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Abstract

This paper focuses on the study of continuous age-structured models, or more general, physiologically
structured models, which used for detailed and accurate study of population dynamics in many ecological,
biological applications and medicine. In contrast to simpler unstructured models, these models allow us to
relate the individual life-histories described as fertility and mortality rates of an individual at a given age with
population dynamics. Depending from the particularity of reproduction mechanism continuous age-structured
models are divided into monocyclic (reproduction occurs only at the one fixed age of individuals) and polycyclic
(reproduction occurs with age-dependent probability at some age reproductive window) models. The linear
monocyclic age-structured models are used often in cell cycles modelling, in population dynamics of plants,
etc. In this case continuous age-structured models allow for obtaining the exact analytical solution. Since the
linear and non-linear polycyclic age-structured models are more general then monocyclic models, they cover
wider range of applications in life science. But in this case solution of model can be obtained only in the form
of recurrent formulae and can be used only in numerical algorithms. Both solutions obtained in this work allow
us to study numerically the important dynamical regimes – population outbreaks of three types: oscillations
with large magnitude, pulse sequence and single pulse. Thus, analysis of continuous age-structured models
of population dynamics provides insight into features and particularities of complex dynamical regimes of
populations in many applications in biology, ecology and medicine.
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1. INTRODUCTION

Advanced continuous monocyclic and polycyclic age-structured models occupy important place in the study
of complex processes of population dynamics in various applications of life science. Since these models
provide the theoretical analysis and practical insights into the demographical processes of populations (i.e.
reproduction and mortality of individuals) they can be used for deep analysis of dynamical regimes of
populations in biology, ecology, medicine and others fields. The Kermack and McKendrick models [14],
[15], [16] put the beginning of a large number of scientific works dealing with the theoretical analysis of
the systems of linear and semi-linear hyperbolic equations with non-local integral boundary conditions for
the continuous age-structured models of population dynamics [10] , [11], [12], [13], [17], [18], [20], [21].
Now the demographical processes in populations play an important role in the most theoretical and applied
biological studies, such as the bacterial population dynamics, modeling of label-structured cell populations,
modelling of dynamics and treatment of cancer, and many others.

In this paper we study the continuous age-structured monocyclic [1] and polycyclic [3] models of population
dynamics. The feature of the first one is that individuals of population can give offspring with some likelihood
only at some fixed age. If individuals do not give offspring, they lose their ability to reproduce. We derive the
exact solution of linear model and obtain its asymptotic which was not considered in work [1]. In the second
model individuals can give offspring at any age of the fixed reproductive window (age interval). In this work
we consider the age reproductive window with maximum reproductive age less than individual’s maximum
lifespan that is more realistic than those one used in work [3]. We derive the explicit recurrent formulae for
the solution. Both solutions obtained in this work are used in the developed accurate numerical algorithms
for study of the special types of dynamical regimes – population outbreaks. The results of modelling for
three types of polycyclic population outbreaks – oscillations with large magnitude, pulse sequence and single
pulse are shown in the last section.
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2. EXACT SOLUTION OF THE LINEAR MONOCYCLIC MODEL

The age-structured monocyclic population is divided at the age ap into the two sub classes: individuals
of the first one are born, mature, and either give offspring at the fixed age ap (θ new individuals of zero
age) and die, or move at the second (matured) subclass. The matured individuals do not reproduce, and
can die or live up to a maximal age (lifespan) ad (ap < ad). The age-specific densities of first and second
subpopulations u1(a, t) and u2(a, t) are defined in domains Ω

(1)
= {(a, t) : 0 ≤ a ≤ ap, 0 ≤ t ≤ T} , and

Ω
(2)

= {(a, t) : ap ≤ a ≤ ad, 0 ≤ t ≤ T} , respectively. The quantity of individuals in each subclass are

defined as U1(t) =
ap∫
0

u1(a, t)da, U2(t) =
ad∫
ap

u2(a, t)da. The dynamics of u1(a, t), u2(a, t) are described by

the system of initial-boundary value problems for the linear hyperbolic equations of the first order:

