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above, the DD ambiguities in GLONASS are not integers 
because each satellite transmits at a different frequency 
(Nardo et al., 2015). For this reason, GLONASS will not 
be considered in this study.

With the modernization of GPS and the new signals of 
Galileo and BDS which are intended for civilian use, this 
will likely improve the performance of integer ambiguity 
resolution for long baselines and in general, will revolu-
tionize the positioning and navigation services on earth 
(Odijk et al. 2014; Nardo et al., 2015; Ning et al., 2016).

The GNSS code and phase observations contain some 
errors that are subject of spatial correlation. In the pre-
sent study, this effect concerns the orbital error and iono-
spheric delay. For short baselines, the spatial correlation is 
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Abstract. In the context of processing GNSS (Global Navigation Satellite System) data, it is known that the estimation of 
the ionospheric delays decreases the strength of the observation model and makes significant the time required to fix the 
ambiguities namely in case of long baselines. However, considering the double-differenced (DD) ionospheric delays as sto-
chastic quantities, the redundancy in this case increases and leads to the reduction of time of fixing the ambiguities. The 
approach developed in the present paper makes two considerations: 1) the DD ionospheric delays are assumed as stochas-
tic quantities and, 2) the spatial correlation of errors is accounted for based on a simple model of correlation. A simula-
tion is made and aims to study the effect of these two mentioned considerations on the performances of the three multi-
frequency GNSSs; modernized GPS, Galileo and BDS which are not yet in full capability. For each GNSS, dual-frequency 
combinations of frequencies as well as triple-frequency combination are investigated in the simulation. The performances 
studied include: the time to fix the ambiguities with high success rate and the precision of coordinates in static relative 
positioning with varying baseline length. A method is developed to derive what we call the spatial correlation model which 
approximately gives the covariance between the individual errors belonging to two stations. Furthermore, the stochastic 
models that follow from accounting and neglecting the spatial correlation are developed. The LAMBDA (Least-squares 
Ambiguity Decorrelation Adjustment) method is implemented for ambiguity decorrelation. The results show that the time 
to fix the ambiguities caused by accounting the spatial correlation is less than the time of fix without the spatial correla-
tion. Also, a slight superiority of Galileo in terms of performances is seen compared to the other GNSS. For all the dual-
frequency combinations investigated, when processing a baseline length of 500 km with accounted spatial correlation, the 
time needed to successfully fix the ambiguities lies between 5 and 9 min, whereas it becomes only between 2.5 and 3 min 
for all the triple-frequency combinations, this is with a sampling time of 5 s. In addition, for all different combinations, the 
coordinates precision is less than 8 mm even for 500 km. We think that these high performances result from: 1) the precise 
codes of future GNSS signals, 2) the high redundancy in the observations equation and, 3) taking into account the spatial 
correlation in the definition of the stochastic model.     
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Introduction 

In the ongoing modernization of GPS, the new signal 
L5 available on the block IIF satellites which have been 
launched since 2010 is introduced and added to the cur-
rent L1 and L2 signals. Besides this, in the upcoming few 
years, Galileo and BDS will be fully operational. Galileo 
was designed to transmit for Open Service, signals cen-
tered at E1, E5b and E5a such that the code precision 
on L5a is likely to be better than E1. Similarly, BDS will 
transmit to GNSS users three signals: B1, B2 and B3. 
Two frequencies are shared between GPS and Galileo: L1 
(E1) and L5 (E5a), and one frequency is shared between 
Galileo and BDS: E5b (B2). Unlike the three GNSS cited 
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strong and mitigates consequently these errors to a great 
extent. However, for medium and long baselines, the spa-
tial correlation becomes weak and decreases as the length 
of baseline increases. In this case the spatially correlated 
errors remain and need to be either estimated or consid-
ered as residuals (i.e. resulting from double differencing) 
of stochastic nature. The estimation of ionospheric delays 
decreases the redundancy and results in slow convergence 
of the estimated coordinates to cm–mm precision. In oth-
er part, considering the residuals as stochastic quantities 
with known statistics, seems to be beneficial in the sense 
that it augments the redundancy. Consequently, the ambi-
guities are expected to be fixed with high probability and 
within short time span especially for long baselines.

