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Abstract. In this work, we systematically analyze a stabilized finite volume method
for the Poisson equation. On stating the convergence of this method, optimal error
estimates in different norms are obtained by establishing the adequate connections
between the finite element and finite volume methods. Furthermore, some super-
convergence results are established by using L2-projection method on a coarse mesh
based on some regularity assumptions for Poisson equation. Finally, some numerical
experiments are presented to confirm the theoretical findings.
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1 Introduction

Finite volume method (FVM) as one of important numerical discretization
techniques has been widely employed to solve the fluid dynamics problems [8].
The basic idea of FVM is to approximate discrete fluxes of a partial differential
equation using a finite element procedure based on volumes or control volumes,
so FVM is also known as covolume methods, or box methods [1], marker and
cell methods [5], generalized difference methods [17]. The difficulty in the
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analysis of finite volume method arises from trial and test functions to lie
in different spaces and to be associated with different meshes. This can be
resolved by introducing a transfer map which allows to rewrite the finite element
formulation as its classical finite-volume-like counterpart, i.e., using piecewise
constant test functions. We can refer to [7,10,14,21] and the references therein
for more recent developments about finite volume method.

The mixed finite element method has became a popular method for solving
the partial differential equations arising in solid and fluid mechanics [4]. Its
popularity is due to the fact that in some cases a vector variable is the pri-
mary variable in which one is interested. The mixed method is developed to
approximate both this variable and a scalar variable simultaneously and to give
accurate approximations of both variables. The mixed finite element formula-
tions use two different approximate spaces. These two spaces must be chosen
carefully to satisfy the inf–sup stability condition. There exist rich choices for
these special spaces for the equations of solid and fluid mechanics (see [4, 19]
and the references therein).

Much attention has recently been attracted to use the P1-P1 pair for the
fluid mechanics equations, particularly for the Stokes and Navier-Stokes equa-
tions (see [2, 9, 12]). Although this pair does not satisfy the inf–sup stability
condition, it offers simple and practical uniform data structure and adequate
accuracy. Many stabilization techniques have been proposed to stabilize the
unstable pairs such as penalty method, pressure projection, velocity correc-
tion and residual stabilization methods. Among these methods, the pressure
projection stabilization method [2] is a preferable choice in that it is free of
stabilization parameters, does not require any calculation of high-order deriva-
tions or edge-based data structure, and can be implemented at the element
level. Recent studies have been focused on stabilization of the P1-P1 or P1-P0

using this type of stabilization for the Stokes and Navier-Stokes equations,
see [10,11,13,16,22] and the references therein.

There have been some attempts to use the velocity projection stabilization
method for solving Poisson equation. Preliminary computational studies were
given, and numerical results were reported using the low-order finite element
pairs (see [23]). However, the analysis of finite volume method is still lack-
ing for the second order equations. The analysis of the mixed finite volume
method for Poisson equations is much more dedicate than for the Stokes equa-
tions since the latter equations are naturally given in mixed form. The pair
H1(Ω)2×L2(Ω) is used for the Stokes equations while we can relax the regular-
ity of the exact solution for Poisson equation such that this set is still valid. In
this work, we provide a systematical finite volume analysis of the velocity pro-
jection stabilization method for Poisson equation. Stability results for the finite
volume solution are presented. Optimal error estimates for velocity and pres-
sure are obtained. Furthermore, some superconvergence results are established
for Poisson equation by using a L2-projection on the coarse mesh. Like other
results in the family of L2-projection methods (see [5, 6, 15]), the superconver-
gence results presented in this work are based on some regularity assumptions
for Poisson problem on the quasi-uniform triangulation partitions. Different
from [18], this paper considers the mixed finite volume method for Poisson
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equations. We not only provide the stability and optimal error estimates of
numerical solution, but also present some meaningful superconvergence results
by using the L2-projections between different finite element spaces.

The rest of this paper is organized as follows. In Section 2, some results
about Poisson equation and its mixed finite element scheme are recalled. Sec-
tion 3 is devoted to establish the stabilized finite volume formulation for Pois-
son problem. Optimal error estimates are derived in Section 4. In Section 5,
some superconvergence results are developed by introducing the L2-projection
methods between different finite element spaces. In Section 6, some numerical
experiments are provided to verify the established theoretical findings. Finally,
we end with a short conclusion in Section 7.

2 Preliminaries

Let Ω be a bounded domain in R2 assumed to have a Lipschitz continuous
polygonal boundary ∂Ω. We consider the following Poisson equation{

−∆p = f in Ω,

p = 0 on ∂Ω.
(2.1)

This equation arises from many physical and mechanical phenomena, for exam-
ple, the equilibrium of an elastic membrane fixed on the boundary and subject
to a load of intensity f , the equilibrium of some quantity like chemical or
temperature distribution when f = 0.

