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Abstract
Purpose  (Poly)phenols have been reported to confer protective effects against type 2 diabetes but the precise association 
remains elusive. This meta-analysis aimed to assess the effects of (poly)phenol intake on well-established biomarkers in 
people with type 2 diabetes or at risk of developing diabetes.
Methods  A systematic search was conducted using the following selection criteria: (1) human randomized controlled trials 
involving individuals with prediabetes and type 2 diabetes; (2) one or more of the following biomarkers: glucose, glycated 
haemoglobin (HbA1c), insulin, pro-insulin, homeostatic model assessment of insulin resistance (HOMA-IR), islet amyloid 
polypeptide (IAPP)/amylin, pro-IAPP/pro-amylin, glucagon, C-peptide; (3) chronic intervention with pure or enriched 
mixtures of (poly)phenols. From 488 references, 88 were assessed for eligibility; data were extracted from 27 studies and 20 
were used for meta-analysis. The groups included in the meta-analysis were: (poly)phenol mixtures, isoflavones, flavanols, 
anthocyanins and resveratrol.
Results  Estimated intervention/control mean differences evidenced that, overall, the consumption of (poly)phenols contrib-
uted to reduced fasting glucose levels (− 3.32 mg/dL; 95% CI − 5.86, − 0.77; P = 0.011). Hb1Ac was only slightly reduced 
(− 0.24%; 95% CI − 0.43, − 0.044; P = 0.016) whereas the levels of insulin and HOMA-IR were not altered. Subgroup com-
parative analyses indicated a stronger effect on blood glucose in individuals with diabetes (− 5.86 mg/dL, 95% CI − 11.34, 
− 0.39; P = 0.036) and this effect was even stronger in individuals taking anti-diabetic medication (− 10.17 mg/dL, 95% CI 
− 16.59, − 3.75; P = 0.002).
Conclusions  Our results support that the consumption of (poly)phenols may contribute to lower glucose levels in individuals 
with type 2 diabetes or at risk of diabetes and that these compounds may also act in combination with anti-diabetic drugs.

Keywords  Antidiabetic therapy · Diabetes · Glucose · Hb1Ac · Insulin · Polyphenol

Introduction

Type 2 diabetes mellitus (hereafter referred as diabetes) 
affects hundreds of millions of people worldwide, being 
projected that by 2040 the number of individuals with dia-
betes will reach 642 million [1]. The International Diabetes 

Federation estimated that 12% of global health expenditure 
is spent on diabetes [1] and, despite the advances in both 
modern medicine and knowledge of the disease, it remains 
one of the leading causes of death globally.

It is generally considered that diabetes results from the 
combination of genetic and environmental factors. Different 
loci have been put forward as risk factors for diabetes [2], 
however, lifestyle factors such as obesity, lack of physical 
exercise, calorie-rich diets, and smoking have been con-
sidered the greatest players in the disease [3]. These are 
potentially modifiable factors which can delay the disease 
onset and progression. Together with proper monitoring 
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and medication, lifestyle and dietary changes are essential 
to control diabetes and avoid its comorbidities [4].

Glucose homeostasis results from a controlled system 
in which the rise of blood glucose is compensated by the 
increase of insulin secretion. In healthy states, this tightly 
regulated feedback loop guarantees that glucose levels 
remain within the normal range. Insulin resistance and 
impaired insulin secretion are the major pathological pro-
cesses associated with diabetes development. Insulin resist-
ance precedes diabetes onset and occurs when cells fail to 
respond to physiological levels of insulin, mainly in the liver 
and in the muscles [5]. Impaired insulin secretion is char-
acterized by the lack of proper secretion of insulin by the 
β-cells in response to glucose as a result of decreased β-cell 
function and mass [6, 7]. This can also lead to the release 
of an immature form of insulin, before C-peptide cleavage 
pro-insulin [8, 9]. These mechanisms culminate in hyper-
glycaemia, the major clinical symptom of diabetes. Another 
established hallmark of diabetes, yet clinically unexplored, 
is the formation of pancreatic deposits of islet amyloid poly-
peptide (IAPP) or amylin [10], which are associated with 
β-cell failure. IAPP is co-secreted with insulin by pancreatic 
β-cells and plays a role in glucose homeostasis by regulating 
satiety and gastric emptying [8]. Failure of β-cell processing 
machinery during diabetes is also associated with secretion 
of pro-IAPP forms [11, 12]. Locally subjected to high levels 
of insulin, α-cells release increased levels of glucagon, thus 
hyperglucagonemia is also commonly found in diabetes [13].

