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Abstract: Crude glycerol, a biodiesel industry byproduct, and corn steep liquor (CSL) derived from a
starch industry, were used as carbon and nitrogen sources, respectively, for lipid production, using
the heterotrophic microalga C. cohnii grown in a bench bioreactor, in a batch culture. The maximum
biomass concentration, lipid content and lipid productivity attained were 5.34 g/L, 24.6% (w/w
Dry Cell Weight-DCW) and 0.016 g L−1 h−1, respectively. Flow cytometry analysis was used to
evaluate the impact of these substrates on the microalgae cells. A high proportion of intact cells with
enzymatic (esterases) activity (>50%) was present throughout the cultivation time course. These
results indicate that crude glycerol and CSL can be used in the medium formulation for DHA and
lipid production using this microalga, which reduce the process costs in an expected maximum
of 84%.

Keywords: Crypthecodinium cohnii; cultivation; alternative carbon source; alternative nitrogen source;
flow cytometry; potential costs impact in upscaled systems

1. Introduction

The heterotrophic marine microalga Crypthecodinium cohnii has been mostly used to
produce docosahexaenoic acid (DHA), a ω-3 fatty acid essential for brain development
during pregnancy and early childhood. It has also been reported that this compound
improved vision, heart health, psoriasis, and reduced inflammatory response.

This microalga produces significant amounts of lipids (up to 30% w/w dry cell weight),
accounting DHA up to 50% of total fatty acid (TFA) content. Other polyunsaturated fatty
acids (PUFA) remain below 1% of the TFA content [1]. This is a notorious characteristic of
this microalga, which facilitates the DHA purification since most marine microalgae rich in
PUFAs contain intermediate fatty acids that provide difficulty to the DHA fractionation
and concentration.

In most of the works reporting C. cohnii DHA production and extraction, the remaining
lipid fraction is neglected [2–5]. However, this fraction, obtained after DHA removal,
mainly composed of saturated and unsaturated fatty acids, can also be directed for biodiesel
production. In this way, all the microalgal lipidic fractions can be valorized and used.

The most expensive component of the fermentation media is the carbon source.
C. cohnii has been grown on single and pure carbon substrates such as glucose, ethanol,
acetate to produce DHA [6–8]. However, despite these carbon sources may induce high
lipid and DHA productivities, they are expensive (glucose 16 €/kg, ethanol 1.82 €/kg
and acetic acid 0.45 €/kg [9]), being ethanol and acetic acid dangerous and difficult to
handle and transport. Isleten-Hosoglu and Elibol [3] have used pure glycerol to grow
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C. cohnii CCMP 316, but this compound, when pure, is also expensive (5.9 €/kg [9]). Other
media formulation components are complex nitrogen sources, as yeast extract and soya
peptones [3]. However, these nutrients are also very expensive (yeast extract 35.4 €/kg;
soya peptones 7.25 €/kg [9]). In addition, the need to use low-cost substrates as feedstock
to reduce bioprocess costs, the need to accomplish the circular economy rules and the
European Green Deal have led to search for wastes/byproducts to be used as nutrients in
microbial processes.

Raw glycerol is a byproduct of biodiesel industry that can be considered as carbon
source in media formulations. However, this industrial byproduct may contain inhibitory
compounds (methanol, salts, soap) that may affect the microalgae cell physiology, thus
reducing the lipid production.

This work studied C. cohnii growth and lipid production, using biodiesel industry
derived glycerol as carbon source, developed in a bench bioreactor. Previously, low cost
nitrogen sources were also tested, and CSL was selected as the best nitrogen source for
C. cohnii biomass lipids production. As far as the authors know, this is the first work
using raw glycerol as carbon source, and corn steep liquor as nitrogen source, to grow
C. cohnii, for lipids and DHA production. Flow cytometry was used to monitor all the
bioreactor microalgal cultivations, in order to evaluate the impact of these substrates on
the microalgae cell physiology.

2. Materials and Methods
2.1. C. cohnii Starter Cultures

Crypthecodinium cohnii ATCC 30772 was purchased to American Type Culture Col-
lection. A medium composed of yeast extract (1.8 g/L, Oxoid), sea salt (OceanusIberia,
Queluz, Portugal) (23 g/L) and glucose monohydrate (9.9 g/L) (Acros Organics) was used
to maintain the microalgal cultures (starters), which were re-inoculated monthly.