Standard definitions are used for the Sobolev spaces Wm,r(Ω), with the
norm ‖ · ‖m,r and the seminorm | · |m,r, m, r ≥ 0. We will write Hm(Ω) for
Wm,2(Ω) and ‖ · ‖m for ‖ · ‖m,2. The notation (·,·) indicates the inner product
on the domain Ω.

In order to state a mixed formulation for (2.1), we define the spaces

V = H(div;Ω)2, X = H1
0 (Ω), W = L2(Ω), W1 = L2(Ω)2.

Letting u = −∇p, the mixed formulation of equation (2.1) is to find u ∈
V, p ∈W , such that{

(u, v)− (∇ · v, p) = 0 ∀v ∈ V,
(∇ · u,w) = (f, w) ∀w ∈W.

In fact, we do not need u ∈ V , we only require u ∈W1. Denoting

a(u, v) = (u, v), d(v, p) = −(v,∇p).

Then, applying the Green formula, we have the following variational formula-
tion for equation (2.1)

a(u, v)− d(v, p) + d(u,w) = (f, w) ∀(u, p), (v, w) ∈W1 ×X. (2.2)

The following lemma establishes the existence, uniqueness of the solution
to Poisson equation (2.2) under some weak regularities.

Math. Model. Anal., 18(3):415–431, 2013.
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Lemma 1. The bilinear forms d(·,·) satisfies the LBB condition, i.e., there
exists a constant β1 > 0, such that

inf
w∈X

sup
v∈W1

d(v, w)

‖v‖W1
‖w‖X

≥ β1.

Proof. See Lemma 2.2 of Ref. [18]. ut

Theorem 1. There exists a unique solution (u, p) ∈W1 ×X to problem (2.2).

Proof. Combining Lemma 1 and Lax–Milgram Theorem yields the desired
result immediately. ut

Let Th = {K} be a regular, quasi-uniform partition of the domain Ω into
a finite number of triangulations, hK = diam(K), h = max{hK : K ∈ Th}. We
consider the following mixed finite element spaces

Wh =
{
v ∈ C0(Ω)2 ∩W1 : v|K ∈ P1(K)2 ∀K ∈ Th

}
,

Xh =
{
w ∈ C0(Ω) ∩X : w|K ∈ P1(K) ∀K ∈ Th

}
,

where P1(K) is the set of linear polynomials on K.
Set Ih and Jh be two interpolation operators from W1 and X into Wh

and Xh, respectively, such that for any v ∈ H1(Ω)2 and w ∈ H2(Ω) (see [4])

‖v − Ihv‖0 ≤ Ch‖v‖1, ‖w − Jhw‖i ≤ C2h
2−i‖w‖2, i = 0, 1. (2.3)

Obviously, the lowest equal-order finite element pair does not satisfy the
discrete inf–sup condition (see [19])

β‖vh‖0 ≤ sup
06=wh∈Xh

(vh,∇wh)

‖∇wh‖0
∀vh ∈Wh, (2.4)

where the constant β > 0 is independent of h. In order to overcome the
restriction (2.4), we define a L2-projection operator Πh : W1 → P 2

0 by

(u, vh) = (Πhu, vh), u ∈W1, vh ∈ P 2
0 , (2.5)

where P 2
0 is the 2-D piecewise constant space associated with the triangles Th.

And assume Πh satisfies the following properties (see [3]):

‖Πhu‖0 ≤ C‖u‖0 ∀u ∈W1;

‖u−Πhu‖0 ≤ Ch‖u‖1 ∀u ∈ H1(Ω)2. (2.6)

With the help of (2.5), we can define a bilinear form Gh(·,·) by

Gh(uh, vh) = (uh −Πhuh, vh)

= (uh −Πhuh, vh −Πhvh) ∀uh, vh ∈Wh. (2.7)

Remark. The bilinear form Gh(·,·) in (2.7) is symmetric, semi-positive definite
form generated on each local element K.
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The finite element discrete scheme for (2.1) on Wh ×Xh can be defined as

a
(
ueh, vh

)
− d
(
vh, p

e
h

)
+ d
(
ueh, wh

)
+Gh

(
ueh, vh

)
= (f, wh)

∀(vh, wh) ∈Wh ×Xh. (2.8)

Denoting the generalized bilinear form

Bh
((
ueh, p

e
h

)
, (vh, wh)

)
= a

(
ueh, vh

)
− d
(
vh, p

e
h

)
+ d
(
ueh, wh

)
+Gh

(
ueh, vh

)
. (2.9)

It has been shown that this general bilinear form (2.9) satisfies the continuity
and weak coercivity properties (see [18]):

Bh
((
ueh, p

e
h

)
; (vh, wh)

)
≤ C

(∥∥ueh∥∥0 +
∥∥∇peh∥∥0)(‖vh‖0 + ‖∇wh‖0

)
, (2.10)

sup
06=(vh,wh)∈Wh×Xh

Bh((ueh, p
e
h); (vh, wh))

