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� The modified time-fractional
diffusion model plays an important
role in heat transfer and fluid flow
problems.

� A meshless method based on
hybridization of Gaussian and cubic
kernels is developed to solve the
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domains with various node
distributions.

� The time-discrete algorithm is
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Introduction: During the last years the modeling of dynamical phenomena has been advanced by includ-
ing concepts borrowed from fractional order differential equations. The diffusion process plays an impor-
tant role not only in heat transfer and fluid flow problems, but also in the modelling of pattern formation
that arises in porous media. The modified time-fractional diffusion equation provides a deeper under-
standing of several dynamic phenomena.
Objectives: The purpose of the paper is to develop an efficient meshless technique for approximating the
modified time-fractional diffusion problem formulated in the Riemann–Liouville sense.
Methods: The temporal discretization is performed by integrating both sides of the modified time-
fractional diffusion model. The unconditional stability of the time discretization scheme and the opti-
mal convergence rate are obtained. Then, the spatial derivatives are discretized through a local
hybridization of the cubic and Gaussian radial basis function. This hybrid kernel improves the condi-
tion of the system matrix. Therefore, the solution of the linear system can be obtained using direct
solvers that reduce significantly computational cost. The main idea of the method is to consider
the distribution of data points over the local support domain where the number of points is almost
constant.
Results: Three examples show that the numerical procedure has good accuracy and applicable over com-
plex domains with various node distributions. Numerical results on regular and irregular domains illus-
trate the accuracy, efficiency and validity of the technique.
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Conclusion: This paper adopts a local hybrid kernel meshless approach to solve the modified time-
fractional diffusion problem. The main results of the research is the numerical technique with non-
uniform distribution in irregular grids.
� 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction face inside the pores. As a result of the adsorption process, the dif-
During the last years the modeling of dynamical phenomena has
beenadvancedby including concepts borrowed from fractional order
differential equations (FDEs). This generalisation of derivatives and
integrals led to the field of mathematics called fractional calculus
[1,2]. The history of fractional calculus started in the 17th century,
butonly recentlybecamepopular inappliedsciences. The application
of FDEs has expanded rapidly and we can mention for example the
analysis of problems such as creep or relaxation in visco-
elastoplasticmaterials, diffusionprocessmodels, control, andplasma
physics problems [3–6]. Nonetheless, in many applications is neces-
sary to solve FDEs using efficient numerical techniques [7–14].

The diffusion process plays an important role not only in heat
transfer and fluid flow problems, but also in the modelling of pat-
tern formation that arise in porous media. The time-fractional dif-
fusion equation describes the mass transfer processes involving
memory effects [15]. The mean square displacement (MSD) of
the diffusing species in standard diffusion is linear with respect
to time. One can define the MSD as a product of the diffusion coef-
ficient and time [16].

If the memory effects are present to some mass transfer, then
the process no longer follows a Brownian motion and the diffusion
species cannot be described by the Fick’s second law [17]. In these
cases, the time-fractional diffusion equation can explain better the
dynamic phenomena. Indeed, various types of complex transport
processes can be described by means of the fractional order deriva-
tive, so that x2 tð Þ� � � Kctc, where x; t and Kc P 0 denote the dis-
placement, time and generalized diffusion coefficient. Otherwise,
if 0 < c < 1, then the sub-diffusive transport regime holds, mean-
ing that it has a smaller speed than the normal diffusion. If the frac-
tional order lies in the range 1 < c < 2, then the super-diffusive
transport regime holds and exhibits a larger speed than the classi-
cal Fickian transport [18,19]. These models commonly occur within
media with porous or fractal structures [20]. Unlike the classical
case, the anomalous diffusion involves a MSD that is proportional
to the power of time with non-integer order. For describing the sta-
tistical probability of the position of a particle is the continuous
time random walk (CTRW) model is often employed, which is
related to the Lévy diffusion process [21–24].

The anomalous diffusion and its corresponding regimemay have
different physical roots depending on each particular case [25].
Nonetheless, this dynamical phenomenon is different from the tra-
ditional Knudsen and Fickian diffusion, where the physical roots are
clear. The two types of diffusion are governed by a Markovian type
Wiener Brownian motion, and the corresponding pores have a
smaller size than the species mean free path. In viscoelastic media
it is the additional degree of freedom that drives the sub-diffusive
regime, while in chaotic systems, the presence of traps that cause
the anomalous diffusion [25]. Non-usual diffusion can be also cre-
ated as a result of the fractal structure in solid media [20]. If the
inertial forces of the particles dominate over the inter-particle fric-
tional forces, thenwe can obtain a deviation from the standard Fick-
ian transport [26]. Mass transfer kinetics in the scope of the gaseous
transport within restricted porous media is described by the reten-
tion time of the diffusing species in the pores of the solid media.

The retention time can be related to geometrical confinements
within the pores and the diffusing species adsorption on the sur-
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fusing molecules remain at a particular location for different time
intervals. This behaviour can be due to the energy disorder on the
surface of the porous solid media. The time delays control the
memory effects and the nonlinearity of the random movement of
particles, leading to a non-Markov Brownian motion described by
the CTRW model. As a result, the fractional derivative replaces
the temporal derivative of integer order in the transport equation
with much better modelling results [27].

We study numerical solution for the modified time-fractional
diffusion equation (MTFDE) including two time fractional
derivatives

@u x; tð Þ
@t

� m1D1�a
t Du x; tð Þ � m2D1�b

t Du x; tð Þ ¼ f x; tð Þ; x

2 X; 0 < t 6 T; ð1Þ
with the following initial and boundary conditions:

u x;0ð Þ ¼ h xð Þ; x 2 X; ð2Þ
u x; tð Þ ¼ g x; tð Þ; t > 0; x 2 @X; ð3Þ
where the constants m1 and m2 are positive, x ¼ x; yð Þ stands for the
space variable, @X is the closed contour bounding the region,
0 < a;b < 1;X ¼ X [ @X � R2 represents the spatial domain, and
Dis the Laplacian operator with respect to the spatial variables.
Additionally, f x; tð Þ is the forcing term with satisfactory smoothness
and h xð Þ is a given continuous function. The fractional diffusion
terms D1�a

t Du x; tð Þ and D1�b
t Du x; tð Þ reflect the anomalous subdiffu-

sion behavior of diffusion processes. The fractional operator
D1�c

t z x; tð Þ represents the Riemann–Liouville (R-L) fractional deriva-
tive with respect to time variable t, formulated as

D1�c
t z x; tð Þ ¼ 1

C cð Þ
@

@t

Z t

0

z x; sð Þ
t � sð Þ1�c

ds;

where C �ð Þ is Gamma function.
This model has been applied in econophysics due to the an

increasing interest in describing CTRW-like effects [28]. Some
numerical approaches have been presented for solving MTFDE.
Liu et al. [29] and Mohebbi et al. [30] developed the finite element
and the RBF meshless methods, respectively. Dehghan et al. [31]
and Wang et al. [32] formulated the Legendre spectral element
and the compact locally finite difference techniques, respectively.
Li and Wang [33] proposed a compact difference algorithm to
approximate the MTFDE. Shivanian and Jafarabadi [34] presented
a radial point interpolation, while Cao et al. [35] adopted an impli-
cit midpoint scheme for approximating MTFDE.

