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Resumo

De todos os cancros, cancro da mama é o que causa mais mortes entre mulheres. Programas
de rastreio do cancro da mama podem ajudar a decrescer esta mortalidade, visto que deteção e
tratamento do tumor em fases iniciais aumentam a taxa de sobrevivência. Normalmente, um par
de radiologistas fazem a interpretação das mamografias, no entanto o processo é longo e cansativo.
Isto incentivou o desenvolvimento de sistemas de diagnósitco auxiliado por computador (CADx),
para substituir o segundo radiologista, fazendo melhor uso do tempo de especialistas. No entanto,
sistemas CADx são associados a taxas elevadas de falsos positivos, dado que a maior parte detes
apenas usam uma vista (craniocaudal ou mediolateral oblique) da mamografia. O radiologista,
por sua vez, usa ambas as projeções, baseando o seu diagnóstico em diferenças visíveis entre as
duas vistas.

Quando se consideram as duas projeções da mamografia, a correspondência de lesões é um
passo necessário para se fazer o diagnóstico. No entanto, isto é uma tarefa complexa, dado que
podem existir vários candidatos a lesão, em cada uma das vistas, para se fazer correspondência.

Neste trabalho, um sistema que faz correspondências entre lesões é proposto. Este é composto
por três blocos: detetor de candidatos, extração de caraterísticas e correspondência de lesões.
O primeiro é uma replicação do trabalho de Ribli et al., e o seu propósito é detetar possíveis
candidatos a lesão. O segundo é a extração de vetores de caraterísticas de cada candidato, quer
usando a backbone do detetor de candidatos, quer extraindo caraterísticas mais tradicionais, ou
usando uma rede neuronal treinada com a triplet loss para distinguir lesões. O terceiro é o cálculo
da distância entre os vetores de caraterísticas, usando também heurísticas para restringir possíveis
pares de candidatos incorretos, e a ordenação de distâncias para atribuir a correspondência de cada
lesão.

Este trabalho oferece várias opções de possíveis extractores de caraterísticas e heurísticas a
serem incroporados num sistema CADx que seja baseado em detetores de objetos. O facto do
modelo treinado com a triplet loss ser competitivo com os restantos modelos, torna o sistema
bastante mais viável, sendo que este oferece a possibilidade de a correspondência ser independente
da deteção de candidatos. Heurísticas "hard" e "soft" são introduzidas como métodos para limitar
correspondências.

O sistema é capaz de fazer correspondências de forma satisfatória, dado que a sua exatidão
(∼ 70%−85%) é significativamente maior que a probabilidade aleatória (30%−40%) dos dados
usados. Heurísticas "hard" têm resultados encorajantes na precision@k, dado que estas rejeitam
um número significativo de falsos positivos gerados pelo detetor de lesões.
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Abstract

Of all cancer diseases, breast cancer is the most lethal among women. It has been shown that breast
cancer screening programs can decrease mortality, since early detection increases the chances
of survival. Usually, a pair of radiologists interpret the screening mammograms, however the
process is long and exhausting. This has encouraged the development of computer aided diagnosis
(CADx) systems to replace the second radiologist, making a better use of human-experts’ time.
But CADx systems are associated with high false positive rates, since most of them only use one
view (craniocaudal or mediolateral oblique) of the screening mammogram. Radiologist, on the
other hand, use both views; frequently reasoning about the diagnosis by noticeable differences
between the two views.

When considering both projections of a mammogram, lesion matching is a necessary step to
perform diagnosis. However this is a complex task, since there might be various lesion candidates
on both projections to match.

In this work, a matching system is proposed. The system is a cascade of three blocks: can-
didates detector, feature extraction and lesion matching. The first is a replication of Ribli et al.’s
Faster R-CNN and its purpose is to find possible lesion candidates. The second is the feature vec-
tor extraction of each candidate, either by using the candidates detector’s backbone, handcrafted
features or a siamese network model trained for distinguish lesions. The third is the calculus of the
distance between feature vector, also using some heuristics to restrain possible non-lesion pairs,
and the ranking of the distances to match the lesions.

This work provides several options of possible feature extractors and heuristics to be incorpo-
rated into a CADx system based on object detectors. The fact that the triplet loss trained models
obtained competitive results with the other features extractors is valuable, since it offers some in-
dependence between the detection and matching tasks. "Hard" heuristics and "soft" heurisitcs are
introduced as methods to restrain matching.

The system is able to detect matches satisfactorily, since its accuracy (∼ 70%−85%) is signif-
icantly higher than chance level (30%−40%). "Hard" heuristics proposals achieved encouraging
results on precision@k, due to its match and candidates exclusion methods, which rejects a sig-
nificant number of false positives generated by the object detector.
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Chapter 1

Introduction

1.1 Context

Of all types of cancer, breast cancer is, among women, the most diagnosed and the leading cause

of death , resulting in over half a million causalities every year [14]. To decrease mortality, breast

cancer screening programs have been widely adopted, since early detection increases the chances

of survival [15]. The mammogram is an x-ray based exam used for screening; In the generated

image bright areas are more radio-opaque, while darker areas are more radio-transparent. This

exam can be used to detect abnormal areas in the breast. Even if it’s not possible to diagnose cancer

based on these areas alone, they can indicate that further testing is needed. These breast changes

usually are either calcifications or masses, although there are other less common variations [16].

Many countries in Europe already have national or regional programs in which women of a

certain age range (around 50-70) periodically receive an invitation to get a screening mammogra-

phy exam [17]. Each screening provides two views of each breast: mediolateral oblique (MLO),

taken under 45 degrees, and craniocaudal (CC), taken top-down.

Screening mammograms are evaluated by radiologists. This is a long, monotonous process,

which is therefore exhausting and prone to errors [3]. The radiologist reads both projections

to diagnose each case. They locate tumors, by detecting gray-scale and morphology anomalies in

breast tissue, in a single projection. Then, the radiologist compares relevant features in both views,

to verify his assessment of the diagnosis [18, 19]. In many breast cancer screening programs, there

is a second radiologist that reads and interprets the same exam, reassuring the assessment made

by the first radiologist. Both interpret the images to decide if the woman needs to be recalled

for further evaluation. This dual-assessment is more expensive than a single one, but it has been

shown to increase the detection rate of screening [17].

Computer-aided diagnosis (CADx) systems have been used by radiologists as a substitute to

the second reader, to lower the false negative rate. These reduce, to some extent, the current

dependence on the radiologist’s experience and workload [4] and the cost of the second radiolo-

gist [15, 18]. Even with the advancement in lesion detection systems, these are still not widely

used, since they generate a high rate of false positives [2]. This can be related to the fact that,
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2 Introduction

usually, these systems detect and classify lesions on a single view [18]. Having access to com-

plementary information in both views may increase accuracy. Fused-feature models can be used

to merge the information between different images, therefore yielding CADx systems that find le-

sions more robustly. This information can be fused either using projections from different breasts

(left and right), or projections from different views (CC and MLO) [19].

1.2 Motivation

Recently, deep learning based CADx systems have been proposed. While in traditional methods

the focus is on handcrafted features learning techniques [15], deep learning models can learn which

features are relevant for classification [17] – even if some of these are invisible to the untrained

eye –, and are robust to image transformations [5]. Moreover, currently these systems perform as

well as a radiologist and improve results when they are used as support decision-maker [4]. Even

though research in deep learning based systems is advancing, there are not many of these works

that consider the complementary information between projections and there is not a clear method

to fuse them.

When considering both projections of a mammogram, lesion matching is a necessary step to

perform diagnosis. However this is a complex task; there might be various lesion candidates on

both projections to match. Moreover, breast appearance is different in the CC and MLO views,

which implies different lesion shapes and positions in both projections.

A lesion matching algorithm is a valuable addition to CADx systems. It has the potential

to lead to better results than single-view lesion detection algorithms. Potentially reducing false

positive and false negative rates and ultimately improving robustness on screening mammography

CADx systems.

1.3 Contributions

The main goal of this work is to develop an algorithm that can find correct matches between lesion

candidates on different projections of the same breast. The proposed system will detect lesions on

different projections of the mammogram, extract features and compare them across views to find

matches.

The proposed system is evaluated to understand how well it performs on lesion matching, what

features are relevant to that purpose and to what extent lesion matching can improve the overall

robustness of CADx systems.

1.4 Dissertation Structure

There are five chapters in this document, being the first the present one. The second chapter is the

Literature Review. It describes the state of the art on deep learning techniques for breast cancer

detection/diagnosis. Additionally, object detectors are also reviewed. Chapter 3 introduces the
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reader to convolutional neural networks, automatic object detection and handcrafted features used

in the present work. Implementation, results of the technical work and their discussion are de-

scribed in Chapter 4. At last, the conclusions of the proposed system and future work possibilities

are present in Chapter 5.
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Chapter 2

Literature review

This chapter describes the state of the art on breast cancer detection, object detection methods and

multiview methods for breast cancer detection and classification.

2.1 Breast Cancer Screening

Breast cancer screening methods, traditionally, consist of two stages: detection and classification.

The first stage detects lesion candidates, while the second, given the region of interest (ROI),

classifies the type of lesion.

2.1.1 Detection

Zheng & Chan [1] proposed an algorithm that marks out suspicious tumor regions, based on vari-

ous AI methods. Firstly, they subdivided the mammograms into blocks of 16x16 and used a frac-

tal technique [20] to detect regions that have higher intensities than their surroundings, which are

associated with the presence of masses. Then a discrete wavelet transform (DWT)-based multires-

olution segmentation algorithm (MMRF) is proposed. It consists in: 1) the image is decomposed

into subimages with different resolutions, and a Markov Random Filter (MRF) [21] is applied to

remove possible noise; 2) at each resolution, a dogs and rabbit clustering algorithm [22] simplifies

the identification of tumors, dividing data into different sets; 3) the image is decomposed using

DWT [1] and the image is segmented, obtaining different regions according to their gray-levels

and texture (Figure 2.1).

Pereira et al. [23] proposed a lesion detection system based on segmentation. First they remove

the non-breast elements and then enhance the image using wavelet multiresolution processing. Fi-

nally a segmentation algorithm, proposed by Hammouche [24], is used. This consists in combin-

ing wavelet theory with a genetic algorithm to determine the appropriate thresholds levels needed

for Otsu segmentation [25]. To reduce false positives, a post-processing algorithm compares the

detected region’s shape with previously defined ones, excluding the ones that are not considered

similar.
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Figure 2.1: Zhen & Chan [1] proposed segmentation algorithm.

With the development of deep learning over the last decades, various techniques have been

proposed for breast cancer detection, surpassing traditional AI methods’ results.

