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Abstract. This study has proposed and empirically tested two Adaptive Neuro-Fuzzy Inference System (ANFIS) 
models for the first time for predicting Australia’s domestic low cost carriers’ demand, as measured by enplaned pas-
sengers (PAX Model) and revenue passenger kilometres performed (RPKs Model). In the ANFIS, both the learning 
capabilities of an artificial neural network (ANN) and the reasoning capabilities of fuzzy logic are combined to provide 
enhanced prediction capabilities, as compared to using a single methodology. Sugeno fuzzy rules were used in the 
ANFIS structure and the Gaussian membership function and linear membership functions were also developed. The 
hybrid learning algorithm and the subtractive clustering partition method were used to generate the optimum ANFIS 
models. Data was normalized in order to increase the model’s training performance. The results found that the mean 
absolute percentage error (MAPE) for the overall data set of the PAX and RPKs models was 1.52% and 1.17%, respect-
ively. The highest R2-value for the PAX model was 0.9949 and 0.9953 for the RPKs model, demonstrating that the 
models have high predictive capabilities.

Keywords: adaptive neuro-fuzzy inference system (ANFIS); air transport; Australia; forecasting methods; low 
cost carriers.

1. Introduction

Forecasting is the process of making projections about 
future performance based on the existing historic data. 
An accurate forecast assists firms in decision-making 
and planning for the future. Forecasts empower people 
to modify existing variables at the current time to pre-
dict the future in order to achieve a favorable scenario 
(Hadavandi et al. 2011).

Forecasting passenger transport demand is of crit-
ical importance for airlines as well as for investors since 
investment efficiency is greatly influenced by the accur-
acy and adequacy of the estimation performed (Blinova 
2007). Air traffic forecasts are therefore one of the key 
inputs into an airline’s fleet planning and route network 
development, and are also used in the preparation of 
the airline’s annual operating plan (Ba-Fail et  al. 2000; 
Doganis 2009). Furthermore, analysing and forecasting 
air travel demand may also assist an airline in reducing 
its risk through an objective evaluation of the demand 
side of the airline business (Abed et  al. 2001; Ba-Fail 
et al. 2000).

Classical modelling such as multiple linear regres-
sion (MLR) has been used extensively in forecasting air 
traffic demand for several decades (see, for example, 
Abed et al. 2001; Aderamo 2010; Ba-Fail et al. 2000; In-
ternational Civil… 2006; Kopsch 2012; Sivrikaya, Tunç 
2013). However, traditional regression techniques are 
not able to capture the non-linear structure of a specific 
process as effectively as the artificial intelligence-based 
models. Consequently, artificial intelligence-based mod-
elling techniques have become more popular in diverse 
disciplines over the past decade (Kar et al. 2014) because 
of their robustness, high predictive capabilities and flex-
ible behaviours to handle the multi-objective criteria in a 
straightforward manner (yetilmezsoy et al. 2011).

Jang (1993) and Jang et  al. (1997) introduced the 
adaptive network-based fuzzy inference system (AN-
FIS), which is a system using a hybrid learning rule to 
optimize the fuzzy system parameters of a first order Su-
geno system (Giovanis 2012). This approach has been 

applied to a growing range of disciplines, including 
transport mode choice (Andrade et al. 2007), economics 
(Fang 2012; Giovanis 2012), electricity demand forecast-
ing (Zahedi et  al. 2013), financial markets forecasting 
(Bagheri et  al. 2014; Kablan 2009), gold price forecast-
ing (Makridou et al. 2013), oil consumption forecasting 
(Senvar et  al. 2013), stock market forecasting (Atsala-
kis, Valavanis 2009; Chen et al. 2013; Cheng et al. 2013; 
Svalina et al. 2013; Wei 2013), tourism demand forecast-
ing (Atsalakis et al. 2014; Chen et al. 2010; Hadavandi 
et al. 2011), and ordering policy in supply chains (Latif 
et al. 2014).

Following the deregulation of Australia’s domestic 
airline market in 1990, which permitted other airlines 
to compete with the established carriers (Forsyth 2003; 
Nolan 1996), a number of low cost carriers (LCCs) have 
entered the market. The LCCs now hold around a 35 
per cent market share, with the two major incumbent 
LCCs being “Jetstar Airways” and “Tiger Airways” (Sri-
saeng et  al. 2014). Despite the reported advantages of 
the ANFIS in the literature together with acknowledged 
critical importance of forecasting for airline and air-
port management, to the best of the author’s knowledge 
there has been no previously reported study that has de-
veloped and empirically examined ANFIS models for 
forecasting Australia’s domestic quarterly LCCs air travel 
demand and revenue passenger kilometres performed1 
(RPKs). Thus, the key objective of this study is to address 
this apparent research gap in the literature. Furthermore, 
the study is intended to provide both a theoretical per-
spective on the development of an ANFIS for forecasting 
airline passenger demand, and also to provide a practical 
application of the ANFIS to forecast Australia’s quarterly 
domestic LCC passenger demand and revenue passenger 
kilometres performed (RPKs).

1 Enplaned passengers and revenue passenger kilometres per-
formed (RPKs) are the recognised measures of airline pas-
senger traffic (Belobaba 2009; Holloway 2008).
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The remainder of the paper is structured as follows: 
Section 2 presents the literature review and this is fol-
lowed by the ANFIS architecture in Section 3. The pro-
posed ANFIS method and a real world case study focus-
sing on forecasting Australia’s LCCs passenger demand 
is presented in Section 4. Section 5 contains some con-
cluding remarks.

