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Abstract. Based on the asymptotic analysis technique developed by Eckhaus [Lec-
ture Notes in Math., vol. 985, pp 449-494. Springer, Berlin, 1983], this paper aims
to study the existence and the asymptotic behaviors of relaxation oscillations of reg-
ular and canard types in a singularly perturbed generalized Liónard system with a
non-generic turning point. The singularly perturbed Liónard system considered in
this paper is very general and numerous real world models like some biological ones
can be rewritten in the form of this system after a series of transformations. Under
certain conditions, we rigorously prove the existence of regular relaxation oscillations
and canard relaxation oscillations under the specific parameter conditions. As an
application, two biological models, namely, a FitzHugh-Nagumo model and a two-
dimensional predator-prey model with Holling-II response are studied, in which, the
existence of regular relaxation oscillations and canard relaxation oscillations as well
as the bifurcation curves are obtained.
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1 Introduction

Liénard equation is a classical and important nonlinear oscillator, modeling
nonlinear vibrations in the damped, one-degree-of-freedom systems. It can be
viewed as a generalization of van der Pol equation, and has found numerous
applications in various real world situations including electronic devices and
biology, etc., see e.g. [3], [11], [13], [17] and [19]. For a long time, the existence,
uniqueness, number and profile of limit cycles in Liénard equations are always
the important and valuable topics in the field of ODEs.

Liénard equation reads,

d2x

dt2
+ µf(x, b)

dx

dt
+ g(x, a) = 0,
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where f and g are sufficiently smooth functions, a ∈ Rn and b ∈ Rm are the
bifurcation parameters, and µ ∈ R is related to the strength of damping. After
the Liénard transformation, this equation becomes

dx

dt
= y − µF (x, b),

dy

dt
= −g(x, a),

where F (x, b) =
∫ x

0
f(s, b) ds. If g(x, a) is linear in x, this system is called

classical Liénard system, and otherwise, it is called generalized one.
When µ is small, i.e. when the damping is small, in this case, Liénard

system can be viewed as Hamiltonian-perturbation system. By using Abel
integral etc., bifurcation of limit cycles has been studied extensively, especially
when f and g are polynomials, see e.g. Han et al. [12] and Xiong et al. [23].

When µ is large, then after a new time scale τ = t/µ is introduced, Liénard
equation can be changed to

ε
d2x

dτ2
+ f(x, b)

dx

dτ
+ g(x, a) = 0,

which is a singular perturbation equation since the highest-order derivative has
been multiplied by a small parameter, where 0 < ε = 1

µ2 � 1. On the Liénard
plane, this singularly perturbed equation is equivalent to a slow-fast dynamical
system, namely, 

ε
dx

dτ
= y − F (x, b),

dy

dτ
= −g(x, a).

Roussarie [20] pointed out that the singularly perturbed Liénard systems con-
sists of the boundary of the so-called Liénard space.

The limit cycles occurring in singularly perturbed Liénard systems are re-
laxation oscillations, characterized by the presence of phases in the cycle with
different time scales: A phase of slow change is followed by a short phase of
rapid change where the system jumps to the next stage of slow variation. In
this direction, non-standard analysis was first introduced to detect canard re-
laxation oscillations in van der Pol equation [1]. Then Eckhaus [10] pointed
out that classical asymptotic analysis method is also capable of identifying
canard relaxation oscillations and regular relaxation oscillations in singularly
perturbed Liénard systems. Krupa and Szmolyan distinguished the generic
jump and canard points for general singular perturbation system. Now it is
well known that the results obtained from classical asymptotic analysis method
are closely related to which from blow-up technique, see van Gils, Krupa and
Szmolyan [22]. Based on geometric singular perturbation method and blow-up
technique, Dumortier and Roussarie [8], [9] developed a tool, namely, the slow
divergence integral. By this integral, the maximal number of limit cycles is re-
lated to its non-degenerate zeroes, and more limit cycles than expected by the
conjecture of Lins et al. [18] in the classical singularly perturbed Liénard sys-
tems had been found in [4] and [7]. The cyclicity in the predator-prey models
with Holling-III and IV responses had also been obtained, see Li and Zhu [17].
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In all the above-mentioned works, it was assumed that the turning points on
the critical curves are generic (non-degenerate). When the critical curve have
non-generic (degenerate) turning points, the work on this topic is relatively
rare. By following the method of Eckhaus [10], Li [15] detected canards with
or without heads in a singularly perturbed Liénard system of the following
form, 

ε
dx

dt
= y − F (x),

dy

dt
= a− x,

in which, it was assumed that x = 0 is a m-order turning point on the critical
curve y = F (x), where m is an even number. Then Li [16] extended this
approach to a more general system, namely,

ε
dx

dt
= y − F (x),

dy

dt
= −g(x, y, a),

where the parametric conditions for the existence of canards were obtained. By
using also asymptotic analysis method, Chen et al. [2] further studied a more
general singularly perturbed Liénard system, namely,

ε
dx

dt
= y − F (x) + εh(x, a, ε),

dy

dt
= −g(x, y, a, ε),

where it was also assumed that x = 0 is a degenerate turning point. Chen et
al. [2] proved the existence of canard solutions, and optimized the canard curve
based on a new asymptotic lemma.