Dhungel et al. [2] proposed a combination of a multiresolution deep belief network classifier

(m-DBN) [26] with a gaussian mixture model (GMM) [27] to the extraction of candidates (Figure

2.2). Then a cascade of two region based convolutional neural networks (R-CNNs) [28] process

Figure 2.2: Candidate generation using m-DBN. At each iteration segmentation is done at a finer
resolution improving the previous one.

those regions and classify them as object or non-object. Some handcrafted features are extracted
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from each of the R-CNN’s resulting regions and are used to the inference of a cascade of two

random forest classifiers [29] to reduce false positives. At last, the regions detected are clustered,

merging regions that with a high overlap ratio using connected component analysis (Figure 2.3).

Figure 2.3: Dhungel et al. [2] proposed architecture.

Ribli et al. [3] proposed a method fully based on R-CNNs, using a faster region based convo-

lutional neural network (Faster R-CNN) (Figure 2.4) [12] to detect mass candidates and classify

them. This type of network, like R-CNN, is oriented to detect objects. It is composed of a con-

volutional neural network (CNN), a region proposal network (RPN), a ROI pooling layer and a

final classifier. The output of this model is both the bounding box of the detected lesions and their

classification. However, Faster R-CNN needs the bounding boxes of the dataset’s objects, which

is very limited in this clinical environment [3].

2.1.2 Classification

The introduction of CNNs has brought a revolution on computer interpretation of digital mam-

mograms [17]. This type of network obtains high level features by the top layers of the model

that are robust to image transformations and improve classification results [5]. Due to these

advantages, CNNs have been used on various methods to either detect or classify breast can-

cer [2, 3, 4, 5, 15, 30, 31]. For time efficiency, as well to avoid situations where training data is

very limited [3, 4, 5, 15, 31], pre-trained networks have also been used by some authors [31].

Kooi et al. in his work [32], made a classification comparison between handcrafted and CNN

features. Their system took as input the segmented image; features where extracted and used for

classification using various methods (support vector machine, multi-layer perceptron and gradient

boosted trees). The results showed that CNNs achieve better results than handcrafted features,

however, when features are combined, results are even better. Moreover, the model was compared

to the radiologists’ assessment, and performance on single view classification was similar.

Wang et al. [33] compared the accuracy on micro-calcifications segmentation between their

stacked auto-encoders and machine learning algorithms (support vector machine, k-nearest neigh-

bors and linear discriminant analysis). The results demonstrate that their deep learning model

achieved better results than other machine learning methods because of the superior capacity of

extracting features from the segmented image. That also led to a significant improvement in the

discriminating accuracy between malign or benign micro-calcification compared to other learning

methods.
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Figure 2.4: Ribli et al. [3] proposed architecture.

Levy et al. [31] proposed an end-to-end fully convolutional model. They used three architec-

tures: an AlexNet [34], a GoogLeNet [35] and a baseline, which is inspired on the early layers of

AlexNet. These models take as input ROIs of possible lesion locations in the mammogram. This

proposal achieves state of the art results on classifying benign and malignant masses. However,

these results might be biased since the training and testing sets are limited only to images that

contain lesions.

Shen et al. [4] proposed a method that uses a pre-trained patch classifier to analyse the whole

image. They use the shared weights property of CNNs to process various patches among the

mammogram, in a sliding window mode, which results in a classification map of the various

patches. Lastly, a cascade of two convolutional layers obtains the final classification (Figure 2.5).

The model is trained in two phases: first on ROI annotated areas of the mammograms, second on

the complete images. The proposed architecture requires ROI annotated images on the first phase,

even if this model is fine-tuned to a dataset that lacks those annotations. This final phase can be

valuable, since ROI annotated datasets are either small to train effectively or expensive to obtain.

2.2 Object Detection

In recent years, there has been significant progress in object detection algorithms. Those are of

great significance to lesion matching, since it can be a straightforward method to spatially detect

lesions in mammography screening. This kind of system can also extract lesion features that are

used to compare projections.

In 2014 Girshick et al. [28] proposed one the first object detection systems based on deep

learning: the region based convolutional neural network. They divided their system into three
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Figure 2.5: Shen et al. [4] proposed architecture. f represents the patch classifier, g represents the
map classifier and h represents the whole image classifier, which can be viewed as h = g( f (x)).

modules: the first generates region proposals, despite their category, using selective search [36];

the second is a CNN, that extracts a feature vector from each region proposal; the third is a set

of class-specific support vector machines (SVM), that classify the detected objects. Lastly, a

bounding box regressor – inspired on the deformable parts model employed in [36] –, is applied

to reduce localization errors.

This method has three major disadvantages [28]:

1. It is hard to train, since it’s a multistage pipeline: R-CNN first fine-tunes a CNN on object

proposals, then fits an SVM to the CNN features, which acts as an object detector. Lastly,

the bounding box regressor is learned;

2. Training needs a lot of time and space: for the SVMs and bounding box regressor, training

features are extracted from each region and written in the disk, which means a CNN has to

run and store a feature vector for all proposed regions in all images of the dataset;

3. Object detection is slow: at each object proposal, CNN extracts its features separately, be-

fore classification.

In 2015, Girshick [37] made a second proposal for an object detector: Fast R-CNN. This

system would overcome the disadvantages of R-CNN, previously mentioned, through a single-

stage training, using a multi-task loss, updating all network layers during training and not storing

features in cache, saving hundreds of gigabytes of disk space. This model would train 9x faster

than R-CNN and run 213x faster at test-time.

The system runs a series of convolutional and max pooling layers to create a convolutional

feature map. For each region proposal, an ROI pooling layer extracts a feature vector from the

feature map. Each of these is fed into a sequence of fully connected layers that branches into

two output layers. Those are trained through a multi-task loss, i.e., both layers are trained in one

training stage, avoiding pipelines and saving training time.
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Faster R-CNN [12] differs from Fast R-CNN [37] on the method of detecting object propos-

als. Faster-RCNN dropped the selective search [36] used on both R-CNN [28] and Fast R-CNN,

using a region proposal network (RPN), which shares computation with the Fast R-CNN detection

network.

This system runs a series of convolutions in a sliding window mode, forming a feature map.

At each window location, multiple regions are proposed, using multiple references boxes with

different dimensions called anchor boxes. Proposals and their features (extracted from the feature

map) are then used classify them –object/non-object. Afterwards, the regions classified as objects

by the RPN, have their bounding box regression computed and classified according to the final

labels, resulting the objects’ locations and classifications.

Following Faster R-CNN [12], He et al. proposed Mask R-CNN [38]. This method’s goal was

to develop a comparably enabling framework for instance segmentation. Mask R-CNN extended

Faster R-CNN by adding a new branch that predicts segmentation masks of each ROI, in parallel

with the classification and bounding box regression.

Since Faster R-CNN was not designed to have pixel-to-pixel alignment between network in-

puts and outputs, which is crucial to construct the mask branch, a ROIAlign was developed to

preserve exact spatial locations of the image, avoiding those misalignments. The introduction of

ROIAlign layer proved to have a large impact, increasing mask accuracy by 10% to 50% on COCO

dataset [39].

The previously mentioned object detectors are all two staged. The first generates a set of can-

didate object locations, while the second classifies each of the object locations. The one staged

detectors’ poorer results could be due to class imbalance: detectors would evaluate 104 to 105

candidate locations per image, but only a small fraction of these actually contained objects. This

imbalance can make training inefficient, since most proposals would be negative, and those nega-

tives could overwhelm training and lead to degenerate models [40].

Lin et al. [40] identified this issue and proposed RetinaNet, introducing the Focal Loss. This

function applies a modulating term to the cross entropy loss to focus learning on hard negative ex-

amples (training gives more importance to misclassified objects than to misclassified background).

Their proposal achieved state of the art results on object detection, offering a simple and highly

effective solution.

2.3 Multiview Information Fusion

After the detection of lesion candidates, information fusion is an important step to correctly clas-

sify lesions, due to the clinical relevance in observing the same region in different views of the

mammogram screening. This fusion can be either ipsilateral – when applied to the same breast

on different projections (CC and MLO) –, or bilateral – when referring to the same projection on

different breasts (left and right). Information of the images can be fused either by merging the

feature vectors into one (e.g. concatenation, sum the vectors) and then classifying the lesion -
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early fusion - or both views can be treated separately and the results of each image merged - late

fusion [18].

2.3.1 Early Fusion

Wang et al. [19] proposed an ipsilateral method using extreme learning machine [41] and hand-

crafted extracted features to detect lesions. Geometric and texture features are extracted from the

ROI of each projection and some similarity features between CC and MLO views are also ex-

tracted. These three (similarity, CC and MLO features) are fused into a single vector. A selection

of features is made by an heuristic. Finally these are submitted to the extreme learning machine,

which predicts if the candidate is a lesion.

Carneiro et al. [5] proposed an end-to-end ipsilateral approach to classify lesions as malign,

benign or negative, using multiple views of the breast. This system has as input the resized image

of each view of the mammogram. The image is submited to a CNN, pre-trained on ImageNet [34],

to extract features, then submitted to a fully connected layer, to obtain a single-view classification.

Those extracted features are then used to classify the combination of both views, using a multi-

nomial logistic regression layer (Figure 2.6). This system proposal’s shows a clear improvement

Figure 2.6: Carneiro et al. proposed architecture [5].

of multiview, over the single view methods, demonstrating that the CNN’s higher level features

contain a robust representation of the input image.

Geras et al. [30], like Carneiro et al. [5], proposed a multiview system based on CNNs, but

instead of using two views, used all four (i.e. two of each breast). They also used the original di-

mension of the images, to preserve all the information. To reduce the computational requirements

of handling full resolution, the CNN agressively downsamples the image, using larger strides on

the first two convolutional and on the first pooling layers. This reduces greatly the size of the

feature maps on the first layers. After the extraction of the features on each view, those are con-

catenated and submitted to a fully connected layer to be classified. Later, they resized the data to

study the influence of resolution on the classification. It was verified that the best results were the

ones referring to the original size of the data, showing the importance of preserving high resolu-

tion.



12 Literature review

Khan et al. [15] also used the four views of the breast and a CNN to extract features. However,

they used as input resized images of the ROIs and divided the classification into three stages:

classification of the mammogram into normal or abnormal; classification of the abnormality into

mass or calcification; classification of the lesion into malignant of benign.

2.3.2 Late Fusion

Shen et al. [4], in their end-to-end classification system, proposed an ipsilateral fusion, calculating

the average classification of each pair of projections. This method significantly increased the

results, compared to the single view approach. However it is questionable if this approach is the

most efficient, since fusion of information is done only at the output.

