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Abstract
Introduction  The metabolic shift induced by hypoxia in cancer cells has not been explored at volatilomic level so far. The 
volatile organic metabolites (VOMs) constitute an important part of the metabolome and their investigation could provide 
us crucial aspects of hypoxia driven metabolic reconfiguration in cancer cells.
Objective  To identify the altered volatilomic response induced by hypoxia in metastatic/aggressive breast cancer (BC) cells.
Methods  BC cells were cultured under normoxic and hypoxic conditions and VOMs were extracted using HS-SPME 
approach and profiled by standard GC–MS system. Univariate and multivariate statistical approaches (p < 0.05, Log2 
FC ≥ 0.58/≤ − 0.58, PC1 > 0.13/< − 0.13) were applied to select the VOMs differentially altered after hypoxic treatment. 
Metabolic pathway analysis was also carried out in order to identify altered metabolic pathways induced by the hypoxia in 
the selected BC cells.
Results  Overall, 20 VOMs were found to be significantly altered (p < 0.05, PC1 > 0.13/< − 0.13) upon hypoxic exposure to 
BC cells. Further, cell line specific volatilomic alterations were extracted by comparative metabolic analysis of aggressive 
(MDA-MB-231) vs. non-aggressive (MCF-7) cells incubated under hypoxia and normoxia. In this case, 15 and 12 VOMs 
each were found to be significantly altered in aggressive cells when exposed to hypoxic and normoxic condition respectively. 
Out of these, 9 VOMs were found to be uniquely associated with hypoxia, 6 were specific to normoxia and 6 were found 
common to both the conditions. Formic acid was identified as the most prominent molecule with higher abundance levels in 
aggressive as compared to non-aggressive cells in both conditions. Furthermore, metabolic pathway analyses revealed that 
fatty acid biosynthesis and nicotinate and nicotinamide metabolism were significantly altered in aggressive as compared to 
non-aggressive cells in normoxia and hypoxia respectively.
Conclusions  Higher formate overflow was observed in aggressive cells compared to non-aggressive cells incubated under 
both the conditions, reinforcing its correlation with aggressive and invasive cancer type. Moreover, under hypoxia, aggres-
sive cells preferred to be bioenergetically more efficient whereas, under normoxia, fatty acid biosynthesis was favoured when 
compared to non-aggressive cells.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s1130​6-020-1635-x) contains 
supplementary material, which is available to authorized users.
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1  Introduction

Worldwide, breast cancer (BC) is the most prominent malig-
nant condition observed in women, with an overall incidence 
rate only second to lung cancer and the fifth in terms of 
mortality. Approximately 2.1 million new cases were diag-
nosed in 2018, accounting for 11.6% of total global cancer 
burden (Bray et al. 2018). Although, recent trends of early 
diagnosis and improved chemotherapeutic interventions 
have led to enhanced overall disease free survival rate but 
still, approximately 30% of the localized BC cases detected 
at initial stages eventually progress into distant organ metas-
tases (O’Shaughnessy 2005).

Higher cell proliferation rate and increased oxygen con-
sumption in solid tumor lead to the development of intra-
tumoral hypoxic environment (Harris 2002; Vaupel et al. 

2007). It is well established phenomenon that hypoxic 
microenvironment is a major driver of the cancer progres-
sion, invasiveness and metastasis (Chaturvedi et al. 2013; 
Semenza 2016; Zhang et  al. 2016). Hypoxic condition 
induces several adaptive responses in the cancer cells which 
allow them to adjust to hostile environment (Vaupel 2004). 
These effects are carried out by the group of transcription 
factors known as hypoxia inducible factors (HIF), which 
comprise of the α and β heterodimers viz. HIF-1α, HIF-2α 
and HIF-3α (Prabhakar and Semenza 2012; Semenza 2012). 
In particular, HIF1α is considered as a master regulator of 
the hypoxia-driven responses that are critical for the malig-
nant features of the tumor (Semenza 2010a, b).

Hypoxia induced stabilization of HIF1α drives an altered 
gene expression pattern in cancer cells which results in 



Extracellular volatilomic alterations induced by hypoxia in breast cancer cells﻿	

1 3

Page 3 of 12  21

proteomic and metabolic adaptations better suited to can-
cer cells survival and proliferation in hostile microenvi-
ronment (Denko et al. 2003; Favaro et al. 2011; Jaakkola 
et al. 2001; Wang et al. 1995). The phenomenon such as 
‘Warburg effect’ where cancer cells prefer aerobic glycoly-
sis over mitochondrial oxidative phosphorylation to gener-
ate energy, even when adequate oxygen is available, is one 
of the most notable metabolic shifts observed in malignant 
condition (Warburg 1956; Warburg et al. 1927). It is now 
well established that HIF1α once stabilized under hypoxic 
condition, drives Warburg effect by repressing mitochondrial 
oxidative phosphorylation and promoting aerobic glycoly-
sis (Weidemann and Johnson 2008). Moreover, HIF1α also 
upregulates several cancer specific isoforms of glycolytic 
enzymes including glucose transporter (Semenza 2010a, b). 
Furthermore, it is also reported that, HIF1α control expres-
sion of hypoxia regulated miRNA (HRM) such as miR-210 
by modifying the strength of hypoxia response elements 
(HREs) (Huang et al. 2009). Interestingly, it is now known 
that, miRNA-210 regulates the mitochondrial metabolic 
shift from oxidative phosphorylation to aerobic glycolysis 
by inhibiting electron transport chain complexes (Chen et al. 
2010; Fasanaro et al. 2009).

