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Abstract. In this paper we introduce the reproducing kernel method to solve a
class of variational problems (VPs) depending on indefinite integrals. We discuss
an analysis of convergence and error for the proposed method. Some test examples
are presented to demonstrate the validity and applicability of method. The results
of numerical examples indicate that the proposed method is computationally very
simple and attractive.
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1 Introduction

In the large number of problems arising in analysis, mechanics, geometry, etc.,
it is necessary to determine the maximum and minimum of a certain functional.
Problems in which it is required to investigate a function for a maximum or
minimum are called variational problems [26]. Finding the brachistochrone, or
path of quickest descent, is a historically interesting problem that is discussed
in all textbooks dealing with the calculus of variations.The solution of the
brachistochrone problem is often cited as the origin of the calculus of variations
as suggested in [26]. In the strict sense of the word, isoperimetric problems are
problems in which one has to find a geometric figure of maximum area for
a given perimeter. These extremum problems, which were even studied in
ancient Greece, are also variational problems like, and their aim is to find a
closed curve, without self-intersection, of a given length bounding a maximum
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area. Though the solution of this problem was known in ancient Greece, its
peculiar variational nature was understood only at the end of the seventeenth
century [23]. The brachistochrone, geodesics and isoperimetric problems have
played an important role in the development of calculus of variations [12,13].

The theory of reproducing kernels [2] was used for the first time at the
beginning of the 20th century by S. Zaremba in his work on boundary value
problems for harmonic and biharmonic functions. This theory has been suc-
cessfully applied to fractal interpolation [6], solving ordinary differential equa-
tions [3,4,8,14,15,18,19,20,22,30,31] and partial differential equations [7,24].
The books [5, 9, 11] provide an excellent overview of the existing reproducing
kernel methods for solving various model problems such as integral and integro-
differential equations. In this study, a general technique is proposed for solving
some systems in the reproducing kernel space. The main idea is to construct the
reproducing kernel space satisfying the conditions for determining solution of
the system. The analytical solution is represented in the form of series through
the function value at the right side of the equation. The advantages of the
approach lie in the following facts. The approximate solution xn(t) converges
uniformly to the analytical solution x(t). The method is mesh-free, easily im-
plemented and capable in treating various boundary conditions. Also we can
evaluate the approximate solution xn(t) for fixed n once and use it over and
over. The rest of paper is organized as follows. In section 2, we give some
necessary optimality conditions for a class of VPs depending on indefinite inte-
grals. In section 3, we characterize different reproducing kernel Hilbert spaces
and derive some theorems. In Section 4 we establish conditions under which
exact solution of the Euler-Lagrange, a nonlinear differential equation, exists.
We also construct and develop an algorithm for solving nonlinear differential
equation in this section. The proposed methods are applied to several examples
in Section 5. We conclude the paper in Section 6.

2 A necessary condition for an extremum

The Euler-Lagrange equation forms the centerpiece of the necessary condition
for a functional to have an extremum. Now, we give the necessary optimality
conditions for a class of variational problems depending on indefinite integrals
which are used in the proceeding sections.

Consider functional of

J[x] =

∫ 1

0

F (t, x(t), x
′
(t), z(t))dt, z(t) =

∫ t

0

l(s, x(s), x
′
(s))ds, (2.1)

defined on the set of continuous curves x : [0, 1]→ <, where F has continuous
derivatives with respect to the second, third and fourth variables and l has
continuous derivatives with respect to the second and third variables. Among
all functions x(t) which have continuous derivatives and satisfy the boundary
conditions x(k)(0) = 0 (k = 0 or k = 1) and x(l)(1) = 0 (l = 0 or l = 1), we
find the function x(t) for which the functional (2.1) has an extremum.

Let us denote this problem by P . A necessary condition for problem P is
given by the next theorem.
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Theorem 1. ( [1]) A necessary condition for J[x] to have a extremum for a
given function x(t) is that x(t) satisfies the generalized Euler-Lagrange equation

∂F

∂x
− d

dt

∂F

∂ x′
+

∫ 1

t

∂F

∂z
ds · ∂l

∂x
− d

dt
(

∫ 1

t

∂F

∂z
ds · ∂l

∂x′
) = 0. (2.2)

Remark 1. If x(t) extremizes

J[x] =

∫ 1

0

F (t, x(t), x
′
(t))dt,

under the boundary conditions x(k)(0) = 0 (k = 0 or k = 1) and x(l)(1) =
0 (l = 0 or l = 1), then x(t) satisfies the following Euler-Lagrange equation

∂F

∂x
− d

dt

∂F

∂ x′
= 0.

3 Reproducing kernel space

In order to solve VPs in reproducing kernel space, we introduce several repro-
ducing kernel spaces. For more details see [16, 17]. Throughout this paper, we
discuss problem on the domain [0, 1].