2.2. Shake Flasks Experiments—Selection of a Low-Cost Nitrogen Source

To select a low-cost nitrogen source, C. cohnii was grown in 500 mL shake flasks with
250 mL of sterile culture medium, containing 25 g/L sea salt, 20 g/L glycerol, 0.5 g/L
YE and the same nitrogen amount present in 1.5 g/L of yeast extract (YE) (as reference),
sodium nitrate (SN, 0.97 g/L), ammonium sulfate (AS, 0.76 g/L) and CSL (4.59 g/L),
gently supplied by COPAM, Companhia Portuguesa de Amidos SA, S. João da Talha,
Portugal). After collected from the industrial plant, the CSL was left uncovered, for a
few weeks, so that volatile toxic compounds could be released. This substrate contains
0.035 g nitrogen/g. No microalgal growth occurred when no yeast extract was added
to the medium culture. Therefore, low amount of yeast extract was added (0.5 g/L) to
the media containing alternative nitrogen sources. Two CSL concentrations were tested:
CSL 100 contained the total nitrogen amount present in 1.5 g/L YE, and CLS 50 contained
half amount the nitrogen present in 1.5 g/L of YE. For the YE assay, 2 g/L of YE was used
as nitrogen source. The initial pH of all media was adjusted to 6.5, before sterilization.
Glucose was previously sterilized separately, to avoid caramelisation.

The inocula were prepared from the starters cultures. The 500 mL-flasks contain-
ing 150 mL of medium (yeast extract 2 g/L, sea salt 25 g/L and glycerol (20 g/L) were
inoculated (10% v/v) with the starter cultures, and incubated at 120 rpm, 27 ◦C for 6 days.

The 500 mL-flasks containing 250 mL of medium and the different nitrogen sources
were inoculated (10% v/v) and incubated at 120 rpm, 27 ◦C. After 7 days of growth, the
cultures were centrifuged and the pellet (biomass) and supernatant were frozen at −18 ◦C
for further lipid and residual substrate analysis, respectively. All shake flasks experiments
were conducted in duplicate.

2.3. Bioreactor Experiments Using Raw Glycerol-Based Medium

The raw glycerol used in this work was supplied by Iberol (Alhandra, Portugal) and
was collected after methanol removal. Table 1 shows the characteristics of this substrate.
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Table 1. Biodiesel industry derived glycerol characterization.

Water Content
(% w/w)

Glycerol
Content
(% w/w)

Ash
Content
(% w/w)

Methanol
Content
(% w/w)

Matter Organic
Non-Glycerol

(% w/w)

Sodium
(% w/w)

Potassium
(mg/kg)

9.90 83.8 6.54 0.007 n.d. 1.65 8.35

n.d.—not detected.

To inoculate the 7L-bioreactor (Fermac 360, Electrolab Biotech, Tewkesbury, UK),
inocula were prepared from the starters cultures. The 500 mL-flasks containing 150 mL
of medium composed of yeast extract 2 g/L, sea salt 25 g/L and glucose (20 g/L) were
inoculated (10% v/v) and incubated at 120 rpm, 27 ◦C. After 6 days of growth (exponential
growth phase) this culture (10% v/v) was used to inoculate the 7L-bioreactor, equipped
with two Rushton impellers, and with an initial volume of 3000 mL of the medium culture
composed of sea salt 25 g/L, yeast extract 0.5 g/L and 4.59 g/L CSL. All the cultivations
were conducted at 27 ◦C and the medium pH was adjusted at 6.5. The aeration rate was set
at 1 vvm, and the speed rate was initially set at 100 rpm, being manually increased as the
dissolved oxygen level decreased below 30%, in order to avoid oxygen limiting conditions,
since C. cohnii is an obligate aerobic microorganism, and lipid synthesis requires oxygen
excess conditions.

2.4. Growth Measurement

Usually, wastes and effluents contain particles. When used as substrates in media
formulations, these particles may interfere with the cell concentration quantification by
optical density and dry cell weight. Indeed, CSL and raw glycerol contain a high proportion
of particles.