Therefore, it is evident that, hypoxic microenviron-
ment induces prominent metabolic changes in cancer cells 
to adapt, survive and proliferate in challenging surround-
ings. Consequently, several metabolomic studies have been 
attempted to identify metabolic patterns associated with the 
hypoxia-induced metabolic alterations. Such metabolic pat-
terns would be useful to monitor disease progression and 
identify targets for better therapeutic management (Armit-
age et al. 2015; Intlekofer et al. 2015; Tsai et al. 2013; Yang 
et al. 2018). In this regard, an isotope-assisted metabolomics 
study by Metallo et al. reported that hypoxic cancer cells 
undergo reductive glutaminolysis for de novo lipid synthesis 
carried out by IDH1 enzyme (Metallo et al. 2012). Further-
more, Mashimo et al. employed C13 NMR and C13 labelled 
tracers and identified acetate as an important energy source 
for glioma (Mashimo et al. 2014). This observation was fur-
ther supported by another study which revealed that acetate 
functions as an epigenetic modulator and activates lipogenic 
genes in cancer cells under hypoxic stress (Gao et al. 2016).

Though, metabolic investigation of cancer is a routinely 
followed tool to get meaningful insights of differential 
metabolomics response but unfortunately, volatile compo-
nent of the metabolome is often ignored. Volatile organic 
metabolites (VOMs) comprise significant part of the metab-
olome which could complement and shed light on crucial 
aspects of metabolic dysregulations that occur during vari-
ous pathophysiologies (Cavaco et al. 2018; Silva et al. 2011; 
Taunk et al. 2018; Taware et al. 2017, 2018).Therefore, in 
this study, we have carried out characterization of the VOMs 
produced by the MCF-7 (non-aggressive/non-metastatic) 

and MDA-MB-231( aggressive/metastatic)BC cell lines 
grown under normoxic and hypoxic conditions to identify 
the hypoxia driven specific volatilomic signature. Moreover, 
we also attempted to establish the hypoxia mediated volati-
lomic alterations as well as related metabolic pathways spe-
cific to the aggressive phenotype of breast cancer cells. To 
the best of our knowledge, this is the first attempt to define 
the hypoxia driven volatilomic signature of the breast cancer 
in a cell line model.

2 � Materials and methods

2.1 � Cell culture and hypoxia treatment

Breast cancer cell lines MCF-7 and MDA-MB-231 were 
acquired from American Type Culture Collection (ATCC, 
USA).The MCF-7 and MDA-MB-231 cells hereafter 
referred as non-aggressive and aggressive respectively. Cells 
were seeded at a density of 2 × 106 cells/mL in high glucose 
containing Dulbecco’s Modified Eagle Medium (GIBCO 
USA) supplemented with 10% foetal bovine serum (GIBCO, 
USA) along with penicillin (100 units) and 100 µg/mL 
streptomycin (Himedia, India). Cells were incubated under 
humidified condition at 37 °C and 5% CO2 for 24 to 48 h 
or until 80% confluency was achieved. Cells were washed 
with serum free high glucose containing DMEM media to 
remove the residual traces of FBS. Both cell lines were then 
placed under normoxic condition (37 °C, 5% CO2, 74% N2 
and 21% O2) or hypoxic condition (37 °C, 5% CO2, 94% N2 
and 1% O2) for 48 h in serum-free high glucose containing 
DMEM medium. Moreover, same experiment was carried 
out without cells and considered as a negative control of the 
study. The hypoxia incubator chamber (StemCell Technolo-
gies, USA) was used for the hypoxic treatment.

2.2 � Sample processing and VOMs extraction

The conditioned media of the normoxia or hypoxia treated 
cancer cells were collected and centrifuged at 300×g for 
10 min at 4 °C, supernatant separated, labelled and stored at 
− 80 °C until further use. The VOMs from the conditioned 
media were extracted using a Headspace Solid-Phase Micro-
extraction (HS-SPME) sampling approach as described 
elsewhere (Silva et al. 2011). Briefly, 4 mL of sample were 
acidified with 0.5 mL of 5 M hydrochloric acid (Merck, Ger-
many) and salting out effect was achieved by adding 0.8 g 
of sodium chloride (Merck, Germany).The sample was con-
tinuously agitated at 800 rpm and incubated at 40 °C for 
1 h with carboxen/polydimethylsiloxane SPME fibre (CAR/
PDMS, 75 μm, Supelco, USA) exposed into the headspace 
of the sampling vial. The negative control samples were pro-
cessed in same manner as experimental samples.
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2.3 � Volatilomic data acquisition and pre‑processing

The VOMs adsorbed on the CAR/PDMS fibre were des-
orbed in the back inlet of the GC (Agilent 7890B, USA) 
for 6 min at 250 °C. The VOMs were further separated 
using BP-20 (SGE, Germany) fused silica capillary column 
(60 m × 0.25 mm × 0.25 µm) connected to quadrupole inert 
mass selective detector (Agilent 5977A, USA).The GC oven 
temperature programme and MS parameters are mentioned 
in supplementary information 2. The m/z range of 30 to 
300 was scanned for the data acquisition and spectra were 
recorded at 70 eV. For each treatment, five biological rep-
licates of both the cell lines were randomly acquired. Each 
biological replicate was acquired in technical duplicate. 
Pooled sample was prepared by adding equal quantity of all 
the samples together and acquired at regular interval of 5 
runs which served as quality control measure (Supplemen-
tary Fig. 1). ChemStation data analysis software (Agilent, 
USA) was used to integrate the chromatograms. Metabolite 
identification was achieved by NIST11 mass spectral library 
linked with the Agilent ChemStation data analysis software 
using minimum match score of ≥ 75%. VOMs showing 
missing values > 20% of the samples were removed from 
the analysis.

