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Saulėtekio al. 11, LT-10223 Vilnius, Lithuania
bFraunhofer ITWM

Fraunhofer-Platz 1, D-67663 Kaiserslautern, Germany

E-mail(corresp.): vadimas.starikovicius@vgtu.lt

E-mail: raimondas.ciegis@vgtu.lt

E-mail: oleg.iliev@itwm.fraunhofer.de

Received March 10, 2011; revised April 15, 2011; published online May 1, 2011

Abstract. Nowadays, it is widely recognized that computer simulation plays a cru-
cial role in designing oil filters used in the automotive industry. However, even a sin-
gle direct simulation of the flow usually requires significant computational resources.
Thus, it is obvious that solution of optimization problems is only feasible using parallel
computers and algorithms.

In this paper, we present a general master-slave parallel template, which was
specially designed for the easy integration of direct parallel solvers into a parallel op-
timization tool. We show how an already existing direct solver for the 3D simulation
of flow through the oil filter is integrated into our template to obtain a parallel opti-
mization solver. Some capabilities and performance of this solver are demonstrated
by solving geometry optimization problem of a filter element.
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1 Introduction

The performance of oil filters used in automotive engines and other areas can
be significantly improved using computer simulation as essential component of
the design process. Computer simulations provide engineers with the detailed
information about the flow field through the filter. Moreover, numerical simu-
lations, when they can be performed, allow a significant reduction in time and
costs for the design of new filter elements.

In this work, we build upon our previous studies on the mathematical mod-
eling and numerical simulation of flow through oil filters [8, 13, 17, 21, 22].
Mathematical models, efficient numerical schemes and parallel algorithms were
successfully developed in close collaboration with the oil filter manufacturing
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company, namely IBS Filtran. However, even a single direct simulation of the
flow often requires significant computational resources. Generally, 30–36 sim-
ulations with the different flow rates and viscosities have to be performed for
each geometry to evaluate the performance of the filter at different flow con-
ditions. Thus, any kind of geometry optimization (design of the filter housing
or/and filtering medium) is a computationally challenging problem, which can
only be tackled using parallel computers and algorithms.

The aim of this paper is to present a parallel solver for the optimization
of oil filters. It is built upon existing direct solver, which is also parallel [22].
For this purpose, we have developed a general master-slave parallel template,
which was specially designed for the easy integration of direct parallel solvers
with complicated input and output.

Obviously, in our days the ideas of simulation-driven design are getting a
lot of attention from the software developers and manufacturers themselves.
Commercial software products from such companies as Altair ProductDesign,
FRIENDSHIP SYSTEMS are employed by the world-known manufacturers of
aircrafts, cars, ships, etc. All such software tools are based on integration of ge-
ometry design with simulation through some kind of optimization. In general,
the goal of any global optimization algorithm is to find the best possible ele-
ment in a search space according to a given objective function [16]. The usage
of global optimization algorithms for solution of industrial problems requires
to take into account three important features. First, in order to compute one
value of the objective function usually we should solve a discrete problem (e.g.
a system of 3D discrete nonlinear PDEs), which requires big CPU time costs.
Second, there is no possibility to get information on the properties of the ob-
jective function, such as its gradient or at least a reasonable estimation of the
Lipschitz constant. Third, we are not concentrated on finding the exact global
minimum, it is sufficient to get a solution which improves the known engineering
approximation. Thus in engineering applications, most popular optimization
algorithms are based on specific classes of algorithms, such as the branch and
bound (BB) strategy with simple heuristics for the definition of bounds (see,
papers on implementations of parallel BB templates [3, 4]), genetic, ant colony
type algorithms [11, 19] or the simulated annealing method [23]. If the dimen-
sion of a search space is small, then the Nelder–Mead simplex method can be
used.

In this work, we build upon our previously developed master-slave (MS)
templates for the solution of optimization problems. Application of one of those
in civil engineering is described in [2]. The other two level parallel MS template
was successfully used to implement optimization algorithms for simulation and
optimization of electrical cables in automotive industry [10]. One of the main
tasks there is to determine optimal conductor cross-sections in the bundles of
electric cables in order to minimize the total weight of cables. A simple heuristic
algorithm based on the greedy type search method was successfully used as an
optimization technique. More information on these tools is given on the web
page of GridGlobOpt project at http://www.gridglobopt.vgtu.lt/.