∂u1
∂t

+
∂u1
∂a

= −s1(a, t)u1(a, t), (a, t) ∈ Ω(1), (1)

u1(0, t) = θ σ(t)u1(ap, t), t ∈ (0, T ),

u1(a, 0) = φ1(a), a ∈ [0, ap] ,
(2)

∂u2
∂t

+
∂u2
∂a

= −s2(x, t)u2(a, t), (x, t) ∈ Ω(2), (3)

u2(ad, t) = (1− σ(t))u1(ad, t), t ∈ (0, T ),

u2(a, 0) = φ2(a), a ∈ [ap, ad],
(4)

where σ(t) is a fertility rate at the age ap; θ = const > 0 is a mean number of offspring; sm(a, t) are
death rates of each subclasses (m = 1, 2); φm(a) are initial values of subclasses density. The period [0, T ]
is divided into the set of time cuts [tk−1, tk], tk = kap, k = 1, ..K, t0 = 0, tK = T , which create the
consequence of sets (Fig.1):

Ω
(11)

k = {(a, t) | t ∈ [(k − 1)ap, a+ (k − 1)ap] , a ∈ [0, ap]} ,

Ω
(12)

k = {(a, t) | t ∈ [a+ (k − 1)ap, kap] , a ∈ [0, ap]} ,
(5)

Ω
(21)

= {(a, t) | t ∈ [0, a− ap], a ∈ [ap, ad]} ,

Ω
(22)

= {(a, t) | t ∈ [a− ap, T ], a ∈ [ap, ad]}
(6)

where Ω
(1)

=
K⋃

k=1

Ω
(1)

k =
K⋃

k=1

(
Ω

(11)

k

⋃
Ω

(12)

k

)
, Ω

(2)
= Ω

(21)⋃
Ω

(22)
. In the new characteristics variables

vm = a − t (m = 1, 2), vm ∈ Ω
(m)

, and time t system (1) - (4) is reduced to the Cauchy problem for the
linear ODE system described propagation of “travelling wave” fronts along the characteristics vm = const
[18], [19]:

∂um
∂t

= −sm(vm + t, t)um, um(vm, 0) = φm(vm), (m = 1, 2), (7)

with additional conditions (2), (4). Solution of Equation (7) in Ω
(11)

1 , Ω
(12)

1 , (k = 1, m = 1) is given [19]:

u1(a, t) =


u
(0)
1 (v1, t) = φ1(v1) exp

− t∫
0

s1(v1 + ξ, ξ)dξ

 , if (a, t) ∈ Ω
(11)
1 ,

u
(1)
1 (v1, t) = F

(1)
1 (v1) exp

− t∫
−v1

s1(v1 + ξ, ξ)dξ

 , if (x, t) ∈ Ω
(12)
1 ,

(8)

where the auxiliary functions F (1)(v1) are defined from the Equation (2) (see Fig.1):
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u
(1)
1 (−t, t) = F

(1)
1 (−t) = θσ(t)u

(0)
1 (ap − t, t). (9)

Figure 1: Splitting of domain Ω = Ω
(1)⋃

Ω
(2)

=
K⋃
k=1

(
Ω̄

(11)
k

⋃
Ω̄

(12)
k

) ⋃
Ω̄(21)⋃ Ω̄(22)

.

Since F (1)
1 (v1) depends only from the new variable v1 = a− t (Eq.(8)), we have:

F
(1)
1 (v1) = θσ(−v1)u

(0)
1 (v1 + ap,−v1). (10)

Substituting (13) in (11) yields the solution u(1)1 (a, t):

u
(1)
1 (v1, t) = θσ(−v1)φ1(v1 + ap) exp

− t∫
0

s1(v1 + ξ, ξ)dξ

 (11)

Eqs. (8), (10), (11) provide the exact solution of the first equation of system (7) u1(a, t) (m = 1) in domains
Ω

(11)

1 , Ω
(12)

1 (k = 1). The particular solutions u(k)1 (a, t) are defined consequently at the next time steps
k = 2, ...,K in domains Ω