In this paper, we will extend the asymptotic analysis method of Eckhaus [10]
to study the birth of relaxation oscillations in the following singularly perturbed
generalized Liénard system,

ε
dx

dt
= g(y)− f(x),

dy

dt
= h(x, y, a),

(1.1)

in which, we assume that the critical curve admits a non-generic turning point,
where 0 < ε� 1 is the singular parameter, while a ∈ R is a regular parameter
(named also breaking parameter by following Dumoutier [5]), g, f and h are
sufficiently smooth functions. We demonstrate the birth of relaxation oscilla-
tions of regular and canard types in (1.1) and give the corresponding parameter
conditions.

Obviously, system (1.1) is more general than those studied in the previous
papers. In fact, when g(y) = y , it reduces to the systems considered before.
In literatures, system (1.1) is still called generalized Liénard system. Locally,
system (1.1) can be changed to the simpler systems mentioned above after
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a series of transformations, but globally it is impossible. So if one aims to
study system (1.1) globally, we must face to system (1.1). This is the first
reason why we consider system (1.1) in this article. Secondly, a great deal
of biological models can be changed to the form of system (1.1) after a series
of transformations involving the dependent and independent variables as well
as the parameters, see e.g. De Maesschalck [3], Hus and Shi [13] and Li and
Zhu [17]. Thus, the study on the slow-fast dynamics such as the existence of
relaxation oscillations in these models is reduced to study system (1.1), which
is one of the main topics of the present paper.

The remaining parts of this paper are organized as follows. In section 2,
several necessary assumptions and lemmas are given. In sections 3 and 4, we
respectively study the existence of regular relaxation oscillations and canard
relaxation oscillations in system (1.1) and give the corresponding parametric
curves. In section 5, based on the conclusions obtained in the two previous sec-
tions, we consider two biological models, namely, a FitzHugh-Nagumo equation
and a two-dimensional predator-prey model with Holling-II response, in which,
we show the existence of regular relaxation oscillations and canard relaxation
oscillations in these models and give the critical parameter values.

2 Preliminaries and assumptions

For system (1.1), the critical curve is defined by g(y) = f(x), on which, the
slow flows evolve according to the following equation

g′(y)h(x, y, a) = f ′(x)
dx

dt
.

To fix the directions of the slow flows and the fast fibers, we need the following
assumptions.

(A1) x = x1 < 0 and x = x2 = 0 are respectively the generic and non-
generic extreme points of the critical curve satisfying f ′(x1) = 0, f ′′(x1) < 0,
f ′(0) = · · · = f (m−1)(0) = 0, and f (m)(0) > 0, where m > 2 is an even number.

(A2) f ′(x) < 0 for x ∈ (x1, 0), and f ′(x) > 0 for x ∈ [C1, x1) ∪ (0, C2],
where C1 and C2 are constants chosen such that C1 < x1 < 0 < C2, f(C1) < 0
and f(C2) > f(x1).

(A3) h(x, y, a) = 0 has a unique root x = ϕ(y, a) satisfying:
1) h(x, y, a) < 0 when x > ϕ(y, a), and h(x, y, a) > 0 when x < ϕ(y, a),
2) when y ∈ (f(0), f(x1)) and a ∈ (a1, a0), we have ϕ(y, a) ∈ (x1, 0), when

a → a0 and y → f(0), we get ϕ(y, a) → 0, and when a → a1 and y → f(x1),
we obtain ϕ(y, a)→ x1.

(A4) g(0) = f(0) and, g′(y) > 0 for any y ∈ R.

(A5) h(0, 0, a0) = 0 and ∂h
∂a (0, 0, a0) 6= 0.

Remark 1. Under the assumption (A1), the critical curve is S-shape (cubic-
like), where the right and left branches are attracting, while the middle one is
repelling, see Figure 1.
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Remark 2. Under the assumptions (A1) to (A3), system (1.1) possesses an
equilibrium point, namely, (xe, ye) = (ϕ(y, a), g−1f(ϕ(y, a))), where g−1 de-
notes the inverse function of g. When a ∈ (a1, a0), this equilibrium point lies
on the middle branch of the critical curve. In this case, we mark the directions
of the slow flows and the fast fibers in Figure 1a.

Remark 3. When a → a0 or a → a1, the equilibrium point of the system
coincides with the extreme points of the critical curve, see Figure 1b, where
the directions of the slow flows and the fast fibers when a→ a0 are stated.

Figure 1. The directions of the slow flows (single arrows) and the fast fibers (double
arrows). In the figure, the large dots denote the equilibriums.
(a): The case when a ∈ (a1, a0); (b): The case when a = a0.

In the following, two lemmas needed in the proof of our main results are
given firstly. Consider

dY

dτ
= F (Y, τ, ε),

Y (0, ε) = Y0,
F : Rn ×R×R→ Rn,

in which, 1) F is continuous and uniformly bound on

G = {Y | Y ∈ D̄} × {τ | 0 ≤ τ < A} × {ε | 0 < ε ≤ ε0},

where D ⊂ Rn is a bounded region; 2) F is Lipchitz-continuous with respect
to Y in G.