2. Adaptive neuro-fuzzy inference system (ANFIS)

The Adaptive Neuro-Fuzzy Inference System (ANFIS), 
first introduced by Jang (1993), is a hybrid method com-
prising both fuzzy inference systems and the artificial 
neural network (ANN) (Fang 2012; Liu et  al. 2008). 
This system therefore combines the benefits of both ap-
proaches; wherein the former brings prior knowledge 
into a set of constraints to obtain the optimal solution, 
the latter is good at capturing various patterns (Jang 
et  al. 1997; Xiao et al. 2014; yetilmezsoy et  al. 2011). 
An ANFIS’s principal objective is the determination of 
the optimum values of equivalent fuzzy inference system 
parameters. This is achieved through the application of 
a learning algorithm using input–output data sets. The 
optimisation of parameters during the training session 
is undertaken in such a way that the error between 
the target and actual output is minimized (Goyal et al. 
2014). The parameters to be optimized in ANFIS are 
the premise parameters, which describe the shape of the 
membership functions, and the consequent parameters, 
which describe the overall output of the ANFIS system. 
The optimum parameters obtained are then used in the 
testing session to calculate the prediction (Mayilvag-
anan, Naidu 2011).

The ANFIS is considered a more powerful approach 
than the simple fuzzy logic algorithm and artificial 
neural networks, as this technique provides a method 
whereby fuzzy modelling learns about the data set; in 
order to compute the membership function parameters 
which best allow the associated fuzzy inference system 
to track the given input/output data (Al-Ghandoor et al. 
2012: 130). A further advantage of the ANFIS is the fact 
that it can be trained without the requirement for the ex-
pert knowledge normally required for the standard fuzzy 
logic design, and both numerical and linguistic know-
ledge can be combined into a fuzzy rule base by utilising 
fuzzy methods (Giovanis 2012). Other important ad-
vantages of the ANFIS include its nonlinear ability, its 
capacity for rapid learning, and its adaptation capability. 
Furthermore, the strength of the ANFIS is that it uses 
the artificial neural network’s ability to classify data and 
identify patterns. Moreover, the ANFIS develops a fuzzy 
expert system that is more transparent to the user and 
which is also less likely to produce memorization errors 
than an ANN (Giovanis 2012).

Artificial neural network-based methods have been 
used successfully for modelling across a broad range of 
disciplines (yetilmezsoy et al. 2011). However, poor in-
terpretation has been reported as a major drawback of 
their utilization (Wieland et  al. 2002). A major short-
coming of artificial neural networks (ANNs) is that they 
are unable to reveal causal relationships between major 
system components. Consequently, they are unable to 
improve the user’s explicit knowledge (yetilmezsoy et al. 
2011). Therefore, to overcome the problematic condi-
tions of ANNs and fuzzy systems, a new system combin-
ing both ANNs and the fuzzy system, called the adapt-
ive-network-based fuzzy inference system (ANFIS) was 
proposed by Jang (1993).

3. ANFIS architecture

The ANFIS is an adaptive network compromising nodes 
and directional links with associated learning rules. It is 
called adaptive because some, or all, of the nodes have 
parameters which influence the output of the node. The 
ANFIS identifies and learns the relationships between in-
puts (Kablan 2009). The operation of the ANFIS resembles 
the feed forward back propagated (FFBP) artificial neural 
network. Consequent parameters are calculated forward, 
while premise parameters are calculated backward. The 
ANFIS comprises two parts, the antecedent and the con-
clusion, and these are connected to each other by fuzzy 
rules based on the network form (yetilmezsoy et al. 2011). 
There are two types of fuzzy inference systems: Mam-
dani-type and Sugeno-type. These two types of fuzzy in-
ference systems do, however, vary somewhat in the ways 
that the outputs are determined. The principal difference 
between the two FIS types is that, in the Sugeno-system, 
the output membership functions are either constant or 
linear (Arkhipov et al. 2008: 496).

This study used the Sugeno-type FIS system. There 
are two learning methods in the system’s neural section: 
a hybrid learning method and a back propagation (BP) 
learning method (yetilmezsoy et  al. 2011). The output 
variables are obtained by applying fuzzy rules to fuzzy 
sets of input variables (Cakmakci et al. 2010; Jang 1993; 
Takagi, Sugeno 1985). A typical ANFIS employs a Tak-
agi-Sugeno model-based fuzzy inference approach in 
order to form the related hybrid system (Köse, Arslan 
2013). To present the ANFIS architecture, two fuzzy if-
then rules based on a first order Sugeno model are con-
sidered (Bagheri et al. 2014; Übeyli et al. 2010).

Rule 1: if x is A1 and y is B1, then:

1 1 1 1.f p x q y r= + +

Rule 2: if x is A2 and y is B2, then:

2 2 2 2 ,f p x q y r= + +

where x and y are the inputs, Ai and Bi are the fuzzy sets, 
fi are the outputs within a fuzzy rule, and pi, qi, and ri 
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are the design parameters which are determined during 
the training process (Übeyli et al. 2010). Figure 1 shows 
the fuzzy reasoning mechanism (Takagi, Sugeno 1983).