2.4 � Statistical and pathways analysis

The data normalization and statistical analyses were carried 
out using the web based application Metaboanalyst 3.0 (Xia 
et al. 2009; Xia and Wishart 2011). The normalized data was 
subjected to univariate and multivariate statistical analysis. 
The univariate statistical analysis such as one-way ANOVA 
or Wilcoxon rank sum t-test (p < 0.05) and log2 fold change 
(≥ 0.58/≤ − 0.58) were performed to evaluate the significant 
differences among the VOMs produced by non-aggressive 
and aggressive cells under hypoxia and normoxia. The unsu-
pervised multivariate statistical classification model, namely 
the Principal Component Analysis (PCA) was used to visu-
alise the distribution pattern of variables among hypoxic and 
normoxic groups. Important metabolites were selected based 
upon PCA loadings. To select the most important VOMs that 
discriminate between the two groups, combination of the 
univariate and multivariate statistical approach was used. 
Hierarchical cluster analysis (HCA) was performed to iden-
tify inherent clustering patterns associated with hypoxic 
and normoxic samples. Moreover, the volatilomic profiles 
of hypoxic and normoxic samples were used to get a global 
view of the altered metabolic pathways by using MetPA 
tool in Metaboanalyst 3.0 web application (Xia et al. 2011). 
Metabolomics standard initiative (MSI) guidelines were 
strictly followed during the analysis of volatilomics data 

(Griffin et al. 2007). MSI compliant metadata for identified 
VOMs is supplied as supporting information 2.

3 � Results

3.1 � Establishment of the hypoxia induced BC cell 
volatilomic signature

HS-SPME coupled to GC–MS detected total 71 VOMs in 
the conditioned media of the non-aggressive and aggressive 
cells grown under normoxic and hypoxic conditions. Total 
47 VOMs found to be endogenous in nature with criteria of 
either exclusively found in the culture media with cells or 
average abundance fold change > 3 as compared to negative 
control (Supplementary Table 1). Univariate and multivari-
ate statistical approaches were used for the identification 
of volatilomic signature associated with the hypoxia. Data 
normalization was carried out to remove the bulk differ-
ences from the data matrix and to make variables more 
comparable. The combination of median normalization, 
cube root transformation and auto scaling yielded Gaussian 
distribution of the data. Furthermore, data thus normalized 
were subjected to univariate statistical analysis using one-
way Analysis of Variance (ANOVA) to select the metabolites 
showing statistically significant differential abundances. A 
total of 26 metabolic features were identified by the ANOVA 
with the threshold of false discovery rate corrected p < 0.05 
(Supplementary Table 2). Moreover, multivariate statistical 
analysis such as PCA was also carried out in order to visu-
alise the pattern associated with the hypoxia-induced meta-
bolic changes (Fig. 1).The PCA score plots depict the sepa-
ration of the four groups belonging to non-aggressive and 
aggressive cells grown under normoxia and hypoxia (Fig. 1a 
and b).The segregation of the groups in PCA model indi-
cate that metabolic differences are dependent of the cell line 
and growing conditions. These findings were further com-
plemented by Hierarchical Cluster Analysis (HCA) which 
indicates the robust separation of all groups based upon 
metabolic concentration variation owing to difference in cell 
type and treatment (Fig. 1c). Combination of univariate and 
multivariate approaches (FDR < 0.05, PC1 > 0.13/ < -0.13) 
identified 20 VOMs significantly altered upon hypoxic expo-
sure in both the cell lines (Table 1). 

3.2 � Comparative analysis of hypoxia‑induced 
metabolic reconfiguration in aggressive 
and non‑aggressive BC cells

To understand if hypoxia induces different metabolic 
responses in aggressive with respect to non-aggressive 
cells, we carried out a comparative volatilomic analy-
sis of both cell types grown under hypoxic and normoxic 
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conditions. Combination of univariate and multivariate sta-
tistical approaches (PC1 > 0.13/< − 0.13, p < 0.05 and log2 
FC ≥ 0.58/≤ − 0.58) were used to select the 15 VOMs with 
statistically significant differential abundance in aggres-
sive cells as compared to non-aggressive cells in hypoxic 
condition (Supplementary Fig. 2A). Robust segregation 
was observed in PCA as well as HCA plot which indicate 
differential metabolic response of the cells to the hypoxic 
condition (Fig. 2). To make sure that the VOMs selected 
are hypoxia-specific and differentially altered, comparative 
volatilomic analysis between aggressive and non-aggressive 
cells under normoxic condition was also carried out. Vigor-
ous separation was observed in PCA score plots indicating 
differential volatilomic response to normoxic condition in 
aggressive phenotype of the BC cells (Fig. 3, and Supple-
mentary Fig. 2B). Finally, the discriminatory VOMs identi-
fied for hypoxic (n = 15) and normoxic conditions (n = 12) 
were compared with each other using Venn diagram analysis 
(Venny 2.0). Nine unique VOMs for hypoxic, six specific 
for normoxic condition as well as six common metabolites 

to both conditions were identified (Fig. 4, Supplementary 
Fig. 3).

3.3 � Hypoxia‑induced metabolic pathway analysis

MetPa tool of the MetaboAnalyst web application was used 
to decipher the metabolic pathway alterations in the aggres-
sive cells compared to non-aggressive cells in hypoxic as well 
as normoxic conditions. The pathway topography analysis 
showed in Fig. 5 reveals that under normoxia, the fatty acid 
biosynthesis is the most significantly altered pathway, while 
under hypoxia the nicotinate and nicotinamide metabolism 
was most affected. In contrast, the metabolic routes of meth-
ane, glyoxylate and dicarboxylate and pyruvate are relatively 
conserved among the conditions assayed. The differentially 
altered metabolic pathways are summarised in the Supple-
mentary Table 3.