Lemma 1. (Eckhaus [10]) Let Y (1) and Y (2) be respectively the solutions of

Y (1)(τ, ε) = Y
(1)
0 +

∫ τ

0

F1[Y (1)(τ ′, ε), τ ′, ε]dτ ′,

Y (2)(τ, ε) = Y
(2)
0 +

∫ τ

0

F2[Y (2)(τ ′, ε), τ ′, ε]dτ ′.

If the following conditions are satisfied: (i) Y
(1)
0 ∈ D0 ⊂ D, Y

(2)
0 ∈ D0 ⊂ D

and |Y (1)
0 − Y (2)

0 | ≤ δ0(ε) with δ0(ε) = o(1),

Math. Model. Anal., 22(3):389–407, 2017.
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(ii) |F1 − F2| ≤ δf (ε) when (Y, τ, ε) ∈ G, where δf (ε) = o(1),
(iii) Y (2)(τ, ε) exists for 0 ≤ τ ≤ T , where T < A and Y (2) ∈ D0,

then Y (1)(τ, ε) exists for 0 ≤ τ ≤ T and satisfies

|Y (1)(τ, ε)− Y (2)(τ, ε)| = o(δ0(ε)) + o(δf (ε)).

Lemma 2. (Eckhaus [10]) Let Y (2)(τ, ε) be a valid approximation to Y (1)(τ, ε),
i.e.

Y (1)(τ, ε)− Y (2)(τ, ε) = o(1), 0 ≤ τ ≤ T,
where T is a constant which can be taken to be arbitrarily large, then there
must be a δ̃(ε) = o(1) such that the above approximation holds for 0 ≤ τ ≤ 1

δ̃(ε)
.

Similarly, if Y (2)(τ, ε) is an approximation to Y (1)(τ, ε) for 0 < d ≤ τ ≤ T ,

where d can be chosen to be arbitrarily small, then there must be a δ̂(ε) = o(1)

such that the approximation holds for δ̂(ε) ≤ τ ≤ T .

Lemma 3. (Chen et al. [2]) Let m be an even number, ϕ(x) and ψ(x) are both
defined on [a, b]. If

1) ϕ(x)enψ(x) is integrable on [a, b] for any n ≥ n0,

2) ψ(x) has a unique maximal point x = ξ ∈ (a, b), and sup
x∈[α,β]

ψ(x) < ψ(ξ)

holds on any closed subinterval [α, β] ⊂ [a, b], ξ /∈ [α, β],

3) near x = ξ, ψ(m)(x) is continuous and satisfies ψ′(ξ) = ψ′′(ξ) = · · · =
ψm−1(ξ) = 0, but ψm(ξ) < 0,

4) ϕ(x) is continuous at x = ξ, ϕ(ξ) 6= 0,
then as n→ +∞, we have

(i)

∫ b

a

ϕ(x)enψ(x)dx =
2

m
ϕ(ξ)

( −m!

nψ(m)(ξ)

) 1
m

enψ(ξ)Γ
( 1

m

)(
1 +O

( 1

n

))
,

where Γ
( 1

m

)
=

∫ +∞

0

e−xx
1
m−1dx is a Γ -function,

(ii)

∫ b

a

(x− ξ)kenϕ(x)dx =



2

m

( −m!

nψ(m)(ξ)

) 1+k
m

enϕ(ξ)Γ
(1 + k

m

)(
1 +O

( 1

n

))
,

when k is even,

O
(( 1

n

) 1+k+m
m

)
,

when k is odd.

3 Regular relaxation oscillations in system (1.1)

In this section, let a ∈ (a1, a0) be such that the equilibrium point (xe, ye) of
system (1.1) lies on the middle branch of the critical curve. We will show that
only regular relaxation oscillations can occur in this case.

Let t−t0
ε = τ , with which, system (1.1) becomes

dx

dτ
= g(y)− f(x),

dy

dτ
= εh(x, y, a).
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It then follows from Lemma 1 that{
y(τ)− y0 = O(ε),
x(τ)− x̄(τ) = O(ε),

0 ≤ τ ≤ T, (3.1)

in which, x̄(τ) is the solution to the following system,

dx̄

dτ
= g(y0)− f(x̄), x̄(0) = x0,

where (x0, y0) is an initial value chosen satisfying f(x0) 6= g(y0), inside the
basin of attraction of CO, and outside the so-called singular periodic orbit
OABC (see Figure 2).

The solution x̄(ε) exists for all τ . Hence, we can take T arbitrarily large in
(3.1). It thus follows from Lemma 2 that{

y(τ)− y0 = o(1),
x(τ)− x̄(τ) = o(1),

0 ≤ τ ≤ τ∗(ε),

where τ∗(ε) = τ
δ(ε) , δ(ε) = o(1). Let x̄0 be chosen satisfies g(y0) − f(x̄0) = 0,

then we have
x̄(τ) = x̄0 +O(exp(−f ′(x̄0)τ)).

Hence
x̄(τ∗(ε)) = x̄0 + o(1).