Definition 1. Let H be a real Hilbert space of functions x : Ω → <, H is
called a reproducing kernel space if for each t ∈ Ω, there exists a positive
constant ct such that |x(t)| ≤ ct‖x‖H for all x in H.

3.1 The reproducing kernel space W 1
2 [0, 1]

Definition 2. (see [28]) The reproducing kernel space W 1
2 [0, 1] for function x

is defined as the set of functions such that x is absolutely continuous on [0, 1],
and x

′ ∈ L2[0, 1], for t ∈ [0, 1].

The inner product in W 1
2 [0, 1] is of the form

〈x(t), y(t)〉W 1
2

=

∫ 1

0

(x(t)y(t) + x
′
(t)y

′
(t))dt

and the norm ‖x‖W 1
2

is defined by

‖x‖W 1
2

=
√
〈x(t), x(t)〉W 1

2
,

where x(t), y(t) ∈W 1
2 [0, 1].

3.2 The reproducing kernel space W r
2 [0, 1]

Definition 3. (see [29]) The reproducing kernel space W r
2 [0, 1] for function x

is defined as the set of functions such that x(r−1) is absolutely continuous on
[0, 1], and x(r) ∈ L2[0, 1], for t ∈ [0, 1], where r is a positive integer.
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The inner product in W r
2 [0, 1] is of the form

〈x(t), y(t)〉W r
2

=

r−1∑
i=0

x(i)(0)y(i)(0) +

∫ 1

0

x(r)(t)y(r)(t)dt

and the norm ‖x‖W r
2

is defined by

‖x‖W r
2

=
√
〈x(t), x(t)〉W r

2
,

where x(t), y(t) ∈W r
2 [0, 1]. We construct the subspace oW

r
2 [0, 1] of the function

space W r
2 [0, 1] by imposing a homogeneous boundary condition on W r

2 [0, 1] and
it is defined as follows

oW
r
2 [0, 1] = {x(t)|x(t) ∈W r

2 [0, 1], x(k)(0) = 0 (k = 0 or k = 1),

x(l)(1) = 0 (l = 0 or l = 1)}.

3.2.1 The reproducing kernel

Lemma 1. (see [28,29]) Let H be a real reproducing kernel space of functions
x : Ω → <. For each t ∈ Ω, there exists a unique element Rt ∈ H such that
〈x,Rt〉H = x(t) for all x ∈ H.

Definition 4. (see [28,29]) Let H be a real reproducing kernel space of func-
tions x : X → < and t be a point in Ω. The mapping R : Ω ×Ω → < defined
by R(t, s) = Rt(s) is called the reproducing kernel of H.

Theorem 2. (see [28]) For each t ∈ [0, 1], there exists a unique element

R
{1}
t (.) ∈ W 1

2 [0, 1] such that 〈x(.), R
{1}
t (.)〉W 1

2
= x(t) for all x ∈ oW

r
2 and the

reproducing kernel R
{1}
t (.) is given by

R
{1}
t (s) =

1

2 sinh(1)
[cosh(t+ s− 1) + cosh(|t− s| − 1)].

Theorem 3. (see [29]) For each t ∈ [0, 1], there exists a unique element

R
{r}
t (.) ∈ oW

r
2 [0, 1] such that 〈x(.), R

{r}
t (.)〉

oW r
2

= x(t) for all x ∈ oW
r
2 and

the reproducing kernel R
{r}
t (.) can be denoted by

R
{r}
t (s) =

{
C
{r}
t (s) =

∑2r
i=1 ci(t)s

i−1, s ≤ t,
D
{r}
t (s) =

∑2r
i=1 di(t)s

i−1, s > t,

where, the coefficients ci(t), di(t), i = 1, ..., 2r, are determined as follows

• ∂kR{r}t (0) = 0, ∂lR
{r}
t (1) = 0,

• ∂iR
{r}
t (0)
∂si − (−1)r−i−1

∂2r−i−1R
{r}
t (0)

∂s2r−i−1 = 0, i = 0, 1, 2, ..., r − 1, i 6= k,

• ∂2r−i−1R
{r}
t (1)

∂s2r−i−1 = 0, i = 0, 1, 2, ..., r − 1, i 6= l,

Math. Model. Anal., 21(3):412–429, 2016.
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• ∂iC
{r}
t (s)
∂si |s=t =

∂iD
{r}
t (s)
∂si |s=t, i = 0, 1, 2, ..., 2r − 2,

• (−1)r(
∂2r−1C

{r}
t (s)

∂s2r−1 |s=t − ∂2r−1D
{r}
t (s)

∂s2r−1 |s=t) = 1.

Then the solution of above equations yields the expression of the reproducing

kernel R
{r}
t (s).