The ANFIS architecture used to implement these 
two rules is depicted in Figure 2. The ANFIS architec-
ture comprises 5 layers, that is, a fuzzy layer, a product 
layer, a normalised layer, a defuzzy layer and a total out-
put layer (Jang 1993; yetilmezsoy et al. 2011). As shown 
in Figure 2, each node in the ANFIS is characterized by 
a node function with fixed or adjustable parameters; a 
circle indicates a fixed node, whereas a square indicates 
an adaptive node (Ch, Mathur 2010). Model parameter 
values are determined through the learning or training 
phase of an artificial neural network. The model per-
formance is evaluated by the satisfactorily fitted training 
and test data. Furthermore, the model performance eval-
uates error values, for example, the root mean square er-
ror (RMSE), which is minimized in turn through back-
propagation as well as the hybrid learning algorithms 
allowed by the ANFIS.

Each layer of the ANFIS has its own task, so the 
following section describes the relationship between the 
output and input layer in the ANFIS.

Layer 1 is the fuzzification layer that passes crisp 
external signals directly to the following layer (Xiao 
et al. 2014). In the fuzzy layer, x and y are the input of 
nodes A1, A2, B1, and B2, respectively. A1, A2, B1, and B2 
are the linguistic labels used in fuzzy theory for dividing 
membership functions (yetilmezsoy et  al. 2011). Every 
node i in layer 1 is an adaptive node which has a specific 

function (Übeyli et al. 2010; yetilmezsoy et al. 2011). The 
nodes in layer 1 implement the fuzzy membership func-
tions and map the input variables to the corresponding 
fuzzy membership values (yetilmezsoy et al. 2011). The 
parameters in this layer are called premise parameters 
(yilmaz, Kaynar 2011). The output of layer 1 indicates the 
degree/grade of the fuzzy membership function of the 
given inputs which are determined by the fuzzy member-
ship function (Xiao et al. 2014). The output of layer 1 is:

( ) ( )1 1
2, 1,2  , 3,4 i i i iO A x i or O B y i−= µ = = µ = , (1)

where x and y are the input to the ith node and Ai and 
Bi–2 are the linguistic labels associated with this node 
(Xiao et al. 2014).

Thus, 1
iO  is the membership grade of a fuzzy set A 

(=A1, A2, B1, or B2) and it specifies the degree to which the 
given input x/y satisfies the quantifier A, where ( )iA xµ  
and ( )2iB y−µ  can adopt any fuzzy membership func-
tion, for example, if the bell shaped membership func-
tion is employed, as given by (Übeyli et al. 2010).

( )
  2

1

1  
i

i b

i

i

A x
x c

a

µ =
  − +     

, (2)

where {ai, bi, ci} are the parameters of the function (Xiao 
et al. 2014). During the learning stage the back propaga-
tion algorithm adopts their values. As the values of these 
parameters change, the bell-shape function varies ac-
cordingly, hence exhibiting various forms of member-
ship functions on linguistic label Ai (Xiao et  al. 2014; 
yetilmezsoy et al. 2011).

Layer 2 is a rule layer, each node is a representation of a 
rule and the inputs are the degrees of membership functions 
which are multiplied through a T-norm operator so as to 
determine the level of fulfilment of  iw the rule (Ch, Mathur 
2010). The nodes are fixed nodes and are labelled “∏”, which 
indicates that they perform as a single multiplier (Übeyli 
et al. 2010). Each node represents the firing strength of the 
reasoning rule (Patil et al. 2011; yilmaz, Kaynar 2011). The 
outputs of this layer can be represented as:

( ) ( )2   , 1,2i i i iO w A x B y i= = µ × µ = . (3)

Fig. 1. Fuzzy reasoning mechanism (adapted from Efendigil et al. 2009: 6701)

Fig. 2. Architecture of the ANFIS model with two inputs and 
two rules
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Layer 3 is the normalization layer, whose nodes 
are labelled “N”, indicating that they play a normaliza-
tion role to the firing strengths from the previous layer 
(Übeyli et al. 2010; yetilmezsoy et al. 2011). This layer 
normalizes each rule’s output with respect to the rest of 
the rule set, and the normalization scales the rule’s out-
put to a value between zero and one by dividing its out-
put by the number of inputs (Schott, Kalita 2011).

3

1 2
 , 1,2i

i i
w

O w i
w w

= = =
+

, (4)

where iw  is the firing strength of the ith rule which is 
computed in layer 2. Node i computes the ratio of the 
ith rule’s firing strength to the sum of all rules’ firing 
strengths (Xiao et al. 2014).

Layer 4 is the defuzzification layer in which the 
nodes are adaptive nodes (Übeyli et al. 2010; yetilmez-
soy et al. 2011). Every node in layer 4 computes a lin-
ear function, where function coefficients are adapted by 
using the error function of the multilayer feedforward 
neural network (Xiao et al. 2014). The parameters in this 
layer are called consequent parameters (yilmaz, Kaynar 
2011).

( )4
1 1 1 , 1,2i i i iO w f w p x q y r i= = + + = . (5)

( )1 1 1, ,p q r  are the parameter set.
The fifth ANFIS layer, whose node is labelled “∑”, 

is the output layer, in which a single node calculates 
the overall output as a summation of all incoming sig-
nals (Ch, Mathur 2010; Giovanis 2012; Xiao et al. 2014). 
Hence, the overall output of the model can be written as 
(Fang 2012; yetilmezsoy et al. 2011):

5  
i ii

i i i
ii i

w f
O w f

w
= =

∑∑ ∑
, (6)

where i iw f  denotes the consequent part of rule i. The 
overall output of the neuro-fuzzy system is the summa-
tion of the rule consequences (Xiao et al. 2014).

