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Abstract

We consider a SEIR model for the spread (transmission) of an infectious disease. The model has played
an important role due to world pandemic disease spread cases. Our contributions in this paper are three
folds. Our first contribution is to provide successive approximation and variational iteration methods to obtain
analytical approximate solutions to the SEIR model. Our second contribution is to prove that for solving
the SEIR model, the variational iteration and successive approximation methods are identical when we have
some particular values of Lagrange multipliers in the variational iteration formulation. Third, we propose a new
multistage-analytical method for solving the SEIR model. Computational experiments show that the successive
approximation and variational iteration methods are accurate for small size of time domain. In contrast, our
proposed multistage-analytical method is successful to solve the SEIR model very accurately for large size
of time domain. Furthermore, the order of accuracy of the multistage-analytical method can be made higher
simply by taking more number of successive iterations in the multistage evolution.

Keywords: infectious disease, multistage method, SEIR model, successive approximations, variational itera-
tions.
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1. INTRODUCTION

Most countries in the world have been affected by various infectious diseases, such as, influenza, rubella,
and the Coronavirus disease (COVID-19). The later has been affecting 2 international conveyances and 213
countries (territories) and with the total reported number of cases is at least 36,122,499 in the world [1].
Recently a number of researchers have reported their studies relating to this disease spread [2] [3]. Obviously,
an accurate method for simulating and predicting the behaviour of the pandemic infectious disease spread is
needed.

A number of authors have used SEIR models in the simulation of the infectious disease spread. Qureshi [4]
proposed the use of the SEIR model to study periodic dynamics of rubella epidemic in Pakistan. Carcione et
al. [5] studied a deterministic COVID-19 SEIR model. Arcede et al. [6] accounted for a COVID-19 SEIR-type
model including both the symptomatic and asymptomatic cases. He et al. [7] also reported the dynamics of
COVID-19 using the SEIR modeling. In addition to these studies, properties of SEIR-type models have been
reported by Wei and Xue [8], Sun and Hsieh [9], Hou and Teng [10], Zhao et al. [11], as well as Jansen and
Twizell [12].

With the important role of SEIR models in the simulation of the infectious disease spread, accurate methods
are indeed needed to solve the models. This is because until now, the general exact analytical solution to
SEIR models are not available. Therefore, approximate approach is a way to solve the models. Our work shall
focus on a SEIR model of infectious disease involving constant vaccination strategy, where the population
size is varying.

We have three contributions in this paper. The first is to provide successive approximation and variational
iteration methods to obtain analytical approximate solutions to the SEIR model. The second is to prove that
the successive approximation and variational iteration methods are identical when they are used to solve the
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Table 1: Variables and parameters in the SEIR model involving vaccination strategy.

Notation Description

t the time variable
N(t) the total population in the system at time t
S(t) the number of individuals of the susceptible subpopulation at time t
E(t) the number of individuals of the exposed subpopulation at time t
I(t) the number of individuals of the infected subpopulation at time t
R(t) the number of individuals of the recovered subpopulation at time t
α the incidence coefficient of horizontal transmission
β the infection rate of the exposed individuals
γ the recovery rate of the infected individuals
µ the natural birth rate, which is assumed to be equal to the natural death rate of each group of the population
ν the vaccination rate of the susceptible individuals, where the vaccination is assumed to be effective perfectly
σ the death rate due to infection

SEIR model with particular values of Lagrange multipliers in the variational iteration formulation. Third, we
propose a new multistage-analytical method for solving the SEIR model very accurately in a large domain
of time.

The rest of this paper is arranged as follows. We recall the SEIR model in Section 2. Proposed solving
methods for the SEIR model are provided in Section 3. Then, we present results and discussion in Section 4.
Finally, Section 5 shall conclude the paper.

