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Abstract. Global change and GHG emission modelling are dependent on accurate wetness estimations for predic-

tions of e.g. methane emissions. This study aims to quantify how the slope, drainage area and the TWI vary with 

the resolution of DEMs for a flat peatland area. Six DEMs with spatial resolutions from 0.5 to 90 m were interpo-

lated with four different search radiuses. The relationship between accuracy of the DEM and the slope was tested. 

The LiDAR elevation data was divided into two data sets. The number of data points facilitated an evaluation data-

set with data points not more than 10 mm away from the cell centre points in the interpolation dataset. The DEM 

was evaluated using a quantile-quantile test and the normalized median absolute deviation. It showed indepen-

dence of the resolution when using the same search radius. The accuracy of the estimated elevation for different 

slopes was tested using the 0.5 meter DEM and it showed a higher deviation from evaluation data for steep areas. 

The slope estimations between resolutions showed differences with values that exceeded 50%. Drainage areas were 

tested for three resolutions, with coinciding evaluation points. The model ability to generate drainage area at each 

resolution was tested by pair wise comparison of three data subsets and showed differences of more than 50% in 

25% of the evaluated points. The results show that consideration of DEM resolution is a necessity for the use of 

slope, drainage area and TWI data in large scale modelling.

Keywords: digital elevation model, LiDAR, wetness index indices.

1. Introduction

The most recent scientific assessment of climate change 
by the Intergovernmental Panel on Climate Change states 
that the world is becoming warmer, and that the extent 
of warming will be greater at higher latitudes (Denman 
et al. 2007). Northern peatlands store about 25% of the 
world’s terrestrial carbon and emit between 10 and 20% 
of its natural methane sources (Gorham 1991, 1995; 
Moore et al. 1998). Estimating the distribution of wet-
ness in northern peatlands is thus essential in order to 
determine their influence on the emission of greenhouse 
gases (GHG). Due to such changes in wetness, e.g. by 
permafrost thawing and a following change in biogeo-
chemical function, changes in methane emissions have 
been reported to increase by factor of 10 to 50 (Bubier 
et al. 1999; Christensen et al. 2004).

At the macro scale there have been attempts to mod-
el continental and regional scale distribution of peatlands 
using Topographic Wetness Indices (TWIs) (Curmi et al. 

1998; Gedney, Cox 2003; Kirkby et al. 1995). The success 
or failure of these approaches appears to be scale depend-
ent. Wetlands within small and medium size catchments 
have been modelled successfully (Creed et al. 2003). 
However, for biogeochemical changes it is the intra- and 
inter-peatland complexity that is important (Baird et al. 
2009). Also Baird et al. (2009) defined various scales of 
heterogeneity critical to peatland wetness: microtopogra-
phy (1 m: S1 scale), mesotopography (10 m: S2 scale), 
general morphological forms (100 to 1000 m: S3 scale) 
which as adjacent and inter-connected systems form 
peatland complexes (S4 scale), and the catchment to 
continental scale presence or absence (S5 scale). For bio-
geochemistry the focus is the S1 to S3 scale, while the 
modelling focus to-date has been at the S5 scale.

A method has to be developed and evaluated that 
relates the elevation differences within peatlands (S1 to 
S3 scales) to characterize general wetness and the asso-
ciated vegetation community structures that correlate 
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with biogeochemical processes. Estimating the distrib-
uted wetness is one part of the effort to develop and ex-
plore innovative methods that can help us understand 
the relations between the physical attributes of peatland 
surface topography, permafrost, and hydrology, and the 
corresponding plant communities and their carbon stor-
age and emissions. One approach is the use of high res-
olution DEMs and the spatial variability of a simulated 
TWI, which has been the basis of a suite of hydrological 
models (Quinn et al. 1995) and multiple flow algorithms 
(Pilesjö 2008; Pilesjö et al. 2006; Schmidt, Persson 2003).

A topographic wetness index (TWI) can be cal-
culated using estimates of the slope and drainage area. 
Wetness is a geographical phenomenon that varies con-
tinuously over space. An important characteristic of 
peatlands is that the change in elevation between neigh-
bouring points is relatively small, while the difference in 
wetness is relatively large. The use of high resolution data 
to estimate the wetness at many points over an area may 
thus provide a tool for the calculation of gas emissions in 
peatlands.

In order to initiate a study on the hydrology of peat-
lands, and at a later stage detect the important changes 
in wetness, it is necessary to create a digital elevation 
model (DEM) for a specific peatland area. In this study, 
high resolution LiDAR data (Fowler 2001) were used to 
generate a DEM for use in the estimation of wetness in a 
peatland area in northern Sweden.

2. Research questions and hypotheses

Based on the introduction presented above, the follow-
ing main research question was formulated:

1. To what extent do the estimates of the slope and 
drainage area, and thus also the topographic we-
tness index, vary with the resolution of the digital 
elevation model for a peat land area?

Our hypothesis is that estimates of the slope as well 
as drainage area are influenced by resolution, especially 
on relatively flat ground, like a peat land. Smaller terrain 
forms are supposed to be ‘filtered’ when a lower resolu-
tion is used, resulting in lower slopes. Regarding drain-
age area, the actual size of a cell set the minimum area, 
and this in combination with the fact that smaller drain-
age basins (depressions, often called sinks) are ‘filtered’ 
when a lower resolution is used, will result in estimations 
of relatively smaller drainage areas when using a higher 
resolution. This will together result in relatively low es-
timations of TWI when using high resolution data (i.e. 
small drainage areas divided by steep slopes) and rela-
tively high estimations of TWI when using a DEM with a 
lower resolution (i.e. large drainage areas divided by less 
steep slopes).

When creating a DEM choice of interpolation algo-
rithm, search radius, cell size etc. can be discussed (see 
e.g. Hengl 2006). These parameters, as well as the type 
of terrain, might influence the quality of the interpolated 
surface (see e.g. Hengl 2006; Kienzle 2004). This resulted 
in the following two, secondary, research questions: 

2. To what extent do search radius and cell size inf-
luence the accuracy of a DEM created using a 
standard interpolation method for a peat land 
area?

3. Does the accuracy of the DEM change with the 
slope of the terrain and, if it does, to what extent?

Based on studies by e.g. Burrough and McDonnel 
(1998); Haining (1990), we hypothesize that the accura-
cy of the DEM is sensitive to search radius, decreasing 
the quality of the DEM when the distance of significant 
spatial influence between points (i.e. spatial autocorre-
lation) is exceeded. However, cell size should not influ-
ence the accuracy since interpolation of a DEM consists 
of a number of point interpolations, where the cell value 
equals the interpolated value of the cell centre. This value 
is not dependent on cell size.

Regarding the relation between accuracy and slope 
no relationship is supposed to be found if the distribu-
tion of data point for the interpolation is homogeneous 
and the complexity is low. However, if the steeper terrain 
has a high frequency of ‘hill tops’ and ‘valleys’, and the 
input data points are not evenly distributed around the 
point to be interpolated, we expect higher accuracy on 
flat terrain than in steeper areas.

3. Objectives and aims

The main objective of this study was to investigate pos-
sible variation in estimated slope and drainage area, and 
when combined also topographical wetness, using digit-
al elevation models with different model resolutions for 
a northern peat land area. High resolution LiDAR data 
were used for the generation of the DEMs. The second-
ary objective was to investigate the role of search radius 
and cell size when using a standard interpolation algo-
rithm in the generation of the DEM. The tertiary objec-
tive was to determine the accuracy of the DEM for dif-
ferent terrain with different slopes.

In order to achieve the objectives a number of spe-
cific aims were defined:

1. To create DEMs for the peat land area, using a 
standard interpolation algorithm with different 
search radiuses and spatial resolutions (cell sizes).

2. To evaluate the accuracy in the prediction of the 
elevation for the different DEMs using LiDAR 
data points as ‘ground truth’.