(Poly)phenols comprise a large class of phytochemicals 
present in diverse sources in the diet, such as fruit, vegeta-
bles, red wine, and cocoa [14]. They are known to exhibit 
a variety of biological activities targeting different molecu-
lar mechanisms and cellular pathways [15]. The beneficial 
health effects of (poly)phenols have been associated with 
protection against cardiovascular diseases (e.g., promoting 
endothelial function and inhibiting platelet aggregation), 
cancer (via the reduction of cell proliferation, induction of 
cell cycle arrest or apoptosis) [16], neurological disorders 
such as Parkinson’s and Alzheimer’s diseases and diabetes 
(e.g., modulating oxidative stress and anti-inflammatory 
responses) [17, 18]. Particularly, human studies have shown 
the correlation between (poly)phenol-rich food consumption 
and reduced risk of developing diabetes [19, 20]. For exam-
ple, the prospective examination of the associations between 
(poly)phenols intake on the risk of incident diabetes in the 
PREDIMED study revealed a 28% reduction in new-onset 
diabetes in the highest compared with the lowest tertile of 
total (poly)phenol intake (Hazard Ratio—HR 0.72; 95% CI 
0.52, 0.99; P-trend = 0.05). Notably, a high intake of (poly)
phenols was inversely associated with diabetes in elderly 
persons at high risk of cardiovascular disease [21]. Also, die-
tary (poly)phenols were inversely associated with metabolic 
syndrome in adults of the HAPIEE study, as individuals in 

the highest quartile of (poly)phenol intake were less likely 
to develop the syndrome (Odds Ratio—OR 0.80; 95% CI 
0.64, 0.98 and OR 0.70; 95% CI 0.56, 0.86 for both men and 
women, respectively) [22]. Additionally, isoflavone-rich soy-
based foods were reported to reduce significantly the risk of 
diabetes (OR for the highest versus the lowest intake: 0.31; 
95% CI 0.21, 0.46; P < 0.001) [23]. (Poly)phenols are also 
thought to contribute to the control of this disease [24] as 
exemplified by flavonoid-rich berries and oolong tea con-
sumption that improved post-prandial hyperglycaemia [25, 
26]. Animal studies further support the beneficial effects 
of (poly)phenol-enriched mixtures and pure extracts intake 
against altered glucose metabolism. A study using the fla-
vonoid kaempferol reported improved insulin resistance in 
a diabetes rat model potentially through the reduction of 
hepatic inflammation by the inhibition of the NF-κB path-
way [27]. Another report showed a significant reduction of 
hyperglycaemia and insulin resistance in diabetes rats as 
well as a modulation of inflammation following treatment 
with ellagic acid [28]. Different (poly)phenols such as res-
veratrol and the ellagitannin pentagalloyl-glucose have also 
been described to prevent the aggregation of IAPP and to 
reduce its cellular toxicity using in vitro models [29, 30].

Overall, (poly)phenols have been widely substantiated 
by pre-clinical evidence as compounds with metabolic 
regulatory effects that may contribute to prevent or delay 
the onset of type-2 diabetes but the evidences in humans 
are still limited. There are only a few meta-analyses of 
randomized controlled human trials evaluating the effects 
of (poly)phenols on diabetes biomarkers or incidence, 
and some of those report ambiguous results [31–36]. 
For instance, effects on biomarkers such as blood glu-
cose, fasting insulin or HbA1c are reported to be changed 
by a certain (poly)phenol in one meta-analysis and not 
altered in another [32, 33]. In addition, and despite that 
most individuals with diabetes are under medication, 
very few of these studies have contemplated a possible 
combined effect between (poly)phenols and anti-diabetic 
drugs. Overall, the protective role of dietary (poly)phe-
nols towards diabetes is not yet understood. In the present 
study, we systematically reviewed published randomized 
controlled trials investigating the impact of (poly)phenol 
consumption on diabetes biomarkers. Our main aim was 
to analyse the reported effects on a selection of biomarkers 
associated with the disorder, i.e., blood glucose, glycated 
haemoglobin (HbA1c), insulin, pro-insulin, insulin resist-
ance (HOMA-IR), IAPP/amylin, pro-IAPP/pro-amylin, 
glucagon and C-peptide. The influence of factors that 
may be responsible for inter-individual variability in the 
response to (poly)phenol consumption was also examined, 
including sex, BMI, health status and prescribed medica-
tion. The influence of type of (poly)phenol, dose and dura-
tion of treatment was also investigated.
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Methods

Search strategy, study selection and data extraction

This systematic review and meta-analysis followed the 
Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) statement guidelines [37], and 
the Cochrane Handbook for Systematic Reviews of Inter-
ventions [38]. A systematic search was conducted by two 
of the authors in Medline, SCOPUS, Web of Knowledge 
and ClinicalTrials.gov in November 2016 and updated on 
January 2018, to select randomized clinical trials that stud-
ied the effects of pure (poly)phenols on diabetes.