Fig. 1   Multivariate statistical analysis of the hypoxia-inducible vola-
tilome of BC cells. a PCA 2D score plot and b PCA 3D score plot 
of the VOMs produced by non-aggressive and aggressive cells under 
normoxic and hypoxic conditions and c hierarchical cluster analysis 
(HCA) of VOMs produced by non-aggressive and aggressive cells 

grown under normoxic and hypoxic conditions represented as heat-
map. Clustering was performed using ‘complete’ algorithm and dis-
tance was measured by correlation. Complete algorithm used for the 
clustering and distance measured by correlation calculations
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4 � Discussion

The reduced oxygen tension in the tumor microenvironment 
results in the activation of HIF transcription factors. In turn, 
HIFs drive the expression of numerous genes involved in 
adaptation of cancer cells to challenging surroundings. It 
is known that hypoxia influences the metabolic adaptation 
in cancer cells and several studies have already been car-
ried out to identify the metabolic dysregulation that occurs 
during the hypoxic condition (Armitage et al. 2015; Intle-
kofer et al. 2015; Tsai et al. 2013; Yang et al. 2018). In this 
study, for the first time, we have carried out a comprehen-
sive volatilomic analysis of non-aggressive and aggressive 
BC cells under hypoxic and normoxic microenvironments 
to understand if hypoxia induces any significant volatilomic 
alterations which could then be correlated with the aggres-
siveness of BC.

First objective of the study was to check if hypoxia 
induces any significant volatilomic changes in the breast 
cancer cells. Multivariate statistical analysis (PCA) of both 
cell lines in hypoxic as well as normoxic conditions revealed 
distinct group segregation in score plot. This result indi-
cated that hypoxia induces cell-specific volatilomic altera-
tions. Accordingly, 20 VOMs including alcohols, aldehydes, 
organic acids and ketones were found significantly altered 

in both BC cell types after hypoxic treatment. Further, to 
identify the aggressive cell specific volatilomic alterations, 
comparative univariate and multivariate statistical analyses 
between both the cell lines were undertaken, which revealed 
15 differentially abundant VOMs in hypoxic as well as 12 
differentially altered in normoxic condition. When these 
metabolite panels were compared to each other, we observed 
that 9 VOMs were specific to hypoxia, 6 were unique to nor-
moxia and 6 were common to both conditions. Furthermore, 
the abundance of these common VOMs, either up or down, 
was conserved among the conditions assayed.

Formic acid was identified as a common metabolite which 
was found at elevated levels in aggressive as compared to 
non-aggressive cells in hypoxic as well as normoxic condi-
tion. It’s recently known that serine to formate catabolism 
is up regulated in metastatic breast cancer animal model 
(Meiser et al. 2018). In same study, they also reported that 
increased production of formate in tumor is correlated with 
higher formate concentration in the plasma. Furthermore, 
it was also reported that increased formate overflow pro-
motes cancer cell invasion in glioblastoma in a concentration 
dependent manner. Knockdown of MTHFD1L, the mito-
chondrial gene responsible for the synthesis of formate, 
leads to significant reduction of the invasion potential of 
glioblastoma. This phenotype was further rescued by the 
exogenous supply of formate to glioblastoma cells. These 
observations support the correlation between formate over-
flow and aggressive phenotype of the cancer.

Medium chain fatty acids such as octanoic and hexanoic 
acids were found to be reduced in aggressive cells when 
compared to non-aggressive cells in normoxic as well as 
hypoxic condition. In addition, another medium chain 
fatty acid n-decanoic acid was also found at lower levels in 
aggressive cells under normoxic condition. Overall, medium 
chain fatty acids showed reduced expression in aggressive 
cells under normoxic condition. These results specify that, 
medium chain fatty acids were getting consumed at higher 
rate in aggressive cells indicating excessively active fatty 
acid biosynthesis pathway under normoxic condition. On 
the other hand, propanoic acid, a short chain fatty acid level 
was elevated during hypoxic condition in aggressive cells. It 
is reported to be involved in immune-regulatory and inflam-
matory processes but, its role in malignant disease patho-
physiology is not well scrutinized (Al-Lahham et al. 2010).

Ketonic metabolites such as 4-methyl-3-penten-2-
one, and 3-hexen-2-one were found at reduced levels in 
the aggressive cells, indicating their higher consumption 
as compared to non-aggressive cells under hypoxia. It is 
not surprising to find the lower levels of ketones, as these 
molecules are considered as preferred choice for energy 
generation due to their higher energy yield compared to 
other mitochondrial substrates under hypoxic condition 

Table 1   Significant metabolic features altered upon hypoxic expo-
sure in BC cells. The metabolites were selected by PCA loading 
score > 0.13/< − 0.13, p-value < 0.05 and FDR < 0.05

Sr. No Compounds PCA loading score

1 2-1,1-Dimethylethyl-phenol 0.218
2 Formic acid 0.199
3 Methyl benzoate 0.180
4 2-Ethyl-1-hexanol 0.172
5 2,5-Dimethyl-benzaldehyde 0.163
6 3-Heptanone 0.139
7 4,6-Dimethyl-2 heptanone 0.136
8 1-Propanol − 0.144
9 Benzaldehyde − 0.145
10 n-Propylacetate − 0.148
11 Ethanol − 0.159
12 1,10-Decanediol − 0.169
13 Dodecanal − 0.178
14 Hexanoic acid − 0.182
15 3-Methyl- benzaldehyde − 0.193
16 2-Methyl- benzaldehyde − 0.197
17 Octanoic acid − 0.200
18 Hex-3-yl isobutyl ester phthalic acid − 0.205
19 1,2-Benzenedicarboxylic acid, bis2-

methylpropyl ester
− 0.205

20 n-Decanoic acid − 0.214
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(Martinez-Outschoorn et al. 2012). These findings indicate 
that aggressive cells are more efficient than non-aggressive 
cells in generating energy under hypoxic microenviron-
ment. Moreover, several metabolic pathways were found to 
be altered in aggressive cells as compared to non-aggressive 
cells under hypoxic as well as normoxic condition. The 
most obvious find refers to nicotinate and nicotinamide 
metabolism which suggests that mitigation of hypoxic stress 
by aggressive cells involves bioenergetics adjustments. In 
contrast, under normoxia, fatty acid biosynthesis and glyc-
erolipid metabolism were significantly altered indicating 
the enhanced predisposition of aggressive cells towards 
membrane synthesis and cell proliferation as compared to 
non-aggressive cells.

