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a b s t r a c t

This paper presents three ensemble learning models for short term load forecasting. Machine learning
has evolved quickly in recent years, leading to novel and advanced models that are improving the fore-
casting results in multiple fields. However, in highly dynamic fields such as power and energy systems,
dealing with the fast acquisition of large amounts of data from multiple data sources and taking advan-
tage from the correlation between the multiple available variables is a challenging task, for which current
models are not prepared. Ensemble learning is bringing promising results in this sense, as, by combining
the results and use of multiple learners, is able to find new ways for current learning models to be used
and optimized. In this paper three ensemble learning models are developed and the respective results
compared: gradient boosted regression trees, random forests and an adaptation of Adaboost. Results
for electricity consumption forecasting in hour-ahead are presented using a case-study based on real data
from an office building. Results show that the adapted Adaboost model outperforms the reference models
for hour-ahead load forecasting.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Adequate models for forecasting energy consumption is crucial
for all players in the energy sector. Reliable forecasts are important
to enable the system to maintain the balance between consump-
tion and generation at all times; they are essential for market play-
ers to be able to participate in market negotiations using proper
demand estimates; and they are an important part of the develop-
ment of suitable demand response programs [1]. In this way, elec-
tric power load forecasting is a core problem in power and energy
systems. Electric power load forecasting can be categorized accord-
ing to the planning horizon duration: 1 day for short-term load
forecasting. 1 day to 1 year for medium-term load forecasting,
and 1–10 years for long-term load forecasting [2]. Recently, many
works have emerged to achieve accurate forecasting models. The
two most common paths are: the conventional statistical approach
such as multiple linear regression, which e.g. in [3] has reached
3.99% Mean Absolute Percentage Error (MAPE) on hourly con-
sumption forecast. Statistical models yet frequently present low
precision levels, mostly due to their simplicity and consequent
unsuitability to fully model the dynamics of energy consumption.
Artificial intelligence techniques are emerging with promising
results, due to the ability to identify and make use of non-linear
relationships between variables. Artificial neural networks [4],
Support Vector Machines (SVM) [5], Random Forest [6] and
Stochastic Gradient Boosting [7] are popular artificial intelligence
models for short-term load forecasting.

Despite the recent advances in the field of short-term load fore-
casting using artificial intelligence models, there are still relevant
gaps that need to be overcome. In specific, the ability of forecasting
models to deal with the large number of different types of data,
identifying and taking advantage on their correlation, and provid-
ing high quality results in fast response times, are issues that have
not yet been solved. The research, development and application of
traditional forecasting algorithms by their own is proving to be
insufficient to overcome the above mentioned problems; thus,
the combination and learning on how to use and combine different
learning models is a promising path towards reaching suitable
solutions. Ensemble learning is a technique that combines a set
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of independent learners together to improve the predictive power
of the model [8]. On average, the combined estimator is usually
better than any of the single base estimator because its variance
is reduced [9]. Some reference methods in in this domain are Ran-
dom Forests (RF) and Gradient Boosted Regression Trees (GBR) and
Adaboost (AR2). In [10] RF achieved a 1.97% MAPE on one-day
ahead electricity load forecasting for the ISO-NE CA area. RF also
proved efficient in [11] achieving a MAPE of 2.75%. Throughout a
vast number of papers random forests proves to be a good strategy
for short-term load forecasting. GBR was used in [10] achieving an
MAPE of 1.32% on one-day ahead electricity load forecasting for the
ISO-NE CA area, outperforming RF in that same study. In [12] GBR
it is used to predict vehicle time travel achieving a MAPE of 11%.
GBR consistently keeps up with other state of the art models, even
having better results in some studies. In [13] was concluded that
all AR2 variants outperformed their single (base) algorithms
including multilayer perceptron, general linear model, support
vector regression, and decision tree for regression.

