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Methods Volatomic analysis of urine samples collected 
from HNC patients (n = 29) and healthy controls (n = 31) 
was performed using headspace solid phase microextraction 
coupled to gas chromatography mass spectrometry (GC–
MS). Both univariate and multivariate statistical approaches 
were used to investigate HNC specific volatomic alterations.
Results Statistical analysis revealed a total of 28 metabo-
lites with highest contribution towards discrimination of 
HNC patients from healthy controls (VIP >1, p < 0.05, 
 Log2 FC ≥0.58/≤−0.57). The discrimination efficiency and 
accuracy of urinary VOCs was ascertained by ROC curve 
analysis that allowed the identification of four metabolites 
viz. 2,6-dimethyl-7-octen-2-ol, 1-butanol, p-xylene and 
4-methyl-2-heptanone with highest sensitivity and speci-
ficity to discriminate HNC patients from healthy controls. 
Further, the metabolic pathway analysis identified several 
dysregulated pathways in HNC patients and their detailed 
investigations could unravel novel mechanistic insights into 
the disease pathophysiology.
Conclusion Overall, this study provides valuable finger-
print of the volatile profile of HNC patients, which in turn, 
might help in improving the current understanding of this 
form of cancer and lead to the development of non-invasive 
approaches for HNC diagnosis.
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1 Introduction

According to the recent world health organization report, 
cancer is the leading cause of fatalities all over the world and 
was responsible for 8.2 million deaths in 2012. This report 
also points that 14 million new cases were diagnosed in 2012 

Abstract 
Introduction Head and neck cancer (HNC), like many 
other forms of cancer, is usually detected in advanced stages, 
causing poor survival outcomes. Lack of specific and sensi-
tive screening markers for early detection of HNC has wors-
ened the scenario for the patients as well as the clinicians. 
Therefore, identification of efficient, noninvasive and afford-
able screening marker/methodology with high specificity 
and sensitivity is imminent need of situation.
Objectives This study aims to identify and characterize 
urinary volatomic alterations specific to HNC.
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and this number is expected to reach 22 million in the next 
couple of decades (Stewart and Wild 2014). Particularly in 
India, GLOBOCAN 2012 indicated that 0.68 million people 
lost their lives due to various forms of cancer, representing 
8.3% of total global cancer casualties (Ferlay et al. 2014). 
Head and neck cancer (HNC) is a heterogeneous oncologi-
cal disease comprising tumors from the mucosal lining of 
the mouth, salivary glands, oropharynx, nasopharynx, and 
hypopharynx (Rezende et al. 2010). HNC is the third most 
common cancer across the globe and collectively contrib-
ute to substantial mortality, with estimated 526,481 annual 
incidences worldwide (Ferlay et al. 2014). In India, however, 
HNC is the most common malignancy found in males, a fact 
that is correlated to the high prevalence of human papillo-
mavirus (HPV) infection, tobacco and alcohol abuse (Wyss 
et al. 2013).

Among the HNCs, mouth and tongue malignancies are 
the most common in the Indian subcontinent (Mishra and 
Meherotra 2014). For Epstein-Barr virus (EBV) and HPV 
positive patients, reliable prognostic biomarkers along with 
positron emission tomography imaging technique are rou-
tinely used in clinical practices. However, for HPV nega-
tive cases, lack of suitable screening biomarkers results in a 
disease diagnosis at advanced stages which ultimately leads 
to high mortality due to the narrow window for therapeutic 
intervention (Yonezawa et al. 2013). Squamous cell carci-
noma antigen, the most reliable marker for the head and neck 
squamous cell carcinoma has only 43% sensitivity (Inal et al. 
2004). Other putative markers such as p53, Ki67, Collagen 
XVII and EGFR with a sensitivity of 63, 54, 78.5 and 82.6% 
respectively are also not reliable for diagnosis use in the 
clinical practice (Tamás et al. 2011). Beyond the absence 
of reliable biomarkers, the late diagnosis, invasive as well 
as expensive surgical procedures and the limited access to 
modern medical facilities are important reasons for the high 
prevalence of HNC in India (Mallath et al. 2014).

