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Abstract 

It is essential that a chemical process plant is built based on a design that integrates the structural, 
operational and economic considerations. However, accomplishing such goal for a small section of a 

process system demands significant computational efforts. This project investigates the 

computational tractability of a mathematical optimization algorithm dedicated for such process control 
design, the Dynamic Operability Framework. The target output is a worst case computational cost of 

utilizing the framework to solve a process control design problem in comparison with a standard Mixed 
Integer Non-Linear Programming (MINLP) problem. The cost is calculated based on the numbers of 

design variables and constraints. This cost helps process designers to make an informed decision of 

utilizing and improving the framework as a tool for process design.  

1 Introduction and Objectives 

One common goal in industrial chemical process designs is to achieve a specified product 

quality in feasible and profitable manners, despite the presence of feed fluctuations and 

other disturbances. One approach to accomplish such design is by formulating the 

simultaneous process and controller structure optimization as a mathematical programming 

problem, then subsequently utilizing a suitable computational algorithm to solve the 

problem.  

The Dynamic Operability Framework is an optimization algorithm dedicated for such 

purpose. The framework formulates the process control design as a dynamic Mixed Integer 

Nonlinear Programming (MINLP) problem. The information processed by the framework 

consists of an objective (typically profit or operational costs), a set of Differential Algebraic 

Equations representing the process dynamics, a set of binary equations representing 

possible process control structures and interaction rules, a set of allowable ranges for 

operational conditions and a set of disturbance ranges.  

This information is processed through two layers of computation. The outer layer 

optimization selects the structure and parameters of the process units and controllers. The 

inner level tests the controllability and feasibility of the process dynamics subject to a 

known range of disturbances over a given period of time. The framework iterates between 

these levels to generate the optimum solution.  

The size of the problem is typically large. The computational complexities, i.e. requirement 

of CPU time, as well as Random Access Memory (RAM), may grow with the number of 

optimization variables. These aspects should be considered seriously in handling industrial 

cases that typically involves hundreds of dynamic variables.  
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In order to address such problem, this research investigates the computational tractability 

and optimality of the Dynamic Operability Framework. The results is the computational cost 

of a process design, based on the information supplied to the framework, such as the 

number of process parameters, dynamic variables, operational rules and constraints. The 

cost analysis is the basis to determine the computational requirement and processing time 

to produce an optimum process design through the framework. These will be especially 

useful to estimate the cost of a process design, the cost of further modification to the 

framework, as well as the benefit in distributing of the computational tasks in a number of 

parallel computers.  

2 Process Synthesis Problem 

Due to inherent nonlinearities, chemical processes present varying dynamic characteristics 

over different operating conditions and different structures. Consequently, a certain 

dynamic and economic performances can only be achieved by optimizing the process and 

controller structures, in addition to optimizing the controller parameters. At this point, the 

difficulty arises due to strong interaction between both aspects, as these cannot be isolated 

and optimized separately. This interaction between structure and parameter in process 

design, in pursuing the economic and control objectives, is best addressed within process 

synthesis problems.  

The synthesis problem is to select the optimum process structure, as well as its design 

parameters. It involves rigorous analysis of the existence and interconnection of unit 

operations, as well as the sizes and parameters of the components. The former clearly 

implies making discrete decisions, while the latter implies making a choice from among a 

continuous space. The analysis ultimately determines the quality of process controllability 

and profitability in presence of disturbances and uncertainties.  

Over the last three decades, process synthesis problems have been investigated using the 

heuristic, the physical insights, and the mathematical programming approaches. The 

physical insights yield in many essential design procedures and guidelines. Nevertheless, 

the developments of automated synthesis procedures are mostly based either on the 

knowledge based heuristic, or on mathematical programming approach.  

The latter approach translates the process synthesis problem into the process control 

parameters and structures specification problem to satisfy the controllability and 

profitability objectives. These objectives are the consequence of two distinctive decisions. 

