

Collaborative reinforcement learning of energy

contracts negotiation strategies

Tiago Pinto1, Isabel Praça1, Zita Vale2 and Carlos Santos1
1GECAD research group, Institute of Engineering, Polytechnic of Porto (ISEP/IPP),

Porto, Portugal

{tcp, icp}@isep.ipp.pt
2 Polytechnic of Porto (ISEP/IPP), Porto, Portugal

zav@isep.ipp.pt

Abstract. This paper presents the application of collaborative reinforcement

learning models to enable the distributed learning of energy contracts negotiation

strategies. The learning model combines the learning process on the best

negotiation strategies to apply against each opponent, in each context, from

multiple learning sources. The diverse learning sources are the learning processes

of several agents, which learn the same problem under different perspectives. By

combining the different independent learning processes, it is possible to gather

the diverse knowledge and reach a final decision on the most suitable negotiation

strategy to be applied. The reinforcement learning process is based on the

application of the Q-Learning algorithm; and the continuous combination of the

different learning results applies and compares several collaborative learning

algorithms, namely BEST-Q, Average (AVE)-Q; Particle Swarm Optimization

(PSO)-Q, and Weighted Strategy Sharing (WSS)-Q. Results show that the

collaborative learning process enables players’ to correctly identify the

negotiation strategy to apply in each moment, context and against each opponent.

Keywords: Collaborative reinforcement learning, Electricity Markets, Energy

Contracts Negotiation, Negotiation Strategies, Q-Learning

1 Introduction

Electricity markets are evolving into a local trading setting [1], which makes it

difficult for unexperienced players to achieve good agreements. One of the solutions to

deal with this issue is to provide players with decision support solutions capable of

aiding them in deciding which negotiation strategies to apply in each moment, context

and against each specific opponent, in order to reach the best possible results from

negotiations [2]. Different negotiation strategies have been proposed in the literature,

e.g. exploring the game theoretic dimension of the market [3], assessing risk

management in line with the portfolio theory [4], or by using forecasting approaches to

predict prices and optimize the bidding process [5]. However, current models are not

capable of adapting to different market circumstances and negotiating contexts, as they

are limited to specific market scenarios and are not integrated in actual market

simulation or decision support systems. Thereby current approaches are not able to

provide market players with the means to change their behaviour in a real market

environment, and therefore pursuit the achievement of the best possible outcomes.

mailto:%7d@isep.ipp.pt

This paper addresses this limitation by providing a contribution towards the

adaptability of market players’ actions in bilateral energy contracts negotiations. A

collaborative reinforcement learning model is applied to enable combining the learning

process on the best negotiation strategies to apply against each opponent, in each

context, from multiple learning sources. The diverse learning sources are the learning

processes of several agents, which learn the same problem under different perspectives

(using different utility or results assessment functions). By combining the different

independent learning processes, it is possible to gather the diverse knowledge and reach

a final decision on the most suitable negotiation strategy to be applied. The

reinforcement learning process is based on the application of the Q-Learning algorithm

[6]; and the continuous combination of the different learning results applies and

compares several collaborative learning algorithms, namely BEST-Q, Average (AVE)-

Q; Particle Swarm Optimization (PSO)-Q, and Weighted Strategy Sharing (WSS)-Q

[7]. Results show that the collaborative learning process enables players’ to correctly

identify the best (a-priori identified) negotiation strategy to apply in each moment,

context and against each opponent. Moreover, the different algorithms enable the

adaptation according to needs of each learning process, i.e. faster, yet not so solid,

convergence; or slower convergence, but with higher guarantees of success.

After this introductory section, section 2 presents the proposed methodology; section

3 presents the experimental findings achieved when applying the proposed model, and

section 4 presents the most relevant conclusions of this work.

2 Proposed methodology

The approach proposed in this paper concerns the combination of the learning

process of different agents through collaborative learning. The different agents learn

the same problem under different perspectives, using different utility or results

assessment functions, which result from their own perspective when analysing the

problem and the corresponding context. Despite the independent learning processes, all

agents use Q-Learning as the reinforcement learning algorithm for this problem. The

combination of the different learning process is then applied through several

collaborative learning algorithms, namely BEST-Q, AVE-Q; PSO-Q, and WSS-Q [7].

2.1 Q-Learning

Q-Learning is a very popular reinforcement learning method. It is an algorithm that

allows the autonomous establishment of an interactive action policy. It is demonstrated

that the Q-Learning algorithm converges to the optimal proceeding when the learning

state-action pairs Q is represented in a table containing the full information of each pair

value [8]. The basic concept behind Q-Learning is that the learning algorithm is able to

learn a function of optimal evaluation over the whole space of state-actio- pairs s x a.

This evaluation thus defines the confidence value Q that each action a is able to

represent the state s. The Q function performs the mapping as in equation (1).