The present study aims to examine through a simula-
tion, the effect of spatial correlation on the time required 
to achieve a successful fixing of the ambiguities as well as 
on the position quality with respect to baseline lengths. 

The subsequent subsections will give in detail the steps 
followed to reach our purposes. This simulation does not 
need real or simulated observations since the performanc-
es that we wish to evaluate by least squares method need 
only the design matrix and the variance covariance matrix 
of observations. 

This work is organized as follows: first, we start by de-
riving the spatial correlation model. Second, we present 
the observations equation and the stochastic model along 
with the assumptions made in the operation of derivation. 
In the next step, the parameters used in the simulation as 
well as the different combinations of frequencies for each 
GNSS are provided. Also, a brief review of how the am-
biguities are decorrelated by LAMBDA method is given. 
The numerical results of the simulation are presented and 
analyzed and in the last section we give conclusions.

1. Spatial correlation model 

In this subsection, we give a derivation of a simple math-
ematical model of spatial correlation that approximates 
the covariance between individual errors belonging to two 
stations. This model is derived from the known variances 
of undifferenced (UD) and DD errors. In addition, the ef-
fect of accounting or neglecting the spatial correlation on 
the expression of the variance covariance matrix of DD 
errors will be demonstrated.

The fact that certain errors are mitigated in double-dif-
ferencing, this proves the presence of non-null covariance 
between them. We try in this section to model approxi-
mately this covariance, following a matrix fashion in the 
derivation and taking the orbit error as typical example, 
as it will be described below.

First, we apply the covariance propagation law on the 

vector of UD orbital errors 1

2
,

δρ 
δρ =  δρ 
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Q denotes the variance covariance matrix of UD orbital 

errors. 1 2 . .. ,
Tm

r r r δρ = δρ δρ δρ   where the subscript r = 
1, 2 identifies the receiver and m is the number of satel-
lites.

Second, we introduce the three following considera-
tions:

 – The variances of UD orbital error are assumed equal 
no matter is the satellite s, i.e.

2
2 1var( ) var( ) ;s sδρ = δρ = σ     (2)

 – The errors between different satellites are non-cor-
related, then
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(3)
 – We consider that the covariance between the receiv-
ers is constant whatever the satellite S is, i.e.

2 1 1,2cov( , ) .s sδρ δρ = σ   (4)

After introducing these considerations, the expression 
of Q can be further simplified to 
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mI  is an identity matrix of order m. 
Now, the variance covariance matrix of DD orbital er-

rors can be obtained by applying the covariance propaga-
tion law, this gives

2
1,2 –12( – ) ,T

DD mQ Q T= Ω Ω = σ σ     (6)

where the (m – 1) ×2m matrix Ω  is the double-difference 

operator matrix. . . . .
. . . .–1
. . . .
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 =  
 
  

  is a matrix of order 

m – 1 whose the diagonal elements are 2 and ones else-
where.

We know that each diagonal element in the matrix 
DDQ  is the variance of DD error, i.e.

2 2
1,24( – ).DDσ = σ σ         (7)

Therefore, from Equation (7), the covariance between 
UD orbital errors 1,2( )σ  belonging to station 1 and 2 for 
any satellite, can be evaluated approximately by 

2
2

1,2 – .
4
DDσ

σ = σ     (8)

The covariance 1,2σ  is here positive since .DDσ > σ  
The simple model (8) is what we call the spatial correla-
tion model, it means that if we know the variance of the 
UD and DD error, we can derive approximately the value 
of the covariance between individual errors. This covari-
ance is usually required when attempting to develop a sto-
chastic model for relative positioning.