This says that, after starting from (x0, y0), the trajectory of system (1.1) evolves
near the following orbit

x = x̄(τ), y = y0,

and then penetrates into a small neighborhood of the curve g(y) = f(x).
To see the dynamics near the critical curve, let

g(y) = f(x) + εφ0(x, y) + ε2φ1(x, y) + · · · ,

and then differentiating this formula with respect to t yields

g′(y)
dy

dt
= f ′(x)

dx

dt
+ ε

dφ0

dt
+ · · · .

After substituting system (1.1) into this equality, to leading-order one gets ε
dx

dt
= εφ0,

g′(y)h(x, y, a) = f ′(x)φ0,

i.e.,

φ0 =
g′(y)h(x, y, a)

f ′(x)
. (3.2)

Thus
g(y) = f(x) + ε[φ0 + o(1)].

Math. Model. Anal., 22(3):389–407, 2017.
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One can see from (3.2) that, the slow flow evolves well (which means that the
flow of system (1.1) evolves also well) near the critical curve until it enters
into a small neighborhood of the turning point x2 = 0 where f ′(0) = 0. Since
g′(0) > 0 and h(0, 0, a) 6= 0 when a ∈ (a1, a0), so the slow flow φ0 becomes
unbounded in this small neighborhood. The ill-posedness of the slow flow
results that the flow of system (1.1) may blow up. In this sense, we say that

h(0, 0, a) 6= 0, a ∈ (a1, a0) (3.3)

is a necessary condition for the occurrence of blow-up of the flow of system
(1.1).

To see whether the flow of system (1.1) really blows up when it enters the
small neighborhood around the turning point x = 0, let us write

f ′(x) = xm−1p(x), p(x) > 0,

which yields

f(x) = xm
( 1

m
p(0) +O(x)

)
and then introduce the following blow-up transformations,

x = ε
1

2m−1
ξ

δ∗(ε)
, y = ε

m
2m−1 η, t = ε

m
2m−1 τ + t0, (3.4)

where δ∗(ε) = o(1) will be determined later, and t0 denotes the moment when
the flow enters into an O(ε)-neighborhood of the turning point, after substitut-
ing (3.4) into equation (1.1), one gets

dξ

dτ
= g′(0)ηδ∗ +O

(
ε

m
2m−1 δ∗η2

)
− 1

δ∗(m−1)
ξm
{ 1

m
p(0) +O

(ε 1
2m−1

δ∗
ξ
)}
,

dη

dτ
= h(0, 0, a) + ε

1
2m−1

∂h

∂x
(0, 0, a)

ξ

δ∗
+ ε

m
2m−1

∂h

∂y
(0, 0, a)η

+O
(
ε

2
2m−1

ζ2

δ∗2 + ε
2m

2m−1 η2
)
.

Let δ∗(ε) = O(ε
1

m(2m−1) ) be negative and τ∗ = τ
(δ∗(ε))(m−1) , with which, we

get

dξ

dτ∗
= g′(0)ηδ∗m +O

(
ε

m
2m−1 δ∗mη2

)
− ξm

{ 1

m
p(0) +O

(ε 1
2m−1

δ∗
ξ
)}
,

dη

dτ∗
= h(0, 0, a)δ∗(m−1) + δ∗(m−2)ε

1
2m−1

∂h

∂x
(0, 0, a)ξ

+ δ∗(m−1) · ε
m

2m−1 ∂h
∂y (0, 0, a)η + δ∗(m−1)O

(
ε

2
2m−1

ζ2

δ∗2
+ ε

2m
2m−1 η2

)
,

which can be approximated by
dξ

dτ∗
= − 1

m
p(0)ξm,

dη

dτ∗
= 0

(3.5)
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with an O(ε
m−1

m(2m−1) ) accuracy. Equation (3.5) is solvable whose solutions are
given by

ξ̂(τ∗) =
ξ0(

m−1
m p(0)ξ0(m−1)τ∗ + 1

) 1
m−1

, η̂(τ∗) = η0,

where (ξ0, η0) is an initial value.

Clearly, when τ∗ reaches τ∗1 = −(
m− 1

m
p(0)ξ0(m−1))−1 < 0 , ξ̂(τ∗) explodes,

i.e., the flow of system (1.1) blows up there. Since then the flow leaves the
neighborhood of the turning point (0, 0) along the fast fiber y = 0 with an
O(ε

m
2m−1 ) distance.
Summarizing, after starting from the initial point (x0, y0) with g(y0) −

f(x0) 6= o(1) and inside the basin of attraction of CO, the flow of system
(1.1) quickly enters into an O(ε)-neighborhood of the stable branch CO, and
then stays near CO until it reaches near a small neighborhood of the turning
point O where the flow blows up and leaves along the fast fiber y = 0 with
an O(ε

m
2m−1 ) distance. Afterward, the flow approaches to AB and stays near

AB until it reaches near the turning point B, where it blows up again and
jumps to CO along the fast fiber BC with an O(ε

2
3 ) distance. That is to say,

the flow of system (1.1) spiraling around the singular periodic orbit OABC
asymptotically, see Figure 2.