2. SEIR MODEL

We recall the SEIR mathematical model for infectious disease spread in this section. This SEIR model
involving constant vaccination is given by [13] [14] [15] [16]

dS(t)

dt
= µN(t)− (αI(t) + µ+ ν)S(t), (1)

dE(t)

dt
= αI(t)S(t)− (β + µ)E(t), (2)

dI(t)

dt
= βE(t)− (σ + γ + µ)I(t), (3)

dR(t)

dt
= γI(t) + νS(t)− µR(t), (4)

where descriptions of all variables and parameters are listed in Table 1. All variables are assumed to be
non-negative and all parameters are assumed to be positive. Here, we also assume that the natural birth rate
equals to the natural death rate of each group of the population. The initial conditions at time t = t0 are

S(t0) = S0, E(t0) = E0, I(t0) = I0, R(t0) = R0, (5)

where S0, E0, I0, R0 are known constants. Here, the time domain is t ≥ t0 for a known constant t0. The
S, E, I , R groups are all disjoint, where the total population N at time t is

N(t) = S(t) + E(t) + I(t) +R(t). (6)

Notice that the SEIR model is more complex than the SIR model [17] [18], because in the SEIR model we
have variable E(t) in addition to variables S(t), I(t), and R(t).

The SEIR model (1)-(4) admits that the total population N is varying with time t. We can observe it by
adding Equations (1)-(4) to result in dN/dt = −σI . If σ = 0, then the total population N is constant; but
this is not the case for some infectious diseases, such as COVID-19. Readers interested in the local and
global analyses of the SEIR model are referred to the work of Sun and Hsieh [9]. We focus on solving the
SEIR model (1)-(4) in this paper.

Explicit exact solutions to SEIR Model (1)-(4) are not available until this paper is written. In addition,
infectious disease is currently an important issue in the world. Therefore, in this paper, we aim to provide
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explicit analytical solutions to SEIR Model (1)-(4) using analytical approach of approximation for simulation
of the infectious disease spread. Moreover, we aim to propose a multistage-analytical method for solving the
SEIR model, so that the obtained solution approximates the exact solution very accurately for a large time
domain.

3. ANALYTICAL SOLVING METHODS

This section is devoted to provide three approaches for solving SEIR Model (1)-(4), namely, successive
approximation, variational iteration, and multistage-analytical methods. Relation between successive approx-
imation and variational iteration methods shall also be provided in this section.

3.1. Successive approximation method (SAM)
Our successive approximation method (SAM) takes the idea of Picard’s successive approximations for

solving initial value problems [19].
Picard’s successive approximations are constructed as follows. Suppose that we have problem

dy(x)

dx
= f(x, y) (7)

with initial condition
y(x0) = y0, (8)

in which all involved functions are assumed to be smooth. With initial condition (8), the solution to problem
(7) is

y(x) = y0 +

∫ x

x0

f(x, y)dx. (9)

Picard’s successive approximations for solving problem (7)-(8) take the form

yn+1(x) = y0 +

∫ x

x0

f(ξ, yn(ξ))dξ, (10)

where n = 0, 1, 2, .... As n −→∞, we obtain [19]

lim
n−→∞

yn(x) = y(x), (11)

which is the solution to problem (7)-(8).
Considering that the total population is given by Equation (6), we can rewrite Equation (1) as

dS

dt
= −νS + µE + µI + µR− αIS. (12)

For solving problem (1)-(5), SAM has the form

Sn+1(t) = S0 +

∫ t

t0

[−νSn(τ) + µEn(τ) + µIn(τ) + µRn(τ)− αSn(τ)In(τ)] dτ, (13)

En+1(t) = E0 +

∫ t

t0

[αSn(τ)In(τ)− (β + µ)En(τ)] dτ, (14)

In+1(t) = I0 +

∫ t

t0

[βEn(τ)− (σ + γ + µ)In(τ)] dτ, (15)

Rn+1(t) = R0 +

∫ t

t0

[γIn(τ) + νSn(τ)− µRn(τ)] dτ, (16)

where n = 0, 1, 2, ....



Successive Approximation, Variational Iteration, and Multistage-Analytical Methods for a SEIR Model 117

3.2. Variational iteration method (VIM)
In this subsection, we provide a variational iteration method (VIM) for solving Equations (1)-(4). We adopt

the variational iteration formulation of He [20] [21]. In our VIM formulation, we use Equation (12) rather
than Equation (1), as also the case for SAM in the previous subsection.