(11)

k , Ω
(12)

k . Thus, the final solution u1(a, t) (m = 1) can be given by two different
but equivalent expression. The first form is described by the following recurrent formula (k = 1, ...,K):

u1(a, t) =


u
(k−1)
1 (v1, t) = u

(k−1)
1 (a− t, t), if (a, t) ∈ Ω

(11)
k ,

u
(k)
1 (v1, t) = θσ(−v1)u

(k−1)
1 (v1 + ap,−v1) exp

− t∫
−v1

s1(v1 + ξ, ξ)dξ

 , if (a, t) ∈ Ω
(12)
k ,

(12)

u
(0)
1 (v1, t) = φ1(v1) exp

− t∫
0

s1(v1 + ξ, ξ)dξ

 . (13)
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The other form of solution is described explicitly for each particular solution u(k)1 (a, t), k = 1, ...,K:

u
(k)
1 (v1, t) = φ1(v1 + kap)θσ(−v1) exp

− −v1−(k−1)ap∫
0

s1(v1 + kap + ξ, ξ)dξ


× exp

− t∫
−v1

s1(v1 + ξ, ξ)dξ

 k−1∏
l=1

θσ(−(v1 + lap)) exp

− −v1−(l−1)ap∫
−v1−lap

s1(v1 + lap + ξ, ξ)dξ

,
(14)

where u(0)1 (v1, t) is given by Eq.(13). To complete the derivation of solution u1(a, t) we have to consider
the compatibility condition for the two branches of solution (12) using the particular solutions (13), (14).
The continuity condition of solution u1(a, t) ∈ C

(
Ω(1)

)
at the points a = t− tk−1 in directions a = const,

t = const is given:

lim
a→(t−tk−1)

−
u1(a, t) = lim

a→(t−tk−1)
+
u1(a, t),

lim
t→(tk−1+a)−

u1(a, t) = lim
t→(tk−1+a)+

u1(a, t).
(15)

Solution (12) provides the continuity condition (15) in the explicit form:

u
(k−1)
1 (−tk−1, t) = u

(k)
1 (−tk−1, t). (16)

Substituting Eq.(14) in (16) yields the continuity condition for the initial value φ1(x):

φ1(0) = θ σ(0)φ1(ap). (17)

The smoothness condition of solution u1(a, t) ∈ C(1)
(
Ω(1)

)
at the points of characteristics a = t− tk−1

in directions a = const, t = const is given:

lim
a→(t−tk−1)

−

∂u1
∂a

= lim
a→(t−tk−1)

+

∂u1
∂a

,

lim
t→(tk−1+a)−

∂u1
∂t

= lim
t→(tk−1+a)+

∂u1
∂t

,

(18)

(
θ

(
dσ

dt

∣∣∣∣t = 0
φ1(ap) +

dφ1

da

∣∣∣∣a = ap
σ(0)

)
− dφ1

dt

∣∣∣∣a = 0

)
− φ1(0)s1(0, 0) = 0. (19)

The general solution of the second problem (3), (4) (including (9), m = 2) in domains Ω
(21)

, Ω
(22)

is
given:

u2(a, t) =



u
(1)
2 (v2, t) = φ2(v2) exp

− t∫
0

s2(v2 + ξ, ξ)dξ

 , if (a, t) ∈ Ω
(21)

;

u
(2)
2 (v2, t) = F2(v2 − ap) exp

− t∫
−v2+ap

s2(v2 + ξ, ξ)dξ

 , if (a, t) ∈ Ω
(22)

;

(20)

where function F2(v2) is defined by analogy with F1(v1) from the boundary condition (4):

F2(v2 − ap) = (1− σ(−(v2 − ap)))u1(v2, ap − v2), (21)

where u1(a, t) is given by Eq.(12). By analogy with compatibility (continuity and smoothness) conditions
(15), (18), we obtain the corresponding compatibility conditions for solution u2(a, t):

φ2(xd) = (1− σ(0))φ1(xd), (22)
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dσ

dt

∣∣∣∣t = 0
φ1(ap) +

dφ1

da

∣∣∣∣a = ap
(1− σ(0))− dφ2

da

∣∣∣∣a = ap
+ (1− σ(0))φ1 (ap) s1 (ap, 0)− φ2 (ap) s2 (ap, 0) = 0.