A crucial issue when analysing complex scientific processes is
the numerical modeling and simulation. Such processes are usually
obtained both at large or small scales, and pose difficulties for an
interpretation using direct measurements. Important develop-
ments in numerical techniques include the finite volume (FV),
finite element (FE), finite difference (FD), and pseudo-spectral
(PS) approaches. These techniques provide an approximate solu-
tion to the governing equations over a distribution of elements,
or nodes, structured in a point grid or mesh. A set of meshless
numerical techniques emerged over the last decades. Such tech-
niques make use of the interaction between each node and part,
or all, of the surrounding nodes, by adopting a specified kernel
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rather than following the connections among them. Spectral mesh-
less techniques based on the radial basis functions (RBFs) are gain-
ing popularity in the geosciences due to their competitive
accuracy, functionality on unstructured meshes. The RBF technique
is an efficient method for interpolation of multidimensional scat-
tered data [36–38], since it does not requires meshes and is able
to solve easily complex geometrical and high-dimension problems.
Therefore, the RBFs became popular for approximating partial dif-
ferential equations on complex domains and have been applied in
the solution of physical problems with theoretical proofs on solv-
ability and convergence [36–38].

Hardy [39] initially used the RBF to interpolate scattered points
for the approximation of irregular surfaces that have an important
role in meshfree techniques. Kansa [40] employed the RBF interpo-
lation technique to obtain the approximate solution of a PDE using
all the domain points (thereafter named the Kansa’s method). The
results obtained from applying the Kansa’s method lead to a large,
dense, and ill-conditioned linear system [41]. For overcoming the
above problems with the Kansa’s approach, a ‘‘local” version of
RBF was proposed giving spectral accuracy for a sparse, better-
conditioned linear system and allowing more flexibility to handle
non-linearities. The RBF generated finite difference, called as
RBF-FD, is another technique that is based on RBF. This method is
based on generalized FD method for scattered node layouts
advanced by Tolstykh [42]. The RBF-FD is a FD technique where
we compute the weights by fitting an RBF interpolant to scattered
nodes in one or several spatial dimensions. This strategy leads to a
sparse differentiationmatrix. After the differentiationmatrix is cre-
ated, one can use it repeatedly to approximate the spatial derivative.
The RBF-FD, combining themeshless and FDmethods, has attracted
the attention ofmany scholars due to its properties. Abbaszadeh and
Dehghan [43] developed a fast and efficient numerical algorithm by
combining the local RBF-FD approach with the proper orthogonal
decomposition (POD) and the discrete empirical interpolation
method (DEIM) to simulate the time dependent incompressible
Navier–Stokesmodel. Dehghan et al. [44] proposed a local meshless
RBF-FDmethod for solving the regularized long-wave and extended
Fisher-Kolmogorov equations in one-, two-, and three-dimensions.
Dehghan and Abbaszadeh [45] considered a linear combination of
the shape functions of local RBF collocationmethodwith themoving
Kriging interpolation technique. Avazzadeh et al. [46] applied the
local RBF-FD to obtain the solitarywave solutions of the generalized
Rosenau-Korteweg-deVries-regularized-longwave equation.Nikan
et al. [47–49] adopted the local RBF-FD collocation approach for
solving the time fractional equations.

This work proposes a local stabilized approach, generated
through the hybrid Gaussian-cubic RBF and FD for obtaining the
solution of the MTFDE. The infinitely smooth RBF, such as Gaus-
sian, provide an invertible system matrix in meshless methods.
Nevertheless, for a large number of domain nodes and small shape
parameters, a Gaussian RBF yields a system of equations that is ill-
conditioned. On the other hand, the cubic RBF is infinitely smooth
and without any shape parameter, unlike what occurs with the
Gaussian RBF. However, using a cubic RBF to interpolate shape
functions in meshless techniques for specific node arrangements
has the risk of obtaining a singular system. Indeed, this paper intro-
duces an approach to deal with these two issues through hybrid
RBF combining Gaussian kernels with cubic splines. The basic idea
behind such hybridization is to obtain a kernel that takes advan-
tage of the merits of the two kernels while compensating for the
limitations of each one and keeping the formulation as a standard
RBF method. The outline of this paper is as follows. The Section en-
titled ‘‘Time-discrete formulation” accomplishes the temporal dis-
cretization by integrating both sides of the MTFDE. The stability
analysis and a priori error estimates in H1-norm are also discussed
47
in detail. The Section entitled ‘‘Local hybridization of the Gaussian
and cubic kernels” describes the spatial desensitization with the of
the local hybrid kernel meshless techniques. The Section entitled
‘‘Numerical examples” illustrates the numerical algorithm by
means of three problems that highlight the accuracy and efficiency
of the proposed approach. Finally, the Section entitled ‘‘Conclu-
sion” synthesises the main concluding remarks.

Time-discrete formulation

In this section, a time discrete algorithm to approximate the (1)
in the time variable is formulated. For this purpose, we split the
time interval 0; T½ � into small cells with time step length dt and
nodes tk ¼ kdt, for k ¼ 0;1;2; . . . ;M, where M is a positive integer.