3. To calculate and compare the accuracy in the 
DEM estimates of elevation for different slope in-
tervals.

4. To study how estimated slope varies with DEM 
resolution.

5. To study how estimated drainage area varies with 
DEM resolution.

6. To conclude how estimated TWI might vary with 
different DEM resolution.

4. Materials and methods

4.1. Elevation data and study site

This study is based on earth surface elevation data meas-
ured at the Stordalen mire and its catchment area. Stord-
alen is a peatland area in the Arctic region 10 km west of 
Abisko (68º 20’ N, 19º 03’ E) in northern Sweden. The hy-
drology and soil moisture conditions of the Stordalen mire 
have been reported previously (Rydén et al. 1980). Apart 
from studies associated with the International Biological 
Program (IBP) (see e.g. Sonesson et al. (1980), the Abisko 
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area has been included in many research programs, and 
its climatological records extend from 1913 to the present 
date (Andersson et al. 1996). This site is thus suitable for 
investigating methods of estimating changes in carbon 
storage, providing the possibility of validating tools for 
the prediction of changes in peatlands with past and fu-
ture changes in permafrost. The mean annual tempera-
ture for the period 1913–2003 is reported to be –0.7 °C  
(Johansson et al. 2006) for Abisko. A regional rain shadow 
affects the precipitation and makes it among the lowest in 
Scandinavia with a mean annual precipitation of 304 mm 
for the period 1913–2003 (Johansson et al. 2006). An area 
of approximately 18 km2, containing the Stordalen mire, 
was selected as the study area in this project.

An airborne LiDAR device has been used to meas-
ure the surface elevation. LiDAR is an acronym for ‘Light 
Detection and Ranging’, and is a laser-based, remote 
sensing system used to collect various kinds of environ-
mental data, including topographic data (Fowler 2001). 
Over the area defined above the total number of meas-
ured elevation data points (the raw data) is 76 940 341. 
This results in a high resolution data set with an average 
spatial distribution of approximately 13 points/m2. The 
accuracy of any LiDAR data points is related to the ac-
curacy of the LiDAR device components (sensors). With 
recently developed LiDAR components, GPS and an In-
ertial Measurement Unit (IMU), range precision can 
reach 2–3 cm (Lemmens 2007). Airborne GPS accuracy 
is within 5 cm horizontally and 10 cm vertically, while 
the accuracy of IMU is less than a couple of centimetres. 
For LiDAR data in general, the root mean square error 
(RMSE) can get 15 cm vertically and 20 cm horizontally 
(BC-CARMS 2006).

The LiDAR data in the present study were retrieved 
with a TOPEYE S/N 425 system mounted on Helicop-
ter SE-HJC. The altitude when sampling was 500 m. 
The LiDAR data have been post processed and adjust-
ed against 54 known points connected to the national 
geodetic network. The mean vertical error after post-
processing corrections is +0.004 m and the average mag-
nitude of errors is 0.022 m. The RMSE is 0.031 m and the 
standard deviation is 0.031 m.

4.2. General process

The LiDAR elevation data were used to generate a number 
of DEMs. Figure 1 illustrates the general process applied 
for the generation of the DEMs, as well as the evaluation 
of relationships between the accuracy of a DEM and dif-
ferent resolutions and search radiuses. The general meth-
odology used to investigate the influence of slope and the 
possible relation between resolution and estimates of the 
slope and drainage area is also presented.

4.3. Selection of evaluation data points

The most common techniques used for the generation 
of evaluation points are the ʻleave one techniqueʼ within 
cross validation, the split-sample technique and the in-
dependent set of sample (Declercq 1996; Erdogan 2009; 
Smith et al. 2005). For our high density data we decid-
ed to use the split-sample technique. In this method, a 
part of the raw LiDAR data is omitted before perform-
ing the interpolation. Then the differences are calculated  

between the predicted and measured (previously omit-
ted) values (Declercq 1996; Smith et al. 2005).

The criterion for selecting the evaluation points was 
that the distance between a cell centre in the DEM to be 
constructed and the selected point should be less than, 
or equal to, 10 mm. This enables us to validate the esti-
mated elevations at the cell centres in the DEMs using 
data values that were measured at almost the same loca-
tion (maximum 10 mm away from the point of interest).
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Fig. 1. General process used for the generation and evaluation 

of the DEM in relation to the interpolation parameters,  

model resolution, and the estimates of terrain slope  

and drainage area

A MATLAB (MathWorks 2008) program has been 
created to perform the selection process. All 76 940 341 
data points were processed. The program calculates four 
distances from each data point to the nearest four cell 
centres in the DEM to be created. All data points less 
than or 10 mm from the nearest cell centre are then se-
lected to be evaluation data points. Obviously, the calcu-
lation of the nearest centre points, and thus the selected 
evaluation data points, is dependent on the resolution 
(cell size) of the DEM to be created. The following six 
resolutions were used: 0.5, 1.0, 5.0, 10, 30 and 90 me-
ters cell size. This implies dividing the raw data into 12 
subsets, six for interpolation and six for evaluation. The 
number of points to evaluate the DEMs with the six dif-
ferent resolutions is presented in Table 1.
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Table 1. The number of selected points for each DEM resolution 

out of the total 76 940 341 points

DEM

Resolution (m)

Maximum

distance (mm)

Number of  

selected points

0.5 10 154071

1 10 38736

5 10 1579

10 10 417

30 10(30)* 57(230)*

90 10(50)* 6(68)*

*The distance was increased at resolutions of 30 and 90 to obtain 

a minimum of 60 points.

The minimum number of evaluation points was set 
at 60 according e.g. to the American Society for Photo-
grammetry and Remote Sensing (ASPRS 2005). As can 
be seen from Table 1, the number of points less than or 
10 mm from the nearest cell centres for the resolutions 
30 m and 90 m is less than 60. To obtain more points 
for evaluation at these resolutions the distance from the 
cell centres was increased to 30 mm (30 m resolution) 
and 50 mm (90 m resolution). We are aware that this 
modification may constitute a weakness in the method-
ology, and thus decided to use both the original distance 
(10 mm) and the extended distances (30 and 50 mm) in 
the evaluation.

4.4. Generation of the digital elevation model

The spatial autocorrelation of the LiDAR data was tested 
by the generation and interpretation of semivariograms 
for three 225 m2, selected areas: one with steep terrain, 
one with an intermediate slope and one with flat ter-
rain. The terrain was divided into these categories using 
a DEM with 0.5 m resolution. The data within the area 
were corrected for the influence of the major slope in the 
area, i.e. the general trend was removed by subtracting 
the average slope of the mountainside. Semivariograms 
of each area were then created and interpreted. None of 
the areas showed significant spatial influence on a point 
further away than 3.7 meters.

The use of different interpolation algorithms for 
DEM creation has been discussed by several authors 
(Anderson et al. 2005; Erdogan 2009; Lee 2003; Liu 2008; 
Myers 1994). Erdogan (2009) also investigates and re-
views the role of interpolation parameters (like search 
radius) for the results. It is obvious that, different algo-
rithms give different results, and that some techniques 
are more suitable depending on terrain and data.

In this study we have decided to use the inverse 
distance weighted (IDW) interpolation (Shepard 1968). 
This method is based on the assumption that an inter-
polated point is influenced more by nearby data points 
than points further away (Burrough, McDonnell 1998). 
It can be discussed if this is the most appropriate one 
when working in relatively flat areas, and having access 
to a large number of dense data points for the interpola-
tion. Childs (2004) and Liu et al. (2007) pointed out that 
LiDAR data have high sampling density and even for 
complex terrain, the IDW approach is suitable for DEM 

generation, and justifies the choice. In addition, the aim 
of this study is not to compare different algorithms, but 
rather to test a commonly used one, and to look at the 
influence of primarily cell size on the result.

IDW is as we know by far the most common ‘stand-
ard’ interpolation algorithm, included in most geospatial 
processing software. It is likely to believe that it also in 
the future will be used by many researchers in the do-
main. Also, even if there are differences between differ-
ent interpolation algorithms, we expect possible differ-
ences due to cell size in the result to be comparable. A 
limited number of data points (if a local algorithm is 
used) are used for the interpolation of each cell, and the 
relation between individual interpolated points (in this 
case cell centres) should not be heavily influenced by the 
interpolation algorithm.

