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Abstract

In this article, we propose and analyze a mathematical model of COVID-19 transmission among a closed
population, with social awareness and rapid test intervention as the control variables. For this, we have
constructed the model using a compartmental system of the ordinary differential equations. Dynamical analysis
regarding the existence and local stability of equilibrium points is conducted rigorously. Our analysis shows
that COVID-19 will disappear from the population if the basic reproduction number is less than one, and
persist if the basic reproduction number is greater than one. In addition, we have shown a trans-critical
bifurcation phenomenon based on our proposed model when the basic reproduction number equals one. From
the elasticity analysis, we have observed that rapid testing is more promising in reducing the basic reproduction
number as compared to a media campaign to improve social awareness on COVID-19. Using the Pontryagin
Maximum Principle (PMP), the characterization of our optimal control problem is derived analytically and
solved numerically using the forward-backward iterative algorithm. Our cost-effectiveness analysis shows that
using rapid test and media campaigns partially are the best intervention strategy to reduce the number of
infected humans with the minimum cost of intervention. If the intervention is to be implemented as a single
intervention, then using solely the rapid test is a more promising and low-cost option in reducing the number
of infected individuals vis-a-vis a media campaign to increase social awareness as a single intervention.

Keywords: COVID-19, social awareness, rapid test, basic reproduction number, transcritical bifurcation,
optimal control, cost-effectiveness analysis.
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1. INTRODUCTION

The Coronavirus disease 2019, also known as COVID-19, is an infectious disease caused by a new type
of coronavirus (SARS-CoV-2) known to have originated in December 2019 in the city of Wuhan in China
[1]. COVID-19 is a human-to-human transmitted disease, transmitted through direct contact with infected
individuals or objects that had been contaminated with the virus on the surfaces [2]. The symptoms of COVID-
19 resemble those of ordinary flu but could lead to death as a consequence of the difficulty in breathing for
patients in advanced stages. Till now, there is no medicine to cure infected individuals [3].

Policymakers have been forced to use many types of interventions to control the rapid spread of COVID-
19. These include physical/social distancing, use of face masks, quarantine, hospitalization, rapid testing, and
vaccination [2]. Due to the limited availability of vaccines in the community, the most popular and effective
way to control the spread of COVID-19 is to prevent infection through non-pharmaceutical interventions
such as physical distancing, use of medical masks, quarantine, use of disinfectants, contact tracing, etc. [3].
Among the strategies implemented the most to minimize the risk of infection are social distancing and the
use of medical masks. The implementation of these strategies can be more effective if the level of social
awareness is high in the population concerned [4].
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Since early 2020, many mathematical models have been introduced by many authors from all over the
world to understand the dynamics of COVID-19’s spread among different populations. Many approaches have
been used by these authors such as ordinary differential equations [5], [6], [7], [8], [9], partial differential
equation [11], statistics [12], [13], [14], artificial intelligence and optimal control approaches [15], [16].
Their research has covered several important factors such as the impact of vaccination [10], social distancing
[1], [17], hospitalization [18], contact tracing [18], [19], and social awareness [2], [3], [4], [17]. From the
previously mentioned literature, several important results are presented. Firstly, the role of social distancing is
significant in reducing the spread of COVID-19 in various countries, even in some cases better than vaccination
intervention. Secondly, the role of hospitalization in reducing the number of COVID-19 infections is not as
significant as social distancing. Even so, hospitalization is still needed to accelerate the rate of recovery
of cases detected by COVID-19 and to avoid further death rate induced by COVID-19. Another result is
that contact tracing coupled with the isolation of detected cases has a significant effect in reducing the
number of new COVID-19 infections. Finally, the role of media campaigns is important to increase social
awareness. It is needed as a companion to other interventions such as vaccination and social distancing
because the potential target of social awareness is wider than other interventions. Hence, we can conclude
that the massive implementation of mentioned interventions will reduce the spread of COVID-19. However,
this kind of policy will entail costly interventions. Hence, it is important to determine the best strategy to
combat the spread of COVID-19. One option is to use the strategy of optimal control problem. Furthermore,
to determine the best strategy, cost-effectiveness analysis can also be carried out to analyze this problem.

Thus, this article aims to analyze the impact of human awareness and rapid testing as efforts to reduce
the spread of COVID-19. To test the validation of our model, we have used the incidence data from the
city of Jakarta in Indonesia pertaining to the initial phase of the disease. We conducted a mathematical
analysis to understand the qualitative behavior of the model, which is related to the existence and local
stability criteria of the equilibrium points and how these depend on the size of the basic reproduction number.
Moreover, bifurcation analysis of the model was conducted using the center manifold approach. An optimal
control problem is conducted to see how a time-dependent intervention could reduce the number of infected
individuals while keeping the cost of intervention low. A cost-effectiveness analysis is carried out to determine
the best possible scenario to be implemented in the field.

This article is organized as follows. In Section 2, we construct our model using several assumptions. We
analyze our proposed model in Section 4, followed by elasticity and autonomous simulation in Section 5.
The characterization of the optimal control problem is given in Section 6. The numerical experiments of
the optimal control problem and cost-effectiveness analysis are detailed in Section 7. Finally, we present the
conclusions in Section 8.

2. MODEL CONSTRUCTION

In this section, we construct the model for the spread of COVID-19 carefully, using government campaign
interventions to increase awareness and rapid tests as a pair of possible interventions. To start with, based
on their health and their awareness status, the population was categorized as follows: susceptible without
awareness (Su), susceptible with awareness (Sa), exposed (E), undetected infected individuals (Iu), detected
infected individuals (Id), and recovered individuals (R). For a detailed description of each of these categories;
see Table 1, and Figure 1 for the transmission process of our model.