𝑄: 𝑠 𝑥 𝑎 → 𝑈 (1)

where U is the expected utility value when selecting action a in state s. As long as

the state does not omit relevant information, nor introduce new information, once the

optimal function Q is learned, the decision method will know precisely which action

results on the higher future reward under each state. The reward r is attributed to each

pair action-state in each iteration, representing the quality of this pair, and allows the

confidence value Q to be updated after each observation. r is defined as in (2).

𝑟𝑎,𝑠,𝑡 = 1 − 𝑛𝑜𝑟𝑚|𝑅𝑃𝑎,𝑠,𝑡,𝑜,𝑝 − 𝐸𝑃𝑎,𝑠,𝑡,𝑜,𝑝| (2)

where RPa,s,t,o,p represents the real price that has been established in a contract with

an opponent o, in state s, in time t, referring to an amount of power p; and EP a,s,t,o,p is

the estimation price of scenario that corresponds to the same player, amount of power

and state in time t. All r values are normalized in a scale from 0 to 1, in order to allow

the Q(s, a) function to remain under these values, so that the confidence values Q can

be easily assumed as probabilities of scenario occurrence under a context. Q(s, a) is

learned through by try an error, being updated every time a new observation (new

contract establishment) becomes available, following equation (3).

 𝑄𝑡+1(𝑠𝑡 , 𝑎𝑡) = 𝑄𝑡(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑠,𝑎,𝑡 + 𝛾𝑈𝑡(𝑎𝑡+1) − 𝑄𝑡(𝑠𝑡 , 𝑎𝑡)] (3)

where  is the learning rate;  is the discount factor; and Ut (4) is the utility resulting

from action a under state s, obtained using the Q function learned so far.

𝑈𝑡(𝑠𝑡+1) = max
𝑎

𝑄(𝑠𝑡+1, 𝑎) (4)

The Q Learning algorithm is executes as follows:

• For each a and s, initialize Q(s, a) = 0;

• Observe new event;

• Repeat until the stopping criterion is satisfied:

o Select the action that presents the higher Q for the current state;

o Receive reward ra,s,t;

o Update Q(s, a);

o Observe new state s’;

o s  s'.

As the visiting of all action-state pairs tends to infinite, the method guarantees a

generation of an estimative of Qt which converges to the value of Q. In fact, the actions

policy converges to the optimal policy in a finite time, however slowly. In order to

accelerate the convergence process, not only the Q value of the chosen action is

updated, but also that of all scenarios, since the r regarding all alternative scenarios can

be computed by comparing the estimated prices by each action and the actual values

that have been verified in a new contract agreement. After each updating process, all Q

values are normalized, as in equation (5), so that they are always kept in a scale from 0

to 1, thus facilitating the interpretation as the probability of each action in correctly

representing the negotiation reality.

𝑄′(𝑠, 𝑎) =
𝑄(𝑠, 𝑎)

max [𝑄(𝑠, 𝑎)]
 (5)

2.2 Collaborative learning approaches

2.2.1 BEST-Q

The BEST-Q algorithm selects, for each state-action pair, the best value (Q-value)

from all tables (Q-tables) of all agents, as in (6). Then each agent updates its individual

Q-table accordingly.

𝑄𝑖(𝑠,𝑎)←𝑄𝑏𝑒𝑠𝑡(𝑠,𝑎), ∀𝑖,𝑠,a (6)

where i is the agent.

The disadvantage of this approach is that optimum values (Q-values) are not found

because the values (Q-values) become equal after each update. However, the BEST-Q

algorithm can achieve good long-term simulation policy.

The BEST-Q algorithm uses as assumption the best confidence value for each state-

action pair according to all the data of the agents present in the environment. Each agent

updates its Q-table by updating the pairs with the best values obtained previously.

2.2.2 AVE-Q

The AVE-Q algorithm is similar to the BEST-Q except that each agent updates its

Q-values with the average of its current value and the best value (Q-value) for each

state-action from the tables (Q-tables) of all agents, as presented in (7)

𝑄𝑖(𝑠, 𝑎) ←
𝑄𝑏𝑒𝑠𝑡(𝑠, 𝑎) + 𝑄𝑖(𝑠, 𝑎)

2
, ∀ 𝑖, 𝑠, 𝑎

(7)

The main disadvantage of the AVE-Q algorithm is that it does not eliminate the bad

values (Q-values) in the interaction stage. The AVE-Q algorithm is very similar to the

BEST-Q algorithms except for updating the agent. It uses as assumption the best value

of confidence for each state-action pair according to all the data of the agents present

in the environment and its current value of learning, so the table of the agent is updated

through the average of these two values. Each agent updates its Q-table by updating the

pairs with the previously obtained values

2.2.3 PSO-Q

Multi-agent optimization known as Particle Swarm Optimization (PSO), is part of

the swarm intelligence methodologies and techniques. This algorithm was inspired by

the rules of alignment and cohesion of the flocks of birds, and its particularity is

represented by the transmission and sharing of information [9].