Using the spatial correlation model, the expression of 
DDQ  of equation (6) becomes 
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2
–1

1 .
2DD DD mQ T= σ     (9)

Now, when the spatial correlation is neglected, the ma-
trix DDQ  will be diagonal and takes the form

2
1. DD DD mQ I −= σ  (10)

In this study, the same form of the variance covariance 
matrix (9) (with spatial correlation) and (10) (without spa-
tial correlation) that have been designed for orbital error 
is also adopted for ionospheric delay. Note that the vari-
ance 2

DDσ  is assumed constant regardless of the satellite 
elevation angle. 

2. Observations equation 

In relative positioning, double-differenced code and car-
rier phase observables are usually formed because many 
systematic errors existing in GPS measurements cancel 
out or decrease in size. This produces on one part, a sim-
plified mathematical model and ensure on the other part 
an integer nature of ambiguities. When the integer ambi-
guities are parameterized within a strong model and then 
fixed by an appropriate ambiguity resolution technique, 
this allows to achieve a fast and precise positioning.

The linearized observations equation at a single epoch 
k for a multi-frequency GNSS, is written as   

,
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where ⊗  denotes the Kronecker product (see Schäcke, 
2013; Zhang & Ding, 2013) for more information about 
the properties of Kronecker products). ,k kR Φ  denotes re-
spectively the vector of observed minus computed DD code 
and carrier phase measurements. f is the number of fre-
quencies used. [1,1, ..., 1]Tfe =  a column vector of length 
f. The matrix kF  is a concatenation of the Jacobian matrix 
that follows from the derivation of DD geometric distances 
with respect to the unknown station coordinates, and the 
column vector of Niell Mapping Functions (NMFs) of the 
tropospheric wet component.  1 2( , , ..., )fdiagΛ = λ λ λ  a 
diagonal matrix of wavelengths. –1ml  an identity matrix of 
order m – 1 such that m is the number of satellites. The 
vector (4 1)g ×  comprises the unknown geometric terms: 
station coordinates and relative zenith tropospheric wet 
component. a is the vector of DD integer ambiguities. The 
vectors ,R kε  and ,kΦε  are the sum of unmodeled DD er-
rors for code and phase respectively, such that 
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where the DD error vectors (1), iδρ  and (2)i  de-
note respectively: the orbital error, the first and 

second order ionospheric delay. 2 2
2[1 ... ]Tfh = α α  and 

3 3
2[1 ... ]Tfh′ = α α  with 

1
.p

p
λ

α =
λ

 The vectors ,R kν  and 

,kΦν  denote the noise, including multipath, on code and 
phase in double-difference respectively.

Any other systematic error in equation (11) that can 
exist is considered properly corrected. At each epoch k, 
the matrix kF  in equation (11) needs to be updated as 
the satellite positions change with time. The ionospheric 
delay in equation (12) has been approximated to a second 
order according to Datta-Barua et al. (2008) and Alizadeh 
et al. (2013).  

3. Stochastic model

The stochastic model describes the precision of measure-
ments and the eventual covariances that exist between 
them. In this section we give one stochastic model in gen-
eral form that can reflect the two cases to be investigated: 
when the spatial correlation is accounted (using Equation 
(9)) and when it is neglected (using Equation (10)). By ap-
plying the covariance propagation law on the error vector 

,

,
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 the stochastic model in general form at a single 

epoch k will be  
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where the blocks , , ,,R k R kQ Q Φ   and ,kQΦ  are found to be

2
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with: 1[ ], [ – – ],
2R f fS e h h S e h hΦ′ ′= =  

2 2 2
(1) (2)( , , )DD DDorb DDion DDionD diag= σ σ σ  is a 3×3 diago-

nal matrix containing the variances of the DD orbital er-
ror, first and second order ionospheric delay. The matrix 

–1
1
2 mC T=  if the spatial correlation is accounted such that 

–1mT  is as defined in section 2 and 1mC I −=  if it is ne-
glected. The diagonal matrices RD  and DΦ  are of order 
f that contain respectively the variances of UD code noise 
and carrier phase noise at zenith (their magnitudes are 
provided in Table 1 below). Ω  is the double-difference 
operator matrix. kM  denotes the diagonal matrix of noise 
mapping functions at epoch k.