To minimize the particles interference in the biomass quantification, the number of
C. cohnii cells/mL was evaluated by flow cytometry, as described in the next sub-section.

All carbon sources were analysed by HPLC using an Aminex HPX-87H column (Bio-
Rad, Hercules, CA, USA) in combination with a cation H+-guard column (Bio-Rad) in an
Agilent Chromatographer, equipped with a diode array detector (DAD) and a refractive
index detector (RI). Elution took place at 50 ◦C with 5 mmol/L H2SO4 at a flow rate of
0.6 mL/min. The chromatograms were analyzed using the ChemStation software (Agilent
Technologies, Santa Clara, CA, USA).

FC and HPLC analyses were performed in duplicate.

2.5. Flow Cytometry

Flow cytometry (FC) was used to monitor the bioreactor microalgal cultivations. FC
analysis was performed in a Cytoflex Beckman-Coulter flow cytometer, equipped with
a blue laser, FSC/SSC light scattering detectors and five fluorescence detectors. For FC
analysis, 5 mL of broth were removed from the cultures, under sterile conditions, and
stored in Falcon tubes. These were subsequently subjected to ultrasound treatment for
15 s to disintegrate cellular aggregates. For C. cohnii biomass quantification, the microalgal
cell suspension was diluted in PBS buffer, in order to obtain ~300 events/s. C. cohnii cells
population was gated in the FSC/SSC dot-plot, and the number of events for that gate was
recorded for each sample. The number of cells/mL was calibrated against dry cell weight
at 100 ◦C to constant weight, over 18 h. The medium culture without cells was previously
analysed by FC, in order to localize dust and particles in the FSC/SSC dot plot.

For the simultaneous detection of C. cohnii cell enzymatic activity and membrane
integrity, samples were diluted in PBS buffer (pH 7.4), using the double staining procedure.
The dyes carbofluorescein diacetate (CFDA, Invitrogen, Waltham, CA, USA) and propidium
iodide (PI, Invitrogen) were simultaneously added to the samples. A total of 3 µL CFDA
stock solution (10 mg/mL) and 2 µL PI stock solution (1 mg/mL) were added to 500 µL
cell suspension, and incubated for 10 min in the darkness, before FC analysis. CFDA



Processes 2021, 9, 2005 4 of 15

was detected in the FITC-A detector, and PI was detected in the PC5.5-A detector. All FC
analyses were carried out in duplicate.

2.6. Lipid Quantification

Lipids were analysed and quantified as total fatty acids (TFA). The extraction and
analysis were carried out according to the protocol described by Taborda et al. [10].

3. Results and Discussion
3.1. Nitrogen Source Selection Assays

Different nitrogen sources were tested, in order to reduce the medium formulation
costs, since the original medium [10] contained 2 g/L yeast extract, an expensive nitrogen
source. Figure 1a,b shows C. cohnii biomass concentration, TFA DHA contents, as well
biomass, DHA and TFA productivities, at the end of the microalgal cultivations. The
maximum final biomass concentration and TFA content was obtained for YE and CSL 50 as-
says (10.84 g/L and 10.58 g/L for biomass concentration, respectively; 13.49% (w/w) and
14.47% (w/w) for TFA, respectively). The remaining assays attained similar final biomass
concentrations (~6.5 g/L). The lowest TFA content was observed for CSL 100 assay (2.84%
w/w), followed AS assay (9.02% w/w) and SN assay (11.45% w/w). The low lipid content
observed in all the assays (<20% w/w DCW) was probably due to the inefficient agitation,
resulting in low mass transfer rates, leading to oxygen limiting conditions in the shake
flasks cultivations [11].
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Figure 1. C. cohnii growth parameters calculated at the end of the cultivation (7 days). (a) Biomass
concentration, TFA content and DHA content and (b) Biomass, DHA and TFA productivity (P).
CSL 50—Assay in which CSL was used, with the corresponding nitrogen half amount that exists
in 1.5 g/L yeast extract. CSL 100—Assay in which CSL was used, with the corresponding nitrogen
amount that exists in 1.5 g/L yeast extract. YE—Assay in which the yeast extract was used as nitrogen
source. AS—Assay in which ammonium sulfate was used as nitrogen source. SN—Assay in which
sodium nitrate was used as nitrogen source. Error bars represent ± standard deviation from two
independent shake flask experiments.