The correction functionals of Equations (12) and (2)-(4) with initial conditions (5) are

Sn+1(t) = Sn(t) +

∫ t

t0

λ1(τ)

[
dSn
dτ

+ νSn − µẼn − µĨn − µR̃n + αĨnS̃n

]
dτ, (17)

En+1(t) = En(t) +

∫ t

t0

λ2(τ)

[
dEn
dτ
− αĨnS̃n + (β + µ)En

]
dτ, (18)

In+1(t) = In(t) +

∫ t

t0

λ3(τ)

[
dIn
dτ
− βẼn + (σ + γ + µ)In

]
dτ, (19)

Rn+1(t) = Rn(t) +

∫ t

t0

λ4(τ)

[
dRn
dτ
− γĨn − νS̃n + µRn

]
dτ, (20)

where λ1(τ), λ2(τ), λ3(τ), and λ4(τ) are Lagrange multipliers and n = 0, 1, 2, .... Here S̃n, Ẽn, Ĩn, and R̃n
are restricted variations, which means that they behave like constants, that is, δS̃n = 0, δẼn = 0, δĨn = 0,
and δR̃n = 0.

Operating variations to Equations (17)-(20), we have

δSn+1(t) = δSn(t) + δ

∫ t

t0

λ1(τ)

[
dSn
dτ

+ νSn

]
dτ, (21)

δEn+1(t) = δEn(t) + δ

∫ t

t0

λ2(τ)

[
dEn
dτ

+ (β + µ)En

]
dτ, (22)

δIn+1(t) = δIn(t) + δ

∫ t

t0

λ3(τ)

[
dIn
dτ

+ (σ + γ + µ)In

]
dτ, (23)

δRn+1(t) = δRn(t) + δ

∫ t

t0

λ4(τ)

[
dRn
dτ

+ µRn

]
dτ. (24)

Applying integration by parts, we rewrite equations (21)-(24) as

δSn+1(t) = δ [(λ1(t) + 1)Sn(t)]− δ
∫ t

t0

[λ′1(τ)− νλ1(τ)]Sn(τ)dτ, (25)

δEn+1(t) = δ [(λ2(t) + 1)En(t)]− δ
∫ t

t0

[λ′2(τ)− (β + µ)λ2(τ)]En(τ)dτ, (26)

δIn+1(t) = δ [(λ3(t) + 1)In(t)]− δ
∫ t

t0

[λ′3(τ)− (σ + γ + µ)λ3(τ)] In(τ)dτ, (27)

δRn+1(t) = δ [(λ4(t) + 1)Rn(t)]− δ
∫ t

t0

[λ′4(τ)− µλ4(τ)]Rn(τ)dτ. (28)

Equations (25)-(28) lead to the following stationary conditions

λ1(t) + 1 = 0, λ′1(τ)− νλ1(τ) = 0, (29)

λ2(t) + 1 = 0, λ′2(τ)− (β + µ)λ2(τ) = 0, (30)

λ3(t) + 1 = 0, λ′3(τ)− (σ + γ + µ)λ3(τ) = 0, (31)

λ4(t) + 1 = 0, λ′4(τ)− µλ4(τ) = 0. (32)
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Based on Equations (29)-(32), we obtain the following Lagrange multipliers

λ1(τ) = − exp (ν(τ − t)) , (33)

λ2(τ) = − exp ((β + µ)(τ − t)) , (34)

λ3(τ) = − exp ((σ + γ + µ)(τ − t)) , (35)

λ4(τ) = − exp (µ(τ − t)) . (36)

Finally, the variational iteration method (VIM) for solving (1)-(4) with initial conditions (5) is obtained as
follows

Sn+1(t) = Sn(t) −
∫ t

t0

exp (ν(τ − t))[
dSn
dτ

+ νSn − µEn − µIn − µRn + αInSn

]
dτ, (37)

En+1(t) = En(t) −
∫ t

t0

exp ((β + µ)(τ − t))[
dEn
dτ
− αInSn + (β + µ)En

]
dτ, (38)

In+1(t) = In(t) −
∫ t

t0

exp ((σ + γ + µ)(τ − t))[
dIn
dτ
− βEn + (σ + γ + µ)In

]
dτ, (39)

Rn+1(t) = Rn(t) −
∫ t

t0

exp (µ(τ − t))[
dRn
dτ
− γIn − νSn + µRn

]
dτ, (40)

where n = 0, 1, 2, ....

