
A two tier architecture for Local Energy Market

Simulation and Control ?

Andrade, Rui1[0000−0003−2356−3706], Garcia-Rodriguez,
Sandra2[0000−0002−5352−2510], Praca, Isabel1[0000−0002−2519−9859], and Vale,

Zita1[0000−0002−4560−9544]

1 ISEP/GECAD ***, Porto, Portugal
{rfaar,icp,zav}@isep.ipp.pt

2 CEA, LIST, Data Analysis and Systems Intelligence Laboratory, 91191, Gif Sur
Yvette, France sandra.garciarodriguez@cea.fr

Abstract. This paper addresses energy management and security hav-
ing as basis sensing and monitoring of cyber-physical infrastructure of
consumers and prosumers, and their participation in the Local Energy
Market (LEM). The vision is to create a layered multi-agent framework
that brings a complete view of the cyber-physical system of LEM par-
ticipants, and provides optimization and control of energy for said par-
ticipants. The proposed system is separated into a Market layer and
a Cyber-Physical layer, each of them providing di�erent services. The
cyber-physical layer, represented by SMARTERCtrol system, provides
Data Monitoring and Optimized Energy Control of individual building
resources. The Market layer, represented by LEM Multi-Agent System,
provides Negotiation, Forecasting, and Trust Evaluation. Both systems
work together to provide and integrate a tool for simulation and control
of LEM.
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1 Introduction

According to European Commission [4] the share of renewables in Power and
Energy Systems (PES) could reach 50% by 2030 with an important contribu-
tion from variable sources. This sets signi�cant challenges to distribution grids
since large part of the renewables will be implemented at household level. Fur-
thermore, the European parliament proposal for the regulation of the internal
Energy Market (EM) suggests that the role of consumers in future PES will be
central [7]. The developed solutions and technology should encourage and enable
consumers to take part in the energy transition and participate in EM trans-
actions. One of the main reasons for the need of an active participation from
consumers and prosumers is the current inaccuracies in the balance settlement,
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as it happens in most European countries, since much of the load is pro�led
because the smart meters roll out is not completed yet [20]. While smart meters
facilitate accurate and e�cient balance settlement, the development of metering
and control opportunities needs to be addressed carefully in regulatory rules.
For example, the handling of imbalances caused by control actions made by
non-balance responsible parties is one of these issues [24].

Information exchange structures and models to enable interaction between
local, retail and wholesale EM are urgently needed, including e�ective proposals
on how local markets should be taken into account by regulatory aspects. In
this context, the use of simulation tools and the study of the di�erent market
mechanisms and the relationships among their stakeholders, becomes essential.

A local market can be seen as a place where individual consumers and pro-
sumers meet to trade energy in a neighborhood environment [12]. A major goal
for local EM is to contribute in a decentralized PES [25]. Distributed Energy
Resources (DER) have increased the complexity of PES radically and therefore
�exibility is emerging as the most crucial element in the system. Advantage of
local markets is not only that self-generation can be consumed locally but it also
strengthens local distribution networks and provides new opportunities for local
industry and regional businesses.

The practical implementation and widespread of local EM is, however, highly
dependent on the available physical structure. One of the main drivers in this
scope is the development already achieved in Smart Grid (SG) technology. Sensor
networks are one of the most suitable technologies for SG due to their low-cost,
collaborative and longstanding nature. Wireless sensor Networks (WSNs) can
enable both utilities and customers to transfer, monitor, predict, measure, and
manage energy usage e�ectively. Thus, WSN can revolutionize the current elec-
tric power infrastructure by integrating information and communication tech-
nologies (ICT) [27,11]. Such a heavy dependence on ICT networking inevitably
surrenders SG to potential vulnerabilities. Thus, security emerges as a critical
issue because millions of heterogeneous devices (e.g., sensors, meters) are inter-
connected via communication networks.

Multi-Agent Systems (MAS) [28] are particularly well suited for the analysis
of complex interactions in dynamic systems, such as energy market [10]. Some of
the key advantages of MAS are the facilitated inclusion of new models, market
mechanisms, and types of participants, as well as the ability to resolve problems
in a distributed way [28]. Several modeling tools for simulating EM have emerged,
such as AMES [16], EMCAS [14], ABEMS [8] and MASCEM [22].