Dhahbi et al. [42] proposed an ipsilateral fusion system. This receives both the CC and the

MLO ROI of the breast, outputting the most similar pairs of mammograms from a reference

database and their malignancy likelihood (Figure 2.7). Their proposal extracts multiresolution

texture features from the input ROIs, using curvelet moments [6], from each view. A similarity

score between the extracted features and other ROIs from the database is computed, using the

inverse of the Euclidean distance. Both scores are fused using a weighted average, in which each

weight is based on the reliability of the view (i.e. if in that projection the proposed lesion belongs

to the same class as its neighbors, the more neighbors from the same class it has, the larger the

weight is). At last a malignancy likelihood estimation is calculated.

Figure 2.7: Dhahbi et al. proposed architecture [6].

Baâzaoui et al. [43] proposed and end-to-end model, which fuses information on four views

(two of each breast), using similarity methods. The features are textural and are extracted using
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various 2D mathematical models. Then, a random forest classifier infers which distance metric is

suitable to calculate similarity, based on the image’s characteristics. The inferred distance metric

is then used to compute similarity of each lesion’s features in all views: the closer these metrics are

to zero, the more similar images are. This system’s procedure allows to classify lesions, ensuring

semantic and visual similarities.
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Chapter 3

Methodology

3.1 Convolutional Neural Network

3.1.1 Artificial Neural Networks

Artificial Neural Networks (ANN) are computational systems, partially inspired on biological neu-

ral networks. These systems are known by their ability to learn from data to perform classification

or regression tasks. An ANN is composed by multiple connected neurons.

Artificial Neural Networks are frequently just simple feed-forward networks. In this type of

network, connections between nodes do not form cycles, i.e., the information flows in only one

direction. One of the simplest networks of this type is the Multiple Layer Perceptron (MLP).

MLP networks consists of at least three layers of nodes: input layer, hidden layer and output

layer (figure 3.1). The input layers’ nodes receive the information directly from the the data:

o(0) = X , (3.1)

where o(0) is the input layer, containing N input nodes, and X ∈ RN is the inputed data.

The subsequent node receives information from all the nodes from the previous layer and

outputs a non-linear function (activation function) of the weighted sum of its inputs to all the

nodes of the next layer:

o(l) = f (W (l)o(l−1)+b(l)), (3.2)

where o(l) is the output vector of the lth layer and f (.) is the activation function. W (l) and b(l)

are the weights and bias vectors, which are the parameters that the algorithm learns during train.

The output of the MLP is given by equation :

ŷ = o(n), (3.3)

where n is the last layer of the network.

15
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Figure 3.1: Multi Layer Perceptron
Source: SuperDataScience [7].

Activation Functions

Activation functions are the functions that introduce non-linearity in the network, to increase its

discriminative power. Without those, the output of each node would be simply a linear combina-

tion of its inputs. The sigmoid (eq. 3.4) and the rectifier linear unit or ReLU (eq. 3.5) functions

are widely used for this purpose. The first outputs a value between 0 and 1, which can be used to

represent probabilities on classification problems. The ReLU zeroes out negative inputs and does

not saturate at high values. (figure 3.2).

σ(z) =
1

1+ e−z (3.4)

R(z) = max(0,z) (3.5)

Figure 3.2: Sigmoid and ReLU activation functions
Source: TowardsDataScience [8].
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Backpropagation

Backpropagation is an algorithm that is widely used for training the weight and bias parameters of

a neural network. During training a loss function L(y, ŷ) is calculated using the predicted output ŷ

and the label (ground truth value) y. There are several loss functions relevant for different machine

learning tasks. Cross Entropy (equation 3.6) and Mean Squared Error (equation 3.7) are some of

the most popular loss functions used for classification and regression, respectively.

L(y, ŷ) =−
M

∑
c=1

yc · log(ŷc), (3.6)

where M is the number of classes and yc, ŷc the label and outputed prediction for class c.

L(y, ŷ) =
1
n

n

∑
i=1

(yi− ŷi)
2, (3.7)

where n is the number of observations, yi and ŷi are the target and predicted i-th values of the

observation set.

Then loss function’s gradient is computed, from the last layer to the first, and aggregated to

the existing gradient from the subsequent layer (the gradient propagates backwards). These are

used to update the weights ( ∂L
∂W (l) ) and biases ( ∂L

∂b(l)
), starting from the last and finishing in the first

layer.

Gradient Descent

The gradient descent is an optimization algorithm that is used to iteratively update weights and

biases of a neural network. The main goal of this computation is to find a local minimum of the

loss functions, i.e., the point where the network’s predictions are the most accurate, according to

the training data. To obtain that, parameters are updated in the opposite direction of the gradient

of the loss function:

W (l)
t+1 =W (l)

t −η
∂L

∂W (l)
(3.8)

b(l)t+1 = b(l)t −η
∂L

∂b(l)
, (3.9)

where W (l)
t is the weight matrix of the l-th layer at the t-th training iteration, and η is the learning

rate. The choice of the learning rate must be adequate - if it is too small, training will be very

slow; if it is too large, the model may simply not converge.

Adam

There are some variations of the gradient descent algorithm, designed to improve convergence

speed and avoid local minima. One of the most popular variations is Adam, which stands for
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ADAptive Moment estimation [44].

Adam calculates adaptive learning rates for different parameters, using the first and second

moment of the gradient. The parameters’ update equations are hereby displayed:

g(t) =
∂L

∂W (l)
(t−1)

m(t) = β1 ·m(t−1)+(1−β1) ·g(t)
v(t) = β2 · v(t−1)+(1−β2) ·g2

(t)

m̂(t) = m(t)/(1−β
t
1)

v̂(t) = v(t)/(1−β
t
2)

W (l)
(t) = W (l)

(t−1)−η · m̂(t)/(
√

v̂(t)+ ε) (3.10)

Where m(t) and v(t) are the first and second moment of the gradient, β1,β2 ∈ [0,1[ control the

decay of the moving averages, and ε is a small constant to add numerical stability.

3.1.2 Convolutional Neural Networks

MLPs are not able to preserve spatial information (the input is the flattened image) and are very

expensive, since each node is connected with all the nodes from the previous layer. The number of

parameters (weights and biases) for an MLP with n hidden layers, i inputs and o outputs is given

by:

#parameters = i ·h1 +
n−1

∑
k=1

(hk ·hk+1)+hn ·o+
n

∑
k=1

hk +o, (3.11)

where hk is the number of parameters of the k-th hidden layer. While the number of the network’s

connections is equal to the number of weight parameters, which is the number of biases subtracted

from the number of parameters:

#connections = #parameters−#bias_parameters (3.12)

This encourages the use of Convolutional Neural Networks (CNN), due to the parameter sharing

and sparse connections among layers, - which make the network easier to train and more effi-

cient - resulting in better generalization. The sparse connections also encourage the use of deeper

networks, which can make the model learn higher level features.

CNNs can be divided into two main stages: feature extraction and classification (figure 3.3).

The first is composed by convolutional, activation and pooling layers, which extract and preserve

the information in a three dimensional fashion (height×width×depth); the second classifies the

image, based on the flattened extracted information, using fully connected layers, similar to an

MLP network.
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Figure 3.3: CNN structure
Source: TowardsDataScience [9].

Convolutional Layers

In convolutional layers, a set of kernels (typically a 3x3 matrix) run though the image, in a sliding

window fashion, performing convolutions to create feature maps (figure 3.4a), using the following

expression:

[I ∗ k](u,v) = ∑
y∈Z

∑
x∈Z

C

∑
c=1

Ic(x,y)kc(x−u,y− v), (3.13)

where matrix I is the image, k is the kernel and Ic,kc is their representation in the channel c,

of a total of C channels. The presented formula is just for one kernel. If a layer has 32 filters,

it has 32 different ks and the result is their concatenation. The convolution operation allows to

preserve spatial information and uses sparse connections. All convolutional layers use different

kernels, obtaining different feature maps that represent different characteristics. As pointed by

Yamashita [10], each kernel can be considered a feature extractor.

The kernel "movement" after each multiplication convolution is defined by a stride parame-

ter, which is typically 1 pixel, but can take higher values to get faster convolutions and smaller

outputs. Padding of the image is also often used to avoid loss of the borders’ information at each

convolutional layer - without padding, the kernels’ convolutions are never centered in bordered

pixels. Padding is also used to preserve the spatial dimensions of the input data along multiple

layers.

Each element of the feature map is then passed through an activation function (typically a

ReLU), obtaining the input to next layer of the network.

Pooling Layers

Pooling layers provide downsampling of the feature maps. They reduce the size of subsequent

layers. The pooling layer divides the input tensor into patches and reduces each patch to one value

by either selecting the maximum value (max pooling) or the average (average pooling). Like

convolutional layers, pooling layers also have a stride parameter. This is usually the same size of



20 Methodology

the pooling kernel itself. Max pooling is one of the most popular pooling operations. Depending

on the pooling-stride, it usually implements downsampling on the input tensor of the following

layer. An example of a max pooling operation is displayed in figure 3.4b.

(a) Convolution example (b) Max pooling example

Figure 3.4: Convolution and max-pooling examples [10].

Fully Connected Layer

As mentioned before, fully connected layers are similar to hidden layers in an MLP. These do not

preserve spatial information, unlike their convolutional or pooling counterparts and can be used to

funnel all neurons into a single unit to make a final prediction. The output feature maps from the

feature extraction part are flattened into a 1D vector, which is fed to the first fully connected layer.

Regularization

If a model trains for too long or on limited data, it can become too adjusted to the training examples

(overfit), which usually leads to lower accuracy at inference time on unseen data. Some regulariza-

tion techniques can increase the model’s ability to generalize, by "hampering" the "memorization"

of the training data. Some of these techniques are:

• Dropout: one of the most common regularization techniques. During training, at each iter-

ation random neurons of the network are "removed" from forward- and back-propagation.

This is the equivalent of training a slightly different network. It causes the network to not

focus the inference on few neurons, while limiting the ability of the neurons themselves to

fit too much to individual training examples.

• Data Augmentation: adding new data is an effective way to avoid overfitting. However,

it may be difficult to find relevant data to augment training. Data augmentation tackles

this issue, by making random changes to the already existing training data - e.g., if an

image contains a malignant cancer lesion, the same image rotated should also contain the
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malignant cancer lesion. Even if they are different images, from the diagnostic standpoint

they contain the same (important) information: a malignant lesion. Other common data

augmentation transformations are random horizontal or vertical flips, random rotations in

general, (careful) crops and scaling (zoom in and zoom out).

VGG-16

The VGG-16 is a 16-layers deep CNN architecture proposed by Simonyan and Zisserman [45].