Therefore, the development of reliable, affordable and 
noninvasive methods/markers for the diagnosis and screen-
ing of high risk population in the clinical environment is 
the utmost need of the current scenario. An exciting alter-
native to overcome the referred constraints of conventional 
diagnosis is the detection of discriminant sets of volatile 
organic metabolites (VOMs) for HNCs in biofluids such as 
urine (Amann et al. 2014; Downes et al. 2007; Shen et al. 
2015; Silva et al. 2011, 2012). The principle involved in 
this approach is supported by the fact that disease and nor-
mal condition can be distinguished from each other by their 
changed physiology and metabolic rates, as well as differ-
ential protein expression patterns, which ultimately leads 
to the production of disease specific alterations in VOMs 
(Burke et al. 1983). In turn, these putative volatile mark-
ers can be easily transferred to different sensor technolo-
gies like eNOSE, facilitating their use (Wilson 2015). This 

approach is noninvasive, highly sensitive and comprehensive 
and could be readily applied to the clinical environment to 
screen high-risk population within short span of time with-
out requiring trained medical staff with well-equipped hospi-
tals. In the past, volatomic analysis has been applied toward 
diagnosis of several cancers, including lung (Liu et al. 2013; 
Phillips et al. 1999), breast (Silva et al. 2012), gastric (Chen 
et al. 2010), prostate (Roberts et al. 2011), thyroid (Guo 
et al. 2015) and colorectal (Arasaradnam et al. 2014).

To the best of our knowledge, here, we report for the 
first time, the characterization of the urinary VOMs from 
HNC patients and healthy controls in a cohort of 60 samples 
using headspace solid phase microextraction (HS-SPME) in 
combination with gas chromatography mass spectrometry 
(GC–MS). As a result, we identified a set of four VOMs 
viz. 2,6-dimethyl-7-octen-2-ol, 1-butanol, p-xylene and 
4-methyl-2-heptanone with promising discrimination abil-
ity for HNC diagnosis.

2  Materials and methods

2.1  Subject selection

HNC urine samples were collected from the Malignant 
Disease Treatment Centre (MDTC), Unit of the Military 
Hospital-Cardio Thoracic Centre (MH-CTC), Armed Forces 
Medical College (AFMC), Pune, India. The samples from 
healthy controls were obtained through the health check-up 
camp organized by the hospital. The sample cohort for this 
study comprised of patients with HNC (n = 29) as malignant 
group while the age and gender matched healthy volunteers 
(n = 31) served as the control group. The inclusion criteria 
for this study comprised of minimum 18 years old subjects 
with histological confirmation of HNC without anticancer 
therapeutic interventions. Age and gender matched healthy 
individuals devoid of hypertension, diabetes and not having 
any medication during last 3 months were selected as healthy 
controls. Moreover, healthy controls and HNC patients were 
matched for smoking habit.

2.2  Sample collection

Early morning first urine samples from each subject were 
collected in sterile 50 mL falcon tubes after maintaining 
the subjects in overnight fasting condition. Samples were 
labelled, centrifuged at 5000 g for 10 min at 4 °C, filtered 
through 0.45 µm filters and stored at −80 °C until further 
analysis within 2 h of collection. This study was approved 
by the institutional ethics committee of AFMC and National 
Centre for Cell Science (NCCS). All the participants in 
this study were informed about the investigation and prior 
informed consent was obtained. The demographic and 
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clinical information of the subjects employed in this study 
is summarized in Table S1.

2.3  Sample processing

The VOMs from the urine samples obtained from healthy 
controls and HNC patients were extracted using the HS-
SPME sampling approach as described previously (Silva 
et al. 2011). Briefly, 4 mL of urine sample was transferred 
into 8 mL headspace glass vial (Thermo Fisher, USA), acidi-
fied with 0.5 mL of 5 M hydrochloric acid (Merck, Ger-
many) and added 0.8 g of sodium chloride (Merck, Ger-
many). The processed sample was then closed with a Teflon 
(PTFE) septum using a screw cap after adding a magnetic 
stirring bar (0.5 × 0.1 mm) to the vial. The sample vial was 
then incubated at 50 °C with continuous stirring at 800 rpm. 
The carboxen/polydimethylsiloxane (CAR/PDMS) SPME 
fibre 75 μm (Supelco, USA) was immediately exposed into 
the headspace of the vial for 1 h in order to allow efficient 
adsorption of the VOMs. After incubation, the SPME fibre 
was retracted back into the safety needle and inserted into 
the inlet port of the GC–MS (250 °C) system for 6 min for 
thermal desorption of the VOMs.

