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Abstract. In an earlier paper, we derived the distribution of the number of photons
detected in two-photon laser scanning microscopy when the counter has a dead period.
We assumed a Poisson number of emissions, exponential waiting times, and an infinite
time horizon, and used an equivalent inhomogeneous Poisson process formulation.
We then used that result to improve image quality as measured by the signal-to-noise
ratio. Here, we extend that study in two directions. First, we treat the finite-horizon
case to assess the accuracy of the simpler infinite-horizon approximation. Second, we
use a direct approach by conditioning on the Poisson count for the infinite-horizon
case to derive several polynomial identities.
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1 Introduction

Two-photon laser scanning microscopy (TPLSM) is a valuable tool for imaging
living tissues. It involves the periodic excitation of molecules by hundred-
femtosecond laser pulses, followed by the emission of fluorescent light before
the arrival of the next pulse [5]. The count of the photons is used to estimate
the intensity of a pixel in the resulting image. To convert the arrival of a
photon into a pulse of current, photomultiplier tubes are commonly used [4].
This conversion leads to a dead period in the photon detector, during which
it is not able to record another emitted photon. The censored photons lead in
turn to an undercount, resulting in images with smaller signal-to-noise ratios
and poorer image quality.

Figures 1 and 2 illustrate how the dead period of TPLSM affects the photon
counting process when six photons are emitted [12]. If the detector did not have
a dead period the count would have a Poisson distribution, and it would be
easy to estimate the intensity. However, after each photon arrival, the detector
of the machine has a dead period: in Figure 2 the photons arriving at t2, t4,
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Figure 1. All photons recorded when there is no dead period.

and t5 are censored during the dead periods induced by those arriving at t1
and t3.

Figure 2. Shaded regions depict dead periods which censor photons.

The dead periods of the photon counting systems affect the measured count-
ing distribution. There is an extensive literature on dead periods in counting
processes. Here, we describe the features relevant to TPLSM, and provide
references. Dead periods are classified as either paralyzable or nonparalyz-
able [6, 9, 11]. If the dead period only occurs after registration of a pulse, we
have a Type I or non-paralyzable counter; and if the dead period occurs after
each pulse (whether it is recorded or not), we have a Type II or paralyzable
counter. The technology of TPLSM leads to at Type I counter [7]. The exis-
tence of dead periods in photon detectors makes the photon counting process
challenging. The photon arrival process N(t) counts the number of arrivals
during the time interval [0, t), and most of the prevoius studies assume that
N(t) is a homogeneous Poisson process with rate (photon arrivals per unit
time) [1, 10, 14, 15]. Much of the literature on dead periods uses tools from re-
newal theory of renewal theory to deal primarily with moments (such as means
and variances) rather than probabilities. The emphasis of much of this litera-
ture is on asymptotic approximations. In contrast, our work below and in [13]
calculates the exact probabilities using assumptions that are well supported by
the physical background; moments and other summaries can easily be derived
from these probabilities.

In an earlier paper [13], we used standard model assumptions [7]: Poisson
with mean α for the number of photons emitted, exponential emission waiting
times (fluorescence lifetimes), and a fixed (standardized) dead period δ upon
registration of a photon. We assumed an infinite time horizon for the waiting
times. Using an equivalent inhomogeneous Poisson process formulation, we de-
rived the exact distribution of all observed counts, rather than grouped counts
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as in [5]. We then used maximum likelihood to estimate both α and δ from
the observed counts, and showed how those estimates yield improved image
quality, as measured by the signal-to-noise ratio.

We now describe the details of our model. Assume that the number of ex-
cited molecules N is a Poisson random variable with mean α. When N = n ≥ 1,
assume that the photon emission waiting times W1, . . . ,Wn are independent ex-
ponential random variables with time constant τ nanoseconds (ns). An equiv-
alent formulation is based on the following fact [3]: suppose that N(t) is an
inhomogeneous Poisson process (IHPP) with intensity function λ(t) for t ≥ 0;
given that N(t) = n, the n ordered occurrence times have the same joint distri-
bution as the order statistics of n independent random variables with common
density

f(u) = λ(u)/

∫ t

0

λ(s)ds, for 0 ≤ u ≤ t.