The main focus of this paper is not on the optimization step but on the
efficiency of two level parallel algorithms for the parallel optimization tools,
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when the master-slave and domain decomposition paradigms are combined.

The rest of the paper is organized as follows. In Section 2, we describe the
direct solver for the 3D simulation of flow through the oil filter. Mathematical
model, numerical schemes and parallel algorithms are briefly discussed with the
references to our previous works. The general master-slave parallel template
is presented in Section 3. We show how the direct solver is integrated into
our new template to obtain a parallel optimization solver. We investigate the
efficiency of two level parallel algorithm on the modern parallel architecture. In
Section 4, some capabilities of the obtained solver are demonstrated by solving
geometry optimization problem of a filter element. Finally, some conclusions
are given in Section 5.

2 Direct Problem Solver

In this section we present a formulation of the mathematical model describing
flow through the oil filter. The approximation of the differential model is done
by using the finite volume method, and a parallel algorithm is constructed by
using the domain decomposition method (for details, see [8, 22]).

2.1 Mathematical model

In the case of liquid filtration, the flow in the filter is usually laminar and
incompressible. We use the Navier–Stokes–Brinkman system of equations [17,
21] to describe the coupled flow in 3D domain Ω, consisting of fluid and porous
subdomains, i.e. Ω = Ωp ∪Ωf :

ρ
∂~u

∂t
−∇ · (µ̃∇~u) + (ρ~u · ∇)~u

︸ ︷︷ ︸

Navier–Stokes

+

Darcy
︷ ︸︸ ︷

µ̃K̃−1~u+∇p =
~̃
f

︸ ︷︷ ︸

, (2.1)

∇ · ~u = 0,

where the tilde quantities are defined using fictitious region method:

µ̃ =

{

µ in Ωf ,

µeff in Ωp,

~̃
f =

{

~fNS in Ωf ,
~fD in Ωp,

K̃−1 =

{

0 in Ωf ,

K−1 in Ωp.

Here ~u, p stand for velocity and pressure respectively, ρ, µ and K denote the
density, viscosity, and the permeability tensor of the porous medium, respec-
tively.

The Navier–Stokes equations (see [14]) describe the flow in pure fluid re-
gions. The Brinkman equations [5] are used as an extension to the Darcy model
for the flow in highly porous media (note, that porosity of the nonwoven fil-
tering media, which is of our primary interest, is often more than 0.9). It was
shown that the Navier–Stokes–Brinkman system can be used to describe the
coupled flow without the explicit interface conditions [1].
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2.2 Discrete approximation

The governing equations (2.1) are discretized by the Finite Volume Method
(see [14]). A collocated arrangement of the unknowns ~u and p is used, i.e.
the unknowns are assigned to the centres of control volumes. The Chorin
method [7] for the Navier–Stokes equations, along with a proper modification
for Navier–Stokes–Brinkman case [8], is used as a projection method decoupling
momentum and continuity equations.

The following notations are introduced: the operators corresponding to dis-
cretized convective terms and diffusive terms in the momentum equations are
denoted by C(~u)~u and by D~u, respectively. G is the discretization of the gra-
dient, and GT is the discretization of the divergence operator. Finally, B~u
denotes the operator corresponding to the Darcy term µK̃−1~u in the momen-
tum equations. Below, we use the superscript n to denote the values at the old
time level, and (n+ 1), or no superscript to denote the values at the new time
level. Notation τ stands for the time step, τ = tn+1 − tn. Then the following
fractional time step discretization scheme is defined [8, 22]. First, momentum
equations are solved with respect to the velocities using the old value of the
pressure gradient, thus obtaining a prediction for the velocity:

(

ρ~un+ 1
2 − ρ~un

)

+ τ
(

C(~un)−D +B
)

~un+ 1
2 = τG pn,

(

ρ ~un+1 − ρ~un+ 1
2

)

+ τ
(

B~un+1 −B~un+ 1
2

)

= τ
(

Gpn+1 −Gpn
)

, (2.2)

GT ρ ~un+1 = 0.