In this paper we present a two layer approach to model the LEM. These lay-
ers are the MAS energy management system (SMARTERCtrol) that performs
data collecting and optimized control of the grid resources, and the Local En-
ergy Market Multi-Agent System (LEMMAS) that performs energy negotiating
among local participants, provides energy forecasting and trust evaluation for
the negotiations.

The remain of the paper is organized as follows. Section 2 describes the Local
Energy Market; and presents the LEMMAS simulation model and its integra-
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tion with the SMARTERCtrol systems. Section 3 details the LEMMAS services
and their importance fore the system. Section 4 details the SMARTERCtrol for
control and optimization. Section 5 presents the conclusions of this work.

2 Local Energy Market

The energy landscape is changing at a rapid rate, renewable energy sources
created the opportunity for traditional consumers to become producers of part,
or in some cases all, of their energy needs. However this increase in what is
called Distributed Energy Resources (DER) can create large and unpredictable
�uctuation of energy loads in the electric grid.

The Local Energy Market (LEM) [17] is an emergent market model that is
aimed at solving the problems inherent to the Renewable and DER, such as un-
predictability of energy generation. Participants in the LEM who are generating
energy but not consuming it can chose to sell it in the LEM.

The key features of the LEM are the �exibility it provides in terms of creating
distributed and e�cient energy consumption, and the opportunity, created for
traditional consumers, to participant in a kind of energy market. In this section,
we present an overview of the LEMMAS simulation model and detail how it
can bene�t from the integration with the multi-agent optimization and control
system (SMARTERCtrol).

In a previous work [19], the authors present a MAS model to simulate and
study the LEM. This model is composed of three kinds of agents:

� Sensor agent: Representing the cyber-physical system;
� Participant agent: Representing participants in the negotiation;
� Market Interactions Manager (MIM): Representing the negotiation manager.

Participants in the LEM can be either consumers, producers or prosumers

(consumers with some form of generation, e.g. an household with solar panels).
Each participant is modeled accordingly to its role with the corresponding sensor
agents representing its cyber-physical system.

In the LEMMAS simulation model the agents follow an hierarchical struc-
ture in their communication. The sensor agents only communicate with their
respective participant agent, sending updated values for consumption, genera-
tion, battery charge, etc. The participant agents sends a proposal to the MIM.
And the MIM acts as central authority in the negotiation: sends messages to all
participants in other to enable the negotiation process. Each participant agent
would have the necessary number of sensor agents to model its cyber-physical
system.

Figure 2 illustrates the architecture proposed in this article. Two layers are
evidenced in this architecture, the Local Market Layer and the Cyber-Physical
Layer. These layers should have independent responsibilities but be complemen-
tary to each other. On the Cyber-Physical Layer each household or building
is represented and supported by the SMARTERCtrol system. The SMARTER-
Ctrol system is responsible for providing the services of Data Monitoring, in
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Fig. 1. Local Market two Layer Architecture

terms of consumption, generation, and other data sources like energy storage
(if available); and the optimized control of energy resources. The Market Layer
is represented by the LEMMAS system, composed of the group of Participants
and the Market Interactions Manager. The LEMMAS provides the services of
Negotiation, Trust Evaluation, and Forecasting.

The household or building is represented in both layers but in di�erent ways,
in the Local Market layer this representation is made by the participant agent
that is able to submit proposals to buy or sell energy in the LEM. The proposals,
as well as the forecasting service, are integrated with the SMARTERCtrol of each
participant in order to make use of the current and historical data collected by
the SMARTERCtrol. Lastly, the integration with the SMARTERCtrol system
can also happen as a result of the negotiation. That is, after an energy transac-
tion is agreed upon in the Local Market, this information must be sent to the
SMARTERCtrol system of the participants involved in said transaction. With
the obtained information the SMARTERCtrol system must perform the neces-
sary optimization and control operations in order to allow the desired energy
transaction.