This model was developed for the ImageNet Large Scale Visual Recognition Challenge (ILSVRC).

The model receives an input of 224x224 pixels with 3-channels (i.e. 224x224x3) and outputs a

vector of 1000 dimensions; this is the number of classes for that dataset. VGG-16 has also became

a reference architecture widely used for different problems, due to the model’s simplicity and to

its satisfying results in various tasks.

Figure 3.5: VGG-16 layers
Source: Neurohive [11].

The network is composed of a stack of convolutional layers, each followed by a relu, with 3x3

filters with stride and padding of 1 pixel. Five max-pooling layers are applied - note that only some

convolutional layers are followed by pooling layers (figure 3.5) - over a 2x2 kernel with stride of

2 pixels.

The convolutional layers stack transforms the 3-channel deep 224x224 input patch, into a 7x7

patch with a depth of 512-channels. This is flattened and fed to two fully connected layers with

4096 nodes, each followed by a ReLU, and finally fed into another fully connected layer with 1000

output nodes (figure 3.6). However, it is often that the final layer of the network is substituted

by another output layer, according to the desired number of outputs, either for classification or

regression tasks.
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Figure 3.6: VGG-16 architecture
Source: Neurohive [11].

3.2 Faster R-CNN

The Faster R-CNN is a deep learning based object detector. This type of network is composed

by a backbone (CNN model), a region proposal network (RPN), a ROIAlign layer and a classifier

(fig. 3.7a).

(a) Faster R-CNN architecture (b) Region proposals generation, using RPN

Figure 3.7: Faster R-CNN architecture and RPN.
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Firstly, the Faster R-CNN’s backbone produces several feature maps of the image (feature

extraction). Then, the RPN runs a small network, taking as input a small portions of the feature

maps, in a sliding window fashion. At each location of the feature maps, proposals are generated

using k possible anchor boxes (k is the product between the number of possible sizes and scales of

the box - figure 3.7b).

After the RPN generates proposals, each region proposal is classified into object or background

and a bounding box is assigned to it by a regression model, in parallel, using the region’s feature

map section.

If a region is classified as an object by the RPN, the ROIAlign layer takes its feature map

representation and converts into another fixed size feature map. However, different regions can

have different sizes. To have a fixed dimension (H ×W ) for every region, the ROIAlign layer

divides each image with h×w size into a H ×W grid of approximately h/H ×w/W sized sub-

windows. Each sub-window might contain multiple pixels, some of them only partially. To not

lose information of those partial pixels, the values within the sub-window are sampled into four

points, using bilinear interpolation. Finally, an average pooling operation is applied at each sub-

window into the corresponding grid cell.

The resulting region’s feature map is fed into a couple of fully connected layers and the re-

sulting feature vector is fed into a classifier model, which classifies the region into its class and

assigns a bounding box regression, both performed in parallel (figure 3.8).

Figure 3.8: Faster R-CNN’s classification and regression [12].

This process results in the classification and bounding box information of each region proposed

and accepted by the RPN.

3.2.1 Faster R-CNN for Breast Cancer Detection

For the system that is to be proposed later in this chapter, a replication of Ribli et al.’s work [3]

was made to act as a lesion detector. This Faster R-CNN uses a VGG-16 as backbone. This model

was trained in CBIS-DDSM [46] and was tested in INbreast [47]. Both datasets are also used for

this work, as described later in this chapter.
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The weights of Ribli’s model are available at a github repository [48] in the Caffe frame-

work [49] format. They were converted to Pytorch (the selected deep learning framework for the

system, as described later in chapter 4), and their dictionary keys were adjusted to fit a torchvi-

sion’s Faster R-CNN, using a VGG-16 as backbone.

3.3 Handcrafted Features

An alternative way of representing images as vectors is to use handcrafted features - information

obtained from the image that is not based in deep learning techniques.

3.3.1 Gray Level Co-occurrence Matrix

The gray level co-occurrence matrix (GLCM) is a matrix that is defined over an image, as the

distribution of gray-scale values of all pixel pairs with a defined (location/position) offset.

Given an image I, its GLCM is defined by:

P∆x,∆y(i, j) =
m

∑
x=1

n

∑
y=1

{
1, i f I(x,y) = i and I(x+∆x,y+∆y) = j

0, otherwise

}
, (3.14)

where ∆x and ∆y are the offset parameters and the point P∆x,∆y(i, j) represents the number of times

that the i-th and j-th pixel values appear in the image, given the offset parameters.

3.3.2 Wang et al. Feature-Vectors

In the present work, the feature-vectors from Wang et al. [19] are used to extract handcrafted

features. These are extracted using the elements of the GLCM and some characteristics from the

segmented lesions. The features are presented in table 3.1 and their variables are described in table

3.2.

3.4 Lesion Matching: Similarity

The similarity between candidates is evaluated by computing the Euclidean distance between the

vectors – the lower it is, the most similar the lesions are:

d( f (CC), f (MLO)) = || f (CC)− f (MLO)||22, (3.15)

where f (.) is the feature vector of in a certain view, and d(., .) is the Euclidean distance between

two feature vectors.

3.4.1 Triplet Loss

The triplet loss is a loss function that is used for metric learning. Models that use this loss function

are trained using triplets, each containing a query image plus a positive and negative example (fig
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Table 3.1: Handcrafted Features.

Feature Type Name Feature Expression

Morphology Features Roundness g1 =
P2

A

Entropy of standardized radius g2 =−∑
100
k=1 pk(log(pk))

Variance of standardized radius g3 =
√

1
N−1 ∑

N
i=1(d(i)−davg)2

Ratio of area g4 =
1

davgN ∑
N
i=1(d(i)−davg)

Roughness g5 =
1
N ∑

N
i=1 |d(i)−d(i+1)|

Texture features Inverse difference moment t1 = ∑
P(i, j)

1+(i− j)2

Entropy t2 = ∑P(i, j)× [− ln(P(i, j))]

Energy t3 = ∑P2(i, j)

Correlated coefficient t4 = ∑
P(i, j)×(i−µx)×( j−µy)

δxδy

Contrast t5 = (i− j)2×P(i, j)

Table 3.2: Description of Variables.

Variable Definition
P Girth of the edge
A Area
pk Probability of the standardized histogram
N Number of edge points
d(i) ith standardized radius of edge points
davg Average standardized radius of edge points
P(i, j) Element of row i and column j of the GLCM
µx Mean value of Px

µy Mean value of Py

δx Standard deviation of Px

δy Standard deviation of Py

Px Px = ∑
N j
j=1 P(i, j)

Py Py = ∑
Ni
i=1 P(i, j)

3.9). The positive image is “more similar” to the query image than the negative [13]. In this work,

a positive image would be a lesion that “best matches” the lesion presented as query, while the

negative could be either a non-matching lesion or mammography’s background tissue.

The goal of the triplet loss is to make the model learn an embedding function f (.) that, for

each image triplet (q, p, n):

d( f (q), f (p))< d( f (q), f (n))+m, (3.16)

where d(., .) is the Euclidean distance between two elements, and q, p,n are the query, positive
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Figure 3.9: Sample images from triplets. Each column is a triplet. According to human raters, the
positive images are more similar to their query than the negatives [13].

and negative images, respectively. This results in the triplet-loss function:

L(q, p,n) = max{0,m+d( f (q), f (p))−d( f (q), f (n))}, (3.17)

where m is an enforced margin parameter that defines the gap between the distance to the positive

and to the negative images [50].

3.5 System Proposal

The proposed system is an early fusion method that uses both views from the same breast (ipsi-

lateral). Our algorithm receives the images and outputs matched lesion pairs. It is done through a

cascade of three stages: candidates detection, feature vector extraction and lesion matching (Fig-

ure 3.10).

Our system’s goal is to detect matched lesions across different views, which can be valuable

in the clinical environment to decrease false negative and false positive rates in breast cancer

detection.

The “Faster R-CNN” is an object detector and is responsible for the generation of a set of

candidates from each view (MLO or CC) of the same breast. In this work, no object detector is

developed to detect lesions. Instead, Ribli et al.’s [3] Faster R-CNN is replicated. This model

detects lesions and is trained in CBIS-DDSM [46] and tested in Inbreast [47] dataset.

The “feature vector extraction” block extracts characteristics from each candidate generated

by the Faster R-CNN, which is used to compare with other candidates. Features can be either deep

learning based - using the Faster R-CNN’s backbone, or using models trained with the triplet loss
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Figure 3.10: System overview.

-, handcrafted - morphological or textural [19] - or a fusion of both. Each feature vector can be

viewed as a mathematical representation of the characteristics of its candidate.

“Lesion matching” is the final stage that matches candidates based on the similarity between

their feature vectors, using the euclidean distance - the closer it is to 0, the more similar the

candidates are. Matching can be enhanced by heuristics. Those can be hard (constrains matches)

or soft (uses a multiplicative factor to encourage some matches), using some domain knowledge.

3.6 Datasets

Working with deep learning and computer vision is only possible if data exists to train the networks

and validate results. Although most medical imaging datasets are proprietary, two widely used

public datasets are used in this work: CBIS-DDSM and INbreast.

The Digital Database for screening mammography (DDSM) [51] is the most used dataset in lit-

erature. It contains 2,620 mammography screening exams, in all four views (two images for each

breast), adding up to a total of 10,480 images. Each case has metadata containing the patient’s age,

date of the study, dense tissue category, resolution of the image, among others. Abnormal cases

have additional information on the type of lesion (mass or calcification) and the breast imaging-

reporting and data system (BI-RADS) [52] description. The dataset contains ROI annotations on

identified lesions. The Curated Breast Imaging Subset of DDSM (CBIS-DDSM) [46] is a sub-

set of DDSM, containing updated ROI annotations, metadata converted to CSV files, and images

converted to DICOM files.

The INbreast dataset [47] contains 115 cases, totaling 410 full-field digital mammography

(FFDM) high-resolution images. Both American College of Radiology (ACR) [53] breast density

annotation and BI-RADS classification is provided. In abnormal cases, there is information about

the type of the lesion and ROI annotated data. Additionally, on the MLO view, the pectoral muscle

location is provided.

Breast samples and annotated data from both datasets are displayed in figure 3.11.
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(a) CBIS-DDSM - Breast image (b) CBIS-DDSM - Segmentation mask

(c) INbreast - Breast image (d) INbreast - Segmentation mask

Figure 3.11: Breast image and annotated data from the different datasets used in this work.



Chapter 4

Implementation and Results

4.1 Frameworks and Dataset

All deep learning models described in this chapter were implemented in Pytorch. Image-level

operations were mainly implemented using the Pillow packages, although scikit-image and Open

CV were also used. For numeric operations, the Numpy package was used.