Processes 2021, 9, 2005 5 of 15

Concerning the DHA amount (% w/w TFA), the maximum proportion was observed
for the YE assay (38.35% DHA/TFA), followed by CSL 50 (34.86% DHA/TFA), SN assay
(34.85% DHA/TFA) and AS assay (32.65% DHA/TFA). The proportion of DHA in TFA
is an important parameter in microbial DHA production, since a high proportion of this
compound in the lipid fraction facilitates the DHA extraction and purification, decreasing
the downstream steps, thus process costs (OPEX).

Regarding the biomass productivity, the highest was observed for CSL 50 and YE
assays (56.46 mg/Lh and 55.10 mg/Lh, respectively). CSL 100 and SN assays displayed
similar biomass productivities (~36.09 mg/Lh), followed by AS assay, which showed the
lowest value (34.24 mg/Lh).

The maximum TFA productivity was detected for CSL 100 and YE assays (7.60 and
8.05 mg/Lh, respectively), and the lowest TFA productivity was observed for CLS 100 assay.

The highest and lowest DHA productivity was observed for CLS 50 and CSL 100 assays
(2.62 mg/Lh and 0.2 mg/Lh, respectively), while YE assay only attained 0.5 mg/Lh.

It was clear that CLS 50 assay growth/TFA/DHA parameters were similar, or even
higher, than those obtained for YE assay. On the contrary, for most of the parameters,
CSL 100 assay displayed the lowest values, which suggests that CLS, at higher concen-
trations, can inhibit the microalga growth and lipid synthesis, likely due to inhibitor
compounds present in this starch industry byproduct. From these results, CLS 50 was the
chosen condition for further experiments at a bench-scale bioreactor.

3.2. Bioreactor Experiments
3.2.1. C. cohnii Cells Flow Cytometric Analysis

Flow cytometry was used to monitor C. cohnii cell growth, as well as the cell physio-
logical status through enzymatic activity and membrane integrity detection, during the
bioreactor experiments.

As above referred, industrial byproducts often contain particles. Indeed, distilled raw
glycerol contain particles, which may interfere with the biomass determination. There-
fore, the microalga biomass concentration was determined by cell counting, using flow
cytometry.

A flow cytometer contains two types of detectors for event detection: (i) forward
scatter detector (FSC), which is placed in the plane of the beam, and gives information on
cell size; and (ii) side scatter detector (SSC), which is placed at 90◦ to the laser beam and
provides information on cell granularity and internal complexity. Because each particle
displays a characteristic profile of scattering signals, FC allows distinguishing different
particles types such as debris and microbial populations. Specifically, yeast and microalgae
are easier to be distinguished from the background than bacteria, due to their higher size
and internal complexity, making the formers microorganisms ideal for FC analysis, since
bacteria often cannot be differentiated from cell debris and noise.

Figure 2a shows the FSC/SSC dot plot concerning C. cohnii cells. It can be seen that
the microalgal population is well defined, and appeared as an elliptical shape, ranging
from 1.5 × 105 to 1.5 × 106 FSC, and 5 × 104 to 5 × 106 SSC signals. Such FSC/SSC
signals wide range revealed cell size and internal complexity heterogeneity in C. cohnii
cultures. This is supported by the optical microscope observations of the microalgal culture.
Figure 2b,c shows microscopic observations at 10 and 100 magnifications. A wide range
of microalgal cell shapes can be seen in both figures. A few dividing C. cohnii cells can be
seen in Figure 2c.

Dividing cells are larger and have a higher internal complexity (due to a higher DNA
content) than the remaining, being responsible for the higher FSC and SSC signals.