It is worth to notice that during the development of 
the stochastic model, the following considerations and 
simplifications are made: 

 – We consider no correlation between different types 
of errors since they come from independent physical 
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processes. For example, there is no need to consider 
that the ionosphere and orbital effect are correlated; 

 – The temporal correlation of noise is neglected as at 
least a sample time of 5 s is chosen in the simulation, 
according to (Nardo et al., 2015);

 – The temporal correlations of ionospheric residuals 
are neglected in the stochastic model to avoid invert-
ing a large and fully populated variance covariance 
matrix of observations;

 – The uncorrected DD ionospheric delays are normally 
distributed and centered at zero even for long base-
lines (up to 407 km) as stated (Liu, 2001, p. 100);

 – No cross-correlation between signals exists, since we 
assume that the signals in either modernized GPS, 
Galileo or BDS will be likely non-correlated.

 – The mapping function for code noise is assumed 
identical to carrier phase noise, it is formulated as

–90 /26.2 – /26.2( ) 1– 2.9 2.9 ,sm e e° ° °ε = +   (17)

where ε  is the elevation angle in degree. Note that we 
computed the parameters of this mapping function by 
fitting a curve of exponential function 0– /( ) a be ε εσ ε = +  
through the observed RMS of noise. These observed val-
ues of RMS result from the study conducted by (Cai et al., 
2016),  for a Trimble NetR9 receiver are exploited for ac-
curate assessment.

4. Simulation parameters 

The positions of GPS satellites are computed from alma-
nac data using YUMA files for May 3, 2018, from 19:39 
to 20:32. The full GPS constellation is assumed to contain 
31 satellites. Because the Galileo and the MEO (Medium 
Earth Orbit) of BDS satellites are not yet fully deployed, 
the positions of satellites are simulated based only on their 
nominal constellation configurations described as follows. 
For Galileo: 3 orbital planes, 9 satellites equally distributed 
and one spare satellite in each orbital plane, nearly circular 
orbit, inclination: 56° and semimajor axis of 29,600 km. 
For BDS, 3 orbital planes, 8 satellites equally distributed 
and one spare satellite in each orbital plane, nearly circular 
orbit, inclination: 55° and semi-major axis of 27,900 km. 
The full Galileo and BDS constellations are each assumed 
to contain 27 satellites. The period of time is chosen such 
that the same set of 10 satellites still in view in each GNSS. 
The reference station is located at latitude 34° 40′ N and 
longitude 3° 14′ E (located at Djelfa, Algeria). The second 
station is located in the west of the reference station and 
has the same latitude. The elevation mask angle is set at 10°.

The variation of standard deviation of DD orbital er-
rors ( )DDδρσ  with respect to the length of baseline b can 
be formulated as 

2DD q bδρ δρσ = σ  (km),     (18)

where q takes the values of 4.9, 4.6 and 4.3 for GPS, BDS 
and Galileo respectively. δρσ  the standard deviation of 
the UD ephemerides. See in the appendix how the for-
mula (18) is derived. For GPS, δρσ  is set to a value of 1 m 
as it corresponds to the IGS (International GNSS Service) 
broadcast ephemerides precision. Similarly, we assume the 
same magnitude of δρσ  for the Galileo and BDS. 

Concerning the ionospheric errors, the standard de-
viations used in the simulation are taken from (Feng 2008) 
and provided in Table 1. In this table, we see that the first 
order DD ionospheric delay standard deviation grow with 
distance by about 2 ppm. However, in the study conducted 
by (Liu & Lachappelle, 2002), it is only 1.5ppm for an ac-
tive day and without any ionospheric corrections. There-
fore, the values of standard deviation of Table 1 have been 
likely obtained without correcting the ionospheric delays. 
For a given baseline length that does not correspond to 
the baselines mentioned in Table 1, we performed a lin-
ear interpolation to predict the DD Ionospheric standard 
deviation.