‖vh‖0 + ‖∇wh‖0
≥ β

(∥∥ueh∥∥0 +
∥∥∇peh∥∥0), (2.11)

where β > 0 is a constant, independent of mesh parameter h.
Thanks to (2.9), we can simplify the equation (2.8) into the following mixed

finite element formulation: Find (ueh, p
e
h) ∈Wh ×Xh such that

Bh
((
ueh, p

e
h

)
, (vh, wh)

)
= (f, wh) ∀(vh, wh) ∈Wh ×Xh. (2.12)

Combining the classical saddle theorem and (2.10)–(2.11), we know that the
system (2.12) admits a unique solution. Moreover, the following error estimates
for the finite element solution (ueh, p

e
h) hold (see [18])∥∥p− peh∥∥0 + h

(∥∥∇(p− peh)∥∥0 +
∥∥u− ueh∥∥0)

≤ Ch2
(
‖u‖1 + ‖p‖2 + ‖f‖0

)
. (2.13)

3 Stabilized Finite Volume Method

This section is devoted to present the stabilized finite volume formulation for
Poisson equation and establish the existence uniqueness for the approximation
solution.

Let P be the set containing all the interior nodes associated with the trian-
gulations K, Nh denotes the set of all nodes Th. Based on the partition Th, we
introduce the corresponding dual partition T ∗h . Here, we choose the barycenter
Q of a element K ∈ Th, and the midpoints M on the edges of K, then connect
Q to M by straight line. For an arbitrary vertex xi ∈ K, let K̃i be the polyg-
onal which is called a control volume. Then, we have Ω =

⋃
xi, i∈Nh

K̃i, the
dual mesh T ∗h is the set of these control volumes.

The dual finite element space is defined as

X̃h =
{
ṽ ∈W : ṽ ∈ P0(K̃i) ∀K̃i ∈ T ∗h ; ṽ|∂K̃i

= 0
}
.

It is clearly that the dimensions of Xh and X̃h are the same. Furthermore,
there exists an invertible linear mapping Γh : Xh → X̃h such that

Γhvh(x) =

Nh∑
i=1

vh(xi)φi(x), x ∈ Ω, vh ∈ Xh,

Math. Model. Anal., 18(3):415–431, 2013.
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where φi(x) is the basis functions associated with the dual partition T ∗h :

φi(x) =

{
1, x ∈ K̃i,
0, otherwise.

The above idea of connecting the different spaces through the mapping Γh
was introduced by Li in [17] for the elliptic problem. Furthermore, the mapping
Γh has the following properties (see [21]).

Lemma 2. Let K ∈ Th, if vh ∈ Xh and 1 ≤ r ≤ ∞, then∫
K

(vh − Γhvh) dx = 0, ‖vh − Γhvh‖Lr(K)d ≤ ChK‖vh‖W 1,r(K)d ,

where hK is the diameter of the element K.

Applying Green’s formula, we present the finite volume approximation to
(2.1) as finding uh ∈Wh, ph ∈ Xh, such that for ∀(vh, wh) ∈Wh ×Xh

a(uh, vh)− d(vh, ph) +D(uh, wh) +Gh(uh, vh) = (f, Γhwh), (3.1)

where

D(uh, wh) =

Nh∑
j=1

wh(Pj)
∫
∂K̃j

uh · ndx, uh ∈Wh, wh ∈ Xh,

where n is the unit outward to ∂K̃j . Setting

Ch
(
(uh, ph), (vh, wh)

)
= a(uh, vh)− d(vh, ph) +D(uh, wh) +Gh(uh, vh),

then, system (3.1) can be rewritten as

Ch
(
(uh, ph), (vh, wh)

)
= (f, Γhwh) ∀(vh, wh) ∈Wh ×Xh. (3.2)

The next lemma establishes the relationship between the finite element and
finite volume methods for Poisson equation.

Lemma 3. It holds that

D(uh, wh) = −(uh,∇wh) ∀(uh, wh) ∈Wh ×Xh.

Proof. From the definition of D(·,·), and combining Lemma 2, Green’s formula
with the fact that div uh is a constant that

D(uh, wh) =

Nh∑
i=1

∫
K̃i

div uh · Γhwh dx =

Nh∑
i=1

∫
K∩K̃i

div uh · wh dx

= −
∑
K∈Th

∫
K

uh · ∇wh dx = −(uh,∇wh). ut

Now, we are in the position of establishing the continuity and weak coer-
civity for the general bilinear form Ch((uh, ph), (vh, wh)).
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Lemma 4. It holds that for all (uh, ph), (vh, wh) ∈Wh ×Xh∣∣Ch((uh, ph), (vh, wh)
)∣∣ ≤ C(‖uh‖0 + ‖∇ph‖0

)(
‖vh‖0 + ‖∇wh‖0

)
. (3.3)

Moreover,

β2
(
‖uh‖0 + ‖∇ph‖0

)
≤ sup

06=(vh,wh)∈(Wh,Xh)

|Ch((uh, ph); (vh, wh))|
‖vh‖0 + ‖∇wh‖0

, (3.4)

where the constant β2 > 0 is independent of h.