On the other hand, it can be proved that the equilibrium point (xe, ye) is
an unstable node by following Shen [21]. The flow of system (1.1) starting from
near (xe, ye) will spiral out and approaches to the singular periodic orbit OABC
gradually. Till now, the existence of at least one relaxation oscillation near the
singular periodic orbit OABC follows directly from the Poincare-Bendixson
Theorem [6].

Theorem 1. If (A1) to (A4) and (3.3) hold, then when a ∈ (a1, a0) and ε is
sufficiently small, system (1.1) admits at least one relaxation oscillation near
the singular periodic orbit OABC. More precisely, the relaxation oscillations
are near the slow branches CO and AB with an O(ε) distance, and near the

fast fibers BC and OA with an O(ε
2
3 ) and an O(ε

m
2m−1 ) distances respectively.

Remark 4. Theorem 1 shows that, under (A1) to (A4) and (3.3), when a ∈
(a1, a0), the flow of system (1.1) leaves the turning point O near the fast fiber
y = 0 with an O(ε

m
2m−1 ) distance. This result can be seen as a partial general-

ization of Theorem 2.1 in [14]. For the following general singular perturbation
system, {

x′ = f(x, y, µ, ε),

y′ = εg(x, y, µ, ε),

Krupa and Szmolyan [14] proved via blow-up technique that, when the turning
point (0, 0) is generic, the flow of this system will leave this turning point near

the fast fiber y = 0 with an O(ε
2
3 ) distance.

Math. Model. Anal., 22(3):389–407, 2017.
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Figure 2. Schematic plots of two representative trajectories starting respectively inside
and outside the singular periodic orbit OABC. In the figure, the large dot stands for the

equilibrium.

4 Canard relaxation oscillations in system (1)

This section will consider the case a→ a0, under which, the equilibrium point
coincides with a critical point of the critical curve.

Let g(y)− f(x) = εφ, then one gets from system (1.1) that
dx

dt
= φ,

dφ

dt
=

1

ε

[
− f ′(x)φ+ g′(y)h(x, y, a)

]
,

(4.1)

where f ′(x) = xm−1p(x) with p(x) > 0. Let φ = −1/p(x) + εφ1, then system
(4.1) becomes

dx

dt
= − 1

p(x)
+ εφ1,

dφ1

dt
=
xm−1 + g′(y)h(x, y, a)

ε2
+

1

ε

( p′(x)

p3(x)
− xm−1p(x)φ1

)
− p′(x)

p2(x)
φ1,

i.e.
dφ1

dx
=
(xm−1p2(x)

ε
+
p′(x)

p(x)
+ εp(x)

dφ1

dx

)
φ1

−x
m−1p(x) + g′(y)h(x, y, a)p(x)

ε2
− p′(x)

εp2(x)
. (4.2)

Formally, the solution to equation (4.2) are given by

φ1 = e
∫ x
x0

ξm−1p2(ξ)
ε +

p′(ξ)
p(ξ)

+εp(ξ)
dφ1
dξ dξ

(∫ x

x0

−
(g′(y)h(ξ, y, a)p(ξ) + ξm−1p(ξ)

ε2

+
p′(ξ)

εp2(ξ)

)
e
−

∫ x
x0

sm−1p2(s)
ε +

p′(s)
p(s)

+εp(s)
dφ1
ds dsdξ + φ1(x0)

)
.
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Denote
dQ

dx
= xm−1p2 + ε2p

φ1

dx
,

then

Q(x) = Q̂(x) + ε2pφ1 − ε2
∫ x

0

p′φ1dξ,

where p′ =
dp

dξ
and

Q̂(x) =

∫ x

0

ξm−1p2dξ.

Accordingly we can write

φ1 = Φ1(x, φ1) + Φ2(x, φ1),

where

Φ1(x, φ1) =
p(x)φ1(x0)

p(x0)
e

1
εQ(x)− 1

εQ(x0)

and

Φ2(x, φ1) = p(x)e
1
εQ(x)

∫ x

x0

−
(g′(y)h(ξ, y, a) + ξm−1

ε2
+

p′(ξ)

εp3(ξ)

)
e−

1
εQ(ξ)dξ.

Let x1 < 0, x0 > 0, x ∈ [x1, x0] and U be a set of continuous functions
u(x) on [x1, x0]. Then we define an operator L on U by

Lu = Φ1(x, u) + Φ2(x, u), x ∈ [x1, x0].

When u ∈ U , since Q(x) = Q̂(x) +O(ε2), then

Φ1(x, µ) =
p(x)µ(x0)

p(x0)
e

1
ε (Q̂(x)−Q̂(x0)+O(ε))

=
p(x)µ(x0)

p(x0)
e

1
ε (Q̂(x)−Q̂(x0))(1 +O(ε)),

Φ2(x, φ1) = −p(x)e
1
ε Q̂(x)

∫ x

x0

(g′(y)h(ξ, y, a) + ξm−1

ε2

+
p′(ξ)

εp3(ξ)

)
e−

1
ε Q̂(ξ)dξ(1 +O(ε)).