Each agent is initialized with a set of possible random solutions and the optimal

solution is searched for in each generation. The movement of each agent is influenced

by the global optimum and personal memory, with each agent having the ability to

adapt its speed that directs its movement and remembers the best position found to date

[10]. This movement follows the following four rules:

• Separation: there must be a separation between each agent, to avoid collisions.

• Alignment: it is necessary that each agent follows the same direction of

neighboring particles.

• Cohesion: it is necessary that each agent follows the same position of

neighboring particles.

• Deviation: in the encounter of an obstacle, it is necessary that the agent is able

to deviate.

The PSO-Q algorithm uses PSO to find the near-optimal solution. PSO is an

optimization method that repeatedly improves the candidate solution accordingly to

with the qualitative measure. PSO solves decision problems that have multiple decision

variables. In the PSO-Q algorithm the best values (Q-values) of each agent and the best

global values (Q-values) of all agents are used by each agent to update its Q-table, as

in (8) according to a velocity function Vi (9) that determines the movement of the

particles involved in the search process.

𝑄𝑖(𝑠, 𝑎) ← 𝑄𝑖(𝑠, 𝑎) + 𝑉𝑖(𝑠, 𝑎), ∀ 𝑖, 𝑠, 𝑎
(8)

𝑉𝑖(𝑠, 𝑎) = 𝑊𝑉𝑖(𝑠, 𝑎) + 𝐶1𝑅1[𝑃𝑖(𝑠, 𝑎) − 𝑄𝑖(𝑠, 𝑎)]
+ 𝐶2𝑅2[𝐺(𝑠, 𝑎) − 𝑄𝑖(𝑠, 𝑎)] (9)

where W is the inertia component, which defines the degree in which the movement

will stay closer to the previous position; Pi(s,a) is the best Q-value of agent i for the

pair s x a, G(s,a) is the best global solution for the s x a pair, C1 and C2 are weight

components that determine the degree in which the new position will tend to the

personal and global best, respectively; and R1 and R2 are random values ranging [0, 1].

In the PSO-Q, the reinforcement learning problem is modeled as an optimization

problem in which the candidate solutions are the values (Q-values of the table), and the

qualitative measure is the Q-function. In the PSO-Q algorithm, the best values (Q-

values) of each agent and the best overall value of all agents are used for each agent to

update its Q-table,

2.2.4 WSS-Q

In the WSS (Weighted Strategy-Sharing) method, it is assumed that homogeneous

Q-Learning agents learn in some distinct environments, so their actions do not alter the

environment of other agents and no hidden state is produced.

Agents learn in two ways: individual learning mode and cooperative learning mode.

First, all agents are in the individual learning mode. The agent performs several learning

attempts. Each learning attempt starts from a random state and ends when the agent

reaches the goal. After a specified number of individual attempts, all agents switch to

cooperative learning mode. In the collaborative mode, each agent delegates a weight to

the other agents according to their expertise (trust value). Then, each agent updates

through a weighted average with the values of the other tables resulting in a new table.

Using the WSS-Q algorithm, each agent assumes a weight for the tables of the other

agents based on the relative skill of each agent. Subsequently, each agent uses the

weighted average of all values of tables (Q-tables) to update its own table (10).

𝑄𝑖(𝑠, 𝑎) ← ∑[𝑊𝑖,𝑗𝑄𝑗(𝑠, 𝑎)]

𝑛

𝑗=1

 , ∀ 𝑖, 𝑠, 𝑎 (10)

where Wij is the weight that agent i takes on the skill of agent j.

3 Case study

3.1 Specifications

This case study considers 4 independent agents, which learn the same problem from

different perspectives. In summary, each agent needs to learn which, from 10 distinct

actions, is the best one; in which each action refers to the choice on a negotiation

strategy to be applied against an opponent in a bilateral negotiation. Table I shows the

a-priori defined best actions from each agent’s perspective.

Table I. Best a-priori actions for each agent

Agent id 1 2 3 4

Best actions # 10 10, 2 8, 2 8

 From Table I it is visible that the best overall actions accordingly to the perspective

of the 4 agents are actions 2, 8 and 10.

The number of Q-Learning episodes to perform has the value 200 being that each

episode is composed of 1000 repetitions of the Q-Learning steps. The sharing of

information between agents in done at every 10 episodes. All agents initially start in

episode 1. The parameterization for Q-Learning is as follows: the discount factor is 0.9

for a slower exploration and a learning rate of 0.01 so that learning does not dispense

with the desired value.