The first decision is the operational parameters, for instance, the size and operating 

conditions of the unit operations. These are represented by continuous values. The second 

decision is structure; i.e. the existence of a unit, a stream flow rate, or an interconnection 

between process units. These may involve yes-no, if-then and other logic decisions, as well 

as selection of distinct operational ranges. Hence, these values are discrete. The 

consideration of these decisions gives rise to Mixed Integer Nonlinear Programming (MINLP) 

problems. 

3 The Dynamic Operability Framework 

The Dynamic Operability Framework (DOF) is a mathematical programming algorithm 

developed to select the best configuration from a given set of possib le process and 

controller structures (a superstructure). The goal is to find the process structure and 

parameters that produces the optimum value of process objective (i.e. profit or target 

quality) and keeps all dynamic responses within the desired output space (completely 
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feasible). The selection is made subject to a set of expected disturbances, operational 

constraints and operational logics. The general formulation of the Dynamic Operability 

Framework to solve the mentioned design problem is given below.  
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Here, z  is the augmented vector of continuous and binary design variables z  and y, and the 

initial conditions of state, manipulated, and output variables x ss, uss and wss respectively. 

The vector p contains the process parameters, and e  contains the sampled disturbance 

profiles within the Expected Disturbance Space (EDS). The process model is represented by 

a set of differential algebraic equations h i. The time average of the objective function profile 

  is optimized within an optimization window. The set gj  is the feasible design values for 

both plant and controller. The set gjd  is the subset of g j, containing the logic propositions to 

solve the mixed-integer problem related to the process control structure.  

The Desired Output Space (DOS) defines the feasible dynamics of the output and measured 

variables in the augmented matrix w . The Achievable Output Space due to disturbances 

(AOS ) is the set of output dynamics due to e . The ratio between the size of DOS   AOS 

and the size of DOS is the controllability index, r-OCI. The external disturbances as well as 

process uncertainties are characterized as a set of step functions with uniformly distributed 

magnitudes in EDS.  

Based on the above description, it is clear that DOF is a semi-infinite dynamic Mixed Integer 

Non-linear Programming (SIDMINLP) problem. The problem is solved in an iterative, two-

layer dynamic optimization algorithm shown in Figure 1 . The outer layer is a combined 

steady state and dynamic multi-period MINLP problem, that considers the regulatory 

process dynamics due to the critical disturbance and uncertainty combinations k . At the 

initial outer level, k  only consists of the nominal disturbances and uncertainties  N . The 

optimum solution *z  found in the outer layer is sent to the inner layer, which performs the 

feasibility test for the framework. This layer evaluates the process feasibility at *z  and 

extracts the associated k  from the convex hull of AOS. The iteration terminates when the 

outer layer converges and the inner layer does not introduce any additional k , and this 

typically happens in the second iteration.  

The outer layer consists of MINLP problem. The discrete variables represent superstructure 

that leads to Integer Programming (IP) Problem. The process model and operational 

constraints on each structure introduce Nonlinear Programming (NLP) sub problems. 
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Branch and Bound (BB) algorithm has been modified to solve these combined problems 

effectively. The search starts by solving the NLP relaxation of the original problem, then 

using the solution as the bound of the problem. If the solutions of the discrete variables are 

all equal to the values defined at the discrete set, then the optimum solution is reached and 

the search is stopped. Otherwise, the search fixes all discrete variables to their respective 

closest discrete values. Any purely discrete equation within the MINLP formulation is 

enforced to eliminate infeasible nodes. For example, the constraint y1+y2  1 eliminates the 

node [0,0]. 

The feasible nodes are considered as NLP sub problems. If one sub problem converges and 

the solution is better than the existing bound, this becomes the new bound, otherwise the 

node is eliminated. All previously evaluated binary combinations are listed to avoid repeated 

search. 

The inherent nonlinearities of process models and the solution of process dynamics in each 

NLP sub problem significantly contribute to the computational cost. This grows exponentially 

with the number of design variables as described in Problem Background.  