2.4  Volatomic analysis and data preprocessing

The headspace VOMs were analysed using an Agilent 
7890B gas chromatograph (Palo Alto, USA) equipped 
with BP-20 (SGE, Germany) fused silica capillary column 
(60 m × 0.25 mm × 0.25 µm) and interfaced with Agilent 
5977A quadrupole inert mass selective detector. The oven 
temperature was programmed as follows: 45 °C held for 
5 min, then increased at 2 °C min−1 upto 150 °C followed 
by 10 min hold, then again ramped at 15 °C min−1 up to 
220 °C and finally held for 15 min with the total GC run time 
of 87 min. Helium with a purity of 99.999% (Prama Enter-
prises, India) was used as the carrier gas at 1 mL min−1 flow 
rate. The injections were performed in splitless mode with 
the inlet port temperature at 250 °C. The transfer line, quad-
rupole and ionization source temperatures were maintained 
at 250, 150 and 230 °C respectively. Data acquisitions were 
carried out in full scan mode in the range of 30 to 300 m/z 
and the electron impact mass spectra were recorded at a 
70 eV. Each sample was analysed in duplicate. Metabolite 
identification was achieved by manual inspection of chroma-
tograms and spectra by Agilent ChemStation data analysis 
software (Palo Alto, USA) linked with the NIST11 mass 
spectral library, using match score of ≥75%. Integration of 
the chromatograms was also performed by the ChemStation 
data analysis software. VOMs showing missing values >50% 
were removed from the analysis.

2.5  Statistical analysis

Peak area of the all identified VOMs of HNC and healthy 
control groups were subjected to statistical analysis by Meta-
boAnalyst 3.0 web based tool (Xia et al. 2015). Features 
with >50% missing value were removed while features with 
<50% missing values were replaced by half of minimum 
positive value in the original data. Two control samples 
were detected as outliers and subsequently removed from 
the final analysis. The data was median normalised, trans-
formed by cubic root and scaled by auto scaling approaches. 
The normalised data was further subjected to univariate 
and multivariate statistical analysis. The univariate statisti-
cal analysis such as Wilcoxon rank-sum test (p < 0.05) and 
 log2 fold change (≥0.58/≤−0.57) was performed to evaluate 
the significant differences among urinary VOMs of healthy 
controls and HNC patients. Positive  log2 fold change is 
treated as upregulated metabolite expression while nega-
tive  log2 fold change reflects its downregulation. The multi-
variate supervised statistical classification models, namely 
partial least squares-discriminant analysis (PLS-DA) and 
random forest (RF) classification were used to visualise the 
distribution of variables among HNC and control groups 
and to identify important VOMs that discriminate between 
the two groups. PLSDA variable important in projection 
(VIP) scores allowed us to rank each of the individual fea-
tures according to its ability to segregate different classes 
of experimental data. The VIP score is a weighted sum of 
square of the PLS loadings. The weights correspond to the 
percentage variation explained by the PLS-DA component 
in the model. The features with VIP >1 were considered 
to be important for discrimination (Xia and Wishart 2011). 
Hierarchical cluster analysis (HCA) was performed using 
metabolite profiles of healthy and HNC urine samples to 
identify inherent clustering patterns. Pearson distance analy-
sis is used as similarity measure. It shows the linear relation-
ship between two quantifiable, continuous variables as well 
as it is a measure of strength of the association between the 
two variables (Xia and Wishart 2011). To further assess the 
predictive value of identified urinary VOMs, we performed 
receiver operator characteristic (ROC) curve analysis to 
identify potential diagnostic metabolites that can discrimi-
nate HNC patients from healthy controls with high speci-
ficity and sensitivity. Also, the metabolic profiles of HNC 
and healthy samples were utilized to get a holistic view of 
the dysregulated pathways in HNC by using MetPA tool in 
Metaboanalyst 3.0 web application (Xia et al. 2011). All the 
VOMs discussed here are identified as per the guidelines 
laid down by metabolomics standard initiative (Fiehn et al. 
2007). Metadata compliant with metabolomics standard ini-
tiative (MSI) for the VOMs identified is reported in support-
ing information 2 (Griffin et al. 2007).
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3  Results