3.3. Relation between SAM and VIM
In this subsection, we prove the relation between SAM and VIM.

Theorem 3.1. Suppose that time t is close enough to t0 (that is, τ is close enough to t). If the Lagrange
multipliers in the correction functionals (17)-(20) are all approximated by −1, that is,

λ1(τ) = − exp (ν(τ − t)) ≈ −1, (41)

λ2(τ) = − exp ((β + µ)(τ − t)) ≈ −1, (42)

λ3(τ) = − exp ((σ + γ + µ)(τ − t)) ≈ −1, (43)

λ4(τ) = − exp (µ(τ − t)) ≈ −1, (44)

then the resulted VIM for solving the SEIR model (1)-(4) is identical with SAM for solving the same model.

Proof: If we take approximate Lagrange multipliers

λ1(τ) = λ2(τ) = λ3(τ) = λ4(τ) = −1, (45)
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we have a new VIM for solving problem (1)-(5) in the following form

Sn+1(t) = Sn(t)−
∫ t

t0

[
dSn
dτ

+ νSn − µEn − µIn − µRn + αInSn

]
dτ, (46)

En+1(t) = En(t)−
∫ t

t0

[
dEn
dτ
− αInSn + (β + µ)En

]
dτ, (47)

In+1(t) = In(t)−
∫ t

t0

[
dIn
dτ
− βEn + (σ + γ + µ)In

]
dτ, (48)

Rn+1(t) = Rn(t)−
∫ t

t0

[
dRn
dτ
− γIn − νSn + µRn

]
dτ. (49)

We note that ∫ t

t0

[
dSn
dτ

]
dτ = Sn(t)− Sn(t0), (50)

∫ t

t0

[
dEn
dτ

]
dτ = En(t)− En(t0), (51)

∫ t

t0

[
dIn
dτ

]
dτ = In(t)− In(t0), (52)

∫ t

t0

[
dRn
dτ

]
dτ = Rn(t)−Rn(t0). (53)

In addition, for all n, Equations (46)-(49) guarantee that

Sn(t0) = S0, En(t0) = E0, In(t0) = I0, Rn(t0) = R0. (54)

Taking Equations (50)-(54) into account, we simplify Equations (46)-(49) as

Sn+1(t) = S0 +

∫ t

t0

[−νSn + µEn + µIn + µRn − αInSn] dτ, (55)

En+1(t) = E0 +

∫ t

t0

[αInSn − (β + µ)En] dτ, (56)

In+1(t) = I0 +

∫ t

t0

[βEn − (σ + γ + µ)In] dτ, (57)

Rn+1(t) = R0 +

∫ t

t0

[γIn + νSn − µRn] dτ. (58)

We observe that Equations (55)-(58) are identical with Equations (13)-(16). The proof is complete.
From Theorem 3.1, VIM (37)-(40) and SAM (13)-(16) are identical when all Lagrange multipliers in the

VIM formulation are approximated to be −1, which is the first term in the Taylor series expansion of the
Lagrange multipliers. These approximate Lagrange multipliers are valid as long as time t is close enough to
t0. With this knowledge, we propose a new multistage-analytical method in the next subsection.
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3.4. Multistage-analytical method
Generally, SAM (13)-(16) and VIM (37)-(40) are accurate only for small time domain, and we shall

show in the next section that this statement is true. Therefore, it is a good idea to implement SAM and
VIM piecewisely, that is, in a multistage way. By piecewise or multistage we mean that the time domain
I = [t0, T ] is subdivided into finite number of subdomains Ij = [tj−1, tj ] having the same width, where
j = 1, 2, 3, ..., J . We denote ∆t = tj − tj−1 for all j. The multistage-analytical method implements SAM
or VIM on these subdomains Ij consecutively.

We observe that the calculation of SAM is simpler that that of VIM. In VIM, we need to differentiate some
functions and then do integration. This is expensive in terms of computation. Due to this fact, we choose
to use SAM in the multistage-analytical method. Therefore, our multistage-analytical method is called the
multistage successive approximation method (MSAM).