Thus, in our context, for any horizon t ≤ ∞ with N(t) = n, the ordered photon
emission waiting times W(n:1) < . . . < W(n:n) have the same distribution as the
occurrences of an IHPP with λ(t) = αe−t. When the arrival of a photon is
recorded, the detector has a dead period of length ∆ ns. For our calculations
below we use a clock in units of the time constant, so the standardized dead
period is the dimensionless quantity δ = ∆/τ and the waiting times have mean
1. In typical applications, δ is around 1 and α is at most 3.0, so our numerical
illustrations are for those values.

In [13] we used this inhomogeneous Poisson process approach to obtain the
exact distribution of the number of photons detected, D, for an infinite time
horizon. Writing PT to denote probability for horizon up to time T ,

P∞(D = d) =

d∑
k=0

(−1)ke−{k}δζd−k/B, for d = 0, 1, 2, . . . , (1.1)

where B =
∏k
i=1Ai

∏d−k
j=1 Aj ,

Ak = Ak(e−δ) = (1− e−kδ), {k} =

(
k

2

)
, ζk = ζk(α, e−δ) = e−αe

−kδ
,

for k = 1, 2, . . ., and with the convention that
∏b
k=aAk is 1 whenever b < a.

In this paper, we extend our earlier results in two directions. In Section
2, we address the problem of computing the probabilities for the finite-horizon
case. Because the complete distribution is not analytically tractable, we use nu-
merical methods to give guidelines on how long the horizon must be in order for
the infinite-horizon distribution to be a good approximation. In Section 3, we
use a second approach to the infinite-horizon case to prove certain polynomial
identities.

2 Distribution of D for a finite horizon

Using the same approach as in [13], we study PT (D = d) for T <∞. The main
reason for studying the finite horizon case is that, of course, actual experiments
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have finite length. In [5], the horizon was T = 13.2 ns, and the infinite-horizon
approximation (1.1) was quite accurate there. Our calculations below will
provide guidelines about how large T should be in order for that approximation
to be accurate. We will see below that the finite horizon calculations are
considerably more complicated than the ones leading to (1.1); in fact, they
appear to be analytically intractable for d ≥ 2. One reason for the difficulty
is the possibility of a dead period starting very close to the boundary T . We
present numerical calculations for d ≤ 2 to support our recommendations.

The event [D = 0] happens if and only if no photon arrives at the detector
before T . The probability of this event is

PT (D = 0) = exp
(
−
∫ T

0

αe−tdt
)

= e−α(1−e−T ).

Of course, as T →∞, PT (D = 0)→ e−α = P∞(D = 0).

Next, there are two possible configurations for a single photon recorded at
time t: its dead period ends either before (t ≤ T − δ) or after (T − δ < t < T )
the recording period [0, T ]. The two cases are depicted in Figure 3; if it ends
before T , then there must be no emissions between the end of the dead period
and T .

Figure 3. Two configurations leading to recording one photon by time T .

In the first case, we compute the probabilities of the events in the intervals
thus: the probability of no emissions in [0, t) is

exp

(
−
∫ t

0

αe−xdx

)
= e−α(1−e

−t),

an emission in [t, t + dt) is αe−tdt, and no emissions after the dead period up
to T is

exp

(
−
∫ T

t+δ

αe−xdx

)
= e−αe

−(t+δ)

eαe
−T
.
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Combining these terms, the probability of the first case, w1, is

w1 = eαe
−T
∫ (T−δ)

0

e−α(1−e
−t)e−αe

−(t+δ)

αe−tdt

=
e−α(e

−δ−e−T ) − e−α(1−e−(T−δ))

1− e−δ
. (2.1)

In the second case, the photon is recorded between T − δ and T , so that
its dead period goes beyond T . As for the first case, the probability of no
emissions in [0, t) is

exp

(
−
∫ t

0

αe−xdx

)
= e−α(1−e

−t),

an emission in [t, t + dt) is αe−tdt. Combining these terms, the probability of
the second case, w2, is

w2 =

∫ T

(T−δ)
e−α(1−e

−t)αe−tdt = e−α
∫ αe−(T−δ)

αe−T
exdx

= e−α(1−e
−(T−δ)) − e−α(1−e

−T ). (2.2)

Summing (2.1) and (2.2), we get the probability of recording one photon:

PT (D = 1) =
e−α(e

−δ−e−T ) − e−α(1−e−(T−δ))

1− e−δ
+ e−α(1−e

−(T−δ)) − e−α(1−e
−T ).