3.1 The Computational Analysis of DOF 

The MINLP nature of the DOF algorithm requires the solution of one Integer Problem (IP) on 

distributing layer and one NLP at each nodes of the IP. These have been known as NP-Hard 

problems in. However, it should be noted that NP-Hardness is a worst case condition. There 

are features that make the DOF algorithm viable, such as [4]: 

1. The r-OCI test in the first inner layer uses the convex-hull of the process dynamics to 

determine all critically affecting disturbances k . The whole set of k is attended on the 

second outer layer, and typically no new disturbances detected by the subsequent inner 

layer. Therefore the algorithm is typically completed in two iterations.  

2. The IP in the distributing layer is solved by the modified BB algorithm. The general BB 

complexity usually determined by the number of discrete variables. In the worst case of 

case of all 0/1 decisions, all nodes have to be checked, hence the complexity is O(2n). 

In DOF, the modified BB uses the pure logic proposition constraints to significantly 

eliminate infeasible nodes from the tree and reducing the computational complexity 

accordingly. For example, if only one of two equipments y1 and y2 is allowed to operate, 

then the associated logic propositions is y1+y2 = 1. Then the possible nodes in 

enumeration tree are {[0,1],[1,0]}, instead of all four possible binary combination of 

[y1,y2] . The use of this proposition reduces 50% of computation efforts.  

3. At each feasible node in the distributing layer, one dynamic NLP sub problem is solved. 

Once first converging sub problem with an objective value  is found, this becomes the 

upper bound for the next sub problem. If  the new sub problem shows any sign of 

inferiority, i.e. whether not converging or converging to poorer, then the node is 

fathomed and the algorithm resumes the search at the other nodes  
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Figure 1 Algorithm of the dynamic operability framework 
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4  Computational Measures 

To relate the computational costs of DOF problem, the following measures are employed: 

The size of the optimization problem specified by the number of continuous design variables 

nz, binary variables ny, and DAE describing the system i, operational constraints j and logic 

proposition jd, and samples of n. The contributions of these parameters to DOF complexity 

in relation to the algorithm depicted in Figure 1 are as follows: 

1. The complexity of the NLP optimization problem in the outer level at the worst case is 

proportional to the number of continuous design variables nz.  

2. The complexity of the modified Branch and Bound algorithm in the outer level at the 

worst case is exponential to the number of binary variables ny, i.e. 2ny. However, the 

number of logic propositions can reduce the complexity, although at the worst case, 

only 1 node is fathomed for each logic proposition. Hence at the worst case the 

complexity is 2ny- jd.  

3. At the inner level, the complexity is proportional to the number of samples of   (n) 

since all are required to determine the convex hull of the process dynamics. 

Incorporating all samples of  is essential to DOF, in order to anticipate the non -

convexities of the problem. The critically affecting disturbances k found in this inner 

layer in the worst case is also proportional to n. If the first inner level declares all  as 

k, then the second outer layer attends the whole set of . Consequently the second 

inner layer does not find a new k. Therefore, even in the worst case, the algorithm 

concludes in two iterations.  

4. The complexity of solving the process dynamic at every levels is proportional to the size 

of process model hi.  

5. Since the complexity of NLP is NP-Hard, a worst case duration to solve the Sequential 

Quadratic Programming algorithm to solve one NLP node for one continuous design 

variables, TNLP is used to represent the NLP complexity. Similar term TDAE is used to 

represent the worst case time required to solve one DAE.  

6. Based on the above contributions, the total complexity of DOF (CI) is as follows:  

   inT1jd)-2(nT2CI DAE

n

zNLP
y    (2) 

To obtain more specific information about the complexity of the optimization problem 

defined above, the reduction of DOF complexity due to the numbers of problem parameters 

is investigated for two case studies. 