MSAM works as follows. We denote Sn,j(t) the solution for S(t) at the nth iteration of SAM on the
jth subdomain. Notations En,j(t), In,j(t), and Rn,j(t) have analogous meaning for E(t), I(t), and R(t),
respectively. We denote K the maximum number of iterations of SAM in the MSAM evolution, which is set
initially.

For j = 1, 2, 3, ..., J we implement SAM: so, for n = 0, 1, 2, ...,K − 1 we have

Sn+1,j(t) = SK,j−1(tj−1) +

∫ t

tj−1

[−νSn,j(τ) + µEn,j(τ) + µIn,j(τ)

+µRn,j(τ)− αSn,j(τ)In,j(τ)] dτ, (59)

En+1,j(t) = EK,j−1(tj−1) +

∫ t

tj−1

[αSn,j(τ)In,j(τ)− (β + µ)En,j(τ)] dτ, (60)

In+1,j(t) = IK,j−1(tj−1) +

∫ t

tj−1

[βEn,j(τ)− (σ + γ + µ)In,j(τ)] dτ, (61)

Rn+1,j(t) = RK,j−1(tj−1) +

∫ t

tj−1

[γIn,j(τ) + νSn,j(τ)− µRn,j(τ)] dτ. (62)

We observe that if we take K = 1, MSAM is identical with Euler’s method. Taking higher value of K leads
to higher order of accuracy, as we shall see in the next section.

4. RESULTS AND DISCUSSION

We simulate the spread of an infectious disease in this section. Parameter values are recorded in Table 2,
where some of them are adopted from the work of Harir et al. [22]. All simulations are to be compared
with available reference solutions, but they are not exact solutions, as the exact solutions are not available.
Error is defined as the average of relative errors of MSAM solutions with respect to the reference solutions.
The reference solutions are computed using the ode45 function available in the MATLAB software with the
relative tolerance (RelTol) is 2.22045× 10−14 and the absolute tolerance (AbsTol) is 10−15.

We note that for our simulations, as written in Table 2, the initial population is N(0) = 270 × 106,
the initial number of exposed individuals is E(0) = 38 × 103, the initial number of infected individuals is
I(0) = 23×103, and the initial number of recovered individuals is R(0) = 13×103. We assume that the rest
belongs to the susceptible group. This means that almost all people in the system are susceptible initially;
this is our assumption for the simulations.

Solutions to the SEIR model on SAM are as follows. The initialisations of SAM are

S0 = 270× 106 − E0 − I0 −R0, E0 = 38× 103, I0 = 23× 103, R0 = 13× 103. (63)

The first iteration solutions of SAM are

S1(t) = −3297798167587717

1073741824
t+ 269926000, (64)

E1(t) =
3174924693756969

8589934592
t+ 38000, (65)
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Table 2: Parameter values for SEIR model simulation, where N = S + E + I +R.

Notation Value Description

N(0) 270× 106 the total population in the system at time t = 0
S(0) N(0)− E(0)− I(0)− R(0) the number of individuals of the susceptible subpopulation at time t = 0
E(0) 38× 103 the number of individuals of the exposed subpopulation at time t = 0
I(0) 23× 103 the number of individuals of the infected subpopulation at time t = 0
R(0) 13× 103 the number of individuals of the recovered subpopulation at time t = 0

α 6× 10−8 the incidence coefficient of horizontal transmission
β 7× 10−2 the infection rate of the exposed individuals
γ 5× 10−2 the recovery rate of the infected individuals
µ 6× 10−3 the natural birth rate, which is assumed to be equal to the natural death rate
ν 7× 10−7 the vaccination rate of the susceptible individuals
σ 1× 10−2 the death rate due to infection

I1(t) =
6034049004685861

4398046511104
t+ 23000, (66)

R1(t) = 2700332 t+ 13000. (67)

These SAM iterations can be continued.
Solutions to the SEIR model on VIM are as follows. The initialisations of VIM are the same as those of

SAM, as given by Equations (63). The first iteration solutions of VIM are

S1(t) =
11331148222878377973682565575

36893488147419103232
exp

(
− t

100

)
−1372636541198129114681733575

36893488147419103232
, (68)

E1(t) = −6818098863474499429259163875

1401952549601925922816
exp

(
−19 t

250

)
+

6871373060359372614326171875

1401952549601925922816
, (69)