(23)

Thus, the unique smooth solution um (a, t) ∈ C(1)
(
Ω(m)

)
∩ C

(
Ω

(m)
)

, (m = 1, 2) of problem (1) - (4)
given by Eqs. (12), (13), (14), (17), (19), (20) - (23) exists if the coefficients of system (1)-(4) and initial
values (2), (4) satisfy the conditions:

φ1(a) ∈ C(1) ([0, ap]) , φ2(a) ∈ C(1) ([ap, ad]) ,

sm(a, t) ∈ C
(

Ω(m)
)
, σ(t) ∈ C(1) ([0, T ]) ,

(24)

θ = const > 0, 0 ≤ φm(a), 0 < sm(a, t), 0 < σ(t) < 1. (25)

By analogy with [1], from all result obtained above we arrive to the following theorem.

Theorem 2.1. Let θ, φm(a), σ(t), sm(a, t), (m = 1, 2) satisfy conditions (24), (25), then the unique smooth
solution of problem (1) - (4) um (a, t) ∈ C(1)

(
Ω(m)

)
∩C

(
Ω

(m)
)

exists and is given in the two different but
equivalent forms: (12), (13), (20), (21) or (12), (13), (14), (20), (21).

Corollary 2.1.1. Solution (13), (14), of the system (1)-(5) with constant coefficients provides us the asymptotic
behavior of monocyclic population model with t → ∞ (K → ∞). In particular, solution (14) with σ, s1,
φ1 = const > 0 at instants tk = kap (Fig.1) is:

u
(k)
1 (a, tk) = φ1(θσ)

k
exp (−kaps1) , (a, tk) ∈ Ω̄

(1)
k . (26)

Hence, if the basic reproductive number R0 = θσ exp(−aps1) < 1 the monocyclic population declines to
extinction u(k)1 (a, tk)→ 0, if R0 = 1 it remains at the initial value u(k)1 (a, tk)→ φ1, and if R0 > 1 it grows
infinitely u(k)1 (a, tk)→∞.

3. SOLUTION OF NONLINEAR POLICYCLIC MODEL

Nonlinear continuous age-structured model of polycyclic population dynamics with a density-dependent
death rate is studied in this section. In contrast with the model of monocyclic population in this model
individuals can proliferate at any age a ∈ [ap, af ], where ap is an age of maturation (the onset of reproduction),
af is a maximum individual’s reproductive age, [ap, af ] is an age reproductive window. We assume that
individuals have the finite maximal lifespan ad and they all die when reach the maximal age ad. Age-specific
population density u(a, t) is defined in domain Ω = {(a, t) |a ∈ [0, ad], t ∈ [0, T ]}. We will use also domain

Ω = {(a, t) |a ∈ (0, ad) , t ∈ (0, T )}. The quantity of individuals at instant t is U(t) =
ad∫
0

u(a, t)da. The

dynamics of u(a, t) is described by the initial-boundary value problem for the nonlinear hyperbolic equation
with integral boundary condition:

∂u

∂t
+
∂u

∂a
= −(s(a, t) + δσ̃(a, t) + r(t)U(t))u, (a, t) ∈ Ω, (27)

u(0, t) = θ

af∫
ap

σ(a, t)u(a, t)da, 0 < t ≤ T,

u(a, 0) = φ(a), 0 ≤ a ≤ ad

(28)
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where s(a, t) is a death rate, r(t) is a coefficient of proportionality of nonlinear death rate, θ > 0 is a
coefficient of reproduction, δ denotes the biological type of population and takes only values 0 or 1: δ = 1
when individuals die or are eliminated after reproduction (like biological cells after dividing, some species
of fishes and insects, etc.), δ = 0 when individuals can survive the birth of offspring (for example, the cell
of yeast, most species of animals, people, etc.), σ(a, t) is a fertility rate, function σ̃(a, t) is defined as

σ̃(a, t) =

{
σ(a, t), if a ∈ [ap, ad]

0, if a /∈ [ap, ad]
, σ̃(a, t) ∈ C (Ω) . (29)

Figure 2: Splitting of domain Ω =
K⋃
k=1

(
Ω

(1)
k

⋃
Ω

(2)
k

)
and the age intervals

[
a
(1)
m , a

(1)
m+1

]
, m = 0, ...,M .