Table 1. Standard deviations of ionospheric delays in DD for 
short, medium and long baseline

Baseline

Short
(0–20 km)

Medium
(20–100 km)

Long
(100–500 km)

Errors 
in DD

1st order 
iono 
on L1 
(~2 ppm)

<10 cm <40 cm <100 cm

2nd order 
iono on 
L1

<0.5 cm <1 cm <2 cm

Deprez and Warnant (2016) (Tables 1, 2 and 3) provide 
the average standard deviations of noise corresponding 
to a Trimble NetR9 receiver for GPS, Galileo and BDS. 
Since we need these values at zenith, we divide the aver-
age standard deviations by a factor of 1.5 to obtain ap-
proximately the standard deviations of noise at zenith. The 
following Table results from this operation.

In the previous two subsections we presented a gen-
eral form of the observations equation and the associated 

Table 2. Standard deviations for UD noise at zenith for a Trimble NetR9 receiver

GPS Galileo BDS

L1 L2 L5 E1 E5b E5a B1 B2 B3

Freq (MHz) 1575.42 1227.60 1176.45 1575.42 1207.14 1176.45 1561.098 1207.14 1268.52
Code (cm) 25.5 20.5 20 16 16 14.5 27.5 20.5 17.5
Phase (mm) 1.2 1.5 1.5 1.5 1.5 1.5 1.5 1.7 1.7
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stochastic model designed for a multi-frequency combina-
tion of signals. For this study, dual-frequency combina-
tions as well as triple-frequency combinations are planned 
for comparison purpose. These combinations are summa-
rized in the following Table 3. 

5. Ambiguity decorrelation 

By least-squares adjustment, we can obtain the float solu-

tion 
g
a
 
 
 





 and its associated variance covariance matrix
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Q Q

 
 
  

  



 

 

After obtaining the float solution, the ambiguities 
need to be fixed on the correct integers: this step is called: 
ambiguity resolution. An advantage of this technique 
is its ability to improve the precision of other estimates 
of interest as for example the baseline components. In 
this work, the ambiguity resolution method LAMBDA 
(Least-squares AMbiguity Decorrelation Adjustment) is 
implemented. This method was first introduced in 1993 
by P. J. G Teunissen in his paper (Teunissen, 1993) and 
discussed in detail in Teunissen (1995), it is known among 
other methods by its high success probability of resolution, 
see the advantages of LAMBDA method over other meth-
ods in Teunissen et al. (2002) and the study conducted by 
Jazaeri et al. (2014) that compares different decorrelation 
techniques. The LAMBDA method is performed into two 
steps: the first step achieves a decorrelation of ambigui-
ties i.e. reduction of correlation of ambiguities by using 
Z-transformation and the second step consists of finding 
the most probable integer candidate inside the so-called: 
ambiguity search space. The role of the first step is to speed 
up the second step and to make the search process more 
efficient (Chang et al., 2005). The Z-transformation con-
sists to find the matrix Z, such that  

.T T
aZQ Z Q Z L DL= =

    (19)

Matrix Z should obey three conditions: 1), it should 
minimize the product of diagonal elements of the trans-
formed covariance matrix ZQ  , 2): the entries of Z are in-
tegers and 3): det( ) 1,Z = ±  see Teunissen (1994) for more 
details. L is a unit lower triangular matrix. D diagonal ma-
trix containing the so-called conditional variances. 

