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Abstract. This paper presents the application of collaborative reinforcement 

learning models to enable the distributed learning of energy contracts negotiation 

strategies. The learning model combines the learning process on the best 

negotiation strategies to apply against each opponent, in each context, from 

multiple learning sources. The diverse learning sources are the learning processes 

of several agents, which learn the same problem under different perspectives. By 

combining the different independent learning processes, it is possible to gather 

the diverse knowledge and reach a final decision on the most suitable negotiation 

strategy to be applied. The reinforcement learning process is based on the 

application of the Q-Learning algorithm; and the continuous combination of the 

different learning results applies and compares several collaborative learning 

algorithms, namely BEST-Q, Average (AVE)-Q; Particle Swarm Optimization 

(PSO)-Q, and Weighted Strategy Sharing (WSS)-Q. Results show that the 

collaborative learning process enables players’ to correctly identify the 

negotiation strategy to apply in each moment, context and against each opponent. 

Keywords: Collaborative reinforcement learning, Electricity Markets, Energy 

Contracts Negotiation, Negotiation Strategies, Q-Learning 

1 Introduction 

Electricity markets are evolving into a local trading setting [1], which makes it 

difficult for unexperienced players to achieve good agreements. One of the solutions to 

deal with this issue is to provide players with decision support solutions capable of 

aiding them in deciding which negotiation strategies to apply in each moment, context 

and against each specific opponent, in order to reach the best possible results from 

negotiations [2]. Different negotiation strategies have been proposed in the literature, 

e.g. exploring the game theoretic dimension of the market [3], assessing risk 

management in line with the portfolio theory [4], or by using forecasting approaches to 

predict prices and optimize the bidding process [5]. However, current models are not 

capable of adapting to different market circumstances and negotiating contexts, as they 

are limited to specific market scenarios and are not integrated in actual market 

simulation or decision support systems. Thereby current approaches are not able to 

provide market players with the means to change their behaviour in a real market 

environment, and therefore pursuit the achievement of the best possible outcomes.  
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This paper addresses this limitation by providing a contribution towards the 

adaptability of market players’ actions in bilateral energy contracts negotiations. A 

collaborative reinforcement learning model is applied to enable combining the learning 

process on the best negotiation strategies to apply against each opponent, in each 

context, from multiple learning sources. The diverse learning sources are the learning 

processes of several agents, which learn the same problem under different perspectives 

(using different utility or results assessment functions). By combining the different 

independent learning processes, it is possible to gather the diverse knowledge and reach 

a final decision on the most suitable negotiation strategy to be applied. The 

reinforcement learning process is based on the application of the Q-Learning algorithm 

[6]; and the continuous combination of the different learning results applies and 

compares several collaborative learning algorithms, namely BEST-Q, Average (AVE)-

Q; Particle Swarm Optimization (PSO)-Q, and Weighted Strategy Sharing (WSS)-Q 

[7]. Results show that the collaborative learning process enables players’ to correctly 

identify the best (a-priori identified) negotiation strategy to apply in each moment, 

context and against each opponent. Moreover, the different algorithms enable the 

adaptation according to needs of each learning process, i.e. faster, yet not so solid, 

convergence; or slower convergence, but with higher guarantees of success.   

After this introductory section, section 2 presents the proposed methodology; section 

3 presents the experimental findings achieved when applying the proposed model, and 

section 4 presents the most relevant conclusions of this work. 

2 Proposed methodology 

The approach proposed in this paper concerns the combination of the learning 

process of different agents through collaborative learning. The different agents learn 

the same problem under different perspectives, using different utility or results 

assessment functions, which result from their own perspective when analysing the 

problem and the corresponding context. Despite the independent learning processes, all 

agents use Q-Learning as the reinforcement learning algorithm for this problem. The 

combination of the different learning process is then applied through several 

collaborative learning algorithms, namely BEST-Q, AVE-Q; PSO-Q, and WSS-Q [7]. 

2.1 Q-Learning 

Q-Learning is a very popular reinforcement learning method. It is an algorithm that 

allows the autonomous establishment of an interactive action policy. It is demonstrated 

that the Q-Learning algorithm converges to the optimal proceeding when the learning 

state-action pairs Q is represented in a table containing the full information of each pair 

value [8]. The basic concept behind Q-Learning is that the learning algorithm is able to 

learn a function of optimal evaluation over the whole space of state-actio- pairs s x a. 