The assumptions of our model are as follows.
1) The population is closed, and the migration is neglected.
2) Each individual in the population is homogeneous in the sense of how they respond to this disease.
3) All new-born are assumed to be susceptible and unaware of COVID-19.
4) Both susceptible without awareness (Su) and susceptible with awareness (Sa) can be infected with

COVID-19, with a successful transmission rate of β1 and β2, respectively. Due to awareness of Sa,
we assume that β2 < β1.

5) Due to hospitalization/forced self-quarantine, only undetected infected individuals can transmit the
virus, while the individuals whose infection has been detected cannot. In the proposed model, we
assume that hospitalization/quarantine perfectly isolates from the infected individual. With this as-
sumption, we neglect a ”local” infection in the hospital for the hospital worker.

6) Infected compartment (Id, Iu) may die due to COVID-19 with the same rate of ξ.
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Figure 1: Transmission diagram for COVID-19 with social awareness and rapid test.

Table 1: Description of model variables given in system (1).

Variable Description

Su Susceptible without awareness (Su) is a population that is not infected and does not care about the presence of COVID-19. Usually, individuals
belonging to this category roam around freely, without observing the precautions such as wearing masks and maintaining social distance.

Sa Susceptible with awareness (Sa) is a population that is not infected and cares about the presence of COVID-19. Individuals falling in this category
usually do not roam freely, without ruling out the possibility of doing so. Even if they roam freely, they adhere to the suggested health protocols.

E Exposed (E) are residents who have contracted COVID-19, but did not transmit the disease to others. This is usually called the latent phase.

Iu Infected but not detected (Iu) is the population infected with COVID-19 that can transmit the disease to other individuals. They are individuals who
roam so they are not detected as infected with COVID-19.

Id Infected and detected (Id) is the population infected with COVID-19 that has been detected. However, as their infection was detected, they had to
be self-isolated or taken to the hospital for treatment. Therefore, they cannot infect other people.

R Recovered (R) is the population that has recovered from the COVID-19 disease.

7) Due to a media campaigns to increase social awareness about the dangers of COVID-19, we assume
that there is a transition rate of u1 from Su to Sa. However, the awareness of individuals is not for
lifetime. Hence, there is a dropout rate from Sa to Su, namely as γ.

8) Rapid test intervention (u2) conducted to detect infected individuals.
Based on the transmission diagram in Figure 1 and the above assumptions, the COVID-19 model with

social awareness and rapid test can be expressed in the nonlinear system of differential equations stated
below.

dSu
dt

= Λ− β1SuIu − u1Su + γSa − µSu,
dSa
dt

= u1Su − γSa − β2SaIu − µSa,
dE

dt
= β1SuIu + β2SaIu − αE − µE,

dIu
dt

= (1− p)αE − δIu − ξIu − u2Iu − µIu, (1)

dId
dt

= pαE − δId − ξId + u2Iu − µId
dR

dt
= δ(Iu + Id)− µR,

completed with a non-negative initial condition at t = 0; see Table 2 for the description of each parameter.
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Having used a similar approach in our previous work [1], [2], it is clear that our model always has a positive
solution for all situations t > 0 as long as the initial condition is non-negative, and positively invariant in
the region of

Ω =

{
(Su, Sa, E, Iu, Id, R) ∈ R6

+|0 ≤ Su + Sa + E + Iu + Id +R ≤ Λ

µ

}
.

Table 2: Model parameters with their descriptions and estimated values

Parameter Description Value Source
Λ Human recruitment rate 107/(70× 365) [4]
p Proportion of individuals who move from the exposed to the infected and

detected compartment
0.4 [20], [21]

1− p Proportion of individuals who move from the exposed to the infected but not
detected group

0.6 [20], [21]

u1 Rate of government intervention to raise social awareness [0, 1] estimated
u2 Rate of government intervention to conduct rapid tests [0, 1] estimated
α Incubation rate 1/5.1 [22], [23], [24], [25]
β1 Rate of transmission of unaware susceptible individuals 1.85× 10−7 fitted
β2 Rate of transmission of aware susceptible individuals 8.3× 10−8 fitted
γ Drop-out rate from aware to unaware susceptible group 0.1 [2]
δ Natural recovery rate 0.1 [2]
µ Natural death rate 1/(70× 365) [26]
ξ Death rate due to COVID-19 0.05 [10]

3. PARAMETER ESTIMATION

To validate our model, we estimate our infection rate (β1, β2) in system (1) using incidence data from
the city of Jakarta, during the early phases of COVID-19 spread in the city (March 3- April 10, 2020). We
intend to minimize the Euclidian distance between Id from incidence data and the simulation results from
system (1), using the best fit parameter of β1 and β2. This task read as minimizing the following function

SE =

m∑
n=1

(
Idata
d − Isolution

u

)2
,

where Idata
d present incidence data, and Isolution

d present the solution of Id form system (1) using the best fit
parameter of β1 and β2. These parameters were estimated using the “lsqnonlin” built-in function in MATLAB.
The initial guess for initial conditions and estimated parameters were chosen at the first iteration, and will be
updated in each next iteration until convergence criteria achieved (|SE(i+1)thiteration−SE(i)thiteration| < 10−2).

Our aim is to capture the initial COVID-19 parameter value in Jakarta where interventions have not yet
been implemented. Hence, we assume that in the early spread of COVID-19, the effort from the government
to conduct rapid tests and media campaigns to develop community awareness were not yet significantly
implemented. Hence, we assume that u1 = u2 = 0 in this period of simulation (March 3 - April 10, 2020).
The result given for the curve fitting can be seen in Figure 2, and the parameters are given in Table 1.

4. MODEL ANALYSIS

This section explores the qualitative behavior of our proposed model in system (1) regarding the existence
and local stability of all possible equilibrium points and how these criteria related to the basic reproduction
number of the model.