4 Solution guidelines for Euler-Lagrange equation

In this section, we present an efficient technique for solving Euler-Lagrange
equation. The Euler-Lagrange equation (2.2), can generally be divided into
linear part  L, and nonlinear part N. Therefore, the Euler-Lagrange equation
(2.2) can be converted into the equivalent form as follows{

 L[x(t)] + N[x(t)]− g(t) = 0,
x(k)(0) = 0 (k = 0 or k = 1), x(l)(1) = 0 (l = 0 or l = 1),

(4.1)

where x(t) ∈ oW
r
2 [0, 1], (r > 2) is an unknown function which should can be

determined.
In this paper, we assume that under adequate conditions Eq. (4.1) has a

unique solution. The existence and uniqueness of solutions to Eq. (4.1) have
been proved in Refs. [21, 27]. In order to represent the analytical solution of
Eq. (4.1), we can assume that  L : oW

r
2 [0, 1] → W 1

2 [0, 1] is a bounded linear
operator. Choose a countable dense subset T = {t1, t2, ...} in the domain

[0, 1], and put ξi(t) = R
{1}
ti (t), where R

{1}
t (s) is reproducing kernel of W 1

2 [0, 1].
Since  L is a bounded linear operator, then adjoint operator of  L defined by
 L∗ : W 1

2 [0, 1]→ oW
r
2 [0, 1] is uniquely determined.

Now let χi(t) = ( L∗ξi)(t). The orthonormal system {χi(t)}∞i=1 can be de-
rived from the Gram-Schmidt orthogonalization process of {χi(t)}∞i=1

χi(t) =

i∑
k=1

βikχk(t), (βii > 0, i = 1, 2, ...).

So {χi(t)}∞i=1 is the orthonormalized sequence and βik are orthogonal coeffi-
cients.

Lemma 2. (see [7]) If T = {t1, t2, ...} is a dense subset in the domain [0, 1]
and the solution of Eq. (4.1) be unique. If for any i ∈ N and for each fixed
x(t) ∈ oW

r
2 [0, 1], 〈x(t), χi(t)〉oW r

2
= 0, then x(t) = 0.

Theorem 4. (see [7]) Suppose that T = {t1, t2, ...} is a dense subset in the
domain [0, 1] and the solution of Eq. (4.1) be unique. Then {χi(t)}∞i=1 is the
complete system of oW

r
2 [0, 1] and

χi(t) =

i∑
k=1

βik  LsR
{r}
t (s)|s=tk ,

where the subscript s of the operator  L indicates that the operator  L is applied
to the function of s.
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Let S = {χi(t)}∞i=1 and S⊥ be the orthogonal complement of S in oW
r
2 [0, 1],

thus oW
r
2 [0, 1] = S

⊕
S⊥.

Theorem 5. (see [10]) Suppose that the following conditions are satisfied: (i)
T = {t1, t2, ...} is a countable dense subset in the domain [0, 1], (ii) the solution
of Eq. (4.1) is unique. Then the exact solution of Eq. (4.1) in oW

r
2 is given

by

x(t) =

∞∑
i=1

i∑
k=1

βik[−N[x(tk)] + g(tk)]χi(t). (4.2)

4.1 Representation of approximate solution

Case (i): If N[x(t)] = 0, then the approximate solution can be obtained di-
rectly from Eq. (4.2) and

xn(t) =

n∑
i=1

i∑
k=1

βik[−N[x(tk)] + g(tk)]χi(t).

Case (ii): If N[x(t)] is nonlinear, then the exact solution can be obtained using
the following method.

We note that, N[x(t)] in Eq. (4.2) is unknown. First we construct the
iterative sequence xn(t). For numerical computation, we give initial function
x0 ∈ oW

r
2 and the by using Eq. (4.2), an iterative sequence is constructed as{

 L[zn(t)] = −N[xn−1(t)] + g(t),
xn(t) = Pnzn(t),

(4.3)

where zn ∈ oW
r
2 is the solution of Eq. (4.3) and

Pn : oW
r
2 → {χ1(t), χ2(t), ..., χn(t)}

is an orthogonal projection operator.

Theorem 6. Suppose that the following conditions are satisfied:
(i) T = {t1, t2, ...} is a countable dense subset in the domain [0, 1], (ii) the
solution of Eq. (4.3) is unique. Then the solution of Eq. (4.3) is given by

zn(t) =

∞∑
i=1

Hiχi(t), n = 1, 2, ...,

where Hi =
∑i
k=1 βik[−N[xn−1(tk)] + g(tk)].

Proof. The proof is similar to that of Theorem 5. ut

Therefore considering the numerical computation, we define the n-term ap-
proximation xn(t) to x(t) by

xn(t) = Pnzn(t) =

n∑
i=1

Hiχi(t), n = 1, 2, ..., (4.4)

Math. Model. Anal., 21(3):412–429, 2016.
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where 
H1 = β11[−N[x0(t1)] + g(t1)]],

H2 =
∑2
k=1 β2k[−N[xk−1(tk)] + g(tk)]],

H3 =
∑3
k=1 β3k[−N[xk−1(tk)] + g(tk)]],

. . .