All the implemented code was written in Google Colaboratory [54]. The available GPU in this

platform makes it well suited for machine learning problems.

4.1.1 Dataset

Annotated Data

All masses from the INbreast dataset [47] are used to create a custom dataset. ROIs are cropped

from the breast images using the segmentation masks, maintaining the original size. The breast

images are preprocessed using Ribli et al.’s method [3] - pixel values lower than 500 less than the

image mode or 800 higher (the value range of the unprocessed images is 0-65535) were clipped,

and rescaled to the range 0-255 (dividing the clipped values by 255).

In our experiments, only the ROIs with a known match are used for comparison; these are the

ones suitable for algorithms that try to establish pairwise matches.

Faster R-CNN’s candidates

For each breast image, objects detected by the Faster R-CNN’s final classifier are also used in

the final system. This dataset comprises 48 pairs (48 CC candidates are true positive lesions and

have a true positive match in the MLO view). From the 3,624 candidates generated by the Faster

R-CNN, many are overlapping with other candidates and referring to the same object. Only non-

overlapping candidates with highest scores are selected to be part of the custom dataset, in a total

of 863 candidates (418 in CC view, 445 from MLO). Only candidates known to be lesions and to

have a match are used.

29
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4.2 Experimental Setups

The results presented are obtained using three experimental setups, which will be explained in

detail later in this section. In both setups, matching is made through the assignment of the small-

est Euclidean distance between candidates. Results are evaluated on Top1 - fraction of positive

matches with minimum distance - and Top5 - fraction of positive matches contained in the top5

minimum distances.

ROIvCandidate Setup

In ROIvCandidate, each mass from a view (e.g. CC) is compared to all masses from the compli-

mentary view (MLO) of that patient’s breast. Additionally, regions are randomly sampled from

the complimentary view of the patient’s breast to have ten possible candidates.

Figure 4.1: ROIvCandidate setup. On the left, the queried lesion (red box) and on the right the
matching lesion (red box) and randomly generated regions (blue boxes) from the other view of the
same breast.

ROIvROI Setup

In ROIvROI, each mass from a view (e.g. CC) is compared to all masses in the dataset that are

present in the complimentary view (MLO).

In ROIvROI we aim to evaluate how effective the combined extracted features are at distin-

guishing lesions (i.e. lesions are compared at the dataset level). It is also a plausible way to

evaluate matching with a perfect lesion detector (i.e., evaluate matching as if the object detector

had 100% accuracy) (figure 4.2).

ROIvCandidate is perhaps the more realistic scenario, because it addresses the lesion-matching

problem at the breast level. It is an easier task in the sense that its chance-level performance is

significantly higher - 10% of correctly matching the lesion, vs. roughly 1.89% of ROIvROI setup.
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Figure 4.2: ROIvROI setup. On the top, the queried lesion (red box) and on the bottom multiple
lesions from the other view of various breasts (red boxes), whereas only one is a match.

The false candidates in this setup are also, presumably, less similar than in the other setup since

they are randomly generated areas.

Faster R-CNN ROIvCandidate Setup

This setup is similar to ROIvCandidate. Instead of comparing masses to randomly generated

candidate regions from the other view of the patient’s breast, the comparison is made between a

known lesion from a view (e.g. CC) and the set of Faster R-CNN’s proposed candidates from the

other view (MLO) of this breast.

4.3 Feature Extraction

This block is responsible for extracting features from the proposed Faster R-CNN’s candidates.

For lesions that are a match, it is expected that the distance between their feature vectors is small.

In this work, different feature extraction methods were used: Faster R-CNN’s backbone features,

handcrafted features and a fusion of both.

4.3.1 Faster R-CNN’s backbone

As mentioned in the previous chapter, the Faster R-CNN has a CNN backbone that generates

feature maps, which are used to make the object predictions. Due to this, the CNN backbone was

used as a method to extract features. Additionally, the fully connected layers subsequent to the

ROIAlign layer from the Faster R-CNN were used to extract some valuable higher-level features.
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An L2 normalization was also applied to normalize the features vectors among different images

(table 4.1).

Table 4.1: Different settings for feature extraction based on the Faster R-CNN model.

Name CNN Fully connected layers L2 normalization
b1 Faster R-CNN’s backbone 0
b2 Faster R-CNN’s backbone 1
b3 Faster R-CNN’s backbone 2

b1_norm Faster R-CNN’s backbone 0 x
b2_norm Faster R-CNN’s backbone 1 x
b3_norm Faster R-CNN’s backbone 2 x

To evaluate the different combinations of feature extraction, ROIvROI and ROIvCandidate

setups are used, and the results are displayed in table 4.2 (the best results for each metric are

displayed in bold).

Table 4.2: Faster R-CNN’s backbone’s results for matching.

ROIvROI ROIvCandidate
Model Top1 Top5 Top1 Top5

b1 18 of 106 (16.98%) 46 of 106 (43.40%) 54 of 106 (50.94%) 95 of 106 (89.62%)
b2 18 of 106 (16.98%) 47 of 106 (44.34%) 77 of 106 (72.64%) 102 of 106 (96.23%)
b3 20 of 106 (18.87%) 44 of 106 (41.51%) 73 of 106 (68.88%) 102 of 106 (96.23%)

b1_norm 18 of 106 (16.98%) 50 of 106 (47.17%) 55 of 106 (51.89%) 93 of 106 (87.36%)
b2_norm 17 of 106 (16.04%) 46 of 106 (43.40%) 72 of 106 (67.92%) 102 of 106 (96.23%)
b3_norm 21 of 106 (19.81%) 45 of 106 (42.45%) 73 of 106 (68.88%) 101 of 106 (95.28%)

Discussion

• In ROIvCandidate, annotated ROIs are compared with randomly generated regions in the

breast. While comparing the ROIs (objects) and the generated areas (background), it is

expected that the accuracy is high, since the model is trained for detecting lesions. This,

surprisingly, was not verified on the b1 and b1_norm extractors(table 4.2), since they present

poor results.

• L2 normalization does not clearly increases, neither decreases, the performance in the pre-

sented models, excluding the possibility of the features’ scales interfering in matches.

4.3.2 Handcrafted Features

The handcrafted features are obtained through Wang et al.’s work [19]. Those are displayed in

table 3.1 and their variables are defined in table 3.2. They are named accordingly in table 4.3. The

feature vectors are separated by class - textural and morphological - and studied separately.
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Table 4.3: Handcrafted Features’ models.

Feature Type Name Model Name
Morphology Features Roundness g1

Entropy of standardized radius g2
Variance of standardized radius g3

Ratio of area g4
Roughness g5

Texture Features Inverse difference moment t1
Entropy t2
Energy t3

Correlated coefficient t4
Contrast t5

Morphological Features

Morphological features are obtained by direct application of the function to the ROI, the segmen-

tation mask is used to isolate the region. An L2 normalization is applied to normalize feature

vectors among different images.

Matching, while using these feature vectors, is evaluated using the ROIvROI setup, and its

results are displayed in table 4.4 (the best results for each metric are displayed in bold).

Table 4.4: Morphological features’ results for matching.

ROIvROI
Features Top1 Top5

All 2 of 106 (1.89%) 15 of 106 (14.15%)
g1 5 of 106 (4.72%) 19 of 106 (17.92%)
g2 4 of 106 (3.77%) 9 of 106 (8.49%)
g3 4 of 106 (3.77%) 14 of 106 (13.21%)
g4 3 of 106 (2.83%) 16 of 106 (15.09%)
g5 2 of 106 (1.89%) 15 of 106 (14.15%)

All + L2 2 of 106 (1.89%) 28 of 106 (26.42%)

In the ROIvROI setup the results are slightly above chance level (1.89%). This fact and due

to the non-existence of segmentation masks for the generated candidates, ROIvCandidates results

for morphological features are omitted.

Textural Features

The textural features are obtained using the GLCM. This matrix is obtained using the built-in

functions of the scikit-image package, followed by an auxiliary function, applied to extract the

texture features. An L2 normalization is used as an attempt to normalize features vectors among

different images. The results for this type of features are displayed in table 4.5 (the best results for

each metric are displayed in bold).
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Table 4.5: Texture features’ results for matching.

ROIvROI ROIvCandidate
Features Top1 Top5 Top1 Top5

All 20 of 106 (18.87%) 43 of 106 (40.57%) 51 of 106 (48.11%) 92 of 106 (86.79%)
t1 7 of 106 (6.60%) 34 of 106 (32.08%) 41 of 106 (38.67%) 94 of 106 (88.67%)
t2 21 of 106 (19.81%) 42 of 106 (39.62%) 45 of 106 (42.45%) 93 of 106 (87.74%)
t3 7 of 106 (6.60%) 24 of 106 (22.64%) 53 of 106 (50.00%) 85 of 106 (80.19%)
t4 4 of 106 (3.77%) 29 of 106 (27.36%) 34 of 106 (32.08%) 84 of 106 (79.25%)
t5 1 of 106 (0.94%) 30 of 106 (28.30%) 47 of 106 (44.34%) 72 of 106 (67.92%)

All + L2 9 of 106 (8.49%) 30 of 106 (28.30%) 32 of 106 (30.19%) 90 of 106 (84.91%)

Discussion

• The morphological features do not achieve very good results, because of the similar appear-

ance between masses in their segmentation masks, which led to similar feature vectors, even

among non-matching lesions.

• The entropy (feature t2 in table 4.5) achieved best results. In this feature, the ln(.) factor

generates high absolute values if the GLCM cointains zeros. Due to that, the "All" hypothe-

sis had the second highest accuracy in ROIvROI, since the entropy value is large enough to

have a much higher influence in the feature vector than the remaining features.

• L2 normalization, in texture features, lead to worse results. This means that matching,

while using texture features, is dependant of the feature vector’s scale. This dependence

is probably caused by the entropy features, that generates high absolute values, leading to

more disperse distances.

4.3.3 Fused Features

The settings from the Faster R-CNN’s backbone and textural features that yielded the best results

are used to fuse feature vectors. Fusion is achieved either by concatenating feature vectors, or

averaging the distance between the feature vectors of both sets. Additionally, an L2 normalization

is used in some concatenation cases to normalize feature vectors among different images. The

different fusion combinations and their results are displayed in tables 4.6 and 4.7 (the best results

for each metric are displayed in bold).

Table 4.6: Fused features models.

Name Backbone Texture Fusion Method L2
f1 Backbone(2fc)+L2 All features+ L2 Average
f2 Backbone(2fc)+L2 All features+ L2 Concatenate
f3 Backbone(1fc) t2 Concatenate x
f4 Backbone(1fc) t3 Concatenate x
f5 Backbone(1fc) t2 Concatenate
f6 Backbone(1fc) t3 Concatenate
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Table 4.7: Fused features’ results for matching.

