dx.doi.org/10.1109/CVPR.2013.391
https://doi.org/10.1023/B:VISI.0000042934.15159.49
https://doi.org/10.1023/B:VISI.0000042934.15159.49
http://dx.doi.org/10.1023/B:VISI.0000042934.15159.49
http://dx.doi.org/10.1023/B:VISI.0000042934.15159.49
http://dx.doi.org/10.1109/TPAMI.2012.261

REFERENCES 61

[23] Chi Qin Lai and Soo Siang Teoh. A review on pedestrian detection techniques based on
histogram of oriented gradient feature. In 2014 IEEE Student Conference on Research and
Development, pages 1–6, 2014. doi:10.1109/SCORED.2014.7072948.

[24] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol-
ume 1, pages 886–893 vol. 1, 2005. doi:10.1109/CVPR.2005.177.

[25] Qi Dang, Jianqin Yin, Bin Wang, and Wenqing Zheng. Deep learning based 2d human
pose estimation: A survey. Tsinghua Science and Technology, 24(6):663–676, 2019. doi:
10.26599/TST.2018.9010100.

[26] Alexander Toshev and Christian Szegedy. Deeppose: Human pose estimation via deep neural
networks. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, pages
1653–1660, 2014. doi:10.1109/CVPR.2014.214.

[27] Yanming Guo, Yu Liu, Ard Oerlemans, Songyang Lao, Song Wu, and Michael S.
Lew. Deep learning for visual understanding: A review. Neurocomputing,
187:27–48, 2016. Recent Developments on Deep Big Vision. URL: https://
www.sciencedirect.com/science/article/pii/S0925231215017634, doi:
https://doi.org/10.1016/j.neucom.2015.09.116.

[28] Min Sun and Silvio Savarese. Articulated part-based model for joint object detection and
pose estimation. In 2011 International Conference on Computer Vision, pages 723–730,
2011. doi:10.1109/ICCV.2011.6126309.

[29] George Papandreou, Tyler Zhu, Nori Kanazawa, Alexander Toshev, Jonathan Tompson,
Chris Bregler, and Kevin Murphy. Towards accurate multi-person pose estimation in the
wild. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
3711–3719, 2017. doi:10.1109/CVPR.2017.395.

[30] Hao-Shu Fang, Shuqin Xie, Yu-Wing Tai, and Cewu Lu. Rmpe: Regional multi-person
pose estimation. In 2017 IEEE International Conference on Computer Vision (ICCV), pages
2353–2362, 2017. doi:10.1109/ICCV.2017.256.

[31] Shaoli Huang, Mingming Gong, and Dacheng Tao. A coarse-fine network for keypoint
localization. In 2017 IEEE International Conference on Computer Vision (ICCV), pages
3047–3056, 2017. doi:10.1109/ICCV.2017.329.

[32] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In 2017
IEEE International Conference on Computer Vision (ICCV), pages 2980–2988, 2017. doi:
10.1109/ICCV.2017.322.

[33] Yilun Chen, Zhicheng Wang, Yuxiang Peng, Zhiqiang Zhang, Gang Yu, and Jian Sun.
Cascaded pyramid network for multi-person pose estimation. In 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 7103–7112, 2018. doi:
10.1109/CVPR.2018.00742.

[34] Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines for human pose estimation and
tracking. In Proceedings of the European Conference on Computer Vision (ECCV), Septem-
ber 2018.

http://dx.doi.org/10.1109/SCORED.2014.7072948
http://dx.doi.org/10.1109/CVPR.2005.177
http://dx.doi.org/10.26599/TST.2018.9010100
http://dx.doi.org/10.26599/TST.2018.9010100
http://dx.doi.org/10.1109/CVPR.2014.214
https://www.sciencedirect.com/science/article/pii/S0925231215017634
https://www.sciencedirect.com/science/article/pii/S0925231215017634
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2015.09.116
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2015.09.116
http://dx.doi.org/10.1109/ICCV.2011.6126309
http://dx.doi.org/10.1109/CVPR.2017.395
http://dx.doi.org/10.1109/ICCV.2017.256
http://dx.doi.org/10.1109/ICCV.2017.329
http://dx.doi.org/10.1109/ICCV.2017.322
http://dx.doi.org/10.1109/ICCV.2017.322
http://dx.doi.org/10.1109/CVPR.2018.00742
http://dx.doi.org/10.1109/CVPR.2018.00742

62 REFERENCES

[35] Georgia Gkioxari, Justin Johnson, and Jitendra Malik. Mesh r-cnn. In 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), pages 9784–9794, 2019. doi:10.
1109/ICCV.2019.00988.

[36] Leonid Pishchulin, Eldar Insafutdinov, Siyu Tang, Bjoern Andres, Mykhaylo Andriluka, Pe-
ter Gehler, and Bernt Schiele. Deepcut: Joint subset partition and labeling for multi person
pose estimation. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4929–4937, 2016. doi:10.1109/CVPR.2016.533.

[37] Eldar Insafutdinov, Leonid Pishchulin, Bjoern Andres, Mykhaylo Andriluka, and Bernt
Schiele. DeeperCut: A Deeper, Stronger, and Faster Multi-person Pose Estimation Model.
In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer Vision – ECCV
2016, Lecture Notes in Computer Science, pages 34–50. Springer International Publishing,
2016. doi:10.1007/978-3-319-46466-4_3.

[38] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-person 2d pose
estimation using part affinity fields. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1302–1310, 2017. doi:10.1109/CVPR.2017.143.