4.1.1 The existence of solution in oW
r
2 and convergence analysis

Now, we will prove that the solution of Eq. (4.3) exists, and {xn(t)}∞n=1 is
convergent.

Lemma 3. (see [25]) For any x ∈ oW
r
2 we have the following statement

‖x(j)‖∞ ≤ ‖∂jtR
{r}
t (s)‖

oW r
2
‖x‖

oW r
2
≤ Dj ‖x‖oW r

2
, j = 0, 1, 2, ..., r − 1,

for some Dj independent of x.

Lemma 4. Suppose that, ‖xn‖oW r
2

is bounded in Eq. (4.4), then there exists a

constant Kj, such that ‖x(j)n ‖∞ ≤ Kj , j = 0, 1, 2, ..., r − 1.

Proof. Since ‖xn‖oW r
2

is bounded and by Lemma 4, ‖x(j)n ‖oW r
2

is also bounded

and ‖x(j)n ‖∞ ≤ Kj , j = 0, 1, 2, ..., r − 1, which completes the proof. ut

Lemma 5. Π = {xn| ‖xn‖oW r
2
≤ K} ⊂ C[0, 1] is a bounded set, where K is a

constant.

Proof. From Lemma 4, there exists a positive constant K < ∞ such that
|xn(t)| ≤ K for each t ∈ [0, 1] and each xn ∈ Π. ut

Lemma 6. Π = {xn| ‖xn‖ oW r
2
≤ K} ⊂ C[0, 1] is equicontinuous, where K is

a constant.

Proof. For an arbitrary xn ∈ Π, we deduce

|xn(t
′
)− xn(t)| = |〈xn(s), R

{r}
t′

(s)−R{r}t (s)〉|

≤ ‖xn(s)‖ oW r
2
‖R{r}

t′
(s)−R{r}t (s)‖ oW r

2

≤ ‖xn(s)‖
oW r

2
‖ d
dt
R
{r}
ζ (s)|ζ∈[t′ ,t]‖oW r

2
|t
′
− t| ≤ C|t

′
− t|,

where C is a positive constant. Then for any ε > 0, there exists a δ > 0 such
that for t, t

′ ∈ [0, 1]:

|t
′
− t| < δ ⇒ |xn(t

′
)− xn(t)| < ε, ∀xn ∈ Π.

This completes the proof. ut
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Lemma 7. Suppose that the following conditions hold (i) T = {t1, t2, ...} be a
countable dense subset in the domain [0, 1], (ii) Π = {xn| ‖xn‖oW r

2
≤ K} ⊂

C[0, 1], (iii) N[x(t)] is continuous as t ∈ [0, 1] and x = x(t) ∈ <. Then
there exists a subsequence {xnq}q≥1 ⊆ Π which {xnq}q≥1 converges uniformly
to x̂, as q →∞, where

x̂(t) =

∞∑
i=1

i∑
k=1

βik[−N[x̂(tk)] + g(tk)]χi(t).

Proof. It follows from Lemmas 5 and 6 that Π is a precompact set. Then any
sequence in Π has a uniformly convergent subsequence whose limit belongs to
Π. Applying this principle we find that there exists a sequence {nq}q≥1 with
n1 < n2 < .... such that subsequence {xnq}q≥1 is uniformly convergent and

x̂ = lim
q→∞

xnq ∈ Π.

Since N[x(t)] is continuous as t ∈ [0, 1], and x = x(t) ∈ <, then

x̂(t) = lim
q→∞

nq∑
i=1

Hiχi(t) =

∞∑
i=1

i∑
k=1

βik[−N[x̂(tk)] + g(tk)]χi(t).

This completes the proof. ut

Theorem 7. Suppose that the conditions of Lemma 7 hold, then there exists a

subsequence {xnq}q≥1 ⊆ Π in which, {x(j)nq }q≥1, for each j ∈ {0, 1, 2, ..., r − 1}
converges uniformly to x̂(j), as q →∞, where

x̂(t) =

∞∑
i=1

i∑
k=1

βik[−N[x̂(tk)] + g(tk)]χi(t).

Proof. By Lemma 7, there exists a subsequence {xnq
}q≥1 ⊆ Π in which

{xnq}q≥1 converges uniformly to x̂, as q →∞, where

x̂(t) =

∞∑
i=1

i∑
k=1

βik[−N[x̂(tk)] + g(tk)]χi(t).

It follows from Lemma 4 that for each j ∈ {0, 1, 2, ..., r − 1}, the sequence

{x(j)nq }q≥1 is bounded. Then for each j ∈ {0, 1, 2, ..., r − 1}, there exists subse-

quence {x(j)nql
}l≥1, such that {x(j)nql

}l≥1, is uniformly convergent. Consequently

‖x(j)nql
− x̂(j)‖∞ → 0, j = 0, 1, 2, ..., r − 1, as l→∞.