Search terms in titles and abstracts included (the wild 
card “*” was used to increase the number of matches): 
polyphenol* OR flavonoid* OR anthocyani* OR flavanol 
OR flavonol OR flavone OR flavanone OR ellagitannin OR 
proanthocyani* OR "phenolic acid" OR resveratrol, AND 
diabet* OR prediabet* NOT rat AND clinical trial (MeSH 
terms were used in PubMed). The search was restricted to 
English language.

After removal of duplicates, studies were screened by 
two independent authors, and double-checked by a third 
author to reach consensus of selected studies for full paper 
eligibility. Selected studies were limited to human rand-
omized controlled trials, which (1) had a chronic inter-
vention (4 weeks or more), with a pure (poly)phenol or 
an enriched fraction of (poly)phenols and a control group 
receiving a placebo and (2) measured one or more of the 
following outcomes: blood glucose, HbA1c, insulin, pro-
insulin, HOMA-IR, IAPP/amylin, pro-IAPP/pro-amylin, 
glucagon and C-peptide.

Data extraction was performed independently by two 
authors using a standardized data extraction form and 
crosschecked by a third author. Extracted data included: 
(1) publication details: name of first author, year of pub-
lication, title, name and e-mail of corresponding author; 
(2) study characteristics: study design, arm number and 
description, washout duration, treatment duration, num-
ber of participants under (poly)phenol supplementation, 
number of participants receiving the placebo, number of 
participants completing the study, composition of (poly)
phenol supplement and placebo, dose and mode of admin-
istration; (3) sample characteristics: country, number of 
male and female participants, age mean and age range, eth-
nicity, health status (diabetes, moderate risk—overweight, 
obesity, first-degree relatives with diabetes or peripheral 
insulin resistance—and high risk—metabolic syndrome or 
impaired glucose), menopausal status, smoking, medica-
tion, baseline BMI, diet (assessment method, baseline diet 
and diet during study), physical activity level; (4) infor-
mation on reported outcomes: type of sample (fasted or 

post-prandial), changes or values before and after inter-
vention (central measure, dispersion measure and P value 
when available); (5) Outcomes: glucose, HbA1c, insulin, 
pro-insulin, HOMA-IR, IAPP/amylin, pro-IAPP/pro-
amylin, glucagon, and C-peptide. Before analysis, glucose 
and insulin units were converted to the most commonly 
used units in the clinical environment (mg/dL for glucose 
and µIU/mL for insulin).

Assessment of bias

A systematic assessment of the risk of bias for each of the 
included studies was based on the Cochrane Collaboration 
measurement with some modifications [38]. The specific 
items used for the assessments of each study are those used 
in a previous meta-analysis [39]: (1) selection bias-random 
sequence generation, allocation concealment (in each item, 
yes = 1; no = 0, unclear = 0); (2) performance bias—blind-
ing (yes = 1 for each participants, researchers and statisti-
cians, no = 0, unclear = 0), measurement of compliance (1 
for biomarker measure, 0.5 if compliance information was 
collected by counting non-used capsules or recipients, or by 
self-reporting, 0 if no measurement of compliance was done 
or the information was insufficient); (3) attrition bias—flow 
of participants (1 if flow of participants was explained in 
detail, including number of withdrawals and reasons, 0 if 
there was no information or insufficient information); (4) 
other bias—baseline comparability between test and control 
groups (yes = 1, no = 0, unclear = 0), data report (1 if pre- 
and post-data or change was reported in a table with central 
measure and spread for placebo and treatment groups, and 
sample size in each group, 0 if anything was missing), indus-
try funding (0 if any commercial source provided some or 
all monetary funding for the trial, if a company carried out 
a study “in house”, if any of the authors was employed by a 
relevant industry or if it was unclear that there was any kind 
of industry funding, 1 if there was no funding from industry 
or if the only involvement of a company was to provide some 
ingredients for the intervention). Studies were rated as low 
risk of bias when total score was 8–10, moderate risk of 
bias when total score was > 5 and < 8, and high risk of bias 
when total score was > 2 and ≤ 5. Studies with total score ≤ 2 
were rejected.