This work develops and assesses the results of three ensemble
learning methodologies applied to the problem of short-term load
forecasting. The considered models are RF, GBR and AR2, which are
adapted in order to suit the particularities of the problem of elec-
tricity demand forecasting of office buildings. A software applica-
tion is presented, which supports the processes of defining the
parameters and adapting the methodologies to the envisaged prob-
lem. Results are compared to those achieved in previous studies,
using different techniques, namely three fuzzy based systems: an
Hybrid Neural Fuzzy Inference System (HyFIS) [14], the Wang
and Mendel’s Fuzzy Rule Learning Method (WM) [15]; and SVM
[16]. The case study considers a data set gathered from real con-
sumption of a campus building of ISEP/GECAD. Besides the applica-
tion of the proposed models, the case study assesses the influence
of diverse parameters with potential influence on energy con-
sumption forecasting, such as temperature, humidity and luminos-
ity; and also analyses the data range that should be used – if it is
more beneficial for the results to use only recent data or how far
back in the past should the forecasting models go.

After this introduction, Section 2 presents the Material and
Methods of this work, including the formulation of the methods,
explanation of the proposed approach and presentation of the
computational tool. Section 3 presents the case study based on real
data from an office building, and compares the achieved results to
those obtained by other reference methods. Finally, Section 4 pre-
sents the most relevant conclusions of the work.
2. Material and methods

Three ensemble-learning models for energy demand forecasting
are presented. The load demand from an office building of the cam-
pus of GECAD/ISEP in Porto, Portugal is considered. The forecasting
models have been implemented in Python according to the models
presented as follows.

Ensemble models blend the forecasts of multiple predictors as
means to increase generalization and robustness. Ensemble models
are usually categorized as: (i) averaging methods, which consider
Fig. 1. Overview of the short-ter
multiple independent predictors to average their forecasts; and
(ii) boosting methods, which combine multiple low performing
methodologies to reach a powerful ensemble. Examples of (i) are
the bagging methods and RF while (ii) considers models such as
Adaboost and GBR.

In order to conduct the short-term load forecasting process,
weather and load history are taken as inputs to create a load-
forecasting model. These models are the algorithms described in
the following sub-sections. After the model is trained, it is then
extrapolated with weather forecast data to generate a final fore-
cast. The modeling process in Fig. 1 tends to capture the systematic
variation, which, as an input to the extrapolating process, is crucial
to the forecast accuracy.

2.1. Ensemble forecasting methods

2.1.1. Random Forests (RF)
The Random Forest (RF), first introduced by Bell lab researcher

Tin Kam Ho [10] in 1995 (Random Decision Forests) is an ensemble
learning method for classification and regression. RF algorithm
uses the bagging technique for building an ensemble of decision
trees. RF algorithm uses the bagging technique for building an
ensemble of decision trees. It develops many decision trees based
on random selection of data and random selection of variables.
As a result of this randomness, the bias of the forest usually slightly
increases (with respect to the bias of a single non-random tree)
but, due to averaging, its variance also decreases, usually more
than compensating for the increase in bias, resulting an overall bet-
ter model [17]. Pseudocode for this algorithm is illustrated Fig. 2.

The algorithm works as follows: for each tree in the forest, we
select a bootstrap sample from S where Si denotes the ith boot-
strap. We then learn a decision-tree. The algorithm at each node
of tree selects a subset of features f << F whereF is the set of fea-
tures. The node then splits on the best feature in f .

2.1.2. Gradient Boosted Regression Trees (GBR)
GBR [19] considers low performance methods, usually decision

trees, to develop a prediction model based on their ensemble. GBR
puts the model together sequentially and reaches generalization
through the optimization of a differentiable loss function. Fig. 3
illustrates the pseudocode of the original Gradient Boosting
algorithm.