4.1. Disease Free-Equilibrium (DFE) and the Basic Reproduction Number
DFE point is a condition in which the disease outbreak in a population will decrease over time. This

means that for t→∞, there are no more individuals classified as exposed (E), infected and detected (Id), and
infected but undetected (Iu). Taking the right-hand-side of system (1) as equal to zero and E = Iu = Id = 0,
the model’s DFE point is expressed as follows:
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Figure 2: Curve fitting simulation results.

DFE = (S0
u, S

0
a, E

0, I0
u, I

0
d , R

0) = (
(γ + µ) Λ

µ (γ + µ+ u1)
,

u1Λ

µ (γ + µ+ u1)
, 0, 0, 0, 0).

In many mathematical models, the local stability of DFE is related to a condition of the basic reproduction
number (R0) less than unity [2], [4], [27]. The basic reproduction number indicates the number of newly
infected individuals caused by the primarily infected individual during the period of transmission to fully
susceptible individuals. We calculate our respected R0 of system (1) using the Next Generation Matrix
(NGM) method. The idea to obtain the NGM method is by decomposition of the linearize matrix of the
infected compartment at DFE. The obtained decomposition matrix contains a transmission component
(T ) and another transition component (Σ). The transmission component is a component that contains the
transmission parameters on the model. Furthermore, the transition component is a component that contains
parameters that are displaced / change in the infection process. After the decomposition matrix is linearized
using the Jacobian matrix, DFE is substituted into the matrix, leading to the following:

T =


0 u1Λ β2

µ (γ+µ+u1) + (γ+µ)Λ β1

µ (γ+µ+u1) 0

0 0 0

0 0 0

 ,
and

Σ =

 −α− µ 0 0

−αp+ α −µ− ξ − δ − u2 0

αp u2 −µ− ξ − δ

 .
The basic reproduction number of the system (1) is taken from the spectral radius of respected NGM ,

where NGM = −Et∗TΣ−1E∗,
where

E∗ =

 1

0

0

 .



COVID-19 TRANSMISSION MODEL WITH AWARENESS AND RAPID TEST 51

Hence, the value of R0 indicated by the following expression:

R0 =
α (1− p) (γ β1 + β1µ+ u1β2) Λ

µ (α+ µ) (δ + µ+ ξ + u2) (γ + µ+ u1)
. (2)

With the expression of the basic reproduction number in equation (2), the local stability of DFE is
furnished in the following theorem:

Theorem 4.1. The COVID-19 free equilibrium is locally stable if R0 < 1, and unstable when R0 > 1.

Proof: The Jacobian matrix of system (1) evaluated on DFE is given by

J =



−µ− u1 γ 0 − (γ+µ)Λ β1

µ (γ+µ+u1) 0 0

u1 −γ − µ 0 − u1Λ β2

µ (γ+µ+u1) 0 0

0 0 −α− µ u1Λ β2

µ (γ+µ+u1) + (γ+µ)Λ β1

µ (γ+µ+u1) 0 0

0 0 −αp+ α −δ − µ− ξ − u2 0 0

0 0 αp u2 −δ − µ− ξ 0

0 0 0 δ δ −µ


. (3)

Matrix J has six eigenvalues, where four of them are explicitly negative, as indicated below:

−µ,−µ,−(δ + µ+ ξ), and − (u1 + γ + µ).

The two other eigenvalues are taken from the following quadratic polynomial:

a2λ
2 + a1λ+ a0 = 0.

where

a2 = µ (u1 + γ + µ) ,

a1 = µ (u2 + α+ δ + 2µ+ ξ) (u1 + γ + µ) ,

a0 = µ (α+ µ) (u1 + γ + µ) (u2 + δ + µ+ ξ) (1−R0) .

Based on the above equation, all the roots will have a negative real part if a2, a1, and a0 > 0. Therefore,
in this case, it must be R0 < 1. On the other hand, if R0 > 1, then we have one positive eigenvalues.
Therefore, we have that DFE is unstable when R0 > 1. Hence, the proof is completed.

The expression ofR0 on equation (2) is directly proportional to the term of (1−p) and inversely proportional
to rapid test rates u2. Since 1−p describe a proportion of exposed individuals who progress to be undetected
infected individuals, we can notice that more people can be detected (voluntarily go to the hospital or through
rapid test) can reduce the basic reproduction number. More discussion on the impact of each parameters on
R0 will be discussed in section 5.

4.2. The Endemic Equilibrium Point

Another equilibrium point is the non-trivial one, called the endemic disease (EE) equilibrium point. Disease
endemic equilibrium point (EE) is a condition where a disease in a population becomes an epidemic over
time. The endemic equilibrium point of system (1) is given by

EE = (S∗u, S
∗
a , E

∗, I∗u, I
∗
d , R

∗),
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where

S∗u =
Λ (I∗uβ2 + γ + µ)

Iu
∗2β1β2 + γ I∗uβ1 + µ I∗uβ1 + µ I∗uβ2 + I∗uβ2u1 + γ µ+ µ2 + µu1

,

S∗a =
Λu1

I∗u
2β1β2 + γ I∗uβ1 + µ I∗uβ1 + µ I∗uβ2 + I∗uβ2u1 + γ µ+ µ2 + µu1

,

E∗ =
(δ + µ+ ξ + u2) I∗u

α (1− p)
,

I∗u = f(Iu),

Id = −I
∗
u (δ p+ µ p+ pξ + u2)

((δ + µ+ ξ)(1− p))
,

R =
δ (δ + µ+ ξ + u2) I∗u
((δ + µ+ ξ)(1− p))µ

,

and I∗u is taken from the positive root of the following polynomial :

f (Iu) := A2Iu
2 +A1Iu +A0 = 0.

with
A2 = β1β2(α+ µ) (δ + µ+ ξ + u2) ,

A1 = αβ1β2 (p− 1) Λ + (α+ µ) (δ + µ+ ξ + u2) (γ β1 + β1µ+ β2µ+ u1β2) ,

A0 = µ(α+ µ)(µ+ γ + u1)(δ + µ+ ξ + u2)(1−R0).