The period [0, T ] is divided on time cuts [tk−1, tk], tk = kad, k = 1, ...,K, t0 = 0, which define the
domains:

Ω
(1)
k = {(a, t) | t ∈ [(k − 1)ad, a+ (k − 1)ad] , a ∈ [0, ad]} ,

Ω
(2 )
k = {(a, t) |t ∈ [a+ (k − 1)ad, kad] , a ∈ [0, ad]} ,

(30)

where Ω =
K⋃

k=1

(
Ω

(1)
k

⋃
Ω

(2)
k

)
(see Fig.2). We define the sets of age-specific intervals:

Q(k) =
{[
−a(k)m ,−a(k)m+1

] ∣∣∣ a(k)m = map + (k − 1)ad,m = 0, 1, ...,M − 1, a
(k)
M = af + (k − 1)ad, a

(k)
M+1 = kad

}
,

(31)

M =

{
[af/ap] + 1, if af/ap − [af/ap] > 0,

[af/ap] , if af/ap − [af/ap] = 0,
(32)

where [a] - is an integer part of real number a. Using the new variables v = a− t, t′ = t we reduce the
problem (27) – (28) to the Cauchy problem for the nonlinear ODE

∂u

∂t′
= − (s̃(v + t′, t′) + r(t′)U(t′)) u(v, t′) , u(v, 0) = φ(v), (33)
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where s̃(a, t) = s(a, t) + δσ̃(a, t) is a linear part of death rate which does not depend from the population
density. The boundary condition (28) will be used also in Cauchy problem (33). Solution of problem (33) in
domains Ω

(1 )
1 and Ω

(2 )
1 is defined in variables a, t by analogy with [3], [5]:

u(a, t) =

{
u
(1)
1 (v, t) = F

(1)
1 (a− t)W (a− t, t0, t)U1(t), if (a, t) ∈ Ω

(1 )
1 ;

u
(2)
1 (v, t) = F

(2)
1 (a− t)W (a− t, t− a, t)U1(t), if (a, t) ∈ Ω

(2 )
1 ;

(34)

W (v, tk, t) = exp

− t∫
tk

s̃(v + ξ, ξ)dξ

 , (35)

U1(t) = exp

− t∫
t0

r(ξ)U(ξ)dξ

 . (36)

Differentiating Eq.(36) by t and substituting U(t) =
t∫
0

u
(2)
1 (a− t, t)da +

ad∫
t

u
(1)
1 (a− t, t)da, the first and

second part of Eq. (34) in the obtained expression yields the Cauchy problem for unknown function U1(t):

U1
′(t) = −r(t)

 t∫
0

F
(2)
1 (a− t)W (a− t, t− a, t)da+

ad∫
t

F
(1)
1 (a− t)W (a− t, t0, t)da

U2
1 (t), (37)

U1(t0) = 1 (38)

Solution of problem (37), (38) is given:

U1(t) =

1 +

t∫
0

r(η)

 η∫
0

F
(2)
1 (a− η)W (a− η, η − a, η)da +

ad∫
η

F
(1)
1 (a− η)W (a− η, t0, η)da

 dη

−1

,

t ∈ [t0, t1].

(39)

Substituting the initial value (28) in the upper part of Eq. (34) yields:

u
(1)
1 (v, t0) = F

(1)
1 (v) = φ(v). (40)

Function F (2)
1 (v) is obtained from the integral Eq. (28):

u
(2)
1 (−t, t) = F

(2)
1 (−t)U1(t) = θ

af∫
ap

σ(a, t)u(a, t)da, t ∈ [0, ad). (41)

From (34) it follows that F (2)
1 (u) is defined by auxiliary functions Φ1m(z) step by step at the intervals

z ∈
[
−x(1)m ,−x(1)m−1

]
, m = 1, ...,M :