3.1  Identification of the altered urinary VOMs by GC–
MS

To identify the urinary volatomic profile of HNC patients 
and the healthy volunteers, 29 samples of HNC patients 
and 31 samples of healthy control group were extracted 
using HS-SPME and further analysed by GC–MS. Through 
GC–MS analysis of three chromatograms from each group, 
110 VOMs (>75% match score) were identified through the 
NIST11 mass spectral library and were further used in the 
data integration method for the remaining chromatograms 
(85% occurrence). Furthermore, only the VOMs having 
≥85% occurrence of frequency among all the samples were 
considered for following statistical treatment. The repre-
sentative chromatograms of HNC and healthy control are 
shown in Fig. S1. The VOMs identified belongs to differ-
ent chemical families, such as sulphur and nitrogen con-
taining compounds, furanic compounds, ketones, alcohols, 
benzene derivatives, alkanes, terpenic compounds, organic 
acids, aldehydes, phenolic compounds etc. Representative 
chromatograms showing differential regulation of some of 
the VOMs are depicted in Fig. 1a, b.

3.2  Statistical analysis of the VOMs identified in HNC 
patients and healthy control group

In total, out of 110, 101 VOMs were retained after the miss-
ing value estimation and were considered for further statis-
tical analysis. To reduce the complexity of data and make 
features more comparable, data normalisation was carried 
out with a combination of row wise normalisation meth-
ods which includes normalisation to sample median, data 
transformation by cubic root and data scaling by autoscal-
ing (Fig. S2). The normalised data obtained was further 
subjected to univariate statistical analysis tools such as  log2 
fold change (≥0.58/≤−0.57) and Wilcoxon rank-sum test 
(p < 0.05). The aim of fold change analysis is to compare the 
mean value changes between HNC and healthy control group 
and identify the metabolites showing differential regulation. 
 Log2 fold change analysis revealed that 19 VOMs were up 
regulated while 24 VOMs were downregulated (Table S2). 
The highest fold change was observed for 5-methyl-3-hex-
anone. Wilcoxon rank-sum test was carried out to evalu-
ate significant statistical differences among concentrations 
of urinary VOMs of HNC and healthy control groups and 
identified 2,6-dimethyl-7-octen-2-ol as the most significantly 
altered metabolite in HNC patients. Important features iden-
tified by both  log2 fold change analysis and Wilcoxon rank-
sum test are summarised in supplementary Table S2.

To decide if there was an altered VOM signature in the 
urine of the HNC patients and healthy controls studied, we 
first examined the separation of study population based on 

Fig. 1  Representative merged 
chromatograms of HNC patients 
and healthy controls depicting 
a upregulation of 4-heptanone, 
and b downregulation of 
1,6-dimethyl-4-(1-methylethyl)-
napthalene
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urinary VOMs using supervised partial least square dis-
criminant analysis (PLS-DA) models (Boccard and Rudaz 
2013). Decent group separation was achieved between 
HNC patients and healthy controls, suggesting the presence 
of characteristic metabolic alterations among each group 
(Fig. 2a). The permutation test (100 no.) based on predic-
tion accuracy was carried out for PLS-DA model validation. 
The p value based on permutation obtained was p < 0.01 
(0/100) which clearly indicate that data is not over fitted 
(Fig. 2b). The model was further cross validated using ten-
fold cross validation method (max components = 5; perfor-
mance indicator = Q2) (Table S4a). The top 28 differentially 
expressed metabolites were selected with variable impor-
tance in projection (VIP) score of >1, p < 0.05,  log2 FC 
≥0.58/≤−0.57 and regarded as critical for the discrimina-
tion among study groups in the score plot. The statistically 
significant VOMs identified by both univariate (p < 0.05 and 
 log2 FC ≥0.58/≤−0.57) and multivariate (VIP >1) analyses 
are summarised in Table 1. Additionally, random forest (RF) 
analysis was carried out to determine the ability of urinary 
VOMs to accurately classify the subjects into their respec-
tive groups, as well as identify the metabolites that have 
strong correlation with the disease, and hence were criti-
cal for class prediction. RF analysis classified HNC patients 