Accordingly we can obtain

Lu = φ̂1{1 +O(ε)},

in which,

φ̂1 = Φ1(x, 0) + Φ2(x, 0) =
p(x)φ1(x0)

p(x0)
e(Q̂(x)−Q̂(x0))/ε

+
p(x)

ε
e

1
ε Q̂(x)

∫ x0

x

(g′(ŷ)h(ξ, ŷ, a) + ξm−1

ε
+
p′(ξ)

p3(ξ)

)
e−

1
ε Q̂(ξ)dξ,
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where ŷ = ŷ(x) is determined by

g(ŷ) = f(x)− ε/p(x).

So far we know that if φ̂1(x) is bounded on [x1, x0], then according to the
contraction mapping principle, the operator L admits a unique fixed point,
which corresponds to the solution to equation (4.2) with

φ1(x) = φ̂1{1 + o(1)}.

Hence, if φ̂1(x) is bounded, then equation (4.2) has bounded solutions on
[x1, x0], which states that canard solutions in system (1.1) exist. In the follow-

ing, we show that, under certain conditions, φ̂1(x) is bounded.
Since h(0, 0, a0) = 0, so by Taylor expansion and Lemma 3, it can be de-

duced that∫ x0

x

(g′(ŷ)h(ξ, ŷ, a) + ξm−1

ε
+
p′(ξ)

p3(ξ)

)
e−

1
ε Q̂(ξ)dξ

=

∫ x0

x

e−
1
ε

∫ ξ
0
sm−1p2(s)ds

[ p′(ξ)
p3(ξ)

+

l∑
i=1

g′(ŷ)
1

i!

∂ih

∂ξi
/ε

+
∂h
∂a (a− a0)g′(ŷ) + o(ξl, |a− a0|) + ξm−1

ε
dξ

=
1

ε

{ l/2∑
i=1

g′(ŷ)
1

(2i)!

∂2ih

∂x2i

2

m

( εm

p2(0)

) 2i+1
m

Γ
(2i+ 1

m

)
+O(ε

m+1
m )

+
∂h

∂a
(a− a0)g′

(
g−1

( −ε
p(0)

)) 2

m

( εm

p2(0)

) 1
m

Γ
( 1

m

)
(1 +O(ε))

+
p′(0)

p3(0)

2ε

m

( εm

p2(0)

) 1
m

Γ
( 1

m

)
(1 +O(ε))

}
=

2

εm

( εm

p2(0)

) 1
m
[ m

2∑
i=1

g′(ŷ)
1

(2i)!

∂2ih

∂x2i

( εm

p2(0)

) 2i
m

Γ
(2i+ 1

m

)
+
∂h

∂a
(a− a0)g′

(
g−1

( −ε
p(0)

))
Γ
( 1

m

)
+
εp′(0)

p3(0)
Γ
( 1

m

)
+O(ε)

]
,

where l is an even number, g−1 is the inverse function of g, all the partial
derivatives take their values at (0, ŷ, a0), o(ξl, |a − a0|) denotes the Lagrange
remainder term, and Γ is the Gamma function. Thus,

φ̂1(x) =
p(x)φ1(x0)

p(x0)
e

1
ε Q̂(x)− 1

ε Q̂(x0) +
p(x)

ε
e

1
ε Q̂(x) 2

εm

( εm

p2(0)

) 1
m

×
[m/2∑
i=1

g′(ŷ)
1

(2i)!

∂2ih

∂x2i

( εm

p2(0)

) 2i
m

Γ
(2i+ 1

m

)
+
∂h

∂a
(a− a0)× g′

(
g−1

( −ε
p(0)

))
Γ
( 1

m

)
+
εp′(0)

p3(0)
Γ
( 1

m

)
+O(ε)

]
.
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Denote

G(a, ε) =

m
2∑
i=1

g′(ŷ)
1

(2i)!

∂2ih

∂x2i

( εm

p2(0)

) 2i
m

Γ
(2i+ 1

m

)
+
∂h

∂a
(a− a0)g′

(
g−1

( −ε
p(0)

))
Γ
( 1

m

)
+
εp′(0)

p3(0)
Γ
( 1

m

)
+O(ε),

thus,

φ̂(x) =
p(x)φ1(x0)

p(x0)
e

1
ε Q̂(x)− 1

ε Q̂(x0) +
p(x)

ε
e

1
ε Q̂(x) 2

εm

( εm

p2(0)

) 1
m

G(a, ε). (4.3)

Since ∂h
∂a (0, 0, a0) 6= 0, it thus can be verified that G(a0, 0) = 0 and ∂G

∂a (a0, 0) 6=
0. By implicit function theorem, there exists a unique function ac = ac(ε)
satisfying ac(0) = a0 such that G(ac(ε), ε) = 0.