Proof. The continuity of (3.3) can easily be shown using the definition of the
bilinear form Ch((·,·), (·,·)) and Lemma 3.

In the following, we will prove the weak coercivity (3.4). For any fixed
ph ∈ Xh, there exists a unique φ ∈ W1, satisfying −(φ,∇ph) = ‖∇ph‖20 and
‖φ‖0 ≤ C‖∇ph‖0. Let φh = Ihφ, where Ih is the interpolation operator from
W1 to Wh, satisfies (2.3), and possesses the following property:

(φ− Ihφ,wh) = 0 ∀wh ∈Wh. (3.5)

Combining the definition of Ih in (3.5) with the fact that ∇ph is piecewise
constant, we arrive at

−(φh,∇ph) = −(φ,∇ph) = ‖∇ph‖20 ∀ph ∈ Xh. (3.6)

By using Lemma 2, (3.5), (3.6) and Cauchy inequality yields

Ch
(
(uh, ph), (φh, 0)

)
= (uh, φh) + (φh,∇ph) +Gh(uh, φh)

≤ ‖uh‖0‖φh‖0 + (φ,∇ph) + C‖uh‖0‖φh‖0
≤ ‖uh‖0‖∇ph‖0 − ‖∇ph‖20 + C‖uh‖0‖∇ph‖0

≤
(
1 + C2

)
‖uh‖20 −

1

2
‖∇ph‖20. (3.7)

Setting (vh, qh) = (uh − αφh, ph) with α > 0, applying (3.7) and Lemma 3
yields

Ch
(
(uh, ph), (uh − αφh, ph)

)
= Ch

(
(uh, ph), (uh, ph)

)
− αCh

(
(uh, ph), (φh, 0)

)
= (uh, uh) +Gh(uh, uh)− α

(
1 + C2

)
‖uh‖20 +

α

2
‖∇ph‖20

≥
(
1− α

(
1 + C2

))
‖uh‖20 +

α

2
‖∇ph‖20.

Choosing α = 1
2(1+C2) we have

Ch
(
(uh, ph), (vh, wh)

)
≥ C

(
‖uh‖0 + ‖∇ph‖0

)2
. (3.8)

On the other hand,

‖uh − αφh‖0 + ‖∇ph‖0 ≤
(
‖uh‖+ α‖φh‖0 + ‖∇ph‖0

)
≤ C

(
‖uh‖+ ‖∇ph‖0

)
. (3.9)

Math. Model. Anal., 18(3):415–431, 2013.
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Combining (3.8) with (3.9), we have finished the proof. ut

It follows from Lemma 4 that system (3.1) has a unique solution, and sat-
isfies

‖uh‖0 + ‖∇ph‖0 ≤ C‖f‖0.

4 Error Estimates

In this section, we present some optimal error estimates of the stabilized finite
volume solutions for equation (3.1) under some regularities about f .

Theorem 2. Let (u, p) and (uh, ph) be the solutions of (2.1) and (3.1), respec-
tively. Then we have∥∥∇(p− ph)

∥∥
0

+ ‖u− uh‖0 ≤ Ch
(
‖p‖2 + ‖u‖1 + ‖f‖0

)
.

Proof. Subtracting (2.12) from (3.2) and using Lemma 3 gives

Ch
((
uh − ueh, ph − peh

)
, (vh, wh)

)
= (f, Γhwh − wh). (4.1)

Obviously, we deduce from Lemmas 2 and 4 that

sup
(vh,wh)∈(Wh,Xh)

Ch((uh − ueh, ph − peh), (vh, wh))

‖vh‖0 + ‖∇wh‖0
≥ β2

(∥∥uh − ueh∥∥0 +
∥∥∇(ph − peh)∥∥0),∣∣(f, Γhwh − wh)

∣∣ ≤ ‖f‖0‖Γhwh − wh‖0 ≤ Ch‖f‖0‖∇wh‖0.
Combining above equations with (4.1), we arrive at∥∥uh − ueh∥∥0 +

∥∥∇(ph − peh)∥∥0 ≤ Ch‖f‖0,
which, together with (2.13), we have finished the proof. ut

To obtain the estimate of the error p − ph in L2-norm, we use the duality
argument. Considering the following problem by seeking (φ, ϕ) ∈W1×X such
that

(v, φ) + d(v, ϕ)− d(φ,w) = (p− ph, w) ∀(v, w) ∈W1 ×X. (4.2)