Taken together, results obtained from the volatilomic 
analysis of the BC cells differing in their aggressive-
ness under hypoxia as well as normoxia, revealed unique 
volatilomic signature. Further biochemical investigations 
into the differential volatilomic response could help to 
strengthen these observations. Moreover, additional fol-
low up studies could be undertaken with other malignant 

cell lines in order to identify the unique as well as com-
mon volatilomic signature associated with different types 
of cancers.

5 � Conclusions

Hypoxia induces distinct volatilomic responses in BC cells 
which can be efficiently extracted, analyzed and identified 
by HS-SPME coupled to GC–MS. A panel of 20 statistically 
significant VOMs were differentially altered in BC cells 
upon hypoxic exposure indicating a cell line and treatment-
specific metabolic adaptation. In cell line specific compara-
tive volatilomic analysis, total 15 VOMs were found to be 
differentially abundant in aggressive cells with respect to 
non-aggressive cells in hypoxic condition and 12 VOMs in 
normoxic conditions respectively. Out of these 27 VOMs, 
nine VOMs were found to be uniquely associated with the 
hypoxic condition whereas six VOMs were specific for the 
normoxic condition and six VOMs were observed to be com-
mon for both the conditions. Formic acid was identified as 

Fig. 2   a PCA 2D score plot and b PCA 3D score plot of the VOMs 
secreted by non-aggressive and aggressive cells under hypoxic condi-
tion. c Hierarchical cluster analysis (HCA) of the VOMS secreted by 

non-aggressive and aggressive cells grown under hypoxic condition 
represented as heatmap. Euclidean algorithm was used for the cluster-
ing and distance was measured by Ward Distance calculations
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the most prominently abundant VOM in aggressive cells 
under both hypoxia and normoxia, indicating an existence 
of formate overflow in aggressive cells as compared to non-
aggressive BC cells. Moreover, medium chain fatty acids 
such as n-decanoic acid and octanoic acid were observed 
at reduced levels in aggressive cells under normoxic condi-
tion specifying their higher consumption for fatty acid bio-
synthesis. While, ketonic metabolites such as 4-methyl-3-
penten-2-one, and 3-hexen-2-one show reduced abundance 
in aggressive cells as compared to non-aggressive cells, 
which indicate their higher rate of utilization under hypoxic 
condition. These data suggest that under hypoxic condition, 
aggressive cells prefer to be energetically efficient while 
under normoxic condition fatty acid biosynthesis is favoured 

Fig. 3   a PCA 2D score plot and b PCA 3D score plot of the VOMs 
secreted by non-aggressive and aggressive cells under normoxic con-
dition. c Hierarchical cluster analysis (HCA) of the VOMS secreted 

by non-aggressive and aggressive cells grown under normoxic con-
dition represented as heatmap. Euclidean algorithm was used for the 
clustering and distance was measured by Ward Distance calculations

Fig. 4   Comparative volatilomic analysis of aggressive and non-
aggressive cells grown in either hypoxic or normixic condition. a 
Hypoxia associated unique VOMs identified in aggressive vs. non-
aggressive comparison. b Normoxia associated unique VOMs identi-
fied in aggressive vs. non-aggressive comparison. c VOMs common 
in both hypoxic as well as normoxic condition in aggressive vs. non-
aggressive comparison. Green colour of box plot represents aggres-
sive and red colour box plot represents non-aggressive BC cell line

▸

as compared to non-aggressive cells indicating preference 
towards cell proliferation. This study further paves way for 
more mechanistic studies to understand the role of identified 
VOMs in the cancer aggression under hypoxic condition.



Extracellular volatilomic alterations induced by hypoxia in breast cancer cells﻿	

1 3

Page 9 of 12  21



	 R. Taware et al.

1 3

21  Page 10 of 12

Acknowledgements  This research was supported by Inno-Indigo 
NCD-CAPomics project, Department of Science & Technology, 
Govt. of India, grant no. DST/IMRCD/EU/Inno-Indigo/NCDs-
CAPomics/2015. RT acknowledges Council of Scientific and Industrial 
Research, New Delhi, India for research associateship.This work also 
supported by FCT – Fundação para a Ciência e Tecnologia (project 
PEst-UID/QUI/UI0674/2019, CQM, New-INDIGO/0003/2012 and 
INNOINDIGO/0001/2015, Portuguese Government funds), Madeira 
14–20 Program (project PROEQUIPRAM - Reforço do Investimen-
toem Equipamentos e Infraestruturas Científicasna RAM - M1420-
01-0145-FEDER-000008) and ARDITI - Agência Regional para o 
Desenvolvimento da Investigação Tecnologia e Inovação (projects 
M1420-01-0145-FEDER-000005 - Centro de Química da Madeira - 
CQM+(Madeira 14–20), and M1420-09-5369-FSE-000001) for the 
financial support and the post-doctoral fellowship granted to Jorge A. 
M. Pereira.

Authors Contributions  Conceived the study: RT, KT, SR; Designed 
the study: RT, KT, TVSK, GCK, SR; Performed the experiments: 
RT, KT, TVSK; Compiled and analysed data: RT, KT, TVSK, JAMP, 
JSC, HAN, GCK, SR; Statistical analysis: RT, KT, HAN, SR; Pro-
vided instrument, chemicals and reagents: SR. All authors reviewed 
the manuscript and contributed in writing.