Let us take the breaking parameter a as

a = ac(ε) + σε2−
1
m e−

k2

ε ,

where σ and k are two constants, it then follows from equation (4.3) that

φ̂(x) =
p(x)φ1(x0)

p(x0)
e

1
ε Q̂(x)− 1

ε Q̂(x0) + σ
∂h

∂a
g′
(
g−1

( −ε
p(0)

))
× Γ

( 1

m

)2p(x)

m

( εm

p2(0)

) 1
m

e
1
ε (Q̂(x)−k2). (4.4)

Let (x0, y0) be an initial point near the right branch of the critical curve,
x∗0 < 0 be a root of the equation Q̂(x0) = Q̂(x∗0), and k be an arbitrary constant
such that xk > 0 and x∗k ∈ (A, 0) are respectively the roots solved from the

equations Q̂(xk) = Q̂(x∗k) = k2, then we can obtain from (4.4) that φ1(x) is
bounded provided max{x∗k, x∗0} ≤ x ≤ min{x0, xk}. Accordingly, system (1.1)
has a canard solution satisfying

g(y) = f(x)− ε

p(x)
+ ε2φ1(x).

This canard solution will form a canard relaxation oscillation finally.
Moreover, it can be seen from (4.4) that the first term is dominant if x0 <

xk, and otherwise the second one will be dominant if x0 > xk.
For the former case, after starting from the basin of attraction of the right

branch of the critical curve, all the trajectories of system (1.1) enters into an
O(ε)-neighborhood of the critical curve g(y) = f(x), after going through the
turning point, they stay near the repelling branch for a constant distance until
it jumps off at x = x∗0. The trajectories jump to the right if φ1(x0) > 0 and to
the left if φ1(x0) < 0.

For the latter case, after starting from the basin of attraction of the right
branch of the critical curve, all trajectories enter into an O(ε)-neighborhood of
g(y) = f(x) at x = x0 > xk and then stay near the attracting and repelling
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branches of the critical curve until they jump off at x = x∗k < 0. The tra-

jectories jump off to the right and the left respectively when σ
∂h

∂a
(0, 0, 0) > 0

and σ
∂h

∂a
(0, 0, 0) < 0, which respectively yields the birth of canard relaxation

oscillations with or without head, see Figure 3.

Figure 3. Schematic plots of canard relaxation oscillations with or without head.
(a): σ ∂h

∂a
(0, 0, 0) < 0; (b): σ ∂h

∂a
(0, 0, 0) > 0.

Summing up, we have the following conclusion.

Theorem 2. If (A1) to (A5) hold, when ε is sufficiently small and a =

ac(ε) + σε2−
1
m e−

k2

ε with ac(0) = a0, where σ and k are two constants, then
system (1.1) has at least one canard relaxation oscillation with or without head
depending on the breaking parameter and the initial values (see Figure 3).

5 Examples

5.1 A FitzHugh-Nagumo equation

Consider a FitzHugh-Nagumo (FHN) equation as follows,{
εu̇ = v − u3/3 + u+ p,
v̇ = −(v + ru− a)/s,

(5.1)

where 0 < ε� 1, p, s, r and a are the parameters of the model. System (5.1) is
a prototypical FitzHugh-Nagumo equation describing the biological phenomena
with neuronal excitability and spike generating mechanism.

By the translation as follows, u = x + 1, v = y, the extreme point (−1, 0)
of the critical point is then transferred to the origin, and accordingly we have{

εẋ = y −
(

(x+ 1)3/3− x− 1− p
)
,

ẏ = −(y + r(x+ 1)− a)/s.
(5.2)

Therefore, in this example we have

g(y) = y, f(x) = (x+ 1)3/3− x− 1− p
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and

h(x, y, a) = −1

s
(y + r(x+ 1)− a).

For system (5.2), it can be observed that:

1) When p = − 2
3 , the critical curve y = f(x) passes through the origin,

and there are two generic extreme points x = −2 and x = 0 with f ′(−2) = 0,
f ′′(−2) < 0, f ′(0) = 0 and f ′′(0) > 0;

2) Let s > 0, r < −3 be fixed. If a < r, then inside the singular periodic
orbit formed by two slow orbits and two fast fibers (bounded by four points:
(0, 0), (−3, 0), (−2, 4

3 ) and (1, 4
3 )), system (5.2) has a unique equilibrium (xe, ye)

on the middle branch of the critical curve. In this case, the turning point (0, 0)
is a jump point.

3) Let s > 0, r < −3 be fixed. If a = r, then system (5.2) has a unique
equilibrium (xe, ye) coinciding with the extreme point (0, 0). In this case, the
turning point (0, 0) is a canard point.

4) h(0, 0, r, a) = 0, ∂h(0,0,r,a)
∂a 6= 0.

By following Theorems 1-2, we have

Theorem 3. Let p = − 2
3 , s > 0 and r < −3 be fixed, and ε is sufficiently

small, we then have the following conclusions:

1) If a < r, then system (5.2) has at least one regular relaxation oscillation
near the singular periodic orbit described above;

2) If a = ac(ε) + σε
3
2 e−

k2

ε where ac(0) = r, and σ, k are two constants,
then system (5.2) has at least one canard relaxation oscillation with or without
head depending on the sign of the quantity as follows,

σ
∂h

∂a
(0, 0, r) =

σ

s
,

where ac(ε) is determined by the following equation

G(a, ε) =
(a− r

2
√

2s
+

ε

4
√

2s
+

ε

16
√

2s

)
Γ
(1

2

)
+ ε(s+r)√

2s
Γ
(

3
2

)
+ 7ε2

8
√

2s2
Γ
(

5
2

)
+ ε3

32
√

2s
Γ
(

7
2

)
+O(ε2) = 0.