Once again, as T →∞, PT (D = 1)→ P∞(D = 1).
We expect that the contribution of (2.1) to be much larger than that of (2.2).

To assess their relative magnitudes, we set δ = 1 and present our numerical
results in Table 1. This table shows that for small rates α, (2.2) is negligible
for T ≥ 4; and for larger α, it is negligible for T ≥ 2.

Table 1. Comparison of (2.1) with (2.2)

α Eq. T=2 T=4 T=6 T=8 T=10

0.5
(2.1) .255 .345 .355 .356 .356
(2.2) .080 .010 .001 .000 .000

1.5
(2.1) .503 .556 . 558 .558 .558
(2.2) .114 .011 .001 .000 .000

2.5
(2.1) .559 .513 .502 .501 .501
(2.2) .009 .000 .000 .000 .000

We now assess how large T must be in order to use the infinite observation
time probabilities as approximations for the finite horizon case. We compare the
probabilities PT (D = 0), PT (D = 1), and an approximation to P (D = 2) with

Math. Model. Anal., 22(5):587–600, 2017.
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Table 2. Comparison of PT (D = 0) with P∞(D = 0)

α T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8 T=∞

0.5 .729 .649 .622 .612 .609 .607 .607 .607 .607
1.0 .532 .421 .387 .375 .370 .369 .368 .368 .368
1.5 .387 .273 .240 .229 .225 .224 .223 .223 .223
2.0 .282 .177 .150 .140 .137 .136 .136 .135 .135
2.5 .205 .115 .093 .086 .084 .083 .082 .082 .082
3.0 .150 .075 .058 .053 .051 .050 .050 .050 .050

the corresponding infinite-horizon values in Tables 2, 3, and 4, respectively;
once again with δ = 1, and also with τ = 1.

In Table 2, we see that as T increases, the infinite horizon approximation
always underestimates the finite horizon probability of [D = 0] because the
longer we wait the more likely we are to see a photon. Moreover, as α gets
larger PT (D = 0) converges faster to P∞(D = 0) as T →∞. Next, from Table
3, we conclude that when α ≤ 1 and observation period is small, the infinite
horizon approximation overestimates the probability of [D = 1]. For α > 1, it
underestimates PT (D = 1), especially when T is small.

Table 3. Comparison of PT (D = 1) with P∞(D = 1)

α T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8 T=∞

0.5 .271 .335 .350 .354 .356 .357 .357 .357 .357
1.0 .469 .523 .519 .516 .514 .513 .513 .513 .513
1.5 .613 .617 .582 .567 .562 .559 .559 .558 .558
2.0 .718 .652 .585 .559 .549 .546 .545 .544 .544
2.5 .794 .650 .554 .520 .508 .503 .502 .501 .501
3.0 .850 .625 .508 .468 .454 .449 .447 .446 .446

The finite-horizon calculations for [D = 2] follow the same steps as the ones
for the cases above. They are quite a bit more involved, leading to several dou-
ble integrals some of which cannot be evaluated in elementary terms. Ignoring
edge effects near T , the approximation of PT (D = 2) is∫ T−2δ

0

∫ T−δ

t+δ

e−α(1−e
−t)e−α(e−(t+δ)−e−u)e−α(e−(u+δ)−e−T ) α2e−ue−t du dt.

Thus, we have

PT (D = 2) ' eαe
−T
[
U − V e(1−e

−δ)αe−(T−δ)
]
,

where

U =
e−αe

−2δ − e−α+(1−e−2δ)αe−(T−2δ)

A1A2
, V =

e−αe
−δ − e−α+(1−e−δ)αe−(T−2δ)

A2
1

.
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Note that as T →∞, PT (D = 2)→ P∞(D = 2).