Six different DEMs were created. The resolutions 
used were 0.5, 1, 5, 10, 30 and 90 meters. The value of 
the search radius when interpolating was varied between 
four different values (1, 2, 5 and 10 meters) for each reso-
lution (cell size). The larger the search radius, the more 
data are obtained, but the risk of including outliers in 
the interpolation is increased. Too large a search radius 
will also include data that have no influence on the to-
pography, as shown in the semivariogram analysis. The 
number of interpolations was thus 24 (six resolutions x 
four search radiuses).

A program was developed in MATLAB to con-
trol the interpolation process, including the problem of 
processing such a large number of elevation data points. 
In order to conduct the interpolation process for each cell 
it is necessary to search inside a relatively large database. 
Such a process can be very slow since it has a computa-
tional complexity of n2 (in our case n = 76 940 3412 mi-
nus the number of evaluation data points), and may take 
several weeks. In order to speed up the process, a spa-
tial index key called a Morton value (Orenstein, Manola 
1988) was calculated for each data point to be interpolat-
ed. Adding the spatial index decreases the computation-
al complexity to nlogn, making it possible to deal with a 
large number of data points within a reasonable period 
of time.

4.5. DEM evaluation

The purpose of evaluating DEMs with different resolu-
tions is to detect possible differences, and identify the 
resolution that represents the evaluation data most ac-
curately. In order to accomplish this, we calculated the 
deviations between the measured evaluation data points 
and the interpolated values for the overlapping cell centre 
for all combinations of resolution and search radiuses.

The technique most appropriate for measuring the 
accuracy of the DEM depends on the kind of error dis-
tribution. A normal distribution of the errors is rare in a 
DEM derived from data collected by LiDAR, due to e.g. 
filtering and interpolation errors (Höhle, J., Höhle, M. 
2009). The quantile-quantile plot test (the q-q test) (Th-
ode 2002) was used to establish the degree of deviation 
of the data from a normal distribution. The quantiles of 
the errors (Δh) are plotted against the theoretical quan-
tiles of a normal distribution. If the data distribution is 
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normal, the q-q plot should yield a straight line. Figure 2 
shows the result of the q-q plot for the 0.5 m resolution 
DEM. It demonstrates that there is a strong deviation 
from a straight line, indicating that the data are not nor-
mally distributed at this resolution. This is also valid for 
all other tested resolutions.
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Fig. 2. Normal quantile – quantile plot for the error 

distribution together with the theoretical normal distribution 

for the DEM with 0.5 meter resolution. The plot shows 

considerable deviation from a straight line

An accuracy estimation of a non-normal error 
distribution suggested by (Höhle, J., Höhle, M. 2009) 
was therefore used. This requires the calculation of 
four parameters, namely the median, the normalized 
median absolute deviation (NMAD), and two sample 
quantiles.

The distribution of the differences in elevation (Δh) 
and the absolute differences in elevation (|Δh|) were used 
as measures of the accuracy of the DEM. Absolute errors 
were used because we are interested in the magnitude 
of the errors, and not in their sign. Using absolute val-
ues also excludes the assumption that the distribution is 
symmetric.

The measurement accuracy is determined by calcu-
lating sample quantiles of the absolute differences (|Δh|) 
(Höhle, J., Höhle, M. 2009). The sample quantiles is the 
order of the sample [x(1),…, x(n)], where x(1) denotes 
the minimum and x(n) the maximum value in the data-
set. For example, the 95% sample quantile of |Δh| means 
that 95% of the errors have a magnitude within the inter-
val [0; Q|Δ|(95)]. In another way 5% of the dataset have 
an error larger than the 95% quantile of |Δh|. The 50% 
quantile is denoted as the median. The median of the er-
ror is a robust measure, which provides an estimate of 
a systematic shift in the DEM. Moreover, the median is 
less sensitive to outliers in a dataset.

The NMAD is used as a measure of the standard 
deviation, in comparison with the standard deviation is 
more resilient to outliers in the dataset (see Equation 1). 

j j hNMAD median h m1.4826 ( )Δ= × Δ − , (1)

where Δhj denotes the individual errors j = 1,……, n and, 
mΔh denotes the median of the differences in elevation. 

4.6. Accuracy of the DEM for terrain with different 
slopes 

Many different authors have discussed alternative al-
gorithms in estimation of slope from digital elevation 
models (See e.g. Grimaldi et al. 2007; Santini et al. 2009; 
Pilesjö et al. 2006; Skidmore 1989; Tang, Pilesjö 2011). 
As a result, several slope calculation algorithms em-
ployed on DEMs have been used in GIS (Geographical 
Information System) software (e.g. ARC/INFO and ER-
DAS IMAGINE). Accounting for the importance of gra-
dient/slope estimations in many applications, Tang and 
Pilesjö (2011) tested possible differences between the 
characteristics of eight frequently used algorithms and 
investigated how they behave in different terrain. They 
concluded that differences exist, but are in most cases 
not significant. Since the scope of this paper is not to test 
and compare slope algorithms, a standard slope estima-
tion algorithm was chosen.

At every point in a DEM the slope can be defined as 
a function of gradients in the X and Y direction:

Slope fx fy= ( ) +arctan ( ) .
2 2  (2)

The key in slope estimation is the computation of 
the perpendicular gradients fx and fy. Different algo-
rithms, using different techniques to calculate fx and 
fy yield the diversity in estimated slope. For a gridded 
DEM, the common approach when estimating fx and fy 
is by using a moving 3×3 window to derive the finite dif-
ferential or local polynomial surface fit for the calculation 
(Florinsky 1998; Zhou, Liu 2004). In this study, we have 
used a polynomial surface approximation. A second-or-
der trend surface (TS), (see e.g. Pilesjö et al. 1998), based 
on a least-square approximation, was applied on each  
3×3 window as follows:

TS x y a a x a y a xi i i i i( ), = + + + +⋅ ⋅ ⋅0 1 2 3
2

a y a x yi i i. + ⋅ ⋅4
2

5
, (3)

where i = 1, ... , 9 corresponds to the numbering of the 
centre cell and its eight neighbours; a1, .... , a5 are the 
constants for the second-order trend surface; xi, yi are 
cell co-ordinates (mid points) in a local system.

In order to estimate the gradient (slope) of the trend 
surface in the middle of the centre cell both the x co-or-
dinate and the y co-ordinate are set to zero:

grad TS x y
TS

x

TS

y
a a( ( , )) , [ , ]=

∂
∂

∂
∂

⎡

⎣
⎢

⎤

⎦
⎥ = 1 2 . (4)

In order to study the accuracy of the DEM in re-
lation to the slope of the terrain, the evaluation points 
were divided into six subsets, corresponding to six slope 
intervals. Slopes with gradients from 0 to 50 degrees 
were divided into five equal intervals, while the sixth 
interval consisted of slopes steeper than 50 degrees. A 
DEM with a resolution of 0.5 m created with a search ra-
dius of 1 m was used to estimate the slope. The 0.5 m  
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resolution was chosen since this has the largest number 
of evaluation points (see Table 1). The evaluation points 
are divided into six equivalent datasets, and the accuracy 
of the DEM was calculated for all these datasets.

4.7. Relationship between the slope and drainage area 
for different DEM resolutions

A large number of different methods exist for estimation 
of drainage area, flow and flow accumulation (see e.g. 
Pilesjö 2008). Some of these estimate contributing area 
(up-slope) as well as dispersal area (down-slope). A few 
of the commonly used methods are briefly introduced 
below.

The single flow D8 algorithm was described by 
O’Callaghan and Mark (1984). It assumes that flow fol-
lows only the steepest downhill slope. Using a raster 
DEM, implementation of this method resulted in that 
hydrological flow at a point only follows one of the eight 
possible directions corresponding to the eight neigh-
bouring grid cells (Band 1986; ESRI 1991; Mark 1984; 
O’Callaghan, Mark 1984). Here we call this approach a 
‘single flow’ algorithm. However, for the quantitative 
measurement of the flow distribution, this over-sim-
plified assumption must be considered as illogical and 
would obviously create significant artefacts in the results, 
as stated by e.g. (Freeman 1991; Holmgren 1994; Pilesjö, 
Zhou 1996; Wolock, McCabe 1995). More complex ter-
rain is supposed to yield more complicated drainage pat-
terns. The difference between the D8 algorithm and the 
commonly used Rho8 algorithm, presented by (Fairfield,  
Leymarie 1991), is that the Rho8 also includes a stochas-
tic variable.