Data analysis

Data for each outcome were analysed using the Compre-
hensive Meta-Analysis Software, version 3.3 (Biostat, 
Englewood, NJ, USA). Fixed or random effect meta-anal-
yses were conducted to assess test/placebo differences 
across studies, with effect size measured as difference in 
means (DM) and 95% confidence intervals (CI). In studies 
with more than one time point, only the longest time point 
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was included in the analysis, except for the comparative 
analysis of duration subgroups. Studies with participants 
receiving different types of supplementation (different 
doses or types of (poly)phenols) were considered as sub-
studies and the data of sub-studies treated as independent 
studies. The heterogeneity of studies was assessed using 
the Cochran’s Q statistic (a Chi-squared test with n − 1 
degrees of freedom), and the inconsistency index I2 (the 
proportion of total variation contributed by between-study 
variability), where I2 values equal to 25%, 50% and 75% 
were considered as low, moderate and high heterogeneity, 
respectively [40]. Random effect meta-analysis was used 
when moderate to high heterogeneity across studies was 
present and P value for Cochran’s Q statistic was lower 
than 0.1. Publication bias was assessed visually with fun-
nel plots and statistically by applying the Egger’s regres-
sion test.

Statistical comparisons between subgroups were per-
formed by applying a random-effects analysis and calcula-
tion of the between-categories Q statistic and correspond-
ing P values. A P value < 0.05 was considered statistically 
significant.

Results

Description of the included studies

The study selection process is shown in Fig. 1. A total of 546 
studies were retrieved from the electronic reference data-
bases. After initial screening of 488 references, 88 trials 
met inclusion criteria for full text review. Detailed full text 
analysis led to exclusion of 61 studies, ending with 27 tri-
als selected for data extraction. Quality analysis pinpointed 

Fig. 1   Flow diagram of the studies selection process for meta-analysis
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one RCT [41] with a very high risk of bias (score ≤ 2) and 
thus it was also excluded from the meta-analysis. Only one 
study referred to IAPP [42] and glucagon [43] and three 
studies measured C-peptide [43–45]. Neither pro-insulin nor 
pro-IAPP were further evaluated due to the lack of studies. 
All RCTs with duration between 4 weeks and 1 year were 
included for the meta-analysis of glucose (20 RCTs), insulin 
(16 RCTs) and HOMA-IR (12 RCTs). As Hb1Ac represents 
the average level of blood glucose for the past 3 months, only 
RCTs with duration of 12 weeks or longer were included in 
the meta-analysis of this biomarker (11 RCTs).

The individuals included in the studies had an average 
age of 55.5 years, with no predominance of either sex. These 
individuals presented an average BMI of 28.9, corresponding 
to overweight. In terms of health status, there were 12 stud-
ies with individuals with diagnosed diabetes, 3 studies with 
individuals classified as at high risk of developing diabetes 
(participants with metabolic syndrome or impaired glucose 
tolerance) [46–48], and 5 studies with individuals classi-
fied as moderate risk of developing diabetes (overweight, 
obesity, first-degree relatives with diabetes or peripheral 
insulin resistance) [43, 49–52]. From the studies including 
individuals with diabetes the duration of the disease ranges 
from 2 to 22 years. Individuals from 10 of the 20 studies 
were undergoing medication for diabetes, antihypertensive 
drugs, cholesterol-lowering drugs or a combination of these.

Characteristics of the studies included in the meta-anal-
ysis are shown in Table 1. Most RCTs were from European 
countries [43, 44, 46, 47, 49–51, 53–56], seven in Asian 
countries [45, 48, 52, 57–60], one was performed in North 
America [61] and one in Australia [62]. The present meta-
analysis evaluated the results from RCTs that studied the 
effect of pure or enriched (poly)phenol extracts intake on 
individuals with diabetes or at risk of diabetes: six studies 
used a mixture of (poly)phenols from passion fruit, grape, 
pine tree bark, among others (doses of 125–2093 mg/day); 
five studies used isoflavones (doses of 33–100 mg/day); 
four studies used flavanols (doses of 560–1270 mg/day); 
one study used anthocyanins (392 mg/day); and five studies 
used resveratrol (doses of 40–1500 mg/day) (Table 1).1

Effect of (poly)phenol supplementation 
on measures of glucose, Hb1Ac, insulin, 
and HOMA‑IR

Glucose meta-analysis included 20 RCT studies (two of the 
RCTs included two sub-studies), with 1200 participants: 681 
treated with (poly)phenol supplement and 519 on placebo. 

Meta-analysis showed a statistically significant reduction in 
fasting plasma glucose after supplementation with a pure 
(poly)phenol or enriched extract (DM = − 3.50 mg/dL; 95% 
CI − 6.28, − 0.73; P = 0.013) (Table 2). Sensitivity analysis 
by removal of one study [60] with high risk of bias had 
no impact on effect size or significance (DM = − 3.32 mg/
dL; 95% CI − 5.86, − 0.77; P = 0.011) (Fig. 2). There was 
moderate heterogeneity across the 19 studies with low 
and moderate risk of bias (I2 = 47.96% and P value for Q 
test = 0.007), but no evidence of publication bias (P value 
for Egger’s weighted regression = 0.408).