In Table 4, we compare this approximation of PT (D = 2) with the cor-
responding infinite-horizon values. In this table, we only consider T > 2 ns
because it is impossible to see 2 photons when T ≤ 2 ns. From Table 4, we see
that the infinite-horizon approximation is an overestimate (underestimate) for
small (large) α; it is good approximation when T ≥ 6 ns.

Table 4. Comparison of PT (D = 2) with P∞(D = 2)

α T=3 T=4 T=5 T=6 T=7 T=8 T=∞

0.5 .016 .028 .033 .035 .036 .036 .036
1.0 .054 .090 .105 .110 .112 .113 .113
1.5 .104 .166 .189 .197 .201 .202 .202
2.0 .160 .243 .271 .282 .286 .287 .288
2.5 .217 .313 .345 .356 .360 .361 .362
3.0 .271 .374 .406 .417 .420 .422 .423

In summary, these tables show that it is reasonable to assume an infinite
observation period when T ≥ 7 or 8 ns, depending on the accuracy desired. As
noted before, Driscoll, et al. [5], used the simpler approximation because they
used T = 13.2 ns.

3 Polynomial identities arising in photon counting prob-
lems

In this section, we use a second approach to derive the distribution of D for
an infinite horizon, which leads to three sets of polynomial identities. In the
course of using the first approach described above in [13] we needed the first
set:

I1 :

d−1∑
k=0

(−1)k+1 e−{k}δ∏k
i=1Ai

∏d−k
i=1 Ai

= (−1)d
e−{d}δ∏d
i=1Ai

, for d = 1, 2, . . . . (3.1)

Similarly, when using the approach described above, we need the second set:

I2 :

d−1∑
k=0

(−1)k
e−{k}δAnd−k∏k
i=1Ai

∏d−k
i=1 Ai

= 0, for d = 1, 2, . . . , n = 1, 2, . . . , d−1. (3.2)

Unlike the first two sets of identities, the third set of identities do not appear
in the steps of the approach describe in Section 2. They appear in the derivation
of the distribution of D by using our second approach, which is described in
the following section. For integer k ≥ 1, let Bk(x) = 1 + x + · · · + xk, and let

Math. Model. Anal., 22(5):587–600, 2017.
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Bk = Bk(eδ). For d = 3, 4, . . ., the third set of polynomial identities is

I3 :

d−1∑
k=1

(−1)k
e(d−1)(n+1)δe[{d−k}−j(d−k)]δBjd−k−1∏d−k−1

i=1 Bi
∏k−2
i=1 Bi

= e(d−1)(n+1)δ
d−1∑
k=1

(−1)k
e[{d−k}−j(d−k)]δBjd−k−1∏d−k−1

i=1 Bi
∏k−2
i=1 Bi

(3.3)

=

{
(−1)d−1 e

(d−1)(n+1)δ∏d−2
i=1 Bi

, for j = 0,

0, for j = 1, . . . , d− 2

and we have the convention that
∏b
k=aAk is 1. It turns out that these identities

I3 reduce to I1 for j = 0, 1 and to I2 for j = 2, . . . , d− 2.

Now, we present our second approach to derive the distribution of D. For
few cases, we provide the details of the derivation that arises these polynomials
identities given in I1, I2, and I3.

3.1 Assumptions

We start with a Poisson(α) number of photons actually emitted and their ar-
rivals following exponential waiting times with parameter τ . As before, we
rescale the dead period δ = ∆/τ since it is convenient to use a clock with time
constant units, and assume τ = 1 without loss of generality. Suppose that the
photon detector has a dead period of ∆ ns; the photons that are emitted during
a dead period do not affect that dead period, so this model is a Type I counter.
The rescaled dead period is δ = ∆/τ . We also assume that the observation
period is infinite in Section 3.2. We will later change this assumption with
finite horizon in Section 3.2. Note that, below we use the notation at the end
of Section 1.

3.2 Deriving distribution of D using alternate approach

Let W(n:1) < . . . < W(n:n) be the ordered waiting times when N = n ≥ 1.
These order statistics can be represented thus [2]:

W(n:k)
d
=
X1

n
+ · · ·+ Xk

n− k + 1
, (3.4)

where the Xk are independent exponential random variables with time constant
1. The first few probabilities are easy. As before, because the observation
period is infinite,

P (D = 0) = P (N = 0) = e−α.