GBR considers additive models of the form (1):

F xð Þ ¼
XM
m¼1

cmhm xð Þ ð1Þ

where hm(x) are the principle functions, which are called weak
learners in the context of boosting and cm the step length that is
chosen using line search (2):

cm ¼ argminy

Xn
i¼1

L yi; Fm�1 xið Þ � y
hL yi; Fm� 1 xið Þð Þ

hFm� 1 xið Þ
� �

ð2Þ

Similarly to other boosting algorithms GBR builds the additive
model in a forward stage wise approach (3):
m load forecasting process.



Fig. 2. Random Forests Pseudocode [18].

Fig. 3. Gradient Boosting Original Algorithm Pseudocode [20].
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Fm xð Þ ¼ Fm� 1 xð Þ þ cmhm xð Þ ð3Þ
At each stage the decision tree hm(x) is chosen to minimize the

loss function L given the current model Fm � 1 and its fit Fm � 1
(xi), as in (4).

Fm xð Þ ¼ Fm� 1 xð Þ þ argminh

Xn
i¼1

L yi; Fm� 1 xið Þ � h xð Þð Þ ð4Þ

The basic principle for solving this minimization problem is to
use the steepest descent, which is the negative gradient of the loss
function evaluated at the current model Fm � 1. This can be esti-
mated as in (5):

Fm xð Þ ¼ Fm� 1 xð Þ þ cm
Xn
i¼1

rFL yi; Fm� 1 xið Þð Þ ð5Þ

The GBR model developed in this work is implemented using
Python’s scikit-learn package. 1400 boosting stages are considered.
A large number of stages is considered because, since gradient
boosting is traditionally rather robust to over-fitting, a high num-
ber of stages usually performs well. Scikit-learn supports many dif-
ferent loss function. We experienced all of them and found that the
least absolute deviations function works better for our model.
The maximum depth of independent regression predictors is
also tuned. This depth limits the number of nodes of the tree.
The maximum depth that has reached the best outcomes considers
a size equal to 10. Additionally, the minimum number of samples
required to split an internal node is set to 2 and the learning rate
is defined as 0.2. The learning rate (v) defines the scale of the gra-
dient decent procedure.

Fm xð Þ ¼ Fm� 1 xð Þ þ vcmhm xð Þ ð6Þ
This regularization approach has been introduced in [13] and

scales the contribution of each weak learner by v.

2.1.3. AdaBoost
Adaboost is a popular ML algorithm invented by Yoav Freund

and Robert Schapire [17] in 1995, originally to solve classification
problems. The core principle of AdaBoost is to fit a sequence of
weak learners on repeatedly modified versions of the data. The
data modification at each iteration consists of applying a weight
to each classifier. In the first step of the algorithm, all weights
are equally distributed. At each iteration, the weights are updated,
where the weight is increased on those classifiers who misclassi-
fied the data and decreased on those who correctly classified the
data. AdaBoost is adaptive in the sense that subsequent weak
learners are tweaked in favor of those instances misclassified by
previous classifiers. Pseudocode for the original Adaboost algo-
rithm is given in Fig. 4. The algorithm takes as input a training
set x1; y1ð Þ � � � xm; ymð Þ where each xibelongs o some domain or
instance space, and each label yi is in some label set Y. Adaboost
calls a given weak or base learning algorithms repeatedly in a ser-
ies of round t = 1, . . ., T. One of the main ideas of the algorithm is to
maintain a distribution or set of weights over the training set. The
weight of this distribution on training example I on round t is
denoted Dt ið Þ: Initially, all the weight are the same equally, but
on each round the weights of misclassified examples are increased
so that the weak learner is forced to focus on the hard examples in
the training set.

The weak learner’s job is to find a weak hypothesis
ht : X� > �1;þ1f g appropriate for the distribution Dt: The good-
ness of a weak hypothesis is measured by its error(et). The final
hypothesis H is a weighted majority vote of the T weak hypotheses
where ai is the weight assigned to ht. Fig. 4 presents the pseu-
docode of the original Adaboost algorithm.