When Ω is convex, the solutions of (4.2) satisfy

‖φ‖1 + ‖ϕ‖2 ≤ C‖p− ph‖0. (4.3)

Theorem 3. Let (u, p) and (uh, ph) be the solutions of (2.1) and (3.1), respec-
tively, and f ∈ H1(Ω). Then

‖p− ph‖0 ≤ Ch2
(
‖p‖2 + ‖u‖1 + ‖f‖1

)
.
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Proof. Choosing (v, w) = (u−uh, p−ph) in (4.2), letting (v, w) = (Ihv, Jhw)
in (2.2), (vh, wh) = (Ihv, Jhw) in (3.2), where Ih, Jh are two interpolation
operators and satisfy (2.3), we arrive at

‖p− ph‖20 = Ch
(
(u− uh, p− ph), (φ− Ihφ, ϕ− Jhϕ)

)
+Gh(u, Ihφ)

+ (f, Jhϕ− ΓhJhϕ)−Gh(φ, u− uh). (4.4)

It follows from (2.5)–(2.7), Theorem 2 and (4.3) that∣∣Gh(u, Ihφ)
∣∣ ≤ Ch2‖u‖1‖φ‖1 ≤ Ch2‖u‖1‖p− ph‖0,∣∣Gh(u− uh, φ)
∣∣ ≤ Ch‖u− uh‖0‖φ‖1 ≤ Ch2‖p− ph‖0(‖p‖2 + ‖u‖1 + ‖f‖0

)
,∣∣Ch((u− uh, p− ph), (φ− Ihφ, ϕ− Jhϕ)

)∣∣
≤
(
‖u− uh‖0 +

∥∥∇(p− ph)
∥∥
0

)(
‖φ− Ihφ‖0 +

∥∥∇(ϕ− Jhϕ)
∥∥
0

)
≤ Ch2

(
‖φ‖1 + ‖ϕ‖2

)(
‖p‖2 + ‖u‖1 + ‖f‖0

)
≤ Ch2‖p− ph‖0

(
‖p‖2 + ‖u‖1 + ‖f‖0

)
.

In addition, let Phf be defined by

Phf |K =
1

|K|

∫
K

f(x) dx K ∈ Th,

where |K| is the area of the element K. Then, it follows from (2.5), (4.3) and
Lemma 2 that∣∣(f, Jhϕ− ΓhJhϕ)

∣∣ =
∣∣(f − Phf, Jhϕ− ΓhJhϕ)

∣∣
≤ ‖f − Phf‖0‖Jhϕ− ΓhJhϕ‖0
≤ Ch2‖f‖1‖∇Jhϕ‖0 ≤ Ch2‖f‖1‖p− ph‖0.

Combining above inequalities with (4.4) yields the desired result. ut

5 Superconvergence

The post-processing technique introduced by Wang [15,20] is onto project the
numerical solution to another finite element space with different mesh size. The
difference in these mesh sizes can be used to achieve a superconvergence after
the post-processing procedure. Let Tτi (i = 1, 2) be another two finite element
partitions with mesh sizes τi, where h� τi (i = 1, 2). Assume that τi (i = 1, 2)
and h have the following relation

τi = hαi (5.1)

with α1, α2 ∈ (0, 1), αi play an important role in achieving the superconver-
gence for the stabilized finite volume solution (uh, ph). Let Vτ1 and Pτ2 be two
finite element spaces consisting of piecewise polynomials of degree r and t, re-
spectively, associated with the partition Tτi . We define two L2 projections Qτ1
and Rτ2 from L2(Ω) onto the finite element spaces Vτ1 and Pτ2 , respectively.
In the following , we will analyze the errors of p−Qτ1ph and u−Rτ2uh.

The following two lemmas provide the error estimates for Qτ1p−Qτ1ph and
Rτ2u−Rτ2uh, respectively.

Math. Model. Anal., 18(3):415–431, 2013.
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Lemma 5. Assume Vτ1 ∈ L2(Ω) and f ∈ H1(Ω), then there is a constant C,
independent of h and τ1 such that

‖Qτ1p−Qτ1ph‖0 ≤ Ch2
(
‖u‖1 + ‖p‖2 + ‖f‖1

)
.

Proof. From the definition of ‖ · ‖0 and Qτ1 , we have

‖Qτ1p−Qτ1ph‖0 = sup
φ∈L2(Ω), ‖φ‖0=1

∣∣(Qτ1p−Qτ1ph, φ)
∣∣

(Qτ1p−Qτ1ph, φ) = (p− ph, Qτ1φ).

Then we obtain that

‖Qτ1p−Qτ1ph‖0 = sup
φ∈L2(Ω), ‖φ‖0=1

∣∣(p− ph, Qτ1φ)
∣∣.