It can be seen from the expression of all variables in EE that these equilibriums will be on R6
+ if

I∗u > 0. Hence, it is crucial to determine the criteria to guarantee the positivity of I∗u. It is trivial that since
A0 > 0 ⇐⇒ R0 > 1, we have exactly one real positive roots of f(Iu) when R0 > 1. Hence, we have one
endemic equilibrium when R0 > 1. However, since f(Iu) is a second degree polynomial, it is possible to
that f(Iu) have zero or two positive roots.

To analyze this, we can determine a condition of parameters such that A0

A2
> 0, −A1

A2
> 0, and A2

1−4A2A0 ≥
0. However, this condition is difficult to show due to its complex expression of A0, A1, and A2. Hence, we
will use a gradient analysis in a point of R0 = 1, Iu = 0. The idea of this analysis is the following: As
mentioned in Theorem 4.1, and analysis on previous paragraph regarding the existence of EE when R0 > 1,
we can see that R0 = 1 has the potential to become a critical value which determines the existence and
local stability of equilibrium points. Hence, it is important to analyze the gradient of f(Iu) at R0 = 1. If
the gradient is always positive, hence we never have any equilibrium points when R0 < 1. On the other
hand, if the gradient can be negative (under some conditions), then it is possible to have at least one endemic
equilibrium point where R0 < 1.

To do this, we rewrite each coefficient on f(Iu) as a function depends on R0. Therefore, we redefine β1

as a function of R0 as follows:

β1 =
R0 (α+ µ) (u1 + γ + µ) (u2 + δ + µ+ ξ)− β2u1α (1− p) Λ

α (1− p) (γ + µ) Λ
.

Substituting β1 into A2 and A1, then A2 and A1, are functions that contain R0, as well as A0. This
indicates that if R0 > 1, system (1) will always have one endemic point. In addition, we investigate the
possibility to have two endemic equilibriums (or none) if R0 < 1.

Taking the partial derivative of Iu with respect to R0 from the expression of f(Iu), we have

∂A2

∂R0
I2 +A22I

∂I

∂R0
+
∂A1

∂R0
I +A1

∂I

∂R0
+
∂A0

∂R0
= 0.

Substitute (R0, I) = (1, 0) to the above equation and solve it with respect to ∂I
∂R0

yield:

∂I

∂R0
= −

∂A0

∂R0

A1
.
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Since,

∂A0

∂R0
=− µ2(1− p)(α+ µ)(u1 + γ + µ)(u2 + δ + µ+ ξ)

(1− p)(γ + µ)
− γµ(1− p)(α+ µ)(u1 + γ + µ)(u2 + δ + µ+ ξ)

(1− p)(γ + µ)
< 0.

and A1 > 0, we have that
∂I

∂R0
> 0. As mentioned before, since

∂I

∂R0
is always positive, then the gradient

of f(Iu) is always tends to the right on R0 = 1. This means that no positive roots when R0 < 1. In other
words, there is no endemic point when R0 < 1. We express this result in the following theorem:

Theorem 4.2. System (1) has a unique endemic equilibrium ifR0 > 1, and no endemic equilibrium otherwise.

4.3. Bifurcation Analysis

We conduct a bifurcation analysis for system (1) using the Castillo-Song theorem [28]. The idea of this
theorem is to show that there is a zero eigenvalue of system (1), while the other eigenvalues are negative at
the DFE and R0 = 1. The next approach is to analyze it using the center-manifold theory.

To simplify the notation, we rewrite Su = x1, Sa = x2, E = x3, Iu = x4, Id = x5, R = x6 and
then substitute it to system (1). Therefore, we have dx

dt = F (x) with F = (f1, f2, f3, f4, f5, f6)T , X =
(x1, x2, x3, x4, x5, x6)T which are stated as follows :

f1 :=
dx1

dt
= Λ + γx2 − β1x1x4 − u1x1 − µx1,

f2 :=
dx2

dt
= u1x1 − β2x2x4 − γx2 − µx2,

f3 :=
dx3

dt
= β1x1x4 + β2x2x4 − αx3 − µx3, (4)

f4 :=
dx4

dt
= (1− p)αx3 − u2x4 − δx4 − µx4 − ξx4,

f5 :=
dx5

dt
= pαx3 + u2x4 − δx5 − µx5 − ξx5,

f6 :=
dx6

dt
= δx4 + δx5 − µx6.

Taking β1 as the bifurcation parameter with the expression is the same as in the previous section, we
substitute it together with R0 = 1 to the Jacobian matrix of the above system, we have:

J1 =



−µ− u1 γ 0 − (γ+µ)Λ β∗

µ (γ+µ+u1) 0 0

u1 −γ − µ 0 − u1Λ β2

µ (γ+µ+u1) 0 0

0 0 −α− µ u1Λ β2

µ (γ+µ+u1) + (γ+µ)Λ β∗

µ (γ+µ+u1) 0 0

0 0 −αp+ α −δ − µ− ξ − u2 0 0

0 0 αp u2 −δ − µ− ξ 0

0 0 0 δ δ −µ


. (5)

From the expression of J1, we have a simple zero eigenvalue, while the others are negative (We do not
show the expression of all negative eigenvalues due to their long expression). Thus, the center-manifold
theory can be used to analyze the bifurcation of system (4).
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Further, J1 has a right eigenvector denoted by w = (w1, w2, w3, w4, w5, w6)T given by

w1 =
(δ + µ+ ξ)β2u1(1− p)Λ

δ(γ + µ+ +u1)2(δ + µ+ ξ + u2)
− (δ + µ+ ξ)(α+ µ)(γ + µ)