Definition 1. Suppose that y tð Þ 2 L1 a; bð Þ, and that the expression

Icaþy tð Þ ¼ 1
C cð Þ

Z t

a

y gð Þ
t � gð Þ1�c

dg; t > a; c > 0;

denotes the R-L fractional integral operator of order c.
Lemma 1. ([50].) If y tð Þ 2 C2 0;1½ �, then

Ic0þy tkþ1ð Þ� Ic0þy tkð Þ¼ dtc

C cþ1ð Þ y tkþ1ð Þþ
Xk�1

j¼0

bj�bjþ1
� �

y tk�j

� �" #
þRk;c;

where Rk;c
�� �� 6 Cbkdt1þc, 1 ¼ b0 > b1 > . . . > bk > 0 and

bj ¼ jþ 1ð Þc � jc.
Integrating both sides of Eq. (1) on tk; tkþ1½ �, gives

u x; tkþ1ð Þ � u x; tkð Þ ¼ m1Ia0þDu x; tkþ1ð Þ � m1Ia0þDu x; tkð Þ
þm2Ib0þDu x; tkþ1ð Þ � m2Ib0þDu x; tkð Þ
þ R tkþ1

tk
f x;gð Þdg:

ð4Þ

By means of Lemma 1 and the following equation

Z tkþ1

tk

f x;gð Þdg ¼ dtf x; tkþ1ð Þ þ O dt2
� �

;

we obtain

ukþ1 � l1 þ l2

� �
Dukþ1 ¼ uk þ l1

Xk�1

j¼0

kjþ1 � kj
� �

Duk�j

þl2

Xk�1

j¼0

xjþ1 �xj
� �

Duk�j

þdtf kþ1 þ dtRkþ1;

ð5Þ

where l1 ¼ m1dta
C 1það Þ ;l2 ¼ m2dtb

C 1þbð Þ ; kj ¼ jþ 1ð Þa � ja;xj ¼ jþ 1ð Þb � jb and

Rkþ1 ¼ O dt1þmin a;bf g� �
.

By eliminating the small error term Rkþ1 and introducing Ukþ1 as
the numerical approximation, results:

Ukþ1 � l1 þ l2

� �
DUkþ1

¼ Uk þ l1

Xk�1

j¼0

kjþ1 � kj
� �

DUk�j þ l2

Xk�1

j¼0

xjþ1 �xj
� �

DUk�j þ dtf kþ1
:

ð6Þ
Theoretical analysis of the difference scheme

We define the functional spaces endowed with the standard
norms and inner products for the proposed difference algorithm as



O. Nikan, Z. Avazzadeh and J.A. Tenreiro Machado Journal of Advanced Research 32 (2021) 45–60
H1 Xð Þ ¼ v 2 L2 Xð Þ; dvdx 2 L2 Xð Þ
n o

;

H1
0 Xð Þ ¼ v 2 H1 Xð Þ; vj@X ¼ 0

n o
;

Hm Xð Þ ¼ v 2 L2 Xð Þ; Dav 2 L2 Xð Þforallpositiveintegerjaj 6 m
n o

;

where X � Rd denotes bounded and open domain, a ¼ a1; . . . ;adð Þ
represents a d-tuple, and jaj ¼Pd

i¼1ai, with Dav ¼ @jajv
@xa1@x

a
2 ...@x

a
d
, and

Hm Xð Þ is a Hilbert space with the inner product

u;vh im ¼
X
jaj6m

Z
X
Dau xð ÞDav xð Þdx;

and associated norm

uk kHm Xð Þ ¼
X
jaj6m

kDauk2L2 Xð Þ

 !1
2

:

Nonetheless, instead of adopting the above standard H1-norm, we
define �k kH1 Xð Þ by

kvkH1 Xð Þ ¼ kvk2 þ l1krvk2 þ l2krvk2
h i1=2

;

where l1 and l2 are constant.
The error analysis of the proposed algorithm (6) follows the

ideas discussed in [31,30]. For this, we start with the following def-
inition and lemma.

Definition 2. ([51]) A finite difference algorithm is called to be
stable for the norm �k k, if we have two constants C1 > 0 and C2 > 0,
independent of dt, such that when dt approaches zero, we can
write:

Vk
��� ��� 6 C1 V0

��� ���þ C2 fk k; ð7Þ

where f and V0 represent the source term and the initial data,
respectively.
Lemma 2. ([52]). If we consider

gkþ1 ¼ dta

C að Þ kþ 1ð Þ1�a
; nkþ1 ¼ dtb

C bð Þ kþ 1ð Þ1�b
;

then we have the following inequalities:

l1kkþ1 6 gkþ1 6 l1kk; l2xkþ1 6 nkþ1 6 l2xk�
Theorem 1. If Uk 2 H1
0 Xð Þ, then the implicit numerical method (6)

is un-conditionally stable in the H1-norm.
Proof. We multiply Eq. (6) by Ukþ1 and integrate on X,

kUkþ1k2 þ l1krUkþ1k2 þ l2krUkþ1k2

¼ Uk;Ukþ1
D E

þ l1

Pk�1

j¼0
kjþ1 � kj
� � rUk�j;rUkþ1

D E

þl2

Pk�1

j¼0
xjþ1 �xj
� � rUk�j;rUkþ1

D E
þ dt f kþ1

;Ukþ1
D E

�

48
Considering the Cauchy–Schwarz inequality, one obtains

kUkþ1k2 þ l1krUkþ1k2 þ l2krUkþ1k2

6 Uk;Ukþ1
D E

þ l1

Xk�1

j¼0

kjþ1 � kj
� � krUkþ1k2 þ krUk�jk2

h i

þl2

Xk�1

j¼0

xjþ1 �xj
� � krUkþ1k2 þ krUk�jk2

h i
þ dtkf kþ1kkUkþ1k:

or

kUkþ1k2 þ l1krUkþ1k2 þ l2krUkþ1k2

6 k 1
2U

kk2 þ 1
2U

kþ1k2 þ 1
2l1

Xk�1

j¼0

kj � kjþ1
� � krUk�jk2 þ krUkþ1k2

h i

þ 1
2l2

Xk�1

j¼0

xj �xjþ1
� � krUk�jk2 þ krUkþ1k2

h i
þ dtkf kþ1kkUkþ1k

þ l1
2 1� kkð ÞkrUkþ1k2 þ l2

2 1�xkð ÞkrUkþ1k2:

Regarding Lemma 2, we can write

l1kk � gkþ1 P 0; l2xk � nkþ1 P 0:

Also, in view of Cauchy–Schwarz inequality, we obtain

kUkþ1k2 þ l1krUkþ1k2 þ l2krUkþ1k2

6 k 1
2U

kk2 þ 1
2 kUkþ1k2 þ 1

2l1

Xk�1

j¼0

kjkrUk�jk2

� 1
2l1

Xk
j¼1

kjkrUkþ1�jk2 þ l1
2 1� kkð ÞkrUkþ1k2 þ 1

2l2

Xk�1

j¼0

xjkrUk�jk2

� 1
2l2

Xk
j¼1

xjkrUkþ1�jk2 þ l2
2 1�xkð ÞkrUkþ1k2 þ dtkf kþ1kkUkþ1k

þ l1kk�gkþ1
2 krU0k2 þ l1kk�gkþ1

2 krUkþ1k2

þ l2xk�nkþ1
2 krU0k2 þ l2xk�nkþ1

2 krUkþ1k2:

According to the Poincaré and Young’s inequalities, we get

kUkþ1k 6 CkrUkþ1k;

8h– 0�!jabj 6 1
2h2

a2 þ h2

2
b2
;

respectively, and we obtain

kUkþ1k2þl1krUkþ1k2þl2krUkþ1k2

6 k1
2U

kk2þ 1
2kUkþ1k2þ 1

2l1

Xk
j¼0

kjkrUk�jk21

þ1
2l2

Xk
j¼0

xjkrUk�jk2� 1
2l1

Xkþ1

j¼0

kjkrUkþ1�jk2� 1
2l2

Xkþ1

j¼0

xjkrUkþ1�jk2

þ l1
2 þ l2

2

� �krUkþ1k2þ l1
2 þ l2

2

� �krUkþ1k2þ 1
2

C2dt2
nkþ1þgkþ1

kf kþ1k2:

After simplification, we arrive at

1
2 kUkþ1k2 þ l1

2

Xkþ1

j¼0

kjkrUkþ1�jk2 þ l2
2

Xkþ1

j¼0

kjkrUkþ1�jk2

6 1
2 kUkk2 þ l1

2

Xk
j¼0

kjkrUk�jk2 þ l2
2

Xk
j¼0

xjkrUk�jk2

þ 1
2

C2dt2
nkþ1þgkþ1

kf kþ1k2:
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Therefore, we obtain

fkþ1 6 fk þ C2dt2
nkþ1þgkþ1

kf kþ1k2

6 f0 þ
Xk
j¼0

C2dt2
njþ1þgjþ1

kf jþ1k2

6 f0 þ C2dtT
nkþ1þgkþ1

max
06j6k

kf jþ1k2;

ð8Þ

where

fk ¼ kUkk2 þ l1

Xk
j¼0

kjkrUk�jk2 þ l2

Xk
j¼0

xjkrUk�jk2:

If we consider

f0 ¼ kU0k2 þ l1krU0k2 þ l2krU0k ¼ kU0k2H1 Xð Þ;

then expression (8) can be rewritten as

kUkþ1kH1 Xð Þ 6 kU0kH1 Xð Þ þ
C2dtT

nkþ1 þ gkþ1

 !1
2

max
06j6k

kf jþ1k2; k P 0:

ð9Þ

From [53], for k P 0, it holds that

Tdt
nkþ1þgkþ1

¼ TdtC aþ1ð Þ kþ1ð Þ1�a
dta 6 T2�aC að Þ;

Tdt
nkþ1þgkþ1

¼ TdtC bþ1ð Þ kþ1ð Þ1�b

dtb
6 T2�bC bð Þ:

In view of the aforesaid inequalities and the relation (9), we get

kUkþ1kH1 Xð Þ 6 kU0kH1 Xð Þ þ C
�
T1�min a;bf g

2 max
06j6k

kf jþ1k2;

and the proof is concluded. h
Theorem 2. Let ukþ1 ¼ u x; tkþ1ð Þ 2 H1 Xð Þ represent the exact solu-

tion of Eqs. (1)–(3) and Ukþ1 be the approximate solution obtained
by (6). Then, the semi-implicit difference algorithm (6) has conver-
gence rate O dt1þmin a;bf g� �

.

Proof. We define qkþ1 ¼ ukþ1 � Ukþ1 at t ¼ tkþ1; k ¼ 0;1; . . . ;M. By
subtracting Eq. (5) from Eq. (6), we obtain

qkþ1 � l1 þ l2

� �
Dqkþ1 ¼ qk þ l1

Xk�1

j¼0

kjþ1 � kj
� �

Dqk�j

þ l2

Xk�1

j¼0

xjþ1 �xj
� �

Dqk�j þ dtRkþ1; ð10Þ

where jRkþ1j 6 dt1þmin a;bf gÞ and q0 ¼ 0. Regarding Theorem 1 and Eq.
(10), the following inequality is obtained:

kqkþ1kH1 Xð Þ 6 C
�
T1�dtmin a;bf gÞ

2 dt1þmin a;bf g;

which finishes the proof of Theorem 2. h
Local hybridization of the Gaussian and cubic kernels

The RBF is a value dependent function on the distance from the
center point. The RBF can be easily implemented by using the dis-
tance functions to solve multi-dimensional PDE. In the RBF
method, the approximation of the function u xð Þ to the data values
uj ¼ u xj

� �
; j ¼ 1; . . . ;N, at the centers XC ¼ x1; . . . ;xNf g#Rd, is rep-

resented as
49
u xð Þ ’ S xð Þ ¼
XN
j¼1

bj/j x; eð Þ; ð11Þ

where bj are unknown coefficients, /j x; eð Þ ¼ / kx� xjk2; e
� �

; j ¼ 1;
. . . ;N, are RBF, r ¼ kx� xjk is the Euclidean norm between x and
xj, and e denotes shape parameter. The unknown expansion

coefficients, bj

� 	N
j¼1, are determined by imposing the interpolation

condition S xc
i

� � ¼ uc
i ; i ¼ 1; . . . ;N [54,55].

Mishra et al. [56] first introduced the hybrid Gaussian-cubic RBF
as a stable method for interpolation problems involving scattered
data. Later, Mishra et al. [57,58] developed a stabilized RBF-FD
approach with a hybrid kernel, generated through the cubic and
Gaussian RBF hybridization based on FD. It was shown that this
hybrid kernel was able to calculate stable interpolants for scattered
nodes when there were a large number of degrees of freedom. In
addition, the ill-conditioning in the numerical solution of PDEs
was reduced. The hybrid Gaussian-cubic kernel is expressed by
the relationship:

/ r; eð Þ ¼ c1 exp �e2r2� �þ c2r3; ð12Þ

with c1 and c2 representing the weights that control the Gaussian
and cubic kernels, respectively, and e standing for the shape param-
eter of the Gaussian kernel

/ r; eð Þ ¼ exp �e2r2� �þ #r3; ð13Þ

where the parameters e and # ¼ c2=c1 play a significant role in
the stability and accuracy of the proposed technique. The param-
eters that control the cubic and Gaussian kernels in the hybrid
RBF are chosen via global particle swarm optimization. The pro-
posed strategy was observed to considerably decrease the ill-
conditioning in the global RBF (GRBF) collocation technique.
Moreover, it maintains the accuracy and stability for considerably
small shape parameters. The term ‘‘stabilized” can be interpreted
in two ways here [57,58]. On one hand, it can refer to the signif-
icant reduction in the interpolation matrix condition number. On
the other hand, it can also point to the stabilization of the eigen-
value spectra of the system matrix belonging to the linear system
irrespective of the stencil size or any stencil irregularity. This
hybrid RBF overcomes the ill-conditioning issue in RBF-FD and
results in a stabilized evaluation for a low computational cost,
equivalent to the evaluation obtained from the GRBF. The pro-
posed strategy decreases considerably the ill-conditioning in the
GRBF. Moreover, it maintains the accuracy and stability for con-
siderably small shape parameters [57,58]. Oruç [59] applied the
local hybrid kernel meshless method to approximate the frac-
tional cable equation.