Considering the following problem

(u− uh, v)− d(v, p− ph) + d(u− uh, w) = (p− ph, Qτ1φ). (5.2)

Because of the convexity of domain Ω, problem (5.2) has a unique solution and
satisfies

‖w‖2 + ‖v‖1 ≤ C‖Qτ1φ‖0. (5.3)

Let (vh, wh) ∈Wh×Xh be the usual piecewise linear interpolant of (v, w), which
satisfies (2.3). From the continuous equation (2.1), we have the following finite
volume variational formulation

(u, vh) + (∇p, vh) + (∇ · u, Γhwh) = (f, Γhwh). (5.4)

The following error equation can be obtained from (3.2) and (5.4)

Ch
(
(u− uh, p− ph), (vh, wh)

)
+Gh(u, vh) = 0 ∀(vh, wh) ∈Wh ×Xh. (5.5)

Combining equations (5.2), (5.5) with Lemma 2, and the fact that ∇ · uh is a
constant yields

(Qτ1φ, p− ph) = (u− uh, v − vh)− d(v − vh, p− ph) + d(u− uh, w − wh)

+
(
∇ · (u− uh), wh − Γhwh

)
−Gh(u− uh, vh) +Gh(u, vh)

= (u− uh, v − vh)− d(v − vh, p− ph) + d(u− uh, w − wh)

+ (f, wh − Γhwh)−Gh(u− uh, vh) +Gh(u, vh). (5.6)

Combining (2.3), (5.3) with Theorem 2 yields∣∣(u− uh, v − vh)− d(v − vh, p− ph) + d(u− uh, w − wh)
∣∣

≤ C‖u− uh‖0‖v − vh‖0 + ‖v − vh‖0
∥∥∇(p− ph)

∥∥
0

+ ‖u− uh‖0
∥∥∇(w − wh)

∥∥
0

≤ Ch2
(
‖u‖1 + ‖p‖2 + ‖f‖0

)(
‖v‖1 + ‖w‖2

)
≤ Ch2

(
‖u‖1 + ‖p‖2 + ‖f‖0

)
‖Qτ1φ‖0.
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By (2.5)–(2.7), it suffices to show that∣∣−Gh(u− uh, vh) +Gh(u, vh)
∣∣

≤
(
‖u− uh‖0 + ‖u−Πhu‖0

)
‖vh −Πhvh‖0

≤
(
‖u− uh‖0 + ‖u−Πhu‖0

)(
‖v − vh‖0 + ‖v −Πhv‖0 + ‖Πhv −Πhvh‖0

)
≤ Ch2

(
‖u‖1 + ‖p‖2 + ‖f‖0

)
‖Qτ1φ‖0.

Furthermore, from Lemma 2 and (2.6) that∣∣(f, wh − Γhwh)
∣∣ =

∣∣(f − Phf, wh − Γhwh)
∣∣

≤ ‖f − Phf‖0‖wh − Γhwh‖0 ≤ Ch2‖f‖1‖Qτ1φ‖0.

Combining above inequalities with (5.6), we finished the proof. ut

Lemma 6. Assume Pτ2 ∈ H1(Ω)2 and f ∈ H1(Ω), there is a constant C
independent of h and τ2 such that

‖Rτ2u−Rτ2uh‖0 ≤ Ch2−α2
(
‖p‖2 + ‖u‖1 + ‖f‖1

)
where α2 ∈ (0, 1) is defined in (5.1).

Proof. From the definition of ‖ · ‖0 and Rτ2 , we have

‖Rτ2u−Rτ2uh‖0 = sup
φ∈L2(Ω)2, ‖φ‖0=1

∣∣(Rτ2u−Rτ2uh, φ)
∣∣,

(Rτ2u−Rτ2uh, φ) = (u− uh, Rτ2φ).

Then we obtain that

‖Rτ2u−Rτ2uh‖0 = sup
φ∈L2(Ω)2, ‖φ‖0=1

∣∣(u− uh, Rτ2φ)
∣∣.

Considering the following dual problem

(u− uh, v) + d(p− ph, v)− d(u− uh, w) = (u− uh, Rτ2φ). (5.7)

Because of the convexity of domain Ω, problem (5.7) has a unique solution and
satisfies

‖w‖2 + ‖v‖1 ≤ C‖Rτ2φ‖1.

Combining (5.5) with (5.7), we obtain that

(u− uh, Rτ2φ) = (u− uh, v − vh) + d(v − vh, p− ph)− d(u− uh, w − wh)

+
(
∇ · (u− uh), wh − Γhwh

)
−Gh(u− uh, vh) +Gh(u, vh)

= (u− uh, v − vh) + d(v − vh, p− ph)− d(u− uh, w − wh)

+ (f, wh − Γhwh)−Gh(u− uh, vh) +Gh(u, vh). (5.8)

Applying the tricks used in Lemma 5 and the inverse inequality, and combin-
ing (5.8), we completed the proof. ut

Now, we are ready to estimate p−Qτ1ph and u−Rτ2uh.