Meta-analysis on Hb1Ac with all the 11 studies (includ-
ing two sub-studies) with 12 or more weeks of intervention 
(340 participants treated with (poly)phenol and 276 controls) 
also showed a statistically significant but moderate reduction 
after supplementation with (poly)phenols (DM = − 0.24 mg/
dL, CI − 0.430, − 0.044; P = 0.016) (Table 2). However, 
when the high risk of bias study [60] was excluded, signifi-
cance was lost (DM = − 0.171 mg/dL, CI − 0.409, 0.066; 
P = 0.158) (Fig. 3).

Supplementation with (poly)phenols had no statistically 
significant effect on insulin and HOMA-IR measures. All 
studies used for meta-analysis were low and moderate risk 
of bias and sensitivity analysis by removal of one study had 
no impact on effect size or P value (Table 2, Figs. 4, 5). 
There was low heterogeneity among studies (Table 2) and no 
evidence of publication bias (P value for Egger’s weighted 
regression was 0.705 for insulin and 0.163 for HOMA-IR).

Subgroup analyses for identification of factors 
impacting plasma glucose reduction

To explore the factors that could influence the inter-individ-
ual variability of response to (poly)phenol intake, subgroup 
analyses were performed only on blood glucose. As rec-
ommended in Cochrane Handbook for Systematic Reviews 
of Interventions [38], the study with high risk of bias was 
excluded from the subgroup analysis [60] to decrease het-
erogeneity among subgroups and prevent misleading results. 
The other outcomes were not considered for subgroup analy-
sis due to the low number of studies.

Influence of type of (poly)phenol, dose and duration

Subgroup analysis on type of (poly)phenol was performed 
with four subgroups: (poly)phenol mixtures, isoflavones, 
flavanols, and resveratrol (Table 3). Only one study used 
anthocyanins as the intervention (poly)phenol [59] and thus, 
it was excluded from this subgroup analysis. The analysis of 
the intervention with each separate group of (poly)phenols 
showed no statistically significant effect. There was no evi-
dence of heterogeneity between subgroups (Table 3).

1  The total number of studies is equal to 21 because one of the stud-
ies depicts results from 2 interventions (a (poly)phenol mixture and 
resveratrol).
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For dose subgroups analysis, 19 studies were separated 
into three subgroups: low dose (≥ 100 mg/day); medium 
dose (> 100, ≥ 500 mg/day); and high dose (> 500 mg/
day) (Table 3). No heterogeneity was evident between dose 
subgroups. None of the dose subgroups had a statistically 
significant effect. To assess the impact of study duration, 
all 32 time points reported across all studies (originated 
from interventions with different durations and (poly)phe-
nols in the same study) were used for the subgroup analy-
sis. Four subgroups were defined: very short (< 8 weeks), 
short (≥ 8, < 12 weeks), medium (≥ 12, < 24 weeks) and long 
(≥ 24 weeks). The levels of glucose were statistically signifi-
cantly reduced only in the medium duration. (Table 3). Nev-
ertheless, this result was not consistent with meta-regression 
analysis on dose and duration, which showed no significant 
impact of covariates dose (covariate coefficient 0.002; 95% 
CI − 0.001; 0.006; P = 0.141) or duration (covariate coef-
ficient − 0.002; 95% CI − 0.280; 0.240; P = 0.880). Further-
more, the meta-regression analysis showed evidence of vari-
ance between studies (Tau2 = 15.65; I2 = 52.43%; Q = 63.06; 
df = 30; P = 0.0004) from which only 2% could be explained 
by dose and duration (R2 analogue = 0.02).

Influence of health status of the participants 
and medication

Subgroup analysis shows no influence of sex and BMI in the 
blood glucose effect. As for the analysis of the influence of 
the health status of the participants, the 19 selected studies 
were divided into three groups: participants with diabetes, 
participants at high risk of diabetes and participants at low 
risk of diabetes. There were 11 studies (including 2 sub-
studies) conducted in participants with diabetes (343 treated 
with (poly)phenol supplement and 347 controls) [44, 45, 
53–59, 61, 62]. Three studies (1 sub-study) included partici-
pants at high risk of diabetes: two with metabolic syndrome 