The SMARTERCtrol system brings improvements to the LEM's performance,
reliability and resilience, by performing two di�erent kinds of control:

1. Scheduling control based on forecasted data: these forecasts are related to
the microgrid devices (such as consumption schedules of home appliances,
battery levels, etc.) or other forecasted information for generation (e.g. solar
radiation, wind speed, etc.) to plan the use of the generated �exibility, based
on the result of the MAS optimization. This type of control may handle
uncertainties in forecasts. It can also adapt itself to possible changes in grid
topology by applying receding horizon control along the time in which the
planning activity is undertaken; for instance, in case control relies on fore-
casted information, initial planning can be done with great advance (e.g. the
day ahead) and then re�ned when getting closer to real-time.

2. Real-time control: It is based on real-time information provided by sensors
(e.g. power quality analysers, voltage sensors, etc.) to monitor the status of
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all nodes of the grid on a real-time basis. The scope is to make sure grid pa-
rameters are always within statutory limits and cope with critical conditions.
These two types of control are both required for an e�ective management
of the smart-building, but the type of information that they need to ful�l
their duties di�ers. While the planning control requires forecasted informa-
tion and data about scheduled or expected use of smart grid technologies,
real-time control only needs actual readings of grid monitoring devices.

With the addiction of the SMARTERCtrol system, the sensor agents are
no longer used. The SMARTERCtrol acts as an aggregator of all sensor data
that can pass this information to the corresponding participant agent, this is
evidenced in Figure 2.

In turn the participant agent sends information detailing the result of the
negotiations in the LeM to the SMARTERCtrol. Thus allowing the SMARTER-
Ctrol to make the necessary control adjustments and optimizations to enable the
desired outcome. For example, a participant agent might agree to sell energy to
another LEM participant. In this scenario the SMARTERCtrol system should
adjust the necessary control �ow to make that transaction happen.

3 LEMMAS Services

The Local Energy Market Multi-Agent System (LEMMAS) takes the responsi-
bility of providing the platform necessary for the negotiation between the partic-
ipants. However the negotiation needs to be supported with other functionalities.
For this reason the LEMMAS provides two complementary services to the ne-
gotiation, then being forecasting, and trust evaluation.

3.1 Negotiation

The main service provided by the LEMMAS is the service of negotiation. The
negotiation in LEMMAS is made in Mediated Contracts, that is, there is a third-
party that plays the role of a mediator and manages the negotiation. These Me-
diated Contracts follow a Double Sided Auction model that de�nes the Market
Clearing price, and is performed regular intervals in order to keep up with the
market needs.

In the LEMMAS this mediator is the Market Interactions Manager (MIM)
agent. When performing the negotiation, this agent also takes advantage of the
Trust Evaluation service in order to only allow trusted participants in the nego-
tiation.

3.2 Forecasting

The forecasting service provided by the LEMMAS is used internally by the Trust
Evaluation Service and by the SMARTERCtrol system as well. The forecast-
ing module includes several methods and a set of strategies for day-ahead and
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hour-ahead forecasting. Indeed, one of the most important targets of the energy
operators is to be able to have a better control on the energy consumption and
also being prepared for the amount of energy demand in the following hours or
days. In order to provide consumption and generation forecasting for di�erent
short and long terms, this service should make use of various forecasting meth-
ods: Arti�cial Neural Networks [5], Support Vector Machines [26], Fuzzy Rule
Based Systems [13], Reinforcement Learning [2], Time Series Analysis [6] and
Ensemble Methods [23]. Ensemble Methods, in particular, have already shown
a good performance in a precious work [23].

3.3 Trust Evaluation

In any kind of negotiation trust is a crucial factor. Negotiating with an non
trusted party may jeopardize the negotiation. The Trust Evaluation service pro-
vides an important security layer for the participants. The idea for the trust
mechanism, dynamic pro�les of each participant are de�ned, based on previous
market negotiations and using the forecasting service. These pro�les are then
used according to the context, current weather conditions, time, date, etc., to
support the analysis of the feasibility of submitted proposals. LEMMAS follows
what is called an Institutional Trust model [18], that means there exists a cen-
tralized entity responsible for applying the trust model. In the case of LEMMAS
this role is played by the MIM agent that acts as the centralized institution, and
enforces the Trust model [1].