The pressure correction equation then is solved. It takes into account the
specifics of the flow in the porous media (see a detailed discussion in [8, 9])

GT
(

I +
τ

ρ
B
)−1

τGq = −GTρ~un+ 1
2 , (2.3)

here q = pn+1− pn is the pressure correction, I is the 3× 3 identity matrix. At
the last step, the pressure is updated, pn+1 = pn + q, and the new velocity is
calculated:

ρ~un+1 = ρ~un+ 1
2 +

(

I +
τ

ρ
B
)−1

τGq. (2.4)

2.3 Parallel algorithm

On the basis of this sequential numerical algorithm, the parallel algorithm is
developed using data (domain) decomposition method [20]. We note that the
load balancing problem should be solved during the implementation of this
step. First, it is aimed to guarantee that each processor has about the same
number of elements, since this number defines the computational complexity
for all parts of the discrete algorithm (2.2)–(2.4).

Due to the stencil of discretization, the computational domains of differ-
ent processors are overlapping. The information belonging to the overlapped
regions should be exchanged among processors. This is done by so called ghost-
cells approach. The data exchange between the processes is implemented using

Math. Model. Anal., 16(2):326–341, 2011.
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the MPI library [15]. The time of data exchanges is contributing to the ad-
ditional costs of the parallel algorithm. Thus, a second goal of defining the
optimal data mapping is to minimize the overlapping regions. In our parallel
direct solver, we are using the multilevel partitioning method from METIS soft-
ware library [18] to partition the discrete mesh between the parallel processes.

Next, we present a summary on the complexity analysis of the parallel
algorithm. The matrixes and right-hand side vectors are assembled element
by element. This is done locally by each processor. All ghost values of the
vectors belonging to overlapping regions are exchanged among processors. We
can estimate the costs of data exchange operation in the worst case as Wexch =
αe + βem, where m is the number of items sent between two processors, α is
the message startup time and β is the time required to send one element of
data. The time required to calculate all coefficients of the discrete problem is
given by Wp,coeff = c1n/p, here n is the number of elements in the grid.

In the parallel algorithm, we use BiCGSTAB algorithm as a linear solver.
A block version of the Gauss–Seidel preconditioner is implemented, when each
processor computes B−1 by using only a local part of matrix A. The complex-
ity of all vector saxpy operations calculated during one iteration is Wp,saxpy =
c2n/p. The complexity of two matrix-vector multiplications during one itera-
tion is estimated by Wp,mv = c3n/p+ 2(αe + βem). Computation of all inner
products and norms during one iteration require Wp,dot = c4n/p+ 5R(p)(αr +
βr) operations. The computation of the preconditioner B and application of
this preconditioner is done locally by each processor without any communica-
tion operation, the complexity of this step is given by Wp,D = (c5 + c6)n/p.
Summing up all the estimates, the theoretical model of the complexity of the
parallel algorithm is obtained

Wp = K
(

(c1 + c5)
n

p
+ c7(αe + βem(p))

)

+N
(

(c2 + c6 + cdot)
n

p
+ c8R(p)(αr + βr) + c9(αe + βem(p))

)

, (2.5)

where K is the number of steps in the outer loop of algorithm (2.2)–(2.4), and
N is a total number of BiCGSTAB iterations. The experimental efficiency
analysis of the proposed parallel direct solver was done in [8, 22]. The obtained
computational results are in agreement with the theoretical scalability models.

Remark 1. The scalability analysis of the parallel algorithm (2.2)–(2.4) is done
in the case when we have p computing processes and all of them are used to solve
one fixed job in parallel as fast as possible. Optimization algorithms define a set
of jobs, therefore a more complicated resource distribution problem should be
solved: all processes are divided into groups and the main goal is to minimize
the time required to solve all tasks in the set of jobs. For branch and bound
and quasi-gradient optimization algorithms, the order among tasks is defined
by a dependence graph, thus the resource distribution problem starts to be
even more complex. Some theoretical and experimental results on solution of
this problem will be presented in the following sections.
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3 Parallel Optimization Solver

In this work, on the basis of existing direct solver we build a parallel solver for
the optimization of oil filters. For this purpose, we have developed a general
master-slave (MS) parallel template, which is specially designed for the easy
integration of direct parallel solvers with complicated input and output parts
of the solver. Master-slave parallelization paradigm is well known and widely
used [20]. Master process reads the problem input, generates and distributes
jobs to the slave processes. Slave processes receive jobs from the master, solve
them and return back the obtained results. Finally, master process receives the
results from the slaves and generates a new set of jobs if necessary.