Now, without of generality, we replace {xnq
}q≥1 with {xnql

}l≥1. This completes
the proof. ut

Lemma 8. Suppose that the conditions of Theorem 7 hold, then x̂(j)(t), j =
0, 1, ..., r − 2, are absolutely continuous functions.

Math. Model. Anal., 21(3):412–429, 2016.
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Proof. For each j ∈ {0, 1, 2, ..., r−2} and for arbitrary ε > 0, choose δj = ε
Mj

.

Let {(ak, bk)}mk=1 be a set of mutually disjoint open intervals (ak, bk) ⊂ [0, 1],
satisfying

∑m
k=1(bk − ak) < δj . It follows by Theorem 7 that there exists a

subsequence {xnq}q≥1 ⊆ Π which {x(j)nq }q≥1 converges uniformly to x̂(j), as
q →∞. Then for each j ∈ {0, 1, 2, ..., r − 2},

|x̂(j)(bk)− x̂(j)(ak)| = lim
q→∞

|x(j)nq
(bk)− x(j)nq

(ak)|

= lim
q→∞

|〈xnq
(s), ∂jtR

{r}
t (s)|t=bk − ∂

j
tR
{r}
t (s)|t=ak〉|

= lim
q→∞

‖xnq (s)‖oW r
2
‖∂jtR

{r}
t (s)|t=bk − ∂

j
tR
{r}
t (s)|t=ak‖oW r

2

≤ K‖∂jtR
{r}
t (s)|t=bk − ∂

j
tR
{r}
t (s)|t=ak‖oW r

2

a = K‖∂j+1
t R

{r}
t (s)|t=ζj∈[ak,bk](bk − ak)‖oW r

2

≤ KDj |bk − ak| = Mj |bk − ak|.

Then, we have

m∑
k=1

|x̂(j)(bk)− x̂(j)(ak)| ≤
m∑
k=1

Mj |bk − ak| < ε.

This completes the proof. ut

Lemma 9. Suppose that the conditions of Theorem 7 hold, and the sequence

{x(r)n (t)}n≥1 is bounded, then x̂(r−1)(t) is absolutely continuous function.

Proof. For arbitrary ε > 0, choose δ = ε
C . Let {(ak, bk)}mk=1 be a set of

mutually disjoint open intervals (ak, bk) ⊂ [0, 1], satisfying
∑m
k=1(bk − ak) < δ.

By Theorem 7, there exists a subsequence {xnq
}q≥1 ⊆ Π in which, for each

j ∈ {0, 1, ..., r − 1}, {x(j)nq }, converges uniformly to x̂(j), as q → ∞, where

x̂(t) =
∑∞
i=1

∑i
k=1 βik[−N[x̂(tk)] + g(tk)]χi(t). Since the sequence {x(r)nq }q≥1 ⊆

{x(r)n (t)}n≥1 is bounded, then there exists subsequence {x(r)nql
}l≥1⊆{x(r)nq (t)}q≥1,

such that {x(r)nql
}l≥1, is uniformly convergent. Consequently

‖x(r)nql
− x̂(r)‖∞ → 0, s→∞.

Note that

|x̂(r−1)(bk)− x̂(r−1)(ak)| = lim
l→∞

|x(r−1)nql
(bk)− x(r−1)nql

(ak)|

= lim
l→∞

|〈xnql
, ∂r−1t R

{r}
t (s)|t=bk − ∂

r−1
t R

{r}
t (s)|t=ak〉|

≤ lim
l→∞

|
r−1∑
i=0

x(i)nql
(0)(∂r−1+itr−1siR

{r}
t (0)|t=bk

− ∂r−1+itr−1siR
{r}
t (0)|t=ak)|+ lim

l→∞
|
∫ 1

0

x(r)nql
(s)(∂2r−1tr−1srR

{r}
t (s)|t=bk
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− ∂2r−1tr−1srR
{r}
t (s)|t=ak)ds| ≤ lim

l→∞
|
r−1∑
i=0

x(i)nql
(0)(∂r−1+itr−1siC

{r}
t (0)|t=bk

− ∂r−1+itr−1siC
{r}
t (0)|t=ak)|+ lim

l→∞
|
∫ ak

0

x(r)nql
(s)(∂2r−1tr−1srC

{r}
t (s)|t=bk

− ∂2r−1tr−1srC
{r}
t (s)|t=ak)ds|+ lim

l→∞
|
∫ bk

ak

x(r)nql
(s)(∂2r−1tr−1srC

{r}
t (s)|t=bk

− ∂2r−1tr−1srC
{r}
t (s)|t=ak)ds|+ lim

l→∞
|
∫ 1

bk

x(r)nql
(s)(∂2r−1tr−1srD

{r}
t (s)|t=bk

− ∂2r−1tr−1srD
{r}
t (s)|t=ak)ds|.