3.2 Results

Figure 1, 2, 3 and 4 present the evolution of the Q-values of each action, from each

agent’s perspective, throughout all the episodes, when using the BEST-Q, AVE-Q,

PSO-Q and WSS-Q algorithms, respectively.

From Figure 1 is can be seen that the agents present partially identical graphs because

they use the best values of the other agents. The BEST-Q algorithm reaches a relative

convergence at around 360 iterations. From Figure 2 one can see that the AVE-Q

algorithm in the first iterations presents a marked increase in values for the actions with

greater reinforcement. The algorithm reaches a balance from the 160 iterations. It is

concluded that AVE-Q reaches a quicker convergence that BEST-Q on the best actions.

Figure 1. Evolution Q-Values for BEST-Q

Figure 2. Evolution Q-Values for AVE-Q

From Figure 3 it is visible that PSO-Q in the first iterations presents a marked

increase in values for the actions with greater reinforcement. The algorithm reaches a

balance from the 160 iterations. Although with the increase in the number of iterations

another action stands out; i.e. the algorithm allows to explore other possibilities and

make a management of learning with exploration and experience. In comparison with

the previous algorithms this algorithm achieves a fast equilibrium allowing for the

search of new emergent good actions. From Figure 4, one can see that the WSS

algorithm presents variations along the number of iterations. This algorithm limits the

choice in only 3 actions for the proposed problem (2, 8 and 10 as a-priori identified).

In comparison with the previous algorithms this one identifies the best actions, but it

does not demonstrate a clear convergence, like the other algorithms.

Figure 3. Evolution Q-Values for PSO-Q

Figure 4. Evolution Q-Values for WSS-Q

4 Conclusions

This paper has presented the application of four collaborative reinforcement learning

algorithms (BEST-Q, AVE-Q, PSO-Q and WSS-Q) to the problem of identifying the

best action (negotiation strategy) that is learned independently by several different

agents, with different perspectives.

Results show that with BEST-Q all agents converge to the same Q-Tables, which

prevents them from adding their independent perspective on the problem; nevertheless,

the best actions are identified, among others that also present good potential. AVE-Q

converges quickly to the best actions. PSO-Q also converges quickly, but enables for

the future identification of other emerging good actions, due to the stochastic nature.

WSS-Q presents a great variation throughout the entire set of episodes, but it is the only

one that enables identifying the exact 3 a-priori best actions, while the 3 other

algorithms identify these 3 but also add some other relatively good actions into the mix.

Acknowledgements

This work has been developed under the MAS-SOCIETY project - PTDC/EEI-

EEE/28954/2017 and has received funding from UID/EEA/00760/2019, funded by

FEDER Funds through COMPETE and by National Funds through FCT.

References

1. Ampatzis M, Nguyen PH, Kling W (2014) Local electricity market design for the coordination of
distributed energy resources at district level. In: IEEE PES Innovative Smart Grid Technologies,

Europe. pp 1–6

2. Pinto T, Vale Z, Sousa TM, et al (2014) Adaptive Learning in Agents Behaviour: A Framework
for Electricity Markets Simulation. Integr Comput Eng 21:399–415

3. Faqiry MN, Kundu R, Mukherjee R, et al (2014) Game theoretic model of energy trading strategies

at equilibrium in microgrids. In: 2014 North American Power Symposium, NAPS 2014
4. Meghwani SS, Thakur M (2017) Multi-criteria algorithms for portfolio optimization under

practical constraints. Swarm Evol Comput 37:104–125.

https://doi.org/https://doi.org/10.1016/j.swevo.2017.06.005
5. Nowotarski J, Weron R (2018) Recent advances in electricity price forecasting: A review of

probabilistic forecasting. Renew Sustain Energy Rev 81:1548–1568.

https://doi.org/https://doi.org/10.1016/j.rser.2017.05.234
6. Salehizadeh MR, Soltaniyan S (2016) Application of fuzzy Q-learning for electricity market

modeling by considering renewable power penetration. Renew Sustain Energy Rev 56:1172–1181.
https://doi.org/https://doi.org/10.1016/j.rser.2015.12.020

7. Abed-alguni B, Paul DJ, Chalup SK, Henskens FA (2016) A comparison study of cooperative Q-

learning algorithms for independent learners. Int J Artif Intell 14:71–93
8. Kofinas P, Dounis AI, Vouros GA (2018) Fuzzy Q-Learning for multi-agent decentralized energy

management in microgrids. Appl Energy 219:53–67.

https://doi.org/https://doi.org/10.1016/j.apenergy.2018.03.017
9. Kiran MS (2017) Particle Swarm Optimization with a New Update Mechanism.

https://doi.org/10.1016/j.asoc.2017.07.050

10. Kennedy J, Eberhart R (1995) Particle swarm optimization. Neural Networks, 1995 Proceedings,
IEEE Int Conf 4:1942–1948 vol.4