5  Case Studies 

Two case studies of process and control structure selection of chemical process 

superstructures presented in the following sections. These cases a re: 

1. Dual Continuous Stirred Tank Reactors (CSTR)  

2. Five Effect Evaporator  

5.1 The Dual CSTR  

The objective of this case study is to select both process and controller structure to 

maximize the net profit of the two Continuous Stirred Tank Reactors (CSTR) system ([3]. The 

net profit is defined as the objective function as follows:  
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)Q0.1(Q0.1Cool0.01Cool))Q0.3(QCQC10(QΦ f2f121f2f1fNf2fNf1N 
 (3) 

The dynamic variables are the product compositions C1, C2 and temperatures T1, T2. The 

feasible operating conditions are defined by the temperatures T1, T2, the amount of heat 

transfer between coolant and reactor Cool1, Cool2 and the final product composition Cp. The 

coolant flow rates mc1 and mc2 are manipulated variables that may control either T1 or 

Cool1 and T2 or Cool2, respectively.  

The problem is to decide the existence of the flow rates Qf1, Qf2, Q3 and Q4. At least one of 

Qf1 or Qf2, and one of Q3 or Q4 should exist, which leads to series, parallel, or combination 

process configuration. These decisions are facilitated by assigning four additional binary 

variables yp1, yp2, yp3, and yp4 to the respective flow rates. Furthermore, the effect of 

reactor volumes V1 and V2 to both process and controller structures is evaluated. Therefore, 

the design variables are Qf1, Qf2, Q3, Q4, 1, 2, V1, V2. yc1, yc2, yp1, yp2, yp3, and yp4 as well 

as the initial conditions of T1ss, T2ss, C1ss, C2ss, Cool1ss, and Cool2ss.  

This superstructure is assessed in a closed-loop condition with a Proportional – Integral (PI) 

controller structure. The optimum parameters values are optimized further using the scaling 

factors 1 and 2. The binary assignments related to controller and process structure are 

given in Table 1 and Table 2 respectively. 
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Figure 2 Dual CSTR problem 
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The superstructure model is as follows:  
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Table 1 Control parameters and logical assignments 

Control loop Binary Proportional  Reset  

i Control pair Assignment gain K i times I 

11 T1 - mc1 yc1 = 1 -3.876 9.346 

12 Cool1 - mc1. yc1 = 0 3.79 6.135 

21 T2 - mc2 yc2 = 1 -3.876 9.346 

22 Cool2 - mc2. yc2 = 0 3.79 6.135 

int1 T1 - mc2 yc2 = 0 0.0013 1.5 

idx = controller parameter index 

Table 2 Process structure and binary assignments 

Binary  
assignments 

Decision 
Binary 

assignments 
Decision 

yp1 = 0 Qf1 off yp1 = 1 Qf1 on 

yp2 = 0 Qf2 off yp2 = 1 Qf2 on 

yp3 = 0 Q3 off yp3 = 1 Q3 on 

yp4 = 0 Q4 off yp4 = 1 Q4 on 

The associated constraints for these design variables are as follows:  
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 (5) 

All process dynamics are simulated over 100 seconds time horizon with 1 -second intervals, 

and the outputs are Cool1, Cool2, mc1, mc2, and N; in addition to the state variables T1, T2, 

C1, C2, I11, I12, I21, and I22. The constraints g7-g14 relates the binary decisions to the flow-rate 

existence. These relationships guarantee the amounts of flow-rate if yp=1, and none 

otherwise. At least one of Qf1 or Qf2 and one of Q3 or Q4 should exist, and these are 
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represented by g23-g24, which are evaluated in the integer feasibility test. The combination of 

the constraints g23-g24 and the binary variables give rise to a 36 nodes enumeration tree at 

the dynamic MINLP problem.  

5.2 The Five-Effect Evaporator 

The five-effect evaporator superstructure is shown in Figure 3. The evaporator consists of 

one falling film, three counter-current forced circulation and one super-concentrator units. 