and healthy control group with accuracy of 100 and 90% 
respectively, with out of bag (OOB) classification error rate 
of 0.0517 (Fig. S3a). Major contributory metabolites for 
classification are shown in Fig. S3b. RF classification per-
formance is presented in Table S4b. HCA was performed 
using metabolite profiles of both study groups to identify 
the inherent clustering patterns. The heat map of metabolites 
(p < 0.01) was generated by average algorithm and Pearson 
distance analysis, which clearly depict distinct clustering 
patterns among the studied groups (Fig. 2c).

3.3  Receiver operator characteristic (ROC) curve 
analysis

To further characterize the predictive value of the identi-
fied metabolites to discriminate HNC patients from healthy 
controls, we carried out ROC curve analysis. The ROC curve 
analysis is used for the classification of true positives and 
false positives (Obuchowski et al. 2005).The predictive util-
ity of ROC curve is measured using area under the curve 
(AUC). The AUC for a metabolite equal to 0.5 indicate 
random prediction and <0.5 is worse than random predic-
tion and therefore less significant to distinguish two sample 
groups. In turn, a value close to 1 is considered as a perfect 

Fig. 2  Multivariate statistical analysis of urinary VOMs of HNC 
patients and healthy controls. a Partial least square discrimination 
analysis of urinary VOMs among malignant and healthy groups, b 
PLS-DA model validation by permutation test based on prediction 

accuracy, c hierarchical cluster analysis performed using metabolite 
profiles of healthy and malignant urine samples. The heat map was 
generated using 25 most significant metabolites (p value < 0.01) by 
Average algorithm and Pearson distance analysis
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discrimination test where all positives are true positives 
and all negatives are true negatives (Broadhurst and Kell 
2006). The top four metabolites with highest discrimina-
tive ability of HNC against the healthy controls includes 
2,6-dimethyl-7-octen-2-ol (AUC = 0.925), 1-butanol 
(AUC = 0.920), 4-methyl-2-heptanone (AUC = 0.885) and 
p-xylene (AUC = 0.885) (Fig. 3). The ROC curve analysis, 
including specificity, sensitivity and respective fold change 
between HNC and healthy control group is summarized in 
Table 2.

3.4  Metabolic pathway analysis

Metabolic pathway analysis of the identified urinary VOMs 
revealed several metabolic pathways that are significantly 
altered in HNC patients (Fig. 4). The important metabolic 
pathways that are excessively active in HNC were butanoate 
metabolism, glycolysis or gluconeogenesis, propanoate 
metabolism, pyruvate metabolism, sulfur metabolism, 
taurine and hypotaurine metabolism, selenoamino acid 

metabolism and synthesis and degradation of ketone bod-
ies. The pathways showing suppressed activity in HNC were 
related with cysteine and methionine metabolism (Table S3).

4  Discussion

Otto Warburg showed in 1920 that cancer cells are highly 
glycolytic compared to normal cells, a condition which is 
known as the Warburg effect (Warburg et al. 1927; Potter 
et al. 2016). Since then, it has become more evident that 
malignant cells differ significantly in their metabolism from 
their normal counterpart. The altered metabolism is essential 
for survival and to sustain the proliferative nature of can-
cer cells by excessively diverting glycolysis intermediates 
to replenish biosynthesis of nucleotides, proteins and fatty 
acids, essential to maintain malignant characteristics (Lunt 
and Vander Heiden 2011). Specifically, capturing these 
altered metabolic profiles could help us to identify clinically 
relevant biosignatures that may be helpful in noninvasive 

Table 1  Important 
discriminatory metabolites 
identified by statistical analysis

VIP variable importance in projection, FDR false discovery rate, FC fold change

Sr. No. Compounds VIP p value FDR FC  (log2)