Attempts to solve the problem connected to the ‘sin-
gle flow’ algorithms have led to several proposed ‘mul-
tiple flow direction’ algorithms (see e.g. Freeman 1991; 
Holmgren 1994; Pilesjö, Zhou 1996; Quinn et al. 1991; 
Zhou et al. 2011). These algorithms estimate the flow dis-
tribution values proportionally to the slope gradient, or 
risen slope gradient, in each direction. The DEMON al-
gorithm was presented by (Costa-Cabral, Burges 1994). 
In order to eliminate the problem with the one-dimen-
sional flow, present in the other algorithms, DEMON 
uses two-dimensional flow tubes in order to trace flow 
up-streams and down-streams.

In this study we have estimated drainage area using 
new triangular multiple flow distribution algorithm (see 
Pilesjö et al. 2012), partly based on the ‘form-based’ al-
gorithm presented by Pilesjö et al. (1998). Given the lim-
itations and problems of the algorithms presented above 
this ‘multiple flow direction’ approach, based on analysis 
of the form of individual 3×3-cell surfaces was proposed. 
It was assumed that flow diverge over convex surfaces 
and converge over concave surfaces. There is no absolute 
way to determine convexity and concavity of the centre 
cell in a 3×3-cell surface. Pilesjö et al. (2012) propose a 
facet based solution to do this. Around the midpoint of 
the centre cell in question, eight planar triangular facets 
are constructed, each with two corners in two adjacent 
cells. With the aid of these eight triangular facets, our 
current grid cell (centre cell) is divided to eight triangu-
lar facets. The slope direction (aspect) of each of these 
triangular facets can then be calculated. The area of each 

facet is equals to 1/8 of the cell size, directly proportional 
to the flow contributed by that facet. The flow on each 
and every triangular facet is routed towards other, neigh-
bouring, facets or, if we have a sink, stays in the same 
triangular facet. If routed, depending on the aspect of a 
specific facet, the flow is added to a neighbour facet or 
split between two neighbouring facets. The sum of the 
flow in the eight facets covering a cell equals the estimat-
ed drainage area.

Three different DEM resolutions were used to inves-
tigate the relationship between the estimates of the slope 
and drainage area on the one hand, and the DEM resolu-
tion on the other. Resolutions of 10, 30 and 90 m were 
used, due to the overlapping evaluation centre cell points 
for these resolutions as illustrated in Figure 3. (i.e. the 
centre of a 90 meter cell denoted point P in Figure 3) is 
also the centre point of a 30 and 10 meter cell. The slope 
and drainage area evaluation cells selected from the 10 
and 30 m resolution DEMs are thus the ones that have 
the same cell centre position as the location of the 90 m 
resolution evaluation cells. This results in three subsets 
of data that have the same number of evaluation points 
with the same locations, but contain slope and drainage 
area values estimated using different DEM resolutions. 
The results obtained from the three subsets are then 
compared to identify/reveal possible differences in the 
estimated slopes and drainage areas. The differences be-
tween pairs of different resolutions were calculated.
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Fig. 3. Point (P) is the common centre point where all 10, 30 

and 90 (m) cell resolutions are overlapping in a DEM

5. Results

5.1. Evaluation of the DEM accuracy

Twenty four different DEMs, interpolated using six dif-
ferent resolutions (cell sizes) and four different inter-
polation search radiuses, for the same area, were to be 
evaluated. The aim was to determine differences between 
different DEMs, but also to investigate which combina-
tion of resolution and search radius gives the best ac-
curacy. Using the robust accuracy measures appropriate 
for non-normal error distributions, we calculated the 
median, the NMAD and two quantiles (68.3% and 95%) 
for each combination of resolution and search radius. 
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The medians were all zero except for the median at 90 m 
resolution, which varied between   –10 and –20 mm de-
pending on the search radius. The results of the NMAD 
calculations are given in Table 2. The values indicate that 
the accuracy of the DEM is the same for different resolu-
tions when using the same interpolation search radius. 
The accuracy is generally higher the shorter the interpo-
lation search radius.

Table 2. NMAD for the DEMs with different combinations of 

resolution (cell size) and search radius (SR)

Cell 

size 

(m)

Sample 

size (n)

NMAD (mm)

1 m SR 2 m SR 5 m SR 10 m SR

0.5 154071 29.7 44.5 59.3 74.2

1 38736 29.6 44.4 59.3 88.6

5 1579 29.6 44.4 59.3 88.9

10 417 29.7 44.5 59.3 74.2

30 230 29.6 44.4 59.3 88.9

90 68 29.7 44.5 59.0 82.0

Table 3. Two quantiles for the different combinations of resolu-

tion (cell size) and search radius (SR)

Cell 

size 

(m)

Sample 

size (n)

Quantile

(%)

Maximum error (mm)

1 m 

SR

2 m 

SR

5 m 

SR

10 m 

SR

0.5 154071 68.3% 40 40 60 90

95.0% 100 120 180 260

1 38736 68.3% 40 40 60 90

95.0% 100 120 170 260

5 1579 68.3% 40 40 60 90

95.0% 100 120 170 260

10 417 68.3% 30 40 60 90

95.0% 100 107 160 250

30 230 68.3% 30 40 66 100

95.0% 90 120 170 230

90 68 68.3% 40 40 60 80

95.0% 82 100 100 240

The results for the two quantiles are presented in 
Table 3, and confirm the NMAD results. This is an ex-
pected result, as when increasing the interpolation 
search radius it can be expected to increase the errors in 
the created DEM. According to the measures of accura-
cy, the six most accurate combinations of resolution and 
search radius are those with the 1 m interpolation search 
radius. For these six cases, the maximum errors in the el-
evations are around 40 mm within the 68.3% quantile of 
the data (see Table 3). Moreover, the maximum errors in 
the DEM elevations are around 100 mm within the 95% 
quantile of the data.

5.2. Accuracy of the DEM for different slope intervals

The results of evaluating the relationships between the 
six different slope intervals and the errors represented 
by the NMAD are shown in Figure 4. When visually an-
alysing the shape of the slope error curve it is obvious 
that there are larger errors in elevation when the terrain 
is steep than when it is flat. The first point in Figure 4A 
shows that for slopes between 0 and 9.99 degrees the er-
ror in elevation is around 0.03 m. Figure 4B illustrates 
two different quantiles of errors, also confirming that er-
rors are larger in areas with steeper slopes.
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Fig. 4. The relationship between the slope of the terrain and 

the errors in the estimated elevation. The Figure A illustrates 

the NMAD for all data as a function of slope interval,  

while the Figure B shows the results for the 68.3%  

and 95% quantiles of the errors. Both Figures  

are based on a resolution of 0.5 m

5.3. Slope estimation using different  
DEM resolutions

Evaluation of the slopes estimated with the DEM at dif-
ferent resolutions shows that the medians of the differ-
ences between the slopes have negative signs, i.e. lower 
resolution (larger cell size) generates lower values of the 
slope. The frequencies of the differences in the slopes are 
shown in Figure 5, where the negative skewness of the 
distributions can also be seen. The NMAD and the quan-
tile results also confirm the relationship between the val-
ues of the slope and the resolution. Results for the me-
dian, NMAD and the two quantiles are given in Table 4. 