δα(γ + µ+ u1)
< 0,

w2 = (αβ2u1(p− 1)Λ)− ((α+ µ)(γ + µ+ u1)(δ + µ+ ξ + u2)u1) < 0,

w3 =
µ(δ + µ+ ξ)

αδ
> 0,

w4 =
µ(δ + µ+ ξ(1− p))
δ(δ + µ+ ξ + u2)

> 0,

w5 =
µ(δp+ µp+ ξp+ u2)

δ(δ + µ+ ξ + u2)
> 0,

w6 = 1.

and a left eigenvector denoted by v = (v1, v2, v3, v4, v5, v6)T given by v1 = v2 = v5 = v6 = 0, v3 = α(1−p),
and v4 = α + µ. Since v1 = v2 = v5 = v6 = 0, it is sufficient to calculate the partial derivatives of f3 and
f4. Using the Castillo-Song theorem, we find the values of A and B as follows:

A =

6∑
i,j=1

v3wiwj
∂2f3

∂xi∂xj
+

6∑
i,j=1

v4wiwj
∂2f4

∂xi∂xj
,

B =

6∑
i,j=1

v3wi
∂2f3

∂xi∂β∗
+

6∑
i,j=1

v4wi
∂2f4

∂xi∂β∗
.

where:

A = 2
(1− p)αµ (δ + µ+ ξ (1− p))β1

(δ + µ+ ξ + u2) δ

(
δ

(
− (δ + µ+ ξ)β2u1 (p− 1)

(γ + µ+ u1)2 (δ + µ+ ξ + u2) δ

)
Λ +A0

)
,

B =
(1− p)α(δ + µ+ ξ(1− p))(γ + µ)Λ

(δ + µ+ ξ + u2)δ(γ + µ+ u1)
.

with,

A0 =δ

(
− (δ + µ+ ξ)(αγ + αµ+ γ µ+ µ2)

δ α (γ + µ+ u1)

)
+ 2

(
(1− p)αµ (δ + µ+ ξ (1− p))(β2u1α (p− 1)Λ

(δ + µ+ ξ + u2)δ

)
− 2

(
(α+ µ)(δ + µ+ ξ + u2)(γ + µ+ u1)u1)β2

(δ + µ+ ξ + u2)δ

)
.

It is found that A < 0 and B > 0. This indicates that system (6) forms a forward bifurcation at R0 = 1.
Hence, we have the following theorem:

Theorem 4.3. The COVID-19 model in system (1) always exhibits a transcritical bifurcation at R0 = 1.

As a consequence of transcritical bifurcation phenomena that appear when R0 = 1, we can conclude that
the endemic equilibrium is always locally asymptotically stable when R0 > 1, but close to one. It means
that COVID-19 will always disappear from the community as long as we can keep the value of R0 at less
than unity. To determine the best strategy to reduce the value of R0, we should understand which parameter
is the most significant in determining the magnitude of R0. Hence, we proceed to the next section, where
we discuss the sensitivity and elasticity of R0.

5. NUMERIC SIMULATION

5.1. The Elasticity of the Basic Reproduction Number
As mentioned earlier, it is important to determine which parameter is the most promising and can be

changed to manipulate the size of R0. Hence, we conduct an elasticity analysis of R0 using the following
formula :

εPR0
=
∂R0

∂P
× P

R0
,
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where P is any parameter on system (1). If the elasticity is negative, then increasing the parameter will reduce
the magnitude of R0. Using this formula, the local elasticity of each parameters in system (1) is expressed
as follows :

εβ1R0
=

∂R0

∂β1
.
β1

R0
=

(γ + µ)β1

γβ1 + µβ1 + u1β2
> 0

εβ2R0
=

∂R0

∂β2
.
β2

R0
=

u1β2

γβ1 + µβ1 + u1β2
> 0

εαR0
=

∂R0

∂α
.
α

R0
=

µ

α+ µ
> 0

εγR0
=

∂R0

∂γ
.
γ

R0
=

µ

α+ µ
> 0

εpR0
=

∂R0

∂p
.
p

R0
= − p

1− p < 0

εu1
R0

=
∂R0

∂u1
.
u1

R0
= − (β1 − β2)(γ + µ)u1

(γβ1 + µβ1 + u1β2)(γ + µ+ u1)
< 0

εu2
R0

=
∂R0

∂u2
.
u2

R0
= − u2

δ + µ+ ξ + u2
< 0

εδR0
=

∂R0

∂δ
.
δ

R0
= − δ

δ + µ+ ξ + u2
< 0

εξR0
=

∂R0

∂ξ
.
ξ

R0
= − ξ

δ + µ+ ξ + u2
< 0

εΛR0
=

∂R0

∂Λ
.

Λ

R0
= 1 > 0,

while εµR0
is always negative, it has too long an expression to be shown in this article. So, by substituting

the parameter values in Table 1, and supposing u1 = u2 = 0.1, we get the following results:

εβ1

R0
= 0.691

εβ2

R0
= 0.308

εαR0
= 0.00019

εγR0
= 0.1504

εpR0
= −0.6667

εµR0
= −1.0002

εu1

R0
= −0.1909

εu2

R0
= −0.3414

εδR0
= −0.4877

εξR0
= −0.1707

εΛR0
= 1.