1 1-Butanol 2.1025 2.12E−09 1.07E−07 3.07
2 p-Xylene 2.044 8.19E−08 2.32E−06 1.87
3 4-Methyl-2-heptanone 1.8761 9.18E−08 2.32E−06 3.31
4 1,1,4,5,6-Pentamethyl-2,3-dihydro-1H-indene 1.8502 2.22E−07 4.48E−06 −1.67
5 2,3-Dichloro-benzenamine 1.7188 8.58E−06 8.66E−05 −2.37
6 1,3-Bis-(1,1-dimethylethyl)-benzene 1.6602 5.54E−06 7.00E−05 1.37
7 1-Methyl-4-2-methylpropyl-benzene 1.6537 8.89E−05 0.000748 −1.78
8 1,2,3,4-Tetrahydro-1,1,6 trimethylnaphthalene 1.6533 7.21E−06 8.10E−05 −1.58
9 4-Ethyl1,3-benzenediol 1.6533 5.07E−06 7.00E−05 1.58
10 2,6-Dimethyl-7-octen-2-ol 1.6524 8.97E−10 9.06E−08 −4.52
11 2,3-Dihydro-3,3,5,6-tetramethyl-1H-inden-1-one 1.6231 1.53E−06 2.57E−05 −1.17
12 2-Ethyl-1-hexanol 1.4303 0.002822 0.010557 1.82
13 2-(2-Butenyl)-1,3,5-trimethylbenzene 1.426 7.43E−05 0.000682 −1.95
14 1,6-Dimethyl-4-(1-methylethyl) naphthalene 1.4026 0.00095 0.005049 −1.31
15 3,5-Dimethyl-1-(Phenylmethyl) benzene 1.3797 0.000421 0.003025 −1.73
16 4-(1-Methylethyl)-1,1′-biphenyl 1.3794 0.000449 0.003025 −1.73
17 3,7,11-Trimethyl-1-dodecanol 1.3348 0.004547 0.014351 1.13
18 1-Methyl-4-(1-methylethenyl)-benzene 1.2916 0.000894 0.005017 −1.20
19 1,7,7-Trimethyl-bicyclo[2.2.1]hepten-2-ene 1.2683 0.002143 0.009408 −1.06
20 Benzyl chloride 1.2645 0.001915 0.009209 −1.24
21 2-Methyl-5-(methylthio)furan 1.1811 0.008277 0.021999 −1.22
22 2-Pentanone 1.1599 0.002673 0.010557 1.68
23 Trans-calamenene 1.1424 0.004098 0.013352 −1.08
24 3-Hepten-2-one 1.126 0.005577 0.016095 1.01
25 1-Decen-3-one 1.1164 0.002822 0.010557 1.06
26 Dodecane 1.0679 0.000894 0.005017 1.63
27 2-Heptanone 1.0372 0.016538 0.037961 3.14
28 1-Ethenyl-4-(2-methylpropyl)-benzene 1.0015 0.015133 0.035545 5.10
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detection of cancer, improve diagnosis and prognosis as well 
as aid in finding better drug targets for enhanced therapeu-
tic outcome. Different tools, techniques and biospecimens 
such as saliva, blood, urine, cells and tissue were routinely 
employed by several investigators to capture metabolomic 
profiles of cancer, including HNC. In the present study, 
we demonstrated for the first time that urinary volatomic 
signature of HNC exists and can be detected by HS-SPME 
coupled to GC–MS analysis. The identified metabolites 
were grouped under various chemical families based on 
their chemical nature and could be of microbial, endoge-
nous or exogenous in origin. Organic acids and alcohols are 

produced mainly due to carbohydrate degradation by anaero-
bic bacteria in the intestine, while alkanes are derived from 
lipid peroxidation of polyunsaturated fatty acids found in the 
cell membrane (Cummings 1981; Haick et al. 2014). In turn, 
exogenous metabolites can be accumulated through feeding, 
air inhalation or skin absorption (Ulanowska et al. 2010).