64 A. Hasan et al.  On generating digital elevation models from LiDAR data – resolution versus ...

  

  

 

 

  

  

 

 

Fig. 5. The frequencies of the differences in the estimated slope 

using cell sizes of 10 m, 30 m and 90 m: A) 90 m – 10 m,  

B) 90 m – 30 m, and C) 30 m – 10 m

Table 4. Measures of accuracy showing that lower slope values 

are obtained with lower resolution of the DEM, Sample size is 

equal to 2310 points

Accuracy 

measure

Error type Difference in slope (degrees)

(Relative slope differences)

30 m – 

10 m

90 m – 

30 m

90 m – 

10 m

50% quantile 

(median)
Δ Slope

–0.372

(7.0%)

–0.613

(9.0%)

–0.879

(16%)

NMAD Δ Slope 2.10 1.92 3.20

68.3% quantile | Δ Slope|
2.36

(39%)

2.19

(41%)

3.69

(62%)

95% quantile | Δ Slope|
6.48

(163%)

6.01

(146%)

9.95

(326%)

It should be noted that differences in estimated slope 
sometimes exceed 10 degrees. Also the relative differ-
ences, presented in Table 4 indicate significant differences 
between slope values estimated from DEMs with different 
resolutions. For example, the median difference in slope 
between the 90 and 30 meter DEM is –0.613 degrees, cor-
responding to a relative difference of 9%. Investigating 
differences for individual points (overlapping cells) we 

can note that more than 25% of the evaluation points dif-
fer more than 50% in estimated slope when comparing 
the 90 metre DEM and the 30 metre DEM. Lower resolu-
tion yields lower (less steep) slope estimations.

5.4. Estimation of the drainage area using different 
DEM resolutions

The medians of the differences between drainage areas 
estimated using different resolutions have positive signs, 
i.e. the lower the resolution (the larger the cell size) the 
higher the values of the drainage area. The frequencies of 
the differences in drainage area are illustrated in Figure 6,  
where the shift of the median towards positive values is 
clear. The NMAD and the quantile results also confirm 
the relationship between the values of the drainage ar-
eas and resolution. Results for the medians, NMAD and 
the two quantiles are given in Table 5. Also for the differ-
ences in estimated drainage area it should be noted that 
these sometimes exceed 50% (see Figure 6 and Table 5).

 

  

 

  

 

  

 

 

 

 

 

 
 

 

Fig. 6. The frequencies of the differences between the drainage 

areas estimated by the DEM at three resolutions:  

10 m, 30 m and 90 m: A) 90 m – 10 m,  

B) 90 m – 30 m, and C) 30 m – 10 m

The numbers presented in Table 5 indicate significant 
differences between drainage area values estimated from 
DEMs with different resolutions. For example, the me-
dian difference in drainage area between the 90 and  
30 meter DEM is 21 480 m2 metres, corresponding to a 
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relative difference of 83%. Investigating differences for 
individual points (overlapping cells) we can note that 
more than 75% of the evaluation points differ more than 
50% in estimated drainage area when comparing the  
90 metre DEM and the 30 metre DEM. Lower resolution 
yields larger values in estimated drainage area.

Table 5. Measures of accuracy showing that larger drainage ar-

eas are obtained with lower resolution of the DEM, Sample size 

is equal to 2310 points

Accuracy 

measure

Error 

type

Difference in drainage area (m2)

(Relative drainage area differences)

30 m – 

10 m

90 m –  

30 m

90 m –  

10 m

50% 

quantile 

(median)

Δ area
3133

(81%)

21480

(83%)

29205

(97%)

NMAD Δ area 3293 21312 29367

68.3% 

quantile
|Δ area|

7090

(88%)

43974

(89%)

55927

(98%)

95%  

quantile
|Δ area|

62793

(98%)

264322

(98%)

292635

(99%)

6. Discussion

A number of choices influence the results of this study, 
some of which are discussed below. One limitation is 
that this is a case study, applied on one peatland area. 
Even if sample sizes are relatively high, it would of course 
strengthen the conclusions if other areas and in other re-
gions could be included.

Regarding the interpolation algorithm, we chose 
the IDW algorithm, mainly because it is one of the most 
commonly used ones for interpolating scattered points. 
In order to determine whether there were large dif-
ferences in the results when using other interpolation 
techniques or not, we created DEMs using the nearest-
neighbours interpolation and the bilinear interpolation 
algorithm. However, the results showed the same trend 
in errors as the IDW. This confirms that there are no sig-
nificant differences in the results between IDW and other 
algorithms when using a high density LiDAR data, also 
reported by e.g. Chaplot et al. (2006); Podobnikar (2005). 
We also tested the possible spatial autocorrelation of the 
dataset in order to rule out the need for a geostatistical 
(Kriging) approach (Cressie 1993).

Regarding the evaluation data, ground truth field 
data are normally used for the evaluation of interpolat-
ed DEMs. In this study, we excluded certain data points 
from the raw data, and then used them for evaluation 
purposes, as suggested by e.g. Erdogan (2009). The ex-
cluded evaluation data were taken at a maximum dis-
tance of 10 mm from the centres of the cells, and were 
not used in the interpolation process. In order to in-
crease the number of evaluation points we increased the 
maximum distances for the 30 and 90 m cells to 30 and 
50 mm, respectively, giving 230 and 68 points, instead of 
57 points and 6 points, respectively. This is a weakness 
of the methodology. However, the results obtained using 
the extended evaluation dataset show the same trend in 

errors as evaluation of the limited number, confirming 
that the use of the modified selection criteria did not af-
fect the results significantly. The extended selection was 
justified for statistical reasons. Also the use of LiDAR 
data for the accuracy assessment can be discussed. In 
this study the relative errors between different DEMs, 
and not the absolute errors, were in focus. This justifies 
the use of the LiDAR data points as ground truth, even if 
the errors in elevation can be up to 10 cm (see e.g. Lem-
mens 2007). Since the same data points were used for the 
different DEMs, the quality of the points does not influ-
ence the relative comparisons.

When choosing the different resolutions of the 
DEM, we logically assumed that a high resolution should 
reflect reality better than a poor resolution. However, it 
is still interesting to create and test DEMs with differ-
ent resolutions since, in most cases, DEMs with poor 
resolutions are more commonly available, and thus more 
frequently used. Evaluation of the accuracy of different 
resolutions showed approximately the same results re-
garding elevation. This was expected, since the same in-
terpolation data set was used for all resolutions, and the 
evaluation points are all located close to, or very close to, 
the cell centres. The interpolation algorithm can then be 
expected to work equally well for all resolutions. How-
ever, the uncertainties between the evaluation points, in 
this case the centres of the cells; will be much higher at 
lower resolutions, where the distances between the cen-
tres of the cells are greater. This uncertainty, increasing 
with lower resolution, is influencing e.g. estimation of 
slope and drainage area.

Employing different search radiuses changes the 
number of data points included in the interpolation for 
each cell. The reason for varying the search radius in this 
study was that available DEMs with the same resolution 
are often created from different sources, having different 
numbers of known data points. We expected that the use 
of different search radiuses would have considerable ef-
fects on the results, such that the estimate of a point close 
to a large number of known data points would be better 
than including more data points further away from the 
point to be interpolated. This was shown by the autocor-
relation study and the search radius study. The increase 
in search radius, from 1 to 2, 5 and 10 metres, did not 
give a better result since the spatial influence is limited 
to 3.7 meters. The reason for the 1 metre search radius 
to give the best results is explained by the high density 
of data points. Even if there was a spatial influence up to 
3.7 metres, the number of closer points (<1 metre) was 
enough to yield the best estimates.

We also examined the influence of the slope of the 
terrain by dividing the data into different slope intervals 
(from flat to steep). We found that the errors in elevation 
were higher for steeper slopes, confirming the results re-
ported by e.g. Erdogan (2009). The reason for this, which 
is logical, is that an accurate interpolation demands equal 
distribution of data points around the point to be inter-
polated, as well as a linear surface (if a linear interpola-
tion algorithm like IDW is used). Even if we had equal 
distribution around data points, the second condition 
(linearity) was probably not fulfilled in our case. Worth 
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to be noted is also that the evaluation points are locat-
ed at a specified maximum distance from the cell centre, 
resulting in a greater deviation in steeper terrain. These 
slope-related differences in accuracy within DEMs are 
often not noted, but should not be neglected as they may 
be significant. The accuracy of a DEM should perhaps be 
associated with the slope of the terrain, especially in high 
accuracy modelling on a detailed scale. Further studies 
are needed to develop more accurate DEMs, or at least 
to document the weaknesses in DEMs when steep slopes 
are involved.