The microalga cell counting was performed by selecting the microalgal population
inside C. cohnii gate (Figure 2a) which allows a more precise determination of biomass
concentration, since debris and other particles are not considered in the FC cell counting.
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C. cohnii physiological status were also monitored during the bioreactor experiments,
using CFDA and PI double staining. CFDA is a non-fluorescent compound and penetrates
the cells by passive diffusion. When it is inside the cell, if esterases are active, they will
hydrolyze CFDA to a fluorescent compound that shows the maximum fluorescence at
528 nm, detected by FC in the FITC channel. Therefore, cells stained with CFDA have their
enzymatic system (esterases) active and their membrane is intact; cells not stained with
CFDA, do not have their enzymatic system active, or their cell membrane is not intact, as
permeabilised membrane allows the fluorescent compound to exit the cell. For this reason,
when detecting enzymatic activity with CFDA stain (or similar), the cell membrane should
always be detected, since the loss of cell fluorescence can be due to inactive esterases or
cell membrane rupture.

PI cannot cross intact membranes, but it enters cells with damaged membrane, being
used to differentiate cells with injured membranes. Once inside the cells, PI binds to DNA,



Processes 2021, 9, 2005 7 of 15

increasing the cell fluorescence. It shows the maximum fluorescence at 620 nm, being
detected in the PC5.5 channel.

Figure 3a,b shows C. cohnii cells collected from a stationary phase culture, stained with
CFDA and PI, respectively. In Figure 3a, bright areas inside the cell indicate greater fluores-
cence, revealing localized esterase activity. In Figure 3b, cells that emit red fluorescence are
stained with PI, thus their cell membranes are damaged.
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3.2.2. Growth

Figure 4 shows the biomass concentration determined by FC cell counting, and the
residual glycerol profiles during C. cohnii growth. During the exponential phase (Figure 4b)
the speed rate was maintained at low values (>150 rpm) in order to prevent possible
cell damage [2,12]. As a consequence, as the culture entered the exponential phase, the
dissolved oxygen (DO) dropped pronouncedly, attaining 5% at t = 48 h, leading to oxygen-
limiting conditions in the microalgal culture (Figure 4c).

To overcome this limitation, the speed rate was increased to 270 rpm at t = 48 h, which
allowed the DO to reach attained values higher than 70% until the end of the cultivation
(allowing oxygen excess conditions) as well as the complete glycerol exhaustion (Figure 4a).

During the exponential phase, the growth rate was 0.06/h. The biomass attained
5.34 g/L at the end of the assay (t = 148 h), with a biomass yield of 0.34 g/g. Isleten-Hosoglu
and Elibol [2] reported similar values when C. cohnii CCMP 316 was grown on 16 g/L pure
glycerol for 7 days a maximum (biomass concentration 5.7 g/L, with a biomass yield of
0.38 g/g), which supports that the crude glycerol used in this work did not negatively
affect the microalga growth.
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Figure 4. C. cohnii growth parameters when grown on crude glycerol, in a 7L-bioreactor. (a) Biomass
and residual glycerol concentration; (b) biomass logarithmic plot; (c) dissolved oxygen percentage and
speed rate. Error bars represent ± standard deviation from two technical replicates of measurement.

3.2.3. C. cohnii FC Analysis

The FSC/SSC plot obtained during the microalgal growth (Figure 5a) revealed that
the cell size (measured as FSC) and internal complexity (SSC) increased until the end of
exponential phase (t = 48 h) attaining 8.5 × 105 and 5.0 × 105, respectively.
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Figure 5. (a) FSC/SSC profiles throughout C. cohnii batch cultivation in a bench bioreactor. Error
bars represent ± standard deviation from two technical replicates of measurement. (b) C. cohnii cell
subpopulations profiles, when grown on crude glycerol and CLS, after staining with CFDA and PI;
subpopulation CFDA−/PI− includes cells with intact membrane and no enzymatic activity; subpop-
ulation CFDA+/PI− includes cells with intact membrane and enzymatic activity, and subpopulation
CFDA+/PI+ comprises cells with permeabilised membrane and enzymatic activity.

Thereafter, both FSC and SSC values decreased to 5.6 × 105 and 2.9 × 105 at t = 48 h,
respectively, slowly increasing until the end of the experiment, reaching 7.0 × 105 and
5.8 × 105, respectively. Indeed, it has been reported that cell size and internal complexity
increased during the exponential phase, which has been attributed to the higher DNA in
dividing cells abundant in the exponential phase [13] as they are larger in size and internal
complexity. However, new daughter C. cohnii cells are formed and released during the
cell multiplication, which displayed lower FSC/SSC values. Thus, the FSC/SSC average
values resulted from a balance between the proportion of daughter and dividing mother
cells.