[39] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Openpose: Real-
time multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 43(1):172–186, 2021. doi:10.1109/TPAMI.2019.
2929257.

[40] Muhammed Kocabas, Salih Karagoz, and Emre Akbas. Multiposenet: Fast multi-person
pose estimation using pose residual network. In Proceedings of the European Conference on
Computer Vision (ECCV), September 2018.

[41] Sven Kreiss, Lorenzo Bertoni, and Alexandre Alahi. Pifpaf: Composite fields for human
pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2019.

[42] Sven Kreiss, Lorenzo Bertoni, and Alexandre Alahi. Openpifpaf: Composite fields for se-
mantic keypoint detection and spatio-temporal association, 2021. arXiv:2103.02440.

[43] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detec-
tron2. https://github.com/facebookresearch/detectron2, 2019.

[44] Tsung-Yi Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and C.L.
Zitnick. Microsoft coco: Common objects in context. volume pt.V, pages 740 – 55, Cham,
Switzerland, 2014//. URL: http://dx.doi.org/10.1007/978-3-319-10602-1_
48.

[45] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and Bernt Schiele. 2d human pose
estimation: New benchmark and state of the art analysis. In 2014 IEEE Conference on
Computer Vision and Pattern Recognition, pages 3686–3693, 2014. doi:10.1109/CVPR.
2014.471.

[46] David Powers. Evaluation: From precision, recall and f-factor to roc, informedness, marked-
ness correlation. Mach. Learn. Technol., 2, 01 2008.

http://dx.doi.org/10.1109/ICCV.2019.00988
http://dx.doi.org/10.1109/ICCV.2019.00988
http://dx.doi.org/10.1109/CVPR.2016.533
http://dx.doi.org/10.1007/978-3-319-46466-4_3
http://dx.doi.org/10.1109/CVPR.2017.143
http://dx.doi.org/10.1109/TPAMI.2019.2929257
http://dx.doi.org/10.1109/TPAMI.2019.2929257
http://arxiv.org/abs/2103.02440
https://github.com/facebookresearch/detectron2
http://dx.doi.org/10.1007/978-3-319-10602-1_48
http://dx.doi.org/10.1007/978-3-319-10602-1_48
http://dx.doi.org/10.1109/CVPR.2014.471
http://dx.doi.org/10.1109/CVPR.2014.471

REFERENCES 63

[47] Mykhaylo Andriluka, Umar Iqbal, Eldar Insafutdinov, Leonid Pishchulin, Anton Milan, Juer-
gen Gall, and Bernt Schiele. Posetrack: A benchmark for human pose estimation and track-
ing. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
5167–5176, 2018. doi:10.1109/CVPR.2018.00542.

[48] Vittorio Ferrari, Manuel Marin-Jimenez, and Andrew Zisserman. Progressive search space
reduction for human pose estimation. In 2008 IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–8, 2008. doi:10.1109/CVPR.2008.4587468.

[49] Yi Yang and Deva Ramanan. Articulated human detection with flexible mixtures of parts.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(12):2878–2890, 2013.
doi:10.1109/TPAMI.2012.261.

[50] Coco 2017 keypoint evaluation metrics website. URL: https://cocodataset.org/
#keypoints-eval.

[51] Coco 2017 keypoint detection task website. URL: https://cocodataset.org/
#keypoints-2017.

http://dx.doi.org/10.1109/CVPR.2018.00542
http://dx.doi.org/10.1109/CVPR.2008.4587468
http://dx.doi.org/10.1109/TPAMI.2012.261
https://cocodataset.org/#keypoints-eval
https://cocodataset.org/#keypoints-eval
https://cocodataset.org/#keypoints-2017
https://cocodataset.org/#keypoints-2017

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Use Case
	1.2 Tracking System and Scope
	1.3 Outline and Contributions

	2 Background and Related Work
	2.1 Human-Robot Collaboration
	2.2 Safety
	2.3 Control

	3 Human Pose Estimation and Key Concepts
	3.1 Early Work and the Introduction of Deep Learning
	3.2 Top-down and Bottom-up State-of-the-art Methods
	3.3 Pre-selection of Methods to Evaluate
	3.4 Evaluation Metrics
	3.4.1 Precision, Recall and Accuracy
	3.4.2 Probability of Correct Keypoint
	3.4.3 Mean Per Joint Position Error
	3.4.4 Inference Speed, Frame Rate and Computational Cost

	4 Methodology
	4.1 Setup
	4.1.1 Collaborative Robotic Workstation
	4.1.2 Hardware and Software Architecture

	4.2 Dataset Building
	4.2.1 Assumptions and Goals
	4.2.2 Image Collection
	4.2.3 Image Resizing

	4.3 Ground Truth Annotation
	4.4 Operator Pose Estimation in Datasets
	4.4.1 Pre-trained Model Selection

	4.5 Evaluation Procedure of Human Pose Estimation Methods
	4.5.1 Skeleton Extraction and Keypoint Mapping
	4.5.2 Skeleton Matching - Filtering False Positives
	4.5.3 Joint Matching and MPJPE Computation
	4.5.4 Output Results

	5 Results and Discussion
	5.1 Reliability and Accuracy
	5.1.1 Skeleton Predictions
	5.1.2 Joint Predictions

	5.2 Real-time Operation and Inference Speed
	5.3 Method Selection

	6 Conclusion and Future Work
	A Implementation Details and Examples of Obtained Files
	A.1 Ground Truth Annotation - Supervisely and JSON files
	A.2 Operator Pose Estimation - Run Outputs
	A.3 Evaluation Procedure - Outputs

	References