Each value of the elasticity above presents a percentage value of R0, whenever the parameter changed.
For example, when εβ1

R0
= 0.691, it means that reducing β1 for 10% for its current value in Table 1, R0 will

be reduced to 6.91%. On the other hand, since εu1

R0
= −0.1909, increasing the magnitude of u1 for 10% will

reduce the value of R0 to 1.909%. To see which parameter is the most elastic to R0; see Figure 3. It can
be seen that µ is the most elastic parameter to R0. However, as we cannot change the value of µ, we may
ignore this result. The reason is similar to the recruitment rate too (Λ). On the other hand, we can see that β1

is the most elastic changeable parameter. Hence, it is a very reasonable policy to enforce a ”mini lockdown”
in the city of Jakarta to control the spread of COVID-19 in the early period of the outbreak. Interestingly,
we can see that although u1 and u2 have a negative sign of elasticity, the value of |εu2

R0
| > |εu1

R0
|. This means

that rapid testing is more promising to control the spread of COVID-19 than media campaigns to increase
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social awareness. However, we can not ignore the importance of social awareness in the case of COVID-19’s
transmission mechanism, as higher awareness in the community will reduce the possibility of people being
infected by COVID-19. Thus, it is important to adopt the best combination strategy of these two types of
control, which we shall discuss in the next section.

Figure 3: Tornado Diagram: Elasticity of R0

5.2. Autonomous Simulations
From the previous section, we can see the importance of choosing a proper value of u1 and u2 to determine

the size of R0. Therefore, in this section, we conduct an autonomous simulation to see the impact of u1 and
u2 on the dynamics of all infected individuals. We use the same value as stated in Table 1 and substitute
it into the system (1). Before we show the autonomous simulation on the effect of u1 and u2, we should
understand the impact of u1 and u2 on the size of R0. A dependency of R0 with respect to u1 and u2 is
shown in Figure 4. It can be seen that when the parameters u1 and u2 are zero, the value of R0 is very high,
i.e., it has high endemic potential. On the other hand, if u1 and u2 are large at the same time, then R0 will
get smaller.

Figure 4: Sensitivity of u1 and u2 on R0
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Next, we solve our set of ordinary differential equations using a Runge-Kutta numerical method, with the
same set of parameters as in the previous figure. The results are shown in Figure 5.

Figure 5: The trajectories of E,Iu, and Id for the different values u1 and u2 when u1 = u2 = 0.05, 0.1, 0.2, and 0.8
for blue, red, purple, and green, respectively

In Figure 5, it can be seen that increasing the value of the u1 and u2 parameters will reduce the total
number and the outbreak level of infected populations. Furthermore, the large intensity of u1 and u2 also
delays the appearance of the outbreak. In other words, government intervention, by increasing social awareness
through media campaigns (u1) and carrying out rapid tests (u2), succeeds in controlling the epidemic level
of COVID-19. A higher intensity of both the controls will give a better result for eliminating COVID-19
from the population. However, we should notice that the high intensity of these interventions comes with
higher cost of intervention. Hence, we should find a policy to combine these interventions. Using simple
logic, these interventions should consider the number of infected individuals at each time. When the number
of infected individuals starts increasing, the intensity of these interventions should be increased. On the other
hand, when the number of infected individuals starts to decrease (or is a low number), then the intensity of
the interventions should be low for the sake of budget economies.

6. OPTIMAL CONTROL CHARACTERIZATION

Based on the level of need in disease control efforts, various efforts were made by various parties concerned
to provide cost-effective interventions to optimize control outcomes. In implementing this intervention, various
costs must also be minimized: not only the costs of intervention but also indirect costs associated with the
field implementation process with due regard to the number of people infected in the field. One option is to
choose a time-dependent intervention for our model. Hence, we change a constant u1 and u2 in system (1)
as a time-dependent variable, namely u1(t) and u2(t), respectively. Hence, system (1) now reads as follows:

dSu
dt

= Λ + γSa − β1SuIu − u1(t)Su − µSu,
dSa
dt

= u1(t)Su − β2SaIu − γSa − µSa,
dE

dt
= β1SuIu + β2SaIu − αE − µE, (6)

dIu
dt

= (1− p)αE − u2(t)Iu − δIu − µIu − ξIu,
dId
dt

= pαE + u2(t)Iu − δId − µId − ξId,
dR

dt
= δIu + δId − µR.
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The aim of the optimal control problem in this article is to minimize the total number of infected individuals
(E, Iu, Id) at as low a cost of intervention as possible (u1(t), u2(t). Hence, we aim to minimize the following
cost function:

J =

∫ T

0

(ϕ1u
2
1 + ϕ2u

2
2 + ω3E + ω4Iu + ω5Id)dt. (7)

To solve this, we first set the following Hamiltonian function:

H =ϕ1u
2
1 + ϕ2u

2
2 + ω3E + ω4Iu + ω5Id + λ1(Λ + γSa − β1SuIu − u1Su − µSu) + λ2(u1Su−

β2SaIu − γSa − µSa) + λ3(β1SuIu + β2SaIu − αE − µEt) + λ4(αE − pαE − u2Iu−
δIu − µIu − ξIu) + λ5(pαE + u2Iu − δId − µId − ξId) + λ6(δIu + δId − µR).

where λi for i = 1, 2, 3, 4, 5, 6 is the adjoint variables.

Theorem 6.1. Given optimal control pairs (u∗1, u
∗
2) and solutions Su (t) , Sa (t) , E (t) , Iu (t) , Id (t) and

R(t) of the state system (7), there exist adjoint variables λi for i = 1, 2, 3, 4, 5, 6 which satisfy the following
adjoint systems:

λ̇1 = λ1β1Iu + λ1u1 + λ1µ− λ2u1 − λ3β1Iu

λ̇2 = −λ1γ + λ2β2Iu + λ2γ + λ2µ− λ3β2Iu

λ̇3 = −ω3 + λ3α+ λ3µ+ λ4pα− λ4α− λ5pα (8)

λ̇4 = −ω4 + λ1β1Su + λ2β2Sa − λ3β1Su − λ3β2Sa + λ4u2 + λ4δ + λ4µ+ λ4ξ − λ5u2 − λ6δ

λ̇5 = −ω5 + λ5δ + λ5µ+ λ5ξ − λ6δ

λ̇6 = λ6µ,

with the terminal condition given by λi (T ) = 0 for i = 1, 2, 3, 4, 5, 6. Further, the optimal control pair is
given by

u∗1 (t) = min

(
umax

1 ,max

(
umin

1 ,
Su (λ1 − λ2)

2ω1

))
,

u∗2 (t) = min

(
umax

2 ,max

(
umin

2 ,
Iu (λ4 − λ5)

2ω2

))
.