The FSC/SSC profiles allowed the easy and fast C. cohnii growth phase identification,
which can be useful to collect metabolites synthesized by the microorganisms at different
growth phases (primary and secondary metabolites).

Figure 5b shows C. cohnii cells stained with CFDA and PI mixture, for the microalga
stress response monitoring, when grown on crude glycerol and CLS. The proportion
of intact cells without enzymatic activity (not stained with CFDA, but stained with PI,
designated as CFDA−/PI−) was higher after the inoculation (46.6%), which might be due
to the time period that the cells needed to adapt to a new medium (lag phase) but decreased
as the cells entered the exponential phase, attaining ~3% during the stationary phase.

Throughout the cultivation, the proportion of cells with intact membrane (intact cells)
and with enzymatic activity (CFDA+/PI−) was always equal or higher than 50%, indicating
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that these substrates, despite may contain inhibitory compounds, did not drastically affect
the microalga physiological status. It was also concluded that the speed rate increase
from 100 rpm to 300 rpm during the first 48 h of cultivation, did not affect C. cohnii ATCC
30772 cell membrane and enzymatic activity, since the proportion of intact cells with
enzymatic activity (CFDA+/PI−) increased during that time period. These results are
different from those described by Isleten-Hosoglu and Elibol [2] who reported that a
slight speed rate increase (150–250 rpm) negatively affected C. cohnii CCMP 316 growth on
glycerol.

Nevertheless, the percentage of cells with enzymatic activity but injured membrane
(CFDA+/PI−) increased when the culture entered the stationary phase, attaining 36.9% at
t = 140.8 h, which was attributed to the carbon limiting conditions that the cells experienced
at that time, negatively affecting the microalga cell status. Indeed, since carbon is the energy
source, once depleted, the electronic transport chain will halt, as well as ATP synthesis,
which compromises the cell metabolic activity.

3.2.4. C. cohnii Lipid Production

Usually, microalgal storage lipids are intracellularly accumulated during the stationary
phase.

According to Figure 6, the highest lipid (TFA) content was observed at t = 97.33 h
(26.66% (w/w DCW), corresponding to a lipid productivity of 0.011 g/Lh. Isleten-Hosoglu
and Elibol [2] reported a lipid productivity of 0.042 g/Lh and a lipid content of 30% (w/w
DCW) when C. cohnii ATCC 30556 was grown on pure glycerol. Safdar et al. (2017) [14]
reported a lipid productivity and content of 0.025 g/Lh and 26.4% (w/w DCW), respectively,
when growing C. cohnii ATCC 30555 on pure glycerol, in shake flasks. Isleten-Hosoglu and
Elibol [2] showed the highest lipid content and productivity, followed by Safdar et al. [14],
and this work. This may due to the use of raw glycerol and CSL used in this work, which
may contain the inhibitor compounds, contrarily to the media formulation used by those
authors, which have used pure glycerol and yeast extract as carbon and nitrogen sources,
respectively.
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Figure 6. TFA content throughout C. cohnii batch cultivation in a bench bioreactor. Error bars
represent ± standard deviation from two technical replicates of measurement.

From Figure 6, it can also be seen that the lowest lipid content was detected at the end
of the cultivation (t = 148.67 h, 14.88% DCW (w/w)) as expected, since at that cultivation
time, the microalgae were grown under carbon depletion conditions. Carbon is an essential
nutrient for the microbial lipid synthesis. Indeed, under carbon limiting conditions, the
microalga cells not only cannot produce lipids, as they consume the intracellular lipid
storage materials, as a survival mechanism to maintain their metabolism and extend life,
under adverse conditions.

Table 2 shows the fatty acid methyl esters (FAME) analyzed during C. cohnii cultiva-
tion, at different times.
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Table 2. C. cohnii fatty acid methyl esters (FAME) profile obtained at three different times of cul-
tivation, using CSL and crude glycerol (7 = 97.33 h, t = 123.50 h, t = 148.67 h). Results are shown
as mean ± standard deviation (n = 2). SFA: saturated fatty acids fraction in TFA; MUFA: monoun-
saturated fatty acids fraction in TFA; PUFA: polyunsaturated fatty acids fraction in TFA. n.d.—not
detected. Error bars represent ± standard deviation from two technical replicates of measurement.