As previously noted, in the ANFIS structure, the 
premise and consequent parameters are important 
factors for the learning algorithm in which each para-
meter is used to calculate the output data of the training 
data (Efendigil et  al. 2009). The premise part of a rule 
defines a subspace, whereas the consequent part specifies 
the output within this fuzzy subspace (Jang 1993).

The ANFIS allows for the use of two learning al-
gorithms, back propagation and hybrid methods, which 
seek to minimize some measure of error, for instance, 
the root mean sum of squared differences (RMSE) 
between the observed and predicted data (yetilmezsoy 
et al. 2011). The hybrid learning rule combines the gradi-
ent method and the least squares estimate to identify op-
timal parameters (Jang 1993). For the hybrid learning 
algorithm, it can be noted that when the values of the 
premise parameters are fixed, the overall output can then 

be expressed as a linear combination of the consequent 
parameters (yetilmezsoy et al. 2011).

Although ANN and fuzzy-logic models are both 
basic areas of the artificial intelligence concept (yetil-
mezsoy et al. 2011), the ANFIS combines and captures 
the advantages of both of these methods (Ch, Mathur 
2010; Liu et al. 2008; Tiwari et al. 2012). Since the ANFIS 
is an adaptive network which permits the use of ANN 
topology as well as fuzzy logic, it includes the charac-
teristics of both and also eliminates some disadvantages 
of these methods when used individually (yetilmezsoy 
et al. 2011). Accordingly, the ANFIS is capable of hand-
ling complex and nonlinear problems (Giovanis 2012). 
Even if the targets are not given, the ANFIS may reach 
the optimum result very quickly (yetilmezsoy et  al. 
2011). Furthermore, there is no vagueness in the AN-
FIS as opposed to ANNs (Tiwari et al. 2012). This im-
plies that the ANFIS may reach the target more rapidly 
than ANNs (Kumar et al. 2011). Therefore, when a more 
sophisticated system with high-dimensional data is im-
plemented, the use of the ANFIS instead of the ANN is 
considered to be more appropriate to overcome the com-
plexity of the problem faster (Noori et al. 2009).

In the ANFIS structure, the implication of the er-
rors is different from that of ANNs. In order to ascertain 
an optimal result, the epoch size is not limited (Noori 
et al. 2009). In training high-dimensional data, the AN-
FIS can provide results with the minimum total error as 
compared to ANN and fuzzy logic methods (Chi et al. 
2005; yetilmezsoy et al. 2011).

In the ANFIS system, each input parameter may be 
clustered into several class values in layer 1 to build up 
fuzzy rules. Each fuzzy rule would be constructed using 
two or more membership functions in layer 2. Several 
methods have been proposed to classify the input data 
and for the rule-making, among which the most com-
mon being the grid partition (Jang et al. 1997) and the 
subtractive fuzzy clustering (Chiu 1994). When there are 
a few input variables, the grid partition is considered a 
suitable method for data classification. However, in this 
study because of many input variables and the require-
ment for considerable membership functions, the sub-
tractive clustering method was utilized. For example, if 
we have 11 input variables and for each input variable 
three membership functions, the rules will be 311 rules 
(177,147 rules) and the calculation of the parameters of 
this model will therefore be very complex (Noori et al. 
2009). Therefore, in this study subtractive fuzzy clus-
tering was used to establish the rule-based relationship 
between the input and output variables.

The subtractive clustering method assumes that 
each data point is a potential cluster centre and calcu-
lates a measure of the likelihood that each data point 
would define the cluster centre, based on the density of 
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surrounding data points. The algorithm selects the data 
point with the highest potential as the first cluster centre, 
then removes all data points in the vicinity of the first 
cluster centre, in order to determine the next data cluster 
and its centre location, and then iterates this process un-
til all data is within the radii of a cluster centre (yetilmez-
soy et al. 2011). There are four algorithm parameters of 
subtractive clustering: range of influence, squash factor, 
accepted ratio and rejected ratio (Cakmakci et al. 2010; 
yager, Filev 1994).

Subtractive clustering was developed by Chiu 
(1994) in order to estimate both the number and initial 
locations of cluster centres. Consider a set T of N data 
points in a D-dimensional hyper-space, where each data 
point Wi (i = 1, 2, . . . , N) Wi = (xi , yi), where xi denotes 
the p input variables and yi is the output variable. The po-
tential value Pi of the data point is calculated by Eq. (7):

2   

1

i j
N

W W
i

j
P e−α −

=
= ∑   , (7)

where 2 4 / rα = , r is the radius defining a Wi neighbor-
hood, and ·  denotes the Euclidean distance (Wei et al. 
2011).

The data point with many neighbouring data points 
is chosen as the first cluster centre. To generate the other 
cluster centres, the potential Pi of each data points Wi is 
revised by Eq. (8):

( )* * 2  exp     i i k i kP P P W W= − −β −  , (8)

where *
kW  = ( * *,k kx y ) is the location of the kth cluster 

center and *
kP  is its potential value.

At the end of the clustering process, the method ob-
tains q cluster centres and D corresponding spreads Si, 
i = (1, . . . , D). Then we define their membership func-
tions. The spread is calculated according to β  (Wei et al. 
2011).