This evaluation thus defines the confidence value Q that each action a is able to 

represent the state s. The Q function performs the mapping as in equation (1). 

𝑄: 𝑠 𝑥 𝑎 → 𝑈 (1)  



 

 

where U is the expected utility value when selecting action a in state s. As long as 

the state does not omit relevant information, nor introduce new information, once the 

optimal function Q is learned, the decision method will know precisely which action 

results on the higher future reward under each state. The reward r is attributed to each 

pair action-state in each iteration, representing the quality of this pair, and allows the 

confidence value Q to be updated after each observation. r is defined as in (2). 

𝑟𝑎,𝑠,𝑡 =  1 − 𝑛𝑜𝑟𝑚|𝑅𝑃𝑎,𝑠,𝑡,𝑜,𝑝 − 𝐸𝑃𝑎,𝑠,𝑡,𝑜,𝑝| (2)  

where RPa,s,t,o,p represents the real price that has been established in a contract with 

an opponent o, in state s, in time t, referring to an amount of power p; and EP a,s,t,o,p is 

the estimation price of scenario that corresponds to the same player, amount of power 

and state in time t. All r values are normalized in a scale from 0 to 1, in order to allow 

the Q(s, a) function to remain under these values, so that the confidence values Q can 

be easily assumed as probabilities of scenario occurrence under a context. Q(s, a) is 

learned through by try an error, being updated every time a new observation (new 

contract establishment) becomes available, following equation (3).     

 𝑄𝑡+1(𝑠𝑡 , 𝑎𝑡) = 𝑄𝑡(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑠,𝑎,𝑡 + 𝛾𝑈𝑡(𝑎𝑡+1) − 𝑄𝑡(𝑠𝑡 , 𝑎𝑡)] (3)  

where  is the learning rate;  is the discount factor; and Ut (4) is the utility resulting 

from action a under state s, obtained using the Q function learned so far. 

𝑈𝑡(𝑠𝑡+1) = max
𝑎

𝑄(𝑠𝑡+1, 𝑎) (4)  

The Q Learning algorithm is executes as follows: 

• For each a and s, initialize Q(s, a) = 0; 

• Observe new event; 

• Repeat until the stopping criterion is satisfied: 

o Select the action that presents the higher Q for the current state;  

o Receive reward ra,s,t; 

o Update Q(s, a);  

o Observe new state s’; 

o s  s'. 

As the visiting of all action-state pairs tends to infinite, the method guarantees a 

generation of an estimative of Qt which converges to the value of Q. In fact, the actions 

policy converges to the optimal policy in a finite time, however slowly. In order to 

accelerate the convergence process, not only the Q value of the chosen action is 

updated, but also that of all scenarios, since the r regarding all alternative scenarios can 

be computed by comparing the estimated prices by each action and the actual values 

that have been verified in a new contract agreement. After each updating process, all Q 

values are normalized, as in equation (5), so that they are always kept in a scale from 0 

to 1, thus facilitating the interpretation as the probability of each action in correctly 

representing the negotiation reality. 



 

 

𝑄′(𝑠, 𝑎) =
𝑄(𝑠, 𝑎)

max [𝑄(𝑠, 𝑎)]
 (5)  

2.2 Collaborative learning approaches 

2.2.1  BEST-Q 

The BEST-Q algorithm selects, for each state-action pair, the best value (Q-value) 

from all tables (Q-tables) of all agents, as in (6). Then each agent updates its individual 

Q-table accordingly. 

 

𝑄𝑖(𝑠,𝑎)←𝑄𝑏𝑒𝑠𝑡(𝑠,𝑎), ∀𝑖,𝑠,a (6)  

where i is the agent.  

The disadvantage of this approach is that optimum values (Q-values) are not found 

because the values (Q-values) become equal after each update. However, the BEST-Q 

algorithm can achieve good long-term simulation policy. 

The BEST-Q algorithm uses as assumption the best confidence value for each state-

action pair according to all the data of the agents present in the environment. Each agent 

updates its Q-table by updating the pairs with the best values obtained previously. 