Let us now formulate the special features of our master-slave template:

• Jobs are solved by the groups of slaves using a parallel direct problem
solver. Master forms the groups of slaves at the beginning of solution
process and directly communicates later only with the masters of the
groups.

• Input parameters and results of the job are exchanged between master
and according group of slaves using input and output files.

• Template is built as a hierarchy of C++ classes. Basic class implements
the basic functionality of master-slave algorithm and specifies the pure
virtual functions, which need to be implemented in descendant classes to
obtain problem-specific solvers.

Basic class of our template is shown in Figure 1.

class BasicSolver{
· · ·
public:
· · ·
void CreateGroupsOfSlaves();
void SolveProblem();
· · ·
virtual int TakeNewJob(int& JobId) = 0;
virtual int SolveOneJob(int JobId) = 0;
virtual int AssimilateResults(int JobId) = 0;

}

Figure 1. Basic class of parallel master-slave template.

The main basic method SolveProblem() implements the general loop of master-
slave work-flow using the pure virtual functions. Specifically, TakeNewJob(int&
JobId) is called by the master process to create a new job, i.e. if the pool of
jobs is not empty, master creates a directory with the according input files
for direct problem solver. SolveOneJob(int JobId) is called by the group of
slaves, which has received a job from master, to solve it by using direct solver
and to save the results in output files. These results are further processed and
accumulated by master in AssimilateResults(int JobId).
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The usage of technology based on input and output files is not so efficient as
a direct message passing between processes, however, the performance overhead
is negligible for coarse grained jobs (typical for industrial applications). In
turn, such an approach significantly simplifies the integration of direct problem
solvers with complicated input and output data structures into our template.

Such a template type implementation of the MS tool enables users to in-
tegrate into the parallel MS optimization solver two specific problem oriented
components: a parallel solver of the direct problem (black-box approach) and
different optimization algorithms for searching the optimal solution of a given
technological or industrial problem. Optimization algorithms can be integrated
into this tool in a robust and efficient way through specific versions of the
TakeNewJob method. Then a pool of jobs is updated dynamically according to
the logic of optimization algorithms (e.g., genetic or the Nelder–Mead simplex
method).

Let us now consider a problem of scalability of parallel optimization solver.
We return to the question, how to divide processes into the groups to minimize
the optimization problem solution time? Clearly, the answer depends on many
factors including parallel hardware architecture and granularity of the jobs.
Obviously, the groups should be big enough for a single job to fit into the
memory available to one group.

Let us now consider a more interesting case when the jobs are small enough
for several jobs to fit at the same time into a single node with multicore proces-
sor, which is currently a predominant parallel architecture. We have performed
scalability tests on two types of nodes with four cores processors each. First
node has Intel R©CoreTM processor i7-860 @ 2.80 GHz and 4 GB DDR3-1600
RAM. Second node has Intel R©CoreTM2 Quad processor Q6600 @ 2.4 GHz
and 4 GB DDR2-800 RAM. We have defined 3 test problems of different sizes.
”Small” test solves direct problems with 45120 control volumes, ”medium” test
with 360960 volumes, ”big” test with 1443840 volumes. Solving direct problems
the number of BiCGSTAB iterations was fixed to 100, 200 and 400 accordingly,
and the number of time steps fixed to 30. This was done to ensure that the
same amount of computations is performed with different number of processes
in spite of the differences in the convergence rate due to parallel preconditioner
and roundoff errors.

In Table 1, we present the performance results of our parallel solver obtained
on one i7 node. We show the solution time Tp and speedup Sp solving 15 small,
15 medium and 9 big problems with different number of groups. One of 4
available processes is reserved for the master. So, for one node we can define 1
group of 3 slaves, 2 groups of 1 and 2 slaves, or 3 groups made from 1 slave.