Using Lemma 4 and the continuity of ∂r−1+itr−1siC
{r}
t (0), i = 0, 1, ..., r − 1, with

respect to t, and the differential mean value Theorem, we obtain

lim
l→∞

|
r−1∑
i=0

x(i)
nql

(0)(∂r−1+i
tr−1si

C
{r}
t (0)|t=bk − ∂r−1+i

tr−1si
C
{r}
t (0)|t=ak )| ≤ C1|bk − ak|, (4.5)

where C1 is a positive constant. From the continuity of ∂2r−1tr−1srC
{r}
t (s) with

respect to t, the differential mean value Theorem and the Cauchy-Schwarz
inequality, one obtains

lim
l→∞

|
∫ ak

0

x(r)nql
(s)(∂2r−1tr−1srC

{r}
t (s)|t=bk − ∂

2r−1
tr−1srC

{r}
t (s)|t=ak)ds| ≤ C2|bk−ak|,

(4.6)

lim
l→∞

|
∫ bk

ak

x(r)nql
(s)(∂2r−1tr−1srC

{r}
t (s)|t=bk − ∂

2r−1
tr−1srC

{r}
t (s)|t=ak)ds| ≤ C3|bk−ak|,

(4.7)

lim
l→∞

|
∫ 1

bk

x(r)nql
(s)(∂2r−1tr−1srD

{r}
t (s)|t=bkr − ∂

2r−1
tr−1srD

{r}
t (s)|t=ak)ds| ≤ C4|bk−ak|,

(4.8)

where C2, C3, and C4 are constants. By (4.5)–(4.8), we have

m∑
k=1

|x̂(r−1)(bk)− x̂(r−1)(ak)| ≤
m∑
k=1

C|bk − ak| < ε,

where C = C1 + C2 + C3 + C4. This completes the proof. ut

Lemma 10. Suppose that the conditions of Lemmas 8 and 9 hold, and further
the invertible operator  L−1 exists then x̂ ∈ oW

r
2 [0, 1].

Proof. By Lemmas 8 and 9, N[x̂(t)] is absolutely continuous and furthermore
− ∂
∂tN[x̂(t)] + g

′
(t) ∈ L2[0, 1]. Then −N[x̂(t)] + g(t) ∈ W 1

2 [0, 1]. Consequently

 L−1(−N[x̂(t)] + g(t)) ∈ oW
r
2 [0, 1], and we must have

 L−1(−N[x̂(t)] + g(t)) =

∞∑
i=1

i∑
k=1

βik[−N[x̂(tk)] + g(tk)]χi(t) = x̂(t).
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This completes the proof. ut

By using Lemmas 8, 9 and 10 one obtain the following theorem.

Theorem 8. Suppose that the conditions of Lemmas 8, 9 and 10 hold, then
the solution of Eq. (4.1) is exists and is expressed as

x(t) =

∞∑
i=1

i∑
k=1

βik[−N[x(tk)] + g(tk)]χi(t) ∈ oW
r
2 [0, 1].

Theorem 9. Suppose that the conditions of Theorem 8 hold, and the solution
of Eq. (4.1) is exists and is unique, then for each j ∈ {0, 1, 2, , ..., r − 1},

‖x(j)n − x(j)‖∞ → 0, as n→∞, (4.9)

where x(t) =
∑∞
i=1

∑i
k=1 βik[−N[x(tk)] + g(tk)].

Proof. If (4.9) is not true, then there exist a positive number ε0 and a subse-
quence {xnq

}q≥1 ⊂ Π such that

‖x(j)nq
− x(j)‖∞ ≥ ε0, (q = 1, 2, . . .). (4.10)

Since, for each j ∈ {0, 1, 2, ..., r − 1}, {x(j)n }n≥1 is precompact, there exists

a subsequence of {x(j)nq }q≥1 which converges in C[0, 1] to some x(j) ∈ C[0, 1].

Without of generality, we may assume that {x(j)nq }q≥1 itself converges to x̃(j):

‖x(j)nq
− x̃(j)‖∞ → 0, as q →∞. (4.11)

Since the solution of Eq. (4.1) is unique, we have x(j) = x̃(j), and therefore,
(4.11) contradicts (4.10). So the proof of Theorem 9 is completed. ut

4.1.2 Error analysis

We now obtain the error estimate for the approximate solution of Eq. (4.1) in

oW
r
2 . To achieve this aim, we establish and prove the next theorem.

Theorem 10. Suppose that the conditions of Theorem 9 hold. Let Pn = {0 =
t1 < t2 < ... < tn = 1}, be a partition of interval [0, 1] and also xn(t) be the
approximate solution of the Eq. (4.1) in the space oW

r
2 . The following relation

holds,

‖x(t)− xn(t)‖∞ ≤ C hr−1, h = max
1≤i≤n−1

(ti+1 − ti),

where C is real constant.