2.2.2 AVE-Q 

The AVE-Q algorithm is similar to the BEST-Q except that each agent updates its 

Q-values with the average of its current value and the best value (Q-value) for each 

state-action from the tables (Q-tables) of all agents, as presented in (7) 
 

𝑄𝑖(𝑠, 𝑎) ←
𝑄𝑏𝑒𝑠𝑡(𝑠, 𝑎) + 𝑄𝑖(𝑠, 𝑎)

2
, ∀ 𝑖, 𝑠, 𝑎 

 

(7)  

The main disadvantage of the AVE-Q algorithm is that it does not eliminate the bad 

values (Q-values) in the interaction stage. The AVE-Q algorithm is very similar to the 

BEST-Q algorithms except for updating the agent. It uses as assumption the best value 

of confidence for each state-action pair according to all the data of the agents present 

in the environment and its current value of learning, so the table of the agent is updated 

through the average of these two values. Each agent updates its Q-table by updating the 

pairs with the previously obtained values 

2.2.3 PSO-Q 

Multi-agent optimization known as Particle Swarm Optimization (PSO), is part of 

the swarm intelligence methodologies and techniques. This algorithm was inspired by 

the rules of alignment and cohesion of the flocks of birds, and its particularity is 

represented by the transmission and sharing of information [9]. 



 

 

Each agent is initialized with a set of possible random solutions and the optimal 

solution is searched for in each generation. The movement of each agent is influenced 

by the global optimum and personal memory, with each agent having the ability to 

adapt its speed that directs its movement and remembers the best position found to date 

[10]. This movement follows the following four rules: 

• Separation: there must be a separation between each agent, to avoid collisions. 

• Alignment: it is necessary that each agent follows the same direction of 

neighboring particles. 

• Cohesion: it is necessary that each agent follows the same position of 

neighboring particles. 

• Deviation: in the encounter of an obstacle, it is necessary that the agent is able 

to deviate. 

The PSO-Q algorithm uses PSO to find the near-optimal solution. PSO is an 

optimization method that repeatedly improves the candidate solution accordingly to 

with the qualitative measure. PSO solves decision problems that have multiple decision 

variables. In the PSO-Q algorithm the best values (Q-values) of each agent and the best 

global values (Q-values) of all agents are used by each agent to update its Q-table, as 

in (8) according to a velocity function Vi (9) that determines the movement of the 

particles involved in the search process. 

 

𝑄𝑖(𝑠, 𝑎) ← 𝑄𝑖(𝑠, 𝑎) + 𝑉𝑖(𝑠, 𝑎), ∀ 𝑖, 𝑠, 𝑎 
(8)  

𝑉𝑖(𝑠, 𝑎) = 𝑊𝑉𝑖(𝑠, 𝑎) + 𝐶1𝑅1[𝑃𝑖(𝑠, 𝑎) − 𝑄𝑖(𝑠, 𝑎)]  
+ 𝐶2𝑅2[𝐺(𝑠, 𝑎) − 𝑄𝑖(𝑠, 𝑎)] (9)  

where W is the inertia component, which defines the degree in which the movement 

will stay closer to the previous position; Pi(s,a) is the best Q-value of agent i for the 

pair s x a, G(s,a) is the best global solution for the s x a pair, C1 and C2 are weight 

components that determine the degree in which the new position will tend to the 

personal and global best, respectively; and R1 and R2 are random values ranging [0, 1].  

In the PSO-Q, the reinforcement learning problem is modeled as an optimization 

problem in which the candidate solutions are the values (Q-values of the table), and the 

qualitative measure is the Q-function. In the PSO-Q algorithm, the best values (Q-

values) of each agent and the best overall value of all agents are used for each agent to 

update its Q-table, 

2.2.4 WSS-Q 

In the WSS (Weighted Strategy-Sharing) method, it is assumed that homogeneous 

Q-Learning agents learn in some distinct environments, so their actions do not alter the 

environment of other agents and no hidden state is produced. 

Agents learn in two ways: individual learning mode and cooperative learning mode. 

First, all agents are in the individual learning mode. The agent performs several learning 

attempts. Each learning attempt starts from a random state and ends when the agent 

reaches the goal. After a specified number of individual attempts, all agents switch to 

cooperative learning mode. In the collaborative mode, each agent delegates a weight to 



 

 

the other agents according to their expertise (trust value). Then, each agent updates 

through a weighted average with the values of the other tables resulting in a new table. 