Analyzing obtained results, we see that for all configurations performance of
the solver is degrading with increasing problems size. This is a known issue of
memory bus saturation in the multicore systems. A more interesting is the fact,
that the use of larger groups to solve direct problems in parallel is more efficient
only for relatively small problems. For bigger problems it is better to use groups
made from one slave and to solve several problems at the same time. Such a
scenario is using 3 times more memory than 1 group of 3 slaves, however, it is
obviously better utilizing the caching systems of multicore processor. 3 groups
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Table 1. Performance results of parallel optimization solver:
time Tp and speedup Sp for 1 node with i7 processor (4 cores).

small(15) medium(15) big(9)

T1 477.9 6970 27950

1 group T4 201.8 3778 17036
S4 2.37 1.85 1.64

2 groups T4 213.8 3731 16539
S4 2.24 1.87 1.69

3 groups T4 220.1 3594 15880
S4 2.17 1.94 1.76

can solve their jobs independently, i.e. asynchronously, when 3 slaves in one
group need to communicate (send and receive data on ghost values of vectors
belonging to overlapping regions) and synchronize (global reduce operations)
with each other during computations (see the complexity analysis (2.5) of the
parallel algorithm).

In Table 2, we show the performance results obtained on our second testing
node with the Quad processor. We see qualitatively the same picture, although,
the actual numbers are somewhat different due to the differences in hardware
architecture and characteristics.

Table 2. Performance results of parallel optimization solver:
time Tp and speedup Sp for 1 node with Quad processor (4 cores).

small(15) medium(15) big(9)

T1 791.1 11805 50604

1 group T4 305.5 7727 36386
S4 2.59 1.53 1.39

2 groups T4 356.2 7739 35060
S4 2.22 1.53 1.44

3 groups T4 386.8 7290 32930
S4 2.06 1.62 1.54

In Table 3, we present the performance results obtained on two i7 nodes.
Now we can define 1 group of 7 slaves, 2 groups of 3 and 4 slaves, 4 groups made
from 1, 2, 2, 2 slaves accordingly, and 7 groups made from 1 slave. We have
selected the number of jobs (14) to ensure the workload balance between the
groups of different sizes. For example, it was assumed that in configuration with
2 groups the first group of 3 slaves will solve 6 jobs, when the second group of
4 slaves will solve 8 jobs. However, ideal 100% workload balance is practically
achieved only for the configuration with 1 group of 7 slaves. Despite that
configuration with one group is the least efficient among all configurations, due
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to relatively slow inter-node communication (Gigabit Ethernet). The results
of all other tests are more or less affected by the imbalance in workload, when
some groups finished their work earlier then the others, became idle and do not
contributed to the overall speedup.

Table 3. Performance results of parallel optimization solver:
time Tp and speedup Sp for 2 nodes with i7 processors (2x4 cores).

small(14) medium(14) big(14)

T1 448.7 6251 43524

1 group T8 120.2 1856 14542
S8 3.73 3.37 2.99

2 groups T8 84.9 1768 13258
S8 5.29 3.54 3.28

4 groups T8 99.0 1869 14085
S8 4.53 3.35 3.09

7 groups T8 106.1 1822 13476
S8 4.23 3.43 3.23

To understand the obtained results, one needs to construct the Gantt timing
charts [20] and to determine the times, required to solve a single problem by
the groups of different sizes. For the case of 7 groups consisting of one slave (i.e.
sequential jobs), we have to distinguish two different nodes: 3 groups solving
their jobs on the master node at the same time and 4 groups on the other node.
Let us denote by Tp,1 the time used to solve one sequential job when p such
jobs are solved on one node at the same time.

Table 4. Performance results solving 1 job on one node with i7 processor.

Problem T1 T3,1 S3,1 T4,1 S4,1 T3,3 S3,3 T4,4 S4,4

small 31.86 44.0 2.17 53.1 2.40 13.45 2.37 10.5 3.03
medium 464.67 718.8 1.94 911.1 2.04 251.9 1.85 234.4 1.98
big 3106 5293 1.76 6738 1.84 1893 1.64 1785 1.74

In Table 4, we show the T3,1 times, which can be obtained from Table 1
dividing the respective CPU times by 5, 5 and 3. Then after construction of
Gantt charts for the results with 7 groups in Table 3, we see that 3 slaves on the
master node solve 2 jobs each in 88.0, 1437.6 and 10586 [s]. For the remaining
time they are idle, waiting until the 4 groups on the second node will finish
their second job. So, we can obtain the T4,1 times, which are also shown in
Table 4. These times were confirmed by the separate tests, what shows that the
master-slave overhead (times for sending, receiving and waiting for the tasks)
is negligible for our problem sizes.