ROIvROI ROIvCandidate
Model Top1 Top5 Top1 Top5

f1 20 of 106 (18.87%) 43 of 106 (40.57%) 70 of 106 (66.04%) 104 of 106 (98.11%)
f2 18 of 106 (16.98%) 47 of 106 (44.34%) 67 of 106 (63.21%) 101 of 106 (95.28%)
f3 23 of 106 (21.70%) 40 of 106 (37.74%) 53 of 106 (50.00%) 100 of 106 (94.34%)
f4 18 of 106 (16.98%) 46 of 106 (43.40%) 73 of 106 (68.87%) 101 of 106 (95.28%)
f5 20 of 106 (18.87%) 41 of 106 (38.68%) 49 of 106 (46.23%) 93 of 106 (87.34%)
f6 18 of 106 (16.98%) 47 of 106 (44.34%)) 72 of 106 (67.92%) 102 of 106 (96.23%)

Discussion

• There is some complementary information in textural and CNN features, since the best

accuracy model in ROIvROI, among all feature classes (CNN, handcrafted and fusion), is a

fusion model (table 4.7). However, this complementarity is possibly not optimized by using

concatenation and average to fuse models, since it is not clearly visible in the remaining

results. Moreover, generally, the ROIvCandidate results for fused models are worse than

their backbone’s results (table 4.2).

• Overall, the deep learning features achieve much better results than the handcrafted features.

This can probably be due to the robustness of the deep learning model to image variations,

which result in a better generalization.

• ROIvROI is the metric that evaluates the ability of the system to compare true lesions. The

best the object detector is, the more important this metric is. This motivates the chosen fea-

ture extractor to have the best results in this setup, which makes the f3 and b3_norm models

(tables 4.7 and 4.2) the most appealing models, since the first has the best overall score in

this setup and the second has a competitive accuracy in both ROIvROI and ROIvCandidates

setups.

• Euclidean distance between the features of two detected candidates in different views is not

necessarily an effective way of matching them. All the extracted features in this section are

optimized for lesion detection, not to distinguish them (category-level similarity).

4.4 Similarity

Even if the previous feature extraction methods offer some representation of the lesions that allow

matching, they are not optimized to compare matching candidates. The Faster R-CNN model

was trained to detect lesions, not to match them. Thus, there is no guaranty that the deep feature

extraction method proposed has optimal parameters for the matching task. In this section, we

evaluate if a model specifically trained for this task can outperform the previous feature extraction

methods.
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All the models use a torchvision pretrained VGG-16 [45] model. Optimization is done with

ADAM and the learning rate is set to 1e− 05. The objective function is the triplet loss with the

margin parameter set to 0.3. All models were trained for 40 epochs. The saved model is the one

where best validation accuracy is achieved - proportion of instances where the loss values is 0

(d(q, p)+ 0.3 < d(q,n)) during an epoch. Inference is done with the best model after every 10

epochs of training, using ROIvROI and ROIvCandidate Setups.

The training data is comprised of 75% (964 triplets) of the CBIS paired lesions, and the val-

idation data is the remaining 25% (322 triplets). The triplets were generated by associating one

non-matching lesion (negative), to the query (anchor) and the positive matching lesion. Two mod-

els use “Negative Online Mining” on the training data. This samples one random non-matching

lesion as the triplet’s negative, instead of using a fixed negative (i.e., different epochs may have

different negatives among the triplets).

The trained models differ in the data augmentation type and were named accordingly:

• None: No data augmentation;

• DA: Classical - random horizontal flips and random rotations (multiples of 90º);

• NOM: Negative online mining;

• NOM-DA: Classical data augmentation and negative online mining.

The train and validation accuracy are displayed in figures 4.3a and 4.3b, respectively. The

models’ inference results – with regards to the introduced experimental setups and metrics – are

displayed in tables 4.8, 4.9, 4.10 and 4.11 (in this particular set of experiments, only the best

results of all sets at each metric are bolded, since these models can not be fused).

Table 4.8: None model inference results.

ROIvROI ROIvCandidate
Epoch Top1 Top5 Top1 Top5

10 12 of 106 (11.32%) 47 of 106 (44.34%) 54 of 106 (50.94%) 100 of 106 (94.34%)
20 12 of 106 (11.32%) 47 of 106 (44.34%) 54 of 106 (50.94%) 100 of 106 (94.34%)
30 12 of 106 (11.32%) 47 of 106 (44.34%) 54 of 106 (50.94%) 100 of 106 (94.34%)
40 20 of 106 (18.87%) 39 of 106 (36.79%) 56 of 106 (52.83%) 103 of 106 (97.17%)

Table 4.9: DA experiment’s inference results.

ROIvROI ROIvCandidate
Epoch Top1 Top5 Top1 Top5

10 9 of 106 (8.49%) 42 of 106 (39.62%) 51 of 106 (48.11%) 101 of 106 (95.28%)
20 9 of 106 (8.49%) 35 of 106 (33.02%) 48 of 106 (45.28%) 97 of 106 (91.51%)
30 12 of 106 (11.32%) 45 of 106 (42.45%) 70 of 106 (66.04%) 99 of 106 (93.39%)
40 12 of 106 (11.32%) 45 of 106 (42.45%) 70 of 106 (66.04%) 99 of 106 (93.39%)
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Table 4.10: NOM experiment’s inference results.

ROIvROI ROIvCandidate
Epoch Top1 Top5 Top1 Top5

10 21 of 106 (19.81%) 48 of 106 (45.28%) 59 of 106 (55.66%) 100 of 106 (94.34%)
20 19 of 106 (17.92%) 48 of 106 (45.28%) 59 of 106 (55.66%) 103 of 106 (97.17%)
30 19 of 106 (17.92%) 48 of 106 (45.28%) 59 of 106 (55.66%) 103 of 106 (97.17%)
40 19 of 106 (17.92%) 48 of 106 (45.28%) 59 of 106 (55.66%) 103 of 106 (97.17%)

Table 4.11: NOM-DA experiment’s inference results.

ROIvROI ROIvCandidate
Epoch Top1 Top5 Top1 Top5

10 11 of 106 (10.38%) 38 of 106 (35.85%) 53 of 106 (50.00%) 105 of 106 (99.06%)
20 11 of 106 (10.38%) 38 of 106 (35.85%) 53 of 106 (50.00%) 105 of 106 (99.06%)
30 12 of 106 (11.32%) 47 of 106 (44.34%) 53 of 106 (50.00%) 101 of 106 (95.28%)
40 6 of 106 (5.66%) 46 of 106 (43.40%) 50 of 106 (47.17%) 100 of 106 (94.34%)

(a) Training Accuracy (b) Validation Accuracy

Figure 4.3: Training and Validation Accuracy of each experiment.

Discussion

From the presented results, some notes can be made:

• During training, the models that have more data augmentation take longer to achieve 60%

of training accuracy and present better results in validation. This means that the models are

able to generalize, to a certain extent, to new data in CBIS-DDSM dataset.

• The validation accuracy can not be correlated with the inference’s results. The first has a

margin parameter of 0.3 as criterion, while the second, in practice, has a margin parameter

of 0. Moreover, chance level during training is 50%, while the chance level at inference

time is lower (1.89% in ROIvROI, 10% in ROIvCandidates).

• All experiments’ models seem to overfit the training data - the less regularization it has,

the more noticeable it is; the training accuracy seems to be constantly increasing, while
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validation accuracy does not clearly improve from epoch 15 onwards.

• Counter intuitively, the experiments which perform best on the validation data, performs

worst during inference. There are some possible hypothesis for this:

1. The experiments with no data augmentation (None and NOM) might have learned

features that are related to the orientation of the lesion.

2. On the other hand, the data augmented experiments might have learned instead some

specific features of the training data’s domain (CBIS-DDSM), worsening the inference

results (INbreast).

4.5 Ranking and Heuristics

4.5.1 Introduction

Deep Learning feature vectors are a valuable source of information for comparing lesions. How-

ever, the “black-box” paradigm does not allow to know if some domain knowledge characteristics

are being used. Here we study the possibility to use some of those characteristics to improve

matching between lesions. In particular: the area ratio between lesions, the absolute distance of

the x position across views (∆x), and the score given by the Faster R-CNN:

• The area is known to be approximately similar for the same lesion in different views (e.g.,

a small lesion in the CC view will not be a large lesion in the MLO view, since it is limited

to the real size of the tumor). The closer this ratio is to 1, the more similar the areas of the

candidates are;

• The x-axis position of matches are known to be approximately similar (e.g., a lesion close

to the nipple in the CC view will not be close to the pectoral muscle in the MLO view).

Having a ∆x that defines the distance between the candidates’ x-axis position, the closer this

value is to 0, the more similar the candidates’ positions are.

• Score is the model’s confidence that the candidate is a true lesion; the closer this value is to

1, the more confident the model is.

Two types of heuristics were explored:

• Hard Heuristics: are used as constraints, i.e., thresholds defined among different charac-

teristics to disallow some lesion pairs;

• Soft Heuristics: are used as a multiplicative factor on the distance to condition the matching

without restricting it.
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4.5.2 Hard Heuristics

Area Ratio

Area Ratio is defined by the following expression:

area_ratio = max
{

acc

amlo
,
amlo

acc

}
, (4.1)

where acc and amlo are the area of the candidates in the CC and MLO views, respectively. For

each pair of candidates, the closer the ratio is to 1, the more likely it is to be a true pair (matching

lesions). In this heuristic, we define a threshold to be the maximum accepted area ratio.

The distribution of the area ratio among true pairs of lesions (using the radiologists’ annota-

tions for INbreast [47] and CBIS-DDSM [46]) are displayed in figures 4.4a and 4.4b, respectively.

(a) INbreast (b) CBIS-DDSM

Figure 4.4: Area Ratio’s distribution in annotated data.

In both datasets, the closer the an area_ratio interval is to 1, the more matches are contained

in that interval. This reassures the proposition that matching candidates have similar areas.

INbreast and CBIS-DDSM datasets are merged and analyzed to determine possible thresholds

and heuristics. Their distribution and area ratio acceptance/threshold are displayed in figures 4.5a

and 4.5b.

The distribution of the area ratio among true and false positive matches using the Faster R-

CNN’s candidates is also studied, and is displayed in figures 4.6a and 4.6b. False positives are the

area ratios between a candidate, that is known to be a lesion and to have a pair, and a candidate

that is not its match. For this distribution, only the candidates of the same breast from different

views are available for matching. The area ratio between these matches is computed using the

Faster R-CNN’s candidates’ predicted boxes.