Kansa [60,61] adopted a linear differential operator L for inter-
polating (11) in order approximate Lu at the N scatter nodes,

Lu xið Þ ’
XN
j¼1

bjL/j xi; eð Þ: ð14Þ

Eq. (14) represents a GRBF approximation since one needs all
points in the domain to approximate L at one of the points. That
is to say, in order to determine the interpolation coefficient, one
needs to consider all the spatial domain points. However, a large
and ill-conditioned linear system is generated in the GRBF, which
may leads to uncertain results. On the other hand, one can use the
local RBF method only for the local support domain (restricted
nodes) on each center rather than for the whole set of points.
The local RBF results in a sparse and better-conditioned linear
system and, at the same time, is reliable for ill-conditioned
problems.



Fig. 1. The adopted stencil in the two-dimensional case based on the center point
and its support.

O. Nikan, Z. Avazzadeh and J.A. Tenreiro Machado Journal of Advanced Research 32 (2021) 45–60
Suppose that N ¼ x1; . . . ;xNf g#Rd is a set of N distinct points
computational region X that splits into two sets I and B, which
are the indices of the internal and boundary nodes, respectively,
and that N denotes the total number of nodes so that

N ¼ NI þ NB. Moreover, consider the subset Ni ¼ x ið Þ
1 ; . . . ;x ið Þ

Ns

n o
#N

that is a vector with center xi that including the center number
and the indices of the Ns � 1 nearest neighboring centers. Each cen-
ter and its Ns � 1 neighbors are named a stencil. Fig. 1 represents a
typical stencil. Our target of this part is to approximate the Lapla-

cian operator Du xð Þ ¼ @2u
@x2 þ @2u

@y2 through the proposed method,

where x ¼ x; yð ÞT . The linear differential operator D at a reference
node xi can be approximated using the weighted linear sum of
function values at all nodes in its support domain as:

Du xið Þ ’
XNs

j¼1

w ið Þ
j u x ið Þ

j


 �
: ð15Þ

The LRBF-FD stencil weights, w ið Þ
j

n oNs

j¼1
, will be computed by enforc-

ing the linear constraint (15) and the RBF /j x; eð Þ� 	Ns

j¼1, centered at

the stencil point locations [42,62,63], that can be formulated as

D/k xi; eð Þ ¼
XNs

j¼1

w ið Þ
j /j xk; eð Þ; k ¼ 1; . . . ;Ns: ð16Þ

Therefore, we have a system of equations with size Ns � Ns at each
stencil as follows

Uw ið Þ ¼ W ið Þ; ð17Þ

where /kj ¼ /j xk; eð Þ; k; j ¼ 1; . . . ;Ns, are the elements of the coef-

ficient matrix U ,w ið Þ
Ns�1 ¼ w ið Þ

j

n oNs

j¼1
, is differentiation weights for the

point xi, and W ið Þ
Ns�1 has the elements D/k xi; eð Þ; k ¼ 1; . . . ;Ns. The

weight coefficients w ið Þ on the corresponding local domain can be
calculated as

w ið Þ ¼ U�1W ið Þ: ð18Þ
Solving Eq. (18) and substituting the obtained result into Eq. (15)
gives the approximation solution of the linear differential operator,
that is, gives D at node xi. The following system of equations can be
integrated by substituting (15) into Eq. (6) at an internal point
xi ¼ xi; yið Þ and Eq. (3) at all Dirichlet boundary points as

AUnþ1 ¼ BUn þ l1

Xn�1

k¼0

kkþ1 � kkð ÞCUn�k

þ l2

Xn�1

k¼0

xkþ1 �xkð ÞDUn�k þ b; ð19Þ

where the elements of the matrices A;B;C;D and b can be written
as follows:
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Aij ¼
dij � lw ið Þ

j ; i ¼ 1; . . . ;NI; j ¼ 1; . . . ;N;

dij; i ¼ NI þ 1; . . . ;N; j ¼ 1; . . . ;N;

8<
:

Bij ¼
dij; i ¼ 1; . . . ;NI; j ¼ 1; . . . ;N;

0; i ¼ NI þ 1; . . . ;N; j ¼ 1; . . . ;N;

(

Cij ¼
w ið Þ

j ; i ¼ 1; . . . ;NI; j ¼ 1; . . . ;N;

0; i ¼ NI þ 1; . . . ;N; j ¼ 1; . . . ;N;

8<
:

Dij ¼
w ið Þ

j ; i ¼ 1; . . . ;NI; j ¼ 1; . . . ;N;

0; i ¼ NI þ 1; . . . ;N; j ¼ 1; . . . ;N;

8<
:

b ¼
sf nþ1

i ; i ¼ 1; . . . ;NI;

gnþ1 xið Þ; i ¼ NI þ 1; . . . ;N;

8<
:

Un ¼ Un x1ð Þ;Un x2ð Þ; . . . ;Un xNð Þð ÞT :
Moreover, we have l ¼ l1 þ l2 and dij for the Kronecker delta func-
tion. The implementation of the proposed method, underlying com-
putational aspects, can be summarized as follows:

Step 1 Generate nodes distributions

The uniform or Halton node distributions are generated in
the solution domain as the set of evaluation points. The
uniformly random Halton nodes are generated by using
the MATLAB program haltonseq.m [64]. The set
X ¼ x1; . . . ; xNf g of collocation nodes and is splited into
two sets I and B, which are the indices of the internal
and boundary nodes, respectively, and where N denotes
the total number of nodes so that N ¼ NI þ NB.

Step 2 Construction of the support domain

For each xi, we first create a local support domain

Ni ¼ x ið Þ
1 ; . . . ; x ið Þ

Ns

n o
that includes the nearest Ns � 1 evalua-

tion points to xi. In this approach, each local support
domain includes only evaluation nodes. The neighboring
points can be selected via several methods. One of these
methods consists of defining a finite radius around a node
and assuming that the points within that radius are the
corresponding neighboring points. One can achieve the
kd-tree with the help of the knnsearch function avail-
able in MATLAB [65,64].