I1(t) = −98861858892773116760

4035275706439791
exp

(
−4035275706439791 t

72057594037927936

)
+

191673200140888309760

4035275706439791
, (70)

R1(t) = −1350166000

3
exp

(
− 3 t

500

)
+

1350205000

3
. (71)

These VIM iterations can be continued.
Simulation results using SAM and VIM are shown in Figure 1 for S(t), Figure 2 for E(t), Figure 3 for

I(t), and Figure 4 for R(t). In this simulation we use three iterations for each of SAM and VIM evolutions.
We observe that as time t gets larger, SAM and VIM solutions are inaccurate. We see at time t = 2 in these
figures (especially in Figures 1-3), that there exist obvious discrepancies between SAM and VIM solutions
in comparison with the reference solutions.

In contrast, the solutions produced using our proposed multistage-analytical method are very accurate, as
shown in Figure 5. In this simulation, we consider the time domain [0, 60] with ∆t = 0.25. In order to obtain
MSAM solutions, on each subdomain, we evolve SAM up to two iterations. We observe from Figure 5 that
MSAM solutions graphically coincide with the reference solutions for the whole large domain of time.

We obtain that the smaller the time step ∆t leads to the smaller the errors of MSAM solutions. This can
be observed from Tables 3-8. Tables 3-4 show that one SAM iteration in the MSAM evolution leads to that
MSAM is of the first order of accuracy; we infer this from the results that as ∆t approaches 0, the order
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t
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
(t

)

×108

2.63

2.64

2.65

2.66

2.67

2.68

2.69

2.7
Reference solution for S(t)
SAM solution for S(t)
VIM solution for S(t)

Figure 1: Reference, SAM, and VIM solutions for S(t) on interval [0, 2]. Here SAM and VIM solutions are generated
at their third iterations. Reference, SAM, and VIM solutions almost coincide each other, but only for small size of time
interval.

t
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E
(t

)

×105

0

2

4

6

8

10

12

14
Reference solution for E(t)
SAM solution for E(t)
VIM solution for E(t)

Figure 2: Reference, SAM, and VIM solutions for E(t) on interval [0, 2]. Here SAM and VIM solutions are generated
at their third iterations. Reference, SAM, and VIM solutions almost coincide each other, but only for small size of time
interval.

Table 3: Errors and verification of Order of Covergence (OC) when MSAM uses 1 iteration of SAM for S1,j(t) and
E1,j(t) on the interval [0, 60].

∆t Error of S1,j(t) OC of S1,j(t) Error of E1,j(t) OC of E1,j(t)

0.25 1.16513E-01 – 5.70500E-02 –
0.20 8.56992E-02 1.38 4.70855E-02 0.86
0.10 3.67650E-02 1.22 2.51902E-02 0.90
0.05 1.71527E-02 1.10 1.30663E-02 0.95
0.01 3.25673E-03 1.03 2.69527E-03 0.98
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t
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

I(
t)

×104

2
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6

8
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Reference solution for I(t)
SAM solution for I(t)
VIM solution for I(t)

Figure 3: Reference, SAM, and VIM solutions for I(t) on interval [0, 2]. Here SAM and VIM solutions are generated
at their third iterations. Reference, SAM, and VIM solutions almost coincide each other, but only for small size of time
interval.

t
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
(t

)

×106

0

1

2

3

4

5

6
Reference solution for R(t)
SAM solution for R(t)
VIM solution for R(t)

Figure 4: Reference, SAM, and VIM solutions for R(t) on interval [0, 2]. Here SAM and VIM solutions are generated
at their third iterations. Reference, SAM, and VIM solutions almost coincide each other, but only for small size of time
interval.

Table 4: Errors and verification of Order of Covergence (OC) when MSAM uses 1 iteration of SAM for I1,j(t) and
R1,j(t) on the interval [0, 60].