Math. Model. Anal., 18(3):415–431, 2013.
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Theorem 4. Under the assumptions of Lemma 5, if τ1, h and α1 satisfy

τ1 = O
(
hα1
)

with α1 = 2/(r + 1),

then the postprocessed solution Qτ1ph satisfies

‖p−Qτ1ph‖0 ≤ Ch2
(
‖p‖r+1 + ‖p‖2 + ‖u‖1 + ‖f‖1

)
,∥∥∇τ1(p−Qτ1ph)

∥∥
0
≤ Ch

2r
1+r
(
‖p‖r+1 + ‖p‖2 + ‖u‖1 + ‖f‖1

)
.

Proof. By the definition of Qτ1 , we have

‖p−Qτ1ph‖0 ≤ ‖p−Qτ1p‖0 + ‖Qτ1p−Qτ1ph‖0
≤ Cτ r+1

1 ‖p‖r+1 + Ch2
(
‖p‖2 + ‖u‖1 + ‖f‖1

)
≤ Chα1(r+1)‖p‖r+1 + h2

(
‖p‖2 + ‖u‖1 + ‖f‖1

)
. (5.9)

The above error estimate can be optimized by choosing α1 such that

α1(r + 1) = 2,

solving the above equation gives α1 = 2
r+1 , we obtain the L2-estimate of

p−Qτ1ph. It is easy to see that∥∥∇τ1(p−Qτ1p)
∥∥
0
≤ Cτ r1 ‖p‖r+1 = Chα1r‖p‖r+1,

where ∇τ1 is defined elementwise over the partition Tτ1 . By the inverse in-
equality and Lemma 5, we have∥∥∇τ1(p−Qτ1ph)

∥∥
0
≤
∥∥∇τ1(p−Qτ1p)

∥∥
0

+
∥∥∇τ1(Qτ1p−Qτ1ph)

∥∥
0

≤ C
(
hα1r‖p‖r+1 + h2−α1

(
‖p‖2 + ‖u‖1 + ‖f‖1

))
.

We optimize the above estimate by choosing α1 such that

α1r = 2− α1,

then, we obtain the following estimate∥∥∇τ1(p−Qτ1ph)
∥∥
0
≤ Ch

2r
1+r
(
‖p‖r+1 + ‖p‖2 + ‖u‖1 + ‖f‖1

)
. (5.10)

Combining (5.9) with (5.10), we finished the proof. ut

Similarly, we have the following result for velocity.

Theorem 5. Under the assumptions of Lemma 6, if τ2, h and α2 satisfy

τ2 = O
(
hα2
)

with α2 = 2/(t+ 2),

then the postprocessed solution Rτ2uh satisfies

‖u−Rτ2uh‖0 ≤ Ch
2(1+t)
2+t

(
‖p‖2 + ‖u‖t+1 + ‖f‖1

)
.
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Table 1. The results of standard finite volume method with P1 element.

1/h
‖ph−p‖0
‖p‖0

Order
‖ph−p‖1
‖p‖1

Order

10 0.1105 / 0.3040 /
20 0.02891 1.9348 0.1551 0.9709
30 0.01296 1.9788 0.1038 0.9905
40 0.007310 1.9905 0.07792 0.9969
50 0.004685 1.9937 0.06237 0.9976

Proof. By the definition of Rτ2 , we have

‖u−Rτ2uh‖0 ≤ ‖u−Rτ2u‖0 + ‖Rτ2u−Rτ2uh‖0
≤ C

(
τ t+1
1 ‖u‖t+1 + h2−α2

(
‖p‖2 + ‖u‖1 + ‖f‖1

))
≤ C

(
hα2(t+1)‖u‖t+1 + h2−α2

(
‖p‖2 + ‖u‖1 + ‖f‖1

))
. (5.11)

The above error estimate can be optimized by choosing α2 such that

α2(t+ 1) = 2− α2.

Solving the above equation gives α2 = 2
t+2 . With this chosen, combining (5.11)

we completed the proof. ut

Finally, we have the following error estimates by choosing the different mesh
sizes relationship.

Corollary 1. Assume that Vτ1 ∈ L2(Ω), Pτ2 ∈ H1(Ω)2 and f ∈ H1(Ω). If
α1 = α2 = 2

3 , then we have

‖p−Qτ1ph‖0 ≤ Ch2
(
‖p‖3 + ‖u‖1 + ‖f‖1

)
,∥∥∇τ1(p−Qτ1ph)

∥∥
0
≤ Ch 4

3

(
‖p‖3 + ‖u‖1 + ‖f‖1

)
‖u−Rτ2uh‖0 ≤ Ch

4
3

(
‖p‖2 + ‖u‖2 + ‖f‖1

)
.