Compliance with ethical standards 

Conflict of interest  There are no conflicts to declare.

References

Al-Lahham, S. H., Peppelenbosch, M. P., Roelofsen, H., Vonk, R. 
J., & Venema, K. (2010). Biological effects of propionic acid 
in humans; metabolism, potential applications and underlying 
mechanisms. Biochimica et Biophysica Acta—Molecular and Cell 

Biology of Lipids,1801(11), 1175–1183. https​://doi.org/10.1016/j.
bbali​p.2010.07.007.

Armitage, E. G., Kotze, H. L., Allwood, J. W., Dunn, W. B., Goodacre, 
R., & Williams, K. J. (2015). Metabolic profiling reveals poten-
tial metabolic markers associated with Hypoxia Inducible Factor-
mediated signalling in hypoxic cancer cells. Scientific Reports,5, 
15649. https​://doi.org/10.1038/srep1​5649.

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & 
Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN 
estimates of incidence and mortality worldwide for 36 cancers 
in 185 countries. CA: A Cancer Journal for Clinicians,68(6), 
394–424. https​://doi.org/10.3322/caac.21492​.

Cavaco, C., Pereira, J. A. M., Taunk, K., Taware, R., Rapole, S., Naga-
rajaram, H., et al. (2018). Screening of salivary volatiles for puta-
tive breast cancer discrimination: An exploratory study involving 
geographically distant populations. Analytical and Bioanalytical 
Chemistry,410(18), 4459–4468. https​://doi.org/10.1007/s0021​
6-018-1103-x.

Chaturvedi, P., Gilkes, D. M., Wong, C. C. L., Luo, W., Zhang, H., 
Wei, H., et al. (2013). Hypoxia-inducible factor-dependent breast 
cancer-mesenchymal stem cell bidirectional signaling promotes 
metastasis. Journal of Clinical Investigation,123(1), 189–205. 
https​://doi.org/10.1172/JCI64​993.

Chen, Z., Li, Y., Zhang, H., Huang, P., & Luthra, R. (2010). Hypoxia-
regulated microRNA-210 modulates mitochondrial function 
and decreases ISCU and COX10 expression. Oncogene,29(30), 
4362–4368. https​://doi.org/10.1038/onc.2010.193.

Denko, N. C., Fontana, L. A., Hudson, K. M., Sutphin, P. D., Raychaud-
huri, S., Altman, R., et al. (2003). Investigating hypoxic tumor 
physiology through gene expression patterns. Oncogene,22(37 
REV. ISS. 3), 5907–5914. https​://doi.org/10.1038/sj.onc.12067​03.

Fasanaro, P., Greco, S., Lorenzi, M., Pescatori, M., Brioschi, M., 
Kulshreshtha, R., et al. (2009). An integrated approach for experi-
mental target identification of hypoxia-induced miR-210. Jour-
nal of Biological Chemistry,284(50), 35134–35143. https​://doi.
org/10.1074/jbc.M109.05277​9.

Fig. 5   Metabolic pathway alterations observed in the aggressive cells vs. non aggressive cells under a normoxia and b hypoxia

https://doi.org/10.1016/j.bbalip.2010.07.007
https://doi.org/10.1016/j.bbalip.2010.07.007
https://doi.org/10.1038/srep15649
https://doi.org/10.3322/caac.21492
https://doi.org/10.1007/s00216-018-1103-x
https://doi.org/10.1007/s00216-018-1103-x
https://doi.org/10.1172/JCI64993
https://doi.org/10.1038/onc.2010.193
https://doi.org/10.1038/sj.onc.1206703
https://doi.org/10.1074/jbc.M109.052779
https://doi.org/10.1074/jbc.M109.052779


Extracellular volatilomic alterations induced by hypoxia in breast cancer cells﻿	

1 3

Page 11 of 12  21

Favaro, E., Lord, S., Harris, A. L., & Buffa, F. M. (2011). Gene expres-
sion and hypoxia in breast cancer. Genome Medicine,3(8), 55. 
https​://doi.org/10.1186/gm271​.

Gao, X., Lin, S. H., Ren, F., Li, J. T., Chen, J. J., Yao, C. B., et al. 
(2016). Acetate functions as an epigenetic metabolite to promote 
lipid synthesis under hypoxia. Nature Communications,7, 11960. 
https​://doi.org/10.1038/ncomm​s1196​0.

Griffin, J. L., Nicholls, A. W., Daykin, C. A., Heald, S., Keun, H. C., 
Schuppe-Koistinen, I., et al. (2007). Standard reporting require-
ments for biological samples in metabolomics experiments: Mam-
malian/in vivo experiments. Metabolomics,3(3), 179–188. https​://
doi.org/10.1007/s1130​6-007-0077-z.

Harris, A. L. (2002). Hypoxia—A key regulatory factor in tumour 
growth. Nature Reviews Cancer,2(1), 38–47. https​://doi.
org/10.1038/nrc70​4.

Huang, X., Ding, L., Bennewith, K. L., Tong, R. T., Welford, S. M., 
Ang, K. K., et  al. (2009). Hypoxia-inducible mir-210 regu-
lates normoxic gene expression involved in tumor initiation. 
Molecular Cell,35(6), 856–867. https​://doi.org/10.1016/j.molce​
l.2009.09.006.

Intlekofer, A. M., DeMatteo, R. G., Venneti, S., Finley, L. W. S., Lu, 
C., Judkins, A. R., et al. (2015). Hypoxia induces production of 
L-2-hydroxyglutarate. Cell Metabolism,22(2), 304–311. https​://
doi.org/10.1016/j.cmet.2015.06.023.