Using the WSS-Q algorithm, each agent assumes a weight for the tables of the other 

agents based on the relative skill of each agent. Subsequently, each agent uses the 

weighted average of all values of tables (Q-tables) to update its own table (10). 

𝑄𝑖(𝑠, 𝑎) ← ∑[𝑊𝑖,𝑗𝑄𝑗(𝑠, 𝑎)]

𝑛

𝑗=1

 , ∀ 𝑖, 𝑠, 𝑎 (10)  

where Wij is the weight that agent i takes on the skill of agent j. 

3 Case study  

3.1 Specifications 

This case study considers 4 independent agents, which learn the same problem from 

different perspectives. In summary, each agent needs to learn which, from 10 distinct 

actions, is the best one; in which each action refers to the choice on a negotiation 

strategy to be applied against an opponent in a bilateral negotiation. Table I shows the 

a-priori defined best actions from each agent’s perspective. 

Table I. Best a-priori actions for each agent 

Agent id 1 2 3 4 

Best actions # 10 10, 2 8, 2 8 

  From Table I it is visible that the best overall actions accordingly to the perspective 

of the 4 agents are actions 2, 8 and 10. 

The number of Q-Learning episodes to perform has the value 200 being that each 

episode is composed of 1000 repetitions of the Q-Learning steps. The sharing of 

information between agents in done at every 10 episodes. All agents initially start in 

episode 1. The parameterization for Q-Learning is as follows: the discount factor is 0.9 

for a slower exploration and a learning rate of 0.01 so that learning does not dispense 

with the desired value. 

3.2 Results 

Figure 1, 2, 3 and 4 present the evolution of the Q-values of each action, from each 

agent’s perspective, throughout all the episodes, when using the BEST-Q, AVE-Q, 

PSO-Q and WSS-Q algorithms, respectively. 

From Figure 1 is can be seen that the agents present partially identical graphs because 

they use the best values of the other agents. The BEST-Q algorithm reaches a relative 

convergence at around 360 iterations. From Figure 2 one can see that the AVE-Q 

algorithm in the first iterations presents a marked increase in values for the actions with 

greater reinforcement. The algorithm reaches a balance from the 160 iterations. It is 

concluded that AVE-Q reaches a quicker convergence that BEST-Q on the best actions. 



 

 

 

Figure 1. Evolution Q-Values for BEST-Q 

 

Figure 2. Evolution Q-Values for AVE-Q 

From Figure 3 it is visible that PSO-Q in the first iterations presents a marked 

increase in values for the actions with greater reinforcement. The algorithm reaches a 

balance from the 160 iterations. Although with the increase in the number of iterations 

another action stands out; i.e. the algorithm allows to explore other possibilities and 

make a management of learning with exploration and experience. In comparison with 

the previous algorithms this algorithm achieves a fast equilibrium allowing for the 

search of new emergent good actions. From Figure 4, one can see that the WSS 

algorithm presents variations along the number of iterations. This algorithm limits the 

choice in only 3 actions for the proposed problem (2, 8 and 10 as a-priori identified). 

In comparison with the previous algorithms this one identifies the best actions, but it 

does not demonstrate a clear convergence, like the other algorithms. 



 

 

 

Figure 3. Evolution Q-Values for PSO-Q 

 

Figure 4. Evolution Q-Values for WSS-Q 

4 Conclusions 

This paper has presented the application of four collaborative reinforcement learning 

algorithms (BEST-Q, AVE-Q, PSO-Q and WSS-Q) to the problem of identifying the 

best action (negotiation strategy) that is learned independently by several different 

agents, with different perspectives.  

Results show that with BEST-Q all agents converge to the same Q-Tables, which 

prevents them from adding their independent perspective on the problem; nevertheless, 

the best actions are identified, among others that also present good potential. AVE-Q 

converges quickly to the best actions. PSO-Q also converges quickly, but enables for 

the future identification of other emerging good actions, due to the stochastic nature. 



 

 

WSS-Q presents a great variation throughout the entire set of episodes, but it is the only 

one that enables identifying the exact 3 a-priori best actions, while the 3 other 

algorithms identify these 3 but also add some other relatively good actions into the mix.  
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