(9)

Proof. Using the Pontryagin Maximum Principle [31], the adjoint system (8) is taken from the partial
derivatives of the Hamiltonian H with respect to each state variable, as follows:

λ̇1 = − ∂H
∂Su

, λ̇2 = − ∂H
∂Sa

, λ̇3 = −∂H
∂E

, λ̇4 = −∂H
∂Iu

, λ̇5 = −∂H
∂Id

, λ̇6 = −∂H
∂R

.

with the transversality condition λi (T ) = 0 for i = 1, 2, 3, 4, 5, 6. Taking the derivative of the Hamiltonian
H with respect to u1 equal to zero, and solving it with respect to u1 yields

u+
1 =

Su (λ1 − λ2)

2ω1
.

Similarly, for u2 we have

u+
2 =

Iu(λ4 − λ5)

2ω2
.

Taking the upper and lower bound of each control variable, we have

u∗1 (t) = min

(
umax

1 ,max

(
umin

1 ,
Su (λ1 − λ2)

2ω1

))
,

u∗2 (t) = min

(
umax

2 ,max

(
umin

2 ,
Iu (λ4 − λ5)

2ω2

))
.
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7. OPTIMAL CONTROL SIMULATION

To solve our optimal control problem, which consists of state system, in (6), adjoint system in (8), pair of
optimal value of control variables in (9), initial condition for each state system at t = 0, and transversality
condition λi(t = T ) = 0 numerically, we use an iterative forward-backward Runge-Kutta method; see our
recently published works ([2], [4], [27], [29]). Using an initial guest for u1(t) = u10, u2(t) = u20, we solve
state system (6) forward in time to find the solution for all state variables at all times t ∈ [0, T ]. Using this
result and the transversality condition, we solve our adjoint system (8) backward in time. With this set of
values, we update our control variables using the formula in (9), and back to the first step until convergence
criteria are achieved.

7.1. Numerical Experiments
To find the best possible combination of strategy, we conduct our numerical experiments based on the

following type of scenario:
1) Using media campaign and rapid testing together (u1(t) > 0,u2(t) > 0)
2) Using media campaign as a single intervention (u1(t) > 0,u2(t) = 0)
3) Using rapid testing as a single intervention (u1(t) = 0,u2(t) > 0)

Scenario 1: In Figure 6, we plot the dynamics of all human compartments and the trajectories of respected
control variables. It can be seen by the red curve that the exposed, undetected and detected infected individuals
achieve a high outbreak in the early period of simulation. On the other hand, we can see that the control
variables succeed in minimizing the number of infected individuals significantly. A high intensity media
campaign to increase social awareness should be launched from the start of the period of simulation, to
avoid the re-emergence of COVID-19 in the field. On the other hand, rapid tests to track undetected infected
individuals should be carried out with high intensity at the beginning, but should be scaled down when the
number of infected individuals starts decreasing. The total cost of intervention, along with other numerical
values to analyze the cost effectiveness of this scenario, is given in Table 3

Figure 6: Trajectories of the state variables (6) and control variables for Scenario 1

Scenario 2: In some circumstances, the interventions cannot be carried out simultaneously among several
available interventions. One reason is the limited intervention costs, or difficulty in implementation in the
field. Therefore, Scenario 2 in this section describes the possibility of a media campaign intervention to
increase social awareness being carried out as the sole intervention. The results can be seen in Figure 7.
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Table 3: Numerical results of Scenario 1

Cost Function with-
out Intervention

Cost Function with
Intervention

Number of Infec-
tions Averted

Number of Humans
Recovered

Total Cost of Inter-
vention

416.477 48.685 951.002 340.996 28.281

We can see that the dynamic of infected individuals when we rely solely on media campaign till succeeding
in reducing the number of infected individuals. However, the result is not as good as in Scenario 1. It can
be observed that the number of E, Iu, and Id still increases in the early period of simulation, due to two
factors. First, we assume that media campaign interventions in our model are more about increasing social
awareness of the dangers of COVID-19. In the equation (6), the role of social awareness reduces the chances
of successful infection in the compartment of Sa. Therefore, the infection can still occur. The second reason
is that when t = 0, the number of people in the exposed phase is already quite high. Without treatment and
detection efforts by the government, people in the exposed stage will transform into infected individuals, who
are ready to infect other people without any limitation. The numerical result due to the cost of intervention,
number of infections averted and others due to Scenario 2 are presented in Table 4.

Figure 7: Trajectories of the state variables (6) and control variables for Scenario 2

Table 4: Numerical results of Scenario 2

Cost Function with-
out Intervention

Cost Function with
Intervention

Number of Infec-
tions Averted

Number of Humans
Recovered

Total Cost Produced
by Intervention

416.477 397.593 65.623 4.345.195 7.948

Scenario 3: In this last simulation, we perform a numerical simulation for Scenario 3, relying only on rapid
test as a single intervention. The result can be seen in Figure 8. As already stated in our model construction,
rapid test intervention is administered to detect the infected individuals and isolate them, so that they do
not infect other susceptible individuals. Due to its purpose, we can see from Figure 8 that the number of
undetected individuals decreases significantly, and is lower compared to Scenario 2. Consequently, the number
of infected individuals is much higher than in Scenario 2. To achieve this result, the intensity of rapid test
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intervention should be high almost at all times of the simulation, and start decreasing when it approaches
the final stage of simulation. The cost of intervention is given in Table 5.