Step 2 Determination of the differentiation weights

for the point xi

The weight coefficients w ið Þ are obtained to approximate
the Laplacian operator D on the corresponding local
domain in the center xi by using the relation (18).

Step 3 Create the coefficient matrix

We create the matrices A;B;C and D by using Step 2.
Step 4 Calculate the approximate solution in the main

time stepping loop

We set Eq. (19) in a loop for the number of time steps,
n ¼ 1; . . . ;M, and we calculate the approximate solution
Un at each time step.

Numerical examples

This section includes three problems and four domains for illus-
trating the effectiveness and accuracy of the proposed method. In
order to assess the performance, we calculate the time conver-
gence order by means of the formula:

Cdt ¼ log2
kL1 2dt;hð Þk
kL1 dt;hð Þk

� 

;
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where L1 ¼ max
16j6N�1

jU xj; T
� �� u xj; T

� �j denotes the absolute error.

The condition number (C-N) of the coefficient matrix is evaluated
by means of the Matlab command condest. All computations
are obtained in MATLAB R2016a on a Pentium IV, 2800 MHz CPU
with 8 Gbyte memory. Fig. 2 considers four distinct types of

computational regions (Xi; i ¼ 1;2;3;4). The domain X1 ¼ 0;1½ �2 is
discretized including the uniform points. The contour of X2

is determined by the polar form r hð Þ ¼ 1
9 17� 8 cos 3hð Þð Þ;

0 6 h 6 2p. The domains X3 and X4 exhibit irregular

geometries given by r hð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 5hð Þþsin2 2hð Þþcos2 hð Þ

q
and

r hð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos 3hð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� sin2 3hð Þ

q
3

r
;0 6 h 6 2p, respectively, dis-

cretized with irregular distribution of nodes.
Table 1
Numerical orders of convergence in the time variable with a; bf g ¼ 0:6; 0:9f g on domains

dt X1

L1 Cdt

1=10 2:1945e� 03 –
1=20 7:9646e� 04 1:462
1=40 2:8314e� 04 1:492
1=80 9:5490e� 05 1:568
1=160 3:2082e� 05 1:573
1=320 1:0377e� 05 1:628
1=640 3:3887e� 06 1:614
1=1280 1:1043e� 06 1:617

Fig. 2. The computational regions X1f
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Example 1. Consider the following MTFDE:
@uðx;y;tÞ
@t �D1�a

t Duðx; y; tÞ � D1�b
t Duðx; y; tÞ

¼ expðxþ yÞ ð1þ aþ bÞtaþb � 2 Cð2þaþbÞ
Cð1þ2aþbÞ t

2aþb
h

�2 Cð2þaþbÞ
Cð1þaþ2bÞ t

aþ2b
i
; ðx; yÞ 2 X; 0 < t 6 T:

The boundary and initial conditions are obtained from the ana-
lytic solution u x; y; tð Þ ¼ exp xþ yð Þt1þaþb.

The new method is employed for determining the solution with
different values of e; #; dt;a; b and N on the four domains. The
numerical results are summarised in Tables 1–4 and Figs. 3–6.
Tables 1 and 2 list the rates of convergence in the temporal direc-
tion at T ¼ 1 on the domains X1;X2;X3;X4f g with
X1 and X2.

X2

L1 Cdt

6:3279e� 03 –
2 2:3805e� 03 1:4105
1 8:0166e� 03 1:4829
1 2:7344e� 03 1:5518
6 8:9587e� 04 1:6099
4 2:9213e� 04 1:6167
6 9:1815e� 05 1:6698
6 2:9825e� 05 1:6222

;X2;X3;X4g for the test problems.



Table 2
Numerical orders of convergence in the time variable with a; bf g ¼ 0:6; 0:9f g on domains X3 and X4 of Example 1.

dt X3 X4

L1 Cdt L1 Cdt

1=10 3:6339e� 03 – 4:1765e� 03 –
1=20 1:2596e� 03 1:5286 1:5332e� 03 1:4457
1=40 4:2525e� 04 1:5666 5:2825e� 04 1:5373
1=80 1:4188e� 04 1:5836 1:7552e� 04 1:5896
1=160 4:6799e� 05 1:6001 5:7206e� 05 1:6174
1=320 1:4833e� 05 1:6577 1:8761e� 05 1:6084
1=640 4:8304e� 06 1:6186 6:0341e� 06 1:6365
1=1280 3:3887e� 06 1:6146 9:1815e� 05 1:6698

Table 3
The L1 error for the schemes described in [31,34] and the proposed method at T ¼ 1 on X1 of Example 1.

dt Ref. [31] Ref. [34] Proposed method

L1 Cdt L1 Cdt L1 Cdt

1=4 1:1481e� 002 – 1:1093e� 002 – 1:0635e� 02 –
1=8 3:2554e� 003 1:8183 2:9286e� 003 1:9214 2:9948e� 03 1:8283
1=16 5:0574e� 004 2:6864 4:2727e� 004 2:7769 3:8861e� 04 2:9461
1=32 2:3165e� 004 1:1264 1:6510e� 004 1:3718 1:5721e� 04 1:3056
1=64 – – – – 6:5273e� 05 1:2681
1=128 – – – – 2:7591e� 05 1:2423
1=256 – – – – 1:1874e� 05 1:2164

Table 4
The L1 error, C-N and CPU time (in seconds) of Example 1.

Ns X3 X4

L1 C-N CPU L1 C-N CPU(s)

43 7:1436e� 03 3:4725eþ 04 6:451 2:4877e� 04 5:1020eþ 05 6:616
63 3:6694e� 03 3:7118eþ 04 11:172 1:0377e� 04 5:0928eþ 05 11:983
83 9:0852e� 04 3:8164eþ 04 15:302 9:2497e� 05 5:2278eþ 05 15:443
103 4:0743e� 04 3:9388eþ 04 22:081 4:6659e� 05 5:2502eþ 05 22:465

Fig. 3. The numerical solutions and the resulting errors at final time T ¼ 1 on region X1 of Example 1.
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e ¼ 2:1; # ¼ 0:00001;Ns ¼ 75, and N ¼ 325. From these tables, it
can be observed that the rate of convergence in the temporal vari-
able is O dt1þmin a;bf g� �

, which is compatible with the theoretical for-
mulation. Table 3 compares the computational errors of the
proposed technique with those obtained by other methods
52
[31,34] for a; bf g ¼ 0:5;0:2f g. These results are in agreement with
those reported in [31,34]. Table 4 lists the computational errors,
the condition number and computational time (in seconds) for
different stencil sizes NI with e ¼ 2:1; # ¼ 0:00055; a; bf g ¼
0:7;0:4f g; dt ¼ 1=500. It can be concluded that the L1 error dimin-



Fig. 4. The numerical solutions and the resulting errors at final time T ¼ 1 on region X2 of Example 1.