Proof. In each subinterval [ti, ti+1], we can write

x(r−2)(t)− x(r−2)n (t) = x(r−2)(t)

−x(r−2)(ti) + x(r−2)n (ti)− x(r−2)n (t) + x(r−2)(ti)− x(r−2)n (ti). (4.12)
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By means of the mean value Theorem and the continuity of x(r−1), one can
show that

‖x(r−2)(t)− x(r−2)(ti)‖∞ ≤ C1h. (4.13)

We know have

|x(r−2)n (t)− x(r−2)n (ti)| ≤
∫ t

ti

|x(r−1)n (s)|ds (4.14)

and since xn(t) ∈ oW
r
2 , it follows that

|x(r−2)n (t)− x(r−2)n (ti)| ≤ C2h. (4.15)

Using Theorem 9, for large n we have

‖x(r−2)(ti)− x(r−2)n (ti)‖∞ ≤ ε. (4.16)

Since ε is arbitrary and by combining Eqs. (4.12)–(4.16), for the chosen value
of n, we must have

‖x(r−2)(t)− x(r−2)n (t)‖∞ ≤ C3 h. (4.17)

We know have

x(j)(t)− x(j)n (t) = x(j)(ti)− x(j)n (ti)

+

∫ t

ti

(x(j+1)(s)− x(j+1)
n (s))ds, 0 < j < r − 2. (4.18)

By using Eqs. (4.17)–(4.18) and applying Theorem 9 for large n, it is straight-
forward to see that

‖x(t)− xn(t)‖∞ ≤ C hr−1, h = max
1≤i≤n−1

(ti+1 − ti),

and the proof is completed now. ut

5 Test examples

In this section, some illustrative examples are considered to reveal the effective-
ness and the accuracy of the proposed method for solving a class of VPs. All of
the computations have been performed by using the Maple software package.
Results obtained by method are compared with exact solution of each example
and are found to be in good agreement.

Example 1. Consider the following VP: find the extremum of the functional

J[x] =

∫ 1

0

(
1

3
x3(t)− (2 + (t2 − t)2))x(t)− 1

2
(x
′
(t))2)dt,

x(0) = 0, x(1) = 0.

An exact solution of this problem is given as x(t) = t2 − t.

Math. Model. Anal., 21(3):412–429, 2016.
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Let ti+1 = 1
2 cos(π i

n−1 ) + 1
2 , i = 0, 1, ..., n− 1 be a set of gird points of the

interval [0,1]. An iterative sequence is constructed as{
z
′′

n(t) = −x2n−1(t) + 2 + (t2 − t)2,
xn(t) = Pnzn(t),

where Pn : oW
3
2 → {χ1(t), χ2(t), ..., χn(t)} is an orthogonal projection oper-

ator. Therefore considering the numerical computation, we define the n-term
approximation xn(t) to x(t) by

xn(t) = Pnzn(t) =

n∑
i=1

Hiχi(t), n = 1, 2, ...,

where 
H1 = β11[−x20(t1) + 2 + (t21 − t1)2]],

H2 =
∑2
k=1 β2k[−x2k−1(tk) + 2 + (t2k − tk)2]],

H3 =
∑3
k=1 β3k[−x2k−1(tk)] + 2 + (t2k − tk)2]],

. . .

We obtain the approximate solution for n = 60, 70, 80. The absolute values of
the errors are given in Figure 1.

Figure 1. Absolute errors for n = 60, 70, 80 of Example 1.

Table 1 presents the numerical results for proposed method in the interval
[0, 1]. From the Table 1 it can be seen that the approximate solutions are in
good agreement with the exact solution. Absolute errors show that the present
method gives approximate solution with a high degree of accuracy.

Example 2. Consider the following VP: find the extremum of the functional

J[x] =

∫ 1

0

[(x
′
(t)− b1(t))2 + z(t)]dt,
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Table 1. Estimated and exact value of x(t) for n = 60, 70, 80 of Example 1.

t n=60 n=70 n=80 Exact

0.0 0.0000000663 0.0000000361 0.0000000164 0.0000000000
0.1 -0.0899999240 -0.0899999840 -0.0899999740 -0.0900000000
0.2 -0.1599840000 -0.1599934000 -0.1599944000 -0.1600000000
0.24 -0.1823853248 -0.1823931879 -0.1823952347 -0.1824000000
0.3 -0.2099860000 -0.2099929000 -0.2099969000 -0.2100000000
0.4 -0.2399900000 -0.2399975000 -0.2399995000 -0.2400000000
0.5 -0.2499901000 -0.2499909000 -0.2499919000 -0.2500000000
0.6 -0.2399906000 -0.2399926000 -0.2399926000 -0.2400000000
0.7 -0.2099900000 -0.2099924000 -0.2099934000 -0.2100000000
0.8 -0.1599820000 -0.1599949000 -0.1599960000 -0.1600000000
0.9 -0.0899955000 -0.0899959000 -0.0899999500 -0.0900000000
0.999 -0.0009934374 -0.0009951123 -0.0009955284 -0.0009990000
1.0 0.0004625102 0.0000026651 0.0000023141 0.0000000000

CPU time 380(s) 554(s) 682(s)

where

z(t) =

∫ t

0

(x(s)− b2(s))2ds,

subject to x(0) = 0 and x
′
(0) = 0 and

b1(t) =
8

7
t7 − 27

2
t
7
2 +

9

2
t, b2(t) = t8 − 3t

9
2 +

9

4
t2.