Once the ambiguities are fixed with high success prob-
ability (i.e. when a probability very close to 1 is obtained), 
the variance covariance matrix of the fixed solution g  
reads:

–1
, ,– .T

g g g a a g aQ Q Q Q Q=   

     (20)

To measure the success of ambiguity resolution, usu-
ally the so-called success probability or success rate is 

computed. The success rate that corresponds to the search 
technique ILS (Integer Least Squares) is difficult to be 
computed but the computation of success rate related to 
the search technique called bootstrapping is possible. The 
bootstrapped success rate denoted sP  is regarded as the 
lower bound of ILS success rate and is computed by 

1

12 –1 ;
2

n

s
ii

P
=

  = Φ   σ  
∏  

21–
2

–

1( ) ,
2

x t
x e dt

∞

Φ =
π ∫   (21)

where n – number of ambiguities; iσ  – the standard de-
viation of conditional ambiguity i that appear in matrix 
D, for further details see Teunissen (1998), Chang et al. 
(2005), Verhagen and Li (2012). 

Arora (2012) states that the ambiguities were consid-
ered successfully resolved only after a minimum of 0.999 
(or 99.9%) of probability is obtained from integer boot-
strap. This threshold probability is chosen in the study 
conducted by Odijk et al. (2014) and is adopted also here. 
In this work, the time to fix the ambiguities for a given 
baseline length is determined by accumulating the data 
until a success rate greater than or equals the threshold 
99.9% is attained. 

6. Results and discussion

The present section provides the numerical results relative 
to several combinations of frequencies for each GNSS and 
gives an insight of their performances corresponding to a 
certain period of time. The GNSS performances that we 
focus on in the simulation are: the time required to fix the 
ambiguities and the precision of station coordinates with 
respect to baseline lengths. The effect of non-considering 
the spatial correlation on the performances is highlighted 
only in the Galileo plots.

Figure 1 below shows the plots of the time required 
to fix the ambiguities against the baseline length with a 5 
s sampling time. In Galileo plot, it is clear that when the 
spatial correlation is considered (solid lines), this causes a 
shorter time of fix compared to when it is not considered 
(dashed lines). All the Galileo frequency combinations 
(solid lines) do better than their counterparts in GPS and 
BDS, this is due to the high precisions of the codes of 
Galileo compared to those in the other GNSSs as shows 
Table 2. BDS also do better than GPS in terms of time of 
fix of ambiguities. 

For all GNSS, we can see that the triple-frequency 
combination in general outperforms the dual-frequency 
combination in terms of time to fix the ambiguities. The 
time of fix that results from all dual-frequency combi-
nations, lies between 5 and 9 min for 500 km baseline, 

Table 3. Combinations of frequencies for GPS and Galileo

GNSS GPS Galileo BDS

Combination L1+L2 L1+L5 L1+L2+L5 E1+E5b E1+E5a E1+E5b+E5a B1+B2 B1+B5 B1+B2+B5
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whereas, for triple-frequency combinations, this time lies 
only between 2.5 and about 3 min with a superiority of 
Galileo (2.5 min). Also, we can remark in the GPS plot 
that the combination (L1+L2) provides a longer time of 
fix compared to (L1+L5), though, the code precision of L2 
and L5 are almost the same (20 cm). Based on this remark, 
we can deduce a rule for the dual-frequency combina-
tions. This rule is stated as follows: as the two frequencies 
get closer, the time of fixing the ambiguities get longer and 
vice-versa. In Galileo plot for example, where the combi-
nation (E1+E5b) gives a longer time than (E1+E5a), this 
effect does not result from only the fact that the code E5b 
is less precise than E5a, but also because the frequencies 
(E1, E5b) are closer to each other than (E1, E5b). 

Note that, the combination of the second and third 
frequency, which are the closest frequencies in each GNSS, 
has not been visualized in the plots because of their long-
er time of fix. For instance, the combination (E5b+E5a) 
yields for 500 km, a time of 19 min even though E5b and 
E5a have the highest code precision. Such kind of combi-
nation may be seen as a reinforcement of the correctness 
of the rule deduced above.