[46, 47] (75 treated and 73 controls) and one with impaired 
glucose tolerance [48] (360 treated and 180 controls). Lastly, 
five studies were conducted with volunteers considered at 
moderate risk of diabetes due to: excess weight, obesity, 
first-degree relatives of individuals with diagnosed diabetes 
or peripheral insulin resistance [43, 49–52] (109 treated with 
(poly)phenol supplement and 102 controls). Comparison 
between the three subgroups showed a statistically signifi-
cant effect only in the group with diabetes, with a higher 
blood glucose reduction than the overall effect (− 5.86 
vs − 3.50 mg/dL, 95% CI − 11.34, − 3.89; P = 0.036) 
(Table 4). No significant heterogeneity between subgroups 
was observed. Within the diabetes group, when comparing 
medicated vs. non-medicated participants, a higher reduction 
was observed in the medicated participants (− 6.09 mg/dL, 
95% CI − 11.35, − 0.82; P = 0.023) (Table 4). This reduction 
does not seem to be related with differences in average age 
(57.75 vs. 53.2 years) and BMI (28.4 vs. 29.4) for medi-
cated and non-medicated individuals, respectively. As we 
observed a more pronounced plasma glucose reduction in 
medicated participants, we looked for differences between 
types of medication and divided medicated participants in 
two subgroups: anti-diabetic medication (biguanides, sulfo-
nylureas, glitazones, glinides and incretins) and other types 
of medication (statins, antihypertensive, beta-blockers). Data 
analysis showed a statistically significant glucose reduction 
in both subgroups but showed a stronger effect in partici-
pants with anti-diabetic medication (− 10.17 mg/dL, 95% 
CI − 16.59, − 3.75; P = 0.002) (Table 4).

Meta regression analysis also pointed to an important 
impact of health status and medication on the blood glu-
cose level response to (poly)phenol supplementation. A sta-
tistically significant between-study variance was observed 
(Tau2 = 15.65; I2 = 52.43%; Q = 63.06; df = 30; P = 0.0004), 
with 52% of total between study variance explained by 

Table 2   Overall effect of (poly)
phenol supplementation on 
measures of glucose, Hb1Ac, 
insulin and HOMA-IR

All studies were used in the analysis, including the high risk of bias study. Interventions with different con-
centrations or different (poly)phenols in the same study were counted as different studies
n number of studies, NT number of participants supplemented with (poly)phenol, NC number of participants 
receiving placebo, DM difference in means, CI confidence interval, Q Chi-squared statistic, I2 inconsist-
ency index, Hb1Ac glycated haemoglobin, HOMA-IR homeostatic model assessment-insulin resistance

Glucose Hb1Ac Insulin HOMA-IR

Effect size
n (NT/NC) 22 (681/519) 13 (501/429) 18 (601//443) 14 (518/351)
DM − 3.50 mg/dL − 0.24% 0.033 µIU/mL 0.030
95% CI − 6.28 − 0.73 − 0.430 − 0.044 − 0.703 0.770 − 0.103 0.163
P value 0.013 0.016 0.929 0.661
Heterogeneity
Q 47.41 33.90 21.63 15.107
P value 0.001 0.001 0.199 0.301
I2 53.60 64.61 21.41 13.95
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Fig. 2   Effect of (poly)phenol supplementation on plasma glucose 
(mg/dL). All studies were used for random effect model meta-anal-
ysis. Only low and moderate bias studies are presented. Notations a 
and b represent interventions with different (poly)phenols in the same 

study and 1 and 2 denote different doses of the same (poly)phenol 
used in the same study. DM difference in means, SE standard error, 
CI confidence interval, PP (poly)phenol

Fig. 3   Effect of (poly)phenol supplementation on glycated haemoglo-
bin (%). All studies were used for random effect model meta-analysis. 
Only low and moderate bias studies are presented. Notations a and 

b represent different times of intervention in the same study and 1 
and 2 denote different doses used in the same study. DM difference 
in means. SE standard error, CI confidence interval, PP (poly)phenol
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Fig. 4   Effect of (poly)phenol supplementation on insulin (µUI/mL). 
All studies were used for random effect model meta-analysis. Only 
low and moderate bias studies are presented. Notations a and b rep-

resent different times of intervention in the same study and 1 and 
2 denote different doses used in the same study. DM difference in 
means, SE standard error, CI confidence interval, PP (poly)phenol

Fig. 5   Effect of (poly)phenol supplementation on HOMA-IR. Only low and moderate bias studies used for fixed effect model meta-analysis. DM 
difference in means, SE standard error, CI confidence interval, PP (poly)phenol
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health status (R2 analogue = 0.52), and 34% explained by 
medication (R2 analogue = 0.34).

Discussion

This study evaluates and reports the effects of supplementa-
tion with various (poly)phenols, whether pure or enriched 
fractions, excluding interventions using (poly)phenol 
enriched foods or multifactorial food interventions. The 

effects on a range of diabetes biomarkers, specifically those 
most commonly used in clinical practice—blood glucose 
and Hb1Ac—and others related with pancreatic function and 
insulin resistance—insulin and HOMA-IR were evaluated. 
Overall, the results of this meta-analysis give evidence of a 
beneficial effect of (poly)phenol supplementation in blood 
glucose levels of individuals with diabetes and in those at 
risk of developing the disease.