Univariate statistical analysis revealed that ketonic 
metabolite 3-Hepten-2-one is significantly elevated in HNC 
patient’s urine with 1.01  log2 fold change. Furthermore, 
multivariate statistical analysis confirm that other ketonic 
metabolites such as 2-pentanone, 2-heptanone, and its meth-
ylated derivative 4-methyl-2-heptanone are significantly 

Fig. 3  Receiver operator characteristic curve of a 2,6-dimethyl-7-octen-2-ol, b 1-butanol, c 4-methyl-2-heptanone and d p-xylene

Table 2  The AUC values including sensitivity, specificity, p value and fold change of top four differentially expressed metabolites with highest 
discriminative ability of HNC against the healthy controls obtained by ROC curve analysis

AUC area under curve, FDR false discovery rate, FC fold change

Compound AUC Sensitivity Specificity p value FDR FC  (log2)

2,6-Dimethyl-7-octen-2-ol 0.92 0.8 0.8 8.97E−10 9.06E−08 −4.52
1-Butanol 0.92 0.9 0.9 2.12E−09 1.07E−07 3.07
p-Xylene 0.88 0.9 0.8 8.19E−08 2.32E−06 1.87
4-Methyl-2-heptanone 0.88 0.8 0.8 9.18E−08 2.32E−06 3.31
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upregulated in HNC patients as compared to healthy con-
trols and emerged as major discriminatory metabolites 
between the two study groups. Additionally, pathway anal-
ysis also indicated that butanoate metabolism and ketone 
body metabolism are excessively active in the HNC patients. 
Interestingly, ketone bodies, a source of high energy fuel 
that produce more energy compared to other mitochondrial 
fuel is also preferentially utilized by cancerous cells under 
the hypoxic condition which allows tumor to grow without 
proper oxygen supply (Martinez-Outschoorn et al. 2012). 
Therefore, presence of higher concentration of ketones in 
HNC patient’s urine indicate an important fact that ketone 
bodies are being excessively produced in the HNC patients 
as compared to their healthy counterparts. Also, this could 
be attributed to the fact that food intake in the HNC patients 
is severely affected and major needs of energy are compen-
sated through oxidation of fatty acids and tissue protein 
catabolism, which result in weight loss and production of 
ketone bodies.

It’s a well-known fact that cancer cells are highly glyco-
lytic and generate most of the energy through aerobic gly-
colysis (Warburg 1956). Pyruvic acid, an end product of 
the glycolytic cycle is subsequently reduced to lactic acid 
instead utilized in oxidative phosphorylation and may fur-
ther get converted to acetic acid. Furthermore, acetyl CoA 
and pyruvic acid, both can directly convert into acetic acid 
resulting into increased accumulation which reflects upregu-
lated glycolysis and pyruvate metabolism in HNC patients. 
Interestingly, it should be noticed that chronic alcohol abuse 
among HNC patients may also lead to the production of 

elevated levels of acetic acid by ethanol catabolism cata-
lyzed by alcohol dehydrogense enzyme (Schug et al. 2016).

Dodecane, an acyclic alkane was found in the headspace 
of the urine samples of both the study groups. The concen-
tration of dodecane was higher in HNC patients in com-
parison with healthy controls. Alkanes are primarily gener-
ated by peroxidation of polyunsaturated fatty acids (PUFA) 
known as reactive oxygen species (ROS) mediated lipid 
peroxidation (Frank Kneepkens et al. 1994). The altered 
redox status and the generation of ROS are common bio-
chemical events that occur in malignant cells (Barrera 2012; 
Panieri and Santoro 2016). Therefore, detection of higher 
amounts of lipid peroxidation products such as dodecane 
in HNC patient’s urine was not surprising. Other hydrocar-
bons, mainly napthalene derivatives are suppressed in HNC 
patients as compared to healthy volunteers and thought to 
be derived from degradation of steroids but little is known 
about their origin and role in cell metabolism.