To compare the T3,1 and T4,1 results, we use the speedup coefficient Sp,1,
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which in notations of Table 4 is defined as

Sp,1 = pT1/Tp,1,

because actually p problems are solved at the same time (in parallel) in these
cases. Analyzing obtained results, we see that for all three test problems
S4,1 > S3,1, thus it is recommended to use all cores in computations if the
limit of the memory of one node is not reached. However, due to the memory
bus saturation, obtained performance gain and efficiency of the core usage is
decreasing as the problem size increases.

To analyze in a similar way the results for 2 groups in Table 3, we need
the time T3,3 to solve one job in the group of 3 slaves on the master node
and the time T4,4 to solve one job in the group of 4 slaves on the other node
with 4 available cores. The T3,3 times can again be obtained from the Table 1
dividing the respective times by 15, 15 and 9 (see Table 4). Constructing Gantt
charts, we see that for the small problem the group of 3 slaves solves 6 problems
and finishes first in 80.7 [s]. Hence the total time - 84.9 [s] is the time, when
the group of 4 slaves ends the solution of all 8 problems. For medium and
big problems we see that the group of 3 slaves solves 7 problems and finishes
last. Using the separate T4,4 timings presented in Table 4, we get the finishing
times of the group of 4: 1641 (medium) and 12495 (big) seconds. So, the idle
times for the configuration with 2 groups are significantly smaller than for the
configuration with 7 groups.

Similar analysis can be done for the other configurations of groups. Clearly,
for the relatively small number of problems the influence of work balance on
parallel performance is very significant (it is sufficient to consider the case of 8
problems and 7 groups). However, what kind of performance one can expect to
obtain for big numbers of problems, when the influence of the work balance is
small? Next, we propose a theoretical model for the computation of asymptotic
(ideal) speedup. Let us consider the case with 2 groups of 3 and 4 processes.
Let n = n1 + n2 be the total number of solved jobs, where n1 is the number
of jobs solved on the master node and n2 on the other node. The ideal work
balance is achieved, when n1T3,3 = n2T4,4. Under this condition, we can obtain
the following expression for the asymptotic speedup coefficient:

S8,2gr =
nT1

n2T4,4
=

(n2T4,4/T3,3 + n2)T1

n2T4,4
=

(T4,4/T3,3 + 1)T1

T4,4
. (3.1)

Similarly, we can get the asymptotic speedup coefficient for the configuration
with 7 groups:

S8,7gr =
nT1

n2T4,1
=

(3n2T4,1/T3,1 + 4n2)T1

n2T4,1
=

(3T4,1/T3,1 + 4)T1

T4,1
. (3.2)

Note that these formulas can be extended for the bigger number of nodes. For
example, for m nodes with the m groups, we get:

S4m,mgr =
(T4,4/T3,3 + (m− 1))T1

T4,4
.
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Using the performance benchmarks from Table 4, we can compute the
asymptotic speedup coefficients (3.1) and (3.2) for two i7 nodes. The results
are presented in Table 5. Comparing now configurations with 2 and 7 groups,
we see a similar tendency as for 1 node in Table 1. Bigger groups are better
only for the small problem. Increasing the problem size, the groups made from
one slave become more efficient. However, in practice it could be a good com-
promise (or at least the starting configuration) to take the groups made from
all cores on the node to avoid the possible work balance problems.

Table 5. Asymptotic (ideal) speedup coefficients using 2 nodes with i7 processors.

small medium big

S8,2gr 5.40 3.83 3.38
S8,7gr 4.57 3.98 3.60

4 Optimization Problem

The example of optimization problem is chosen to serve the needs of the design
of new generation of filters [13] as shown in Figure 2. It should be noted that oil
filters are often equipped with a so called bypass option. The bypass prevents
the breaks in the porous media due to the high pressure at cold regimes - in
this case the oil is redirected to a pipe which bypasses the filtering medium.
Obviously, the bypassed oil is not filtered in this situation.

Figure 2. A real industrial filter with the multiple porous media layers.