We also observed a slight reduction in Hb1Ac (0.24%), 
although statistical significance was lost upon sensitivity 

Table 3   Subgroup analysis of studies measuring glucose: impact of (poly)phenol type, dose and duration of intervention

Only low and moderate risk of bias studies were used in the analysis. Interventions with different concentrations of or different (poly)phenols in 
the same work are counted as different studies. Only the last timepoint was used in the analysis except in the Duration subgroup analysis
n number of studies, NT number of participants supplemented with (poly)phenol, NC number of participants receiving placebo, DM difference in 
means, CI confidence interval, Q Chi-squared statistic, df degree of freedom.
a Low dose (≤ 100 mg/day); medium dose (> 100, ≤ 500 mg/day); and high dose (> 500 mg/day)
b Very short (< 8 weeks), short (≥ 8, < 12 weeks), medium (≥ 12, < 24 weeks); long (≥ 24 weeks)

n (NT/NC) Intervention effect Heterogeneity between studies

DM (mg/dL) 95% CI P value Q; df; P

(Poly)phenol subgroups
(Poly)phenol mixtures 5 (97/98) − 4.08 − 13.13 4.98 0.377 0.710; 4.000; 0.950
Isoflavones 6 (243/147) − 2.69 − 6.21 0.84 0.135
Flavanols 4 (137/129) − 2.04 − 5.97 1.89 0.309
Resveratrol 6 (175/116) − 1.52 − 5.14 2.11 0.413
Dose subgroupsa

High 8 (231/222) − 1.00 − 2.78 0.78 0.270 2.553; 3.000; 0.466
Low 5 (260/194) − 3.48 − 7.65 0.69 0.102
Medium 8 (206/208) − 5.03 − 13.92 3.87 0.268
Durationb

Long 9 (334/179) − 4.14 − 8.66 0.38 0.072 1.501; 3.000; 0.682
Medium 11 (197/195) − 6.53 − 12.44 − 0.61 0.031
Short 7 (144/139) − 2.67 − 6.32 0.97 0.150
Very short 5 (40/40) − 2.77 − 5.76 0.22 0.069

Table 4   Subgroup analysis 
of studies measuring glucose: 
impact of health status and 
medication

Only low and moderate risk of bias studies were used in the subgroup analysis. Interventions with different 
concentrations of or different (poly)phenols in the same work are counted as different studies
Diabetes type 2 diabetes mellitus, n number of studies, DM difference in means, CI confidence interval, Q 
Chi-squared statistic, df degree of freedom

n DM (mg/dL) 95% CI P value Q; df; P

Health status
Diabetes 13 − 5.86 − 11.34 − 0.39 0.036 3.403; 2.000; 0.182
High risk 4 − 2.29 − 6.22 1.63 0.252
Moderate risk 5 − 0.58 − 2.57 1.41 0.568
Medication
Medicated 12 − 6.09 − 11.35 − 0.82 0.023 3.642; 1.000; 0.056
Non-medicated 10 − 0.69 − 2.42 1.03 0.431
Anti-diabetic med 6 − 10.17 − 16.59 − 3.75 0.002
Non-anti-diabetic med 5 − 3.59 − 7.02 − 0.169 0.040
Non defined 1
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analysis. In addition, given that an alteration of 30 mg/dL 
in blood glucose reflects 1% change in Hb1Ac marker [63], 
the 10 mg/dL reduction in blood glucose levels observed in 
this meta-analysis is not expected to cause a marked change 
in Hb1Ac. Recent meta-analysis encountered an effect on 
HbA1c of individuals with diabetes (− 0.21 ± 0.04), but not 
on individuals without diabetes, subjected to nutritional 
interventions with 0.028–1.5 g of extracts, supplements, or 
foods for 0.7–12 months [36]. Differences on results may be 
due to the fact that the authors included interventions with 
both supplements and foods in their meta-analysis, and we 
excluded food-based trials from our meta-analysis.