Alcohols such as 1-butanol, 2-ethyl-1-hexanol and 
3,7,11-trimethyl-1-dodecanol are significantly upregulated, 
while 2,6-dimethyl-7-octen-2-ol considerably down regu-
lated in HNC. Specifically, 2-ethyl-1-hexanol was reported at 
an increased concentration in saliva of lung cancer patients 
and NSLC cell lines (Sponring et al. 2009). This could be 
attributed to the fact that cytochrome P450 enzymes are 
induced during carcinogenesis and subsequently hydroxy-
late several VOMs, including alkanes such as butane, octane, 
hexane and dodecane produced during ROS mediated lipid 
peroxidation of PUFA and leads to the production of cor-
responding alcohol (Hakim et al. 2012). Moreover, these 

Fig. 4  a Altered metabolic pathways among HNC patients as com-
pared to healthy controls. 1 Butanoate pathway, 2 glycolysis or glu-
coneogenesis, 3 cysteine and methionine metabolism, 4 propanoate 
metabolism, 5 nicotinate and nicotinamide metabolism, 6 pyruvate 

metabolism, 7 synthesis and degradation of ketone bodies, b the 
butanoate metabolism pathway. The map was generated using refer-
ence map by KEGG. C06142 represent 1-butanol, C00246 represents 
butyric acid
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alcohols are converted either into the respective aldehydes 
by various enzymes, such as alcohol dehydrogenase and 
cytochrome P450 (CYP2E1) or excreted through breath, 
urine, saliva, sweat, feces etc.

Hypotaurine is involved in the protection against oxida-
tive stress and ROS induced membrane damage (Brand et al. 
1998). In HNC patients, taurine and hypotaurine metabolism 
is more active, which indicates increased levels of ROS and 
oxidative stress, a common signature of malignant cells and 
detected in almost all cancers. The taurine and hypotaurine 
metabolism is found to be altered in various malignancies 
including breast, ovarian, colon, lung and renal cancer (Gos-
sai and Lau-Cam 2009; Huang et al. 2016; Pradhan et al. 
2013; Roy et al. 2014; Tiruppathi et al. 1992). Cysteine 
and methionine metabolism is down regulated in the HNC 
patients and characterized by the presence of methanethiol 
in reduced quantity as compared to healthy controls. Meth-
anethiol is generated by incomplete metabolism of methio-
nine by transamination pathway and is found significantly 
down regulated in malignant cells (Silva et al. 2011).

Several benzene derivatives were found at varying 
concentrations in the urine of the both the study groups. 
For most of the benzene derivatives, their origin and role 
in metabolism is not clear but assumed as exogenous and 
derived from various sources such as cigarette smoke, 
tobacco chewing, alcohol consumption, pollution and 
exposure to radiation. Since these molecules are highly 
hydrophobic in nature, they easily pass through membrane; 
enter the cytoplasm and causes chronic peroxidative dam-
age to the macromolecules which ultimately lead to the 
development of diseases such as cancer (Halliwell et al. 
1992). These absorbed compounds are then functionalized 
by cytochrome P450 enzyme and further conjugated to a 
more soluble and excretable form by other enzymes such 
as glutathione S-transferase, sulfotransferase and N-acetyl-
transferase (Guengerich et al. 1991) and ultimately removed 
from the body. Overall, the results obtained in this study are 
noteworthy and provides valuable insights into the volatile 
alterations of HNC subjects. However, we believe that fur-
ther studies in a large cohort of patients are required in order 
to validate and confirm the utility of the identified urinary 
VOCs as diagnostic markers.

5  Conclusions

To the best of our knowledge, we have carried out, for 
the first time, the urinary volatomic profiling of HNC in 
a cohort of 29 patients along with 31 healthy controls, 
using HS-SPME and GC–MS approach and identified 
101 VOMs. The univariate and multivariate statistical 
analysis revealed 28 metabolites significantly altered 
in HNC. From the panel of the metabolites detected, 

2,6-dimethyl-7-octen-2-ol, 1-butanol, p-xylene and 
4-methyl-2-heptanone have emerged as potential volatile 
signature with highest sensitivity and specificity to dis-
criminate HNC patients from healthy controls. The meta-
bolic pathway analysis indicated that the discriminatory 
VOMs could be originated from several dysregulated path-
ways in HNC such as butanoate metabolism and ketone 
body synthesis and degradation. This further paves a way 
to utilize these pathways as targets for the development of 
novel therapeutic interventions.
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