Fig. 5. The numerical solutions and the resulting errors at final time T ¼ 1 on region X3of Example 1.

O. Nikan, Z. Avazzadeh and J.A. Tenreiro Machado Journal of Advanced Research 32 (2021) 45–60
ishes by increasing the stencil sizes NI . Furthermore, the condition
numbers are quite acceptable. Table 5 compares the L1 error for
the schemes described in [30] with those obtained by the proposed
technique when T ¼ 1 on X1. Table 6 demonstrates the L1 error for
the proposed technique at different final time T on X1. From this
table, it can be seen that the numerical results are acceptable in
larger T. Fig. 3 represents the numerical solutions and the compu-
tational errors by letting e ¼ 2:4; # ¼ 0:0001; a; bf g ¼ 0:5;0:5f g;
dt ¼ 1=100;Ns ¼ 33 and N ¼ 289, when T ¼ 1 on X1. Fig. 4 depicts
the numerical solutions and the computational errors by taking
e ¼ 2:1; # ¼ 0:00015; a; bf g ¼ 0:45;0:35f g; dt ¼ 1=150;Ns ¼ 73 and
N ¼ 401, when T ¼ 1 on X2. Fig. 5 portrays the numerical solutions
and the computational errors by letting e ¼ 2:2; # ¼ 0:000151;
a; bf g ¼ 0:55;0:95f g; dt ¼ 1=150;Ns ¼ 67 and N ¼ 521, when
T ¼ 1 on X3. Finally, Fig. 6 represents the numerical solutions
and the computational errors by taking e ¼ 2:5; # ¼ 0:000055;
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a; bf g ¼ 0:15;0:75f g; dt ¼ 1=150;Ns ¼ 83 and N ¼ 625, when
T ¼ 1 on X4. From Figs. 4–6, it can be seen that the proposed
method performs well when solving problems involving compli-
cated and irregular domains.

Example 2. Consider the following two-dimensional MTFDE:

@u x;y;tð Þ
@t �D1�a

t Du x; y; tð Þ � D1�b
t Du x; y; tð Þ

¼ sin xþ yð Þ 1þ aþ bð Þtaþb þ 2 C 2þaþbð Þ
C 1þ2aþbð Þ t

2aþb
h

þ2 C 2þaþbð Þ
C 1þaþ2bð Þ t

aþ2b
i
; x; yð Þ 2 X; 0 < t 6 T:

The boundary and initial conditions are calculated using the
analytic solution u x; y; tð Þ ¼ sin xþ yð Þt1þaþb.

The proposed technique is adopted for computing the solution
with various values of e; #; dt;a; b and N on Xi; i ¼ 1;2;3;4. The



Table 6
The L1 error at the various final times on X1 with N ¼ 441 and dt ¼ 1=80 of Example 1.

T L1 C-N CPU(s)

0:25 8:3437e� 05 9:2621eþ 04 0:751
0:50 1:0555e� 04 9:2621eþ 04 0:979
0:75 2:7365e� 04 9:2621eþ 04 1:299
1:00 3:4154e� 04 9:2621eþ 04 1:668
1:25 4:7164e� 04 9:2621eþ 04 2:087
1:50 5:4350e� 04 9:2621eþ 04 2:611
1:75 7:4821e� 04 9:2621eþ 04 3:131
2:00 8:7651e� 04 9:2621eþ 04 3:763

Table 5
The L1 error for the schemes described in [30] and the proposed method at T ¼ 1 on X1 of Example 1.

a; bð Þ N dt Ref. [30] Proposed method

0:1;0:2ð Þ 81 1=64 8:1150e� 03 1:0893e� 03
289 1=1024 2:9754e� 04 7:0079e� 05

0:5;0:8ð Þ 81 1=64 1:2422e� 03 1:5288e� 03
289 1=1024 1:1255e� 03 8:8765e� 05

Fig. 6. The numerical solutions and the resulting errors at final time T ¼ 1 on region X4 of Example 1.

Table 7
Numerical orders of convergence in the time variable with a; bf g ¼ 0:3; 0:8f g on domains X1 and X2 of Example 2.

dt X1 X2

L1 Cdt L1 Cdt

1=10 3:6116e� 03 – 5:5384e� 03 –
1=20 1:5493e� 03 1:2210 2:3126e� 03 1:2600
1=40 6:5849e� 04 1:2344 9:5471e� 04 1:2764
1=80 2:7379e� 04 1:2661 3:8803e� 04 1:2989
1=160 1:1047e� 04 1:3094 1:5645e� 04 1:3105
1=320 4:4231e� 05 1:3166 6:3182e� 05 1:3081
1=640 1:7520e� 05 1:3361 2:5233e� 05 1:3242
1=1280 7:0384e� 06 1:3157 1:0175e� 05 1:3103
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Table 8
Numerical orders of convergence in the time variable with a; bf g ¼ 0:7; 0:5f g on domains X3 and X4 of Example 2.

dt X3 X4

L1 Cdt CPU (s) L1 Cdt CPU (s)

1=10 3:5765e� 03 – 0:352 4:3375e� 03 – 0:298
1=20 1:3478e� 03 1:4079 0:401 1:6282e� 03 1:4136 0:337
1=40 5:0307e� 04 1:4218 0:546 6:0520e� 04 1:4278 0:376
1=80 1:8205e� 04 1:4664 0:602 2:1945e� 04 1:4635 0:498
1=160 6:5172e� 05 1:4820 1:930 7:8313e� 05 1:4866 0:859
1=320 2:2605e� 05 1:5276 2:176 2:7658e� 05 1:5016 1:774
1=640 7:7608e� 06 1:5424 3:341 9:5447e� 06 1:5349 2:588

Table 9
The error L1 , C-N and CPU time (in seconds) with dt ¼ 1=500 and N ¼ 857 of Example 2.

Ns X2 X3

L1 C-N CPU L1 C-N CPU(s)

37 7:6294e� 04 1:8611eþ 04 6:352 4:2745e� 04 5:1576eþ 05 5:422
57 5:5539e� 04 2:3097eþ 04 12:820 2:5233e� 04 5:0639eþ 05 11:219
77 3:0384e� 04 3:1927eþ 04 17:452 9:5042e� 05 5:1611eþ 05 16:015
97 8:3628e� 05 3:3489eþ 04 26:523 5:3608e� 05 5:1793eþ 05 24:836

Table 10
The L1 error at the various final times on X1 with N ¼ 676 and dt ¼ 1=80 of Example 2.