4. ANFIS models for predicting Australia’s domestic 
LCCs passenger demand

4.1. ANFIS process
As Figure 3 shows, the study was undertaken in three 
discrete phases. In the first phase an extensive literature 
review was undertaken to identify the extant knowledge 
on the determinants of LCC airline passenger demand. 
The requisite data was then sourced for the candidate in-
put and output variables (Section 4.2). This data was sub-
sequently normalized following the recommendations of 
Ghassemzadeh et al. (2013) and Mittal et al. (2012). The 
following step involved the data input. The input of the 
data included the input data and output data in the form 
of a data array (Chen et al. 2010: 1187). The final action at 
this stage involved defining and partitioning the universe 
of discourse for the input variables using the subtractive 
clustering method (Cakmakci 2007; Wei et al. 2011).

Fig. 3. The study’s ANFIS process

The next step involved is generating the fuzzy infer-
ence system (FIS) (Chen et al. 2010; Efendigil et al. 2009). 
The initialization of the fuzzy system was performed us-
ing the genfis 2 command, which specifies the structure 
and initial parameters of the FIS with the training data 
matrix, number of membership functions (MFs), and the 
membership types associated with each input (Patil et al. 
2011). Generally, the coefficients for the MFs are initially 
selected by trial and error, and subsequently, fine-tuned 
using the hybrid learning algorithm (Gao, Ovaska 2002).

The FIS parameters from the training datasets were 
then optimised, using the least square method and the 
backpropogation gradient descent method for training 
the forecasting ANFIS models (Wei et  al. 2011; yetil-
mezsoy et al. 2011). The training of the study’s data was 
performed automatically in the ANFIS system and an 
array of training errors was obtained (Chen et al. 2010: 
1187). Following training, an ANFIS model with a fore-
casting function was obtained for output forecasting 
(Bagheri et al. 2014; Chen et al. 2010: 1187). The models 
computed the overall output as a summation of all the 
incoming signals (Efendigil et  al. 2009). Finally, a per-
formance index, based on R, MAPE, MSE and RMSE 
(see Section 4.5 below), was established to evaluate the 
performance of the models.

4.2. Data sources
The availability of a consistent data set allows the use of 
quarterly data for the period 2002 to 2012. The data used 
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in the ANFIS models were sourced from a variety of 
sources. Data on Australia’s real GDP and real GDP per 
capita, Australia’s unemployment numbers, population 
size and recorded bed capacities at Australia’s tourist 
accommodation establishments2 are from the Australia 
Bureau of Statistics (ABS). Australia’s real interest rates 
are from the Reserve Bank of Australia (RBA). The air-
fare data are from the Bureau of Infrastructure, Trans-
port and Regional Economics (BITRE) (airline yields are 
used as a proxy of the average airline fares and are based 
on Australia’s real best discount air fares). The data on 
Australia’s LCC domestic enplaned passengers and rev-
enue passenger kilometres performed (RPKs) are from 
the Bureau of Infrastructure, Transport and Regional 
Economics (BITRE), Qantas Group, Tiger Airways and 
Virgin Australia reports and websites. World jet fuel 
prices (expressed in Australian dollars) were sourced 
from the US Energy Information Administration (EIA). 
To convert collected data from current prices to real or 
constant prices, the consumer price index at 2011 con-
stant prices was used (Ba-Fail et al. 2000).

Four dummy variables were included in the mod-
elling. The first dummy variable explained the impact 
of the evolving Virgin Australia’s business model from a 
low cost carrier model to a full service network carrier3 
(FSNC) (Whyte et al. 2012) on Australia’s low cost car-
rier traffic (enplaned passengers and RPKs). Australia’s 
low cost carriers’ traffic in Australia has decreased sig-
nificantly since 2011, primarily due to this transition in 
Virgin Australia’s business model evolution. Thus, the 
dummy variable reflecting the Virgin Australia’s chan-
ging business model (DUMMy 1) is zero for the period 
from Quarter 1 2002 to Quarter 4 2010 and one from 
Quarter 1 2011 to Quarter 2 2012.

The second dummy variable accounted for the loss 
of capacity following the collapse of Ansett Australia. At 
the time of its collapse in 2001, Ansett Australia’s do-
mestic Australian market share was 35 per cent (Virgin 
Blue held around 10 per cent and Qantas had a 55 per 
cent market share) (Prideaux 2003). Ansett Australia ex-
perienced financial problems and was placed into receiv-
ership on September 14, 2001 (Easdown, Wilms 2002). 
The collapse of Ansett Australia had a major impact on 
the tourism industry, especially in regional areas where 
Ansett’s subsidiaries provided substantial capacity. 
Whilst the other incumbent airlines increased seating 
capacity, the demand for seats exceeded supply for sev-
eral months (Prideaux 2003).

2 Based on Australian tourist accommodation establishments 
with 15 rooms or more.

3 A “full service network carrier” (FSNC) (or “legacy carrier”) 
is an airline that focuses on providing an extensive range of 
both pre-flight and on-board services, including different 
service classes, and connecting flights (Ehmer et al. 2008).

The third dummy variable accounted for the impact 
of the Global Financial Crisis (GFC) during the period 
2007 to 2009, whilst the fourth dummy variable accoun-
ted for the impact of the Commonwealth Games held in 
Melbourne from 15 to March 26, 2006.

In this study, each input/output pair contains 11 in-
puts (that is, GDP, air fare, population, unemployment, 
bed spaces, jet fuel prices, interest rates and 4 dummy 
variables and one output (RPKS or PAX). The input data 
are Australia’s low cost carriers enplaned passengers and 
RPKs performed.