4 Multi-Agent Optimization and Control

This section presents a multi-agent optimization and control system (SMARTER-
Ctrol) for microgrids. Taking into account the constraints, limitations and user
preferences, its goal is to perform an optimized management of the self-controlled
resources of a microgrid. Furthermore, this system is connected to the forecasting
service described previous section 3.2. This way SMARTERCtrol enriches the
quality of decisions by also considering some consumption/generation forecasts
in the decision making.

SMARTERCtrol is composed by two main modules, the optimization module
and the control one. Each of them counts with a di�erent multi-agent system
model and deploys their own agents which are continuously communicating to
coordinate:

� Control module: agents are in charge of controlling the existing devices.
This module deploys one agent(Control Device) per device of the microgrid
plus a central coordinator one (Control Node). Their main tasks are collect-
ing the forecasts or actual observations, communicate with the optimization
module and get the optimized schedules, and convert the optimized schedules
received from the optimization module into orders that are then sent to the
self controlled devices. It makes sure that the devices follow such schedules.
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Note that in case of real time control, schedules would have just one instant
period of time (no planning needed).

� Optimization: optimization agents collaborate to implement a distributed
optimization algorithm based on message passing [15]. Relying on the infor-
mation (forecasts, observations, etc.) provided by the control module, this
module computes the best schedules and sends them to it. Two kind of agents
are used in this module, Optimization Node and Optimization Device. The
number of agents deployed will depend on the microgrid scenario.

Fig. 4 shows a schema of both modules as well as the main interactions among
their agents. The concrete algorithms that each module follows are described
below.
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Fig. 2. SMARTERCtrol optimization and control modules, interactions

4.1 Control Module Algorithm

This module connects the platform with the external microgrid. As Algorithm
1 shows, this module runs a continuous loop in which every T time the same
steps from 2 to 12 are repeated. T is set a priori according to user preferences
and microgrid de�nition. Algorithm 1 also shows the interactions between agents
and modules, where "A �> B" means that A sends the message msg to B.
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Algorithm 1 Control module algorithm

1: for every T time do
2: [Control] Node agent �> [Control] Device agents

msg: initial time stamp (number)
Real Devices �> [Control] Device agents
msg: device properties & constraints (object)
Forecast service �> [Control] Device agents
msg: forecasts (when applicable) (data set)

3: [Control] Device agents:
action: Compose device model from info received

4: [Control] Device agents �> [Control] Node agent
msg: device model (object)

5: [Control] Node agent
action: Compose scenario model (object)

6: [Control] Node agent �> [Optimization Module]
msg: scenario model (object)

7: [Optimization Module]
action: runs distributed optimization

8: [Optimization Module] �> [Control] Node agent
msg: devices power schedules (object)

9: [Control] Node agent �> [Control] Device agents
msg: new time stamp, Power Schedule (number, vector of real numbers)

10: [Control] Device agents �> Real Devices
msg: power setup for instant t (real number)

11: [Control] Node agent �> [Control] Device agents
msg: new time stamp (variable)
msg: power schedule (vector of real numbers)

12: [Control] Device agents �> Real Devices
msg: power setup for current time instant t (real number)

13: end for

4.2 Optimization Module

Implemented with an agent oriented architecture already described in [9], this
module performs the optimization task. It is based on the message passing al-
gorithm adapted to energy management, and proposed by [15]. Such approach
relies on the alternating direction method of multipliers (ADMM), which is an al-
gorithm that solves convex optimization problems by breaking them into smaller
pieces so that they will be then easier to handle [3]. [15]'s model considers two
types of elements in a given grid, namely: the devices and the nets (called op-

timization devices and optimization nodes respectively in our approach). The
devices D (i.e. generators, �xed loads, deferrable loads, alternate direct current
transmission lines, storages, etc.) have their own constraints and objectives. De-
vices are connected to each other by means of a net (i.e. bus), which also has
its own objectives. In the same way, nets are connected through double termi-
nal devices, such as transmission lines. The model tries to minimize the global
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network objective subject to the device and net constraints, over a given time
horizon.