Alternatively, the new league of filters are designed without the bypass
option, but with an additional fine perforated filter layer that allows the oil to
flow through the holes at cold temperatures. Additionally, a coarse filter layer
in the form of a solid mesh is added to filter out the large particles. With the
support of the numerical simulations, the size of the holes and the distance
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between the two porous layers should be designed such that most of the oil
flows through the porous part of the first layer at high temperature, and not
through the holes.

It is common understanding that the porous layers are the primary cause
of the pressure drop across the filter. This is true only when the filter element
is designed in a way that there is enough space between the inlet(bottom) and
the porous layer, and between the porous layer and the outlet(top). Therefore,
we study this filter in a simplified geometry, namely a simple channel geometry
as shown in Figure 3.

−11−8 −5 −2

−67

−57

−46

−35

−24

−13

−2

OYZ:  x=10

 

 

2 7 12 18 23 29 34 40 45 51 56 62 67

−67

−62

−57

−51

−46

−40

−35

−29

−24

−18

−13

−7

−2

OXZ:  y=−7.500000

 

 

2 12 23 34 45 56 67

−67

−57

−46

−35

−24

−13

−2

OXZ:  y=−6.500000

 

 

a) b) c)

Figure 3. A simplified channel filter with the multiple porous layers. Cross sectional
views of the complicated structure of the multiple porous layers.

The considered filter element is a parallelepiped with two filtering porous
layers and a supporting solid mesh between them, as shown in Figure 3 (a).
Additionally, the first porous layer (−8 6 y 6 −7) has a set of holes, as shown
in Figure 3 (b).

The considered geometry has up to 9 parameters, which can be modified:
the distance from the inlet to the first porous layer (Lin), the distance from the
second porous layer to the outlet (Lout), the thickness of the first and second
porous layers (hP1 and hP2), the thickness of the solid mesh in X direction
(hMX ) and Y–Z directions (hMYZ ), the size of the hole (h), the size of the
open cell in the solid mesh (hCell ), the number of holes (and cells). Obviously,
the number of parameters and the size of the problems need to be kept to
minimum.

Reduction of the size of discrete problems solved in one job can be done
by using different methods. A general and robust technique is to approximate
PDEs on coarse meshes which are still sufficient to get a correct trend in the
values of the objective function. At the second stage of the optimization pro-
cess, the accuracy of the predicted optimal solution on a coarse mesh can be
corrected on the fine mesh. Such multiscale strategy can reduce essentially com-
putational costs of the full optimization cycle. It was used in [10] to optimize
electrical cables.
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Table 6. Results of numerical experiments for the filter element with two porous layers. h

is the size of the hole, hP2 is the thickness of the second porous layer, hMX is the thickness
of the solid mesh in X direction (i.e. the distance between porous layers), dP is the average
pressure drop between the inlet and outlet, Fr is the flow rate ratio through the hole of the
first porous layer.

h [mm] hP2 [mm] hMX [mm] dP [mbar] Fr [%]

0.5 0.5 0.5 982.394 33.1547
0.5 0.5 1 970.497 33.9901
0.5 0.5 1.5 969.362 34.0744
0.5 1 0.5 1021.26 33.0996
0.5 1 1 1008.49 33.9869
0.5 1 1.5 1007.29 34.0740
0.5 1.5 0.5 1058.43 33.0956
0.5 1.5 1 1045.53 33.9794
0.5 1.5 1.5 1044.10 34.0894

0.75 0.5 0.5 560.531 62.9467
0.75 0.5 1 520.700 65.7343
0.75 0.5 1.5 516.815 66.0124
0.75 1 0.5 601.242 62.7783
0.75 1 1 558.838 65.7235
0.75 1 1.5 554.785 66.0104
0.75 1.5 0.5 639.290 62.7173
0.75 1.5 1 595.889 65.7204
0.75 1.5 1.5 591.781 66.0095

1 0.5 0.5 334.173 79.0471
1 0.5 1 275.933 83.1414
1 0.5 1.5 268.899 83.6375
1 1 0.5 376.246 78.7858
1 1 1 314.156 83.1257
1 1 1.5 306.884 83.6345
1 1.5 0.5 414.743 78.6966
1 1.5 1 351.238 83.1242
1 1.5 1.5 343.872 83.6373