Φ11(z) = θ

af+z∫
ap+z

σ(y − z,−z)F (1)
1 (y)W (y, t0,−z)dy, z ∈

[
−a(1)1 ,−a(1)0

]
, (42)
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Φ1m(z) =θ

−a(1)m−2∫
ap+z

σ(y − z,−z)Φ1m−1(y)W (y,−y,−z)dy + θ

m−3∑
j=0

−a(1)j∫
−a(1)j+1

σ(y − z,−z)Φ1j+1(y)W (y,−y,−z)dy

+ θ

af+z∫
−a(1)0

σ(y − z,−z)F (1)
1 (y)W (y, t0,−z)dy, z ∈

[
−a(1)m ,−a(1)m−1

]
, m = 2, ...,M,

(43)

where the sum in Eq.(43) is not used when m = 2. Solution of equation (41) F (1)(v) is:

F
(2)
1 (v) = Φ1m(v), v ∈

[
−a(1)m ,−a(1)m−1

]
, m = 1, ...,M. (44)

F
(2)
1 (v) = θ

af+v∫
ap+v

σ(y − v,−v)F
(2)
1 (y)W (y,−y,−v)dy, v ∈

[
−a(1)M+1,−a

(1)
M

]
. (45)

Substituting (39), (40), (44), (45) in (34) yields the solution of problem (27) - (28) in domains Ω
(1)
1 , Ω

(2)
1 ,

(k = 1). We consider solution of problem (27) - (28) in domains Ω
(1)
k , Ω

(2)
k for the next k > 1. On the

border of two domains Ω
(1)
k−1 ∪ Ω

(2)
k−1 and Ω

(1)
k ∪ Ω

(2)
k , at the points t = tk−1 solution u(a, t) has to satisfy

continuity condition:

u
(1)
k (a− tk−1, tk−1) = u

(2)
k−1(a− tk−1, tk−1), k > 1. (46)

Hence, common solution of problem (27) – (28) in domain Ω for k ∈ N is:

u(a, t) =

{
u
(1)
k (v, t) = F

(1)
k (a− t)W (a− t, tk−1, t)Uk(t), if (x, t) ∈ Ω

(1 )
k ;

u
(2)
k (v, t) = F

(2)
k (a− t)W (a− t, t− a, t)Uk(t), if (x, t) ∈ Ω

(2 )
k ;

(47)

F
(1)
1 (v) = φ(v), (48)

F
(1)
k (v) = F

(2)
k−1(v)W (v,−v, tk−1)Uk−1(tk−1), v = a− tk−1, k > 1, (49)

Φk1(z) =θ

af+z∫
ap+z

σ(v − z,−z)F (1)
k (v)W (v, tk−1,−z)dv, z ∈

[
−a(k)1 ,−a(k)0

]
, (50)

Φkm(z) =θ

−a(k)
m−2∫

ap+z

σ(v − z,−z)Φkm−1(v)W (v,−v,−z)dv + θ

m−3∑
j=0

−a(k)
j∫

−a(k)
j+1

σ(v − z,−z)Φkj+1(v)

×W (v,−v,−z)dv + θ

af+z∫
−a(k)

0

σ(v − z,−z)F (1)
k (v)W (v, tk−1,−z)dv,

z ∈
[
−a(k)m ,−a(k)m−1

]
, m = 2, ...,M,

(51)

F
(2)
k (v) = Φkm(v), v ∈

[
−a(k)m ,−a(k)m−1

]
, m = 1, ...,M, (52)

F
(2)
k (v) = θ

af+v∫
ap+v

σ(y − v,−v)F
(2)
k (y)W (y,−y,−v)dy, v ∈

[
−a(k)M+1,−a

(k)
M

]
, (53)
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Uk(t) =

1 +

t∫
tk−1

r(η)

 η−tk−1∫
0

F
(2)
k (a− η)W (a− η, η − a, η)da +

ad∫
η−tk−1

F
(1)
k (a− η)W (a− η, tk−1, η)dx

 dη


−1

,

(54)

where the sum in Eq.(50) is not used when m = 2. The continuity condition of solution u(a, t) ∈ C
(
Ω̄
)

at
the points a = t− tk−1 across lines a = const, t = const leads to the equation:

F
(1)
k (−tk−1) = F

(2)
k (−tk−1). (55)

From this we arrive to the condition for the initial value:

φ (0) = θ

af∫
ap

σ (v, 0)φ(v)dv. (56)

The smoothness condition of solution u(a, t) ∈ C(1)(Ω) ∩ C(Ω) at the points a = t − tk−1 across lines
a = const, t = const leads to the equation:

F
(1)
k

′
(−tk−1) = F

(2)
k

′
(−tk−1). (57)

From Eq.(57) it follows the restriction on the coefficients and initial value of system (27)-(28):

∂φ

∂a
(0) = θ

σ(af , 0)φ(af )− σ(ap, 0)φ(ap) +

af∫
ap

(
∂σ

∂a
(v, 0)− ∂σ

∂t
(v, 0) + σ(v, 0)s̃(v, 0)

)
φ(v)dv

 .