Another used ensemble estimator is AdaBoost.R2 [21] which is
a modified regression version of the famous AdaBoost ensemble



Fig. 4. Original Adaboost Algorithm [18].
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estimator [17]. It sequentially fits estimators and each subsequent
estimator concentrates on the samples that were predicted with
higher loss. Fig. 5 illustrates the pseudocode of the Adaboost.R2
using artificial neural networks as base estimator.

The key architectural features of the ADABoost.R2 algorithm are
an initial dataset and a sampling distribution. Each of the training
data elements has a value in the sampling distribution and this
value represents the probability of that element being included
in the next training set. Initially, each value in the distribution is
set to the same value giving each element in the initial dataset
an equal chance of being included in the first training set. An initial
training set is populated from this distribution and the first artifi-
cial neural network is trained. Each member of the initial dataset is
then presented in turn to the network and the prediction errors are
recorded. Using these prediction errors, the distributions for each
element of the initial training set are adjusted using the formula
presented in the algorithm. Once, the distributions have been
adjusted, a new training set can be populated. This set is then used
to train the next network, and the steps described above are
Fig. 5. AR2 Algorithm [23].
repeated. New networks are iteratively trained until either the
average prediction error for a network goes above 0.5 or a maxi-
mum number of networks have been trained.

The used algorithm, implemented in [22] slightly differs from
[21] as it allows to use the weights directly in the fitted estimator
and not only for weighted sampling of features, as follows:

1. start algorithm t = 0
2. To each training sample assign initial weight (7)

wt
i :¼ 1; i ¼ 1;2; :::;m ð7Þ
3. fit estimator t to the weighted training set with weights wt
i

4. compute prediction byt
i using the estimator t for each sample i

5. compute loss li for each training sample (8)

lti ¼ loss jbyt
i � yi

� ���Þ ð8Þ
6. calculate average loss lt
�

7. calculate confidence bt for the estimator (low bt means high
confidence in estimator t)

8. update weights of training samples (9)

wtþ1
i ¼ wt

i : b
t� � 1�ltið Þ

; i ¼ 1;2; :::;m ð9Þ
9. t = t + 1 continue to step 3 while the average loss lt
�
< 0.5

To forecast our target values, we built an AR2 model with 1400
boosting stages using Python’s scikit-learn package and the learn-
ing rate has been set to 0.01. We experienced that square loss func-
tion works better for our model [21] (10):

lti ¼
jbyt

i � yij2

D2 ð10Þ

where D is defined as (11):

D ¼ sup byt
i � yi

��� ���; i 2 1;2; � � � ;mf g
n o

ð11Þ
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2.2. Short-term load forecasting computational tool

This section includes the details of the architecture of the devel-
oped application. The application is divided into two different
components. These components are:

1. Forecasting app: This part includes the implementation of the
forecasting algorithms and it is based on Python.

2. Main app: This part has the controllers of application, the con-
nection with the other components and the graphical user
interface.
Fig. 6. Forecast

Fig. 7. Date
The main app is the key component of the application, which
connects the other component. All the communications between
the user and the application are a part of the main app. Once the
user selects the required data, the forecasting application prepares
that data to run the forecasting methods. The forecasting app run
the forecasting methods by the received data from the main app
and returns the results of the forecasting. The main app shows
the results to the user.

The forecasting menu is where the inputs are defined or intro-
duced. The user should select the excel file, the sheets and the fea-
tures he wants in the training data. Fig. 6 represents the forecasting
menu of the application.
ing menu.

picker.



Table 1
Generated Features.

Feature Description Nomenclature

Consumption of the 3 previous hours Zt�1toZt�3

Hour of the day Ht

Month of the year Mt

Day of the Month Dt

Year Yt

Day of the Week DoWt

Environmental temperature of the hour (�C) Tt

Environmental temperature from the previous 3 h Tt�1toTt�3

Consumption at the same hour from the 2 previous weeks Zt�168andZt�336

Environmental Humidity of the hour Hut

Fig. 8. Forecasted values menu.