1.25 0.5 0.5 229.606 86.5193
1.25 0.5 1 167.113 90.9288
1.25 0.5 1.5 158.500 91.5381
1.25 1 0.5 272.251 86.2217
1.25 1 1 205.373 90.9128
1.25 1 1.5 196.488 91.5345
1.25 1.5 0.5 310.911 86.1232
1.25 1.5 1 242.487 90.9060
1.25 1.5 1.5 233.493 91.5330

1.5 0.5 0.5 178.111 90.2249
1.5 0.5 1 117.296 94.5145
1.5 0.5 1.5 108.474 95.1376
1.5 1 0.5 220.909 89.9182
1.5 1 1 155.568 94.4952
1.5 1 1.5 146.461 95.1336
1.5 1.5 0.5 259.570 89.8204
1.5 1.5 1 192.674 94.4905
1.5 1.5 1.5 183.454 95.1345



A Parallel Solver for the Design of Oil Filters 339

The second approach of reduction of model order is based on Proper Orthog-
onal Decomposition (POD). This method can also be applied in a systematic
manner and it was used for studies of lithium-ion battery simulations [6], tur-
bulent flow [12], image processing. The main idea of of POD is to find a special
basis for a modal decomposition of the snapshots (solutions computed on the
fine mesh) and to project the residual of governing equations to the subspace
generated by a small number of selected most energetic modes. A standard
eigenproblem yields eigenvalues and eigenvectors (POD modes), that form a
complete, orthonormal set.

Solving the direct problems, we compute two target values: average pressure
drop between the inlet and outlet (dP ) and flow rate ratio through the holes of
the first porous layer (Fr). The governing equations (2.1) were solved with the
following parameters: inflow velocity Uin = 25.3812 mm/s (Reynolds number
Re = 1), ρ = 8.526 · 10−7 kg/mm3, viscosity µ = 2.164 · 10−4 kg/(mms),
isotropic permeability of the first porous layer, K = 4.2 · 10−5 mm2, and
isotropic permeability of the second porous layer, K = 7.5 · 10−4 mm2.

Numerical experiments showed that our target quantities (dP and Fr) are
independent on the number of holes and cells in the solid mesh, when symme-
try boundary conditions are applied on the side walls. Therefore, further we
are considering a filtering element consisting only of one single hole and cell.
Obviously, this reduces the size of our problem 36 times comparing to the one
shown in Figure 3. The problem was further reduced by changing Lin to 2 and
Lout to 1 mm without noticeable difference to our target quantities.

In Table 6, we show the results of numerical experiments for the described
geometry of the filtering element. Target quantities were computed for the
changing size of the hole h, the thickness of the solid mesh in X direction hMX
(i.e. the distance between porous layers) and the thickness of the second porous
layer hP2. The other geometry parameters were fixed at hCell = 10, hP1 = 1,
hMYZ = 1 mm. Computations were performed on VGTU PC cluster VILKAS.
Solution of the single problem with 0.0625 mm grid takes around one hour for
a group of 16 processes.

Obtained results qualitatively are not surprising. Obviously, when the hole
size is decreasing, the flow rate ratio through the hole(s) is decreasing and
the pressure drop is increasing and vice versa. The advantage of numerical
simulation is the fact that it allows to obtain quantitative dependence, which
can be of great value for the engineers (similar to Pareto front in multi-criteria
optimization).

5 Conclusions

In this work, we have presented a parallel solver for the optimization of oil
filters. We have combined two parallelization paradigms, namely domain de-
composition for the direct problem solver and master-slave for optimization.
Such an approach gives a noticeable performance gain on modern computer
clusters with multicore and SMP processors. It should be noticed that chosen
structure of the solver is very suitable for the grids built from the computer
clusters.
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We have also developed a general master-slave parallel template. It was
specially designed for easy integration of direct parallel solvers with complicated
input and output data structures. Then integration step does not require from
the template user any additional parallel MPI programing.
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[9] R. Čiegis, O. Iliev, V. Starikovičius and K. Steiner. Numerical algorithms for
solving problems of multiphase flows in porous media. Math. Model. Anal.,
11(2):133–148, 2006. Doi:10.1080/13926292.2006.9637308.
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