Besides, if α1 = 2
3 , α2 = 1

2 , then we arrive at

‖p−Qτ1ph‖0 ≤ Ch2
(
‖p‖3 + ‖u‖1 + ‖f‖1

)
,∥∥∇τ1(p−Qτ1ph)

∥∥
0
≤ Ch 4

3

(
‖p‖3 + ‖u‖1 + ‖f‖1

)
‖u−Rτ2uh‖0 ≤ Ch

3
2

(
‖p‖2 + ‖u‖3 + ‖f‖1

)
.

As a consequence, we can see that there is no improvement for the pressure
in L2-norm, but the superconvergence results for the gradient of pressure and
velocity are established under some regularities of p, u and f .

6 Numerical Experiments

In this section, we show some numerical examples to verify the established
results in Sections 4 and 5. In all tests, we choose the domain Ω as the unit

Math. Model. Anal., 18(3):415–431, 2013.
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Table 2. The results of mixed finite volume method with P 2
1 -P1 element.

1/h
‖ph−p‖0
‖p‖0

Order
‖ph−p‖1
‖p‖1

Order
‖uh−u‖0
‖u‖0

Order

10 0.6450 / 0.3439 / 0.1752 /
20 0.1423 2.1804 0.1631 1.0762 0.08241 1.0881
30 0.06186 2.0546 0.1079 1.0190 0.05437 1.0262
40 0.03453 2.0267 0.08067 1.0110 0.04063 1.0128
50 0.02202 2.0161 0.06445 1.0060 0.03245 1.0063

Table 3. The superconvergence results with P 2
1 -P2 element with α1 = α2 = 2

3
.

1/h
‖ph−p‖0
‖p‖0

Order
‖ph−p‖1
‖p‖1

Order
‖uh−u‖0
‖u‖0

Order

10 0.06621 / 0.2586 / 0.3882 /
20 0.01565 2.0809 0.08199 1.6572 0.1111 1.8049
30 0.007034 1.9723 0.04768 1.3369 0.06383 1.3668
40 0.003918 2.0341 0.03063 1.5383 0.04142 1.5033
50 0.002444 2.1150 0.02178 1.5281 0.02910 1.5821

Table 4. The superconvergence results with P 2
2 -P2 element with α1 = 2

3
, α2 = 1

2
.

1/h
‖ph−p‖0
‖p‖0

Order
‖ph−p‖1
‖p‖1

Order
‖uh−u‖0
‖u‖0

Order

10 0.07612 / 0.24585 / 0.06982 /
20 0.01679 2.1807 0.08506 1.5312 0.03062 1.1892
30 0.007622 1.9478 0.05038 1.2918 0.01641 1.5384
40 0.004063 2.1868 0.03212 1.5646 0.01065 1.5028
50 0.002641 1.9304 0.02309 1.4792 0.007387 1.6395

square Ω = [0, 1] × [0, 1], the exact solution p = sin(2πx) sin(2πy) and f =
8π2 sin(2πx) sin(2πy) is determined by (2.1).

Firstly, we provide the numerical results of standard finite volume method
for (2.1) with different meshes, which are shown in Table 1. And then, we give
the results obtained by mixed finite volume method (3.1) in different meshes.
Compared with the results in Table 1, we can see that there are no much
differences of the errors between two methods in H1-norm, but we can obtain
the better results in L2-norm by using mixed method. Furthermore, the results
in Table 2 verify the established theoretical findings of Theorems 2–3.

Finally, in order to achieve superconvergence for the numerical solution, the
local L2 projections are used. The key of this method is to project one finite
element space onto another one based on the high order polynomials of the
coarse mesh. The solution of (Qτ1ph, Rτ2uh) can be computed as follows: Find
(Qτ1ph, Rτ2uh) ∈ (Vτ1 , Pτ2) for all (w, v) ∈ (Vτ1 , Pτ2) such that

(Qτ1ph, w) = (ph, w), (Rτ2uh, v) = (uh, v),

where (ph, uh) is the solution obtained by (3.1). Tables 3–4 list the mesh sizes
among different partitions and the convergence rates of numerical solutions.
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Figure 1. Errors of various variables of different methods for Poisson equations. (a)
L2-error for pressure, (b) H1-error for the pressure, (c)L2-error for velocity.

From those Tables, we can see that the relative errors of pressure obtained by
L2 projection method are better than these in Table 2, and the convergence
orders confirm the results of Corollary 1, see also Figure 1 for details.

7 Conclusions

In this paper we have presented a theoretical analysis of stabilized finite volume
method for Poisson equation. By introducing a new mixed variational formula-
tion, we obtained the optimal error estimates for the numerical solutions based
on the linear polynomials over the triangulation partitions. Furthermore, with
the help of the L2-projection method, we presented some superconvergence re-
sults for the numerical solutions under some regularity assumptions for Poisson
equation. Some numerical experiments are presented at last.
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