Based on the results presented in Figures 5 and 6, 
and Tables 4 and 5, there is a strong indication that the 
median of the differences in drainage area is positive, 
while the median of the differences in slope is negative. 
This indicates that high resolution DEMs will estimate 
lower values of the drainage area than low resolution 
DEMs. As mentioned in the hypothesis this is logical, 
since smaller drainage basins, often referred to as sinks 
or pits, are ‘filtered’ when resolution is decreased. This 
naturally results in larger areas. Also the resolution it-
self influences the estimation of drainage area. The cell 
size determines the minimum area, resulting in smaller 
drainage areas if a high resolution DEM is used. Howev-
er, since there are very few ‘one cell areas’ the latter rea-
son can probably almost be neglected. Our findings on 
slope are supported by Chang and Tsai (1991) who have 
reported similar results for low resolution data. Zhang 
and Montgomery (1994) tested the grid size impact on 
the TWI calculations and found that a higher resolution 
yields better results in a hydrological modelling. The use 
of data with the lower resolutions has not decreased over 
time. The scope of modelling larger systems, all the way 
to global system models, shows that this is still a highly 
significant issue in the matter of modelling moisture in 
wetness indices as well as in physical models.

Moreover, the slopes in high resolution DEMs seem 
to be overestimated compared to low resolution DEMs. 
Also this is logical, since smaller terrain forms, yielding 
larger slope estimations, will be ‘filtered’ when a lower 
resolution is used. These effects on estimated drainage 
area and slope, related to resolution, will be even more 
pronounced when calculating wetness indices, as these 
are normally based on the ratio between the slope and 
drainage area (see e.g. Sorenson et al. 2006). Thus, high-
er wetness indices will be predicted using low resolution 
DEMs, and relatively low values will be estimated when 
using high resolution DEMs. In the present study, when 
changing the resolution from e.g. 10 to 30 metres, we 
have many examples (see Figure 5 and 6 as well as Ta-
ble 4 and 5) of an increase in estimated drainage area of 
50% and a decrease of estimated slope of 50%, resulting 
in a change in estimated wetness (drainage area divid-
ed by slope) of a factor three. These differences, linked 
to the results presented by e.g. Bubier et al. (1999) and 
Christensen et al. (2004), reporting that wetness influ-
ences methane emissions in peatlands by a factor 10 to 
50, strongly indicate the relevance of this study. How-
ever, more research, confirming the influence of wetness 
for emissions of greenhouse gases is needed.

7. Conclusions

Addressing the research questions presented in Section 2 
we can conclude that

1. The estimates of slopes and drainage areas, and 
thus also the topographic wetness index, differ si-
gnificantly with the resolution of the digital eleva-
tion model for a peat land area in northern Swe-
den.

2. The search radius, but not cell size, significantly 
influences the accuracy of a DEM created using 
a standard interpolation method (IDW) for the 
peat land area, and that.

3. The accuracy of the DEM differs significantly 
with the slope of the terrain.

The first conclusion, indicating that slope values be-
come lower and drainage areas values higher when the 
resolution decreases (i.e. cell size is increasing) is of criti-
cal relevance to the modelling of greenhouse gases and 
climate change because it alters the predicted patterns of 
ecosystem wetness (Zhuang et al. 2007). For example, we 
showed that a 10 to 30 m change in resolution of a DEM 
can triple the estimated topographical wetness index in 
certain areas. This in turn, will lead to an increase in the 
estimate of emissions of water dependent greenhouse 
gases such as methane (Bubier et al. 1999; Christensen 
et al. 2004).

The last two out of the three major conclusions pre-
sented above confirm and strengthen results reported 
by other authors (see Anderson et al. 2005; Smith et al. 
2005; Podobnikar 2005; Erdogan 2009). These, as well as 
the first one relating to estimates of slope, drainage area 
and topographical wetness index, are highly relevant in 
hydrological as well as carbon modelling (see e.g. Walk-
er, Willgoose 1999; Sorensen et al. 2006; Sommer et al. 
2004).

Further studies using high precision field data are 
recommended in order to clarify the relationships be-
tween DEM resolution and estimates of topographical/
hydrological parameters such as wetness. It is obvious 
that high resolution field measurements, such as LiDAR 
data, have great potential in the development of DEMs 
suitable for relatively accurate estimates of hydrological 
processes in the landscape. In the future, one possibility 
is to use regional and/or global LiDAR datasets to con-
struct DEMs with acceptable accuracy to model the wet-
ness in peatland areas, which in turn will facilitate stud-
ies in global change.

Acknowledgments

The funding of the LIDAR survey and DEMs created 
from it came from a number of agencies through a part-
nership of researchers. We acknowledge the contribu-
tions of the Natural Sciences and Engineering Research 
Council of Canada, Discovery Grant to Nigel Roulet 
(McGill University); The Abisko scientific Research Sta-
tion supported at the time by the Royal Swedish Acad-
emy of Sciences, KVA; Patrick Crill (Stockholm Univer-
sity) by the Swedish Research Council, VR; Torben R. 
Christensen (Lund University) by the Swedish Research 
Council, VR; Håkan Olsson (Swedish University of Agri-



Geodesy and Cartography, 2012, 38(2): 57–69 67

cultural Sciences) by the Swedish Environmental Protec-
tion Agency; and Andreas Persson’s and Petter Pilesjö’s 
research grants at the Lund University GIS Centre.

References

Anderson, E. S.; Thompson, J. A.; Austin, R. E. 2005. LIDAR 

density and linear interpolator effects on elevation estima-

tes, International Journal of Remote Sensing 26(18): 3889–

3900. http://dx.doi.org/10.1080/01431160500181671

Andersson, N. Å.; Callaghan, T. V.; Karlsson, P. S. 1996. The 

Abisko Scientific Research Station, Ecological Bulletins 45: 

11–15.

ASPRS. 2005. ASPRS Guidelines, Vertical Accuracy Reporting 

for Lidar Data, in Geospatial Solutions, 56–56.

Baird, A. J.; Belyea, L. R.; Morris, P. J. 2009. Upscaling of Pe-

atland-Atmosphere Fluxes of Methane: Small-Scale Hetero-

geneity in Process Rates and the Pitfalls of ‘Bucket-and-Slab’ 

Models, in Carbon Cycling in Northern Peatlands, Edited by 

Baird, A., et al., 37–53. 

 http://dx.doi.org/10.1029/2008GM000826

Band, L. E. 1986. Topographic partition of watersheds with di-

gital elevation models, Water Resources Research 22(1): 15–

24. http://dx.doi.org/10.1029/WR022i001p00015

BC-CARMS. 2006. LiDAR – overview of technology, applicati-

ons, market features and industry. Victoria, BC: Centre for 

Applied Remote Sensing, Modelling and Simulation, Uni-

versity of Victoria.

Bubier, J. L.; Frolking, S.; Crill, P. M.; Linder, E. 1999. Net eco-

system productivity and its uncertainty in a diverse Boreal 

peatland, Journal of Geophysical Research D: Atmospheres 

104(22): 27, 683–627, 692.

Burrough, P. A.; McDonnell, R. A. 1998. Principles of Geograp-

hical Information Systems. Oxford: Oxford University Press. 

333 p.

Chang, K. T.; Tsai, B. W. 1991. The effect of DEM resolution on 

slope and aspect mapping, Cartography and Geographic In-

formation Systems 18(1): 69–77. 

 http://dx.doi.org/10.1559/152304091783805626

Chaplot, V.; Darboux, F.; Bourennane, H.; Leguedois, S.; Silve-

ra, N.; Phachomphon, K. 2006. Accuracy of interpolation 

techniques for the derivation of digital elevation models in 

relation to landform types and data density, Geomorphology 

77(1–2): 126–141. 

 http://dx.doi.org/10.1016/j.geomorph.2005.12.010

Childs, C. 2004. Interpolation surfaces in ArcGIS spatial ana-

lyst, ArcUser July–September: 32–35.

Christensen, T. R.; Johansson, T.; Akerman, H. J.; Mastepa-

nov, M.; Malmer, N.; Friborg, T.; Crill, P.; Svensson, B. H. 

2004. Thawing sub-arctic permafrost; effects on vegetation 

and methane emissions, Geophysical Research Letters 31(4). 

http://dx.doi.org/10.1029/2003GL018680

Costa-Cabral, M. C.; Burges, S. J. 1994. Digital elevation mo-

del networks (DEMON): A model of flow over hillslopes for 

computation of contributing and dispersal areas, Water Re-

sources Research 30(6): 1681–1692. 

 http://dx.doi.org/10.1029/93WR03512

Creed, I. F.; Sanford, S. E.; Beall, F. D.; Molot, L. A.; Dillon, P. J. 