Next, for N ≥ 1, write

P (D = d) =

∞∑
n=d

P (D = d|N = n)P (N = n).



On Certain Problems in Two-Photon Laser Scanning Microscopy 595

Using the lack of memory property of the exponential distribution, we have

P (D = 1|N = n) = P (W(n:n) ≤W(1:n) + δ) = (1− e−δ)n−1;

and since the generating function of N is E(uN ) = e−α(1−u), we have

P (D = 1) =

∞∑
1

(1− e−δ)n−1P (N = n) =
E(1− e−δ)N − e−α

1− e−δ
=

ζ1
A1
− ζ0
A1

.

For larger values of d we decompose the event (D = d). For the d-tuple
κ where κ = κ(d) = (k1, . . . , kd) with 1 = k1 < · · · < kd ≤ n, we observe
W(k1) < · · · < W(kd) if and only if

Qκi =

{
(W(ki+1−1) ≤W(ki) + δ) ∩ (W(ki+1) > W(ki) + δ), if i = 1, . . . d− 1,

(W(ki+1−1) ≤ (W(ki) + δ), if i = d

all occur. By representation (3.4), for i = 1, . . . , d − 1, Qκi depends only on
(Xki+1, · · · , Xki+1

), and Qκd depends on Xkd+1, . . . , Xn; hence, the events {Qκi :
1 ≤ i ≤ d} are independent. By the lack of memory property,

P (Qκd) = P (W(n) ≤W(kd) + δ) = (1− e−δ)n−kd

and for d ≥ 2 and i = 1, . . . , d− 1

P (Qκi ) =

(
n− ki

ki+1 − ki − 1

)
e−(n−ki+1+1)δ(1− e−δ)ki+1−ki−1.

Summing over all the d-tuples, we have

P (D = d|N = n) =
∑
κ

(1− e−δ)n−kd
d−1∏
i=1

P (Qκi ) (3.5)

= (1− e−δ)n−de−(n+1)(d−1)δ
d∑
i=2

· · ·
n−d+i∑

ki=ki−1+1

(
n− ki

ki+1 − ki − 1

)
ekiδ.

With this expression, we use

P (D = d) =

∞∑
d

P (D = d|N = n)P (N = n)

to derive the marginal distribution of D.

Derivation of P (D = 2). First, sum over kd in equation (3.5) to get P (D =
2):

n∑
kd=kd−1+1

(
n− kd

kd − kd−1 − 1

)
ekdδ =

n−kd−1−1∑
m=0

(
n− kd−1

m

)
e(m+kd−1+1)δ

= e2δBn−11 − e(n+1)δ. (3.6)

Math. Model. Anal., 22(5):587–600, 2017.
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To get (3.6), we set m = kd − kd−1 − 1 and then use the binomial theorem.
Next, let d = 2, and substitute k1 = 1. Then the conditional probability for
d = 2 is

P (D = 2|N = n) = (1−e−δ)n−2e−(n+1)δ[e2δBn−11 − e(n+1)δ] =
An2
A1A2

−A
n
1

A2
1

.

Notice that this expression is zero for n = 1 (see (3.2)). Thus, we have

P (D = 2) =
ζ2

A1A2
− ζ1
A2

1

+
ζ0
A1

(
1

A1
− 1

A2

)
=

ζ2
A1A2

− ζ1
A2

1

+
e−δζ0
A1A2

.

The equivalence of the coefficients of ζ0 in this expression, and for all larger d,
is a special case of I1: see the representation given in (3.1).

Derivation of P (D = 3). We now sum over kd, kd−1 in equation (3.5). Now
we define m = kd−1 − kd−2 − 1 and use the binomial theorem again to get

n−1∑
kd−1=kd−2+1

n∑
kd=kd−1+1

(
n− kd−1

kd−1 − kd−2 − 1

)(
n− kd

kd − kd−1 − 1

)
ekdδekd−1δ

=

n−kd−2−2∑
m=0

(
n−kd−2
m

)[
e(2kd−1+3)δe2δmB

n−kd−2−m
1

B1
−eδme(n+kd−2+2)δ

]
= S1 − S2,

where

S1 =
e(2kd−2+3)δ

[
B
n−kd−2

2 −
(
n−kd−2

1

)
e2δ(n−kd−2−1)B1−

(
n−kd−2

0

)
e2δ(n−kd−2)

]
B1

,

S2 =
e(n+kd−2+2)δ

[
B
n−kd−2

1 −
(
n−kd−2

1

)
eδ(n−kd−2−1) −

(
n−kd−2

0

)
eδ(n−kd−2)

]
B0

1

.