Figure 2. Absolute errors for n = 50, 60, 70 of Example 2.

In this example, the extremal is x(t) = t8−3t
9
2 + 9

4 t
2. To apply the proposed

method, we consider uniform grid points

ti+1 =
1

2
cos(π

i

n− 1
) +

1

2
, i = 0, 1, ..., n− 1
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Table 2. Estimated and exact value of x(t) for n = 50, 60, 70 of Example 2.

t n=50 n=60 n=70 Exact

0.0 0.0000000367 0.0000000164 0.0000000681 0.0000000000
0.1 0.0224057016 0.0224052076 0.0224051676 0.0224051416
0.2 0.0878919347 0.0879419347 0.0878919347 0.0878559347
0.3 0.1892959519 0.1892659519 0.1892569519 0.1892559518
0.4 0.3120877751 0.3120832751 0.3120828251 0.3120827751
0.5 0.4338427285 0.4338246285 0.4338239285 0.4338237285
0.6 0.5256469750 0.5256469750 0.5256369750 0.5256329749
0.7 0.5575117929 0.5575117929 0.5575018929 0.5575017928
0.8 0.5088400277 0.5087400277 0.5087040277 0.5087000276
0.9 0.3856988744 0.3856743744 0.3856739744 0.3856738744
1.0 0.2500162410 0.2500162546 0.2500066211 0.2500000000

CPU time 560(s) 731(s) 894(s)

on [0, 1]. Using the proposed method, we calculate the approximate solution
xn(t) for n = 50, 60, 70 in oW

3
2 . Figure 2 gives the absolute errors for proposed

method in the interval [0, 1]. In Table 2, the value of x(t) using the proposed
method for n = 50, 60, 70 is compared with the exact solution. From Figure 2
and Table 2 it can be seen that the approximate solutions obtained by proposed
method are in prefect agreement with the exact solution.

Example 3. Consider the following VP: find the extremum of the functional

J[x] =

∫ 1

0

[(
1

2
x
′2

(t) + x(t)− c1(t))2 + z(t)]dt,

where

z(t) =

∫ t

0

(x
′
(s)− c2(s))2ds,

subject to x(0) = 0 and x(1) = 0 and

c1(t) =
1

2
(2t− 1)2e2t

2−2t + 1− et
2−t, c2(t) = −(2t− 1)et

2−t.

An exact solution of this problem is given as x(t) = 1− et2−t.
We consider grid points ti+1 = 1

2 cos(π i
n−1 ) + 1

2 , i = 0, 1, ..., n− 1 on [0, 1].
By employing the proposed method, we obtain the approximate solution for
n = 80, 90, 100 in oW

4
2 . The absolute values of the errors for n = 80, 90, 100 are

given in Figure 3. Table 3 presents the numerical results for proposed method
in the interval [0, 1]. From Table 3 and Figure 3, it is clear that the approximate
solutions are in good agreement with the exact solution.

6 Conclusions

This paper describes a semi-analytical method in reproducing kernel space for
finding the extremum of VPs depending on indefinite integrals. By using this
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Figure 3. Absolute errors for n = 80, 90, 100 of Example 3.

Table 3. Estimated and exact value of x(t) for n = 80, 90, 100 of Example 3.

t n=80 n=90 n=100 Exact

0.0 0.0000045823 0.0000035134 0.0000031109 0.0000000000
0.1 0.0860626147 0.0860646147 0.0860656147 0.0860688147
0.2 0.1478002110 0.1478102110 0.1478202110 0.1478562110
0.3 0.1893557540 0.1894057540 0.1893957540 0.1894157540
0.4 0.2133671389 0.2133716389 0.2133728389 0.2133721389
0.5 0.2212282169 0.2212182169 0.2212001169 0.2211992169
0.6 0.2134061389 0.2133861389 0.2133871389 0.2133721389
0.7 0.1894557540 0.1894457540 0.1894357540 0.1894157540
0.8 0.1478602110 0.1478566110 0.1478565110 0.1478562110
0.9 0.0861238147 0.0861038147 0.0860938147 0.0860688147
1.0 0.0000076504 0.0000017210 0.0000010631 0.0000000000

CPU time 950(s) 1127(s) 1269(s)

method, we introduced an iterative sequence which converges uniformly to
exact solution. Moreover, it is found that the bound for the error in W r

2 [0, 1]
is O(hr−1). The applicability and accuracy of the method were examined on
some test examples by calculating the the discrete maximum error.
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