2003. Cryptic wetlands: Integrating hidden wetlands in re-

gression models of the export of dissolved organic carbon 

from forested landscapes, Hydrological Processes 17(18): 

3629–3648. http://dx.doi.org/10.1002/hyp.1357

Cressie, N. 1993. Statistics for Spatial Data. Wiley-Interscience.

Curmi, P.; Durand, P.; Gascuel Odoux, C.; Merot, P.; Walter, C.;  

Taha, A. 1998. Hydromorphic soils, hydrology and water 

quality: spatial distribution and functional modelling at dif-

ferent scales, Nutrient Cycling in Agroecosystems 50(1–3): 

127–142. http://dx.doi.org/10.1023/A:1009775825427

Declercq, F. A. N. 1996. Interpolation methods for scattered 

sample data: accuracy, spatial patterns, processing time, 

Cartography and Geographic Information Science 23(3): 

128–144. http://dx.doi.org/10.1559/152304096782438882

Denman, K. L.; Brasseur, G.; Chidthaisong, A.; Ciais, P.;  

Cox, P. M.; Dickinson, R. E.; Hauglustaine, D.; Heinze, C.; 

Holland, E. Jacob, D.; Lohmann, U.; da Silva Dias, P. L.; 

Wofsy, S. C.; Zhang, X. 2007. Couplings Between Chan-

ges in the Climate System and Biogeochemistry, in Clima-

te Change 2007. The Physical Science Basis. Contribution of 

Working Group I to the Fourth Assessment Report of the In-

tergovernmental Panel on Climate Change, Edited by Solo-

mon, S., et al., 499–587. Cambridge University Press, Cam-

bridge, United Kingdom and New York, NY, USA.

Erdogan, S. 2009. A comparision of interpolation methods for 

producing digital elevation models at the field scale, Earth 

Surface Processes and Landforms 34(3): 366–376. 

 http://dx.doi.org/10.1002/esp.1731

ESRI. 1991. Cell-based Modelling with GRID, Environmental 

System Research Institute, edited, Redlands, CA.

Fairfield, J.; Leymarie, P. 1991. Drainage networks from grid 

digital elevation models, Water Resources Research 27(5): 

709–717. http://dx.doi.org/10.1029/90WR02658

Florinsky, I. V. 1998. Accuracy of local topographic variables 

derived from digital elevation models, International Journal 

of Geographical Information Science 12(1): 47–61. 

 http://dx.doi.org/10.1080/136588198242003

Fowler, R. 2001. Topographic Lidar, in Digital Elevation Model 

Technologies and Applications, Edited by D. Maune, 207–

236. American Society for Photogrammetry and Remote 

Sensing, Maryland.

Freeman, T. G. 1991. Calculating catchment area with diver-

gent flow based on a regular grid, Computers and Geoscien-

ces 17(3): 413–422. 

 http://dx.doi.org/10.1016/0098-3004(91)90048-I

Gedney, N.; Cox, P. M. 2003. The sensitivity of global cli-

mate model simulations to the representation of soil 

moisture heterogeneity, Journal of Hydrometeorology 

4(6): 1265–1275. http://dx.doi.org/10.1175/1525-7541-

(2003)004<1265:TSOGCM>2.0.CO;2

Gorham, E. 1991. Northern peatlands: role in the carbon cycle 

and probable responses to climatic warming, Ecological Ap-

plications 1(2): 182–195. http://dx.doi.org/10.2307/1941811

Gorham, E. 1995. The biogeochemistry of northern peatlands 

and its possible responses to global warming, in Will the 

warmiong speed the warming?, Edited by G. M. Woodwell 

and F. T. Mackenzie, 169–187. Oxford University Press, 

New York, USA.

Grimaldi, S.; Nardi, F.; Di Benedetto, F.; Istanbulluoglu, E.; 

Bras, R. L. 2007. A physically-based method for removing 

pits in digital elevation models, Advances in Water Resour-

ces 30(10): 2151–2158. 

 http://dx.doi.org/10.1016/j.advwatres.2006.11.016

Haining, R. P. 1990. Spatial data analysis in the social and en-

vironmental sciences. Cambridge: Cambridge University 

Press. 



68 A. Hasan et al.  On generating digital elevation models from LiDAR data – resolution versus ...

Hengl, T. 2006. Finding the right pixel size, Computers and Ge-

osciences 32(9): 1283–1298. 

 http://dx.doi.org/10.1016/j.cageo.2005.11.008

Höhle, J.; Höhle, M. 2009. Accuracy assessment of digital eleva-

tion models by means of robust statistical methods, ISPRS 

Journal of Photogrammetry and Remote Sensing 64(4): 398–

406. http://dx.doi.org/10.1016/j.isprsjprs.2009.02.003

Holmgren, P. 1994. Multiple flow direction algorithms for ru-

noff modelling in grid based elevation models: an empirical 

evaluation, Hydrological Processes 8(4): 327–334. 

 http://dx.doi.org/10.1002/hyp.3360080405

Horn, B. K. P. 1981. Hill shading and the reflectance map. Paper 

presented at IEEE.

Johansson, T.; Malmer, N.; Crill, P. M.; Friborg, T.; Akerman, J. H.;  

Mastepanov, M.; Christensen, T. R. 2006. Decadal vegeta-

tion changes in a northern peatland, greenhouse gas fluxes 

and net radiative forcing, Global Change Biology 12(12): 

2352–2369. 

 http://dx.doi.org/10.1111/j.1365-2486.2006.01267.x

Kienzle, S. 2004. The effect of DEM raster resolution on first or-

der, second order and compound terrain derivatives, Tran-

sactions in GIS 8(1): 83–112. 

 http://dx.doi.org/10.1111/j.1467-9671.2004.00169.x

Kirkby, M. J.; Kneale, P. E.; Lewis, S. L.; Smith, R. T. 1995. 

Modelling the form and distribution of peat mires, in Hy-

drology and Hydrochemistry of British Wetlands, Edited by  

J. M. R. Hughes and A. L. Heathwaite, 83–93. Wiley, New 

York.

Lee, H. S. 2003. A hybrid model for DTM generation from Li-

DAR signatures. PhD thesis. Dept. of Elec. and Comp. Eng., 

Mississippi State University, Mississippi.

Lemmens, M. 2007. Airborne LiDAR sensors, GIM Internatio-

nal 21(2): 24–27.

Liu, X. Y. 2008. Airborne LiDAR for DEM generation: some 

critical issues, Progress in Physical Geography 32(1): 31–49. 

http://dx.doi.org/10.1177/0309133308089496

Liu, X. Y.; Zhang, Z. Y.; Peterson, J.; Chandra, S. 2007. LiDAR-

derived high quality ground control information and DEM 

for image orthorectification, Geoinformatica 11(1): 37–53. 

http://dx.doi.org/10.1007/s10707-006-0005-9

Mark, D. M. 1984. Automated detection of drainage networks 

from digital elevation models, Cartographica 21(2–3): 168–

178. http://dx.doi.org/10.3138/10LM-4435-6310-251R

MathWorks. 2008. MATLAB R2008B, Edited, Natick, Massa-

chusetts.

Moore, T. R.; Roulet, N. T.; Waddington, J. M. 1998. Uncertain-

ty in predicting the effect of climatic change on the carbon 

cycling of Canadian peatlands, Climatic Change 40(2): 229–

245. http://dx.doi.org/10.1023/A:1005408719297

Myers, D. E. 1994. Spatial interpolation – an overview, Geoder-

ma 62(1–3): 17–28. 

 http://dx.doi.org/10.1016/0016-7061(94)90025-6

OʼCallaghan, J. F.; Mark, D. M. 1984. The extraction of draina-

ge networks from digital elevation data, Computer Vision, 

Graphics, and Image Processing 28(3): 323–344. 

 http://dx.doi.org/10.1016/S0734-189X(84)80011-0

Orenstein, J. A.; Manola, F. A. 1988. PROBE spatial data model-

ling and query processing in an image database application, 

IEEE Transactions on Software Engineering 14(5): 611–629. 

http://dx.doi.org/10.1109/32.6139

Pilesjö, P. 2008. An Integrated Raster-TIN Surface Flow Algo-

rithm, in Advances in Digital Terrain Analysis, Edited by  

Q. Zhou, et al., 237–255, Springer Berlin Heidelberg. 

 http://dx.doi.org/10.1016/j.agwat.2005.02.017

Pilesjö, P.; Zhou, Q. 1996. A multiple flow direction algorithm 

and its use for hydrological modelling, paper presented at 

Geoinformatics´96, West Palm Beach, FL, April 26–28.