∆t Error of I1,j(t) OC of I1,j(t) Error of R1,j(t) OC of R1,j(t)

0.25 6.78644E-02 – 1.77054E-02 –
0.20 5.63537E-02 0.83 1.43347E-02 0.95
0.10 3.05349E-02 0.88 7.34519E-03 0.96
0.05 1.59446E-02 0.94 3.71920E-03 0.98
0.01 3.30720E-03 0.98 7.51527E-04 0.99
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Figure 5: Reference and MSAM solutions for S(t), E(t), I(t), R(t) on interval [0, 60]. Here MSAM solutions are
generated using two iterations on each subdomain. MSAM solutions graphically coincide with the reference solutions
for the whole large size of time domain.

Table 5: Errors and verification of Order of Covergence (OC) when MSAM uses 2 iterations of SAM for S2,j(t) and
E2,j(t) on the interval [0, 60].

∆t Error of S2,j(t) OC of S2,j(t) Error of E2,j(t) OC of E2,j(t)

0.25 1.15973E-02 – 5.02941E-03 –
0.20 7.00158E-03 2.26 3.33385E-03 1.84
0.10 1.64632E-03 2.09 8.94285E-04 1.90
0.05 4.07249E-04 2.02 2.31577E-04 1.95
0.01 1.62767E-05 2.00 9.52694E-06 1.98

Table 6: Errors and verification of Order of Covergence (OC) when MSAM uses 2 iterations of SAM for I2,j(t) and
R2,j(t) on the interval [0, 60].

∆t Error of I2,j(t) OC of I2,j(t) Error of R2,j(t) OC of R2,j(t)

0.25 5.37407E-03 – 1.16799E-03 –
0.20 3.57265E-03 1.83 7.72759E-04 1.85
0.10 9.63224E-04 1.89 2.06895E-04 1.90
0.05 2.49987E-04 1.95 5.35714E-05 1.95
0.01 1.03010E-05 1.98 2.20479E-06 1.98

Table 7: Errors and verification of Order of Covergence (OC) when MSAM uses 3 iterations of SAM for S3,j(t) and
E3,j(t) on the interval [0, 60].

∆t Error of S3,j(t) OC of S3,j(t) Error of E3,j(t) OC of E3,j(t)

0.25 5.64572E-04 – 2.83822E-04 –
0.20 2.68405E-04 3.33 1.50926E-04 2.83
0.10 2.90895E-05 3.21 2.03673E-05 2.89
0.05 3.40242E-06 3.10 2.64669E-06 2.94
0.01 2.59415E-08 3.03 2.18440E-08 2.98
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Table 8: Errors and verification of Order of Covergence (OC) when MSAM uses 3 iterations of SAM for I3,j(t) and
R3,j(t) on the interval [0, 60].

∆t Error of I3,j(t) OC of I3,j(t) Error of R3,j(t) OC of R3,j(t)

0.25 3.28712E-04 – 6.92957E-05 –
0.20 1.74686E-04 2.83 3.68060E-05 2.84
0.10 2.35314E-05 2.89 4.95241E-06 2.89
0.05 3.05401E-06 2.95 6.42444E-07 2.95
0.01 2.51796E-08 2.98 5.29482E-09 2.98

of convergence tends to 1. Tables 5-6 show that two SAM iterations in the MSAM evolution leads to that
MSAM is of the second order of accuracy; we see this from the results that as ∆t approaches 0, the order of
convergence tends to 2. Furthermore, Tables 7-8 indicate that three SAM iterations in the MSAM evolution
leads to that MSAM is of the third order of accuracy; because as ∆t approaches 0, the order of convergence
tends to 3. The higher the number of SAM iterations in the MSAM evolution results in the higher the order
of convergence (the order of accuracy) of the MSAM solutions.

5. CONCLUSION

We have presented three contributions in this paper. First, successive approximation and variational iteration
methods are provided for solving the SEIR model in analytical approximate ways. As the second contribution,
we prove that both the variational iteration and successive approximation methods are identical in the case
of some particular values of Lagrange multipliers in the variational iteration formulation of the model.
Third, we have proposed a new multistage-analytical method for solving the SEIR model. Our proposed
multistage-analytical method solves the SEIR model very accurately for a large domain of time. Error of
the multistage-analytical solution decreases and tends to zero, as the time step is taken smaller (approaches
zero). In addition, higher order of accuracy of the proposed multistage-analytical method can be achieved
simply by taking more number of successive approximation iterations in the multistage evolution.
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