Based on the distribution shown, the following thresholds were defined:

1. No threshold

2. Mean of distribution: 1.4
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(a) Distribution (b) Acceptance ratio

Figure 4.5: Area Ratio’s distribution among the merged INbreast and CBIS-DDSM annotated
data.

(a) Distribution (b) Acceptance ratio

Figure 4.6: Area Ratio’s distribution among Faster R-CNN’s candidates.

3. Mean + standard deviation (std) of distribution: 2.0

4. Mean + 2*std: 2.6

5. Mean +3*std: 3.0

6. Figure 4.5b’s approximate point where the second derivative is 0: 1.6

7. Figure 4.6b maximum gap between True Positive and False Positive rate: 1.8

The results for each threshold value are shown in table 4.12 – using model b3_norm from table

4.1 –, on ROIvROI and Faster R-CNN ROIvCandidate setups (the best results for each metric are

displayed in bold).
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Table 4.12: Inference results for Area Ratio Hard Heuristic.

ROIvROI Faster R-CNN ROIvCandidate
# Threshold Top1 Top5 Top1 Top5
1 None 21 of 106 (19.81%) 45 of 106 (42.45%) 65 of 96 (67.71%) 96 of 96 (100.00%)
2 1.4 21 of 106 (19.81%) 57 of 106 (53.77%) 43 of 96 (44.79%) 46 of 96 (47.92%)
3 2.0 23 of 106 (21.70%) 63 of 106 (59.43%) 75 of 96 (78.12%) 84 of 96 (87.50%)
4 2.6 21 of 106 (19.81%) 56 of 106 (52.83%) 76 of 96 (79.17%) 88 of 96 (91.67%)
5 3.0 21 of 106 (19.81%) 54 of 106 (50.94%) 72 of 96 (75.00%) 88 of 96 (91.67%)
6 1.6 25 of 106 (23.58%) 64 of 106 (60.38%) 60 of 96 (62.50%) 66 of 96 (68.75%)
7 1.8 25 of 106 (23.58%) 64 of 106 (60.38%) 72 of 96 (75.00%) 80 of 96 (83.33%)

Delta x

∆x was obtained using the following expression:

∆x = |xcc− xmlo| , (4.2)

where xcc and xmlo are the x-axis central points of the candidates’ bounding boxes in the CC and

MLO views, respectively. For each pair of candidates, the closer ∆x is to 0, the likelier it is to be

a true pair. In this heuristic, a threshold is defined as the maximum ∆x value.

Similar to the “Area Ratio” heuristic, distribution and acceptance-ratio are studied, using the

radiologists’ annotated data for INbreast and CBIS-DDSM datasets (figure 4.7).

(a) INbreast (b) CBIS-DDSM

Figure 4.7: ∆x distribution in annotated data.

In both datasets, the closer the ∆x’s intervals are to 0, the most matches are contained in that

interval. This reassures the proposition that matching candidates have similar positions in the

x-axis.

The merged INbreast and CBIS-DDSM datasets (figure 4.8) and Faster R-CNN’s candidates

(figure 4.9) are analyzed, like in the "Area Ratio" heuristic, to determine possible thresholds and
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heuristics. In the Faster R-CNN’s distribution, only the candidates of the same breast from differ-

ent views are available for matching. The ∆x between these matches is computed using the x-axis

central point of the Faster R-CNN’s candidates’ predicted boxes.

(a) Distribution (b) Acceptance Ratio

Figure 4.8: ∆x distribution among INbreast and CBIS-DDSM annotated data.

(a) Distribution (b) Acceptance Ratio

Figure 4.9: ∆x distribution among Faster R-CNN’s candidates.

From the graphics and distributions, the following thresholds are defined:

1. No threshold

2. Mean of distribution: 30

3. Mean + standard deviation (std) of distribution: 60

4. Mean + 2*std: 90

5. Figure 4.8b’s approximate point where the second derivative is 0: 40

6. Figure 4.9b maximum gap between True Positive and False Positive rate: 80

The results for different thresholds are shown in table 4.13.
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Table 4.13: Inference results for ∆x Heuristic.

ROIvROI Faster R-CNN ROIvCandidate
# Threshold Top1 Top5 Top1 Top5
1 None 21 of 106 (19.81%) 45 of 106 (42.45%) 65 of 96 (67.71%) 96 of 96 (100.00%)
2 30 29 of 106 (27.36%) 63 of 106 (59.43%) 37 of 96 (38.54%) 44 of 96 (45.83%)
3 60 25 of 106 (23.58%) 56 of 106 (52.83%) 52 of 96 (54.17%) 64 of 96 (66.67%)
4 90 23 of 106 (21.70%) 53 of 106 (50.00%) 61 of 96 (63.54%) 76 of 96 (79.17%)
5 40 30 of 106 (28.30%) 63 of 106 (59.43%) 49 of 96 (51.04%) 56 of 96 (58.33%)
6 80 23 of 106 (21.70%) 54 of 106 (50.94%) 61 of 96 (63.54%) 76 of 96 (79.17%)

Score

The score is obtained through the output of the Faster R-CNN. Since this model is, in essence, a

detector of lesions, the score represents the model’s confidence that a candidate is a true lesion.

This heuristic defines that the score of the candidates must be higher than a certain threshold.

The distribution and acceptance ratio of the score are studied using the Faster R-CNN’s can-

didates (figure 4.10).

(a) Distribution (b) Acceptance Ratio

Figure 4.10: Score distribution among Faster R-CNN’s candidates.

From the distribution, the following thresholds are defined:

1. No threshold

2. Figure 4.10b maximum gap between True Positive and False Positive rate: 0.3

3. Figure 4.10b’s approximate point where the second derivative is 0: 0.5

4. Score average (average of the scores of CC and MLO views: 0.3

5. Score average: 0.5

Inference is made only for the Faster R-CNN ROIvCandidate setup and the results are dis-

played in table 4.14 (the best results for each metric are displayed in bold).
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Table 4.14: Inference results for Score Heuristic.

Faster R-CNN ROIvCandidate
# Threshold Top1 Top5
1 None 65 of 96 (67.71%) 96 of 96 (100.00%)
2 0.3 74 of 96 (77.08%) 78 of 96 (81.25%)
3 0.5 60 of 96 (62.50%) 60 of 96 (62.50%)
4 Score avg: 0.3 69 of 96 (71.88%) 88 of 96 (91.67%)
5 Score avg: 0.5 61 of 96 (63.54%) 68 of 96 (70.83%)

Fusion

The best results from each type of heuristic are combined to achieve the best results in Faster

R-CNN ROIvCandidate setup. The combinations are displayed in table 4.15.

Table 4.15: Fused heuristic combinations.

Name
Area Ratio
Threshold

∆x
Threshold

Score
Threshold

Baseline None None None
fhh1 2.0 None 0.3
fhh2 2.6 None 0.3
fhh3 1.8 None 0.3

One of the main advantages of the "hard" heuristics is the elimination of false positives. The

Faster R-CNN ROIvCandidate is the only setup that has false positive detections. Since the tested

heuristics in table 4.13 obtain worse results in Faster R-CNN ROIvCandidate setup than the base-

line (model #1 from table 4.13), ∆x is not used for fusion.

The heuristic combinations are tested in Faster R-CNN ROIvCandidate setup and their results

are displayed in table 4.16 (the best results for each metric are displayed in bold).

Table 4.16: Fused heuristic combinations’ Results.

Faster R-CNN ROIvCandidate
Threshold Top1 Top5
Baseline 65 of 96 (67.71%) 96 of 96 (100.00%)

fhh1 67 of 96 (69.79%) 70 of 96 (72.92%)
fhh2 69 of 96 (71.88%) 72 of 96 (75.00%)
fhh3 67 of 96 (69.79%) 70 of 96 (72.92%)

Discussion

• In ROIvROI, the lesions x-axis position are very variable, since they are dependant on breast

size. To have very restrictive thresholds increases significantly the results in this setup (table

4.13), possibly not only because of the position itself, but also due to the indirect exclusion

of matches of breasts that are very distinct in size or by the laterality of the lesion itself.
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Moreover, for the same thresholds, Faster R-CNN ROIvCandidate results are significantly

worse than the other models, which can indicate that these thresholds are not for suitable for

matching at a patient level analysis.

• Fused heuristics do not achieve better results than the single heuristics themselves, which

indicates that the fusion of these heuristics get to restrictive, eliminating some matches that

would be accepted using only one of the heuristics.

4.5.3 Soft Heuristics

Although "hard" heuristics are an effective method of decreasing false positive rate, they can also

increase false negative rate. Due to this, the rules presented in section 4.5.2, instead of being used

to exclude possible matches, are used to calculate α – related to the area ratio –, β – related to

∆x – and s – related to scores –, which are used as multiplicative factors in the distance between

feature vectors.

To obtain these parameters – (α,β ,s) –, four scenarios are considered; the first two using

the "Area Ratio" and ∆x distributions (figures 4.5a and 4.8a), and the last two from the Faster

R-CNN’s scores:

• Scenario 1:

α1,β1 = 1− p([a,b[), i ∈ [a,b[, (4.3)

where i is the area_ratio / ∆x of the pair and [a,b[ is in one of the intervals present in figures

4.5a and 4.8a, respectively. This scenario represents a pair of candidates’ probability of

having its area_ratio / ∆x to belong to a certain interval, given it is a correct match. The

probability values are estimated, using the annotated data distribution.

• Scenario 2:

α2,β2 = 1− p([0,b[), i ∈ [a,b[, (4.4)

where i is the area_ratio / ∆x of the pair and [a,b[ is in one of the intervals present in figures

4.5a and 4.8a, respectively. This scenario represents a pair of candidates’ probability off

having its area_ratio / ∆x to be lower than b, given it is a correct match. The probability

values are estimated, using the annotated data distribution.

• Scenario 3:

s1 = (1− scc)(1− smlo), (4.5)

where scc and smlo are the scores of the CC and MLO candidates, respectively.

• Scenario 4:

s2 = (1− savg), (4.6)

where savg is the average of the CC and MLO candidates’ scores.
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These variables are multiplicative factors of the distance. Since the smallest distance between

candidates leads to match, the variables must be the lowest when the heuristics are the most confi-

dent that the candidates are a match. In all presented scenarios, the range of the probabilities and

scores is [0, 1] and the higher they are, the more confident the algorithm must be that they are a

match. Since we want minimum variable values to force matches, the probabilities and scores are

subtracted from 1. This way, higher probabilities and scores lead to lower variable values, which

lead to smaller distances, increasing the probability of assigning the candidates as a match.