Cultivation Time (h)

FAME
(% w/w TFA) t = 97.33 t = 123.50 t = 148.67

10:0 1.10 ± 0.02 1.28 ± 0.02 1.03 ± 0.08
12:0 8.42 ± 0.18 8.83 ± 0.00 8.03 ± 0.08
14:0 20.18 ± 0.53 19.95 ± 0.07 19.44 ± 0.39
16:0 17.76 ± 0.45 16.71 ± 0.00 16.36 ± 0.54
16:1ω9 2.84 ± 0.10 3.01 ± 0.02 2.97 ± 0.01
18:0 0.65 ± 0.00 0.51 ± 0.00 0.47 ± 0.02
18:1ω9 10.85 ± 0.28 10.67 ± 0.14 10.90 ± 0.08
18:2ω6 n.d. 0.06 ± 0.030 0.04 ± 0.00
22:5ω3 0.46 ± 0.09 0.56 ± 0.02 0.64 ± 0.00
22:6ω3 (DHA) 37.78 ± 1.48 39.58 ± 1.41 40.09 ± 0.68

SFA 48.11 47.28 45.33
MUFA 13.69 13,68 13.87
PUFA 38.24 40.20 40.77

The FAME profile observed for the three cultivation times was quite similar (Table 2).
The dominant fatty acids were 22:6ω3 (DHA) (>37%), 14:0 (myristic acid) (>19%) and
16:0 (palmitic acid) (>16%). A slight increase in the polyunsaturated fatty acid proportion
(PUFA) was detected as the culture aged (38.24% at t = 97.33 h to 40.77% at t = 148.67 h)
due to DHA percentage increase. Concomitantly, an increase in the saturated fatty acid
proportion (SFA) was detected (37.78% at t = 97.33% to 40.09% at t = 148.67 h). The mo-
nounsaturated fatty acid proportion (MUFA) remained stable during that period (~13.7%).
These profiles are similar to those reported by Taborda et al. [10] for C. cohnii ATTC 30772
grown on other carbon sources (glucose, acetate, sugarcane molasses).

In all cases, the higher PUFA proportion present in C. cohnii oil, mainly composed
of DHA (~40% w/w TFA), makes easy its extraction and purification for pharmaceutical
and food purposes. Safdar et al. [14] reported a DHA percentage of 38% (w/w TFA) when
C. cohnii ATCC 30555 was grown on pure glycerol, similar to the one here reported. This
result indicated that the use of crude glycerol as carbon source did not affect C. cohnii DHA
percentage in TFA, which will reduce the process costs without saccharifying the DHA
proportion.

After the DHA extraction, the remaining lipid fraction, composed of SFA and MUFA,
can be directed to biodiesel purposes [15]. If the properties of this fraction does not
allow obtaining a final product within the biodiesel quality specifications—EN 14214, it
can be used in mixture with vegetable oils containing low SFA content. This approach
would be advantageous namely in terms of oxidation stability, leading to a decrease
of biodiesel deterioration in long-term storage and/or high-temperature environments.
The DHA-free lipid fraction can also be converted into a different type of biofuel by
catalytic hydrogenation, a procedure that promotes the removal of oxygen from the organic
molecules producing a mixture of hydrocarbons similar to fossil fuels.

3.3. Potential Costs Impact in Up-Scaled Systems

From an economic point of view, the difference between the reference and alternative
system is on the inputs, as depicted in Figure 7, because similar levels of biomass are
obtained.
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Due to a shortage in the supply of raw materials for yeast extract production its prices
have increased and are estimated to remain high in the future. Raw materials such as
ammonia and phosphoric acid used in yeast extract production are costly due to their
application as fertilizers. As the prices of this raw materials remain high the price of the
end-product yeast extract also remains high. In the literature we found a typical range of
prices from 1000 USD/ton to 7286 USD/ton [16,17].