Figure 8: Trajectories of the state variables (6) and control variables for Scenario 3

Table 5: Numerical results of Scenario 3

Cost Function with-
out Intervention

Cost Function with
Intervention

Number of Infec-
tions Averted

Number of Humans
Recovered

Total Cost Produced
by Intervention

416.477 279.826 182.765 3.760.011 10.891

7.2. Cost-Effectiveness Analysis

Next, we perform a cost-effectiveness analysis of the optimal control strategy. We consider three methods
to determine the best strategy, namely the Infection Averted Ratio (IAR), Average Cost-Effectiveness Ratio
(ACER), and Incremental Cost-Effectiveness Ratio (ICER). The formula of the IAR is given by

IAR =
number of infection averted

number of recovered
.

From the description of the formula, IAR describes the level of success of the intervention based on the
number of new infections avoided due to intervention, and number of those recovered due to the intervention;
hence, the higher the value of IAR, the better the strategy. On the other hand, the formula of the ACER is
given by

ACER =
total cost produced by intervention

number of infection averted
,

with the smallest IAR ratio is the best strategy. We can see that ACER describes an average of cost of
intervention for each new infection that is successfully avoided due to the chosen intervention. Unlike the
previous scenario, analysis of ICER is given by the following algorithm:

1) Rank the strategies by the number of infections averted from the smallest to the largest
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2) For the first strategy,

ICER =
total cost produced by intervention
total number of infections averted

.

3) Next strategy,

ICER =
the difference between the total costs to n and n-1

the difference between the number of infections averted to n and n-1
.

4) Remove strategy with the largest ICER. Then, repeat step 2, 3 and 4 until two strategies remain
5) Choose the smallest ICER for the best strategy

The best strategy is the one with the smallest ICER ratio.

Table 6: IAR and ACER value of all Scenario

Scenario Number of Infec-
tions Averted

Number of Humans
Recovered

Total Cost Produced
by Intervention

IAR ACER

1 951.002 340.996 28.281 2, 79 0, 03
2 65.623 4.345.195 7.948 0, 02 0, 12
3 182.765 3.760.011 10.891 0, 05 0, 06

Using the results in Table 3,4 and 5, the value of IAR and ACER are given in Table 6. It can be seen
that the best strategy for IAR is Strategy 1 when all interventions are administered, followed by Scenarios 3
and 2. This result means that to reduce the number of infected individuals significantly, all strategies should
be implemented partially together. However, if a single intervention is to be administered, than choosing the
rapid test to detect and isolate infected individuals is a more reasonable option than using media campaign
to develop social awareness. A similar result is given for ACER value, where Scenario 3 is the best strategy
to be implemented, followed by Scenario 3 and 2. These results tell us that although the cost of intervention
for Scenario 1 is the highest compared to other scenarios, the average cost of each averted infected individual
is the lowest. The reason is that each of these interventions has a different purpose. A high media campaign
will reduce the number of new infected individuals due to social awareness, while rapid test is done to isolate
infected individuals so that they cannot transmit COVID-19 to other people.

Table 7: ICER value for first elimination

Scenario Number of Infec-
tions Averted

Number of Humans
Recovered

Total Cost Produced
by Intervention

ICER

2 65.623 4.345.195 7.948 0, 12
3 182.765 3.760.011 10.891 0, 03
1 951.002 340.996 28.281 0, 02

Table 8: ICER value for second elimination

Scenario Number of Infec-
tions Averted

Number of Humans
Recovered

Total Cost Produced
by Intervention

ICER

3 182.765 3.760.011 10.891 0, 06
1 951.002 340.996 28.281 0, 02

Based on the results of ICER as shown in Table 7 and 8, the best strategy is the combination of media
campaign and rapid test to combat the spread of COVID-19. Hence, we can conclude that the implementation
of media campaigns and rapid tests together is the best strategy to deal with the COVID-19 pandemic.
However, when we have to choose one to be implemented as a single intervention, then rapid test is a more
reasonable strategy.
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8. CONCLUSIONS AND FUTURE WORK

This research introduces a mathematical model for COVID-19 transmission. The model considers several
important factors such as the exposed phase of infection, detected and undetected cases, the intervention
of media campaigns to increase social awareness, and a rapid test to detect and quarantine the infected
individuals. Here are some summarized results

1) Mathematical analysis establishes a possible condition in the field, whether COVID-19 disappears
(when the basic reproduction number is less than unity) or persists (when the basic reproduction
number is larger than unity).

2) From the elasticity index, we found that the infection rate of COVID-19 is the most sensitive control-
lable parameter in our model.

3) Furthermore, we have identified that intervention by way of the rapid test is more sensitive in
controlling the basic reproduction number, than media campaign.

4) From the optimal control simulation and cost-effectiveness analysis, it can be seen that conducting
both interventions is significantly successful in avoiding a high level of the outbreak of disease, at a
very low cost of intervention.

Although some important results are mentioned above, our model has several limitations that need to be
addressed in future works.

1) It does not consider the vaccination strategy that has now been introduced in many countries. The
question is, how big is the impact of the vaccine in controlling COVID-19?

2) Can we rely on the vaccination strategy alone to avoid a higher outbreak of COVID-19?
3) What percentage of the population must be vaccinated for herd immunity to be achieved?
4) Another limitation of our model is that we ignore a different type of virus that caused COVID-19. As

mentioned by many other sources [20], several new strains of the virus are more deadly and spread
with ease among humans.
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