Pilesjö, P.; Zhou, Q.; Harrie, L. 1998. Estimating flow distribu-

tion over digital elevation models using a form-based algo-

rithm, Geographic Information Sciences 4(1–2): 44–51.

Pilesjö, P.; Persson, A.; Harrie, L. 2006. Digital elevation data 

for estimation of potential wetness in ridged fields-Compa-

rison of two different methods, Agricultural Water Manage-

ment 79(3): 225–247.

Pilesjö, P.; Hasan, A. 2012. A triangular form-based multiple 

flow algorithm to estimate overland flow distribution and 

accumulation on a digital elevation model, in Hasan, A. 

Spatially Distributed Hydrological Modelling – Wetness deri-

ved from digital elevation models to estimate peatland car-

bon. Lund University (Thesis). ISBN 978-91-85793-28-0.

Podobnikar, T. 2005. Suitable DEM for required application, 

paper presented at, in Proceedings of the 4th International 

Symposium on Digital Earth, Tokyo, Japan.

Quinn, P.; Beven, K.; Chevallier, P.; Planchon, O. 1991. The pre-

diction of hillslope flow paths for distributed hydrological 

modelling using digital terrain models, Hydrological Proces-

ses 5(1): 59–79. http://dx.doi.org/10.1002/hyp.3360050106

Quinn, P. F.; Beven, K. J.; Lamb, R. 1995. The ln(a/tan-beta) In-

dex - how to calculate it and how to use it within the TO-

PMODEL framework, Hydrological Processes 9(2): 161–182. 

http://dx.doi.org/10.1002/hyp.3360090204

Rydén, B. E.; Fors, L.; Kostov, L. 1980. Physical properties of the 

tundra soil-water system at Stordalen, Abisko, in Ecology of 

a Subarctic Mire, Edited by M. Sonesson, Swedish Natural 

Science Research Council, Stockholm.

Santini, M.; Grimaldi, S.; Nardi, F.; Petroselli, A.; Rulli, M. C. 

2009. Pre-processing algorithms and landslide modelling 

on remotely sensed DEMs, Geomorphology 113(1–2): 110–

125. http://dx.doi.org/10.1016/j.geomorph.2009.03.023

Schmidt, F.; Persson, A. 2003. Comparison of DEM data cap-

ture and topographic wetness indices, Precision Agriculture 

4(2): 179–192. http://dx.doi.org/10.1023/A:1024509322709

Shepard, D. 1968. A two-dimensional interpolation function 

for irregularly-spaced data, in Proceedings of the 1968 23rd 

ACM national conference, ACM.

Skidmore, A. K. 1989. A comparison of techniques for calcu-

lating gradient and aspect from a gridded digital elevation 

model, International Journal of Geographical Information 

Systems 3(4): 323–334. 

 http://dx.doi.org/10.1080/02693798908941519

Smith, S. L.; Holland, D. A.; Longley, P. A. 2005. Quantifying 

interpolation errors in urban airborne laser scanning mo-

dels, Geographical Analysis 37(2): 200–224. 

 http://dx.doi.org/10.1111/j.1538-4632.2005.00636.x

Sommer, M.; Fiedler, S.; Glatzel, S.; Kleber, M. 2004. First esti-

mates of regional (Allgau, Germany) and global CH 4 fluxes 

from wet colluvial margins of closed depressions in glacial 

drift areas, Agriculture, Ecosystems and Environment 103(1): 

251–257. http://dx.doi.org/10.1016/j.agee.2003.09.019



Geodesy and Cartography, 2012, 38(2): 57–69 69

Sonesson, M.; Jonsson, S.; Rosswall, T.; Rydén, B. E. 1980. The 

Swedish IBP/PT tundra biome project objectives-planning-

site, Ecological Bulletins (30): 7–25. 

 http://dx.doi.org/10.5194/hess-10-101-2006

Sorensen, R.; Zinko, U.; Seibert, J. 2006. On the calculation of 

the topographic wetness index: evaluation of different met-

hods based on field observations, Hydrology and Earth Sys-

tem Sciences 10(1): 101–112.

Tang, J.; Pilesjö, P. 2011. Estimating slope from raster data: a 

test of eight different algorithms in flat, undulating and ste-

ep terrain, in River Basin Management VI, Wessex Institute 

of Technology, UK, Riverside, California, USA.

Thode, H. 2002. Testing for Normality. CRC Press. 

 http://dx.doi.org/10.1201/9780203910894

Walker, J. P.; Willgoose, G. R. 1999. On the effect of digital ele-

vation model accuracy on hydrology and geomorphology, 

Water Resources Research 35(7): 2259–2268. 

 http://dx.doi.org/10.1029/1999WR900034

Wolock, D. M.; McCabe, G. J. 1995. Comparison of single and 

multiple flow direction algorithms for computing topograp-

hic parameters in TOPMODEL, Water Resources Research 

31(5): 1315–1324. http://dx.doi.org/10.1029/95WR00471

Zhang, W. H.; Montgomery, D. R. 1994. Digital elevation mo-

del grid size, landscape representation, and hydrologic si-

mulations, Water Resources Research 30(4): 1019–1028. 

 http://dx.doi.org/10.1029/93WR03553

Zhou, Q.; Pilesjö, P.; Chen, Y. 2011. Estimating surface flow 

paths on a digital elevation model using a triangular facet 

network, Water Resources Research 47(7): W07522. 

 http://dx.doi.org/10.1029/2010WR009961

Zhou, Q. M.; Liu, X. J. 2004. Analysis of errors of derived slope 

and aspect related to DEM data properties, Computers and 

Geosciences 30(4): 369–378. 

 http://dx.doi.org/10.1016/j.cageo.2003.07.005

Zhuang, Q.; Melillo, J. M.; McGuire, A. D.; Kicklighter, D. W.; 

Prinn, R. G.; Steudler, P. A.; Felzer, B. S.; Hu, S. 2007. Net 

emissions of CH4 and CO2 in Alaska: Implications for 

the regionʼs greenhouse gas budget, Ecological Applicati-

ons 17(1): 203–212. http://dx.doi.org/10.1890/1051-0761-

(2007)017[0203:NEOCAC]2.0.CO;2

Abdulghani HASAN. Ass. Prof., Lecturer and researcher Lund 

University. Ph +46735577962, e-mail: abdulghani.hasan@gis.lu.se. 

Research interests: spatial and hydrological modelling 

focusing mainly on water resources modelling, topographical 

modelling and the implementation of GIS in different fields. 

Hasan has also advanced programing skills in an environmen-

tal and hydrological processes using MATLAB.

Petter PILESJÖ. Professor, Director of the Lund University GIS 

Centre. Ph +46462229654, e-mail: petter.pilesjo@gis.lu.se.

His major research interests are distributed hydrological 

modelling, including algorithm development, and applied GIS, 

e.g. relating to health, migration and education. Pilesjö is also 

heavily involved in pedagogic development within the Geoma-

tics sector, and not least eLearning.

Andreas PERSSON. Assistant Professor in Physical Geograp-

hy and Ecosystems Science at Lund University, Sweden. e-mail: 

andreas.persson@nateko.lu.se. 

MSc and Ph.D. from Lund University. His research is fo-

cused on distributed hydrological modelling with development 

of new techniques in GIS. Fieldwork in climates ranging from  

arid to subarctic to apply hydrological models and new tech-

niques in the context of climate change is a major part of his 

research. Teaching includes hydrology, distributed modelling, 

GIS and remote sensing.