Therefore, a range of 1000 USD/ton to 7286 USD/ton was assumed for the calcu-
lations. Glucose prices were found to be variable between USD 0.18/lb (360 USD/ton,
according to [18] and USD 0.10/lb to USD 0.60/lb in the United States market (200 to
1200 USD/ton [19]). An estimation of a price model of the high fructose corn syrup indus-
try is reported in [19]. Therefore, a range of 200 USD/ton to 1200 USD/ton was assumed
for the calculations.

The alternative nitrogen source—corn steep liquor (CSL), is a co-product of starch
industry/ethanol fermentation industry from corn. Corn wet milling process produces
6.5% w/w of CSL (for every 10 kg of corn, 0.65 kg of CSL is produced) [20]. The majority of
CSL is used as animal feed, fertilizer or in the fermentation industry, according to [21].

Prices in literature range from 2 USD/litter (using density conversion factor of
1.3 kg/L, 1.5 USD/ton) to 200 USD/ton [22]. Therefore, a range of 1.5 USD/ton to
200 USD/ton was assumed for the calculations.

The alternative carbon source—crude glycerol, is a co-product of transesterification
process which generates about 10% (w/w) glycerol (for every 10 kg of biodiesel, 1 kg of
crude glycerol is produced). Biodiesel is one of the most important energy commodities
in the world mainly to use as an alternative to fossil diesel in the transportation sector.
The majority of crude glycerol is used as feedstock for production of other value-added
chemicals, followed by animal feeds [23]. Looking at the glycerol market worldwide, there
has been a rapid increase in glycerol supply since 2003 (Figure 8). The prices of both refined
and crude glycerol have been declining due to a surplus of glycerol from biodiesel. Within
a year, it also shows high volatility. For example, in 2010, in Europe, price ranged from 150
to 280 USD/ton [24].

Therefore, a range of 100 USD/ton to 500 USD/ton was assumed for the calculations
(Table 3).

Table 3. Carbon and nitrogen maximum and minimum prices.

Item/Price Min USD/ton Max USD/ton

Yeast extract 1000 7286
Glucose 100 1200
Glycerol 100 500

CSL 1.5 200
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Figure 8. Biodiesel production according to FAO OECD-FAO Agricultural Outlook 2011–2020, crude
glycerol estimation based on 10% (w/w) and prices on global markets according to literature [24–26].

The logic to give a good estimation for net savings by using alternative carbon and
nitrogen sources is to assume the minimum reference and maximum alternative prices
(this will tell us how minimum impacts would look alike) and maximum reference and
minimum alternative prices (this will tell us how big impacts look alike) (Table 4). Yeast
extract in both reference and alternative scenarios should be the same.

Table 4. Minimum reference and maximum alternative prices, and maximum reference and minimum
alternative prices for the substrates considered in the reference and alternative systems.

Reference
(USD/L

Bioreactor)

Alternative
(USD/L

Bioreactor)

Absolute Savings
(USD/L

Bioreactor)

Relative Savings
(%)

Minimum 0.004 0.01 −0.01 −242
Maximum 0.039 0.006 0.032 84

The yeast extract present in the alternative system is impacting the potential maximum
savings. By simulation model, it was found that if the alternative system would not need
yeast extract for the same output, savings would reach 94%. However, using 4.59 g/L CSL
supplemented with 0.5 g/L yeast extract, savings achieved 84%.

The electrification of the transportation sector may lead to less economical interest in
biofuels and may pose a shortage of biodiesel and corn ethanol co-products and, hence,
an increase in their market prices [27]. However, the historical framework, encompassing
COVID-19 impact, it is expected to cover all expected price fluctuations.

4. Conclusions

These results demonstrated that crude glycerol derived from biodiesel industry, and
CSL derived from starch industry, can be used as carbon and nitrogen sources, respectively,
in the media formulations for DHA and lipid production by the microalga C. cohnii, which
can significantly reduce the process costs (OPEX). Indeed, using alternative low-cost carbon
and nitrogen sources, based on historical price volatility, a maximum 84% savings can be
obtained.

Flow cytometry analysis confirmed that the microalgal enzymatic activity and mem-
brane integrity were not affected by the presence of these low-cost substrates.

The lipid content and productivity attained in this study using low-cost carbon and
nitrogen sources, encourages the scale-up of this process, which is now in progress.
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