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Abstract 

We present the design of a quantum carry-lookahead adder using measurement-based quantum 
computation. The quantum carry-lookahead adder (QCLA) is faster than a quantum ripple-carry adder; 

QCLA has logarithmic depth while ripple adders have linear depth. Our design is evaluated in terms of 

number of time steps, number of measurements, the total number of qubits used and the number of 
successful clustering operations required. 
Keyword : Quantum Carry-Lookahead Adder, Cluster-State Computation 

Measurement-based quantum computation (MBQC) is a new paradigm for implementing 

quantum algorithms using a quantum cluster state [1][2][3]. MBQC is attractive because 

cluster states are considered to be easy to create on systems ranging from the polarization 

state of photons [4] to charge qubits. Quantum info rmation propagation in a cluster is 

driven by the pattern of measurement bases, regardless of the measurement outcomes 

[1][2]. A cluster is in the form of  
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Where v can be x, y, or z depending on the choice of interaction Hamiltonian between 

neighbors [4] and with the convention 11 N

 . In general, the cluster state should obey 

the quantum correlation equation 
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zyxji ,,,0 and  1,0ak where the upper index  a  represents a cluster site in the 

lattice and  b  is its neighbor site. The binary parameters ak are a set of binary parameters 

specifying the cluster state. 

We consider a two-dimensional rectangular lattice with Manhattan geometry. Employing 

quantum correlations for quantum computation, as stated in Raussendorf’s first theorem in 

[3], quantum gates can be simulated by measuring lattice qubits in a particular basis. All 

gates in the Clifford group, including CNOT, can be performed in one step time via a large 

number of concurrent measurements. Remarkably, because both wires and SWAP gates are 

in the Clifford group, MBQC supports long-distance gates in a single time step. The Toffoli 

Phase gate can be executed in two time steps, where the measurement basis for the 

second step is adapted depending on previous measurement outcomes. For many circuits, 

this adaptive measurement process results in circuit depths on MBQC that are the same as 

the abstract circuit definition. Those benefits can be seen as a potential resource to attack 

complex problems such as the quantum carry-lookahead adder. 
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Addition is a critical subroutine for algorithms such as Shor’s algorithm for factoring large 

numbers [5]. Addition can be executed in many ways, with its performance being primarily 

dependent on carry propagation. The simplest method is ripple-carry addition, which has 

depth of O(n) [6]. In a ripple-carry adder, carry information is propagated from the low -order 

qubits to the high order qubits one step at a time.  

Raussendorf et al. mapped the VBE ripple-carry adder to MBQC [3][6]. However, a ripple-

carry adder does not take good advantage of the strengths of MBQC. By unifying the 

Quantum Carry-Lookahead Adder (QCLA) with MBQC, we have designed a much faster 

circuit. 

The quantum carry-lookahead adder is potentially more efficient than a quantum ripple -

carry adder since its depth is O (log n) [7]. A carry lookahead adder uses three phases, the 

“Generate”, “Propagate”, and “Kill” networks, each of which progressively doubles the 

length of its span in each time step. In practice, the networks are somewhat redundant, and 

Draper et al. defined their circuit using only the P, C and G networks to calculate the final 

carry. Unfortunately, QCLA requires long-distance gates. The out-of-place form of the QCLA 

performs the unitary transformation :  

 bababa ,,|0,,|  where  ba || and ba|  are n - qubit registers. 

Our design for a 10-bit form of out-of-place QCLA on MBQC is shown in Figure1. The input 

qubits are on the left ( top in the rotated figure) and output states are on the right. The 

propagation of one qubits are spaced with a pitch of four lattice sites. Each large box 

outlines one round in the P,G, or C networks. The circuit is presented in unoptimized form 

for clarity. 

In our circuit, the depth is reduced to     5)3/(log)(log14 22  nn  compared to 

)(n for the ripple-carry. However, this circuit costs more in physical resources, 

 )log(237395 nn   compared to n304 for the ripple carry.  
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Figure 1 MBQC QCLA circuit 

Preferences 

[1]  R.Raussendorf and H.J. Briegel. A One-Way Quantum Computer. Phys. Rev. Lett. 86, 

5188 (2001). 

[2] H.J. Briegel and R. Raussendorf. Persistent Entanglement in Arrays of Interacting 

Particles. Phys. Rev. Lett . 86, 910 (2001). 



J.Oto.Ktrl.Inst (J.Auto.Ctrl.Inst)   Vol 1 (1), 2009  ISSN : 2085-2517 
 

 

24 

 

[3] Robert Raussendorf, aniel E. Browne, and Hans J. Briegel. Measurement-Based 

Quantum Computation on Cluster States. Phys. Rev. A68, 022312 (2003). 

[4] P.Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer 

and A. Zeilinger. Nature (London) 434,176 (2005). 

[5] P.W. Shor. Polynomial -time algorithms for prime factorization and discrete logarithms on 

a quantum computer. SIAM J. on Comp, 26(5):1484-1509, 1997. 

[6] Vlatko Vedral, Adriano Barenco, and Artur Ekert. Quantum networks for elementary 

arithmetic operations. Phys. Rev. A54, 147 (1996). 

[7] T. Draper, S. Kutin, E. Rains, and K. Svore. A Logarithmic-Depth Quantum Carry-

Lookahead Adder. J. on. QIC 6, 4-5, 351-369 (2006). 

 

 

 
 

 
 