Single Soft Heuristic

Firstly, all scenarios for each variable are tested using the ROIvROI and Faster R-CNN ROIv-

Candidate setups (tables 4.17, 4.18 and 4.19) (the best results for each metric are displayed in

bold).

Table 4.17: Inference results for α (Area Ratio) scenarios.

ROIvROI Faster R-CNN ROIvCandidate
Scenario Top1 Top5 Top1 Top5
Baseline 21 of 106 (19.81%) 45 of 106 (42.45%) 65 of 96 (67.71%) 96 of 96 (100.00%)

1 25 of 106 (23.58%) 61 of 106 (57.55%) 77 of 96 (80.21%) 96 of 96 (100.00%)
2 21 of 106 (19.81%) 58 of 106 (54.72%) 78 of 96 (81.25%) 96 of 96 (100.00%)

Table 4.18: Inference results for β (∆x) scenarios.

ROIvROI Faster R-CNN ROIvCandidate
Scenario Top1 Top5 Top1 Top5
Baseline 21 of 106 (19.81%) 45 of 106 (42.45%) 65 of 96 (67.71%) 96 of 96 (100.00%)

1 29 of 106 (27.36%) 58 of 106 (54.72%) 71 of 96 (73.96%) 96 of 96 (100.00%)
2 25 of 106 (23.58%) 65 of 106 (61.32%) 73 of 96 (76.04%) 96 of 96 (100.00%)

Table 4.19: Inference results for s (scores) scenarios.

Faster R-CNN ROIvCandidate
Scenario Top1 Top5
Baseline 65 of 96 (67.71%) 96 of 96 (100.00%)

3 82 of 96 (85.42%) 96 of 96 (100.00%)
4 81 of 96 (84.38%) 96 of 96 (100.00%)

For each set of scenarios, it is considered that the best result is the one that had the highest

accuracy in Faster R-CNN ROIvCandidate setup, since it is the more realistic setup.

Fused Soft Heuristic

From each variable, the scenario that presents the best results is used for fusion of the "soft"

heuristics, resulting in the combinations presented in table 4.20 (the best results for each metric

are displayed in bold).
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Table 4.20: Fused soft heuristic combinations.

Name α scenario β scenario s scenario
Baseline None None None

fsh1 α2 None s1
fsh2 α2 β2 None
fsh3 None β2 s1
fsh4 α2 β2 s1

Each combination is tested on ROIvROI (if s is not involved) and Faster R-CNN ROIvCandi-

date setups. The results are presented in table 4.21.

Table 4.21: Inference results Fused Soft Heuristics combinations.

ROIvROI Faster R-CNN ROIvCandidate
Name Top1 Top5 Top1 Top5

Baseline 21 of 106 (19.81%) 45 of 106 (42.45%) 65 of 96 (67.71%) 96 of 96 (100.00%)
fsh1 - - 83 of 96 (86.46%) 96 of 96 (100.00%)
fsh2 23 of 106 (21.70%) 63 of 106 (59.43%) 77 of 96 (80.21%) 96 of 96 (100.00%)
fsh3 - - 76 of 96 (79.17%) 96 of 96 (100.00%)
fsh4 - - 81 of 96 (84.38%) 96 of 96 (100.00%)

Discussion

• The use of "soft" heuristics, generally, improved results in all scenarios, with all variables.

• The fusion of different heuristics allowed the addition of some complementary information,

since the best accuracy, while using "soft" heuristics, consists in fused heuristics ( f sh1 in

table 4.21).

• Like in "hard" heuristics’ results, ∆x achieved the best results in ROIvROI setup. This

strengthens the hypothesis that the use of this heuristics in this setup is influenced by the

laterality and size of the breast. However, unlike "hard" heuristics, Faster R-CNN ROIvCan-

didates were also improved by this heuristic, probably due to the non-exclusion of lesions

that permitted a better integration of the heuristics in the algorithm.

• The possibility of using "hard" or "soft" heuristics can be valuable, pending on the candi-

dates generator:

1. If the object detector is not good, it generates many false positive candidates, variable

scores and lowly accurate bounding box regressions on true lesions. In this case,

the system can have low confidence in the object detector, using "hard" heuristics,

since they can improve accuracy by eliminating false positive lesions for matching.

However, "hard" heuristics can also exclude true positive matches.
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2. If the object detector is good, it generates few false positive candidates, high scores

and accurate bounding box regressions on true lesions. In this case, the system can

have high confidence in the object detector, using "soft" heuristics, since they can

properly match lesions, without the risk of excluding true positive matches. However,

"soft" heuristics can generate false positive matches (by using false positive generated

candidates), since they can not exclude matches.

4.6 Final System

By selecting the feature extractors and heuristics that achieve the best performance, six final pro-

posals are made (divided by two sets, using "soft" and "hard" heuristics), to find the best combi-

nation. The selected feature extractors are models b3_nom, NOM (10 epochs) and f3, from tables

4.1, 4.10 and 4.6, respectively.

Table 4.22: Final System combinations.

Name Feature Extractor Hard Heuristic Soft Heuristic
sb3_nom b3_nom None fsh1

sf3 f3 None fsh1
snom10 NOM 10 epochs None fsh1

hb3_nom b3_nom s1 None
hf3 f3 s1 None

hnom10 NOM 10 epochs s1 None

Additionally another algorithm, which matches candidates randomly, is also evaluated, to com-

pare performance between this model and the proposed ones.

To evaluate performance, recall@k and precision@k metrics are measured on Faster R-CNN

ROIvCandidate setup. The random model evaluation is made through the mean and standard

deviation of 10 experiences, since it generates different values at each iteration. The evaluation

results for all models is displayed in figures 4.11.

(a) Recall@k (b) Precision@k

Figure 4.11: Evaluation of the proposed algorithms.
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At last, the final system is tested, by generating and matching candidates, using both views of

a breast. Two experiments are made, using the snom10 and hnom10 combinations (table 4.22).

Figures 4.12 and 4.13 represents the system’s results using the "hard" and "soft" heuristics, re-

spectively.

(a) CC view (b) MLO view

Figure 4.12: Matching system results, using "hard" heuristics. Boxes of the same color represent
matches. Red boxes represent a true positive match.

(a) CC view (b) MLO view

Figure 4.13: Matching system results, using "soft" heuristics. Boxes of the same color represent
matches. Red boxes represent a true positive match.
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4.6.1 Discussion

• Both "hard" and "soft" heuristics proposals achieved satisfactory results since they achieved

a matching accuracy within the range of 70%-85%, for the different feature extractors hy-

pothesis. Moreover, this accuracy is way higher than random chance probability, represented

by the "Random" curve (figure 4.11a)

• Recall@k of "hard" heuristic combinations (figure 4.11a) achieved worse results than the

random chance matching for k > 2, since the algorithms exclude some true positive matches,

limiting the recall score. However, "hard" heuristics also significantly improves preci-

sion@k scores (figure 4.11b), since it removes a lot of the generated false positive lesions,

which makes the precision for k > 1 much higher than their "soft" heuristics and random

match counterparts.

• "Soft" heuristics is shown to be a relevant strategy, since it achieves better accuracy with

any feature extractor than their "hard" heuristics counterparts, without the cost of excluding

possible true positive lesions.

• The fact that the triplet loss model is competitive with the other feature extractors in both

heuristics scenario is very relevant, since it allows to have a matching option independent

from the candidates detector’s backbone - e.g., the system has its Faster R-CNN replaced

by a state-of-the-art object detector that makes better candidates predictions. There is no

guaranty that the new backbone will achieve the same matching results as the current one,

since it is trained for the lesion detection task.

• As mentioned in the heuristics discussion, the use of each heuristics scenario highly depends

on the candidates detector (good detector - "soft" heuristics; bad detector - "hard" heuris-

tics). However, since false negatives for breast cancer diagnosis are not desirable, the "soft"

heuristics’ models seem the more appealing systems, due to the higher accuracy and to the

non-exclusion of matches, which reduce the number of false negatives.
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Conclusions

Of all cancer diseases, breast cancer is the most lethal among women. It has been shown that breast

cancer screening programs can decrease mortality, since early detection increases the chances of

survival. Usually, a pair of radiologists interpret the screening mammograms, however the process

is long and exhausting. This has encouraged the development of CADx systems to replace the

second radiologist making a better use of human-experts’ time. But CADx systems are associated

with high false positive rates, since most of them only use one view (CC or MLO) of the screening

mammogram. Radiologist, on the other hand, use both views; frequently reasoning about the

diagnosis by noticing differences between the two views.

The proposed system uses both views of the screening mammograms to detect lesions and

compare them across views to detect matches. It presents two possible solutions for matching,

using hard or soft heuristics.

Both solutions achieve >70% matching accuracy, which is way higher than chance level (30%-

40%). Thus the present work is well suited to expand other CADx systems, leading to improved

accuracy. Moreover, by matching lesions, our system enables more intelligent reasoning strategies

for CADx systems.

However, the system has some limitations. It is built to match detected lesions on two views

of the breast and returns only pairs of lesions, not considering the possibility of existing lesions

that are visible in only one view. This work is also only focused on matching masses and does not

consider micro-calcifications, which are important findings in the screening mammogram. Finally,

the system is not able to classify the detected lesions as malignant or benign.

Due to these limitations, this system, as is, could not act as CADx system in clinical environ-

ment. However, it can be used to improve other CADx systems (most of the lesions are visible in

both CC and MLO views) - e.g. as a multiplicative factor to decision making, similar to the soft

heuristics in the present work.

5.1 Future Work

To make this system suitable for clinical environment we present some topics for future work:

51
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• State-of-the-art object detector - to have a more robust lesion detector can decrease the

number of generated false positives, increase the viability of scores and bounding box re-

gressions. All these characteristics have a key contribution for matching in the proposed

system. The better the object detector becomes, the better the matching performance can

be.

• Classify lesion matches - the system could use the classification labels (benign or malig-

nant), obtained through the object detector, as an heuristic. If the labels of two candidates

are distinct, matching could be excluded – "hard" heuristics – or restrained by the attribution

of large multiplicative factors – soft Heuristics.

• Expand the system to detect and classify lesions that are visible in only one view - as

mentioned in discussion, this system can only detect matched lesions. To have a system that

detects and classifies lesions in single view, while considering possible candidates matches

in both views, can make it more suitable for being used in a clinical environment.

• Fine-Tune system with more data - this system is highly dependant in CBIS-DDSM and

INbreast data. However, screening mammograms’ images are highly dependant on the

equipment that generates those images. Since most of the algorithm is developed in fairly

small ammounts of data, the system is likely over-fitted to the INbreast and CBIS-DDSM

datasets.
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