Table 2
Training Strategies.

Strategy # Z ~ * (Consumption over . . .)

1 Z � Dt �Mt � Ht � Yt � DoWt

2 Z � Dt �Mt � Ht � Yt � DoWt � Tt

3 Z � Dt �Mt � Ht � Yt � DoWt � Tt � Zt�1toZt�3

4 Z � Dt �Mt � Ht � Yt � DoWt � Tt � Zt�1toZt�3 � Tt�1toTt�3

5 Z � Dt �Mt � Ht � Yt � DoWt � Tt � Zt�168andZt�336

6 Z � Dt �Mt � Ht � Yt � DoWt � Tt � Zt�1toZt�3 � Tt�1toTt�3�
Zt�168andZt�336

7 Z � Dt �Mt � Ht � Yt � DoWt � Tt � Hut
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If the input data is correct, an option to forecast a specific times-
tamp will be available, where the user is asked to insert the desired
date. Fig. 7 represents the date chooser menu.

After the date is chosen, the user can now forecast the value of
the electricity consumption. A new window pops-up showing the
results of the forecasting. Fig. 8 shows the forecasted values menu.
3. Case study

3.1. Dataset description

Real monitored data from an office building located in the cam-
pus of ISEP/GECAD is used. This building is occupied in daily basis
by about 30 people. These data concern not only the energy con-
sumption but also other features such as the temperature, lumi-
nosity and humidity. Samples of these data sets are publicly
available at [24]. This data is also available internally through a
SQL-server based database that maintains and manages the infor-
mation gathered by 5 energy analyzers. Each of these analyzers
monitors and the electricity consumption from different devices,
electrical sockets, lighting and HVAC, in a 10 s time interval. A
java-based application has been developed to collect the data from
the SQL server and calculate the average of the total electricity con-
sumption of the building N – ISEP/GECAD for each hour. This appli-
cation also builds the inputs necessary for feeding the forecasting
models, molding the data according to the input format that is
required.

The considered forecasting models have been implemented
considering the multiple training strategies presented in Table 2.
These strategies combine the features extracted from the 10 days
prior to the target hour. A total of 15 features has been generated,
namely the electrical consumption of the 3 previous hours, the
hour of the day, the month of the year, the day of the Month, the
year, the day of the week, the environmental temperature of the
hour (�C), the environmental temperature from the previous 3 h,
the consumption at the same hour from the 2 previous weeks,
the environmental and the humidity of the hour. Table 1 presents
the features used for training and testing of the building N con-
sumption dataset. These features have been identified and selected
based on the availability of data and a-priori knowledge of the
problem. It is, therefore intended to assess and compare the perfor-
mance of the forecasting models when using different combina-
tions of these features, as incorporated by the training strategies
presented in Table 2. In turn, these strategies are no more than dif-
ferent combinations of data sources used in the training process for
the forecasting of the electricity consumption.
Fig. 9 shows the domainmodel with the relations of all the main
concepts of this implementation. This model identifies the various
entities of the project and presents the relations between them.

This domain model presents all the concepts and the relations
of the application. Every time a value is forecasted, a forecast pro-
cess should be created. Which includes all the needed information
to forecast the final value. This object has a date which represents
the date and the hour of the final result. The Input is characterized
by three tables, namely: train input, train output and test input.
These data tables include the needed historical data to train the
methods.
3.2. Results

The proposed models are assessed considering the forecasting
of the electricity consumption of the target office building from
00:00 until 23:00 of the date 05/04/2018. The entire data set is
used for training according ot the different training strategies.
The accuracy of the forecasts is measured using MAPE as compar-
ison measure for forecasting errors.

The combination of the generated features in Table 1 resulted in
the creation of seven training strategies, which are presented in
Table 2.