 The precisions of fixed coordinates, arising from the 
different combinations are depicted in Figure 2. Note that 
the precisions in this figure are computed in analogy to 
the ADOP (Ambiguity Dilution Of Precision) concept. 
For more information about ADOP and its properties see 

(Teunissen and Odijk 1997). Following this concept, the 
precision of coordinates is represented uniquely by one 
measure 

1
6[det( )] ,bQσ =     (22)

with bQ  a 3×3 variance covariance matrix of baseline 
components. The advantage of computing the precision by 
such formula is its ability to use the complete information 
inside the matrix bQ  i.e. considering the off-diagonal ele-
ments instead of considering only the individual diagonal 
elements of bQ  as precision indicators. 

In Figure 2, we see for Galileo case, that there is no 
significant difference in positioning precision between ac-
counting and no accounting, the spatial correlation. 

The precisions do not exceed 8 mm for GPS, 5.5 mm for 
Galileo and 5 mm for BDS. The dual-frequency combina-
tions in each GNSS give relatively the same magnitude of 
precision regardless of the variation of the baseline length. 
Unlike the GPS case, the dual-frequency combinations in 
Galileo or BDS do better than the triple-frequency com-
bination. We can also remark in Galileo and BDS at about 
200 km, a progressive decrease in precision with baseline 
length. The progressive decrease in precision that starts at 
about 200 km can be explained by the fact that the decrease 
of precision of ionospheric delays with increasing baseline 
length, starts to outweigh at 200 km, the gain of precision of 
estimates caused by the increasing number of observations.

Figure 1. Variation of the time to fix the ambiguities with baseline length for GPS (Top), Galileo (Medium) and BDS (Bottom).  
Solid line means spatial correlation accounted and dashed line without spatial correlation.  

5 s interval, success rate: 99.9% and 10 satellites continuously tracked for each GNSS
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Additionally, and despite of the ADOP-based precision 
results, the horizontal precision is evaluated in general to 
less than few millimeters and the height precision to less 
than few centimeters for all combinations studied.

We think that the resulting short time to fix the ambi-
guities and the high positioning precisions are essentially 
due to: 1) the high redundancy caused by the non-param-
eterization of the ionospheric delays, 2) the precise code 
used and third, taking into account the spatial correlation 
in the stochastic model.

This study is based on a simple model of spatial cor-
relation, thought, it needs more refinements and improve-
ments. Despite of whether the spatial correlation model 
established is realistic or not, we believe that accounting 
for the spatial correlation in GNSS data processing will 
have as consequences: a shorter time span to fix the am-
biguities and an improved positioning precision.

Conclusions

In the present work we consider the effect of the spatial 
correlation of errors in studying the performances of the 
modernized GPS, Galileo and BDS. The performances in-
vestigated here are: the time to fix the ambiguities and the 

positioning precision with varying baseline length. From 
the given variances of DD errors that depend on base-
line length, we proved in matrix fashion the presence of 
a positive covariance between the individual errors and 
then we derived what we call the spatial correlation model. 
Also, when neglecting the spatial correlation, the result-
ing variance covariance matrix of DD errors is provided. 
The stochastic model is developed and written in general 
form to include the two cases: accounting or neglecting 
the spatial correlation. Furthermore, for each GNSS, sev-
eral combinations of frequencies are planned to show the 
response of these combinations to the spatial correlation. 
The ambiguities are decorrelated using LAMBDA method 
and they are considered successfully resolved once a 99.9% 
success rate is attained. The results that is based on simu-
lated data, show that accounting the spatial correlation 
yields a shorter time to fix the ambiguities compared to 
when the spatial correlation is neglected in the stochastic 
model. Galileo system is slightly superior in terms of per-
formances, compared to the two other GNSSs. For all the 
dual-frequency combinations studied, when a long base-
line of 500 km is processed with a 5 s interval, the time 
required to successfully fix the ambiguities lies in general 
between 5 and 9 min, whereas, it lies only between 2.5 