T L1 C-N CPU(s)

0:25 7:7525e� 05 1:9095eþ 05 1:435
0:50 1:4909e� 04 1:9095eþ 05 1:835
0:75 2:5460e� 04 1:9095eþ 05 2:263
1:00 5:9131e� 04 1:9095eþ 05 2:920
1:25 6:5221e� 04 1:9095eþ 05 3:630
1:50 7:8056e� 04 1:9095eþ 05 4:449
1:75 9:0255e� 04 1:9095eþ 05 5:337
2:00 1:8387e� 03 1:9095eþ 05 6:270

Fig. 7. The numerical solutions and the resulting errors for at final time T ¼ 1 on region X1 of Example 2.
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Fig. 8. The numerical solutions and the resulting errors at final time T ¼ 1 on region X2 of Example 2.

Fig. 9. The numerical solutions and the resulting errors at final time T ¼ 1 on region X3 of Example 2.
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numerical results are given in Tables 7–10 and Figs. 7–10. Tables 7
and 8 illustrate the rate of convergence in the temporal direction at
T ¼ 1 on domains X1;X2;X3;X4f g with e ¼ 2:3; # ¼ 0:00001;
Ns ¼ 43 and N ¼ 275. We can observe that the rate of convergence
in temporal direction is O dt1þmin a;bf g� �

, which is compatible with
the theoretical result. Table 9 reports the computational errors,
the C-N and computational time (in seconds) for different stencil
sizes NI with e ¼ 2:3; # ¼ 0:00015; a; bf g ¼ 0:3;0:6f g and
dt ¼ 1=500. We observe that the L1 error diminishes by increasing
the stencil sizes NI , and that the condition numbers are quite
acceptable. Table 10 lists the L1 error for the proposed technique
at various final time T on X1. It can be observed that the method
yields accurate results in large T and exhibits adequate stability.
Fig. 7 represents the numerical solutions and the computa-
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tional errors by letting e ¼ 2:0; # ¼ 0:00005; a; bf g ¼ 0:5;0:5f g;
dt ¼ 1=100;Ns ¼ 65 and N ¼ 255, when T ¼ 1 on X1. Fig. 8 portraits
the numerical solutions and the computational errors by taking
e ¼ 2:1; # ¼ 0:00055; a; bf g ¼ 0:25; 0:55f g; dt ¼ 1=150;Ns ¼ 71 and
N ¼ 359, when T ¼ 1 on X2. Fig. 9 plots the numerical solutions
and the computational errors by letting e ¼ 2:4; # ¼ 0:000001;
a; bf g ¼ 0:45;0:65f g; dt ¼ 1=150;Ns ¼ 59 and N ¼ 431, when
T ¼ 1 on X3. Finally, Fig. 10 illustrates the numerical solutions
and the computational errors by taking e ¼ 2:5; # ¼ 0:000055;
a; bf g ¼ 0:85;0:35f g; dt ¼ 1=150;Ns ¼ 47 and N ¼ 501, when
T ¼ 1 on X4. We verify that the accuracy of the proposed method
is not affected by the complex shaped domains with the uniform
and Halton nodes.



Fig. 10. The numerical solutions and the resulting errors at final time T ¼ 1 on region X4 of Example 2.

Table 11
Numerical orders of convergence in the time variable of the proposed method with N ¼ 441 and Ns ¼ 79 for Example 3.

dt a ¼ 0:65;b ¼ 0:45; c ¼ 1=5 a ¼ 0:35;b ¼ 0:95; c ¼ 1=10

L1 Cdt L1 Cdt

1=4 6:4325e� 02 – 8:5265e� 02 –
1=8 2:5107e� 02 1:3573 3:5791e� 02 1:2524
1=16 9:7363e� 03 1:3966 1:4830e� 02 1:2711
1=32 3:6518e� 03 1:4148 6:0150e� 03 1:3019
1=64 1:3574e� 03 1:4278 2:3965e� 03 1:3276
1=128 4:9716e� 04 1:4491 9:3132e� 04 1:3636
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Example 3. Consider the following Gaussian pulse example
@u x; y; tð Þ
@t

� D1�a
t Du x; y; tð Þ � D1�b

t Du x; tð Þ ¼ f x; y; tð Þ; x; yð Þ
2 X; 0 < t 6 T:
All conditions and source term are deduced from the analytic

solution u x; y; tð Þ ¼ t1þaþb exp � x�0:5ð Þ2� y�0:5ð Þ2
c


 �
.

The new method is adopted for determining the numerical
solution with various values of a; b and c at final times T. Table 11
57
lists the L1 errors and the time convergence orders Cdt of the pro-
posed method for various values of a; b and c at final time T ¼ 1

on the square domain �2;2½ �2 including the uniform nodes. It can
be seen that the obtained convergence rates tend to a limit close
to O dt1þmin a;bf g� �

, which is in accordance with the theoretical con-
vergence order. Fig. 11 depicts the approximate solutions and
associated errors by choosing various values of

c 2 1=5;1=10;1=20f g on the square domain �2;2½ �2 having the
uniform nodes with a ¼ 0:55; b ¼ 0:85f g dt ¼ 1=100;N ¼ 441
and Ns ¼ 87 at T ¼ 1.



Fig. 11. Approximate solutions and errors on the square domain for c 2 1=5;1=10;1=20f g with dt ¼ 1=100;N ¼ 225 on �2;2½ �2 at T ¼ 1 for Example 3.
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Conclusion

Fractional diffusion models phenomena of anomalous diffusion
in transport processes through complex and disordered systems
with fractal media. This paper adopted a local hybrid kernel mesh-
less strategy to solve the TFMDE. We observe in the published lit-
erature that some numerical algorithms have a high-order
numerical accuracy on domains with simple shapes, but they are
not applicable in the case of complex and irregular domains. On
the other hand, some other techniques can be used on complex
domains, but they exhibit in sufficient accuracy. Given these limi-
tations, this paper presented a new local hybrid kernel meshless
method. This approach not only provides adequate precision, but
is also usable over complex domains with various node distribu-
tions. First, a finite difference scheme was employed to approxi-
mate the time direction. The unconditionally stability and
convergence analysis of the semi-discrete approach were exam-
ined. Second, the local hybridization of Gaussian and cubic kernels
method were used to discrete the spatial direction. Numerical sim-
ulations verified the good performance of the meshless algorithm
on regular and irregular domains. The numerical results are com-
patible with the theoretical conclusions.
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