[15] use a proximal message passing algorithm to resolve this optimization
problem. It is an iterative algorithm where at each step, each device: (i) ex-
changes simple messages with its neighbours in the network; and then (ii) it
solves its own optimization problem by minimising a local objective function,
augmented by the messages it has received. The authors showed that their ap-
proach converges to a solution when the devices objective and constraints are
convex. The method is completely decentralized and needs no global coordi-
nation other than synchronizing iterations; the problems to be solved by each
device can be typically solved e�ciently and in parallel according to the authors.

In this work, we considered evolutionary optimization algorithms [29] to solve
such local optimization. The using of this kind of algorithms is recurrent in lit-
erature since they are proved to be good approaches to solve microgrid prob-
lems [21]. For instance, their �exibility allows to handle the most hard constraints
in the optimization process. Moreover, their operators can be easily modi�ed to
improve the algorithm performance in the speci�c problem to solve.

4.3 Systems Connection

Lastly the two systems, LEMMAS and SMARTERCtrol, are connected at the
Forecasting level. The Control nodes in SMARTERCtrol make use of the Fore-
casting values obtained from LEMMAS' Forecasting Module, as shown in Fig-
ure 4.3. This architecture brings advantages at the level of separation of concerns
into: Simulation, Control and Optimization. The two domains can be developed
separately, but have the advantage of working together, taking advantages of
each others strengths. The SMARTERCtrol taking Control of real devices gains
access to a Simulation environment that uses the Real-time monitoring data
with strategies optimized for the context, and provides SMARTERCtrol with
the forecasts necessary.

Forecas�ng Module

Real-�me monitoring

strategies features

Ensemble methods

Fuzzy Inference

SVM

Control
Device

Forecasts

Fig. 3. Forecasting-Module with SMARTERCtrol
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5 Conclusion

As it was discussed in this article energy markets are going through a shift of
paradigm, from centralized production to distributed production of energy. This
changes bring bene�ts in terms of �exibility, for consumers who can a�ord sell
generation, as well as possible bene�ts to the environment with the increased
use of renewable energy sources. However this bene�ts come with some negative
aspects: the increase of distributed production makes the energy grid more com-
plex and hard to manage. The ever increasing usage of renewable energy sources,
e.g. solar, creates unpredictable energy �uctuation, and the moments of higher
production do not always correspond with the moments of higher consumption
needs. Fore these reasons, having systems capable of simulating and controlling
the energy grids will always be needed.

In this article we proposed a two tier architecture to simulate and control the
Local Energy Market (LEM). The two layers in this architecture are the Local
Market Layer and the Cyber-Physical Layer. Such separation of concerns brings
bene�ts in terns of development by dividing systems in smaller more specialized
components, but the system remain tightly integrated as a full stack solution
for LEM simulation and control. This was possible due to the usage of services
in each layer that can integrate with services from the other layer whenever
necessary.

The Cyber-Physical Layer corresponds to the SMARTERCtrol system, rep-
resenting a single household or building. The SMARTERCtrol system provides
the services of Data Monitoring in terms of consumption, generation, and other
data sources (if available); and for the optimized energy control.

The Market Layer corresponds to the LEMMAS system. It represents the
LEM as a whole with several participants, each one connected with its own
SMARTERCtrol system and Market Interactions Manager agent, acting as the
central authority of these market. The LEMMAS system provides the services
of Negotiation, Trust Evaluation, and Forecasting.

The integration between the two layers is as follows. The Negotiation service
gives each participant the opportunity to make proposals to buy or sell energy in
the market. Such proposals are made taking into consideration the participant
needs reported by the Data Monitoring service. The Negotiation service uses
the Trust Evaluation service to verify which participants should be allowed in
to participant in the market. The Trust Evaluation takes into consideration
the values forecasted by the Forecasting service considering data from the Data
Monitoring service.

Lastly, the Negotiation service communicates its results to the Optimization
and control service so that this service can make the necessary changes in the
grind to make the energy transactions agreed in the Local Market.

With this new approach the LEMMAS sensor agents are replaced by the
SMARTERCtrol. The bene�ts of this new approach are twofold. First, the
SMARTERCtrol system acts a central point that aggregates the data from
all sensor readings and makes it available for other services. And second, the
SMARTERCtrol system can perform the necessary control and optimization
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operations to realize the energy transactions agreed the local energy Market
negotiation process.
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