The controlled variables are the liquor levels hP1-5, the product density P5 and the 

product temperature TP5. The candidates of manipulated variables are the product flow 

rates QP1-5, the live steam MS3-5, and the vaporization rate in the final stage MV5. The 

energy transfers involve the live steam MS3-5, the vapor MV1-5, the condensates MC1-5, 

and the recycle streams MHF1-4. The disturbances are the fluctuations of the feed flow rate 

QF, the feed temperature TF and the cooling water temperature TCW, which have been 

sampled and held every 30 minutes. The interaction between these variables gives rise of 

32 Differential Algebraic Equations for each tank that develop the process model.  
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Figure 3 Five effect evaporator 

The superstructure facilitates the distribution of live steam to the last three stages, the 

mixing of vapor from stage 3 - 4, and the alternative matching between measurements and 

manipulated variables. The process structure is associated with the binary decision 

variables for the distribution of live steams, yP3-5. The variables determine the operation of 

three, four or five-effect modes to achieve the target density. At least one of the stages 3 or 

4 has to be operated; and if both are, the vapor from both stages is mixed.  
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Table 3 Control loops and parameters 

Dec-

ision  

Out-

put 

In- 

put 
Kc 

 

(hr) 
Note 

Dec- 

ision 

Out- 

put 
 

Input Kc  (hr) Note 

- hP1-4 QP1-4 25  always active yC4 P5 QP5 50 0.05 PI control 

yC1 hP1-4 QP1-4  1 I control yC5 P4 MS34 -30 2 

yC1 hP5  QP5  1 yC6 P5 MS5 100 1 

yC1 hP5  MV5  0.5 yC7 P5 MV5 -100 1 

yC2 hP5  QP5 25  P control yC8 TP5 MS5 -0.2 1 

yC3 hP5  MV5 20  yC9 TP5 MV5 -0.01 0.1 

The controller structure is represented by the binary decision variables yC1-9, which activate 

the control-loops properties of a multi-loop Proportional–Integral (PI) feedback control 

scheme as summarized in 
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Table 3. The gains Kc1-9 and the reset times 1-9 are pre-designed for stability. The binary 

variables are constrained such that each manipulated and controlled variable can only be 

used once within the control scheme, and only activated if the associated process structure 

is active. For instance, hP5-QP5 can only be activated if stage 5 is active. The parameters of 

active control loops can be tuned further with the scaling variables 0  1-9  2. The 

process optimization problem is associated with the maximization of the profit subject to the 

feasible process dynamics, as well as the logics of interconnection between the process and 

controllers. 

6  Results and Discussions 

The CSTR problems parameters include 14 continuous design variables, 6 binary design 

variables, 22 differential algebraic equations, 22 constraints and 2 logic propositions. 

Meanwhile, the Evaporator problems parameters include 40 continuous design variables, 9 

binary design variables, 160 differential algebraic equations, 22 constraints and 2 logic 

propositions. The worst case durations of operation are measured as the maximum duration 

for both cases in a Pentium IV Personal Computer, 2.4 GHz, 512 MB RAM with 0.05% 

confidence. Based on these measurements, TNLP and TDAE are 0.5 seconds and 0.2 

seconds respectively. Based on equation (2), the complexity indices for these cases, in 

comparison to the duration of experimental optimization results are:  

Table 4 Comparison between computational index and experimental duration 

Case  
CI  

(in seconds) 
Experimental duration  

(in seconds) 

Dual CSTR 797.5 301.2 

Evaporator  199484.91 83537.4 

Compared to the empirical results, the theoretical worst-case computational indices are 

twofold of the experimental durations. These show that the MINLP problems are solved 

efficiently in comparison to the worst case complexity. In these cases, the logic propositions 

provide the most contribution to fathom the structural nodes of the modified Branch and 

Bound algorithm. At cases, the proportionality and the gap between CI and the experimental 

duration gives a promising uses as the measure of computational efforts of process control 

design based on mathematical programming approach and further study of assessing the 

efficiency of optimization algorithms.  

7  Conclusion 

The worst case complexity of Dynamic Operability Framework has been formulated based on 

the size of the optimization problem specified by the number of continuous design variables 

nz , binary variables ny, and DAE describing the system i, operational constraints j and logic 

proposition jd, and samples of n. The resulting complexity indices are relatively 

proportional to the experimental duration and the gaps provide a promising use as the 

quantification of the efficiency of the algorithm.  
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