Prior to training the data in the ANFIS, it is import-
ant to process the data into patterns. Training and testing 
pattern vectors are formed. Each pattern is formed with 
an input condition vector as well as the corresponding 
target vector. The scale of the input of the input and out-
put data is an important matter for consideration, partic-
ularly when the operating ranges of process parameters 
are different. The normalizing of the data ensures that the 
ANFIS will be trained effectively, without any particular 
variable skewing the results significantly. Consequently, 
all the input parameters are of equal importance in train-
ing the ANN (Baseri 2011).

In this study all data were, therefore, normalized 
prior to use in the training phase using Equation (9). The 
data normalization was applied to transform the data to 
a symmetric distribution which improves the model per-
formance since the data appear to more closely satisfy the 
assumptions of a statistical inference procedure also follow-
ing the transformations of variables (Ghassemzadeh et al. 
2013). The data is normalized using the following equation:

min
norm

max min

x x
x

x x
−

=
−

, (9)

where normx  is the normalized value, x  is the actual 
value,  maxx is the maximum value, and minx  is the 
minimum value (Kalkhaheh et al. 2012).

There are several advantages of normalizing data 
prior to processing in the ANFIS for prediction. One ad-
vantage is to avoid attributes in greater numeric ranges 
dominating those of smaller data ranges. The second 
advantage is to avoid numerical difficulties experienced 
during the calculation (Mittal et  al. 2012). With data 
normalization, the data are scaled so they fall within a 
pre-specified range, such as [0, 1] (Mitsa 2010). In this 
study’s modelling process, all data values were scaled in 
the range between 0 and 1 using Equation (9). A further 
advantage of normalizing the data is that the normaliz-
ation also removes any arbitrary effects of the similarity 
between objects whilst also increasing the answer rate 
data to the input signal (Mittal et al. 2012).

4.3. ANFIS models setup
In this study, the ANFIS (Adaptive Neuro-Fuzzy Infer-
ence System) Editor GUI (graphical user interface) in 
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the Fuzzy Logic Toolbox 2.2.16 within the framework 
of MATLAB R2012b (8.0.0.783) (The MathWorks, Inc., 
USA) software was used for modelling and simulation 
purposes.

The Sugeno ANFIS network setup process is conduc-
ted with 16 membership functions and the membership 
function type is Gaussian. The architecture of the study’s 
ANFIS is depicted in Figure 4. The hybrid learning al-
gorithm was used for the ANFIS models.

The neuro-fuzzy models were run for each com-
bination of model parameter with varying numbers of 
epochs to avoid the possible over-fitting of the models 
(Efendigil et al. 2009). The Gaussian-curve membership 

Fig. 4. The optimum ANFIS model architecture for forecasting 
Australia’s LCCs enplaned passengers and RPKs.

Fig. 5. Initial and final Gaussian membership functions for the ANFIS models
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function and 16 rules is the optimum architecture for the 
two ANFIS models. The generated membership func-
tions are able to display the interactions and relation-
ships between the various ANFIS levels. Figure 5 shows 
the fine curves of the trained models with smooth curve 
interaction for each parameter suggesting the best fit of 
the developed models (Mittal et al. 2012).

In this study, the ANFIS model was structured for 
forecasting Australia’s low cost carrier air travel demand 
using the Sugeno approach with eleven inputs and one 
output. The “product” function is used for linking the 
rules together, “weighted average” is used for rule de-
fuzzification, and the subtractive clustering algorithm 
partition method is applied to generate the optimum 
16 fuzzy rule base sets (Efendigil et al. 2009), where the 
membership function’s shape in input layer is set as the 
Gaussian membership function and the shape of the lin-
ear membership function is used in the output layer. Ex-
amples of 2 of the model’s 16 rules are as follows:

Rule 1: If (fare is mf1) and (pop is mf1) and (gdp is 
mf1) and (uemp is mf1) and (fuel is mf1) and (int is mf1) 
and (accom is mf1) and (d1 is mf1) and (d2 is mf1) and (d3 
is mf1) and (d4 is mf1) then pax is 0.48*fare + 0.06*pop + 
0.10*gdp – 0.24*unemp + 0.12*fuel – 0.10*int –0.18*accom 
+ 2.3-10*d1 – 9.7-21* d2 - 8.3-15*d3 – 1.7-7*d4 + 0.0042.

Rule 16: If (fare is mf16) and (pop is mf16) and (gdp 
is mf16) and (uemp is mf16) and (fuel is mf16) and (int 
is mf16) and (accom is mf16) and (d1 is mf16) and (d2 
is mf16) and (d3 is mf16) and (d4 is mf16) then pax is 
0.08*fare + 0.10*pop + 0.10*gdp + 0.003*unemp + 
0.13*fuel + 0.09*int + 0.15*accom + 2.1-16*d1 + 1.9-18* 
d2 + 0.18*d3 – 1.8-29*d4 + 0.18.

4.4. Data training
Training is a key part of the ANFIS model develop-
ment process. The training process is used to optimize 
the model, and the subsequent testing process is used 
to check the performance and, consequently, the gen-
eralization ability of the developed model (Mehta, Jain 
2009). In this study, the testing data subset was inde-
pendent from the training data set and was used to 
train the ANFIS model. The testing data set was utilised 
to verify the accuracy and effectiveness of the ANFIS 
model (Azadeh et  al. 2010; Galavi, Shui 2012; Übeyli 
et  al. 2010). The data was therefore divided into two 
randomly selected groups: the first group of 36 data was 
used as the training set (85% of the overall data), and 
the remaining group of 6 data was used for verifying 
and testing the robustness of the ANFIS-based predic-
tion models (yetilmezsoy et al. 2011).