Jaakkola, P., Mole, D. R., Tian, Y. M., Wilson, M. I., Gielbert, J., 
Gaskell, S. J., et al. (2001). Targeting of HIF-α to the von Hippel-
Lindau ubiquitylation complex by O2-regulated prolyl hydroxyla-
tion. Science,292(5516), 468–472. https​://doi.org/10.1126/scien​
ce.10597​96.

Martinez-Outschoorn, U. E., Lin, Z., Whitaker-Menezes, D., How-
ell, A., Lisanti, M. P., & Sotgia, F. (2012). Ketone bodies and 
two-compartment tumor metabolism: Stromal ketone production 
fuels mitochondrial biogenesis in epithelial cancer cells. Cell 
Cycle,11(21), 3956–3963.

Mashimo, T., Pichumani, K., Vemireddy, V., Hatanpaa, K. J., Singh, D. 
K., Sirasanagandla, S., et al. (2014). Acetate is a bioenergetic sub-
strate for human glioblastoma and brain metastases. Cell,159(7), 
1603–1614. https​://doi.org/10.1016/j.cell.2014.11.025.

Meiser, J., Schuster, A., Pietzke, M., Voorde, J. V., Athineos, D., Oizel, 
K., et al. (2018). Increased formate overflow is a hallmark of oxi-
dative cancer. Nature Communications,9(1), 1368. https​://doi.
org/10.1038/s4146​7-018-03777​-w.

Metallo, C. M., Gameiro, P. A., Bell, E. L., Mattaini, K. R., Yang, J., 
Hiller, K., et al. (2012). Reductive glutamine metabolism by IDH1 
mediates lipogenesis under hypoxia. Nature,481(7381), 380–384. 
https​://doi.org/10.1038/natur​e1060​2.

O’Shaughnessy, J. (2005). Extending survival with chemotherapy in 
metastatic breast cancer. The Oncologist,10(suppl_3), 20–29. https​
://doi.org/10.1634/theon​colog​ist.10-90003​-20.

Prabhakar, N. R., & Semenza, G. L. (2012). Adaptive and maladap-
tive cardiorespiratory responses to continuous and intermittent 
hypoxia mediated by hypoxia-inducible factors 1 and 2. Physi-
ological Reviews,92(3), 967–1003. https​://doi.org/10.1152/physr​
ev.00030​.2011.

Semenza, G. L. (2010a). Defining the role of hypoxia-inducible factor 
1 in cancer biology and therapeutics. Oncogene,29(5), 625–634. 
https​://doi.org/10.1038/onc.2009.441.

Semenza, G. L. (2010b). HIF-1: upstream and downstream of cancer 
metabolism. Current Opinion in Genetics and Development,20(1), 
51–56. https​://doi.org/10.1016/j.gde.2009.10.009.

Semenza, G. L. (2012). Hypoxia-inducible factors in physiology 
and medicine. Cell,148(3), 399–408. https​://doi.org/10.1016/j.
cell.2012.01.021.

Semenza, G. L. (2016). The hypoxic tumor microenvironment: A driv-
ing force for breast cancer progression. Biochimica et Biophysica 

Acta—Molecular Cell Research,1863(3), 382–391. https​://doi.
org/10.1016/j.bbamc​r.2015.05.036.

Silva, C. L., Passos, M., & Câmara, J. S. (2011). Investigation of uri-
nary volatile organic metabolites as potential cancer biomarkers 
by solid-phase microextraction in combination with gas chroma-
tography-mass spectrometry. British Journal of Cancer,105(12), 
1894–1904.

Taunk, K., Taware, R., More, T. H., Porto-figueira, P., Pereira, J. A. 
M., Mohapatra, R., et al. (2018). A non-invasive approach to 
explore the discriminatory potential of the urinary volatilome 
of invasive ductal carcinoma of the breast. RSC Advances,8(44), 
25040–25050. https​://doi.org/10.1039/C8RA0​2083C​.

Taware, R., Taunk, K., Pereira, J. A. M., Dhakne, R., Kannan, N., 
Soneji, D., et al. (2017). Investigation of urinary volatomic altera-
tions in head and neck cancer: A non-invasive approach towards 
diagnosis and prognosis. Metabolomics,13(10), 111. https​://doi.
org/10.1007/s1130​6-017-1251-6.

Taware, R., Taunk, K., Pereira, J. A. M., Shirolkar, A., Soneji, D., 
Câmara, J. S., et al. (2018). Volatilomic insight of head and neck 
cancer via the effects observed on saliva metabolites. Scientific 
Reports,8(1), 17725. https​://doi.org/10.1038/s4159​8-018-35854​
-x.

Tsai, I. L., Kuo, T. C., Ho, T. J., Harn, Y. C., Wang, S. Y., Fu, W. M., 
et al. (2013). Metabolomic dynamic analysis of hypoxia in MDA-
MB-231 and the comparison with inferred metabolites from tran-
scriptomics data. Cancers,5(2), 491–510. https​://doi.org/10.3390/
cance​rs502​0491.

Vaupel, P. (2004). Tumor hypoxia: Causative factors, compensatory 
mechanisms, and cellular response. The Oncologist,9(suppl_5), 
4–9. https​://doi.org/10.1634/theon​colog​ist.9-90005​-4.

Vaupel, P., Höckel, M., & Mayer, A. (2007). Detection and charac-
terization of tumor hypoxia using pO2 histography. Antioxidants 
& Redox Signaling,9(8), 1221–1236. https​://doi.org/10.1089/
ars.2007.1628.

Wang, G. L., Jiang, B. H., Rue, E. A., & Semenza, G. L. (1995). 
Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS 
heterodimer regulated by cellular O2 tension. Proceedings of 
the National Academy of Sciences of the United States of Amer-
ica,92(12), 5510–5514.