Figure 2. Variation of standard deviations of fixed coordinates with baseline length for GPS (Top),  
Galileo (Medium) and BDS (Bottom). Solid line means spatial correlation accounted and  

dashed line without spatial correlation. 5 s interval, success rate: 99.9 % and 10 satellites continuously tracked for each GNSS
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and 3 min for all the triple-frequency combinations. The 
ADOP-based precision of positioning is high and does 
not exceed 8 mm for all combinations even for 500 km 
baseline. We believe that these considerable performances 
result from: 1) the high redundancy, 2) the precise codes 
of future GNSS signals and 3) accounting for the spatial 
correlation in the stochastic model.
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We provide in this appendix an approximation of the dif-
ferenced orbital error or rather providing the maximum 
value of the differenced orbital error attained with respect 
to the baseline length. In the Figure 3 below; S and 0S  
designate the true and the computed (broadcast) position 
of a satellite. (3 1)δρ ×  is the vector of orbit error, note 
that S and 0S  are not in the same plane. θ  is the angle 
between the two receivers. 1 2,ρ ρ  are respectively the dis-
tances between receivers and 0S . b denote the baseline. 
The unit vectors 1 2,u u  point from the receivers towards 

0S . An orbital error in the direction receiver-satellite is 
the projection of the vector δρ  onto this direction. Fol-
lowing this rule, the error vectors in their respective direc-
tions receiver-satellite are expressed as:

1 1 2 2,T Tu uδρ = δρ δρ = δρ .    (23)

 

S

b

u1u2

�2 �1
�

��
S0

Figure 3. Geometric relationship between orbital error, 
receiver-satellite distance, baseline and the angle  

between receivers

Applying the covariance propagation law on the single-
difference (SD) 2 1–∆δρ = δρ δρ  yields

( )
2

2 1

2 1 2 1 2 1

var( ) var( – )

var ( – ) ( – )var( )( – ).T T T Tu u u u u u
∆δρ∆δρ = σ = δρ δρ =

δρ = δρ
  

(24)

var( )δρ  is the (3×3) covariance matrix of orbit error. If 
var( )δρ  is approximated to 2Iσ  where σ  denotes the 
average standard deviation of UD orbital error and I an 
identity matrix, then 2

∆δρσ  will be

2 2 2
2 1 2 1 2 1

2 2 2
1 22 2

1 2

( – )( – ) 2 (1– )

–
2 (1– cos ) 2 1–

2

T T Tu u u u u u

b
∆δρσ = σ = σ =

 ρ + ρ
 σ θ = σ  ρ ρ 

 
(25)

by using the trigonometric theorem of Al-Kashi, i.e. 
2 2 2

1 2 1 2– 2 cos .b = ρ +ρ ρ ρ θ  It is clear that the maximum of 
2
∆δρσ  is attained when the angle θ  is maximal, in other 

word when 1 2 ,ρ = ρ = ρ  therefore:

2
2 2

2
max( ) max( ) .b b

∆δρ ∆δρσ = σ → σ = σ
ρρ

   (26

In the case of GPS, for example, the distance receiver-
satellite ρ  varies between 20,200 km (satellite at zenith) 
and 25,800 km (satellite on the horizon). Now, by adopt-
ing a minimal value of ρ , the maximum of the SD orbital 
error max( )∆δρσ  reaches a great amount. Based on the 
considerations stated above, the standard deviations for 
will be at worst as

max( ) ,q b∆δρσ = σ       (27)

where: –54.9 10q = ×  (GPS), –54.6 10q = ×  (BDS), 
–54.3 10q = ×  (Galileo). 

Finally, the maximal DD orbital error will be

max( ) 2 ,q b∇δρσ = σ       (28)

note that max( )∇δρσ  and σ  are in unit of meter and the 
distance b is in km.

APPENDIX 

Dependence between differenced orbital error and baseline length