The strategies presented in Table 2 have been designed to test
the performance of different combinations of variables. The MAPE
error results for each ensemble method and each strategy are pre-
sented in Fig. 10.

When comparing the use of features, it can be seen from Fig. 10
that training strategy 3 presents the best performance in all 3 con-
sidered methods. It can also be concluded that the use of environ-
mental temperature in the training process enables improving the
energy consumption forecasting process, as this is evident in all the
scenarios. However, the lagged features that concern the environ-
mental temperature produce a higher error. Additionally, the use of
lagged features of past consumption enables reaching better
results. This is also noticeable for environmental humidity.

In order to compare the achieved results with other bench-
mark reference models, many reference forecasting models
could be considered such as e.g. Ridge, LASSO or Linear Regression



Fig. 9. Domain Model.

1 2 3 4 5 6 7
AR2 5.599345 6.075425 3.831085 4.89861309 8.83598865 4.904059 4.948772
GBR 4.3212 5.506659 4.36957 6.73102474 8.685019 4.872605 4.863022
RF 5.231557 5.090117 4.773991 5.57214437 8.3826806 5.188021 5.042844

0
1
2
3
4
5
6
7
8
9

10

Strategy #

AR2 GBR RF

Fig. 10. Average forecasting errors of the AR2, GBR and RF.

Table 3
Average forecasting methods errors.

AR2 RF GBR SVM HyFIS WM

MAPE % 5,34 6,11 6,07 5,82 7,88 7,92
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[25,26]; however, for consistency reasons we are comparing the
achieved results to those achieved by [27]. The work from [27]
addresses the electricity consumption forecast considering the
same building as this study (using the same data set), thus
enabling reaching suitable comparison of results performance.
The work from [27] considers several models, including fuzzy
rule-based methods namely HyFIS and WM, and also SVM. In order
to compare the results of the methods presented in this study to
those presented in [27] the models are trained using the third
training strategy, as it is the one reaching the best forecasting
results, as shown by Fig. 10, and the 24 h of 10/04/2018 are fore-
casted. The comparison between the methods is shown in Fig. 11
and Table 3.

Fig. 11 and Table 3 show that AR2 is able to reach lower fore-
casting errors than the reference models, using the considered data
for the specified target forecasting periods.
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Fig. 11. Comparison between the results of AR2, RF and GBR and the results in [27].
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4. Conclusions

Power and energy systems are a complex and dynamic
domain, requiring fast responses and dealing with multiple sources
of data. Decision-making in this scope, is, therefore, a challenging
task.

This paper presents and compares several ensemble learning
methodologies to perform hour-ahead forecast of the electricity
consumption of an office building. The historical data from previ-
ous days and hours is used by the learning models to reach a pre-
diction of the electricity consumption in the upcoming hours.

A case study based on real data form an office building, namely
build N from GECAD/ISEP campus, has been presented. Results
show that the performance of the adapted Adaboost model is supe-
rior to the benchmark forecasting models that have been consid-
ered, such as support vector regression and several fuzzy rule-
based methods. In fact, the three considered ensemble learning
models forecast more accurate values and with lower standard
deviation. The exception is the support vector regression, which
provides lower forecasting errors than RF and GBR. Considering
environmental information such as temperature and humidity
has shown to be advantageous. Considering lagged features con-
cerning past hours has also shown to provide improved results.

These conclusions are especially relevant for works related to
load forecasting, as the proposed models show to be adequate for
dealing with the particular characteristics of this problem. More-
over, the achieved results enable identifying suitable forecasting
models for the load forecasting problem, as well as assessing the
advantage of using several alternative and complementary features
in the learning process, referring to multiple time horizons.

Adding additional exogenous information in the forecasting
models is suggested as future work. Some examples are the direct
solar irradiation and thermal sensation. Such variables may prove
to be helpful in improving the forecast accuracy. Additionally, fur-
ther models, such as Ridge, LASSO or Linear Regression are to be
experimented in future work.
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