Warburg, O. (1956). Injuring of respiration the origin of cancer 
cells. Science,123, 309–314. https​://doi.org/10.1126/scien​
ce.123.3191.309.

Warburg, O., Wind, F., & Negelein, E. (1927). THE Metabolism of 
tumors in the body. The Journal of General Physiology,8(6), 
519–530. https​://doi.org/10.1085/jgp.8.6.519.

Weidemann, A., & Johnson, R. S. (2008). Biology of HIF-1α. 
Cell Death and Differentiation,15(4), 621–627. https​://doi.
org/10.1038/cdd.2008.12.

Xia, J., & Wishart, D. S. (2011). Web-based inference of biological 
patterns, functions and pathways from metabolomic data using 
MetaboAnalyst. Nature Protocols,6(6), 743–760. https​://doi.
org/10.1038/nprot​.2011.319.

Xia, J., Psychogios, N., Young, N., & Wishart, D. S. (2009). Metabo-
Analyst: A web server for metabolomic data analysis and inter-
pretation. Nucleic Acids Research,37(SUPPL. 2), 652–660. https​
://doi.org/10.1093/nar/gkp35​6.

Xia, J., Wishart, D. S., & Valencia, A. (2011). MetPA: A web-based 
metabolomics tool for pathway analysis and visualization. Bio-
informatics,27, 2342–2344. https​://doi.org/10.1093/bioin​forma​
tics/btq41​8.

Yang, J., Cheng, J., Sun, B., Li, H., Wu, S., Dong, F., et al. (2018). 
Untargeted and stable isotope-assisted metabolomic analysis of 
MDA-MB-231 cells under hypoxia. Metabolomics,14(4), 40. https​
://doi.org/10.1007/s1130​6-018-1338-8.

Zhang, C., Samanta, D., Lu, H., Bullen, J. W., Zhang, H., Chen, I., et al. 
(2016). Hypoxia induces the breast cancer stem cell phenotype by 

https://doi.org/10.1186/gm271
https://doi.org/10.1038/ncomms11960
https://doi.org/10.1007/s11306-007-0077-z
https://doi.org/10.1007/s11306-007-0077-z
https://doi.org/10.1038/nrc704
https://doi.org/10.1038/nrc704
https://doi.org/10.1016/j.molcel.2009.09.006
https://doi.org/10.1016/j.molcel.2009.09.006
https://doi.org/10.1016/j.cmet.2015.06.023
https://doi.org/10.1016/j.cmet.2015.06.023
https://doi.org/10.1126/science.1059796
https://doi.org/10.1126/science.1059796
https://doi.org/10.1016/j.cell.2014.11.025
https://doi.org/10.1038/s41467-018-03777-w
https://doi.org/10.1038/s41467-018-03777-w
https://doi.org/10.1038/nature10602
https://doi.org/10.1634/theoncologist.10-90003-20
https://doi.org/10.1634/theoncologist.10-90003-20
https://doi.org/10.1152/physrev.00030.2011
https://doi.org/10.1152/physrev.00030.2011
https://doi.org/10.1038/onc.2009.441
https://doi.org/10.1016/j.gde.2009.10.009
https://doi.org/10.1016/j.cell.2012.01.021
https://doi.org/10.1016/j.cell.2012.01.021
https://doi.org/10.1016/j.bbamcr.2015.05.036
https://doi.org/10.1016/j.bbamcr.2015.05.036
https://doi.org/10.1039/C8RA02083C
https://doi.org/10.1007/s11306-017-1251-6
https://doi.org/10.1007/s11306-017-1251-6
https://doi.org/10.1038/s41598-018-35854-x
https://doi.org/10.1038/s41598-018-35854-x
https://doi.org/10.3390/cancers5020491
https://doi.org/10.3390/cancers5020491
https://doi.org/10.1634/theoncologist.9-90005-4
https://doi.org/10.1089/ars.2007.1628
https://doi.org/10.1089/ars.2007.1628
https://doi.org/10.1126/science.123.3191.309
https://doi.org/10.1126/science.123.3191.309
https://doi.org/10.1085/jgp.8.6.519
https://doi.org/10.1038/cdd.2008.12
https://doi.org/10.1038/cdd.2008.12
https://doi.org/10.1038/nprot.2011.319
https://doi.org/10.1038/nprot.2011.319
https://doi.org/10.1093/nar/gkp356
https://doi.org/10.1093/nar/gkp356
https://doi.org/10.1093/bioinformatics/btq418
https://doi.org/10.1093/bioinformatics/btq418
https://doi.org/10.1007/s11306-018-1338-8
https://doi.org/10.1007/s11306-018-1338-8


	 R. Taware et al.

1 3

21  Page 12 of 12

HIF-dependent and ALKBH5-mediated m 6 A-demethylation of 
NANOG mRNA. Proceedings of the National Academy of Sci-
ences of the United States of America, 113(14), E2047–E2056. 
https​://doi.org/10.1073/pnas.16028​83113​.

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1073/pnas.1602883113

	Extracellular volatilomic alterations induced by hypoxia in breast cancer cells
	Abstract
	Introduction 
	Objective 
	Methods 
	Results 
	Conclusions 
	Graphic Abstract

	1 Introduction
	2 Materials and methods
	2.1 Cell culture and hypoxia treatment
	2.2 Sample processing and VOMs extraction
	2.3 Volatilomic data acquisition and pre-processing
	2.4 Statistical and pathways analysis

	3 Results
	3.1 Establishment of the hypoxia induced BC cell volatilomic signature
	3.2 Comparative analysis of hypoxia-induced metabolic reconfiguration in aggressive and non-aggressive BC cells
	3.3 Hypoxia-induced metabolic pathway analysis

	4 Discussion
	5 Conclusions
	Acknowledgements 
	References