Thus,

S1 − S2 =
e(2kd−2+3)δB

n−kd−2

2

B1
−e(n+kd−2+2)δB

n−kd−2

1

−
(
n− kd−2

1

)
c1 −

(
n− kd−2

0

)
c0.

In this case, the coefficients ci are the polynomial identities given in I3: see

(3.3). Thus, c1 = 0 and c0 = e2δ(n+1)

B1
. Also, for d = 3, kd−2 = k1 = 1. As a

result,

S1 − S2 =
e5δBn−12

B1
− e(n+3)δBn−11 +

e2δ(n+1)

B1
,

and so we have

P (D = 3|N = n) = (1− e−δ)n−3e−2(n+1)δ [S1 − S2]

=
An3

A1A2A3
− An2
A2

1A2
+
An1 e

−δ

A2
1A2

.
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Note this time that (3.7) is zero for n=1, 2 (see (3.2)). Thus, we have

P (D = 3) =

∞∑
n=3

(A3α)n e−α

n!A1A2A3
−
∞∑
n=3

(A2α)n e−α

n!A2
1A2

+

∞∑
n=3

(A1α)n e−αe−δ

n!A2
1A2

=
ζ3

A1A2A3
− ζ2
A2

1A2
+
e−δζ1
A2

1A2
+
α2e−α

2!
h2 +

αe−α

1!
h1 + e−αh0

=
ζ3

A1A2A3
− ζ2
A2

1A2
+
e−{2}δζ1
A2

1A2
− e−{3}δζ0
A1A2A3

,

where

hi = − Ai3
A1A2A3

+
Ai2
A2

1A2
− Ai1e

−δ

A2
1A2

, for i = 0, 1, 2.

Notice that I1 representation in (3.1) appears when we calculate h0 which is

the coefficient of the ζ0 = e−α term. Also, hi terms, the coefficients of αje−α

j!

for j = 1, 2, · · · , d− 1, are the polynomial identities given in I2: see (3.2).

Derivation of P (D = s). First, sum over kd, kd−1, . . . , ks−2 in equation (3.5)
and use binomial theorem:

P (D=s|N=n)=(1−e−δ)n−se−(n+1)(s−1)δ
s∑
i=2

· · ·
n−s+i∑

ki=ki−1+1

(
n− ki

ki+1 − ki − 1

)
ekiδ

= (1− e−δ)n−se−(n+1)(s−1)δ
s∑
i=1

(−1)i+1 ziB
n−kd−s+1

s−i∏d−i−1
j=1 Bj

∏i−2
j=1Bj

, (3.7)

zi = e[(i−1)n+(s−i)kd−s+1+{s}−
∑i
j=2(s−j)]δ.

Note that we have the convention that
∑b
k=a zk is 0 whenever b < a.

When obtaining equation (3.7), we apply equation (3.3) for the coefficients
of
(
n−kd−2

j

)
for j = 0, 1, . . . , s − 1. Also, for d = s, kd−s+1 = k1 = 1, so

substitute k1 = 1 in (3.7). This yields

P (D = s|N = n) =

d−1∑
k=0

(−1)k
e−{k}δAnd−k∏k
i=1Ai

∏d−k
j=1 Aj

, for d = 0, 1, 2, . . . . (3.8)

Next we use (3.8) and apply the polynomial identities given in (3.1) and
(3.2) in each step to get the marginal distribution of D = s: see (1.1).