(58)

Thus, the unique smooth solution u(a, t) ∈ C(1)(Ω)∩C(Ω) of problem (27)-(28) given by Eqs. (47)-(54)
exists if coefficients of system (27)-(28) and initial values (28) satisfy the conditions:

φ(a) ∈ C(1) ([0, af ]) , s(a, t) ∈ C (Ω) , σ̃(a, t) ∈ C(1) (Ω) , r(t) ∈ C (R>0) , (59)
θ = const > 0, φ(a) ≥ 0, r(t) ≥ 0, s(a, t) > 0, σ(a, t) ≥ 0 (60)

By analogy with [3], from all result obtained above we arrive to the following theorem.

Theorem 3.1. Let initial value φ(a) and coefficients s(a, t), r(t), σ(a, t), of problem (27)-(28) satisfy the
conditions (59), (60), continuity and smoothness conditions (56), (58). Then there exists a unique solution
u(a, t) ∈ C(1)(Ω)∩C(Ω) of problem (27)-(28) which is defined by the explicit recurrent formulae (47)-(54).

4. POPULATION OUTBREAKS IN NUMERICAL EXPERIMENTS

Explicit form of solutions obtained in Theorems 1 and 2 for age-structured models of monocyclic and
polycyclic populations allows for developing of accurate numerical algorithms for simulation of different
dynamical regimes of populations [1], [2], [3], [5], [6]. The one of the important classes of population
dynamical regimes is a population outbreaks observed in various biological systems. Among different types
of population outbreaks [8] we distinguish three main types of population density dynamics: oscillations
with large magnitude, sequence of pulses and single pulse. For instance, oscillation with large magnitude of
population density were observed in desert locusts populations [7], herbivorous insects, forest Lepidoptera,
Cardiaspina albitextura Taylor [8], etc. The time series of NIH 3T3 cell population in the form of sequence
of pulses were observed by using the FUCCI method in [9]. Outbreak in the form of single pulse of infected
population density is observed in a result of quick epidemic invasion of infective disease [4]. According to
the population outbreak classification oscillations with a large magnitude and sequence of pulses is inherent
to the populations with periodical eruption dynamics [8].

In simulations of age-structured model of polycyclic population dynamics we observe these three types of
population density outbreaks: oscillations with large magnitude (Fig.3a, 3b), pulse sequence (Fig.3c, 3d) and
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single pulse (Fig.3e, 3f). All dynamical regimes with outbreak are obtained for periodic by time functions
of death and birth rates like in work [3]. It was expected that solution of system with periodic coefficients is
oscillating function because according to Theorem 3.1 solution depends continuously from the coefficients
of model. On the other hand, pulse sequence and single pulse exhibit quite new form of solution of age-
structured model of polycyclic population dynamics which can be valuable in practice and applicable for the
various applications in life science.

Figure 3: Graphs of the quantity of individuals U(t) and population density u(a, t) of polycyclic population outbreaks:
(a), (b) – periodic regime with large magnitude, (c), (d) – pulse consequence, (e), (f) – single pulse.

5. CONCLUSION

In this work the exact solution of linear age-structured model of monocyclic population dynamics and the
explicit recurrent formula for the solution of semi-linear age-structured model (with density-dependent death
rate) of polycyclic population dynamics were obtained. The explicit form of obtained solutions allows for
developing the accurate numerical algorithms for simulation of complex dynamical regimes of population
such as population outbreaks. The theoretical and numerical study of nonlinear age-structured models of
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monocyclic and polycyclic population dynamics helps us understand better the different dynamical regimes
of populations observed in various real-world applications in practice.
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