5.2 A predator-prey model with Holling-II response

Consider the following classical two-dimensional predator-prey model with Hol-
ling-II response, 

ẋ = x(1− x)− xy

λ+ x
,

ẏ = εy(−µ+
x

λ+ x
),

(5.3)

in which, 0 < λ < 1, µ > 0 are two regular parameters, and 0 < ε � 1 is
the singular parameter. The existence of the regular and singular parameters
depends on the specific biological settings.
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Let εt = τ , one gets the associated slow system,
εx′ = x(1− x)− xy

λ+ x
,

y′ = y(−µ+
x

λ+ x
).

(5.4)

By introducing the following new time scale, τ = (λ+ x)t̃, by which, equation
(5.4) can be changed to a polynomial system, namely

ε
dx

dt̃
= x(1− x)(λ+ x)− xy,

dy

dt̃
= y(−µ(λ+ x) + x).

(5.5)

Let

x =
µλ

1− µ
x̄, y = µλȳ, t̃ =

1

µλ
t̄,

then system (5.5) becomes
ε
dx̄

dt̄
=

1

µ
x̄+

1− λ
1− µ

x̄2 − λµ

(1− µ)2
x̄3 − xy,

dȳ

dt̄
= xy − ȳ,

i.e. 
ε
dx̄

dt̄
= a1x̄+ a2x̄

2 − a3x̄
3 − xy,

dȳ

dt̄
= xy − ȳ,

where

a1 =
1

µ
, a2 =

1− λ
1− µ

, a3 =
λµ

(1− µ)2
.

Let us further set x̄ = e¯̄x, ȳ = e¯̄y and t̄ = −¯̄t, then we get
ε
dx

dt
= (ey − a1)− (a2e

x − a3e
2x),

dy

dt
= 1− ex,

which has been written in a standard singular perturbation generalized Liénard
systems, where we still use x, y and t to denote the dependent and independent
variables for simplicity. Let

x̃ = x+ ln
a2

2a3
, ỹ = y + ln

(
a1 +

a2
2

4a3

)
,

by which, we obtain
ε
dx

dt
=
(
a1 +

a2
2

4a3

)
ey −

(
a1 +

a2
2

2a3
ex − a2

2

4a3
e2x
)
,

dy

dt
= 1− a2

2a3
ex,

(5.6)
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where, for simplicity, the bars have been omitted.
In this example, we have

g(y) =
(
a1 +

a2
2

4a3

)
ey, f(x) = a1 +

a2
2

2a3
ex − a2

2

4a3
e2x, h(x) = 1− a2

2a3
ex.

For system (5.6), one can see that
1) x = 0 is a generic extreme point of the following critical curve(

a1 +
a2

2

4a3

)
ey = a1 +

a2
2

2a3
ex − a2

2

4a3
e2x

with

f ′(0) = 0, f ′′(0) = − a2
2

2a3
< 0.

Therefore, near x = 0, we can write f ′(x) = xp(x), where p(x) > 0.

2) g(0) = f(0) =
a2

2

4a3
, and g′(y) =

(
a1 +

a2
2

4a3

)
ey > 0.

3) System (5.6) has a singular point

(xe, ye) =
(

ln
2a3

a2
, ln

4a2a3 − 4a2
3 + 4a1a3

4a1a3 + a2
2

)
.

4) As a2 → 2a3, (xe, ye)→ (0, 0), which is a canard point. When the flow of
system (5.3) gets through a small neighborhood of the canard point, it displays
the feature of delay loss of stability. By section 3, the position where the flow
blows up is at x = xk, which can be solved from the following equation

Q̂ =

∫ x

0

ξp2(ξ)dξ = k2.

If the flow extends to the right, it forms a canard relaxation oscillation
without head, and if to the left, it will stay near x = 0 and display the feature of
delay loss of stability again when it passes through the transcritical bifurcation
point, and finally forms another canard relaxation oscillation, see Figure 4.

5) Let a =
2a3

a2
=

(1− λ)(1− µ)

2λµ
, then it can be verified that

h(x, a) = 1− aex, h(0, 1) = 1− aex = 0,
∂h

∂a
(0, 1) = −1 6= 0.

From Section 3, we have the following conclusion:

Theorem 4. When ε is sufficiently small and

a =
(1− λ)(1− µ)

2λµ
= ac(ε) + σε

3
2 e−

k2

ε ,

where ac(0) = 1 and σ, k are two constants, then system (5.3) has at least one
canard solution with or without head, see Figure 4, where ac(ε) is determined
by the following equation,

G(ac(ε)) =

√
2(ac(ε)− 1)

p(0)
g′
(
g−1(

−ε
p(0)

)
)
Γ
(1

2

)
+O(ε

5
2 ) +

√
2ε
p′(0)

p4(0)
Γ
(1

2

)
= 0.
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Figure 4. Schematic plots of canard relaxation oscillations in system (5.3).
(a): σ < 0; (b): σ > 0.
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