Conclusions

In this paper, we consider extension of our model assumption and propose
alternate approach to derive the distribution of D under the old and new as-
sumption. In our earlier work [13], the distribution of D was derived by using
inhomogeneous Poisson approach under the infinite time period assumption.
In this work, we first address the finite horizon assumption for this model.
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Next, we obtain the distribution of D using an equivalent approaches by us-
ing lengthy analysis of the order statistics formula. This model is also studied
under finite and infinite time horizon. When finite time assumption made in
both approaches, we only calculate explicitly P (D = 0) and P (D = 1), and
sketch the higher count cases because they are too involved. This shows that
we can use the infinite time approximation when the observation period is long
enough. Thus, we give an approximation for P (D = 1) for the finite case, and
assess its accuracy. We then compute the probabilities for various values of T :
our numerical work shows that when the observation period is at least 8 ns, we
can safely assume an infinite horizon instead of a finite one, leading to simpler
expressions for the probabilities. Finally, we used two different approaches to
determining the distribution of D in order to derive a new classes of polynomial
identities.
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Appendix

Proof. I1 identities. First, rewrite (3.1)

I1 :

d∑
k=0

(−1)k
e−{k}δ∏k

i=1Ai
∏d−k
i=1 Ai

= 0, for d = 1, 2, . . . . (3.9)

It is not hard to show that I1 is an immediate consequence of the q-binomial
formula. In equation 17.2.35 of [8] replace n with d, j with k, set q = e−δ and
z = 1 to get the result. An inductive proof of this also given in Simsek and
Iyengar [13]. ut

Proof. I2 identities.

P (D = d) =

∞∑
n=d

Pn(D = d)P (N = n)

=

∞∑
n=0

d∑
k=1

hnk
e−ααn

n!
−

[
d−1∑
n=1

d∑
k=1

hnk
e−ααn

n!

]
−

d∑
k=1

h0k
e−αα0

0!

=

∞∑
n=0

d∑
k=1

hnk
e−ααn

n!
− e−α

d∑
k=1

h0k. (3.10)

In equation (3.10), h0k is identical to the I1 polynomials given in (3.1), hnk
terms are the I2 polynomials given in (3.2). We know that the terms appears
bracket has to be zero by result in (1.1) (see [13] for proof of (1.1)):

e−α
d−1∑
n=1

d∑
k=1

hnk
αn

n!
= 0.
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In order for this equation to hold, the coefficient of the polynomials, αi/i! must
be zero, completing the proof. ut

Proof. I3 identities. The proof is just a rearrangement of indexes. First,
ignore e(d−1)(n+1)δ term to get that (3.11) is proportional to

d−1∑
k=1

(−1)k
e[{d−k}−j(d−k)]δBjd−k−1∏d−k−1

i=1 Bi
∏k−2
i=1 Bi

.

Then, write I3 identities in terms of A terms by using Bn = enδ(1 + e−δ + · · ·+
e−nδ) = enδAn+1/A1 :

d−1∑
k=1

(−1)k
e[{d−k}−j(d−k)]δBjd−k−1∏d−k−1

i=1 Bi
∏k−2
i=1 Bi

= e−jδAd−3−j1

d−1∑
k=1

(−1)k e{k}δAjd−k

/

d−k−1∏
i=1

Ai+1

k−2∏
i=1

Ai+1 = e−jδAd−3−j1

d−1∑
k=1

(−1)k
e{k}δAjd−k∏d−k

i=2 Ai
∏k−1
i=2 Ai

= e−jδAd−1−j1

d−1∑
k=1

(−1)k
e{k}δAjd−k∏d−k

i=1 Ai
∏k−1
i=1 Ai

. (3.11)

The right side of (3.11) with j = 0 is I1, with d− 1 instead of d when ignoring

−e−jδAd−1−j1 term. Next, let k = l + 1 and ignore −e−jδAd−1−j1 term to get
that (3.11) is proportional to

d−2∑
l=0

(−1)l+1
e{l+1}δAjd−1−l∏d−1−l
i=1 Ai

∏l
i=1Ai

=

d−2∑
l=0

(−1)l
e{l+1}δAj−1d−1−l∏d−2−l
i=1 Ai

∏l
i=1Ai

. (3.12)

The right side of (3.12) with j = 1 is I1, with d− 2 instead of d. Also, the
left side of (3.12) with j = 2, . . . , d − 2 is I2, with d − 1 instead of d. This
completes the proof. ut