The task of the learning algorithm for the study’s 
ANFIS architecture is to tune all modifiable parameters, 
that is, (a1, b1, c1) and (p1, q1, r1), to ensure that the AN-
FIS output matches the training data. When the prem-
ise parameters a1, b1, c1 of the membership function 

are fixed, the output of the ANFIS can be expressed as 
(Übeyli et al. 2010):

1 2
1 2

1 2 1 2
   

w w
f f f

w w w w
= +

+ +
. (10)

Substituting Equation (4) into 10 yields:

1 1 2 2  f w f w f= + . (11)

After further substitution of the fuzzy if-then rules 
into Equation (11), it becomes:

( )1 1 1 1 2 2 2 2( )  .f w p x q y r w p x q y r= + + + + +  (12)

Following rearrangement, the output can be ex-
pressed as:

( ) ( ) ( )
( ) ( ) ( )

1 1 1 1 1 1

2 2 2 2 2 2

f w x p w y q w r

w x p w y q w r

= + + +

+ +
, (13)

which is a linear combination of the modifiable conse-
quent parameters: p1, q1, p2, q2, r1 and r2) (Übeyli et al. 
2010: 682).

The least squares estimation (LSE) method can be 
utilised quite easily to identify the optimal values of these 
parameters (Übeyli et al. 2010). Normally a gradient based 
method is utilized for the ANFIS learning procedure. 
However, this method is known for its very slow perfor-
mance and the tendency to become trapped in a local min-
imum (Kablan 2009). This study used a standard hybrid 
learning algorithm as proposed by Jang (1993), which uti-
lises a combination of the steepest gradient and the least 
squares estimation (LSE) (Übeyli et al. 2010). Each epoch 
of this hybrid learning procedure compromises a forward 
pass and back propagation (Chen et al. 2010). In the for-
ward pass, the functional signals proceed forward to layer 
4 and the resulting parameters are identified by the least 
square estimate (Kablan 2009; yan et al. 2010). Once the 
optimum consequent parameters are found, the backward 
pass immediately commences (Efendigil et al. 2009; Übeyli 
et al. 2010). In the backward pass, the error rates propagate 
backward and the premise parameters are updated by the 
gradient descent (yan et al. 2010; yilmaz, Kaynar 2011). 
The output of the ANFIS is calculated by employing the 
consequent parameters that are found in the forward pass. 
The output error is utilized to adapt the premise param-
eters by means of a standard backpropogation algorithm 
(Übeyli et al. 2010). It has been proven that this hybrid al-
gorithm is highly efficient in ANFIS training (Jang 1993; 
Kablan 2009; Übeyli et al. 2010). Table 1 presents a sum-
mary of the learning methods used in the training phase.

Table 1. Summary of the study’s ANFIS training algorithm

Parameters Forward pass Backward pass
Premise Fixed Gradient descent
Consequent LSE Fixed
Signals Node outputs Error rates
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Each ANFIS model used 36 training data in 1–400 
training epochs (Übeyli et al. 2010). Figure 6 shows the 
training curve of the ANFIS (PAX Model) with a root 
mean square error (RMSE) of 0.000000378. Figure 7 
shows the training curve of the ANFIS RPKs model with 
an RMSE of 0.000000376. These figures display the lev-
el of modelling accuracy in terms of the error achieved 
(Mittal et al. 2012).

A comparison between the actual and the ANFIS 
predicted PAX and RPKs models’ values following the 
completion of the training are presented in Figures 8 and 
9, respectively. The two figures show that the ANFIS sys-
tem is well-trained to model Australia’s actual low cost 
carrier passenger demand, as measured by both passen-
gers carried and revenue passenger kilometres performed.

4.5. Model evaluation goodness of fit measures
Goodness-of-fit (GOF) statistics are useful when com-
paring results across multiple studies, for examining 
competing models in a single study, and also for provid-
ing feedback on the level of knowledge about the un-
certainty involved in the phenomenon of interest (Kunt 
et al. 2011). Five measures were used in the present study: 
the coefficient of determination (R2), the mean absolute 
error (MAE), the root mean square error (RMSE), the 
mean square error (MSE) (yetilmezsoy et al. 2011) and 
the mean absolute percentage error (MAPE) (Azadeh 
et al. 2010; Chen et al. 2010).

For evaluating the ANFIS models, the root mean 
squared error (RMSE), the mean absolute error (MAE), 
the mean absolute percentage error (MAPE),, the mean 
square error (MSE), and the coefficient of determination 
(R2), were calculated using Equations (14)–(17):
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where it  is the actual values; itd  is the predicted values; 
N is the total number of data (Tiryaki, Aydın 2014: 104).

4.6. ANFIS modelling results
The computation of the data for the ANFIS models was 
conducted using the software Matlab. The ANFIS train-
ing algorithms, including the gradient method and the 
least squares estimation method, were embedded in the 
software of Matlab’s fuzzy inference toolbox. The main 
computation procedure involved four steps. The first 
step is the data input. The input of the model data in-
cludes the input data and the output data in the form 
of a data array. The second step is generating the fuzzy 
inference system. The third step is utilising the ANFIS 
training function in the toolbox for the training of the 
input data. The training of the data will be performed 
automatically in the system and an array of training 
error will be obtained. Following training, an ANFIS 
model with the forecasting function was obtained for 
the output forecasting as the last step (Chen et al. 2010). 
Figure 10 depicts the Australia’s low cost carrier passen-
gers/RPKs demand forecasting system according to the 
Sugeno approach.