In an attempt to identify some of the factors that may 
influence the glycaemic response to (poly)phenol intake, 
we compared the effects of a mixture of (poly)phenols, iso-
flavones, flavanols and resveratrol on blood glucose. Our 
analysis shows no statistically significant effects or differ-
ences between the four subgroups analysed. Although we 
cannot discard that these results may be due to the small 
number of studies per subgroup, it is also plausible that 
different (poly)phenols may have common and non-spe-
cific regulatory effects on the metabolism of glucose. In 
support of this hypothesis, previous meta-analyses have 
shown a significant reduction in fasting blood glucose after 
supplementation with flavonols [39], and a modulation of 
insulin and HOMA-IR by flavanols present in tea, apple 
and cocoa [64]. Also, a long-term trial found a correla-
tion between flavan-3-ols and isoflavones intake and the 
increase in insulin sensitivity [65]. On the other hand, a 
meta-analysis on the effects of resveratrol has shown a ben-
eficial effect on Hb1Ac (mean effect size = 0.43; SE 0.16; 
95% CI 0.10, − 0.75; P < 0.01) but not on blood glucose, 
insulin and HOMA-IR [66]. Additionally, a recent meta-
analysis shows an inverse association between the intake of 
(poly)phenols and diabetes (HR of 0.56) [35]. These data 
support the notion that the effector regulators of glucose 
metabolism at the cellular and organ level may not be the 
parent compounds supplied to the volunteers. The putative 
compounds are common low-molecular weight phenolic 
metabolites of the main classes of (poly)phenols generated 
in the intestinal tract as the culmination of multiples steps 
involving gut microbiota metabolism [64, 67–69]. In sup-
port of this view, it was recently shown that 2,3-dihydroxy-
benzoic acid (DHBA), a colonic phenolic acid derived from 
flavonoid intake, decreases the uptake of glucose and the 
enzymes responsible for gluconeogenesis in a renal proxi-
mal tubular cell line [70], suggesting a possible influence in 
renal glucose reabsorption and thus, a potential regulatory 
effect on blood glucose levels.

Of note, our analysis has shown statistical evidence for a 
higher hyperglycaemia reduction in medicated as compared 

to non-medicated individuals with diabetes. Remarkably, 
the strength of evidence on this reduction was higher for 
those on medication for diabetes, than on individuals taking 
other types of medication such as statins, antihypertensive 
and beta-blockers drugs. This is the first meta-analysis that 
shows evidence for the impact of the type of medication on 
the effect of (poly)phenols on glycaemic control in individu-
als with diabetes. Our data are suggestive of a potential syn-
ergistic action of (poly)phenol supplementation and medica-
tion mainly for diabetes treatment, opening new venues for 
the exploitation of (poly)phenol-rich diets as co-adjuvants in 
diabetes management. This notion is supported by previous 
animal studies showing an interaction between the intake 
of (poly)phenol-rich herbs and anti-diabetic medication on 
glucose control and insulin sensitivity [71, 72].

Monitoring of blood glucose levels is the primary clinical 
criteria for diabetes diagnosis and control. However, other 
biomarkers such as glucagon, C-peptide, pro-insulin and 
IAPP/amylin are also useful to monitor diabetes and pan-
creatic function. However, only a few studies addressed the 
impact of (poly)phenols on these parameters. The scarcity of 
studies investigating the potential protective action of (poly)
phenols towards these clinical parameters led to their exclu-
sion of the meta-analysis emphasizing the need of further 
research in the field.

The main strength of this study is the indication that 
(poly)phenol consumption may improve glycaemic control 
in individuals with diabetes, particularly those medicated 
for the disease. Only clinical trial studies were included in 
the analysis to eliminate confounding factors that may play 
a role in nutritional interventions, such as limitations of die-
tary assessment techniques, displacement of other nutrients 
or difficulties in assessing baseline dietary status [73]. The 
detected effects on the major clinical symptom of diabetes, 
the abnormal levels of blood glucose, makes this study rel-
evant to encourage further investigations towards the use 
of (poly)phenols together with diabetes medication for an 
improved glycaemic control.

On the other hand, the reduced number of clinical inter-
vention studies included in this meta-analysis as well as the 
lack of further information reported in those studies consti-
tutes the main weaknesses of our research. This made impos-
sible to perform further sub-groups analyses and to consider 
additional factors to those herein analysed. This may also 
represent the main reason as to why we were not able to 
detect any other significant results apart from those reported 
for blood glucose. The timeline of the original search also 
represents a weakness that may have contributed to these 
limitations.
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Conclusion

Despite the considerable number of randomized clinical tri-
als that have so far evaluated the health benefits of several 
(poly)phenols towards biomarkers of diabetes, there is still 
a clear need for more intervention studies further demon-
strating these effects and investigating in depth the factors 
that influence inter-individual variability in the response to 
these compounds. The validation of the reduction of blood 
glucose by these compounds as well as other potential regu-
latory effects on other biomarkers should be accompanied by 
mechanistic studies, with a focus on (poly)phenol microbial 
metabolism for an accurate characterization of their health 
benefits towards diabetes management and the combined 
effects with anti-diabetic drugs.
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