Fig. 6. Error change during the ANFIS PAX model training

Fig. 7. Error change during the ANFIS RPKs model training

Fig. 8. Australia’s LCC actual and predicted domestic PAX values

Fig. 9. Australia’s LCC actual and predicted domestic RPKs values
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Fig. 10. Australia’s LCCs domestic passenger/RPKs ANFIS 
forecasting system structure.

The ANFIS was trained using Matlab 7.0 with the 
various possible combinations of the subtractive cluster-
ing parameters (range of influence (ROI)  =  0.45–0.60, 
squash factor (SF) = 1.20–1.35, accept ratio (AR) = 0.40–
0.55 and reject ratio (RR) = 0.10–0.20) for the range of the 
epoch number from 1–400 epochs. The constructed AN-
FIS model was manipulated until the best settings were 
obtained, based on the lowest RMSE value. The hybrid 
learning algorithm was applied in the training phase. The 
data are normalized to the scale [0,1] in order to increase 
the training performance. The training process stopped 
whenever the maximum epoch number was reached or 
the training error goal was achieved.

The root mean square errors (RMSE) became steady 
after running 20 epochs of PAX and RPKs training 
data. The final convergence values were 0.00000378 and 
0.00000376 for the PAX and RPKs models, respectively.

The parameter in the subtractive clustering fuzzy 
inference system comprises the range of influence (ROI), 
squash factor (SF), accept ratio (AR) and reject ratio (RR) 
(yetilmezsoy et al. 2011). The constructed ANFIS models 
were manipulated by changing the parameters of cluster-
ing systematically around their default values until the 
best settings were obtained based on the lowest RMSE 
value. It is found that the optimum ANFIS structure of 
the PAX model with ROI = 0.52, SF = 1.25, AR = 0.50 
and RR = 0.15 returns the lowest value of the RMSE at 
0.00000378 and the RPKs model with ROI = 0.53, SF = 
1.25, AR = 0.50 and RR = 0.15 returns the lowest value 
of the RMSE at 0.00000376. The optimum ANFIS model 
architecture for the forecasting of the LCCs enplaned 
passengers and RPKs id shown in Figure 10.

Following training, the ANFIS model for forecast-
ing Australia’s LCCs enplaned passengers and RPKs was 
validated by selecting six data points, which are differ-
ent from the other 36 points used for the ANFIS training 
(Al-Ghandoor et  al. 2012). Each validation data point 
was fed into the system and then the Australia’s pre-
dicted LCCs enplaned passengers and RPKs values were 
computed and compared to the actual values. The per-
formance index of training, testing and overall data of 
PAX and RPK model was calculated, as shown in Table 2. 

Table 2 shows that both the PAX and RPKs ANFIS mod-
els achieve a very satisfactory predictive accuracy. Both 
models show that the MAE, MAPE, MSE and RMSE are 
very low for the training, testing and overall data sets.

Table 2. Performance index of the ANFIS models for the 
training, testing and overall data set

Performance 
index

PAX model RPK Model
Train 
data

Test 
data

Overall 
data

Train 
data

Test 
data

Overall 
data

MAE 0.001 0.047 0.008 0.001 0.040 0.007
MAPE 0.38% 8.38% 1.52% 0.33% 6.13% 1.17%
MSE 0.000 0.000 0.000 0.000 0.002 0.000
RMSE 0.001 0.058 0.021 0.001 0.049 0.019

The overall estimated and the actual value of LCC 
enplaned passengers and RPKs were regressed and, as 
Figure 11 shows, the R2 are very high, being around 
0.9949 and 0.9953 for the PAX and RPKs models, re-
spectively.

All actual and predicted values of Australia’s 
LCCs enplaned passengers (PAX) and RPKs mod-
els are plotted in Figures 12 and 13, respectively. 
These figures clearly show the fit of the ANFIS to 
the actual data, indicating the extremely high es-
timation accuracy of the study’s ANFIS models. 

Fig. 11. Comparison of the estimated and the actual values of 
the ANFIS model for forecasting Australia’s LCCs enplaned 
passengers and RPKs.
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Fig. 12. A comparison of Australia’s actual and estimated LCCs 
enplaned passengers

Fig. 13. A comparison of Australia’s LCCs actual domestic and 
estimated RPKs

5. Conclusions

This study has proposed and tested two ANFIS models 
for predicting Australia’s domestic low cost carriers’ de-
mand, as measured by enplaned passengers and revenue 
passenger kilometres performed (RPKs). Sugeno fuzzy 
rules were used in the ANFIS structure and the Gaussian 
membership function and linear membership functions 
were also developed. The hybrid learning algorithm and 
the subtractive clustering partition method were used 
to generate the optimum ANFIS models. The data was 
normalized to the scale [0,1] in order to increase the 
model’s training performance. The results found that the 
mean absolute percentage error (MAPE) for the overall 
data set of LCCs enplaned passengers (PAX) and RPKs 
models were 1.52% and 1.17%, respectively.

It can be concluded that the ANFIS is an approach 
that can be used to model and predict Australian low 
cost carrier passenger air travel demand effectively. The 
originality of this study is the use of the adaptive neuro 
fuzzy inference system (ANFIS) approach which has 
not been previously used to forecast Australia’s low cost 
carrier passenger air travel demand. The ANFIS mod-
els produced very satisfactory results and showed high 

forecasting accuracy. The application of the ANFIS ap-
proach for the prediction of other air transport demand 
may also be worthy of future research and interest.
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